Completion as a Derived Rule of Inference

Konrad Slind
University of Calgary

Preliminary Draft

October 10, 1990

Introduction.

Gordon’s HOL (Higher Order Logic) system [Gordon89)] is a descendant of
LCF [GMW79] that implements a version of Church’s Simple Type Theory
[Church40]. One of the notable features of HOL, indeed all descendants of
LCF, is that it enforces adherence to the logic by encapsulating the axioms
and primitive rules of inference of the logic inside the :thm abstract data type.
The type system of the ML programming language in which the logic is
implemented ensures that the only way to get an object of type :thm is by
primitive or derived rules of inference. This is in contrast to the majority of
proof systems in which a “theorem” is just something that pops out at the end
of the run of some monolithic piece of code.

An important procedure for equality reasoning is Knuth-Bendix completion
[KB70], so it is interesting and useful to add completion to HOL. There are
several issues raised by this. First, what does it mean to do completion in a
typed higher order logic, where algorithms for matching, unification, and term
ordering no longer have the nice properties of the first order case, if they exist
at all? Second, how can one provide completion in the logic — should it be a
primitive rule of inference, a derived rule, or an extralogical tool? Third, what
are the possible uses of completion in a higher order logic? The work of Hsiang
[HsDer83] and Kapur and Narendran [KN84] shows how refutation theorem
proving can be accomplished by a completion algorithm, but we are more
interested in how completion can be used in a natural deduction style logic.
That is, how does completion exist side by side with other derived rules of
inference, rather than being the inference engine running underneath?

This paper advances the view that completion should be a derived rule of
inference, and demonstrates how this is possible by implementing completion

in HOL. An important part of this development is the characterization of the
first order terms of a given type. The completion rule presented here is easily
adaptable to other natural deduction logics with equality.

1 In and out of logic.

Meta-theorems are not directly usable in the LCF approach to proof. For
example, in an LCF-style implementation of natural deduction propositional
logic, we would not be able to directly use the truth table method - the type
system enforces adherence to natural deduction. We might use the truth table
method to give us the knowledge that a formula is provable by natural
deduction, but we wouldn’t be allowed to assert that knowledge as a theorem.
Similarly, an LCF-style system would only accept the results of a completion
algorithm as theorems if they had been produced by rules in that system.

To implement a theorem proving procedure in HOL, therefore, requires that
one distinguish between what tasks must be done by inference and what may
be done by computation. Hence we draw a distinction between being “inside”
the logic, i.e., using inference, and being “outside” the logic, i.e., using other
computation.

HOL implements rewriting inside the logic, as a derived rule of inference
[Paulson83]. This implies that rewrite rules, the end product of a completion
implementation, must be theorems of the logic, which in turn implies that
every critical pair must be a theorem. Therefore, critical pairs must be
obtained by inference. In general, if we replace “rule”, “equation”, and
“critical pair” by “theorem” in an exposition of Knuth-Bendix completion (as
we will), we get what we are after. This reasoning gives us the following
breakdown:

inside — inference outside — computation
rewriting by a set of rewrite rules | unification

computing critical pairs term ordering

renaming variables apart matching

normalizing the variables in a rule | checking if reduced to identity
orienting an equation to a rule deciding if a term is first order

In the HOL system, we use computation in two ways: to guide inference and
to supply inference rules with information they need — the logic ensures
consistency while it is up to the computation, in this case, to provide
completeness.

2 An implementation of Simple Type Theory.

Most of this section is paraphrased from the development in the HOL manual
[Gordon89).

2.1 Types and terms.

The set of types 7 is formed from the following disjoint sets of primitive
symbols:

e V = {v1,v2,...}, an infinite set of variables;

o C = {(bool,0), (ind,0), (s1,n1), - . .(sk,nk)}, a set of type constants. A
type constant is a (name,arity) pair, where the arity must be a natural
number. If two type constants have the same name, they must have the
same arity, i.e., no two distinct type constants may have the same name.
We distinguish A = {(c,a) € C:a =0} UV, the atomic types.

The set 7 is the smallest set such that:

1. All elements of A are members of 7.
2.ty =ty € 7 if t; and t5 are members of 7

3. (f,n)(t1,...,ta) €7 if t1,...,t, are members of 7 and (f,n) €C.

The atomic types bool and ind represent the (built in) type of boolean values
and an infinite set of individuals, respectively. In HOL, the set C is initially
restricted to these two, but can be augmented by means of the new_type
function, which takes a name and an arity and adds a new type constant to C.
Type variables provide polymorphism - a theorem with type variables in it
represents a family of theorems derivable by instantiating those type variables.
An instance &' of a type § is obtained by replacing all occurrences of a type
variable in é by a type.

A signature over C, X¢, is a set of (name,type) pairs, where the type is a
member of 7. The set of HOL terms over a signature, Termsyg,, is defined to
be the smallest set such that:

e variables—v:yisatermifvisanameand y €T
o constants — ¢ : 9’ is a term if (¢,y) € £¢ and 4/ is an instance of ¥

o combinations — if tmy : (71 — 72) is a term and ¢tmy : 7, is a term, then
(tmy tmy) is a term of type 72

e abstractions — if v : 4, is a term and body : v, is a term, then Av.body is a
term of type 11 — 2.

It is possible for constants and variables in a term to have the same name. It
is also possible for different variables in a term to have the same name, in
which case they have different types.

2.2 The logic.

HOL is a natural deduction style logic. There are three primitive logical
constants: = (equality), D (implication), and ¢ (Hilbert’s choice operator).
Because of the limitations of the ASCII character set, the HOL system uses \
for A, ! and ? for universal and existential quantification, respectively, ==> for
implication, and @ for choice. There are eight basic inference rules:

ASSUME ----———- DISCH Gamma |- t2

Gamma - {t1} |- t1 ==> t2

REFL ————————— MP Gamma |- t1 ==> t2 Delta [- t1

Gamma U Delta |- t2

BETA_CONV
I- (\x. t1) t2 = t1[t2/x]
ABS A |- ti = t2 INST_TYPE A |- tm type_subst
A |- (\x. t1) = (\x. t2) A |- type_subst(tm)
SUBST {(A1 |- 11=r1)/vi; ... ; (An |- 1ln=rmn)/vn}

tm(vi,...,vn]
B |- tm[l11,...,1n]

AMMU ... UAnUB |- tm[r1, ... rn]

There are also five axioms:

BOOL_CASES_AX |- !b:bool. b =T \/ b =F

IMP_ANTISYM_AX |- !bl b2. (b1 ==> b2)==>(b2 ==> b1)==>(b1 = b2)
ETA_AX I- 1£:(x > #x), (\x. £ x) = ¢

SELECT_AX I- 1P:(*->bool). !x:*. (P x) ==> P (@ P)
INFINITY_AX |- ?£:(ind -> ind). One_One £ /\ ~(Onto f)

The only rule of interest to us is SUBST; none of the axioms concern us
directly. Because we restrict our attention to first order terms, we can ignore
INST_TYPE, which applies a substitution to the type variables of a term.
SUBST requires more explanation: its first argument

[Fli =ri/vy,...,Fly = rp/vy] is a list of (theorem,variable) pairs; its second
argument is assumed to be a template with (some of) its free variables found
in {vq,...,vn}; and the third argument B - tm[ly,...,l,] is the theorem that
is going to be substituted into. Conceptually, SUBST traverses the template
and tm in parallel, replacing I; by r; in tm when v; is encountered in the
template and I; is (simultaneously) encountered (free) in tm (automatic
renaming takes care of the variable capture problem).

2.3 Formulae as terms.

Terms of type bool are called formulas. The standard logical connectives can
be defined with the three primitive constants; however, for completion, we are
only interested in (possibly universally quantified) equations, so we describe
only V, which is an abbreviation for A (P : % — bool). P=(Az.T). (T itself
abbreviates (A (z : bool).) = (A (z : bool). z).) Although this looks odd, the
definition allows the derivation of all the usual rules for universal
quantification, e.g., generalization and specialization, so it has no impact on
further developments.

3 The first order restriction on terms.

Definition. A curried type of sort v is a function type ¥ — 4’ where 7’ is either
v or a curried type of sort 4. The width of 41 — ¥ — ... — 74,, a curried type
of sort v, is n.

Definition. The set of first order terms of type v, F,, is the subset of Termsy,
defined by the following rules:

o variables —if v: v € Termsyg,, then v: v isin F,

¢ constants ~ if ¢ : ¥ € Termss,, then c: vy € F,

e combinations — if combination t : ¥ € Termsg,, then, since we wish to
exclude partial applications, we strip t = (...(f:6¢1) ... tm) to f and
an argument list [t1,...,¢,]. If each member of the argument list is in
F, and ¢ is the curried type of sort v of width m 4 1, then ¢ is in F,.

e abstractions — are not allowed.

Definition A first order equality theorem of type a is a (possibly universally
quantified) theorem T' - ¢; = ¢; where ¢; and t; are both members of F,. A
homogeneous list of first order equality theorems

[Tik(li:a)=r1;..; 0 F Iy = r,] is a list of first order equality theorems,
all of type a.

For any a € 7 the first order matching, unification, and term ordering
algorithms retain their properties in F,, since there is an easy isomorphism
between the set of first order terms and F,.

Proof. Simple.

4 The components of completion.

We will consider the application of a substitution to a term and the
computation of critical pairs as inference rules, since they are important
components of completion that need to be inside the logic. As stated above,
the rewriting of theorems is done by inference; we will not cover that here
since full details can be found in Paulson’s paper [Paulson83], in which he not
only deals with term rewriting but also formula rewriting. Term rewriting
suffices for HOL because HOL formulas are merely terms of boolean type.

4.1 Applying a substitution
The derived rule of inference INST applies a substitution to a theorem and is

thereby the basis of term replacement in the HOL system. INST is already
available in the HOL system.

INST {A1, ..., An} |- tm theta

{A1, ..., An} |- theta(tm)

Since this is not a primitive facility in HOL, it is effected by

1. 0 = {t/v€0:visnot free in the assumptions }

2. Converting ' = {t1/v1,...,tm/vm} into two sequences:
e (vy,...,vm) — a generalization sequence
¢ (tm,...,t1) — a specialization sequence

3. Generalizing (in left-to-right order) on the variables in (vy,...,vy) to
get {A1,...,An}FVum...v1. tm

4. Specializing (in left-to-right order) with all the terms in (t,...,1) to
get {A1,..., A} F 8(tm)

To get the effect of applying a substitution, the last-generalized variable must
correspond to the first term specialized. Further, all generalizations must be
done first, so that a specialization doesn’t get done and a subsequent
generalization bind variables introduced by the specialization. Note that this
routine depends on the substitution being idempotent.

4.2 Critical pair formation.

The heart of the completion algorithm is the production of critical pairs. As
already mentioned, critical pairs must be theorems, hence they must follow
from an inference rule. The split between inference and computation comes
with the computation of occurrences of critical pairs, or overlaps. An overlap
between rules ry and r; is a pair (8, occ) of a substitution (produced by the
first order unification algorithm) and an occurrence. The occurrence defines
the path to the non-variable subterm of r; that unified with 7. The following
derived rule of inference, given two rules, and an overlap between the first rule
and the second rule, returns the critical pair corresponding to that overlap.

CRITICAL_PAIR A |- t1 = ut B |- t2 = u2 (theta, occ)

A U B |- (theta(tl))[occ := theta(u2)] = theta(ut)
(The notation tm4[occ := tm3] denotes the term identical with tm; except

that the subterm denoted by occ has been replaced by tms.)
In detail, CRITICAL_PAIR works as follows:

1. 1"1 INST ¢ ™ (= Ak (0t1) = (Oul))

2. v, = RENAME r,. RENAME is a derived rule of inference that
merely changes all the free variables of a theorem to be new to the
system.

3.7 = INST 0 ry (= Bt (6t2) = (6uz))

4. Generate v, a brand new variable of the right type, and form a template
by replacing the subterm of 8¢; at occ by v:
template = (8t1)[occ := v] = (fuy)

5. critical_pair = SUBST [r}/v] template 7}

Ezample. [Huet80] We step through the inference rule. Assume that we have
already derived r1 and r2. Notice that we will not have to rename 2 since its
varaibles are already disjoint from those in r1.

ri=|-fx(gxa)=hx
and
r2=]-gby=ky

#let [(theta,occ)] = overlap r1 r2 [J;;
theta = [("b", "x"); ("a", "y")] : (term # term) list
occ = [2] : int list

#let ri1’ = INST theta ri;;

ri’ = |-fb(gba)=hbd
#let r2’’ = INST theta r2;;
r2’’ = |-gba=ka

#let (v,template)
v ="v" : term
template = “f b v =h b" : term

mk_template ri1’ occ;;

#let critical_pair = SUBST [(r2’’,v)] template ri’;;
critical_pair = |- fb(ka) =hbd

The ML function critical_pairs that incorporates CRITICAL_PAIR has the
type : rule — rule — thm list, and is thus a derived rule of inference. The
ML function kb implements Huet’s version of Knuth-Bendix completion
[Huet81] and calls critical_pairs. It has type

: (term — term — bool) — thm list — thm list, hence is also a derived rule
of inference. Its first argument should be a term ordering, and it checks that
its second argument is a homogeneous list of first order equality theorems.

5 Example.

We use group theory, the factorial of the term rewriting world, for an example.
The term order is the recursive path ordering with status [Dersh87]. Notice
that the declared constants are polymorphic, as are all the returned theorems:
the resulting set of theorems can be instantiated to any type by use of
INST_TYPE.

#new_theory "group";

#new_infix ("op",‘:¥ -> * -> *¢) ;

#new_constant ("inv", ‘:% -> *¢);

#new_constant ("i", ‘:%¢);

#val el = new_axiom ("e1", ‘(i op x) = x*)

##and e2 = new_axiom ("e2", ‘((inv x) op x) = i¢)

##and e3 = new_axiom ("e3", ‘((x op y) op z) = (x op (y op 2))“);
el = |- !x. i opx=x

e2 = |- !x. (inv x) opx =i

e3=|-!xyz. (xopy)opz=xop (yopz)
() : void

#close_theory();

() : void

#kb (rpos status inv_op_i) exi;
[l- i op x1 = x1,
|- (inv x1) op x1 = i,
|- (x1 op x2) op x3 = x1 op (x2 op x3),
|- (inv x1) op (x1 op x2) = x2,
|- x1 op i = x1,
|- inv i =1,
|- inv(inv x1) = x1,
|- x1 op (inv x1) = i,
|- x1 op ((inv x1) op x2) = x2,
|- inv(x1 op x2) = (inv x2) op (inv x1)]
: thm list
Time: 16.2s
Intermediate theorems generated: 17436

We note that the non-logical version of the Knuth-Bendix completion
algorithm took approximately 7 seconds to complete the group axioms.

In the HOL system, one develops theories by establishing some definitions and
proving theorems about the constants introduced by the definitions. Once a
theory is completed, it can be saved on disc and its definitions, theorems, and
specialized proof procedures used in the development of other theories. The
more theories that are developed, the higher level of support a person has in
attempting to prove something. The completion procedure given here has
many applications, among them the standard one of providing a decision
procedure for equality for (some) equational theories. This would be an aid to
those developing such theories [Gunter89], although there is typically much
more than just rewrite rules to provide for a theory.

10

6 Conclusions and further research.

As can be seen, implementing completion in the logic is about twice as slow as
an equally naive non-logical implementation. This is made bearable by virtue
of the advantage conferred by having completion in the logic: any use of it will
not require justification by “external” metatheorems; the user can rely on its
output to be theorems.

There are two obvious paths to follow with this work: extend the first order
work to equational completion and proof by consistency; and investigate
completion in which the set of terms is not so restrictive. Another, due to an
ofthand remark by Tobias Nipkow, is to realize that types are a first order
structure and to do completion on type equations. I don’t know of any
applications for this.

The impetus behind this research was to investigate the introduction of
automatic theorem proving techniques into the HOL system — an
inside-the-logic implementation of resolution or of term rewriting theorem
proving [HsDer83] may be too slow to be useful; in that case the research of
Miller and Felty [Miller, Felty86] on porting proofs between logics may be
useful in translating refutation proofs to tactical proofs in a sound manner.

Acknowledgements.

I am grateful to Graham Birtwistle and Paliath Narendran: Graham has
provided me with a great deal of financial support in the course of this work
and suggested improvements in the paper; in the year that he was in Calgary,
Dran taught me about term rewriting systems and has been a constant source
of encouragement.

References

[Church40] Alonzo Church, A Formulation of the Simple Theory of
Types, Journal of Symbolic Logic, Volume 5, 1940, pp.
56-68.

[Dersh87] Nachum Dershowitz, Termination of Rewriting, Journal
of Symbolic Computation, Volume 3, 1987, pp. 69-116.

[Felty86] Amy Felty, Using Eztended Tactics to do Proof

Transformations, MSc. Thesis, Department of Computer

11

[Gordon89]

[GMWT9]

[Gunter89]

[HsDer83]

[Huet80]

[Huet81]

[KB70]

[KN84]

[Miller)

[Paulson83]

and Information Science, University of Pennsylvania,
December 1986, 85 pages.

Michael Gordon, The HOL System: Description,
Cambridge Research Center, SRI International, 1989.

Michael Gordon, Robin Milner, and Christopher
Wadsworth, Edinburgh LCF: A Mechanised Logic of
Computation, LNCS 78, Springer-Verlag, 1979.

Elsa Gunter, Doing Algebra in Simple Type Theory,
Technical Report MS-CIS-89-38, Logic & Computation
09, Department of Computer and Information Science,
University of Pennsylvania, 1989.

Jieh Hsiang and Nachum Dershowitz, Rewrite Methods
for Clausal and Non-Clausal Theorem Proving, Proc.
10th ICALP, Springer LNCS 154, July 1983, pp.
331-346.

Gerard Huet, Confluent Reductions: Abstract Properties
and Applications to Term Rewriting Systems, nJACM,
Volume 27, Number 4, October 1980, pp. 797-821.

Gerard Huet, A Complete Proof of Correciness of the
Knuth-Bendiz Completion Algorithm, Journal of

Computer and System Sciences, Volume 21, 1981, pp.
11-21.

Donald Knuth and Peter Bendix, Simple Word Problems
in Universal Algebras, in Computational Problems in
Abstract Algebra, edited by J. Leech, Pergamon Press,
Oxford, 1970.

Deepak Kapur and Paliath Narendran, An Equational
Approach to Theorem Proving in First Order Predicale
Calculus Computer Science Branch, General Electric
Company, Schenectady, 1984.

Dale Miller, A Compact Representation of Proofs, Studia
Logica, Volume 56, Number 4, pp 347-370.

Lawrence Paulson, A Higher Order Implementation of
Rewriting, Science of Computer Programming, Volume
3, 1983, pp. 119-149.

12

