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Abstract 

Amplifiers have had great demands placed on them as spectrally efficient mod-

ulation techniques become more prevalent in the industry, and bandwidth re-

quirements increase. Not only must they have broad bandwidth, they must 

remain linear over a large dynamic range. Linearization has been shown to be 

a viable technique for improving an amplifier's performance. 

Baseband predistortion is a linearization technique with excellent perfor-

mance capabilities that requires very little additional RF equipment, and the 

system can be made adaptive resulting in reduced sensitivity to changes. Un-

til recently the focus has been on memoryless predistortion. For narrow-band 

systems the memory effects of the amplifier can largely be ignored. However, 

as bandwidth increases the memory effects will become more significant and 

can't be ignored. 

This thesis discusses the effect of increasing bandwidth on memoryless 

predistortion using neural networks. Neural networks were chosen for their 

ability to model black box systems by knowing only their input and output. 

The system can also be extended to compensate for memory using Wiener and 

Hammerstein models. Results from simulation and experiments are presented 

and compared. 
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Chapter 1 

Introduction 

The society we live in has developed into an interconnected web that allows 

many forms of information to travel seamlessly around the globe on many 

networks, including the Internet and telecommunicaitons networks. With the 

advancement of the Internet in the 1990s everyone was introduced to what is 

now known as the Information Revolution. In the late 1990s wireless commu-

nications with data services began growing rapidly. 

Wireless usage in general is growing at an exponential rate. More than 

ever people are communicating with wireless products, but the methods that 

they use are evolving. New cellular phones include digital cameras to take 

and transmit still pictures or video conference. Sending short text messages 

has become a major way to communicate and the ability to receive email 

anywhere is becoming commonplace. 

Figure 1.1 shows that the forecasts in Europe for revenue from voice com-

munication is expected to plateau. Now that market penetration of cellular 

phones is almost complete, the cellular providers have to innovate in order 

to generate new revenue streams. New services such as text messaging are 

expected to become the new source of revenue growth. Further in the future 

raw data transfer will become another major source of income. Unlike voice 

1 
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Figure 1.1: Forecast Revenue Breakdown for Europe (source: Digitrends) 

communications, some of these new services require broadband data commu-

nicaiton. 

In the next few years, cellular providers will begin rolling out new com-

munications networks, with forecast bit rates exceeding 1Mb/s. Soon cellu-

lar providers will be able to compete with more traditional Internet service 

providers. Not only will broad bandwidth be available, but the cellular cus-

tomers will enjoy the freedom of multimedia Internet communication wherever 

they are. Beyond this bandwidth, future wireless links have been proposed that 

reach into the 1Gb/s ranges. With this bandwidth the cellular providers will 

be able to offer service that not only rivals wired Internet service providers, 

but will compete with them on an even footing. 

Throughout all of this change, one thing remains constant, wireless com-
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munications will continue to grow with faster connections. The engineering 

challenges that these broadband communications networks pose are staggering. 

From the wireless network infrastructure to the mobile terminal, everything 

must be redesigned. 

1.1 Motivation 

Traditional mobile system deployment involves several mobile terminals com-

municating with a network of base stations. While the mobile terminal will 

be in contact with a single base station, each base station will communicate 

with several mobile terminals simultaneously. This places great demands on 

the performance of the base station power amplifiers. 

With current systems the amplifiers that are used, are typically linear am-

plifiers. Most signals are amplified without incurring much distortion. How-

ever for digital multi-user modulation schemes with high peak to average ratios, 

the efficiency of these amplifiers is typically below 5%. If the amplifiers are 

operated at a higher input signal level the efficiency will increase, however the 

distortion introduced by the amplifier will also increase. 

Linearization techniques are methods where the distortion introduced by 

the amplifier is reduced, allowing for a more linear amplification. Each tech-

nique has its advantages and disadvantages. The focus for this thesis is a 

technique known as predistortion. Predistortion works by predicting what the 

distortion will be, and altering the signal applied to the input of the ampli-
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fier such that the output of the amplifier is the desired signal with an overall 

linear gain. Until the mid 1990s most predistortion schemes treated the am-

plifier as a memoryless nonlinear system, that is the output at any time is 

only dependent on the input at that time. This assumption usually works 

for narrow-band systems, however, as the signal bandwidth grows, high power 

amplifiers often begin to exhibit the symptoms of memory. 

This thesis will investigate the effects of memory on memoryless predistor-

tion, and will introduce a method of compensating for these effects. 

1.2 Thesis Contribution 

Several predistortion methods that compensate for memory have been pro-

posed and simulated, however, to the author's knowledge only one has actually 

been implemented on the bench[1]. This thesis is the first time a Hammerstein 

predistorter has been implemented and tested on a physical amplifier. An im-

plementation of a Hammerstein system is proposed using neural networks to 

implement the nonlinear portion. Memoryless predistortion is then compared 

to the new proposed system. 

The main contribution reported in this thesis is the test and validation of 

the Hammerstein predistorter concept. To the author's knowledge no other 

publication has shown the the results of a predistortion algorithm based on a 

Hammerstein predistorter tested with a physical amplifier. 
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1.3 Outline 

Chapter 2 begins with an introduction to the effects of amplifier distortion and 

the metrics used to measure the distortion. Neural networks are introduced in 

Chapter 3, where their structure and the methods used to train them will be 

discussed. Chapter 4 is an overview of the methods used to compensate for the 

distortions introduced by power amplifiers. Each method will be introduced 

and then the advantages and disadvantages will be discussed. This continues 

into Chapter 5 which discusses linearization with predistortion. Here the con-

cept of predistortion is introduced, and is discussed in detail along with some 

limitations and practical implementation issues. Then, combining the concept 

of predistortion and neural networks, the proposal for this thesis is introduced 

in Chapter 6. Here, neural networks are used to model the nonlinearities of 

the amplifier, and compensate for them. Chapter 7 simulates the various com-

ponents of the proposed system and presents some results. Chapter 8 extends 

on the simulation by testing the system on a test-bench, and discusses some 

results from an experimental setup comparing them to the simulation. Finally, 

Chapter 9 concludes the thesis and proposes some future research work. 



Chapter 2 

RF Power Amplifier Distortion 

The role of the base station RF power amplifier is to provide a signal at 

adequate power levels for transmission to the user terminal. Ideally the ampli-

fier, amplifies the input signal to the desired output power without distortion, 

however practical amplifiers are nonlinear devices that will distort the signal. 

The overall distortion can be broken down into several effects each of which 

manifest itselves in a different way. This chapter discusses the effects of the 

distortion and the metrics used to measure its severity. 

2.1 Amplifier Distortion Effects 

The distortions incurred by an amplifier can be broken down into two cat-

egories, linear and nonlinear. Linear distortions are not dependent on the 

input power of the signal, only the frequencies of the input signal. In con-

trast nonlinear distortions depend on the power of the input signal. Each of 

these categories has a different effect on the distortion products that manifest 

themselves. Linear effects typically contribute to inter-symbol interference and 

become a problem as the data rates and the system bandwidth increases. Non-

linear distortions distort the constellation that is transmitted and can cause 

the wrong symbol to be detected along with causing the transmitted signal to 

6 
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Figure 2.1: Linear Response 

occupy a larger spectrum. 

2.1.1 Linear Distortion 

21 

Since amplifiers may operate in wide bandwidths, they are subject to linear 

frequency dependent distortions. In general the linear distortion is composed 

of two components, frequency dependent gain and frequency dependent delay. 

Frequency Dependent Gain 

Ideally the amplifier's frequency response will be fiat within the operating 

band, independent of frequency. The frequency response of a system composed 

of a Motorola MHW-1916 driving a Motorola MRF-282SR1 amplifier is shown 

in Figure 2.1. Each plot has a frequency range of 200MHz centered at 1.96 

GHz. As the plot shows, the gain of the amplifier is not constant within the 

operational band of the amplifier. 
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If the system is narrow band, the change in gain with respect to frequency 

will not be great and can be assumed to be flat. However, since newer systems 

are using a much higher data rate and wider signal bandwidth, the assumption 

that the gain is constant over the bandwidth is not valid. With these high 

data rate systems, the linear distortion will manifest itself as inter-symbol 

interference, impacting the bit error rate of the system. 

Frequency Dependent Delay 

The group delay of a system characterizes the delay through a system for a 

given frequency. It is defined as the negative derivative of the phase with 

respect to frequency, as given in (2.1). 

dO (w)  

dw 
(2.1) 

Under ideal circumstances this group delay, like gain, would remain con-

stant across the operating band. However as can be seen by Figure 2.lb, 

practical amplifiers do not have a constant group delay. Since the frequencies 

are delayed differently, the individual frequency components of the signal do 

not line up at the output correctly, resulting in signal distortion. As with 

frequency dependent gain, the frequency dependent delay causes inter-symbol 

interference which increases as the data rate increases. 

The cause of group delay variation can be attributed to many sources in-

cluding but not limited to frequency responses of matching networks, nonlinear 

capacitances of the transistors and the response of the bias networks. 
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2.1.2 NonLinear Distortion 

While linear distortions only distort the signal and do not create any new 

frequencies, nonlinear distortions create new frequencies and cause the spectral 

content of the signal to grow. This spectral growth impacts directly on how 

many channels will fit in a given frequency range, and the overall spectral 

efficiency of the system. Nonlinear distortion can be broken down into two 

major components, amplitude distortion, and phase distortion [2]. 

Amplitude Distortion 

The ideal amplifier would apply a constant gain to the input signal regardless 

of its level. Under the assumption that the amplifier is memoryless, the input 

to output relationship of the amplifier can be expressed with a power series as 

in (2.2)[3]. 

v (t) = E /c (v  (t)) (2.2) 

where vi and v0 are the input and output voltages respectively and kn are 

constants. Substituting a simple sinusoidal input v (t) = A cos (wt), where A 

and w are the amplitude and frequency, expanding out the first five terms, 

applying trigonometric identities and collecting terms, yields (2.3). 



10 

VO = (k2A2 + k4A4) + (k1A + k3A3 + k5A5) cos (wt) + 

(k2A2 + k4A4) cos (2wt) + (k3A3 + k5A5) cos (3wt) + (2.3) 

(k4A4) cos (4wt) + (gk5A) cos (5wt) 

This equation shows that a number of new harmonics are introduced, in-

cluding components at DC and multiples of the fundamental frequency. Di-

viding the output amplitude of the fundamental frequency by A results in the 

gain of the fundamental frequency. 

G = 1+ k3A2 + 4,9A 4 (2.4) 

Ideally the gain would be independent of the input power. However the 

gain is dependent on the input amplitude A, related by all odd coefficients 

equal to or greater than one. This distortion is known as AM/AM distortion. 

The result is a deviation from the linear gain, k1, as power increases. The 

coefficient k3 governs whether the system is expansive or compressive if it is 

positive or negative respectively. Most practical amplifiers, k3 will be negative. 

The power in versus power out relationship for a Motorola MHW-1916 driving 

a Motorola MRF-282SFt1 is shown in Figure 2.2. 

If a two-tone signal, v (t) = A cos (wit) + A cos (w2t) is inserted into into 

(2.2) and three terms of the result are expand out, the result is shown in (2.5). 
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v0 = k2A2 + (k1A + /csA3) (cos wit + cos w2t) + 

k2A2 [cos (wit + w2t) + cos (wit - w2t)] + 

1c3A3 [cos (2w1t - w2t) + cos (2w2t - wit) + cos (2w1t - w2t) + cos (2w2t - wit)] + 

k2A2 [cos (2w1t) + cos (2w2t)] + 

k3A3 [cos (3w1t) + cos (3w2t)] 
(2.5) 

This shows that for a signal with two frequencies, the output will contain 

combinations of these frequencies called intermodulation products. As more 

terms are expanded, an increasing number of these intermodulation products 

will occur. In general these combinations will take on the form of mw1 ± nw2 
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where m and n represent any integer equal to or greater than zero. Figure 2.3 

illustrates the effects of the intermodulation products in the frequency domain. 

As can be seen from Figure 2.3, the intermodulation that will generally cause 

the most problems are the third order products, which are characterized by m+ 

n = 3. These products are the closest to the desired signal, which makes them 

difficult or impossible to filter out without adversely affecting the fundamental 

signal. 

If the input signal contains more than two frequencies, the modulation 

products at the output will contain every combination of every input frequency. 

This will result in a frequency plot such as Figure 2.4 which was obtained from 

a system composed of a Motorola MHW-1916 driving a Motorola MRF282SR1, 

operating well into its nonlinear region. 

Phase Distortion 

If the coefficients k in (2.2) are complex, this will give rise to an output phase 

response that is also dependent on the input amplitude. This distortion is 
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known as AM/PM distortion and results in a non-constant phase. This is 

shown in Figure 2.5, which is a plot of output phase for a given input power 

with a single tone input. For an input signal with multiple frequencies, the 

output will contain extra phase modulation similar to the intermodulation 

products introduced by nonlinear amplitude distortion. 

2.2 Linearity Evaluation 

To characterize and measure the effects of distortion from both linear and 

nonlinear sources, several metrics are employed. The simple 1dB compression 

point provides a measure between linear and nonlinear regions. The Error 

Vector Magnitude, or EVM, measures the amount of distortion applied to a 
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signal in the time domain. The IM3 point measures the level of third order 

intermodulation products with respect to the fundamental frequency band. 

Finally the Adjacent Channel Power Ratio measures the level of frequency 

emissions outside the signal with respect to the power of the fundamental 

frequencies. 

2.2.1 1dB Compression point 

One of the simplest and most commonly used boundaries between an ampli-

fier's linear and nonlinear regions is the 1dB compression point. When the gain 

is plotted against the output power, the point at which the gain drops 1dB 

below the ideal linear gain is the 1dB compression point. The results with a 
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Motorola MHW-1916 driving a Motrola MRF-282SR1 is shown in Figure 2.6. 

While no part of the amplifier's response is perfectly linear, if an amplifier's 

output power remains below this point, the output should remain in the region 

where the response is dominated by the linear gain term. If the output power 

approaches or rises above the 1dB compression point, the signal will enter the 

nonlinear region and be distorted. 

As can also be seen from Figure 2.6 the linear gain value is very subjective. 

The most commonly used and accepted values are the average gain and the 

maximum gain, however any value around these can be used. Despite the 

different values used, the 1dB compression point will usually be within 1 to 

2 dB of input power regardless of what value for linear gain is used. This 
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is because in general once the amplifier begins to enter its saturation region, 

the transition is swift. An accurate 1dB compression point is in general not 

required as the value is primarily used to serve as a general boundary between 

linear and nonlinear regions. As such, it does not characterize any of the linear 

distortion introduced by the amplifier. 

2.2.2 Error Vector Magnitude 

The error vector magnitude, or EVM, is used to quantify the amount of dis-

tortion applied to a signal by a system. The distortion is measured in the time 

domain and includes both linear and nonlinear distortion effects. The error 

vector is defined as the difference between the desired signal and the distorted 

signal. In the case of a complex signal with in-phase and quadrature compo-

nents, this difference will take the form of a vector. The EVM is defined as 

the average magnitude of the error vector with respect to the magnitude of 

the input signal. The general definition is provided in (2.6). 

EVM= n=1 1XI 

1 Ix;I  (2.6) 

If the signal is complex with in-phase and quadrature components, EVM 

is defined as 

EVM=E 
n=1 

(x [n] - [])2 + (xq [n] - 5q [])2 

X? [n] + x [n] 
(2.7) 
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where x[n] is the desired signal and x[n] is the distorted signal. The sub-

scripts i and q indicate the in-phase and quadrature components respectively. 

This definition normalizes the EV&t to the expected signal, if the EVM is to 

be normalized to the peak magnitude of the ideal complex signal 

1 M I (x [n] - j [n])2 + (xq [n] - Xq [n])2 
EVM= 

n=1 Wimax + X2 qmax 
(2.8) 

where Ximax and.xqmax represent the maximum values of the in-phase and 

quadrature values of the desired signal respectively. 

2.2.3 Third Order Intercept 

From (2.5) it can be shown that the power of the third order intermodulation 

frequency is a cube of the fundamental power, and it increases in power three 

times faster than the fundamental. The third order intercept point is defined as 

the point where the fundamental and the third order intermodulation powers 

if they continued in a linear fashion, are equal. Due to saturation and power 

limitations, this point can never be reached, however it can be extrapolated 

from the data of a two-tone test as in Figure 2.7. When the data from the 

fundamental power of one of the two input tones, and the intermodulation 

power are plotted with respect to input power and then linearly extrapolated, 

they will cross for some output power. The output power where this would 

occur is the third order intercept point, also known as the IM3 point. From 

this measurement, the level of third order intermodulation frequencies can be 
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estimated for a given output power. 

2.2.4 Adjacent Channel Power Ratio 

-15 

The Adjacent Channel Power Ratio, or ACPR, is a measure of the power that 

is outside the main channel with respect to the power that is contained in it. 

This specification is used to ensure that the power of a signal does not interfere 

with adjacent channels. It is defined as the ratio of the power contained in a 

portion of the adjacent channel to the power contained in the main channel. 

To determine the ACPR the power spectral density of the signal needs to be 

evaluated. The PSD of a signal is defined in (2.9). 
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P(f) = Ifft(s)I2 (2.9) 

Using the PSD the power of the adjacent channel and the main channel 

can be evaluated from (2.10) and (2.11) respectively. 

Padj ff0_;i P(f)df 

Bma M-

main = im P(f)df 
2 

(2.10) 

(2.11) 

The bandwidth of the main and adjacent channels are 8main and Badj 

respectively, and the frequency offset between the carrier frequency and the 

adjacent channel frequency is f0. (2.10) represents the power contained in the 

upper adjacent channel. The lower adjacent channel does not necessarily have 

to be equal. If the upper and lower adjacent channels differ in their power 

levels, the average of the upper and lower is used. The ACPR is then defined 

as the ratio of the two powers. 

ACPR = 10 log (_Pads) (2.12) 
main 

The primary purpose of the ACPR metric is to define the interference that 

will be contributed to adjacent channels in an FDMA system. Regulatory 

bodies will specify a maximum ACPR that is allowed. The specifications will 

include what values of Bmain, -8 adj, and f0 should be used in the measurement. 
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Since linear systems can't generate new frequencies, and the ACPR mea-

sures the interference outside the original signals bandwidth, only nonlinear 

distortions will contribute to the overall ACPR. The primary contribution to 

ACPR is the intermodulation products generated by the nonlinear distortion 

in the amplifier. 



Chapter 3 

Neural Networks 

Neural networks provide a flexible tool to model any arbitrary nonlinear sys-

tem. They have several advantages over other modeling techniques, including 

their ability to have their structure tailored to the complexity of the problem, 

modeling arbitrary systems without knowledge of the inner workings of the 

system, and generalizing the input to output relationship of the system. 

The seminal work on neural networks and parallel distributed processing 

is by David E. Rumelhart and James L. McClelland in "Parallel Distributed 

Processing", Volumes 1 and 2 [4, 5]. Unless otherwise stated, the information 

in this chapter is from these books. The reader is strongly encouraged to 

consult it for a more detailed view of neural networks. 

3.1 Structure 

The structure of a neural network can be very arbitrary. A network is com-

posed of computational nodes called neurons. Each neuron can have several 

inputs and can output to several other neurons. In their most general form, a 

neural network could be any number of neurons with interconnections between 

arbitrary pairs. In practice, neural networks usually are composed of neurons 

in regular structures. This section will first discuss the structure of the neuron 

21 
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itself, followed by various structures of neural networks. 

3.1.1 Neuron Structure 

The general structure of a neuron is shown in Figure 3.1. Each neuron is com-

posed of two parts, the input combination and the activation function. Since 

each neuron can have several inputs, each input must be weighted, combined 

into a single value and biased to provide a value for the node to operate on. 

Several common methods exist to accomplish this. The dot-product is the 

most common, where the inputs are simply weighted, summed, and then bi-

ased to form a single answer. Other more exotic methods do exist but will not 

be discussed in this thesis. 

The activation function is, in general, a nonlinear function with several 

properties. As some learning functions use derivatives of the activation func-

tion, it is advantageous for the activation function to be continuously differ-

entiable. It is also advantageous for it to have a output limiting property, 

where any input will result in a bounded output, commonly in the interval of 

I—i 1 I - This type of function is known as a squashing function. Finally 

for the purposes of this thesis an activation function should be single valued, 

that is only one possible output value for any single input. 

Common activation functions include sigmoidal based functions as in Fig-

ure 3.2a and radial based functions as in Figure 3.2b. Activation functions 

can also be knowledge based. A knowledge based activation function uses an 
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wn 

Figure 3.1: Node Structure 

empirical model to combine the inputs. Knowledge based networks use the 

flexibility of neural networks to enhance already known empirical models [6]. 

Recently the use of wavelet theory has been combined with neural networks 

[7,8]. 

The flexibility in the neuron comes from the parameters used in the input 

combination, and the ability to adjust them to change the node's input to 

output response. For example, if the input combination function was the dot-

product function, the parameters to be adjustd would be the weights applied 

to the input and the overall node bias, B. 

3.1.2 Network Structure 

The typical arrangement of a neural network is a series of neurons arranged 

into layers. Each layer is then fully connected to the other layers. These layers 

can be placed in any fashion, including in a combination of parallel and serial. 

Recurrent networks can be formed where these layers feed back to previous 
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Figure 3.2: Activation Functions 

layers forming feed back loops [9]. Feed-forward neural networks are a subclass 

where the layers are connected serially. The input is provided to the first layer, 

each layer will only feed to the next layer, and the last layer will provide the 

output from the network. The category of networks that this thesis is most 

concerned with is a type of feed-forward neural network known as the single 

layer perceptron, shown in Figure 3.3. 

Since the networks discussed in this paper are only required to provide a 

single output, the output layer is composed of a single neuron. If the output 

neuron uses a sigmoid or radial function, the output of the network will be 

fundamentally limited to the range of values that the activation function can 

provide. In order to achieve an output that can be in any arbitrary range, 

a linear activation function is typically used in the output layer. Usually the 

activation function is a linear input to output relationship with no gain. Since 

the activation function output is not bounded, the parameters in the input 
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Figure 3.3: Single Layer Perceptron 

combination function can be adjusted to provide any arbitrary output level. 

3.2 Output Calculation 

For the duration of this paper the input combination function will be defined 

to be the dot-product function as defined in (3.1). 

S. = WnOn..1+Bn 

The symbols used are shown in Table 3.1. 

The output of a node is defined by 

(3.1) 

0nfn(Sn) (3.2) 
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Symbol Definition 

Nn The number of nodes in layer n 
S The combination of inputs for layer n that will be used 

as the input to the activation function. Dimensions 
(Nn X 1) 

W A matrix of weights for layer n. Dimensions 
(N X N_1) 

O, The matrix of outputs of the activation functions from 
layer n, or for n = 0, the inputs to the network. Dimen-
sions (N x 1) 

Bn A matrix of biases for layer n. Dimensions (N x 1) 
T A matrix of target outputs for layer n. Dimensions 

(N X 1) 

En A matrix of output errors for layer n. Dimensions 
(N X 1) 

Table 3.1: Symbols Used 

where f is the activation function for layer n. The calculation is completed 

iteratively beginning with the first layer, n = 1, and continuing to to the last 

layer. Each layer first uses (3.1) to combine the inputs from the previous layer 

with the weights and biases of the current layer to provide S,. Then Sn is used 

in (3.2) to determine the output of the layer, On. The output from layer n 

then becomes the input to layer n+ 1. The outputs from the last layer become 

the output from the network. 

3.3 Training 

For the neural network to model any useful system, the parameters must be 

set accordingly. The process of adjusting weights and biases in the network 
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to model a system is known as training. Training methods can be mostly 

divided into two type of training, supervised and unsupervised. Supervised 

training uses the output of the network and a known expected value to adjust 

the parameters. Unsupervised training does not use an expected signal, and 

the network derives the adjustments from the input and output directly. 

3.3.1 Backpropagation 

Backpropagation, also known as the generalized delta rule, is an algorithm 

that allows the change in weights inside the network to be calculated from the 

difference between the result from the network and an expected value. Since 

the algorithm requires an expected or target value, any training algorithm 

that uses backpropagation can be classified as a supervised learning algorithm. 

Backpropagation works by propagating the error relative to an expected value 

at the output, backwards through the network. This can be represented by 

the derivative of the output error with respect 'to the parameters for that layer 

. The value E is sometimes known as the performance function. The own 

derivative can not be calculated directly, however application of the chain rule 

can break the derivative into a form that can. 

The first break is shown in (3.3). 

9E - 0En  as,  
aw - aw (3.3) 

Since S is the combination of the output from layer n - 1 before it reaches 
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the activation function which, in this derivation, is defined as the dot product 

of the weights Wn and the outputs from the previous layer Sn can be 

expressed as 

Sn = WnOn i +B 

From this the derivative is as shown in (3.5). 

(3.4) 

= on_i (3.5) 
Own 

To make future calculations simpler, Jn is substituted for and the result 
asn 

from (3.5) is substituted into (3.3), the problem simplifies to 

aEn 
= 8n°n-1 awn 

Then to calculate 8,, the chain rule is applied again in (3.7). 

_ o 8E  _ Mn ü0 
n - 80n DSn 

(3.6) 

(3.7) 

The first partial derivative is the derivative of the error at the' output of 

the layer with respect to the combination of the inputs and weights before the 

activation function. A common error function is the squared error shown in 

(3.8). 

En = (Tn - Q)2 (3.8) 
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where Yn is the target value for layer n. The 1 multiplier simplifies the 

equations, as the derivative with respect to the output reduces to 

fl (/7 , 

O n n)— n.Ln 
'-' n 

The relation between S, and On is defined by the activation function fn. 

(3.9) 

On = A (Sn) (3.10) 

The derivative of the output becomes the derivative of the activation func-

tion with respect to the input, Sn. 

ao a 
(JSn = (.JQ 

Combining the derivatives thus fax yields 

6,2 = (On — Tn) A (Sn) 

resulting in the final definition of '9-"n - shown in (3.13). 

(3.11) 

(3.12) 

aE n / 

) -' TX7 '. fl 1 fl in n) n 
(JVV asn 

For internal layers, a target is not available, and the error for that layer 

can not be calculated directly. As a result if layer n is an internal layer, the 

partial derivative aBn can not be calculated directly. The chain rule must be 

used again to break it up into derivatives that can be calculated. 
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OE ôE 5S72 

aon aSn+i aon 
(3.14) 

However '9-1'3n has already been calculated in the previous layer and defined 

as öi in (3.7). Again, assuming that the inputs to a node are combined with 

the weights as a dot product as in (3.4), results in (3.15). 

aSn+1 
  = (3.15) 
ao 

Combining results from (3.1), (3.15) and (3.11) to form the general case 

of Jn results in (3.16). 

Jn aE OE,  as 1 ao a 
= =  --- = (Sn) 

& n n-f.]. (1 n & n as, 

Combining (3.16) and (3.6) gives the final result. 

aE a 
owl = 6n°n-i = ön+iWn+i aSn fn (Sn) On-1 

This can be shown in an alternate form as 

aE 
  - c5flOfl 
&VV 

(3.16) 

(3.17) 

(3.18) 

By applying (3.6) and (3.7) to the last layer of the network, then using 

Equations (3.18) and (3.16) on the last internal layer to the first internal 

layer, the algorithm can calculate the derivative of the error with respect to 

any given parameter. 
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The derivation thus far assumes that all values will be real, and contain no 

imaginary components. However, the backpropagation algorithm can easily 

be adapted to complex values with complex activation functions [1O]. 

3.3.2 Gradient Descent 

Gradient descent uses the partial derivative, 8E.- ,t0 linearly adjust the weights 

along the n-dimensional error surface along the maximum slope. 

OEI 19B, 
0  

The parameter q is defined as the learning rate. The learning rate governs 

the size of the step taken down the minimum slope. If the region is linear 

the step size can be increased in order to move faster towards the minimum 

error with fewer steps. However if the learning rate is too large, and the 

error surface around the current location isn't linear, the weight step may 

increase the overall error. However lowering the learning rate also increases 

the number of steps required to converge on the minimum error. Since gradient 

descent algorithm uses the backpropagation algorithm which relies on a target 

value, gradient descent and its derivatives are classified as supervised training 

algorithms. 

Gradient Descent with Adaptive Learning Rate 

Adaptive learning rate alters the learning rate to achieve the best of both 

worlds. After the weight change has been made, the performance is recalcu-
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lated. If the performance increases, the learning rate is increased by a constant 

factor. If the performance is decreased, and the decrease exceeds a threshold, 

then the learning rate is decreased by a constant factor. 

Gradient Descent with Momentum 

The error surface may contain several local minima and the global minima. To 

avoid settling into a local minima, momentum can be added to the gradient 

descent. 

LW (t) = aI≥W (t - 1) (3.20) 

where c is the momentum factor. Since the next weight change is a fac-

tor of the previous weight change, the adaptation path will tend to overshoot 

the local minima, possibly carrying forward towards a global minima, as il-

lustrated in Figure 3.4. However, a larger momentum factor will increase the 

convergence time, as time will be spent oscillating towards the minima. 

Gradient Descent with Adaptive Learning Rate and Momentum 

By combining adaptive learning rates, and momentum, the best of all worlds 

can be achieved. The neural network will converge on a minima faster due 

to the adaptive learning rate, and avoid local minima by overshooting due to 

momentum. 
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Gradient descent constantly moves in the 
direction of decreasing error 

Without momentum it would stop at the 
• first local minima 

Momentum allows it to Z7 travel through local 
V minima 

To reach a global 
minima 

I, 
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Figure 3.4: Gradient Descent with Momentum 



Chapter 4 

Linearization Techniques 

As introduced in Chapter 2, power amplifiers introduce distortion into the am-

plified signal. The distortion can cause, but is not limited to, spectral regrowth, 

constellation warping and inter-symbol interference. Measures must be taken 

in order to reduce these effects. The methods of reducing the distortions are 

known as linearization. In this chapter, various linearization techniques will 

be introduced, and their advantages and disadvantages will be evaluated. 

Many linearization techniques have been published in the literature. In 

general linearization can be categorized by where the correction is introduced 

in relation to the amplifier, before, during or after. Feedback and predis-

tortion introduce the correction before the amplifier, while feed-forward and 

LINC introduce it after the amplification. Envelope elimination and restora-

tion techniques introduces the correction during the actual amplification. 

Linearization techniques are evaluated on several points of merit including, 

but not limited to: 

• Effectiveness is a primary consideration. Usually measured by how much 

the intermodulation products are reduced as a result of the linearization 

technique. 

34 
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. The bandwidth the system is able to linearize while maintaining a certain 

level of reduction. 

• Additional hardware increases system cost and complexity. 

• Implementation issues must be considered including sensitivity to pa-

rameter changes, environment and aging. 

4.1 Output Power Reduction 

The simplest form of amplifier linearization is output power reduction. Since 

for lower output powers the amplifier is linear, the input power is tuned so 

that the signal remains in the linear region. The other way that a signal can 

be kept in the linear region of the amplifier is to use a larger amplifier, thereby 

increasing the maximum power level that will be amplified linearly. 

Advantages 

The primary advantage to this method is that it is very simple. Reducing the 

input power only involves placing an attenuator on the input to the amplifier. 

Reducing the input power does reduce the intermodulation products signifi-

cantly since the third order intermodulation products will fall 3dB for every 

1dB of reduced output power. 
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Disadvantages 

By backing off the output power to the amplifier, the output signal may not 

be at an adequate level for transmission. More active methods of linearization, 

which are discussed below, allow the input signal to enter the nonlinear region, 

and still maintain a linear output. As a result while this method is simple, 

without increasing the size of the amplifier, it does not allow for the power 

levels that other linearization methods do. To obtain larger output powers 

with linear amplification using this method a larger, oversized amplifier is 

required. 

The primary purpose of this method is to reduce the nonlinear distortions. 

As linear distortion is independent of the input power, this method does not 

address linear distortions introduced by the amplifier. While small bandwidth 

signals will not be affected as the frequency response can be assumed to be flat 

across the operational region, wideband signals will experience inter-symbol 

interference. This method can be augmented with equalization to compensate 

for the linear distortions. 

4.2 Feed-Back 

Feed-back linearization, patented in 1938 by H.S. Black [11], is commonly used 

in low frequency applications. The system works by scaling the output of the 

amplifier and subtracting it from the input. By introducing a phase shifted 

version of the error to the input of the amplifier, the distortion introduced by 
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Figure 4.1: Feedback Linearization 

the amplifier will be reduced. Figure 4.1 shows a block diagram. If we assume 

that the distortion introduced by the amplifier is summed with the signal at 

the output of the amplifier, then the output is defined as 

rG(w)  + D (41 
Th- G (w) H (w) 1— G (w) H (w) 

This shows that the overall distortion is reduced by 1-G(W)H(w) I   however 

the gain applied to the input signal is also reduced by the same amount. 

Advantages 

The feedback system is very simple to implement, requiring very little addi-

tional hardware. 

Disadvantages 

Since the output of the amplifier is being subtracted from the input, feedback 

systems will pay a gain penalty. As (4.1) shows, the gain of the system will not 

only be dependent on the gain of the amplifier, but the attenuation placed in 
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the feedback circuit. To compensate for this an alternate system was proposed 

in [12] that removes the input signal from the feedback path. Since the feed-

back signal does not contain the input signal, the overall gain of the system is 

not affected. 

As frequency increases, system stability and bandwidth must be considered. 

For feedback to work, the combination of the input signal and the feedback 

signal must be subtractive. This is accomplished by adding an odd multiple 

of ir radians phase rotation to the feedback signal. Delay lines are commonly 

used to form the proper phase shift. The approximate phase shift for a delay 

line of length L is 

o = 2irLf 
(4.2) 

As the operational frequency increases the phase shift introduced by the feed-

back path linearly increases. The result is that a delay line will only provide 

the correct phase shift for a single frequency. As the signal moves away from 

that calibrated frequency, the phase shift will increase or decrease linearly with 

frequency. This results in the correct cancellation at the input of the amplifier 

for only a narrow band of frequencies which becomes narrower as the required 

phase shift increases. 

At higher frequencies it becomes difficult if not impossible to have an elec-

trical length that corresponds to ir radians of phase, and the feedback path 

must become 3ir or even 5ir radians. The effect of the delay increasing is that 
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Figure 4.2: Feed-Forward Linearization 

the open-loop gain will start to increase for certain frequencies. If the open 

loop gain for a frequency exceeds unity, the system will become unstable and 

oscillate. 

4.3 Feed-Forward 

The feed-forward method linearizes the signal by removing the error from 

the amplified signal. This is accomplished by generating the error signal and 

mixing it back into the output of the amplifier in such a way that the error is 

canceled out. The general feed-forward system is shown in Figure 4.2. 

The system is composed of two loops, the signal cancellation loop and the 

error cancellation loop. The signal cancellation loop is responsible for canceling 

the signal out of the distorted amplified signal, leaving only the error. Then 

in the error cancellation loop the error is used to cancel the error from the 
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amplified signal. 

In the signal cancellation loop the input signal is first amplified with the 

main amplifier, and then split. Some of the power in the amplified signal enters 

the error cancellation loop, while part of the signal is attenuated until it is at 

the same level as the input signal. A phase shifted version of the original 

undistorted signal is added to the attenuated signal. The combination of the 

distorted signal and the phase shifted undistorted signal cancel out the desired 

signal, leaving only the error introduced by the amplifier distortion. 

The error cancellation loop then amplifies the error signal up to an ap-

propriate level with the error amplifier and combines it with a phase shifted 

version of the distorted signal output from the main amplifier with the am-

plified error signal. This combination cancels out the error leaving only the 

undistorted amplified version of the input signal. 

Advantages 

Feed forward systems are extremely effective and can reduce intermodulation 

products by 40dB or more. Since no feedback paths exist, stability is not an 

issue. The linear distortions are also present in the error signal, and when 

the error is subtracted from the output signal the linear distortions are also 

corrected. 
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Disadvantages 

There are several disadvantages associated with feed-forward amplification. A 

feed-forward system requires several additional RF components, including a 

second amplifier. The error signals contains a much higher peak to average 

ratio than the input signal, a larger bandwidth, and the required output power 

of the error amplifier is not significantly lower than the main amplifier [13]. In 

general the error amplifier is required to have similar capabilities to the main 

amplifier, so a second main amplifier is used. 

The RF equipment must also be calibrated very carefully. A. Javed and 

B. Syrett [14] showed that in order to achieve 30dB of cancellation that an 

amplitude balance of 0.3dB and a phase balance of 2 degrees is required. This 

generally makes the system installation specific, and requires that it be recali-

brated if any part of the system changes. To combat this an adaptive controlled 

feed-forward system was proposed in [15] which has become a commonly used 

technique for commercial systems. 

The stringent requirements on the phase balance also have a direct impact 

on the amount of cancellation for wider bandwidth signals. As with feedback 

systems, delay lines are used to adjust the phase of the input signal and ampli-

fied signal to achieve the desired cancellation. From (4.2) the phase applied to 

the signal will be frequency dependent. Once the phase for a specific frequency 

drifts by more than 2 degrees, the cancellation will be at best 30dB. As the 

the distance from the calibrated frequency increases, the phase will continue 
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to drift further, and cancellation will suffer. A.M. Smith and J.K. Cavers pro-

posed a method that has two delay paths through the signal cancellation path 

in [16], which significantly widened the bandwidth, at the cost of additional 

RF hardware and additional tuning required. 

4.4 LINC 

Linear amplification using nonlinear components, or LINC, was introduced in 

[17]. LINC works under the assumption that amplifiers do not distort con-

stant envelope signals. To exploit this assumption the input signal, generally 

with both phase and amplitude information, is split into two phase modulated 

constant envelope signals. Since the new signals have a constant envelope, 

efficient nonlinear amplifiers can be used without generating intermodulation 

products. Figure 4.3 contains a block diagram of a LINC setup. The compo-

nent separator generates the two constant envelope signals in such a way that 

when they are combined together, they produce an amplified version of the 

input signal. This is accomplished by generating an error term e (t) and then 

generating the two output signals as 

S = Si(t) + e (t) 

82 = Si (t) - e (t) 

(4.3) 

(4.4) 

such that S and 82 have a constant envelope. Thus when they are com-

bined 
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Figure 4.3: LINC Transmitter 

= S (t) + 82 (t) = 2S (t) (4.5) 

the combination results in a linear output. 

Advantages 

Since the amplifier's input signal is a constant envelope signal, the amplifiers 

can be chosen on output power and efficiency, without regard to linearity. The 

cost of the additional amplifier is generally more than offset by the ability to 

use cheaper amplifiers. 

Disadvantages 

Like feed-forward linearization, LINC is difficult to implement. The cancel-

lation will be very sensitive to any differences in either arm. Each arm must 

exhibit both the same phase and magnitude response for the system to work 

properly. The amplifier specifications must also be broad bandwidth since the 

input signals S and S2 contain more bandwidth than the input signal Sias a 
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result of the separation. The severity of the signal spreading is dependent on 

the characteristics of the input signal [18]. Modulation schemes that do not 

have zero crossings such as ir/4 DQPSK do not exhibit the signal spreading 

as much as 64-QAM which produces zero crossings. 

4.5 Envelope Elimination and Restoration 

Envelope elimination and restoration, also known as the Kahn technique, is 

not in itself a linearization technique, however it is used with conjunction 

with other techniques such as predistortion to provide linear amplification. It 

works much like LINC in that the signal that is amplified is reduced into a 

constant envelope signal. This is accomplished by separating the input into 

the magnitude and phase components. The phase is modulated onto an RF 

carrier producing a constant envelope signal at the desired frequency. The 

signal is then amplitude modulated and amplified by adjusting the DC power 

supply to the amplifier according the the magnitude of the input envelope. 

Since the amplifier power supply has a direct impact on the amplitude of the 

output signal, which impacts gain, modulating the DC power supply in turn 

modulates the output signal. The overall system is shown in Figure 4.4. 

Advantages 

Like LINC, envelope elimination and restoration amplifies constant envelope 

signals with nonlinear amplifiers. This allows the use of lower cost, efficient, 
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Figure 4.4: Envelope Elimination and Restoration 

highly nonlinear amplifiers. Unlike LINC, there is no combination of two 

high power signals. This allows for much higher efficiencies than a LINC 

setup. This method was demonstrated by F.H. Raab in [19]. The results show 

amplification with 40 - 50% efficiency at 20 Watts of output, with excellent 

linearity. 

Disadvantages 

Unfortunately envelope elimination and restoration has several disadvantages. 

One difficulty is how the output signal becomes amplitude modulated. Us-

ing the DC power supply for the power amplifier to amplitude modulate has 

several issues including linearity, dynamic range and bandwidth. The relation 

of the DC power supply level to output amplitude can be very nonlinear. To 

overcome this other linearization techniques have to be used. Predistortion 

was used in [19]. For high peak to average ratio signals the dynamic range of 

the DC power supply level to output amplitude may become an issue if not 

a limitation. Since the signal is separated into magnitude and phase compo-
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nents, the magnitude component's bandwidth will be several times larger than 

the input signal, requiring the DC supply to have a large baseband bandwidth. 

In general, because of all the requirements and the non-ideal characteristics of 

an envelope elimination and restoration system, it is one of the most difficult 

linearization techniques to implement. 



Chapter 5 

Predistortion 

Predistortion has become a hot research topic in the last decade. With the 

power of digital signal processors increasing and their price decreasing, some 

previously proposed predistortion methods are now becoming possible. One of 

the earliest publications on predistortion is Davis' patent in 1981 [20]. Since 

then most publications either reference Saleh's 1983 article [21] linearizing a 

QAM-64 modulated signal, or Cavers' 1990 article [22]. The novelty of Cavers' 

method was that very little processing power and memory were required in 

order to achieve excellent results. The technique was enhanced by Stapleton 

and Cavers in 1991 in [23]. Since then predistortion has become a very broad 

research topic with many variations. 

5.1 Theory 

Predistortion is a method of compensating for amplifier distortion before the 

amplifier distorts the signal. By estimating what the distortion for a given 

signal will be, the system can estimate what correction will be required so that 

the output signal of the amplifier will be the desired signal. This correction 

is then applied to the signal before the amplifier. The general concept is 

to place a system before the amplifier, with a transfer characteristic that is 

47 
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Figure 5.1: Predistortion 

Predistorter 

Feedback Loop 

Figure 5.2: Predistortion Block Diagram 

the inverse of the amplifier. The cascade of the predistortion system with the 

amplifier results in a system which is linear. Figure 5.1 illustrates this concept. 

Predistortion systems will generally follow the form of Figure 5.2. 

5.1.1 Derivation 

For complex input data, let X represent the complex input. The output of 

the amplifier will be Y such that 

Y=ci(X) (5.1) 

where T represents the complex transfer characteristic of the amplifier. 

Placing a predistortion function (X) into the system results in 
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Y=ce((X)) (5.2) 

The goal of predistortion is to produce an output signal that is a scaled 

version of the input 

Y=GX (5.3) 

Where G is a linear gain term. Substituting (5.3) into (5.2) and manipu-

lating the equation a little results in 

(X) = ' (GX) (5.4) 

Polar Representation 

Amplifier distortion is commonly described in terms of polar coordinates. 

Modeling amplifiers in terms of amplitude and phase distortion has been shown 

to be very accurate for a wide range of amplifiers {2}. If the input is represented 

as magnitude and phase components 

X = re20 (5.5) 

The output of the amplifier becomes 

Y = (5.6) 

where R and p are calculated using 
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R=A(r) 

e (r) 

(5.7) 

(5.8) 

The functions A and e are the amplitude and phase transfer characteristics 

of the amplifier respectively. Predistorting the inputs results in an estimate 

for input that will result in the desired output 

= T (r) i(1Z(r)+B) (5.9) 

where T is the AM/AM predistortion block and ci is the AM/PM predistortion 

block. Placing predistortion in the system and following the same derivation 

results in 

T (r) = A' (Cr) (5.10) 

ci (r) = —g (T (r)) = -.-e (A' (Gr)) (5.11) 

Cartesian Representation 

If the input is represented by its in-phase and quadrature components in a 

Cartesian coordinate system 

Xxi+xq (5.12) 
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and the amplifier output becomes 

YYi+Yq (5.13) 

where 

yi = W (xi, xq) = Re IT (x + ixq)} (5.14) 

Yq = Wq (Xi ,xq) = Im{I' (x + ixq)} (5.15) 

The function I' is the same characteristic from (5.4) but separated into 

real and imaginary components. The predistortion functions then become 

= (Di (xi,xq) = Ti' (xi,xq) = Re{W' (xi +ixq)} (5.16) 

= cI:q (, xq) = ci 4 (xi, xq) = IM {J' (x + ixq)} (5.17) 

5.2 Implementation 

Predistortion implementations can take on several forms, depending on which 

stage the predistortion is done, which signal representation is used, and if the 

predistortion is adaptive, what is the work function. 
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Polar vs. Cartesian 

The choice of how to represent the signal divides predistortion into two cat-

egories, polar or Cartesian. Each has advantages and disadvantages. As can 

be seen from the derivation, the polar system benefits from a fax simpler rep-

resentation of the distortion. However input signals are usually provided in 

Cartesian in-phase and quadrature components rather than polar. If a polar 

predistorter is used, the input must be converted from Cartesian to polar, and 

the output must be converted back to Cartesian. 

Baseband Vs. RF 

A predistortion function can operate on either the signal at baseband or at 

the RF modulated signal. Baseband predistortion offers the simplicity of being 

able to operate on a signal in either the analog domain or the digital domain. 

With modern DACs and ADCs that are capable of hundreds of megasamples or 

even gigasamples per second, wideband signals can be brought into the digital 

domain and predistorted in a DSP. The drawback to baseband predistortion is 

that the feedback signal must be demodulated back down to baseband. This 

can be avoided with techniques such as bandpass sampling [24], which has some 

noise penalties. While predistorting the RF modulated signal doesn't require 

that the output of the amplifier be demodulated back down to baseband, it 

currently precludes the possibility of digital predistortion. Currently DACs, 

ADCs, and DSPs are not fast enough to perform digital RF predistortion. 

Attempts have been made at analog predistortion such as the RF Cuber [25, 
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26], but they are difficult to make adaptive. 

Symbol Predistortion Vs. Signal Predistortion 

Assuming digital baseband distortion, the predistortion can either work with 

the raw data symbols, or the signal after the pulse shaper. If the predistortion 

operates on the pulse-shaped signal, the signal must be sampled well above the 

symbol rate. This raises the throughput requirements of signal predistortion 

over symbol predistortion. The drawback with symbol predistortion is that the 

transition between symbols is not addressed. Symbol predistortion makes sure 

that the symbols will be transmitted perfectly and the resulting eye-diagram 

will have wide open eyes. However the transitions are still left to the pulse 

shaper. 

Figure 5.3 illustrates this problem. Figure 5.3a shows the amplified output 

with signal and symbol predistortion. Both methods pass through the sym-

bols perfectly, however the routes taken are very different. Figure 5.3b shows 

the power spectral density for both types. The end result with symbol pre-

distortion is that the constellation is transmitted clearly, but intermodulation 

products will be far higher than the signal predistortion case. 

Maximum Linearity Vs. Minimum Intermodulation Products 

The work function of a predistorter further categorizes the various predistor-

tion techniques. A work function is performance or error function that an 

adaptation algorithm will either maximize or minimize to achieve the goal. A 
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predistortion system can have its performance function tuned to either max-

imum linearity, or minimum out-of-band distortion performance [27]. The 

difference usually comes from what the adapting function is observing. In 

[28, 23] the predistorter is updated based on the measured ACPR, while in 

[29] the overall linearity of the signal is used as the work function. 

In theory, a maximally linear amplifier will not exhibit any intermodula-

tion products, however they will result from any deviation in linearity. If the 

sole criteria for adaption is the ACPR, then the intermodulation products will 

be heavily reduced, but the in-band distortion could still be present. The 

result is that maximally linear predistorters will have good in-band and adja-

cent channel performance, and predistorters built to minimize intermodulation 

products will have better ACPR performance with worse in-band distortion 

performance. 

5.3 Limitations 

Unlike feed-forward linearization and other linearization techniques that in-

troduce power at the output of the amplifier, predistortion does not introduce 

any new power. As a result, the overall gain of a predistortion system has to 

remain at or below the amplifier's gain for any given input value. Figure 5.4 

illustrates the constraints of predistortion. 
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Since the predistortion occurs before the amplifier, not as much additional 

RF equipment is required when compared to other linearization techniques. 

If the system is made adaptive, the only additional RF hardware required 

is an output coupler and a demodulation stage. The other components of 

a predistortion system are less expensive baseband components and include 

DACs and ADCs, and the actual predistortion block which is usually a digital 

signal processor. 
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5.5 Disadvantages 

The primary disadvantage of predistortion is the computational complexity 

involved. Some systems are implemented as large multidimensional tables, 

and interpolation which involves a lot of memory. In the systems proposed 

by Cavers [22] and Stapleton and Cavers [23], the processing power and mem-

ory requirements were both drastically reduced. The issue of computational 

complexity is also being alleviated with the advancement of high speed digital 

signal processors and FPGAs. 

Until the 90's, the subject of amplifier memory in predistortion was not 

addressed in literature. In 1993, Benvenuto, Piazza and Uncini published 

a paper using a neural network to perform predistortion, which took into 

account the memory of the system it was to linearize [30]. Later in 2001, 

Opere addressed the subject in his master's thesis [1]. 

One outstanding research issue with predistortion is the issue of broad 

bandwidth. As the bandwidth of the input signal increases, the effectiveness 

of the predistortion tends to decrease. This subject will be further addressed 

in Chapter 8. 



Chapter 6 

System Overview 

The predistortion system proposed in this thesis is detailed in this chapter. 

First some background is provided about the model used for the amplifier, and 

how that relates to predistortion. Then the system architecture is described 

in detail. 

6.1 Amplifier Model 

A common approach for designing a predistortion system is to determine an 

accurate model for the amplifier and then inverting the model. Several meth-

ods to model amplifiers exist, with varying levels of accuracy and complexity. 

One of the most common ways to model an amplifier is with a simple lookup 

table [21]. This scheme works with two tables, one for the AM/AM distortion 

and one for the AM/PM distortion. The tables are populated with the data 

from a one-tone test. From these tables the output value can be interpolated 

from any input value. The disadvantage is that this is only accurate for a 

narrow band system that does not exhibit linear distortions or memory. 

A Volterra series is a popular method to model a system with memory [14]. 

The primary disadvantage of using a Volterra series model for predistortion 

is that a direct inverse does not exist. Approximations can be made using 
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polynomials [31] and the pth-order inverse approximations, both of which are 

very complicated however. 

Modeling nonlinear systems with memory can be very difficult. One method 

to simplify the process is to break the system into two pieces, a nonlinear sys-

tem without memory, and a linear system with memory placed before the 

nonlinear system [32] as shown in Figure 6.1. This type of model is known as 

a Wiener model and was proposed in [33]. 

The advantage of modeling the amplifier using a Wiener model is that 

the corresponding predistortion system is a nonlinear system without mem-

ory followed by a linear system with memory. This structure, known as a 

Hammerstein system, is shown in Figure 6.2. 
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6.2 System Structure 

In this system two stages of correction will be applied, linear and nonlinear. 

Both stages will have their performance function tuned for maximum linearity. 

The block diagram for the system is given in Figure 6.3. The input to the sys-

tem is assumed to be a complex baseband signal. Following the Hammerstein 

model, the signal is first passed through a neural network to compensate for 

the memoryless nonlinear distortion. Then a linear FIR filter is used as the 

linear system with memory. From there the signal is converted to an ana-

log baseband representation, modulated to the desired carrier frequency and 

amplified. 

The system receives its feedback from the output of the amplifier, which is 

demodulated, and fed back into two training blocks. One block is responsible 

for isolating the linear distortion while the other is responsible for isolating the 

nonlinear distortion. All of the blocks are discussed in further detail below. 

6.2.1 Nonlinear Predistortion Networks 

The nonlinear predistortion networks compensate for the static memoryless 

nonlinear response of the amplifier. The input is to the system is x (t), and 

output a nonlinear compensated signal v (t). The response of this block should 

represent the inverse response of the amplifier as described in (5.4). 

As introduced in Section 5.1.1, predistortion can be performed in Cartesian 

or polar coordinates. The polar coordinate models are far easier to implement, 
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but require extra conversions between polar and Cartesian coordinates. These 

conversions can easily become a bottleneck in any system. However since an ac-

tual system is not being implemented in this thesis, computational complexity 

is not a concern. Thus polar coordinates will be used for their implementation 

simplicity. The predistortion block is based on polar coordinates and is shown 

in Figure 6.4. The block diagram shows the implementation of (5.10) and 

(5.11) in a physical form using neural networks. 

Neural networks are excellent at modeling nonlinear systems as black boxes, 

knowing only the input and output. Since the amplifier is being modeled as 

a linear and nonlinear system, the systems can not be separated and studied 

individually. 
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  Phase 

The characteristics of the networks are transferred from the nonlinear train-

ing block, which is described in 6.2.3. The networks receive their weights and 

biases periodically from the nonlinear training networks. This periodic up-

date allows the networks to continuously operate on the input signal while 

new weights and biases are being calculated. 

6.2.2 Linear Predistortion 

The linear section is composed of a complex FIR filter. The input, v (t), is the 

output of the nonlinear predistorter, and the output y (t) becomes the input 

to the amplifier. Like the nonlinear predistortion block, the tap coefficients 

are adjusted periodically by a training block, in this case the linear training 

block described in Section 6.2.4. The goal of the linear predistortion block is 

to compensate for the memory effects of the amplifier. 
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6.2.3 Nonlinear Training Block 

The nonlinear training networks are responsible for modeling the inverse of 

the memoryless nonlinearity in the amplifier, and updating the weights and 

biases of the nonlinear predistortion networks. The nonlinear system in the 

amplifier can be defined as 

(6.1) 

where WNL is the transfer function of the nonlinear component in the am-

plifier. The inverse characteristic is the relationship 

(6.2) 

Once the system has reached equilibrium the output of the amplifier can 

be expressed as Gx5 (t), a very mildly distorted version of the input with a 

linear gain. The feedback attenuation removes the gain leaving only a dis-

torted version of the input. The signal V (t) will be approximately equal to 

the nonlinearly compensated signal v (t). Thus the nonlinear block uses the 

signals 9 (t) and v (t) to learn the inverse of the nonlinearity in the amplifier. 

The inputs to this block are queued and the training algorithms can be 

performed offline while the nonlinear predistortion networks continue to oper-

ate with the last set of weights and biases. The delay d is critical to align the 

two input signals. If the delay is misaligned, the relationship between the two 

signals will become overly complicated and the neural networks will have a 
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more difficult time learning. Gradient descent with adaptive learning rate and 

momentum method defined in Section 3.3.2, is used to train the networks. The 

output of the networks in training is V (t), which is an estimate of the internal 

signal within the amplifier V (t), which in turn is a mildly distorted version of 

the input to the linear predistorter v (t). Thus the difference between (t) and 

the actual input to the linear predistorter v (t), is used as the error term in 

the backpropagation. The internal layout for the block is given in Figure 6.5. 

The tuning values are used as error terms in the backpropagation algorithm 

described in Section 3.3.1. 

6.2.4 Linear Training Block 

The linear training block is used to isolate the linear distortion of the amplifier. 

The linear distortion within the amplifier is defined as the relationship 
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Y (t) = WLIN (5 (t)) (6.3) 

where WLIN is the linear distortion component in the amplifier, and the 

inverse is 

= '1'LIN(Y(t)) (6.4) 

Since the nonlinear training block has generated i3 (t), an estimate of the 

linearly distorted signal V (t), the linear training block can use this and y (t) 

to estimate the linear distortion characteristic. 

Like the nonlinear training block the linear trainer queues the input in 

order to perform the training offline. A LMS algorithm is used to train a set 

of FIR filter tap weights to minimize the error between y (t) and the estimate 

of the amplifier input g (t). Once a new set of filter coefficients have been 

determined, they are passed to the linear predistorter and the next repetition 

begins with the data that was queued during the offline calculations. 



Chapter 7 

Simulation Results 

With the system architecture proposed in Chapter 6, a series of simulations 

were constructed to test the setup. To facilitate the tests, a model of the 

amplifier setup was constructed as well. The first section introduces the speci-

fications of the amplifiers used in the tests. The second section determines the 

proper network sizes for the amplifier model, and the nonlinear predistortion 

networks. With this the nonlinear predistortion is tested. Then the linear 

system with memory is introduced to the model of the amplifier to complete 

the Hammerstein system. Finally, predistortion with memory is demonstrated 

showing an improvement in intermodulation products with increasing signal 

bandwidth. 

7.1 Device Under Test 

The device used during subsequent tests is an amplifier setup composed of a 

Motorola MHW-1916 driving a Motorola MRF-282SR1. Since the two ampli-

fiers will be treated as a single device under test, individual specifications are 

not necessary. The system as a whole exhibits 50.4 dB of gain, with a 1 dB 

compression point of -10.5 dBm input power. The maximum output power 

is 39.8 dBm or 11.2 Watts of power. For all experiments, the input power to 
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the amplifier was adjusted such that the peaks of the input signal were 4dB 

beyond the 1dB saturation point. 

7.2 Network Size 

The size of the neural network is a prime concern. A large network can be 

overly complex and require a large amount of computing power. Also, large 

networks can over-learn an input to output relationship, memorizing the rela-

tion instead of generalizing it [4]. 

As described in Section 6.1, the memoryless nonlinear distortion is assumed 

to be static with respect to frequency. As such, a signal with 1.25MHz of 

bandwidth was used for this test, since it will demonstrate virtually no linear 

distortions or memory effects. 

To find the optimal size, a network with a given number of neurons is first 

trained on a known input to output data set, and then it is tested on a different 

input signal. QAM-16 signals were used to test the networks. Figure 7.1 plots 

the mean squared error of the model output against the number of nodes in 

the neural network for both the amplitude and phase transfer functions. For 

the amplitude transfer characteristic, the error generally decreases until 29 

neurons. However, the drop in error is only one thousandth of a percent and 

drastically increases the computational requirements. The error in phase is 

fairly constant after five neurons. As such only five neurons each for amplitude 

and phase are all that is required. 
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This measures the number of neurons required for modeling the amplifier, 

however the inverse of the amplifier needs to be modeled for the predistortion 

method. The inverse phase transfer function is the negative of the non-inverted 

function and will have the same complexity, however the amplitude transfer 

function is quite different. Figure 7.2 shows the mean squared error of the 

inverse amplitude transfer function. Comparing this plot to the previous plot 

shows that the inverse amplitude transfer function is more complex to model. 

While the forward transfer characteristic saturates to a constant value, the 

inverse characteristic has a vertical asymptote where it will approach infinity. 

This is reflected in the error curve in Figure 7.2 as the overall error is far 

higher than the previous case. However like the previous case it plateaus after 
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only four nodes. Again only four or five neurons are required to achieve the 

minimum modeling error. 

7.3 Nonlinear Predistortion Performance 

With a model of both the amplifier and the inverse of the amplifier, we can 

simulate predistortion with the simple memoryless nonlinear model. Figure 7.3 

shows the output spectrum of a predistorted waveform and an uncompensated 

waveform. The simulation shows that for this particular dataset 30 dB of 

intermodulation product reduction is possible. 

Figure 7.4a shows the constellation of an QAM-16 waveform that is undis-
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torted. Figure 7.4b is an uncompensated waveform that was distorted by 

the amplifier model developed in Section 7.2. Notice that the corners of the 

waveform have been pushed inward, as the outer parts of the signal reach 

into saturation. This constellation warping will result in more difficulty de-

termining what symbol was received, and a higher bit error rate. Figure 7.4c 

is a waveform that has been predistorted, which extends the outer corners 

to compensate in advance for saturation. Finally, Figure 7.4d is the amplified 

predistorted waveform. The compensated waveform results in a waveform that 

is only slightly distorted when compared to the original waveform. 
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7.4 Nonlinear Model Performance 

To test the performance of the nonlinear amplifier model against the actual 

amplifier, the QAM46 test waveform was generated at several frequencies, 

and the corresponding input to the amplifier and its output were measured. 

Using data of signals at various bandwidths, the prediction from the nonlinear 

model was compared to the actual output. The result is shown in Figure 7.5. 

For low bandwidth applications the model performs very well, however as the 

bandwidth of the signal increases, the error from the model grows significantly. 

This error can be attributed to the linear distortions and the memory effects 

of the amplifier, which will be addressed in the next section. 

7.5 Model Performance with Linear Distortion 

Next the treatment of linear distortion needs to be introduced. Linear distor-

tion become more of an issue as the bandwidth of the input signal increases. 

To simulate this, a linear predistortion block was added to the model which 

shapes the spectrum before it reaches the nonlinearity. The result of the two 

cascaded systems is a nonlinear system with memory. To determine the linear 

portion of the amplifier, the signal V (t) in Figure 6.3 has to be determined. If 

the nonlinearity is assumed to be static, independent of frequency, the inverse 

nonlinearity determined in the previous sections can be applied to the output 

waveform to obtain an estimate of i5 (t). Figure 7.5 compares the predicted 
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output of the model with a measured output, at the various signal bandwidths 

from the previous section. For low signal bandwidths, both models perform 

roughly the same, however, as the signal bandwidth increases the model with 

linear filtering is more accurate at predicting the output of the amplifier. 

7.6 Linear and Nonlinear Predistortion Performance 

With the Wiener model in place, the performance of a predistortion system 

based on a Hammerstein system can be evaluated. As with the test in Section 

7.3, the test signal that was used is a QAM-16 waveform. Here the waveform 

is increased in bandwidth and compared to known values. 



74 

0 
-4- Uncompensated 
-V- Hammerstein Predistorter 
-6- Memoryless Predistorter 

-10 

-20 

-30 

-40 

-50 

_60o 

6 

V - V 

10 20 20 40 
Bandwidth (MHz) 

50 60 

Figure 7.6: Predistortion with Memory Performance 

70 

As the results show in Figure 7.6 the performance of memoryless predistor-

tion decreases as the bandwidth increases. This follows the expectation that 

memory and linear distortions will play a more important role as bandwidth 

increases. For low bandwidth signals the predistortion with memory performs 

almost exactly the same as the memoryless predistortion. However, as the 

signal bandwidth increases the performance of predistortion with memory re-

mains almost constant at 30dB of improvement. 



Chapter 8 

Experimental Results 

With the system architecture in place and the elements simulated, this chapter 

explores the implementation issues and experimental results from a test bench. 

The first section will describe the implementation issues, while the second 

section will discuss the test-bench setup and verify its operation. Finally the 

third section will introduce and discuss the experimental results obtained. 

8.1 Implementation Issues 

Implementing a theoretical system into a physical form introduces many lim-

itations and problems. Since the predistortion is done in a digital signal pro-

cessor, the inputs and outputs are subject to a maximum voltage. Voltages 

above the maximum will be clipped. As with feedback linearization, the key 

to adjusting signal levels is in the magnitude of the feedback attenuation. 

8.1.1 Feedback Attenuation 

The output of high power amplifiers can commonly exceed 10 watts, which is 

fax too much for the feedback ADCs to handle directly. As such the feedback 

path must have enough attenuation to bring the signal down to a power that 

the ADCs can accommodate. However the overall gain of the system plays 
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a key role in the system. In (5.4) it is assumed that the system IF will have 

a linear gain of G. However since the output of an amplifier is orders of 

magnitude higher than the input, it is more convenient to scale down the 

output and assume G = 1. This is accomplished by tuning the feedback 

attenuation. 

For the system to operate at its optimal point, the feedback attenuation 

must also be tuned properly. Figure 8.1 illustrates the effects of too much or 

too little feedback attenuation. If the attenuation is excessive, the feedback 

dynamic range will be less than the maximum, under-utilizing the ADC. When 

this system is inverted in the amplitude predistortion network, the input signal 

could exceed what has been learned, entering an unknown region of the neural 

network's operation. The output at this point is unpredictable, and most 

likely undesirable. If there is not enough feedback attenuation, the signal will 

become clipped. In turn, the inverted system will generate signals that will 

under-utilize the DACs. Only with careful tuning will the neural network 

generate the optimal output signal utilizing the full potential of the DACs, 

while not feeding the network an input which has not been learned. 

The feedback attenuation will also have a direct impact on the overall gain 

of the system. Since the attenuation is set to make G = 1, the actual gain of 

the system will be the inverse of the attenuation. 
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8.2 Experimental Setup 

Simply simulating a predistortion system is not adequate to evaluate its per-

formance. The simulation will only be as precise as the model used, and once 

the model is known the compensation to reverse the distortion is also known. 

To facilitate the testing of a physical system, an experimental test-bench 

was constructed. The first section will describe the makeup of the test-bench, 

while the second section will describe the limitations of it. Finally the test-

bench will be verified with by a couple of measurements to validate that it is 

working. 

8.2.1 Experimental System 

The experimental system block diagram is shown in Figure 8.2. The base-

band predistortion is performed by Matlab on the host computer. The test 

signal is passed digitally to the arbitrary waveform generator via the GPIB 

bus connecting all the instruments and the host. Using the GPIB bus to con-

trol the vector signal generator, the signal is modulated to a desired frequency 

and power. The output of the vector signal generator is then passed through 

the device under test, demodulated, and sampled by the oscilloscope. From 

there the Matlab host uses the GPIB bus to capture the waveform from the 

oscilloscope for use in training. 

Once the waveform has been captured off the oscilloscope, Matlab will 

train the linear and nonlinear sections of the predistortion, and upload the 
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new coefficients to the predistortion blocks. The predistortion blocks will then 

calculate a new test signal, upload it to the arbitrary waveform generator and 

the cycle will begin again. Matlab scripting allows the system to be fully 

automated and can perform an arbitrary number of training cycles without 

human intervention. 

8.2.2 Setup Limitations 

While the test-bench provides a flexible platform to implement various setups, 

it does have some limitations. Two major limitations are the non-synchronized 

sampling clocks and path imbalances. 
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Non-synchronized Sampling Clocks 

Since an arbitrary waveform generator and an oscilloscope were used to gen-

erate and capture the signals, each has its own sampling clock. Unfortunately 

it was not possible to synchronize the clocks. A common 10MHz reference was 

used to ensure that both clocks are operating at the same frequency, however 

there is a random phase error generated each time the system is started. 

Since the input signal needed to be delayed to line up with the output 

signal, the correction for the random phase was included with the delay used 

to lineup the input and output signals. Since the delay was done digitally, it 

was made adaptive so that the input correlated maximally with the output. 

Although the output waveform was distorted by the amplifier, the waveforms 

still exhibit a strong correlation when they are lined up. 

Path Imbalance 

Once the signal is demodulated, the in-phase and quadrature arms are sub-

ject to individual imbalances. The imbalances come in the form of bias and 

gain. The specifications for the Lecroy LC684DXL oscilloscope state that the 

measurement accuracy is 2% of the total display. This error contributes to 

a measurement discrepancy in each oscilloscope channel resulting in uneven 

gain between channels. 

The bias in each signal is most likely a result of the demodulation stage. 

The mixer's local oscillator to RF port isolation is specified as 30dB. With a 

local oscillator power of 4dBm, this means that up to -26dBm is leaking into 
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the RF port. Due to mismatches between other devices, some of this power 

will be reflected back into the mixer, resulting in a DC term. This DC term 

is directly added to the output signal. This is consistent with the 3 to 4 mV 

DC offsets typically measured in the system without any signal applied. 

Once the Cartesian signal is converted into polar components, the am-

plitude and phase characteristics become distorted. If the signal is received 

as 

S = (Ax + B) + (Cy + D) i 

where A and C are the gains for the two channels, and B and D are the 

biases, the magnitude of the signal becomes 

SI = V1A2r2 + 2ABx + C2 Y2+ 2CDy + (B2 + D2) 

and the phase becomes 

LS = arctan 
(Cy+D  
'\Ax+B 

This can complicate relations between signals. Measures need to be taken 

in order to ensure that A = C and B = D = 0. To accomplish this a test 

waveform was introduced into the system to calibrate these errors out. The 

calibration waveform was a square waveform, fed to both input ports. From 

this result the bias and the gain imbalances can be determined and eliminated. 
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8.2.3 Setup Verification 

Several aspects of the test-bench had to be verified before experimental results 

could be obtained. Since the system is used to measure and correct nonlin-

earities, the system itself had to be linear. This was verified by connecting 

the vector signal generator directly to the demodulation stage, removing the 

device under test. With no device under test, a known waveform was fed 

through the system. 

The spectrum measured at the spectrum analyzer is shown in Figure 8.3. 

The signal shows a slight indication of nonlinear effects around the signal. 

This is probably due to the mixers in the vector modulator, however the dis-

tortion is very small and will be ignored. To make sure that the mixers in the 

demodulation stage were not being over-driven into their nonlinear region, a 

waveform was injected into the setup and measured by the oscilloscope. Figure 

8.4 shows the PSD of the signal measured by the oscilloscope. Here, no signs 

of nonlinearities are present. 

To calibrate the local oscillator delay in the demodulation stage, a wave-

form was fed into the in-phase or quadrature channels. If the delay is calibrated 

properly, the signal will only be present in one channel or the other indicating 

that the output will be orthogonal. 
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8.3 Results 

The focus of the physical experiments was to test the predistortion under var-

ious conditions. First the effectiveness of the nonlinear predistortion with re-

spect to intermodulation products is tested against various signal bandwidths. 

Then, with both the linear and nonlinear blocks in place, the overall perfor-

mance is again gauged to see if an improvement in the inter-symbol interference 

can be made. 

8.3.1 Memoryless Predistortion Performance 

Figure 8.5 shows the results of using only the nonlinear predistortion block 

while increasing the bandwidth. The graph measures the average power of 

3rd order intermodulation products with respect to the average power of the 

signal. The figure shows that for lower signal bandwidths, the network can 

reduce the intermodulation products by over 20dB. However the cancellation 

steadily decreases as the bandwidth increases. 

Figure 8.6 shows the overall decrease in 3rd order intermodulation products 

with respect to bandwidth. For 2MHz of bandwidth, the performance drops 

to less than 10dB of correction, and by 20MHz only 5dB of correction. 

After approximately 50MHz of bandwidth, the intermodulation products 

begin to decrease, even without any compensation. This can be directly at-

tributed to the frequency response of the amplifier. The 3dB bandwidth of 

the amplifier is 50.1MHz. As the bandwidth approaches this point the signal 
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is being drastically attenuated, and the resultant intermodulation products 

will also decrease. The decrease in intermodulation products is also accompa-

nied with an increase in linear distortions. The linear distortions will cause 

severe inter-symbol interference leading to elevated bit error rates, or as the 

bandwidth increases, total loss of the data contained in the signal. 

8.3.2 Predistortion with Memory 

To test the predistortion algorithm with memory the same test was repeated 

for a number of different bandwidths. The results are shown in Figure 8.7. 

Again the graph measures the average power of 3rd order intermodulation 

products with respect to the average power of the signal. 
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Performing predistortion with memory compensation only improves the 

performance 1-2dB over memoryless predistortion. There are several possible 

reasons for the poor performance when compared to the simulation, including 

oversimplified models and distortion from the test-bench. 

The most obvious reason for the performance discrepancy from simulation 

is the oversimplification of the amplifier model. By modeling the system as 

a Wiener system the characteristics of the amplifier might not be adequately 

represented to make a prediction of what the distortion will be. Several papers 

have proposed using a Wiener model of the amplifier and a Hammerstein 

system for the predistortion, including a system with a Volterra nonlinearity 
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[34], and another system with a polynomial memoryless nonlinearity [35]. To 

the author's knowledge, none has ever been tested on the bench. 

The test-bench could also dramatically affect results. The goal of predis-

tortion is to linearize the transmitted waveform. However the feedback loop 

observes a demodulated version of the transmitted waveform. Several papers 

have been published on the errors introduced by quadrature modulators and 

demodulators, and the performance penalty of those errors [36, 37]. If the 

demodulation stage introduces any artifacts into the feedback signal, the pre-

distortion will attempt to correct for them. However, these artifacts are not 

actually present in the transmitted waveform, and the extra correction will in 



88 

turn introduce distortion into the transmitted waveform. 



Chapter 9 

Conclusions and Future Work 

This chapter concludes the thesis with some closing remarks and some pro-

posed future areas of exploration. An overall summary of the thesis and ad-

vancements made, is provided. Then the thesis is finished off by discussing 

some unanswered questions that this work has raised. 

9.1 Thesis Summary 

In Chapter 1 wireless technology was identified as a major growth area in 

our society. With more people than ever being connected to each other by 

the Internet and other wireless links, current systems are being pushed to 

their limits. The base station amplifier was identified as the main source of 

distortion in the RF front end. 

The types of distortion, and their symptoms, were the focus of Chapter 

2. Various categories of distortion were discussed along with their effects on a 

signal. The last part of this chapter focused on the metrics used to quantity 

the distortion. 

Since this thesis used a neural network to model nonlinear characteristics of 

the amplifier, a brief introduction to neural networks was provided in Chapter 

3. The chapter began by introducing what neural networks are and how they 

89 
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are structured. The operation of the network and how they are trained close 

out the chapter. 

Chapter 4 introduces the concept of linearization, and some of the tech-

niques used. Feed-back, feed-forward, LINC, and EER is introduced, followed 

by a discussion of the advantages and disadvantages of each. 

The predistortion technique was left to Chapter 5 in order to allow for 

a more in depth discussion. A background into predistortion is provided in-

cluding previous works and a mathematical derivation. The design decisions 

of predistortion are then discussed with the advantages and disadvantages of 

each. Finally the chapter finishes with the limitations inherent in predistortion 

and the overall advantages and disadvantages of this technique. 

With all the building blocks of the previous sections in place, the proposed 

system architecture is introduced in Chapter 6. The chapter begins with a 

brief explanation of a Wiener model and its inverse, the Hammerstein system. 

From there, the overall system architecture is discussed along with details on 

each individual block in the system. 

In Chapter 7 the system architecture was implemented in Matlab to evalu-

ate its performance in simulation. The chapter began by testing a the accuracy 

of a memoryless nonlinear model and how well it performed in simulated pre-

distortion. Then the model is extended to a Wiener model by adding a linear 

distortion with memory. This new model is again to demonstrate the improve-

ment in modeling accuracy and in simulated predistortion. For each test the 
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results are discussed. 

Finally Chapter 8 put the system to test on a physical amplifier. This chap-

ter started by introducing the actual test-bench, discussing its limitations and 

verifying its measurements. With the test-bench fully operational memoryless 

predistortion was tested with signals of various bandwidth. As the bandwidth 

increased the performance of memoryless predistortion dropped dramatically, 

highlighting the need for predistortion with memory. The last test imple-

mented the system for predistortion with memory as introduced in Chapter 6. 

The improvement over the memoryless nonlinear system was approximately 1 

- 2 dB. The results are then compared to the simulation results of Chapter 7, 

and the differences discussed. 

9.2 Achievements 

There were several goals laid out at the beginning of this thesis, including 

the applicability of neural networks to amplifier modeling, testing the effects 

of broadband signals on memoryless predistortion and implementing a predis-

torter with memory and testing it on a physical amplifier. 

Neural networks have proven to be a very effective tool to model nonlinear 

systems. With only the input and output signals, they are able to model a 

system with remarkable accuracy. The simulation results in Chapter 7 show 

that they are capable of modeling the memoryless nonlinearity of the amplifier 

to a high degree of accuracy. 
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Using the memoryless nonlinear model provided by the neural network, the 

effects of increasing signal bandwidth were then tested. The results show that 

predistortion is very sensitive to increasing bandwidth and highlights the need 

for predistortion methods to account for memory effects. 

Extending the memoryless nonlinear model into a Hammerstein system 

was then tested on a physical amplifier. To the authors knowledge this is the 

first time that a Hammerstein predistorter has been tested beyond simulation. 

While the results are not as impressive as the simulation, they do show some 

improvement, and highlight the shortcomings of simulation. If every aspect of 

the model is known, a theoretical system can be devised that will undo each 

aspect perfectly. This reduces the role of simulation to system verification, 

and makes it invalid for testing system performance. 

9.3 Future Work 

Through the course of this thesis, several new questions have been brought up 

that warrant further discussion. The non-ideal effects of the modulation and 

demodulation stages, the validity of the Wiener model and the effectiveness of 

this technique on other waveforms are all possible subjects of future work. 

As stated in Section 8.3.2, any non-ideal effects of the modulation stages 

and demodulation stages can decrease the effectiveness of predistortion. The 

extent of these effects on the proposed methods is not known. Since the 

feedback signal is assumed to be a linearly scaled representation of the trans-
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mitted signal, the possibility exists for the predistorter to correct distortions 

that don't exist in the transmitted signal. The feedback path needs to be 

characterized in order to calibrate out any distortion introduced. This the-

sis used a calibration signal before each trial to determine gain imbalances in 

the in-phase and quadrature, and any biases introduced. These imbalances 

and biases were then removed from the feedback path. This works under the 

assumption that the arbitrary waveform generator and the vector modulator 

are nearly ideal. As both of these pieces of equipment are high quality test 

equipment, for the purposes of this thesis it is probably a valid assumption. 

However this assumption should be investigated. 

Also in Section 8.3.2, the validity of the Wiener model assumption was 

questioned. If the Wiener model is insufficient to model the amplifier, then a 

Hammerstein predistorter will not fully compensate for the amplifier distor-

tion. For amplifier modeling to be of benefit to a predistortion system, the 

model must be able to be inverted. More work into modeling amplifiers with 

memory needs to be performed, with the focus on models that can be inverted. 

Finally this thesis assumed that a QAM-16 signal would produce results 

representative of any signal. This assumption is true for linear systems, but 

may not be true for nonlinear systems. More testing with higher peak to 

average ratio signals, such as multiuser CDMA systems, needs to be performed. 

Even with these outstanding questions, the technique in this thesis shows 

promise. Further enhancements in the modulation and demodulation stages, 
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along with better amplifier modeling will improve the performance beyond 

that of memoryless predistortion. 
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