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Abstract
 

Case-control studies can be used to investigate the relationship between a disease and 

potential risk factor(s). The logistic regression analysis is one of the analytical tools used 

in case-control studies. There are two types of logistic regression models that can be 

used in case-control studies. The model for the log odds of exposure fits the case-control 

sampling scheme which is disease-dependent. The model for the log odds of disease 

contradicts the case-control sampling scheme. However, Prentice and Pyke provided the 

theoretical justification for using the model for the log odds of disease in case-control 

studies. The primary aim of this thesis is to compare the coefficients that are related to 

disease or exposure, as well as, their standard errors in the two types of logistic regression 

models. Some suggestions for future research directions are provided at the end. 
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Chapter 1 

Introduction 

1.1 Case-Control Studies 

Much medical research is carried out to explore the relationship between the occurrence 

of disease and its risk factors by estimating measures of association. Cohort studies and 

case-control studies can be used for this purpose. In a cohort study, exposure groups 

are defined from a source population at the beginning of the study, and the subjects are 

followed over a given period of time and their disease frequencies are ascertained and 

compared. In contrast, a case-control study compares exposure frequencies between a 

group of subjects with a disease and a “comparable” [9] group of subjects without the 

disease from a source population (or a “hypothetical” population [9]) where the source 

population is defined as “were the illness now to occur, it would be identified by the 

defined scheme ...... [the scheme] by which cases of the illness are identified” [40]. 

Cohort studies are a valuable type of observational study that assess a putative 

casual relationship; cohort studies provide a clear temporal sequence of risk factor(s) 

and disease [40]. Researchers, in some circumstances, have to use a case-control study 

as an alternative to cohort studies “to reach the same conclusions in a [case-control] 

study as would have been obtained from a [cohort] study, if one had been done” [36] and 

“case-control studies can be conceptualized as a more efficient version of a corresponding 

cohort study” [49]. For example, if researchers investigate a disease which has a very 

low incidence, then even a large sample size may record only a few diseased individuals. 

Under this circumstance, case-control studies “may be the only feasible approach” [36] or 
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“the only useful alternative” [49] to explore the relationship between the disease and its 

risk factor(s). Another example would be, if a disease latency is relatively long, follow-up 

might prove to be difficult or impossible. 

For the simplest case-control study, we can represent the data in a 2 × 2 table as 

in Table 1.1. The case-control odds ratio of exposure which is used to measure the 

a/b adassociation between the disease (D) and its risk factor (E) is = 
c/d bc . 

Table 1.1: The 2 × 2 Table (Frequencies) 
E = 1 E = 0 

D = 1 a b 
D = 0 c d 

Some types of case-control study designs can be considered. 

1.1.1 Density Case-Control Studies 

In this design, “the sampling probability of any person as a control should be proportional 

to the amount of person-time that person spends at risk of disease in the source 

population...apart from sampling error ” [49], i.e., the rate of the number of exposed 

controls (c) to the total exposed person-time (TE ) is the same as the rate of the number of 

unexposed controls (d) to the total unexposed person-time (T
̄

¯

E ) in the source population 

expressed as 
c d 

= (1.1) 
ETE T

¯

which means 
TE c 

= . (1.2) 
ET
 d
 

¯

Then the rate ratio can be estimated as 

a a adTE c = = . (1.3)
b b bc 
ET
 d
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That is, with a density case-control design, a case-control odds ratio can be used to 

estimate the rate ratio. In this type of design, controls are selected from the noncases in 

the source population at the time points that each case appears. 

1.1.2 Case-Cohort Studies 

In this design, the source population is a cohort and everyone in the cohort has an equal 

chance to be selected as a control regardless of whether that person developed the disease 

during the study period [49], i.e., the number of exposed control (c) to the total exposed 

persons (NE )) is the same as the number of unexposed control (d) to the total unexposed 

E ) expressed as ¯persons (N


¯

c d 
= (1.4) 

ENE N

¯

which means 
NE c 

= . (1.5) 
EN
 d
 

¯

Then the incidence proportion ratio can be estimated as 

a a adNE c = = . (1.6)
b b bc 
EN
 d
 

That is, with a case-cohort design, a case-control odds ratio can be used to estimate the 

incidence proportion ratio. In this type of design, controls are selected from the source 

population at the beginning of the study. 

1.1.3 Cumulative Case-Control Studies 

In this design, controls are selected from the noncases in the source population at the end 

of the study period. Suppose that a fraction f of both exposed and unexposed noncases 
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(NE − a and N

c d 
f = = (1.7) 

E − b¯

E − b) are included as controls. That is 

which means 
NE − a c 

= . (1.8) 
E − b¯

¯

NE − a N


N
 d
 

Then the incidence odds ratio can be estimated as 
a a 

NE − a adc = = . (1.9)
b b bc 

E − b 

That is, with a cumulative case-control design, a case-control odds ratio can be used to 

estimate the incidence odds ratio. 

¯

The incidence odds ratio will provide a good approximation of the rate ratio, provided 

that the disease incidence proportion is low (less than about 0.1 [49]) and it is for a closed 

N
 d
 

population (NE + N

¯

E ) over the study period (Δt) [49]. Let ¯

a a 
IE = ≈ (1.10)

NE Δt (NE − a) Δt 

where IE is the disease incidence rate in the exposed group. Then using formula (1.9) 
a 

IE 
a adNE − a c = = = . (1.11) 

EI
 b b
 bc
 
Ē − b 

In a similar manner, Cornfield [15] showed that this incidence odds ratio can also 

approximate the incidence proportion ratio (the relative risk) provided the disease 

incidence proportion is low (see Appendix A). 

1.2 Statistical Methodologies in Case-Control Studies 

Case-control studies involve comparisons between different groups (diseased and non-

diseased) with respect to specified characteristics. The idea about comparison of 

N
 d
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different treatment effects emanated in the 16th and 17th centuries [34]. Louis, who 

was a pioneer in clinical trials [44], provided the arguments of the numerical method 

for such comparisons [35]. An example from these early years is a study conducted 

by one of his students, Guy [27], who compared the ratio of pulmonary consumption 

frequency to other disease frequency in various occupations in 1845. This methodology 

of comparison became popular during the 1920s for investigating the relationship between 

various cancers and their risk factors [34]. For example, Broders [11] investigated the 

relationship between squamous-cell epithelioma in lip and pipe smoking, showing cases 

had a high proportion of pipe smokers. Increased attention and development of case-

control methodology began in the 1950s [8][9][34]. 

1.2.1 Mantel-Haenszel Method 

Using the odds ratio to estimate the association can be misleading due to potential 

confounder(s). Miettinen [41] stated that only when the confounders are controlled, can 

the association measure give the unbiased estimate of the effect measure. In 1959, Mantel 

and Haenszel [36] presented a method for controlling for confounders. The data are first 

summarized into a series of 2×2 tables indexed by the cross-classification of the potential 

confounders (Table 1.2) where ak, bk, ck, and dk denote the observed cell frequencies in 

the kth stratum. 

Table 1.2: The kth 2 × 2 Table (Frequencies) 
E = 1 E = 0 

D = 1 ak bk 

D = 0 ck dk 

Then two steps are performed: 

• A test [12][36] is conducted to see whether the odds ratio is the same and equal to 
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1 in each table (no association between the disease and the exposure). Under the 

assumption of homogeneity of the odds ratio, the common odds ratio [36] can be 

calculated as  akdk 
k nkÔRMH =	 (1.12) bkck 
k nk 

where nk = ak + bk + ck + dk. Mantel and Haenszel did not provide a variance 

formula for their estimator. Methods by Cornfield [16] and Woolf [55] have been 

used for calculating the corresponding variance. 

•	 A summary chi-square statistic is calculated to test the homogeneity of the odds 

ratio across all strata based on the above estimated Mantel-Haenszel odds ratio. 

For the ensuing two decades, the Mantel-Haenszel method was the predominant 

analytical tool used in case-control studies to control for confounding [9]. However, 

this method is limited. For example, if potential confounders are measured variables, 

then they cannot be stratified into a series of 2 × 2 tables. 

1.2.2 Logistic Regression Models 

Regression models have been developed to describe the relationship between one or 

more explanatory variables and a response variable [51]. Logistic regression models are 

generalized linear models (GLM) with a logit link function [37] and can be used when 

the outcome is binary (e.g. the diseased or the non-diseased). For example, let D be 

the disease indicator taking on values 0 (non-diseased) and 1 (diseased) and E be an 

exposure variable. The logistic regression model that specifies the probability of disease 

that depends on the exposure status can be written as 

exp{α∗ + βE}
Pr ∗ (D = 1|E) =	 (1.13)

1 + exp{α∗ + βE} 
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or in logit form as 
Pr∗(D = 1|E) 

α ∗ log	 = + βE. (1.14)
1 − Pr∗(D = 1|E) 

The reason that logistic regression models can be applied to binary outcomes is that 

logistic regressions do not impose constraints on parameters α∗ and β, as the estimates 

of probabilities of disease will always be between 0 and 1. This appealing property is 

described in detail in Vittinghoff et al. [54] and can be illustrated in Figure 1.1 where E 

is a measured variable (the dose). 

Figure 1.1: The Logistic Function 

The odds ratio of disease can be estimated from the logistic regression model as 

exp(β) when E takes on values 0 and 1. In studying the relationship between a disease 

and its exposure, other covariates can also be considered for their potential confounding 

or modifying effects [39]. 

In the early 1960s, Cornfield et al. [17] began to apply the logistic regression model 

in cohort studies to deal with the issue of simultaneously assessing several risk factors 

[8][49]. Logistic regression models were then applied to case-control studies during the 

1970s in two versions: 

•	 The Model for the Log Odds of Exposure 

This model, based upon a case-control design, was proposed by Prentice [46] in 

1976 based on the invariance of odds ratio [15]. Let G (Gender) be the covariate 
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that is related to both disease D and exposure E. Then the invariance of the odds 

ratio of exposure for G = g (g = 0 for female, g = 1 for male) can be expressed as 

Pr(E = 1|D = 1, G = g) Pr ∗ (D = 1|E = 1, G = g) 
Pr(E = 0|D = 1, G = g) Pr ∗ (D = 0|E = 1, G = g) 

=	 . (1.15)
Pr(E = 1|D = 0, G = g) Pr ∗ (D = 1|E = 0, G = g)
 
Pr(E = 0|D = 0, G = g) Pr ∗ (D = 0|E = 0, G = g)
 

The term on the right side of equation (1.15) is an approximation of relative risk
 

of disease when the disease incidence proportion is low (as mentioned by Cornfield
 

[15]). The term on the left of equation (1.15) can be estimated from a case-control
 

study by modeling the log odds of exposure. The model for the log odds of exposure
 

⎞ 

can be written as 

⎛ 

Pr(E = 1|D, G)
log	 = υ + τD + θG + ζDG. (1.16)

1 − Pr(E = 1|D, G) 

⎞ 

•	 The Model for the Log Odds of Disease 

In 1979, Prentice and Pyke [47] proposed a model for the log odds of disease. In 

addition, they demonstrated that the model for the log odds of disease can be used 

in case-control studies. Let G be the covariate that is related to disease D and 

exposure E. Then the model for the log odds of disease can be written as 

Pr(D = 1|E, G)
log	 = α + βE + γG + δEG. (1.17)

1 − Pr(D = 1|E, G) 

E
 ⎟⎟⎟⎟⎠
 
and β =
 

⎜⎜⎜⎜⎝
 

β
 

γ
 

⎟⎟⎟⎟⎠
 
and x = (E, G), equation (1.17) becomes
 Letting x =
 G
 

EG δ 

Pr(D = 1|x)
log = α + xβ.	 (1.18)

1 − Pr(D = 1|x) 

⎛
 ⎜⎜⎜⎜⎝
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Model (1.18) was actually derived by Prentice and Pyke [47] from theories 

corresponding to a prospective sampling scheme. They argued that if a sample is 

taken from a mixture of two populations (as in cohort studies), then the likelihood 

function for the observations can be written as 

111 
L ∗ ∝ {Pr ∗ (D = d|x)Pr ∗ (x)}ndx 

d=0 x 

1 111 11 
= {Pr ∗ (D = d|x)}ndx {Pr ∗ (x)}ndx = L ∗ L ∗ (1.19)1 2
 

d=0 x d=0 x
 

where ndx is the sample size for the group with D = d and x and 

Pr ∗ (D = 1|x) = exp{α ∗ + xβ}Pr ∗ (D = 0|x) (1.20) 

and 
1 

Pr ∗ (D = 0|x) = (1.21)
1 + exp{α ∗ + xβ} 

which are the Cox-Day-Kerridge formulae [18][20] for posterior probabilities. In 

1967, Day and Kerridge [20] demonstrated that L∗ 
1 in (1.19) can be estimated alone 

as the estimates of β and corresponding covariance matrix will be identical as 

those when L∗ 
1 and L∗ 

2 are estimated together. However, if separate samples are 

taken from each population (as in case-control studies), then using the fact that 

Pr(x|D) = Pr (x|D) (i.e., the probability of exposure given disease will be the 

same in different source populations) and 

Pr (D = d|x)Pr (x)
Pr (x|D) = , (1.22)

Pr (D) 

and assuming that the marginal density Pr (D) is known, Anderson [3] showed 
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that the case-control likelihood function is
 

111 
L = {Pr(x|D = d)}ndx 

d=0 x 

111 
∝ {Pr (D = d|x)Pr (x)}ndx 

d=0 x 

1 111 11 
= {Pr (D = d|x)}ndx {Pr (x)}ndx 

d=0 x d=0 x 

= L1L2 (1.23) 

where 

Pr (D = 1|x) = exp{α + xβ}Pr (D = 0|x) (1.24) 

and 
1 

Pr (D = 0|x) = . (1.25)
1 + exp{α + xβ} 

L1 in (1.23) can be estimated alone but is subject to constraints

 
Pr (x) = 1 (1.26) 

x 

and  
{Pr (D = d|x)Pr (x)} = πd (1.27) 

x 

where πd is the marginal disease probability and the value of it will not affect the 

estimated coefficients (except the intercept) so that it can be set as nd . By applying n 

Aitchison and Silvey’s theory [1], Anderson demonstrated that estimates of β and 

the corresponding covariance matrix in (1.23) are identical to those involved in 

L1 alone. However, his demonstrations were based on the assumption that the 

covariates x are discrete. 

Prentice and Pyke [47] extended Anderson’s work to measured covariates. They 
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used another likelihood factorization
 

111 
L = {Pr(x|D = d)}ndx 

d=0 x 

111 
∝ {Pr(D = d|x)Pr(x)}ndx 

d=0 x 

1 111 11 
= {Pr(D = d|x)}ndx {Pr(x)}ndx 

d=0 x d=0 x 

= L1L2 (1.28) 

where 

Pr(D = 1|x) = exp{α + xβ}Pr(D = 0|x), (1.29) 

1 
P r(D = 0|x) = 

1 + exp{α + xβ}
, (1.30) 

and 

P r(x) = 
d 

nd 

n 
P r(x|D = d). (1.31) 

L1 in (1.28) can be estimated alone but subject to the constraint 
nd

Pr(D = d|x)Pr(x)dx = . (1.32) 
nx 

Prentice and Pyke [47] showed that estimating L1 and L2 separately in (1.28) will 

still satisfy constraint (1.32). The estimates of β and corresponding covariance 

matrix in (1.28) will be identical to those involved in L1 alone. 

Prentice and Pyke’s arguments were also supported using the profile likelihood. Let 

the distribution function be expressed as f(x; α, β) and the maximum likelihood 

function be expressed as L(α, β). Let α̂(β) be the maximum likelihood estimate of 

α for a fixed β. The profile likelihood for β is 

Lp(β) = L(β, α̂(β)) = supαL(β, α) (1.33) 
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which is “the maximum likelihood function of a subset of parameters, β, [or] the 

value of the log-likelihood function when the nuisance parameter, α, is replaced 

by its conditional maximum likelihood estimator, α̂(β)” [43]. Young and Smith 

stated “The profile likelihood [Lp(β)] can, to a considerable content, be thought of 

and used as if it were a genuine likelihood. In particular, the maximum likelihood 

estimate of [α] equals [α̂]” [56]. Patefield [43] demonstrated, in parametric models, 

the inverse of the observed information matrix of the profile likelihood Lp(β)) is 

equal to the β aspect of the inverse of the observed information matrix of the 

likelihood L(α, β). 

Roeder, Carroll, and Lindsay [48] and Murphy and Van Der Vaart [42] confirmed 

Prentice and Pyke’s results using the profile likelihood, assuming some covariates 

were measured with errors. They used a semiparametric approach and demon­

strated that the model for the log odds of disease could be used in case-control 

studies to estimate the coefficients β in equation (1.33). They also provided a 

theoretical justification for the profile likelihood-based estimates and confidence 

intervals in the semiparametric model. 

Seaman and Richardson [50] used an alternative approach where the covariates 

were measured without errors. They used the multinomial-Poisson transformation, 

Baker [4] had shown that “we can transform the multinomial likelihood into a 

Poisson likelihood, with additional parameters... [which] yields identical estimates 

and asymptotic variances”. Seaman and Richardson [50] demonstrated that the 

profile likelihoods were identical for the coefficients β in equation (1.33) for both 

“The logistic model for disease incidence during the defined accession period”[47] 

and log odds of disease model.
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1.3 The Dataset 

To illustrate some of the theoretical methods in this thesis, data from the North 

American Symptomatic Carotid Endarterectomy Trial study (NASCET) are used 

[21][22][23][24]. NASCET was a clinical trial which investigated the effectiveness of 

carotid endarterectomy to reduce the risk of stroke. Because the purpose of using data in 

this thesis was to demonstrate the methods, a case-control study was constructed and the 

relationship between history of diabetes and myocardial infarction was explored. Subjects 

having a myocardial infarction (MI) event during the study period were considered as 

cases (209 cases) and a simple random sample of the same number of noncases (209 

noncases) was considered as controls. The variables include: 

ANYMIDT (D): the disease indicator (0 if not developing MI and 1 if developing MI), 

DIABMEL (E): the exposure indicator (0 if not having a history of diabetes and 1 if 

having a history of diabetes), 

AGE (A): the measured age variable, 

SEX (G): the sex indicator (female=0 and male=1), 

HYPERL (L): the hyperlipidemia history indicator (0 if not having a history of 

hyperlipidemia and 1 if having a history of hyperlipidemia), 

HYPERT (H): the hypertension history indicator (0 if not having a history of 

hypertension and 1 if having a history of hypertension), 

SMOKING (S): the smoking history indicator (0 if not having a history of smoking and 

1 if having a history of smoking). 
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1.4 Overview of Thesis
 

In this thesis, the estimated odds ratios and corresponding variances for modeling the 

log odds of disease and for modeling the log odds of exposure for case-control studies will 

be compared. One disease variable D and one exposure variable E will be considered. 

Both variables are dichotomous taking on values 1 as presence and 0 as absence. Some 

covariables, relating to both exposure and disease, will also be considered as potential 

confounders or effect modifiers. These include age A (=0 if young, 1 if old, but sometimes 

A is treated as a measured variable instead depending on the context) and Gender G (=0 

if female, 1 if male). It is also assumed that the models depend linearly on the unknown 

parameters. For example, the full model for the log odds of disease can be written as 

Pr(D = 1|E, A, G)
log	 = α+βE+γ1A+γ2G+γ3AG+δ1EA+δ2EG+δ3EAG, (1.34)

1 − Pr(D = 1|E, A, G) 

and the full model for the log odds of exposure can be written as 

Pr(E = 1|D, A, G)
log	 = υ+τD+θ1A+θ2G+θ3AG+ζ1DA+ζ2DG+ζ3DAG. (1.35)

1 − Pr(E = 1|D, A, G) 

The primary aim is to compare the coefficients that are related to disease or exposure (β 

and τ , or δk and ζk), as well as, their variances. 

The thesis will: 

•	 determine when the estimated odds ratios and variances relating to exposure or 

disease from the two types of logistic regression models are equivalent. 

•	 determine when the estimated odds ratios and variances relating to exposure or 

disease from the two types of logistic regression models are not equivalent. 

•	 provide an expansion of Breslow and Powers’ arguments [10] that the odds ratio 

estimates relating to exposure or disease from the two types of logistic regression 
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models are identical when data can be summarized as a series of 2 × 2 contingency 

tables. 

•	 provide an expansion of Breslow’s arguments [7] that the estimated odds ratio 

variances relating to exposure or disease from the two types of logistic regression 

models are identical when data can be summarized in a series of 2 × 2 contingency 

tables. 

•	 determine when the profile likelihoods with respect to the odds ratios relating to 

exposure or disease from the two types of logistic regression models are the same 

by applying the multinomial-Poisson transformation [4]. 

•	 provide an expansion of Prentice and Pyke’s arguments in 1979 [47] to show why 

models for the log odds of disease can be used in case-control studies. 
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Chapter 2
 

Examples for Equivalence of the Two Types of Logistic
 

Regression Models in Case-Control Studies
 

This chapter provides three examples when the estimated coefficients and standard errors 

relating to exposure and disease from the two types of logistic regression models are 

equivalent. 

2.1 Example 1: A single 2 × 2 Table 

When the observations in a case-control study are classified by two levels of a risk factor 

(exposure), the data may be summarized in a single table (Table 2.1). 

Table 2.1: The Single 2 × 2 Table (Frequencies) 
E = 1 E = 0 

D = 1 a b 
D = 0 c d 

Let p̂1 represent the estimated probability that exposed members are a case and p̂0 

represent the estimated probability that non-exposed members are a case. It follows 

from likelihood theory corresponding to a binomial distribution based on each category 

of exposure that the likelihood function 

a + c b + d 
L = p a 

1(1 − p1)
c p b 

0(1 − p0)
d (2.1) 

a b 

and the log likelihood function
 

l ∝ a log p1 + c log(1 − p1) + b log p0 + d log(1 − p0). (2.2)
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Taking the first derivatives with respect p1 and p0 and set them equal to zero, we obtain 

aˆp̂1 = Pr(D = 1|E = 1) = , 
a + c 
bˆp̂0 = Pr(D = 1|E = 0) = . (2.3)

b + d 

Let the model for the log odds of disease be expressed as 

Pr(D = 1|E)
log = α + βE. (2.4)

1 − Pr(D = 1|E) 

Then 

p̂1
log = α + ˆˆ β, 

1 − p̂1 

p̂0
log = α. ˆ (2.5)

1 − p̂0 

A simple calculation using (2.5) yields 

p̂1 p̂0 ad
β̂ = log − log = log . (2.6)

1 − p̂1 1 − p̂0 bc 

Similarly, let q̂1 represent the estimated probability that diseased members are 

exposed and q̂0 represent the estimated probability that non-diseased members are 

exposed. Then 

aˆq̂1 = Pr(E = 1|D = 1) = , 
a + b
cˆq̂0 = Pr(E = 1|D = 0) = . (2.7) 

c + d 

Let the model for the log odds of exposure be expressed as 

Pr(E = 1|D)
log = υ + τD. (2.8)

1 − Pr(E = 1|D) 

Then 

q̂1
log = υ̂ + τ̂ , 

1 − q̂1 

q̂0
log = υ. ˆ (2.9)

1 − q̂0 
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A simple calculation using (2.9) yields
 

q̂1 q̂0 ad 
τ̂ = log − log = log . (2.10)

1 − q̂1 1 − q̂0 bc 

ˆThis demonstrates that β = τ̂ . The estimated coefficients relating to exposure and 

disease in the two types of logistic regression models are equivalent. 

2.2 Example 2: Two 2 × 2 Tables 

When a dichotomous exposure variable and a dichotomous covariate (e.g. gender) are 

considered, the data in a case-control study may be summarized in two 2×2 tables (Table 

2.2). 

Table 2.2: The Two 2 × 2 Tables (Frequencies) 
G = 0 G = 1 

E = 1 E = 0 E = 1 E = 0 
D = 1 
D = 0 

a1 

c1 

b1 

d1 

a2 

c2 

b2 

d2 

Let p̂1k represent the estimated probability that exposed members in stratum k are a 

case and p̂0k represent the estimated probability that non-exposed members in stratum 

k are a case. k = 1 or 2 indicates the 2 × 2 tables with G = 0 or G = 1. Following the 

same arguments as in section 2.1, 

a1ˆp̂11 = Pr(D = 1|E = 1, G = 0) = , 
a1 + c1 

b1ˆp̂01 = Pr(D = 1|E = 0, G = 0) = ,
b1 + d1 

a2ˆp̂12 = Pr(D = 1|E = 1, G = 1) = , 
a2 + c2 

b2ˆp̂02 = Pr(D = 1|E = 0, G = 1) = . (2.11)
b2 + d2 
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Let the model for the log odds of disease be expressed as 

Pr(D = 1|E, G)
log	 = α + βE + γG + δEG. (2.12)

1 − Pr(D = 1|E, G) 

Then 

p̂11
log = α + ˆˆ β, 

1 − p̂11 

p̂01
log = α, ˆ

1 − p̂01 

p̂12
log = α̂ + β̂ + γ̂ + δ, ˆ

1 − p̂12 

p̂02
log = α̂ + γ̂.	 (2.13)

1 − p̂02 

A simple calculation using (2.13) yields 

p̂11 p̂01 a1d1
β̂ = log − log = log ,

1 − p̂11 1 − p̂01 b1c1 

a2d2 

p̂12 p̂11 p̂02 p̂01 b2c2δ̂ = log − log − log + log = log . (2.14)
1 − p̂12 1 − p̂11 1 − p̂02 1 − p̂01	 a1d1 

b1c1 

In the same manner, 

a1ˆq̂11 = Pr(E = 1|D = 1, G = 0) = , 
a1 + b1 

c1ˆq̂01 = Pr(E = 1|D = 0, G = 0) = , 
c1 + d1 

a2ˆq̂12 = Pr(E = 1|D = 1, G = 1) = , 
a2 + b2 

c2ˆq̂02 = Pr(E = 1|D = 0, G = 1) = .	 (2.15) 
c2 + d2 

Let the model for the log odds of exposure be expressed as 

Pr(E = 1|D, G)
log	 = υ + τD + θG + ζDG. (2.16)

1 − Pr(E = 1|D, G) 
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Then
 

q̂11
log = υ̂ + τ̂ , 

1 − q̂11 

q̂01
log = υ, ˆ

1 − q̂01 

q̂12
log = υ̂ + τ̂ + θ̂ + ζ, ˆ

1 − q̂12 

q̂02
log = υ̂ + θ. ˆ (2.17)

1 − q̂02 

A simple calculation using (2.17) yields 

q̂11 q̂01 a1d1
β̂ = log − log = log ,

1 − q̂11 1 − q̂01 b1c1 

a2d2 

δ̂ = (log 
q̂12 

1 − q̂12 
− log 

q̂02 

1 − q̂02 
) − (log 

q̂11 

1 − q̂11 
− log 

q̂01 

1 − q̂01 
) = log b2c2 

a1d1 
. (2.18) 

b1c1 

This demonstrates that β̂ = τ̂ and δ̂ = ζ̂. The estimated coefficients relating to exposure 

and disease in the two types of logistic regression models are equivalent. 

2.3 Example 3: Four 2 × 2 Tables 

When a dichotomous exposure variable and two dichotomous covariates (e.g. gender and 

age) are considered in the model, the data may be summarized in four 2×2 tables (Table 

2.3). 

Table 2.3: The Four 2 × 2 Tables (Frequencies) 
G = 0 G = 1 

A = 0 A = 1 A = 0 A = 1 
E = 1 E = 0 E = 1 E = 0 E = 1 E = 0 E = 1 E = 0 

D = 1 
D = 0 

a1 

c1 

b1 

d1 

a2 

c2 

b2 

d2 

a3 

c3 

b3 

d3 

a4 

c4 

b4 

d4 
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Following directly from the previous sections, 

a1ˆp̂11 = Pr(D = 1|E = 1, G = 0, A = 0) = , 
a1 + c1 

b1ˆp̂01 = Pr(D = 1|E = 0, G = 0, A = 0) = ,
b1 + d1 

a2ˆp̂12 = Pr(D = 1|E = 1, G = 1, A = 0) = , 
a2 + c2 

b2ˆp̂02 = Pr(D = 1|E = 0, G = 1, A = 0) = ,
b2 + d2 

a3ˆp̂13 = Pr(D = 1|E = 1, G = 0, A = 1) = , 
a3 + c3 

b3ˆp̂03 = Pr(D = 1|E = 0, G = 0, A = 1) = ,
b3 + d3 

a4ˆp̂14 = Pr(D = 1|E = 1, G = 1, A = 1) = , 
a4 + c4 

b4ˆp̂04 = Pr(D = 1|E = 0, G = 1, A = 1) = . (2.19)
b4 + d4 

Let the model for the log odds of disease be expressed as 

Pr(D = 1|E, A, G)
log = α+βE+γ1A+γ2G+γ3AG+δ1EA+δ2EG+δ3EAG. (2.20)

1 − Pr(D = 1|E, A, G) 

Then 

p̂11
log = α + ˆˆ β, 

1 − p̂11
 

p̂01

log = α, ˆ

1 − p̂01
 

p̂12

log = α̂ + β̂ + γ̂2 + δ̂  

2,
1 − p̂12
 

p̂02

log = α̂ + γ̂2,

1 − p̂02
 

p̂13

log = α̂ + β̂ + γ̂1 + δ̂  

1,
1 − p̂13
 

p̂03

log = α̂ + γ̂1,

1 − p̂03
 

ˆ

log 

p14 
= α̂ + β̂ + γ̂1 + γ̂2 + γ̂3 + δ̂  

1 + δ̂  
2 + δ̂  

3,
1 − p̂14 

p̂04
log = α̂ + γ̂1 + γ̂2 + γ̂3. (2.21)

1 − p̂04 
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A simple calculation using (2.21) yields 

p̂11 p̂01 a1d1
β̂ = log − log = log ,

1 − p̂11 1 − p̂01 b1c1 

a3d3 

p̂13 p̂03 p̂11 p̂01 b3c3δ̂  
1 = (log − log ) − (log + log ) = log ,

1 − p̂13 1 − p̂03 1 − p̂11 1 − p̂01 a1d1 

b1c1 

a2d2 

p̂12 p̂02 p̂11 p̂01 b2c2δ̂  
2 = (log − log ) − (log + log ) = log ,

1 − p̂12 1 − p̂02 1 − p̂11 1 − p̂01 a1d1 

b1c1 

p̂14 p̂04 p̂12 p̂02
δ̂  
3 = (log − log ) − (log − log )

1 − p̂14 1 − p̂04 1 − p̂12 1 − p̂02 

a4d4 a1d1 

p̂13 p̂03 p̂11 p̂01 b4c4 b1c1− (log − log ) + (log − log ) = log . (2.22)
1 − p̂13 1 − p̂03 1 − p̂11 1 − p̂01	 a2d2 a3d3 

b2c2 b3c3 

Similarly, 

a1ˆq̂11 = Pr(E = 1|D = 1, G = 0, A = 0) = , 
a1 + b1 

c1ˆq̂01 = Pr(E = 1|D = 0, G = 0, A = 0) = , 
c1 + d1 

a2ˆq̂12 = Pr(E = 1|D = 1, G = 1, A = 0) = , 
a2 + b2 

c2ˆq̂02 = Pr(E = 1|D = 0, G = 1, A = 0) = , 
c2 + d2 

a3ˆq̂13 = Pr(E = 1|D = 1, G = 0, A = 1) = , 
a3 + b3 

c3ˆq̂03 = Pr(E = 1|D = 0, G = 0, A = 1) = , 
c3 + d3 

a4ˆq̂14 = Pr(E = 1|D = 1, G = 1, A = 1) = , 
a4 + cb 

c4ˆq̂04 = Pr(E = 1|D = 0, G = 1, A = 1) = . (2.23) 
c4 + d4 

Let the model for the log odds of exposure be expressed as 

Pr(E = 1|D, A, G)
log	 = υ+τD+θ1A+θ2G+θ3AG+ζ1DA+ζ2DG+ζ3DAG. (2.24)

1 − Pr(E = 1|D, A, G) 
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Then
 

q̂11
log = υ̂ + τ̂ , 

1 − q̂11 

q̂01
log = υ, ˆ

1 − q̂01 

q̂12
log = υ̂ + τ̂ + θ̂  

2 + ζ̂  
2,

1 − q̂12 

ˆ
log 

q02 
= υ̂ + θ̂  

2,
1 − q̂02 

q̂13
log = υ̂ + τ̂ + θ̂  

1 + ζ̂  
1,

1 − q̂13 

q̂03
log = υ̂ + θ̂  

1,
1 − q̂03 

ˆ
log 

q14 
= υ̂ + τ̂ + θ̂  

1 + θ̂  
2 + θ̂  

3 + ζ̂  
1 + ζ̂  

2 + ζ̂  
3,

1 − q̂14 

q̂04
log = υ̂ + θ̂  

1 + θ̂  
2 + θ̂  

3. (2.25)
1 − q̂04 

A simple calculation using (2.25) yields 

τ̂ = log 
q̂11 

1 − q̂11 
− log 

q̂01 

1 − q̂01 
= log 

a1d1 

b1c1 
, 

a3d3 

ζ̂  
1 = (log 

q̂13 

1 − q̂13 
− log 

q̂03 

1 − q̂03 
) − (log 

q̂11 

1 − q̂11 
+ log 

q̂01 

1 − q̂01 
) = log b3c3 

a1d1 
, 

b1c1 

a2d2 

ζ̂  
2 = (log 

q̂12 

1 − q̂12 
− log 

q̂02 

1 − q̂02 
) − (log 

q̂11 

1 − q̂11 
+ log 

q̂01 

1 − q̂01 
) = log b2c2 

a1d1 
, 

b1c1 

ζ̂  
3 = (log 

q̂14 

1 − q̂14 
− log 

q̂04 

1 − q̂04 
) − (log 

q̂12 

1 − q̂12 
− log 

q̂02 

1 − q̂02 
) 

a4d4 a1d1 

− (log 
q̂13 

1 − q̂13 
− log 

q̂03 

1 − q̂03 
) + (log 

q̂11 

1 − q̂11 
− log 

q̂01 

1 − q̂01 
) = log b4c4 

a2d2 

b1c1 

a3d3 
. (2.26) 

b2c2 b3c3 

This demonstrates that β̂ = τ̂ and δ̂  
k = ζ̂  

k (k = 1, 2, 3). The estimated coefficients 

relating to exposure and disease in the two types of logistic regression models are 

equivalent. 
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2.4 Data Illustrations 

The following data examples will illustrate the equivalence from the preceding sections. 

The data are from Chapter 1 Section 1.3. 

•	 Example 1 

This example demonstrates that the estimated coefficients relating to exposure 

(history of diabetes) and disease (MI) in the two types of logistic regression models 

in Section 2.1 are equivalent. Table 2.4 reports the frequencies in each cell from a 

single 2×2 table. As observed from Table 2.5, the estimated odds of developing MI 

in the group with a history of diabetes is 2.0196 (95% CI: 1.2918, 3.1575) times the 

estimated odds of developing MI in the group without a history of diabetes. These 

results are equivalent to those in Table 2.6 using the odds of exposure (history 

of diabetes). That is, the estimated coefficients relating to exposure (history of 

diabetes) and disease (MI) in the two types of logistic regression models are the 

same (0.7029), as well as the standard errors (0.2280). 

Table 2.4: The Single 2 × 2 Table (Frequencies) 
E = 1 E = 0 

D = 1 69 140 
D = 0 41 168 
ÔR 2.0195 
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Table 2.5: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (The Single Table) 

Variable Coefficient Std. Err.
 
exp 0.7029 (0.2280) 
Intercept -0.1823 (0.1144) 

Table 2.6: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (The Single Table) 

Variable Coefficient Std. Err.
 
dis 0.7029 (0.2280) 
Intercept -1.4104 (0.1742) 

•	 Example 2 

This example demonstrates that the estimated coefficients relating to exposure and 

disease in the two types of logistic regression models in Section 2.2 are equivalent. 

Table 2.7 reports the frequencies in each cell in the two 2 × 2 tables. For females, 

the estimated odds of developing MI in the group with a history of diabetes is 

3.0535 (95% CI: 1.4397, 6.4763) times the estimated odds of developing MI in the 

group without a history of diabetes (Table 2.8). These results are equivalent to 

those in Table 2.9 when modeling the odds of exposure (history of diabetes). That 

is, the estimated coefficients relating to exposure (history of diabetes) and disease 

(MI) in the two types of logistic regression models are the same (1.1163), as well 

as the standard errors (0.3836). 

‘ 

Table 2.7: The Two 2 × 2 Tables (Frequencies) 
G = 0 G = 1 

E = 1 E = 0 E = 1 E = 0 
D = 1 28 27 41 113 
D = 0 18 53 23 115 
ÔR 3.0535 1.8141 
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Table 2.8: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (The Two Tables) 

Variable Coefficient Std. Err.
 
exp 1.1163 (0.3836) 
gender 0.6569 (0.2710) 
eg -0.5207 (0.4823) 
Intercept -0.6745 (0.2364) 

Table 2.9: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (The Two Tables) 

Variable Coefficient Std. Err.
 
dis 1.1163 (0.3836) 
gender -0.5295 (0.3558) 
dg -0.5207 (0.4823) 
Intercept -1.0799 (0.2728) 

•	 Example 3 

This example demonstrates that the estimated coefficients relating to exposure and 

disease in the two types of logistic regression models in Section 2.3 are equivalent. 

Table 2.10 reports the frequencies in each cell in the four 2 × 2 tables. For young 

females, the estimated odds of developing MI in the group with a history of diabetes 

is 4.9998 (95% CI:1.2744, 19.6152) times the estimated odds of developing MI in the 

group without a history of diabetes (Table 2.11). As in the previous two examples, 

the estimated coefficients relating to exposure and disease are identical between 

Table 2.11 and Table 2.12. 

Table 2.10: The Four 2 × 2 Tables (Frequencies) 
G = 0 G = 1 

A = 0 A = 1 A = 0 A = 1 
E = 1 E = 0 E = 1 E = 0 E = 1 E = 0 E = 1 E = 0 

D = 1 10 11 18 16 17 40 24 73 
D = 0 4 22 14 31 13 41 10 74 
ÔR 5 2.4911 1.3404 2.4329 
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Table 2.11: Estimated Coefficients and Standard Errors from Fitting the Model for the
 
Log Odds of Disease (The Four Tables)
 

Variable Coefficient Std. Err.
 
exp 1.6094 (0.6974) 
agegrp 0.0317 (0.4808) 
gender 0.6685 (0.4310) 
ag -0.0207 (0.5547) 
ea -0.6967 (0.8415) 
eg -1.3165 (0.8195) 
eag 1.2928 (1.0306) 
Intercept -0.6931 (0.3693) 

Table 2.12: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (The Four Tables) 

Variable Coefficient Std. Err.
 
dis 1.6094 (0.6974) 
agegrp 0.9098 (0.6318) 
gender 0.5561 (0.6299) 
ag -1.7627 (0.7836) 
da -0.6967 (0.8415) 
dg -1.3165 (0.8195) 
dag 1.2928 (1.0306) 
Intercept -1.7047 (0.5436) 



28 

Chapter 3
 

Examples for Lack of Equivalence of the Two Types of Logistic 

Regression Models in Case-Control Studies 

This chapter provides four examples when the estimated coefficients and standard errors 

relating to exposure and disease from the two types of logistic regression models are not 

equivalent. 

3.1	 Example 1: Excluding the Cross-product Term of Age and Gender 

when Age and Gender are Considered as Potential Confounders 

In this example, both binary age and gender are considered as potential confounders but 

not joint confounders. The model for the log odds of disease can be written as 

Pr(D = 1|E, A, G)
log	 = α + βE + γ1A + γ2G (3.1)

1 − Pr(D = 1|E, A, G) 

and the model for the log odds of exposure can be written as 

Pr(E = 1|D, A, G)
log	 = υ + τD + θ1A + θ2G. (3.2)

1 − Pr(E = 1|D, A, G) 

The results in Tables 3.1 and 3.2 show that the estimated coefficients relating to exposure 

(history of diabetes) and disease (MI) in the two types of logistic regression models are 

not the same (0.7934 vs. 0.7932 respectively), and neither are the standard errors. 
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Table 3.1: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (without AG) 

Variable Coefficient Std. Err.
 
exp 0.7934 (0.2339) 
agegrp 0.0643 (0.2057) 
gender 0.4949 (0.2222) 
Intercept -0.5923 (0.2427) 

Table 3.2: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (without AG) 

Variable Coefficient Std. Err.
 
dis 0.7932 (0.2340) 
agegrp -0.1445 (0.2339) 
gender -0.8145 (0.2395) 
Intercept -0.8298 (0.2623) 

3.2	 Example 2: Excluding the Cross-product Term of Age and Gender 

when Age and Gender are Considered as Potential Modifiers 

In this example, both binary age and gender are considered as potential modifiers but 

not joint modifiers. The log odds of disease can be written as 

Pr(D = 1|E, A, G)
log	 = α + βE + γ1A + γ2G + δ1EA + δ2EG (3.3)

1 − Pr(D = 1|E, A, G) 

and the log odds of exposure can be written as 

Pr(E = 1|D, A, G)
log	 = υ + τD + θ1A + θ2G + ζ1DA + ζ2DG. (3.4)

1 − Pr(E = 1|D, A, G) 

The results in Tables 3.3 and 3.4 show that the estimated coefficients and standard errors 

relating to exposure (history of diabetes) and disease (MI) in the two types of logistic 

regression models are not the same. 
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Table 3.3: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (without AG and Modifiers) 

Variable Coefficient Std. Err.
 
exp 1.0404 (0.4964) 
agegrp 0.0162 (0.2398) 
gender 0.6560 (0.2714) 
ea 0.1071 (0.4731) 
eg -0.4993 (0.4874) 
Intercept -0.6840 (0.2754) 

Table 3.4: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (without AG and Modifiers) 

Variable Coefficient Std. Err.
 
dis 1.0714 (0.4820) 
agegrp -0.1813 (0.3570) 
gender -0.5348 (0.3562) 
da 0.0712 (0.4735) 
dg -0.5148 (0.4827) 
Intercept -0.9669 (0.3499) 

3.3	 Example 3: Age has Three Values and is Considered as a Potential 

Confounder 

The following example illustrates the simplest case where the potential confounder age 

(Am) has more than two possible values, demonstrating that the coefficients relating to 

exposure and disease are not equivalent. Without loss of generality, consider age to have 

three possible values (=0,1,2). The model for the log odds of disease can be written as 

Pr(D = 1|E, Am)
log	 = α + βE + γAm (3.5)

1 − Pr(D = 1|E, Am) 

and the model for the log odds of exposure can be written as 

Pr(E = 1|D, Am)
log	 = υ + τD + θAm. (3.6)

1 − Pr(E = 1|D, Am) 

The results in Tables 3.5 and 3.6 show that the estimated coefficients and standard errors 

relating to exposure (history of diabetes) and disease (MI) in the two types of logistic 
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regression models are not the same. 

Table 3.5: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (Age with 3 Values) 

Variable Coefficient Std. Err.
 
exp 0.7110 (0.2284) 
Am 0.1458 (0.1768) 
Intercept -0.3555 (0.2395) 

Table 3.6: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (Age with 3 Values) 

Variable Coefficient Std. Err.
 
dis 0.7115 (0.2285) 
Am -0.1821 (0.2020) 
Intercept -1.2037 (0.2851) 

However, the estimated coefficients and standard errors relating to exposure (history 

of diabetes) and disease (MI) in the two types of logistic regression models (3.7 and 

3.8) are the same when age squared (A2 ) is included in the models (Tables 3.7 and 3.8 m

respectively). In this case, the model for the log odds of disease can be written as 

Pr(D = 1|E, Am)
log = α + βE + γ1Am + γ2A

2 (3.7)
1 − Pr(D = 1|E, Am) m 

and the model for the log odds of exposure can be written as 

Pr(E = 1|D, Am)
log = υ + τD + θ1Am + θ2A

2 . (3.8)
1 − Pr(E = 1|D, Am) m

The feature of adding the Am2 to the model illustrates the principle of “spanning the 

same linear space” that will be discussed further in Chapter 4. 
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Table 3.7: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (Age with 3 Values Squared) 

Variable Coefficient Std. Err.
 
exp 0.7026 (0.2289) 
Am 0.4599 (0.5767) 
Am2 -0.1329 (0.2319) 
Intercept -0.4971 (0.3458) 

Table 3.8: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (Age with 3 Values Squared) 

Variable Coefficient Std. Err.
 
dis 0.7026 (0.2289) 
Am 0.6458 (0.6760) 
Am2 -0.3533 (0.2709) 
Intercept -1.5788 (0.4218) 

3.4	 Example 4: Age has Three Values and is Considered as a Potential 

Effect Modifier 

In this example, the age (Am) variable has three possible values (=0,1,2) and is considered 

as a potential effect modifier. The model for the log odds of disease can be written as 

Pr(D = 1|E, Am)
log	 = α + βE + γAm + δEAm (3.9)

1 − Pr(D = 1|E, Am) 

and the model for the log odds of exposure can be written as 

Pr(E = 1|D, Am)
log	 = υ + τD + θAm + ζDAm. (3.10)

1 − Pr(E = 1|D, Am) 

The results in Tables 3.9 and 3.10 show that the estimated coefficients and standard 

errors relating to exposure (history of diabetes) and disease (MI) in the two types of 

logistic regression models are not the same. 
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Table 3.9: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (Age with 3 Values and modifier) 

Variable Coefficient (Std. Err.)
 
exp 0.5804 (0.5447) 
Am 0.1218 (0.1988) 
exp × Am 0.1148 (0.4358) 
Intercept -0.3269 (0.2626) 

Table 3.10: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (Age with 3 Values and modifier) 

Variable Coefficient (Std. Err.)
 
dis 0.6556 (0.5167) 
Am -0.2094 (0.3039) 
dis × Am 0.0490 (0.4067) 
Intercept -1.1733 (0.3801) 
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Chapter 4
 

Equivalence of the Estimated Coefficients relating to Exposure 

and Disease in the Two Types of Logistic Regression Models 

This chapter will examine the theoretical basis when the estimated coefficients relating 

to exposure and disease in the two types of logistic regression models are equivalent and 

when they are not equivalent. 

4.1	 Equivalence when both Models can be Expressed as a Classical 

Stratified Analysis 

Suppose the data are summarized in s 2 × 2 tables categorized by the cross-classification 

of covariates. Table 4.1 is the kth table where k = 1, ..., s. 

Table 4.1: The kth 2×2 Table (Frequencies) 
E = 1 E = 0 Row Total 

D = 1 ak bk ak + bk 

D = 0 ck dk ck + dk 

Column Total ak + ck bk + dk 

Let p̂1k represent the estimated probability that exposed members in stratum k are a 

case and p̂0k represent the estimated probability that non-exposed members in stratum 

k are a case. It follows from section 2.1 that 

akˆp̂1k = Pr(D = 1|E = 1, k) = , 
ak + ck 

bkˆp̂0k = Pr(D = 1|E = 0, k) = .	 (4.1)
bk + dk 
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If each covariate pattern is designated by the indicator variable Ik for k = 1, ..., s, where 

1 if it is the kth covariate pattern 
Ik = 

⎧ ⎪⎨ ⎪⎩
 0 otherwise.
 

Then the model for the log odds of disease can be expressed as 

Pr(D = 1|E, k) s s 

log	 = βE + γkIk + δkEIk (4.2)
1 − Pr(D = 1|E, k) 

k=1 k=1 

where at least one δk is zero (the baseline). Then 

ˆ
log 

p1k 
= β̂ + γ̂k + δ̂k,

1 − p̂1k 

p̂0k
log = γ̂k.	 (4.3)

1 − p̂0k 

Suppose δ1 = 0 is the baseline, a simple calculation using (4.3) yields 

p̂11 p̂01 a1d1
β̂ = log − log = log ,

1 − p̂11 1 − p̂01 b1c1 

akdk 

p̂1k p̂0k p̂11 p̂01 bkckδ̂  
k = (log − log ) − (log − log ) = log . (4.4)

1 − p̂1k 1 − p̂0k 1 − p̂11 1 − p̂01	 a1d1 

b1c1 

Similarly, 

akˆq̂1k = Pr(E = 1|D = 1, k) = , 
ak + bk 

ckˆq̂0k = Pr(E = 1|D = 0, k) = . (4.5) 
ck + dk 

The model for the log odds of exposure can be expressed as 

Pr(E = 1|D, k) s s 

log	 = τD + θkIk + ζkDIk. (4.6)
1 − Pr(E = 1|D, k) 

k=1 k=1 

Then 

q̂1k
log = τ̂ + θ̂k + ζ̂k,

1 − q̂1k 

q̂0 ˆlog = θk.	 (4.7)
1 − q̂0 
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Suppose δ1 = 0 is the baseline, a simple calculation using (4.7) yields 

β̂ = log 
q̂11 

1 − q̂11 
− log 

q̂01 

1 − q̂01 
= log 

a1d1 

b1c1 
, 

akdk 

δ̂  
k = (log 

q̂1k 

1 − q̂1k 
− log 

q̂0k 

1 − q̂0k 
) − (log 

q̂11 

1 − q̂11 
− log 

q̂01 

1 − q̂01 
) = log bkck 

a1d1 
. (4.8) 

b1c1 

This demonstrates that β̂ = τ̂ and δ̂  
k = ζ̂  

k. The estimated coefficients relating to 

exposure and disease in the two types of logistic regression models are equivalent. This 

equivalence is verified in the following example, whereby the estimated coefficients and 

standard errors corresponding to exposure in Table 4.2 are identical to the estimated 

coefficients and standard errors corresponding to disease in Table 4.3. 

Table 4.2: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (A Series of Tables) 

Variable Coefficient Std. Err. 
exp 1.6094 (0.6974) 
young female (I1) -0.6931 (0.3693) 
old female (I2) 0.0317 (0.4808) 
young male (I3) 0.6685 (0.4310) 
old male (I4) 0.6795 (0.4044) 
exp × old female (I2) -0.6967 (0.8415) 
exp × young male (I3) -1.3165 (0.8195) 
exp × old male (I4) -0.7204 (0.8095) 

Table 4.3: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (A Series of Tables) 

Variable Coefficient Std. Err. 
dis 1.6094 (0.6974) 
young female (I1) -1.7047 (0.5436) 
old female (I2) 0.9098 (0.6318) 
young male (I3) 0.5561 (0.6299) 
old male (I4) -0.2967 (0.6395) 
dis × old female (I2) -0.6967 (0.8415) 
dis × young male (I3) -1.3165 (0.8195) 
dis × old male (I4) -0.7204 (0.8095) 
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4.2	 Definition of Saturation for Models Expressed in Terms of Design 

Matrices 

This section will use the following two theorems in proving equivalence and non-

equivalence. From Graybill [25] 

•	 Let V = [v1, v2, ..., vm] be a matrix consisting of a set of vectors that is a basis for 

Vn and let U = [u1, u2, ..., uq] be a matrix that is any set of vectors in Vn. The 

set of vectors in U is a basis set for Vn if and only if m = q and there exists a 

nonsingular m × m matrix A such that U = V A, Theorem. 5.4.5. 

•	 Let A and B be n × m matrices. There exists a nonsingular m × m matrix C such 

that AC = B if and only if A and B have the same column space, Theorem 2.5.6. 

In studying the relationship between a disease and its exposure, covariates need to 

be considered for their potential confounding or modifying effects [39]. Suppose that A 

(=0 if young, 1 if old) and G (=0 if female, 1 if male) are covariates. Let 

1 if A = 0, G = 0 
I1 = ⎪⎩ 0 otherwise, 

1	 if A = 1, G = 0 
I2 = 

0 otherwise, 

1 if A = 0, G = 1 
I3 = 

0 otherwise, 

1 if A = 1, G = 1 
I4 = 

0	 otherwise. 

⎧⎪⎨ 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩
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Suppose the model for the log odds of disease can be expressed as 

P(D = 1|E, k) 4 4 

log = βE + γkIk + δkEIk (4.9)
1 − Pr(D = 1|E, k) 

k=1 k=1 

where at least one δk is zero (the baseline). The design matrix of the model for the log 

odds of disease (4.9) with δ1 = 0 can be expressed as 

E I1 I2 I3 I4 EI2 EI3 EI4 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

0 
⎡ 

1 1 0 0 0 0 0
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

1 0 1 0 0 1 0 0 

1 0 0 1 0 0 1 0 

1 0 0 0 1 0 0 1 

. . . . . . . . 

where each column shows the status of the designated variables or the cross-product of 

them. Each row is for one observation so that there are ( k
4
=1 nk = n) rows (nk is the 

sample size for stratum k). 

Suppose that δk = 0 for k = 1, ..., 4, then the model (4.9) becomes
 

Pr(D = 1|E, k) 4
 

log = βE + γkIk. (4.10)
1 − Pr(D = 1|E, k) 

k=1 

An abbreviated version of the matrix relating to columns Ik (k = 1, ..., 4) in the design 

matrix for model (4.10) can be written as 

I1 I2 I3 I4 ⎞⎛ 

I =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

1 0 0 0
 

0 1 0 0
 

0 0 1 0
 

0 0 0 1
 

⎟⎟⎟⎟⎟⎟⎟⎠
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where each row represents the membership status to one of the four covariate patterns 

formulated by the cross-classification of covariates A and G (young female, old female, 

young male, and old male). Breslow and Powers made a pivotal observation by stating 

that “the covariate effects are saturated with parameters” [10] when “the number of 

independent parameters [γ1, γ2, γ3, and γ4] equals the number of covariate patterns” 

[10]. For example, there are four covariate patterns in model (4.10). 

Breslow and Powers’ observation can also be applied to other forms of covariate coding 

systems. For example, let 

Z1 = 

Z2 = 

Z3 = 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩
 

1 if A = 1, G = 0
 

0 otherwise, 

1 if A = 0, G = 1 

0 otherwise, 

1 if A = 1, G = 1 

0 otherwise.
 

The corresponding abbreviated matrix Z with columns 1, Z1, Z2, and Z3 can be expressed 

as
 ⎞⎛ 

Z =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

1 0 0 0
 

1 1 0 0
 

1 0 1 0
 

1 0 0 1
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

where each row represents the membership status to one of the four covariate patterns. 

Using the theorems from Graybill [25], Z = IR where R is a nonsingular matrix (because 

R = Z and Z is a nonsingular matrix). Therefore, the column spaces of the two matrices 

span the same linear space. Thus, Z can be used to define yet another parameterization 
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of covariate effects. Model (4.9) can be rewritten as 

Pr(D = 1|E, k) 3 

log	 = α + βE + γkZk. (4.11)
1 − Pr(D = 1|E, k) 

k=1 

or equivalently as 

Pr(D = 1|E, A, G)
log	 = α + βE + γ1A + γ2G + γ3AG. (4.12)

1 − Pr(D = 1|E, A, G) 

Suppose the four covariate patterns in model (4.12) can be expressed by a matrix given 

by
 ⎞⎛ 

X =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

1 0 0 0
 

1 1 0 0
 

1 0 1 0
 

1 1 1 1
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

,
 

where each row of X represents the membership status to one of the four covariate 

patterns. The columns of X correspond to 1, A, G, and AG. Notice that X = I R 

where R is a nonsingular matrix (because R = X and X is a nonsingular matrix). 

Therefore, the column spaces of the two matrices span the same linear space. 

Because the column spaces of I, Z, and X span the same linear space, this implies 

that 

•	 the three types of covariate coding systems saturate the model with parameters for 

covariate effects. 

•	 the three types of covariate coding systems yield equivalent estimated odds ratios 

and variance for a given stratum. 

Breslow and Powers’ “The covariate effects are saturated with parameters” [10] concept 

is examined further in the following two examples that remove specific parameters from 
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the model. In the first example, removal of a parameter results in a saturated model 

(with respect to covariate effects), whereas in the second example it does not. 

4.2.1 When γ2 = 0 (Corresponding to Gender) 

When γ2 = 0, model (4.12) is written as 

Pr(D = 1|E, A, G)
log = α + βE + γ1A + γ3AG. (4.13)

1 − Pr(D = 1|E, A, G) 

The corresponding matrix X will be ⎞⎛ 

X
 =
 

⎜⎜⎜⎜⎝
 

1 0 0
 

1 1 0
 

⎟⎟⎟⎟⎠
 
.
 

⎧ ⎪⎨ 

1 1 1 

Each row of X represents the membership status to one of the three covariate patterns 

(young, old female, and old male). The columns of X correspond to 1, A, and AG. 

Notice that X = I R where R is a nonsingular matrix (because R = X and X is a 

nonsingular matrix). Therefore, the column spaces of the two matrices X and I span 

the same linear space. Alternatively, let 

1 if A = 1, G = 0
 
Z1 = 

Z2 = 

⎪⎩ ⎧⎪⎨ ⎪⎩
 

0 otherwise, 

1 if A = 1, G = 1 

0 otherwise.
 

Then the corresponding matrix Z can be written as
 ⎞⎛ 

Z
 =
 

⎜⎜⎜⎜⎝
 

1 0 0
 

1 1 0
 

⎟⎟⎟⎟⎠
 
1 0 1
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where each row of Z represents the membership status to one of the three covariate 

patterns. The columns of Z correspond to 1, Z1, and Z2. Notice Z = I R where R is 

a nonsingular matrix (because R = Z and Z is a nonsingular matrix). Therefore, the 

column spaces of the two matrices span the same linear space. As column spaces of Z, 

and X span the same linear space as the column space of I, the covariate effects are 

saturated. 

4.2.2 When γ3 = 0 (Corresponding to the Cross-Product of Age and Gender) 

The term AG in model (4.12) is the cross-product between A and G. When γ3 = 0, 

model (4.12) is written as 

Pr(D = 1|E, A, G)
log = α + βE + γ1A + γ2G. (4.14)

1 − Pr(D = 1|E, A, G) 

The corresponding matrix X will become ⎞⎛ 

X =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

1 0 0
 

1 1 0
 

1 0 1
 

1 1 1
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

.
 

Each row of X represents the membership status to one of the four covariate patterns
 

(young female, old female, young male, and old male). The columns of X correspond to
 

1, A, and G. Alternatively, let
 

Z1 = 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩
 

1 if A = 1
 

0 otherwise
 

1 if G = 1
 
Z2 = 

0 otherwise.
 



43 

Then the matrix related to stratum indicators Z1 and Z2 can be written as ⎞⎛ 

Z =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

1 0 0
 

1 1 0
 

1 0 1
 

1 1 1
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

where each row represents the membership status to one of the four covariate patterns. 

Columns are 1, Z1, and Z2. In effect, X = Z and ⎞⎛⎞⎛⎞⎛ 
1 0 0
 1 0 0 0
⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

=
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

r11 r12 r13 

r21 r22 r23 

r31 r32 r33 

⎟⎟⎟⎟⎟⎟⎟⎠
 

1 1 0
 

1 0 1
 

0 1 0 0
 

0 0 1 0
 
.
 (4.15)
 

1 1 1 0 0 0 1 r41 r42 r43 ,
   
 ,
-
   
 ,-   
 -

X or Z I R 

For equality to hold in equation (4.15), R has to be a 4×3 matrix, therefore R cannot be 

a nonsingular matrix. Therefore, according to Graybill’s theorems [25] at the beginning 

of section 4.2, the column spaces of the two matrices X and Z do not span the same 

linear space as the column space of the matrix I. This implies, according to Breslow and 

Powers [10], that the covariate effects are not saturated with these two parameterizations. 

The results from section 4.2 can be summarized as follows. The covariate effects are 

saturated with parameters in the model if and only if there exists a nonsingular matrix R 

such that X = IR or Z = IR where X and Z correspond to different covariate coding 

systems for the model and the covariate strata indicated by the stratum indicators Ik are 

mutually exclusive. 
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4.3 Examination of Equivalence through Likelihood Equations 

This section expands the work of Breslow and Powers [10] to show that the estimated 

coefficients relating to exposure and disease in the two types of logistic regression 

models are identical when covariate effects are saturated with parameters using likelihood 

equations. Let the observed cell frequencies in the kth 2×2 table (k = 1, ..., s) be presented 

as in Table 4.1. Suppose that the probability of disease follows a logistic form, then with 

Table 4.1, model (4.2)can be written as 

s s 

exp{βE + γkIk + δkEIk}
k=1 k=1Pr(D = 1|E, k) = . (4.16)s s 

1 + exp{βE + γkIk + δkEIk}
k=1 k=1 

For a specified stratum k, 

exp{β + γk + δk}
p1k = Pr(D = 1|E = 1, k) = ,

1 + exp{β + γk + δk}
exp{γk}

p0k = Pr(D = 1|E = 0, k) = . (4.17)
1 + exp{γk} 

Note that δ1 = 0 is the baseline and δk are allowed to be zero for k = 2, ..., s. 

The likelihood function relating the observed frequencies to the parameters p1k and p0k 

is 
s  ak + ck ak 

bk + dk bk 

 1 
Lp = p (1 − p1k)

ck p (1 − p0k)
dk , (4.18)1k 0k ak bk

k=1 , - , -
the exposed the non-exposed

and the log likelihood function can be written as 

s 

lp ∝ {ak log p1k + ck log(1 − p1k) + bk log p0k + dk log(1 − p0k)}. (4.19) 
k=1 

Differentiating (4.17) with respect to γk, 

∂p1k exp{β + γk + δk} [exp{β + γk + δk}]2 

= − = p1k(1 − p1k)
∂γk 1 + exp{β + γk + δk} [1 + exp{β + γk + δk}]2
 

∂ log p1k
⇒ = 1 − p1k,
∂γk 
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∂(1 − p1k) exp{β + γk + δk}
= − = −p1k(1 − p1k)

∂γk [1 + exp{β + γk + δk}]2 

∂ log(1 − p1k)⇒ = −p1k,
∂γk 

∂p0k exp{γk} [exp{γk}]2 

= − = p0k(1 − p0k)
∂γk 1 + exp{γk} [1 + exp{γk}]2 

∂ log p0k⇒ = 1 − p0k,
∂γk 

∂(1 − p0k) exp{γk}
= − = −p0k(1 − p0k)

∂γk [1 + exp{γk}]2 

∂ log(1 − p0k)⇒ = −p0k. (4.20)
∂γk 

The score function for γk is written as 

∂lp 
= ak(1 − p1k) − ckp1k + bk(1 − p0k) − dkp0k. (4.21)

∂γk 

Following the same procedure for deriving the derivatives with respect to β and δk, the 

score functions for β and δk can be written as 

∂lp
s 

= {ak(1 − p1k) − ckp1k}, (4.22)
∂β 

k=1 

∂lp 
= ak(1 − p1k) − ckp1k. (4.23)

∂δk 

Setting the score functions (4.21)-(4.23) equal to zero, the following equations are 

obtained. 

ak + bk = (ak + ck)p̂1k + (bk + dk)p̂0k, (4.24) 

and ck + dk = (ak + ck)(1 − p̂1k) + (bk + dk)(1 − p̂0k), (4.25) 
s s 

ak = { (ak + ck) p̂1k}, (4.26) 
k=1 k=1 

ak = (ak + ck)p̂1k and bk = (bk + dk)p̂0k if and only if δk � (4.27)= 0. 

http:4.21)-(4.23
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Table 4.4: The kth 2×2 Table (Fitted Frequencies) 
E = 1 E = 0 Row Total 

D = 1 (ak + ck)p̂1k (bk + dk)p̂0k ak + bk 

D = 0 (ak + ck)(1 − p̂1k) (bk + dk)(1 − p̂0k) ck + dk 

Column Total ak + ck bk + dk 

Using the above equations, the fitted frequencies for Table 4.1 are shown in Table 4.4. 

Suppose that the probability of exposure also follows a logistic form, then with Table 

4.1, model (4.6) can be written as 

s s 

exp{τD + θkIk + ζkDIk}
k=1 k=1Pr(E = 1|D, k) = . (4.28)s s 

1 + exp{τD + θkIk + ζkDIk}
k=1 k=1 

For a specified stratum k, 

exp{τ + θk + ζk}
q1k = Pr(E = 1|D = 1, k) = ,

1 + exp{τ + θk + ζk}
exp{θk}

q0k = Pr(E = 1|D = 0, k) = . (4.29)
1 + exp{θk} 

Note that ζ1 = 0 is the baseline and ζk are allowed to be zero for k = 2, ..., s. 

The likelihood function relating the observed frequencies to the parameters q1k and q0k 

is 
s1 ak + bk ak 

ck + dk ckLq = q (1 − q1k)
bk q (1 − q0k)

dk , (4.30)1k 0k ak ck
k=1 , - , -

the diseased the non-diseased 

and the log likelihood function can be written as 

s 

lq ∝ {ak log q1k + bk log(1 − q1k) + ck log q0k + dk log(1 − q0k)}. (4.31) 
k=1 

Following the preceding procedures for calculating derivatives, the corresponding score 
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functions for θk, τ , and ζk are 

∂lq 

∂θk 
= ak(1 − q1k) − bkq1k + ck(1 − q0k) − dkq0k, (4.32) 

∂lq 

∂τ 
= 

s 

k=1 

{ak(1 − q1k) − bkq1k}, (4.33) 

∂lq 

∂ζk 
= ak(1 − q1k) − bkq1k. (4.34) 

Setting the score functions (4.32)-(4.34) equal to zero, the following equations are 

obtained 

ak + ck = (ak + bk)q̂1k + (ck + dk)q̂0k, (4.35) 

and bk + dk = (ak + bk)(1 − q̂1k) + (ck + dk)(1 − q̂0k), (4.36) 
s s 

ak = (ak + bk)q̂1k, (4.37) 
k=1 k=1 

ak = (ak + bk)q̂1k and ck = (ck + dk)q̂0k if and only if ζk = 0. (4.38) 

Using the above equations, the fitted frequencies for Table 4.1 are shown in Table 4.5. 

Table 4.5: The kth 2×2 Table (Fitted Frequencies) 
E = 1 E = 0 Row Total 

D = 1 (ak + bk)q̂1k (ak + bk)(1 − q̂1k) ak + bk 

D = 0 (ck + dk)q̂0k (ck + dk)(1 − q̂0k) ck + dk 

Column Total ak + ck bk + dk 

In summary, section 4.3 showed that both the model for the log odds of disease and 

the model for the log odds of exposure have the same set of score functions (written in 

terms of observed and fitted frequencies) [10] through maximum likelihood (ML) fitting. 

Specifically, the row and column marginal totals are the same from both logistic regression 

models and 
s s s 

ak = (ak + ck)p̂1k = (ak + bk)q̂1k. (4.39) 
k=1 k=1 k=1 

http:4.32)-(4.34
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When the number of strata is large, an approximate estimation method can be used. 

Breslow [7] showed that, for the “diseased” approach, the asymptotic mean ãk for ak given 

ak + bk, ak + ck and bk + dk can be obtained as the solution of the quadratic equation 

ãk{[bk + dk] − [(ak + bk) + ãk]} (β̂+δ̂k)= e , (4.40)
{[ak + bk] − ãk}{[ak + ck] − ãk} 

or equivalently 
ãk{dk − ak + ãk} (β̂+δ̂k)= e . (4.41)

{ak + bk − ãk}{ak + ck − ãk} 

Similarly, for the “exposed” approach, the asymptotic mean ă for ak given ak +bk, ak +ck 

and ck + dk can be obtained as the solution of the quadratic equation 

ăk{[ck + dk] − [(ak + ck) + ăk} (τ̂ +ζ̂k)= e , (4.42)
{[ak + bk] − ăk}{[ak + ck] − ăk} 

or equivalently 
ăk{dk − ak + ăk} τ +ζ̂k)(ˆ= e , (4.43)

{ak + bk − ăk}{ak + ck − ăk} 

Noticing that the row and column marginal totals are the same for both approaches. 

One can substitute ãk in equation (4.41) and ăk in equation (4.43) into equation (4.39), 

which will lead to β̂ = τ̂ and δ̂k = ζ̂k. 

As a final numerical example, suppose that all the cross-product terms in models 

(4.16) and (4.28) are set to zero. Then the model for the log odds of disease reduces to 

Pr(D = 1|E, k) 4 

log = βE + γkIk (4.44)
1 − Pr(D = 1|E, k) 

k=1 

and the model for the log odds of exposure reduces to 

Pr(E = 1|D, k) 4 

log = τD + θkIk. (4.45)
1 − Pr(E = 1|D, k) 

k=1 
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The numerical results in the following two tables show that the estimated coefficients 

and standard errors relating to exposure (history of diabetes) and disease (MI) in the 

two types of logistic regression models are equivalent. 

Table 4.6: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease (A Series of Tables 2) 

Variable Coefficient Std. Err. 
exp 0.8103 (0.2355) 
young female (I1) -0.4586 (0.3068) 
old female (I2) -0.6177 (0.2525) 
young male (I3) -0.1592 (0.2018) 
old male (I4) -0.0008 (0.1557) 

Table 4.7: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure (A Series of Tables 2) 

Variable Coefficient Std. Err. 
dis 0.8103 (0.2355) 
young female (I1) -1.2519 (0.3474) 
old female (I2) -0.7472 (0.2580) 
young male (I3) -1.4473 (0.2600) 
old male (I4) -1.9490 (0.2475) 
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Chapter 5
 

Equivalence of the Profile Likelihood Functions for the Two
 

Types of Logistic Regression Models in Case-Control Studies
 

An alternative approach to demonstrating equivalence between the two types of logistic 

regression models is to use the multinomial-Poisson transformation [4] and the profile 

likelihood [42]. As before, let the observed cell frequencies in the kth stratum (k = 1, ..., s) 

be displayed as in Table 5.1. 

Table 5.1: The kth 2 × 2 Table (Frequencies) 
E = 1 E = 0 

D = 1 ak bk 

D = 0 ck dk 

Suppose that ak, bk, ck, and dk independently follow Poisson distributions Po(λde) 

[50] where λde are defined in Table 5.2. 

Table 5.2: The kth 2 × 2 Table (Assuming a Poisson Distribution) 
E = 1 E = 0
 

D = 1 λ11 = exp{log µk + log ξk + log ωk + ηk} λ10 = exp{log µk + log ξk}
D = 0 λ01 = exp{log µk + log ωk} λ00 = exp{log µk} 

The Poisson likelihood function is derived from a model which considers the 

frequencies data as 4 independent Poisson distributions corresponding to each cell. 

Specifically,   
s1 λak λbk λck λdk 

11 exp{−λ11} 01 exp{−λ01} 10 exp{−λ10} 00 exp{−λ00}
LPo = . (5.1) 

ak! bk! ck! dk!
k=1
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The corresponding Poisson log likelihood function is 

s �
 

lPo ∝ ak{log µk + log ξk + log ωk + ηk} + bk{logµk + log ξk}

k=1 �
 

+ ck{log µk + log ωk} + dk{log µk} 

s � 

− exp{log µk + log ωk + log ξk + ηk} + exp{log µk + log ξk}
k=1 � 

+ exp{log µk + ωk} + exp{log µk} 

s � � 

= (ak + bk + ck + dk) log µk + (ak + bk) log ξk + (ak + ck) log ωk + akηk 

k=1 
s � 

− exp{log µk + log ωk + log ξk + ηk} + exp{log µk + log ξk}
k=1 � 

+ exp{log µk + ωk} + exp{log µk} . (5.2) 

5.1 The Profile Likelihood Function for modeling the Log Odds of Disease 

Using Poisson parameters from Table 5.2, the probabilities of disease given exposure can 

be written as 

exp{log µk + log ξk + log ωk + ηk}
Pr(D = 1|E = 1, k) = 

exp{log µk + log ωk} + exp{log µk + log ξk + log ωk + ηk} 
exp{log ξk + ηk}

= , (5.3)
1 + exp{log ξk + ηk}

1 
Pr(D = 0|E = 1, k) = 1 − Pr(D = 1|E = 1, k) = , (5.4)

1 + exp{log ξk + ηk}
exp{log µk + log ξk} exp{log ξk}

Pr(D = 1|E = 0, k) = = , (5.5) 
exp{log µk + log ξk} + exp{log µk} 1 + exp{log ξk}

and 
1 

Pr(D = 0|E = 0, k) = 1 − Pr(D = 1|E = 0, k) = (5.6)
1 + exp{log ξk} 
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where β + δk = ηk and γk = log ξk. Note that β, δk and γk are the parameters of interest 

in model (4.16). Using equations (5.3)-(5.6), the odds ratio is 

Pr(D = 1|E = 1, k) 
Pr(D = 0|E = 1, k) 

= exp{ηk}. (5.7)
Pr(D = 1|E = 0, k) 
Pr(D = 0|E = 0, k) 

Consider, now, a binomial likelihood function as a product of two binomial 

distributions for each category of exposure (one for the exposed and one for the non-

exposed). Then 

s1  t  tak + ck ak ckLp = Pr(D = 1|E = 1, k) Pr(D = 0|E = 1, k) 
ak

k=1 

bk + dk  t  tdkPr(D = 1|E = 0, k)
bk Pr(D = 0|E = 0, k)

bk
s

ak + ck exp{log ξk + ηk} ak 1 ck 
1  t  t

= 
ak 1 + exp{log ξk + ηk} 1 + exp{log ξk + ηk}

k=1 

bk + dk  exp{log ξk} t  1 tdkbk (5.8)
bk 1 + exp{log ξk} 1 + exp{log ξk} 

and the corresponding binomial log likelihood function is 

s 
exp{log ξk + ηk} 1 

lp ∝ ak log + ck log
1 + exp{log ξk + ηk} 1 + exp{log ξk + ηk}

k=1 

exp{log ξk} 1 
+bk log + dk log . (5.9)

1 + exp{log ξk} 1 + exp{log ξk} 

Taking the first derivatives of the Poisson log likelihood function (5.2) with respect 

to µk and ωk, the following expressions are obtained 

∂lpo (ak + bk + ck + dk) 
= − exp{log ωk + log ξk + ηk} + exp{log ωk} + exp{log ξk} +1 ,

∂µk µk 

(5.10) 
∂lpo ak + ck 

= − exp{log µk + log ξk + ηk} + exp{log µk} . (5.11)
∂ωk ωk 

Setting these derivatives equal to zero and solving the two equations for µk and ωk, we 



 �
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obtain
 

bk + dk 
µ̂k =	 and 

1 + exp{log ξk}

(ak + ck)(1 + exp{log ξk})


ω̂k =	 . (5.12)
(bk + dk)(1 + exp{log ξk + ηk}) 

Substituting of µ̂k and ω̂k into the Poisson log likelihood function (5.2) yields 

s 
exp{log ξk + ηk}	 1 ∝	 ak log + ck loglpo 

1 + exp{log ξk + ηk} 1 + exp{log ξk + ηk}
k=1 

exp{log ξk}	 1 
+ bk log	 + dk log }

1 + exp{log ξk} 1 + exp{log ξk}

+(ak + ck) log(ak + ck) + (bk + dk) log(bk + dk) − (ak + bk + ck + dk) 

s 
exp{log ξk + ηk}	 1 ∝	 ak log + ck log

1 + exp{log ξk + ηk} 1 + exp{log ξk + ηk}
k=1 

exp{log ξk}	 1 
+ bk log	 + dk log } (5.13)

1 + exp{log ξk} 1 + exp{log ξk}

which is the same as the binomial log likelihood function (5.9) for modeling the log odds 

of disease. 

5.2	 The Profile Likelihood Function for modeling the Log Odds of 

Exposure 

Using the Poisson parameters from Table 5.2, the probabilities of exposure given disease 

can be written as 

Pr(E = 1|D = 1, k) 

exp{log µk + log ξk + log ωk + ηk}
= 

exp{log µk + log ξk + log ωk + ηk} + exp{log µk + log ξk} 
exp{log ωk + ηk}

= ,	 (5.14)
1 + exp{log ωk + ηk}
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1 
Pr(E = 0|D = 1, k) = 1 − Pr(E = 1|D = 1, k) = , (5.15)

1 + exp{log ωk + ηk}
exp{log µk + log ωk} exp{log ωk}

Pr(E = 1|D = 0, k) = = , (5.16) 
exp{log µk + log ωj } + exp{µk} 1 + exp{log ωk}

and 

exp{log ωk}
Pr(E = 0|D = 0, k) = 1 − Pr(E = 1|D = 0, k) = (5.17)

1 + exp{log ωk} 

where τ + ζk = ηk and θk = log ωk. Note that τ , ζ and θk are the parameters of interest 

in model (4.28). Using equations (5.14)-(5.17), the odds ratio is 

Pr(E = 1|D = 1, k) 
Pr(E = 0|D = 1, k) 

= exp{ηk}. (5.18)
Pr(E = 1|D = 0, k) 
Pr(E = 1|D = 0, k) 

Consider again a binomial likelihood function as a product of two binomial 

distributions for each category of disease (one for the diseased and one for the non-

diseased). Then 

1s
ak + bk t tbkLq = Pr(E = 1|D = 1, k) 

ak Pr(E = 0|D = 1, k) 
ak

k=1
 

ck + dk ck
Pr(E = 1|D = 0, k) 
t

Pr(E = 0|D = 0, k) 
tdk 

ck 
s1 ak + bk exp{log ωk + ηk} tak 1 tbk = 

ak 1 + exp{log ωk + ηk} 1 + exp{log ωk + ηk}
k=1 

ck + dk exp{log ωk} tck 1 tdk (5.19) 
ck 1 + exp{log ωk} 1 + exp{log ωk} 

and the corresponding log likelihood function is 

s 
exp{log ωk + ηk} 1 

lq ∝ ak log + bk log
1 + exp{log ωk + ηk} 1 + exp{log ωk + ηk}

k=1 

exp{log ωk} 1 
+ck log + dk log . (5.20)

1 + exp{log ωk} 1 + exp{log ωk} 

http:5.14)-(5.17
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Taking the first derivatives of the Poisson log likelihood function (5.2) with respect 

to µk and ξk, the following expressions are obtained 

∂lpo (ak + bk + ck + dk) 
=	 − exp{log ωk + log ξk + ηk} + exp{log ωk} + exp{log ξk} +1 ,

∂µk µk 

(5.21) 
∂lpo (ak + bk) 

= − exp{log µk + log ωk + ηk} + exp{log µk} . (5.22)
∂ξk ξk 

Setting these derivatives equal to zero and solving the two equations for µk and ξk, we 

obtain 

ck + dk 
µ̂k =	 and 

1 + exp{log ωk}
(ak + bk)(1 + exp{log ωk})

ξ̂k =	 . (5.23)
(ck + dk)(1 + exp{log ωk + ηk}) 

Substituting of µ̂k and ξ̂k into the Poisson log likelihood function (5.2) yields 

s 
exp{log ωk + ηk}	 1 

lpo ∝ ak log	 + bk log
1 + exp{log ωk + ηk} 1 + exp{log ωk + ηk}

k=1 

exp{log ωk}	 1 
+ck log	 + dk log

1 + exp{log ωk} 1 + exp{log ωk} 

+(ak + bk) log(ak + bk) + (ck + dk) log(ck + dk) − (ak + bk + ck + dk) 

s 
exp{log ωk + ηk}	 1 ∝ ak log	 + bk log

1 + exp{log ωk + ηk} 1 + exp{log ωk + ηk}
k=1 

exp{log ωk}	 1 
+ck log + dk log	 (5.24)

1 + exp{log ωk} 1 + exp{log ωk} 

which is the same as the binomial log likelihood function (5.20) for modeling the log odds 

of exposure. 

From the results in Chapter 5, the following summary statements can be made: 

I.	 The Poisson profile likelihood function of the Poisson likelihood function for ξk 

and ηk, after maximizing with respect to µk and ωk, is identical to the binomial 

likelihood function for modeling the log odds of disease for ξk and ηk. 
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II.	 The Poisson profile likelihood function of the Poisson likelihood function for ωk 

and ηk, after maximizing with respect to µk and ξk, is identical to the binomial 

likelihood function for modeling the log odds of exposure for ωk and ηk. 

Baker [4] provided a similar argument to the above statements, that is, “we can transform 

the multinomial likelihood (i.e. in (5.9) or (5.20)) into a Poisson likelihood (i.e. in 

(5.2)), with additional parameters... [which] yields identical estimates and asymptotic 

variances” [4]. This demonstrates, in an alternative way, that the estimated coefficients 

and standard errors relating to exposure and disease are the same in the models for the 

log odds of disease and log odds of exposure. 
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Chapter 6 

Equivalence of the Standard Errors for the Estimated 

Coefficients relating to Exposure and Disease for the Two Types 

of Logistic Regression Models 

In the preceding chapters, identical estimated coefficients relating to exposure and 

disease have been demonstrated for the two types of logistic regression models when 

the covariate effects are saturated in the models. In this chapter, it will be shown that 

their corresponding standard errors are also identical. This chapter is an expansion of 

the appendix of Breslow’s paper “Regression Analysis of the Log Odds Ratio: A Method 

for Retrospective Studies”. 

6.1 The Poisson Regression 

Suppose the frequencies in the s 2 × 2 tables (as in Table 5.1 where k = 1, ..., s) arise 

from independent Poisson distributions with corresponding parameters shown in Table 

6.1. 

Table 6.1: The kth 2×2 Table (Assuming a Poisson Distribution) 
E = 1 E = 0
 

D = 1 exp{γ1k + β + δk} exp{γ1k + γ2k}
D = 0 exp{γ3k} exp{γ2k + γ3k} 

The odds ratio will be 

exp{γ1k + β + δk} exp{γ2k + γ3k}
OR = = exp{β + δk}. (6.1) 

exp{γ3k} exp{γ1k + γ2k} 
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The Poisson regression model can be written as
 

y = exp{XB} (6.2)
 

where
 ⎞
⎛
 

y =
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

a1 

. . . 

as 

b1 

. . . 

bs 

c1 

. . . 

cs 

d1 

. . . 

ds 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and 

XB 

⎞⎛ 
⎞ 

...
...

...

⎛ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

γ11 

...
 

γ1s 

γ21 

...
 

γ2s 

γ31 

...
 

γ3s 

. . . . . . 

β
 

δ2 

...
 

δs 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

0
0
1
0
. . .


...1 
...

... 
... 

... 
... 

... 
......

1
0
1

...
0
. . .
0


...
0
. . .
0

...
10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 

0
. . .
0

...
0
. . .
0


...01
...01

... 
... 

... 
... 

... 
......

......

0
. . .
0

...
0
. . .
0


...10
...10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 

0
. . .
0

...01

...0
. . .
0

...
0
. . .
0


... 
... 

......
... 

... 
... 

... 
... 

... 

0
. . .
0

...10

...0
. . .
0

...
0
. . .
0


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 

0
. . .
0

...01

...01
...0
. . .
0


... 
... 

......
......

... 
... 

... 

0
0
. . .
0


0
. . .
0

...10

...10
...0
. . .
0
 ⎞⎛ ⎞
 

.
 ⎟⎠

γ
 

δ
 

⎛⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎝
 

01

I 0 0 Z
 

I I 0 0 

0 0 I 0 

0 I I 0 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

=
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

=
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⎞
⎛
 

I and Z are both s × s submatrices and γ
 =
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

γ11 

. . . 

γ1s 

γ21 

.
 .
 .
 

γ2s 

γ31 

. . . 

γ3s 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

and δ =
 

⎞
⎛
 ⎜⎜⎜⎜⎜⎜⎜⎝
 

β
 

δ2 

. . . 

⎟⎟⎟⎟⎟⎟⎟⎠
 

.
 

δs 

For a classical linear model, the Gauss-Markov theorem [28] states that the least 

squares estimator is the best linear unbiased estimator (BLUE) and the errors are 

uncorrelated and have a mean of zero and equal variances (σ2). When the errors are 

heterogeneous, Aitken [2] demonstrated that the estimators are BLUE by using a weight 

which is equal to the inverse of the variance of the variable. Define Vy as the inverse of 

cov[log(y)] then 

B = (XT VyX)−1XT Vy log(y) (6.3) 

and 

X)−1XT VyV −1V T X)−1 
tT 

X)−1 cov(B) = (XT Vy y y X (XT Vy = (XT Vy . (6.4) 
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6.2 The Covariance Matrix for δ̂

Suppose a random variable (e.g. a1) has a Poisson distribution with estimated mean and 

variance â1. By a first-order Taylor series expansion [32], 

∂ log(a1)
log(a1) = log(â1)|a1=ˆ + |a1=ˆ (a1 − â1)a1 a1∂a1 

1 
= log(â1) + (a1 − â1) 

â1 

1 
= log(â1) + a1 − 1 (6.5) 

â1 

so that 

var[log(a1)] = ( 
1 

)2 var(a1) (6.6) 
â1 

and

 var[log(a1)] = ( 
1 

)2â1 
1 

(6.7)
= .
 
â1 â1 

Thus, the inverse of the covariance matrix for log(y) can be estimated by
 ⎞⎛ 
â1 0 

. . . 

âs
 

ˆ
b1 

. . .
 

b̂s 

ĉ1 

Vŷ = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

=
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

Vâ 0 0 0 

0 Vb̂ 0 0 

0 0 Vĉ 0 

⎟⎟⎟⎟⎟⎟⎟⎠
 
. . 0 0 0 Vd̂

.
 

ĉs 

d̂1 

. . . 

0 d̂s 

⎞⎛ 
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such that ⎞⎛ 
Vâ + Vb̂ Vb̂ 0 VâZ⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎠


 −1 

.
 

 

0Vˆ Vˆ + V ̂ V ̂b b d d 

0 V ̂ Vˆ + V ̂ 0d c d 

ZT Vâ 0 0 ZT VâZ 

cov(B) = [XT Vŷ6 X]−1 =

Let
 ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝
 

A11 A12 A13 A14 

A21 A22 A23 A24 

A31 A32 A33 A34
 

A41 A42 A43 A44
 

⎟⎟⎟⎟⎟⎟⎟⎠


 
  −1 

[XT VŷX]−1 = .
 

Using the method for inverting partitioned symmetric matrix [33], the lower right hand 

s × s corner of the matrix [XT VŷX]−1 can be written as 

= A44.23 − A41.23A
−1 
11.23cov(δ) = A44.1236

where 

A44.23 = A44.3 − A42.3A
−1 A24.322.3


= (A44 − A43A33 
−1A34)
 t−1− (A42 − A43A33 
−1A32) (A22 − A23A33 

−1A32) (A24 − A23A33 
−1A34) 

= ZT VâZ, (6.9) 

A41.23 = A41.3 − A42.3A
−1 A21.322.3


= (A41 − A43A33 
−1A31)
 t−1− (A42 − A43A33 
−1A32) (A22 − A23A33 

−1A32) (A21 − A23A33 
−1A31) 

= ZT Vâ, (6.10) 

A14.23 (6.8) 
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A−1 = [A11.3 − A12.3A
−1 A21.3]

−1 

= (A11 − A13A33 
−1A31) 

11.23 22.3

t−1− (A12 − A13A33 
−1A32)[(A22 − A23A33 

−1A32)]
−1(A21 − A23A33 

−1A31)   −1 
−1 

= (Vâ + Vb̂) − Vb̂ (Vb̂ + Vd̂) − Vd̂(Vĉ + Vd̂)−1Vd̂ Vb̂ , (6.11) 

and 

A14.23 = A14.3 − A12.3A
−1 A24.322.3

= (A14 − A13A33 
−1A34) t−1− (A12 − A13A33 
−1A32) (A22 − A23A33 

−1A32) (A24 − A23A33 
−1A34) 

= VâZ. (6.12) 

It then follows from (6.8) that 

6cov(δ) 

t−1 −1 
= ZT Vâ − Vâ (Vâ + Vˆ) − Vˆ (Vˆ + V ̂ ) − V ̂ (Vĉ + V ̂ )−1V ̂ Vˆ Vâ Z.b b b d d d d b 

(6.13) 

The kth diagonal element from the s × s matrix sandwiched between ZT and Z in 

(6.13) is equal to  −1 −1 
âk − âk (âk + b̂k) − ̂bk (b̂k + d̂k) − d̂k(ĉk + d̂k)

−1d̂k b̂k âk 

ĉk + d̂k 

−1 

=âk − âk (âk + b̂k) − ̂bk 
2 âk

b̂kĉk + b̂kd̂k + ĉkd̂k
 

ˆ ck + ˆ d̂k + ˆ ˆ
2 bk ̂ bk ckdk

=âk − â
k 
âk ̂bkĉk + âk ̂bkd̂k + âkĉkd̂k + b̂kĉkd̂k
 

ˆ ˆâkbkĉkdk 
= 

ˆ ˆ ˆ ˆ ˆâkbkĉk + âkbkdk + âkĉkdk + b̂kĉkdk
 

1
 
= . (6.14)

1 1 1 1 
+ + + 

âk b̂k ĉk d̂k 
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As the b̂k and ĉk are interchangeable, (6.14) proves that the covariance matrix for β̂ will 

be identical for the two types of logistic regression models. 
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Chapter 7
 

Prentice and Pyke’s Theoretical Justification for Modeling the 

Log Odds of Disease in Case-Control Studies 

In 1979, Prentice and Pyke [47] suggested a logistic regression model which treats the 

disease as the outcome for case-control studies. Let G (Gender) be the covariate relating 

to disease D and exposure E, the model for the log odds of disease can be written as 

Pr(D = 1|E, G)
log	 = α + βE + γG + δEG. (7.1)

1 − Pr(D = 1|E, G) 

The next section will introduce an important equivalence which Prentice and Pyke used 

to obtain the model for the log odds of disease. Subsequently, Prentice and Pyke’s 

theoretical justification [47] for treating disease as the outcome in case-control studies 

will be provided. 

7.1	 The Logistic Model for Disease Incidence during a Defined Accession 

Period and the Corresponding Multinomial Logistic Regression 

Model 

Letting G (Gender) be the covariate relating to disease D and exposure E, then the 

frequencies can be summarized as in Table 7.1. 

According to Prentice and Pyke, “The logistic model for disease incidence during the 

defined accession period” [47] is given by 

exp{α ∗ + βE + γG + δEG}
Pr ∗ (D = 1|E, G) =	 (7.2)

1 + exp{α ∗ + βE + γG + δEG} 
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Table 7.1: The Two 2 × 2 Tables (Frequencies)
 
G = 0 G = 1 

E = 1 E = 0 E = 1 E = 0 
D = 1 
D = 0 

a1 

c1 

b1 

d1 

a2 

c2 

b2 

d2 

where α∗ is the log odds of disease for the baseline category (E = 0 and G = 0) in 

“the logistic model [(7.2)] for disease incidence during the defined accession period” [47]. 

Without loss of generality, the frequencies shown in Table 7.1 can also be summarized 

in terms of a multinomial logistic regression model. Using Pr(E = 0, G = 0) as the 

baseline, the corresponding multinomial logistic regression model can be written as 

I. 
Pr(E = 1, G = 0|D)

log = ψe + βD. (7.3)
Pr(E = 0, G = 0|D) 

II. 
Pr(E = 0, G = 1|D)

log = ψg + γD. (7.4)
Pr(E = 0, G = 0|D) 

III. 
Pr(E = 1, G = 1|D)

log = ψeg + (β + γ + δ)D. (7.5)
Pr(E = 0, G = 0|D) 

If δ = 0, a constraint is imposed on the multinomial logistic regression model during 

the parameter estimation. The number of constraints needed in the multinomial logistic 

regression model depends on the degree of saturation with respect to the number of 

parameters in the logistic regression model. 

Though only two dichotomous variables (E and G) are considered in this section, the 

congruence between the two types of logistic regression models can be readily applied to 

more than two dichotomous variables or even measured variables. Specifically, measured 

variables are treated (or pretended) as “only... values actually observed may be observed” 
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[26] in the maximum likelihood estimation for the multinomial logistic regression model. 

The following section shows such a simplified example. 

Assume that the covariate (Am) is a variable that has only three observed values(0, 

1, and 2), “The logistic model for disease incidence during the defined accession period” 

[47]) can be written as 

Pr∗(D = 1|E, Am)
log = α ∗ + βE + γAm + δEAm (7.6)

1 − Pr∗(D = 1|E, Am) 

and the corresponding multinomial logistic regression model consists of the following five 

equations 

I. 
Pr(E = 0, Am = 1|D)

log + γD. 
Pr(E = 0, Am = 0|D)

= ψg 

II. 
Pr(E = 0, Am = 2|D)

log = ψg2 + 2γD. 
Pr(E = 0, Am = 0|D) 

III. 
Pr(E = 1, Am = 0|D)

log = ψe + βD. 
Pr(E = 0, Am = 0|D) 

IV. 
Pr(E = 1, Am = 1|D)

log = ψeg + (β + γ + δ)D. 
Pr(E = 0, Am = 0|D) 

V. 
Pr(E = 1, Am = 2|D)

log = ψeg2 + (β + 2γ + 2δ)D. (7.7)
Pr(E = 0, Am = 0|D) 

There are two constraints involved in this simplest case, namely, 2(β + γ + δ) = 

β + (β + 2γ + 2δ) and 2(γ) = 2γ. 
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7.2 Prentice and Pyke’s Theoretical Justification 

The key point in this section is to illustrate that the disease indicator D can be treated 

as the outcome in a case-control study [47]. Suppose that “the logistic model for disease 

incidence during the defined accession period” [47] is 

exp{α ∗ + βE + γG + δEG}
Pr ∗ (D = 1|E, G) = . (7.8)

1 + exp{α ∗ + βE + γG + δEG} 

For any given E and G, the following equivalence exists (as described in section 7.1) 

Pr ∗ (D = 1|E, G) Pr(E, G|D = 1) 
Pr ∗ (D = 0|E, G) Pr(E = 0, G = 0|D = 1) 

= = exp{βE + γG + δEG}, (7.9)
Pr ∗ (D = 1|E = 0, G = 0) Pr(E, G|D = 0)
 
Pr ∗ (D = 0|E = 0, G = 0) Pr(E = 0, G = 0|D = 0)
 

and an induced model [47] can be written as 

Pr(E, G|D = d) 

Pr(E, G|D = 0) 
= Pr(E = 0, G = 0|D = d) exp{(βE + γG + δEG) d}

Pr(E = 0, G = 0|D = 0) 
Pr(E = e, G = g|D = 0) 

= Pr(E = 0, G = 0|D = d) exp{log + (βE + γG + δEG) d}
Pr(E = 0, G = 0|D = 0) 

= cd exp{φ + (βE + γG + δEG) d} (7.10) 

Pr(E = e, G = g|D = 0) 
where cd = Pr(E = 0, G = 0|D = d) and φ = log .

Pr(E = 0, G = 0|D = 0)

Let 
1 

q(E, G) = Ps(D = d) Pr(E, G|D = d) (7.11) 
d=0 

where Ps(D = d) is the probability of D = d under the case-control sampling scheme. 

Let n be the sample size and nd be the sample size for D = d, then 

1 
nd 

q(E, G) = Pr(E, G|D = d) 
n 

d=0
 

1
 
nd 

= cd exp{φ + (βE + γG + δEG) d}
n 

d=0 

1 
nd 

= exp{φ} cd exp{(βE + γG + δEG) d}. (7.12) 
n 

d=0 
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q(E, G) is actually the joint marginal density function [47] for E and G under the case-

control sampling scheme. By reexpressing exp{φ} in terms of q(E, G) in the model (7.10), 

the induced model (7.10) becomes 

Pr(E, G|D = d)
 

q(E, G)
 
= cd exp{(βE + γG + δEG) d} 

1 nl 
cl exp{(βE + γG + δEG) l}l=0 n
 

nd
 
cd exp{(βE + γG + δEG) d} nn = q(E, G)

1 nl ndcl exp{(βE + γG + δEG) l}l=0 n
 
exp{αd + (βE + γG + δEG) d} n
 

= 1 q(E, G)
 
exp{αl + (βE + γG + δEG) l} nd
l=0 

n 
= pd(E, G) q(E, G)
 

nd
 

n 
= pd(x) q(x)
 

nd
 

= Pr(x|D = d) (d = 0, 1) (7.13) 

nd exp{αd + (βE + γG + δEG) d}
where αd = log cd , pd(x) = pd(E, G) = , andn  1 exp{αl + (βE + γG + δEG) l}l=0 

q(x) = q(E, G). Notice that pd(x) or pd(E, G) has a logistic form with parameters β, γ, 

and δ. Actually pd(x) is Pr(D = d|x) in equation (1.28) and q(x) is Pr(x) in equation 

(1.28). 

7.2.1 The Maximum Likelihood Estimators 

This section will show how a constraint on defining Pr(E, G|D = d) to be a probability is 

satisfied automatically when pd(x) and q(x) are estimated separately. As the likelihood 

function for induced model (7.13) can be written as 

1 1 1 nd1 nd 1 1 
L ∝ pd(xdh) q(xdh) = L1 L2 . (7.14) 

d=0 h=1 d=0 h=1 
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Parameter estimations with respect to β, γ, δ and αd in L1 and q(x) in L2 of (7.14) will 

separately be subject only to the constraint that Pr(E, G|D = d) in equations (7.10) 

and (7.13) is a probability distribution [30]. That is 

nd
the constraint: pd(x) q(x) dx = (d = 0, 1). (7.15) 

nx 

The log likelihood function l1 of L1 in (7.14) is 

1 nd
 

l1 = log pd(xdh)
 
d=0 h=1
 

1 nd
 

= (αd + (βEh + γGh + δEhGh) d)
 
d=0 h=1
 

1
 t 
+ log	 exp{αl + (βEh + γGh + δEhGh) l} (7.16) 

l=0 

where Eh is the exposure status and Gh is the gender status for the hth observation. The 

first partial derivative with respect to αd is 

∂ l1
1 nl 

= nd − pd(xmg).	 (7.17)
∂αd m=0 g=1 

After setting the above score function equal zero, the following equation is obtained. 

1 nl 

E[pd(x)] = nd 

m=0 g=1 

nd⇒ E[pd(x)] = 
n 

nd⇒ pd(x) q(x) dx = 
nx 

(d = 0, 1).	 (7.18) 

As the last equation in (7.18) shows that the constraint is satisfied even if the 

parameters included in L1 and L2 (equation 7.14) are estimated separately, this means 



�

71 

that β, γ, δ and αd can be estimated without estimating q(x). Therefore, the estimated 

odds ratios and variances can be obtained only through L1 in the log likelihood function 

(7.14). Specifically, the model for the log odds of disease can be expressed in terms of 

pd(E, G) from (7.13). That is 

exp{α1 + βE + γG + δEG}
D=1: p1(E, G) = 

exp{α0} + exp{α1 + βE + γG + δEG} 
exp{(α1 − α0) + βE + γG + δEG}

= 
1 + exp{(α1 − α0) + βE + γG + δEG} 

exp{α + βE + γG + δEG}
= ,

1 + exp{α + βE + γG + δEG}
1 

D=0: p0(E, G) = . (7.19)
1 + exp{α + βE + γG + δEG} 

model (7.19) re-expressed as the model (7.1), i.e. 

exp{α + βE + γG + δEG}
Pr(D = 1|E, G) = (7.20)

1 + exp{α + βE + γG + δEG} 

where α = α1 − α0 = α∗ if models (7.1)(7.20) and the model (7.8) are compared. It is 

noted that α cannot be interpreted as the log odds of disease for the baseline (E = 0 and 

G = 0) in models (7.1)(7.20) for the log odds of disease as “the [case-control] study gives 

no information about the marginal probability of disease [for the source population]” 

[19]. But the odds ratio exp{β + δ} in models (7.1)(7.20) for the log odds of disease will 

have the same interpretation as the odds ratio in “the logistic model (7.8) for disease 

incidence during the defined accession period” [47]. Thus, data from case-control studies 

can be analyzed by the model for the log odds of disease to obtain the estimates for β, 

γ, and δ. 

The premise in the preceding section is that the disease can be treated as the outcome 

in case-control studies. It is important to note that it does not matter which terms are 

included on the right hand side of the model (7.8), that is, the part (βE + γG + δEG) 

is not involved in the preceding demonstration of treating the disease indicator as the 

http:7.1)(7.20
http:7.1)(7.20
http:7.1)(7.20
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outcome variable. γ and/or δ can be zero. In addition, the right-hand side can consist 

of more than one covariate or even measured variables. 

7.2.2 The Asymptotic Distribution of β̂

A first-order Taylor series expansion [32] of the score function for l1 in (7.16) about the 

‘true’ parameter θ0 is 

∂ l1 ∂ l1 ∂2 l1
0 = = |θ∗ =θ0 + |θ∗ =θ (θ̂ − θ0)	 (7.21) 

∂θ0 ∂θ*∂θ*
∂θ̂⎞
⎛
 

=
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

α0 

α1 

. . .
 

αs 

. . .
 

β
 

γ
 

δ
 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

, i.e., α =
 

⎞
⎛
 ⎞
⎛
α0 

α1 

. . .
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎠
 

⎞
⎛
 β
 

γ
 

⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎠
 

α
⎜⎝
 
⎟⎠
where θ =
 and β =
 .
 

β
 
δ
 

αs 

θ̂ is the maximum likelihood estimator and θ* is between θ̂ and θ0, so that 

(θ̂ − θ0) = (−n −1 ∂
2 l1 

∂θ*∂θ* )
−1(n −

∂ l1 −11 1 
) = I(θ*) S(θ0). (7.22)2 2n
 

∂θ0 

7.2.2.1 The Asymptotic Distribution of n
 
1 
2 (θ̂ − θ0) 

I.	 The Asymptotic Distribution of S(θ0) 

The contributions to the score statistic S(θ0) of L1 in equation (7.14) from the 

individual samples (i.e., an individual disease group) do not in general have 

∂ log pd(x)mean zero, that is, E nd 
t
 

will not in general be zero. Therefore,
 
∂θ0 

the variance for S(θ0) is not G(θ0) where G(θ0) (= E[I(θ0)]) is the variance 
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for the prospective sampling score statistic. Let µm 
0 be the contribution to t 

the expectation E S(θ0) from the mth disease group (m = 0, ..., s). Since t 
E S(θ0) = 0 (that is, if one were to repeatedly sample from a distribution 

and the mean of the score with the ‘true’ θ0 would tend to zero as the number 

of repeated sample approaches infinity), s nmµ0 = 0. Then m=0 m 

1 
2

1 
2 

∂l1 

∂θ0 

s nm ∂ log pm(xmg) 

S(θ0) =n −

−=n 
∂θ0 

m=0 g=1 

s nm s 

+ n 
∂ log pm(xmg) 0 

t11 
(
 
n 

)−
1− 0 nmµm . 

2 − µ
2 n
 2=
 m 
∂θ0 mnm m=0 g=1 m=0 

(7.23) 

By applying the Central Limit Theorem [30] to the term in the curly brackets, 

S(θ0) is asymptotically normal distributed with mean 0 and variance matrix 

1  ∂l1   ∂l1  T 
Σ = var S(θ0) = E . (7.24) 

n ∂θ0 ∂θ0

II. I(θ*) is the consistent estimator of G(θ0) θ̂ is a consistent estimator of θ0 

[30] and θ* lies between θ0 and θ̂ so that θ* is a consistent estimator of θ0 

too. This implies that G(θ*) is a consistent estimator of G(θ0) [30]. Also 

by the strong law of large numbers [52], I(θ*) will almost surely converge to 

its expectation G(θ*). It follows then that I(θ*) is a consistent estimator of 

G(θ0). 

With equation (7.22) and by Slutsky’s Theorem [30], we have 

var n
 
1 
2 (θ̂ − θ0) = var I(θ * )−1S(θ0) = var G(θ0)

−1
S(θ0) 

−1 −1 
= G(θ0) var S(θ0) G(θ0)

= G−1ΣG−1 (7.25) 
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where G
 =
 G(θ0). Now
 n
 
1 
2 (θ̂ − θ0) in equation (7.22) has an asymptotic
 

distribution with mean zero and covariance matrix G−1ΣG−1 . 

7.2.2.2 The asymptotic covariance matrix [G−1ΣG−1]22 (i.e., the covariance matrix of 

n
 
1 
2 (θ̂ − θ0) corresponding to β) is equal to G−1 

22 

Suppose that we have s disease groups. From equation (7.18), we have 

ni = n pi(x) q(x) dx 
x 

s t 
= n pi(x) pm(x) q(x) dx
 

x m=0
 

= n pi(x)p0(x) q(x) dx + n pi(x)p1(x) q(x) dx + ... + n pi(x)ps(x) q(x) dx 
x x x 

n0 n1 nst t t 
= E pi(x0g) + E pi(x1g) + ... + E pi(xsg)
 

g=1 g=1 g=1
 t t t 
= n0E pi(x0g) + n1E pi(x1g) + ... + nsE pi(xsg) 

(i, m = 0, ..., s) (7.26) 

which implies 

t n n 
E pi(xmg) = pi(x)pm(x) q(x) dx = aim 

nm x nm 

⇒ 
s nm s nmt 

E pi(xmg) = pi(x)pm(x) q(x) dx 
xm=0 g=1 m=0 g=1 

s nm n 
= aim 

nm m=0 g=1 

s 

= n aim 

m=0 

= ni (7.27) 
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where aim = x pi(x)pm(x) q(x) dx. Similarly, 

n
 
E pi(xmg)pj (xmg) = pi(x)pj(x)pm(x) q(x) dx 

nm x 

⇒ 

t

t
s nm s nm n 
E pi(xmg)pj (xmg) = pi(x)pj (x)pm(x)q(x) dx 

nm xm=0 g=1 m=0 g=1 

s t
 
= n pi(x)pj (x) pm(x) q(x) dx 

x m=0 

= n pi(x)pj (x)q(x) dx 
x 

= naij . (7.28) 

The elements in Gα,α will be 

∂2 s nm1 l1 1 
Gαi,αi = E − = − E − pi(xmg) − pi(xmg)pi(xmg) 

n ∂(αi)2 n 
m=0 g=1 

1 
= − − ni − naii 

n 
ni 

= − aii (7.29) 
n 

and 

1 ∂2 l1 1 
s nm 

Gαi,αj = E − = − E − − pi(xmg)pj (xmg) 
n ∂αi∂αj n 

m=0 g=1 

1 
= − naij

n 

= −aij . (7.30) 

Gα,α can then be expressed in matrix notation. Let ⎞⎛ 

A =
 

⎜⎜⎜⎜⎝
 

a11 . . . a1s 

. ..
⎟⎟⎟⎟⎠
 

.
 .
 . .. .
 

as1 . . . ass 
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and
 ⎞⎛ 
n1 0n 

.N
 =
 

⎜⎜⎜⎜⎝
 
.


0
 

⎟⎟⎟⎟⎠
 
,
. 

nk 
n
 

then 

Gα,α = N − A. (7.31) 

From equations (7.17) and (7.24), it follows that 

∂ l1 
s nm 

= ni − pi(xmg), (7.32)
∂αi m=0 g=1 

so that 

1 ∂l1 ∂l1
Σαi,αj = E 

n ∂αi ∂αj
 
s nm s nm
1 

= E (ni − pi(xmg))(nj − pj (xmg)) 
n 

m=0 g=1 m=0 g=1 

s nm s nm1 
= E pi(xmg) pj (xmg) − ninj
n 

m=0 g=1 m=0 g=1
 

s nm s nl
1 
= E pi(xmg)pj (xmg) + pi(xlt)pj (xrq) − ninj
n 

m=0 g=1 t=1  or t=ql=0 l=r  

1 
s nl t
 

= naij + E pi(xlt)pj (xrq) − ninj . (7.33) 
n 

l=0 t=1 l=r   or t=q 

Because xlt and xrq are independent when l = r or t = q, it means that 

ttt tn n t
 
E pi(xlt)pj (xrj ) = E pi(xlt) E pj (xrq) = ail ajr , (7.34) 

ni nj 



   
 

 
 

 
              

    
 

    
 

 
 

  
   
   

 
   

77 

so that t
s nl 

E pi(xlt)pj (xrq) 
l=0 t=1 l=r or t=q 

s nl s nl s nm 

= E pi(xlt) E pj (xrq) − E pi(xmg) E pj (xmg) 
l=0 t=1 r=0 q=1 m=0 g=1 

s s s nm n n 
=(n ail)(n ajr) − aim ajm
 

nm nm

l=0 r=0 m=0 g=1 

s 
1 

=ninj − ( naimnajm). (7.35) 
nm m=0 

It follows that 

1 
s nl t
 

Σαi,αj = naij + E pi(xlt)pj (xrq) − ninj
n 

l=0 t=1 r=l or q=t 

1 
s 

1 
= naij + ninj − ( naimnajm) − ninj
n nm m=0 

1 
s 

1 
= naij − naimnajm 
n nm m=0 

s 
1 1 

= aij − n ( aimajm) − n( ai0aj0)
 
nm n0
 m=1 

s s s
1 n ni nj

= aij − n ( aimajm) − ( − aim)( − ajm). (7.36) 
nm n0 n n 

m=1 m=1 m=1 

Σα,α can then be expressed in matrix notation. Let ⎞⎛ 

x =
 

⎜⎜⎜⎜⎝
 

n n n+n0 n1 n0 

. . .
 

⎟⎟⎟⎟⎠
 
,
 

n n n+n0 nk n0 

then 

Σ11 = Σα,α = A − AXA − (NXN − N ) + (AXN − A) + (NXA − A) 

= N − A − (N − A)X(N − A) 

= Gα,α − Gα,αXGα,α 

= G11 − G11XG11. (7.37) 
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Following the same procedure, we can also obtain 

Σ12 = Σα,β = G12 − G11XG12, 

Σ21 = Σβ,α = G21 − G21XG11, 

Σ22 = Σβ,β = G22 − G21XG12. (7.38) 

Then ⎞⎛ 

G11 − G11XG11 G21 − G21XG11 
G−1ΣG−1 = G−1 ⎜⎝
 

⎟⎠
G−1 

G11 − G11XG11 G22 − G21XG12 ⎞⎛ 

G11XG11 G21XG11 
= G−1(G −⎜⎝
 

⎟⎠
)G−1 

G11XG11 G21XG12 ⎞⎛ 

X 0
⎜⎝
 
⎟⎠
G)G−1 = G−1(G − G 

0 0
 ⎞⎛ 

X 0
⎜⎝
 
⎟⎠
= G−1GG−1 − G−1G GG−1 

0 0
 ⎞⎛ 

X 0
⎜⎝
 
⎟⎠
= G−1 − . (7.39)
 

0 0 

G−1 G−1 θ)−1That is [G−1ΣG−1]22 = can be consistently estimated by I(ˆ22 . 22 22 . 

“An asymptotic distribution for n 2
1 
(θ̂ − θ0) [corresponding to β̂] with mean zero 

θ)−1and variance matrix I(ˆ 22 is precisely the distributional statement that would 

arise if the prospective model (7.20) were directly applied to the case-control data, 

as if a prospective study had been conducted” [47]. 
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Chapter 8 

A Case Study 

In this chapter, data from a case-control study will again be used to compare differences 

between the two models (the model for the log odds of disease and the model for the log 

odds of exposure) on the basis of the overall fit and diagnostic statistics . The data are 

from Chapter 1 Section 1.3. 

8.1 Building Models 

Tavani et al. provided evidence that diabetes mellitus is a contributor to the risk of 

acute myocardial infarction [53]. History of hypertension, hyperlipidemia and smoking 

status are adjusted for biologic rationales [6][29]. These variables, as well as age and 

gender, were considered as covariates and retained in the logistic regression models. Effect 

modifications were assessed in the two models. Tests for nonlinearity and collinearity were 

performed for the two models. The final model for the log odds of disease was derived 

to be 

Pr(D = 1|E, A, G, L, H, S)
log = α + βE + γ1A + γ2G + γ3L + γ4H + γ5S (8.1)

1 − Pr(D = 1|E, A, G, L, H, S) 

and the final model for the log odds of exposure was derived to be 

Pr(E = 1|D, A, G, L, H, S)
log = υ + τD + θ1A + θ2G + θ3L + θ4H + θ5S. (8.2)

1 − Pr(E = 1|D, A, G, L, H, S) 

Table 8.1 reports the estimates of the coefficients and standard errors in the model for 

the log odds of disease and Table 8.2 reports the estimates of the coefficients and standard 
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errors in the model for the log odds of exposure. As expected, the estimated coefficients 

and their standard errors are not identical because covariate effects are not saturated 

with parameters in both models. The estimated odds of developing MI with a history 

of diabetes is 2.1663 (95% CI: 1.3579, 3.4558) times the estimated odds of developing 

MI without a history of diabetes after controlling the confounding. The estimated odds 

of having a history of diabetes in the group with MI is 2.1596 (95% CI: 1.3532, 3.4465) 

times the estimated odds of having a history of diabetes in the group without MI after 

controlling the confounding. The results are different. However, the difference is small. 

Table 8.1: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Disease 

Variable Coefficient Std. Err. 
exp 0.7730 (0.2383) 
age 0.0136 (0.0132) 
gender 0.5498 (0.2321) 
hypertension history 0.5703 (0.2107) 
hyperlipidemia history -0.0463 (0.2231) 
smoking history -0.0407 (0.2205) 
Intercept -0.9001 (0.3006) 

Table 8.2: Estimated Coefficients and Standard Errors from Fitting the Model for the 
Log Odds of Exposure 

Variable Coefficient Std. Err. 
dis 0.7699 (0.2385) 
age -0.0245 (0.0147) 
gender -0.8244 (0.2510) 
hypertension history 0.0864 (0.2465) 
hyperlipidemia history -0.0066 (0.2533) 
smoking history -0.6980 (0.2594) 
Intercept -0.6733 (0.3192) 
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8.2 Assessing Differences 

Differences between the two logistic regression models can be examined through the 

overall fit and diagnostic statistics. 

8.2.1 Overall Fit 

Sensitivity and specificity can be used in model assessment. Sensitivity measures 

the proportion of diseased subjects identified through a specified classification rule 

and specificity measures the proportion of nondiseased subjects identified through a 

classification rule. In the model for the log odds of disease, the fitted disease/nondisease 

probabilities and a “disease probability cutoff” were used to classify each individual 

as either “diseased” or “not diseased” and all subjects’ actual disease statuses were 

compared with this classification to determine the disease sensitivity and specificity. 

Similarly, in the model for the log odds of exposure, the fitted exposure/nonexposure 

probabilities and an “exposure probability cutoff” were used to classify each individual 

as either “exposed” or “not exposed” and all subjects’ actual exposure statuses were 

compared with this classification to determine the exposure sensitivity and specificity. 

Figure 8.1 shows the disease sensitivity and specificity versus various cutoff values and 

Figure 8.2 shows the exposure sensitivity and specificity versus various cutoff values. 

Sensitivity versus 1-specificity can also be used for model assessment. The Area Under 

the Curve (AUC) in Figure 8.3 and 8.4 increases when sensitivity increases and 1­

specificity decreases. The difference between the observed AUC values (0.6331 versus 

0.6619) illustrates that the curves are generated from different fitted values arising from 

two different regression models. It’s interesting to note that even though the coefficients 

relating to exposure and disease may be equivalent, the other coefficients are numerically 

different between the two regression models. 
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Figure 8.1: Plot of Sensitivity and Specificity versus all Possible Disease Cutoffs from 
Fitting the Model for the Log Odds of Disease 

Figure 8.2: Plot of Sensitivity and Specificity versus all Possible Exposure Cutoffs from 
Fitting the Model for the Log Odds of Exposure 
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Figure 8.3: Plot of Sensitivity versus 1- Specificity versus all Possible Disease Cutoffs 
from Fitting the Model for the Log Odds of Disease 

Figure 8.4: Plot of Sensitivity versus 1- Specificity versus all Possible Exposure Cutoffs 
from Fitting the Model for the Log Odds of Exposure 
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8.2.2 Diagnostic Statistics
 

The analysis of influential observations is an important step in regression diagnostics as 

these influential observations may be data entry errors or they may be of interest to 

investigate. 

8.2.2.1 Outliers 

In the following set of examples, it will be shown that the standardized residuals 

reveal two very different sets of extreme values, those beyond two standard 

deviations of the mean. It will also be shown that the model for log odds of disease 

hides extreme standardized residuals whereas the model for log odds of exposure 

uncovers standardized residuals beyond two standard deviations. 

(a)	 Pearson Residual 

The Pearson residual measures the difference between the observed and fitted 

frequency for a group of observations (jth) with the same observed independent 

variable values [31][45]. It can be expressed as 

yj − mj p̂j
rj =  . (8.3) 

mj p̂j (1 − p̂j ) 

The standardized Pearson residual is written as 

rj
rsj =  (8.4) 

1 − hjj 

where hjj is the hth diagonal element in the projection matrix. The summation 

of the standardized Pearson residuals 

J 

χ2 2 = r	 (8.5)sj 
j=1 

has a limiting χ2 distribution with degrees of freedom J − (π + 1) where J is 

the number of distinct groups with the same observed independent variable 
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values and π + 1 is the number of parameters in the model. Figures 8.5 and 

8.6 are the plots of standardized Pearson residuals vs. predicted disease and 

exposure probabilities. It is interesting to note that the two graphs have 

different patterns and that different cuts of standardized Pearson residuals 

arise from the two different models (Table 8.3). The model for the log odds 

of exposure has a few more poorly fitted points (with a 2 or larger absolute 

value) than the model for the log odds of disease. 

Figure 8.5: Plot of Standardized Pearson Residuals vs. Predicted Disease Probabilities 
from Fitting the Model for the Log Odds of Disease 
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Figure 8.6: Plot of Standardized Pearson Residuals vs. Predicted Exposure Probabilities 
from Fitting the Model for the Log Odds of Exposure 

Table 8.3: Extreme Standardized Pearson residuals 
The Model for the Log Odds of Disease The Model for the Log Odds of Exposure 
Index Standardized Pearson Residual Index Standardized Pearson Residual 
244 2.2955 23 2.1060 
245 2.2955 32 2.7976 
259 2.1519 45 2.5882 
349 2.2955 53 4.666 
362 2.1519 123 2.6688 
364 2.1519 127 2.4973 
416 2.2955 150 3.0668 

174 4.666 
175 2.1323 
203 2.0010 
232 2.2141 
302 2.1865 
368 2.2012 
408 2.0293 



�   �
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(b)	 Deviance Residual 

Deviance residual “measures the disagreement between the maxima of the 

observed and fitted log likelihood functions” [45]. The formula is 

1 
2 

dj = sgn 2 l(p̃j ; yj) − l(p̂j ; yj ) 

yj yj mj − yj mj −yj yj= sgn 2 log[ ] − log[p̂j (1 − p̂j )
mj −yj ] 

mj mj 

1 
2 

1 
2yj	 mj − yj

2 yj log + (mj − yj ) log = sgn
 (8.6)
 
mj p̂j mj (1 − p̂j ) 

yjwhere the sign is the same as the sign of (yj −mj p̂j ) and p̃j = . The deviance mj 

J	 d2 has a limiting distribution χ2 with degrees of freedom J − (π + 1). j=1	 j 

Figures 8.7 and 8.8 are the plots of deviance residuals vs. predicted disease 

and exposure probabilities. Table 8.4 displays all deviance residuals with a 2 

or larger absolute value. The model for the log odds of exposure has a few 

more poorly fitted points than the model for the log odds of disease. 

Figure 8.7: Plot of Deviance Residuals vs. Predicted Disease Probabilities from Fitting 
the Model for the Log Odds of Disease 
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Figure 8.8: Plot of Deviance Residuals vs. Predicted Exposure Probabilities from Fitting 
the Model for the Log Odds of Exposure 

Table 8.4: Extreme Deviance Residuals 
The Model for the Log Odds of Disease The Model for the Log Odds of Exposure 
Index Deviance Resudual Index Deviance Residual 
244 2.5498 32 2.0818 
245 2.5498 45 2.0139 
259 2.3428 53 3.1365 
349 2.5498 123 2.0427 
362 2.3428 150 2.1596 
364 2.3428 174 3.1365 
416 2.5498 357 2.0199 

377 2.0199 
383 2.0199 
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8.2.2.2 The influential points in the design space (Leverage)
 

In classical linear models, large leverages can reveal the points in the design space 

at which the value of the outcome variable has a large impact on the regression 

fit [45]. That is, leverages can identify extreme values of independent variables. 

However, it is slightly different in the logistic regression model[31]. Leverages are 

the diagonal elements in the projection matrix. The projection matrix arises as a 

consequence of the Iteratively Reweighted Least Square (IRLS) (see Appendix B) 

and is a J × J matrix that can be expressed as 

1 1 
X(XT V X)−1XT VH = V
 . (8.7)
2 2

The upper bound for each leverage is 1. However, if an observation is far away from 

other leverages, then it can be considered as an extreme leverage. Figures 8.9 and 

8.10 show the plots of leverage versus predicted disease and exposure probabilities 

[13]. As observed in the previous diagnostic examples, the plots and leverages 

shown in Table 8.5 are different between the two models. There are a few points 

that are far away from the mean of the data (leverage=0.0915) in the model for the 

log odds of exposure. This implies that those points have considerable influence on 

the estimates. 



90 

Figure 8.9: Plot of Leverages vs. Predicted Disease Probabilities from Fitting the Model 
for the Log Odds of Disease 

Figure 8.10: Plot of Leverages vs. Predicted Exposure Probabilities from Fitting the 
Model for the Log Odds of Exposure 
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Table 8.5: Extreme Leverages
 
The Model for the Log Odds of Disease The Model for the Log Odds of Exposure 
Index Leverage Index Leverage 

10 0.0713 55 0.0703 
229 0.0713 116 0.0703 
236 0.0713 186 0.0703 
267 0.0713 229 0.0915 
291 0.0713 236 0.0915 
307 0.0713 252 0.0915 
342 0.0713 267 0.0915 
370 0.0713 291 0.0915 

298 0.0733 
307 0.0915 
313 0.0915 
324 0.0733 
342 0.0915 
370 0.0915 

8.2.2.3 Influential Diagnostics 

Influential diagnostics are conducted by first removing one or more data points 

from the model and relevant statistics are used to determine how the absence 

of the observations changes the analysis. Appendix D outlined the theoretical 

backgrounds behind influential diagnostic statistics covered in this section. 

(a)	 Coefficient Sensitivity Tests 

Pregibon’s ΔlB̂
1 [45] statistic measures the impact (or the change) of a group 

of observations with the same observed independent variable values on the 

selected estimated coefficient(s). Figures 8.11 and 8.12 show the plots of 

ΔlB̂
1 relating to exposure (“DF diabme”) and disease (“DF disease”) versus 

predicted disease and exposure probabilities. 
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B̂1Figure 8.11: Plot of Δl (“DF diabme”) vs. Predicted Disease Probabilities from 
Fitting the Model for the Log Odds of Disease 

B̂1Figure 8.12: plot of Δl (“DF disease”) vs. Predicted Exposure Probabilities from 
Fitting the Model for the Log Odds of Exposure 
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Pregibon’s
 c
1 
l statistic measures the overall change in fitted logits due to
 

deleting a group of observations with the same observed independent variable
 

values for all observations [45]. Figures 8.13 and 8.14 show the plots of
 

Pregibon’s c
1 
l versus predicted disease and exposure probabilities. Large values
 

of c
1 
l (especially greater than 1 [38]) require investigation (None from both
 

models).
 

Figure 8.13: Plot of c
1 
l vs. Predicted Disease Probabilities from Fitting the Model for
 

the Log Odds of Disease
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Figure 8.14: Plot of cl 
1 vs. Predicted Exposure Probabilities from Fitting the Model for 

the Log Odds of Exposure 

(b)	 Goodness-of-Fit Sensitivity Tests 

Pregibon’s Δlχ
2 influence statistic (see Figures 8.15 and 8.16) and ΔlD 

influence statistic (see Figures 8.17 and 8.18) [45][31] measure the impact of 

deleting lth group of observations with the same observed independent variable 

values on χ2 and Deviance. That is, these measures assess whether the group 

of observations is influential on the overall likelihood function. Tables 8.6 and 

8.7 show measures that are greater than 4 [38] . 
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Figure 8.15: Plot of Δχ2 vs. Predicted Disease Probabilities from Fitting the Model for 
the Log Odds of Disease 

Figure 8.16: Plot of Δχ2 vs. Predicted Exposure Probabilities from Fitting the Model 
for the Log Odds of Exposure 
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Table 8.6: Extreme Δχ2 

The Model for the Log Odds of Disease The Model for the Log Odds of Exposure 
Index Δχ2 Index Δχ2 

244 5.2693 23 4.4354 
245 5.2693 32 7.8265 
259 4.6306 45 6.6988 
349 5.2693 53 21.7716 
362 4.6306 123 7.1224 
364 4.6306 127 6.2365 
416 5.2693 150 9.4051 

174 21.7716 
175 4.5467 
203 4.0042 
232 4.9024 
302 4.7807 
368 4.8451 
408 4.1179 

Figure 8.17: Plot of ΔD2 vs. Predicted Disease Probabilities from Fitting the Model for 
the Log Odds of Disease 
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Figure 8.18: Plot of ΔD2 vs. Predicted Exposure Probabilities from Fitting the Model 
for the Log Odds of Exposure 

Table 8.7: Extreme ΔD2 

The Model for the Log Odds of Disease The Model for the Log Odds of Exposure
 
Index ΔD2 Index ΔD2 

53 4.0400 32 4.3870 
126 4.9557 45 4.1177 
128 4.9557 53 10.0104 
149 4.9557 123 4.2126 
174 4.0400 150 4.7180 
244 6.8302 174 10.0104 
245 6.8302 287 4.0614 
259 5.6620 357 4.3445 
349 6.8302 359 4.0614 
362 5.6620 377 4.3445 
364 5.6620 383 4.3445 
416 6.8302 
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Chapter 9 

Conclusions and Future Work 

In this thesis two logistic regression models for case-control studies, the model for the 

log odds of disease and the model for the log odds of exposure have been compared and 

contrasted on many levels. In the simplest case, when the regression models were exact 

mathematical representations of the classical stratified analysis, all regression coefficients 

and standard errors corresponding to disease and exposure were identical. Breslow 

and Powers [10] coined the phrase“the covariate effects are saturated with parameters” 

to characterize the relationship between fully stratified analysis and logistic regression 

models. When the regression models omitted parameters, so that the covariate effects 

were no longer saturated, the regression coefficients differed between the two types 

of models. Two specific examples of non-equivalence were the omission of the joint 

confounding parameter and the case of a measured potential confounder. When the 

condition of parameter saturation was not satisfied, Breslow and Powers [10] argued that 

“as one adds terms to describe more fully the effects of the covariates”, the two estimated 

coefficients or standard errors relating to exposure and disease converge toward the same 

value until covariate effects are fully adjusted. 

The aforementioned examples of equivalence and non-equivalence were proved with 

the use of design matrices. In doing so, a theoretical definition of saturation was put 

forth, namely, “the covariate effects are saturated with parameters” when the number 

of independent parameters [relating to covariates in the model] equals the number of 

covariate patterns. Equivalence was also examined through the use of likelihood equations 

and profile likelihood equations. It was shown that in the case of equivalence, the 
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score functions arising from both logistic regression models were the same, and that 

the multinomial Poisson log likelihood could be written as a product of two binomial 

log likelihood functions. Subsequently, Prentice and Pyke’s theoretical justification [47] 

for using disease as the outcome in a case-control study was explored, by relating a 

multinomial logistic regression model to the model for the log odds of disease. Finally, it 

was shown that not only were the coefficients and standard errors different between the 

two models in the case of non-equivalence, but so were the tests of fits and regression 

diagnostics. 

It’s uncommon in practice to build a logistic regression model that will satisfy the 

saturation condition. Therefore, it’s expected that the coefficients from the two logistic 

regression models will yield different numerical results. However, as the numerical 

examples in this thesis have shown, the differences are small but they are real. Therefore, 

it’s recommended that both models be fit to the same case-control data and the results 

compared. At the present time, it’s unknown which model yields more efficient parameter 

estimates. There is room in future research to delineate when to use each model in terms 

of parameter efficiency. In this thesis, the simplest case of a binary disease and a binary 

exposure variable was considered. It would be of interest in future research to explore 

the extent of non-equivalence in the case of ordinal and measured variables. 
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Appendix A
 

Cornfield’s Formula
 

Cornfield [15] showed that the incidence odds ratio can approximate the incidence 

proportion ratio (the relative risk) in the cumulative case-control studies provided the 

disease incidence is low (a + b ≈ 0 in the denominator) and the study is conducted in a N 

closed population. First 
a 

a N = 
NE a + NE − a
 

N N
 
a a + b a a + b
 

a + b N a + b N
 = = 
+
 NE − a 

N
̄D 
(1 − a + b 

N )
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 a
a
 +
 N
a + b
N
 N
̄D N
a + b
 
a a + b a a + b 

a + b N a + b N = ≈ (A.1)
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N
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D̄ D̄ D̄ 

where N is the total number of population and N
 is the number of noncases in the
 D̄

population. Similarly, 

b 
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Appendix B
 

Iteratively Reweighted Least Square (IRLS)
 

Suppose that y1, ..., yJ are observed values of independent variables Y1, ...YJ each having 

a binomial distribution Bj (mj , pj ). Then the log likelihood function can be written as 

J t yj mj −yjl(p; y) ∝ log p 1 − pjj 
j=1 

J tpj
= yj log + mj log(1 − pj ) . (B.1) 

j=1 
1 − pj 

The relationship between the independent variables and the logit takes the form 

g(pj ) = ηj = XjrBr. (B.2) 
r 

The derivative of the log likelihood function (B.1) is 

∂l yj − mj pj
= . (B.3)

∂pj pj (1 − pj ) 

By the chain rule [32], the derivative with respect to Br is 

∂l 
J 
yj − mj pj ∂pj

= 
∂Br j=1 

pj(1 − pj ) ∂Br 

J 
yj − mj pj ∂pj ∂ηj

= 
j=1 

pj(1 − pj ) ∂ηj ∂Br 

J 
yj − mj pj ∂pj

= Xjr (B.4) 
j=1 

pj(1 − pj ) ∂ηj 

ˆwhich can be written in matrix notation as u(B). As the likelihood estimates B must 

satisfy u(B̂) = 0, by a first-order Taylor series expansion [32] 

u(B̂) = u(B ∗ ) + H(B ∗ )(B̂ − B ∗ ) (B.5) 



    
 

�
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where B∗ is near to B̂, so that 

B̂ = B ∗ − H(B ∗ )−1 u(B ∗ ). (B.6) 

Through a iterative process, the estimates of B̂ are 

B̂t+1 = B̂t − H( B̂t) 
−1 

u( B̂t). (B.7) 

The value of H(B) is usually replaced by the expected value of H(B) in the above 

equation [13] so that 

∂l ∂l t J 
yj − mj pj ∂pj

J 
yjl − mjl pjl ∂pjl t 

E ( )( ) = E ( Xjr)( Xjlk)
∂Br ∂Bk pj (1 − pj ) ∂ηj pjl (1 − pjl ) ∂ηjl 

j=1 jl=1 

J 
∂pj

= 
mj 

( )2XjrXjk 

j=1 
pj (1 − pj ) ∂ηj 

= [XT V X]rk (B.8) 

because 

j = j': E[(yj − mj pj )(yjl − mjl pjl )] = cov(yj , yjl ) = 0,
 

j = j': E[(yj − mj pj )(yjl − mil pjl )] = var(yj ) = mj pj (1 − pj ). (B.9)
 

Equation (B.8) implies −E[H(B̂)] = XT V X and for equation (B.4) 

∂l 
J 
yj − mj pj ∂pj

= Xjr 
∂Br j=1 

pj (1 − pj ) ∂ηj 

J 
mj ∂pj 

)2 yj − mj pj ∂pj
= ( ( )−1Xjr 

j=1 
pj (1 − pj ) ∂ηj mj ∂ηj 

= [XT V q]r (B.10) 
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which means u(B) = XT V q. Finally, 

Bt+1ˆ = B̂t − H(B̂t) 
−1 

u(B̂t) 

t = B̂t + (XT V tX) 
−1 

XT V t q 

= (XT V tX) 
−1 

XT V t(XB̂t t)+ q 

XT V t t = (XT V tX) 
−1 

z . (B.11) 
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Appendix C 

Regression Diagnostics for Classical Linear Models 

Suppose the classical linear model can be expressed as 

y = XB, (C.1) 

so that the log likelihood function is 

n 

l = l(XiB; yi). (C.2) 
i=1 

Two important quantities for regression diagnostics are the residuals r = y − XB̂ and 

the projection matrix H = X(XT X)−1XT . In order to assess the impact of each 

individual on the aspects of the fit, two approaches are described below. 

C.1 Assessment by Deletion 

For a single deletion (e.g. lth observation), the change of the estimates is given by [14] 

ΔlB̂ = B̂(1) − B̂(0) 

(XT X)
−1

Xl(yl − XlB̂) 
= 

1 − Xl(X
T X)

−1
Xl 

(XT X)−1Xlrl 
= (C.3)

1 − hll 

where B̂(1) are the estimates with the lth observation and B̂(0) are the estimates without 

the lth observation. hll is the lth diagonal element in the projection matrix H . A measure 

that summarizes the change of all coefficients is given by [45] 

cl = ΔlB̂
T XT XΔlB̂

rl 
2hll 

= . (C.4)
(1 − hll)2 
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Another one is the change of the residual sum of squares (RSS) from deleting the lth 

observation [5][45]. 
2rl

ΔlRSS = RSS(1) − RSS(0) = . (C.5)
1 − hll 

C.2 Assessment by Perturbation 

Model perturbation is another approach used to assess the impact of each observation 

on the fitted model. The log likelihood function for the classical regression model can be 

reexpressed as 
n 

lw = wil(XiB; yi) (C.6) 
i=1 

and the infinitesimal perturbation approach is obtained by specifying 

wi = 

⎧ ⎪⎨ ⎪⎩
 

w for i = l, 0 ≤ w ≤ 1
 

1 otherwise.
 

The estimates for B(w) are 

B̂(w) = (XT WX) 
−1 

XT Wy. (C.7) 

Then the quantities in Section C.2 can be obtained in a similar fashion. For example, 

the quantity as in equation (C.3) would be [45] 

ˆ (XT X)
−1

Xl(1 − w)rl
B(1) − B̂(w) = (C.8)

1 − (1 − w)hll 

which is equation (C.3) when w = 0 and can also be expressed as 

(XT X)
−1

(XT X)
−1

Xl(1 − w)rl Xl(1 − w)rlˆ ˆ ˆB(w) = B(1) − = B − . (C.9)
1 − (1 − w)hll 1 − (1 − w)hll 

Now the change of the estimates through model perturbation is 

B̂1 ˆΔl = B(w)|w=1 − B̂(w)|w=0 

(XT X)
−1

Xlrl 
= . (C.10)

1 − hll 
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2

Appendix D
 

Model Perturbation and One-Step Estimates in the Logistic
 

Regression Model
 

With the background information provided in Appendic B and Appendix C, the estimates 

for B(w) in the logistic regression would be 

  −11 
2

1 1 
2W (V t) 

1 
B̂t+1(w) = B̂t(w) + XT (V t) XT (V t)W (V t) tX
2 2q
  
  −1   

tXB̂t(w) + q 
1 1 1 1 

XT (V t) XT (V t)W (V t) W (V t)X
2 2 2 2=   −11 1 1 1 
XT (V t) XT (V t)W (V t) W (V t) tX
 (D.1)
2 2 2 2=
 z .
 

When w = 1, equation (D.1) becomes equation (B.11). 

Pregibon [45] proposed that terminating the iterative scheme after one step can help 

identify the individual effects with a minimal effort. That is 

11 11 
B̂1(w) = (XT V X)−1XT VWV
 WV
 2 2 2 2 z
 

11 
2WV
 2

11 
= (XT V X)−1XT V 2WV
 2q (D.2)
 

ˆwhere z = z0 and q = q0. Because B0 = 0 so that z0 = q0. Pregibon mentioned 

that “this equation is identical to the corresponding exact noniterative solution for the 

11 
standard linear model with V
 X as the design matrix for the response variable V
 z”
2

[45] so that the formula in Appendix C can be directly applied to the one-step estimation.
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D.1 Coefficient Sensitivity Tests 

The quantity as in equation (C.9) would be [45] 

(XT V X)−1Xl(1 − w)sl
B̂1(w) = B̂ − 

1 − (1 − w)hll 

where s = y − mp̂. Notice that l represents a distinct groups with the same observed 

independent variable values (l = 1, ..., J). 

The quantity as in equation (C.10) would be 

(XT V X)−1Xlsl
B̂1Δl = . (D.3)

1 − hll 

Similarly, the corresponding quantity (C.4) from Deletion method can also be 

obtained by model perturbation 

1 ˆ	 B̂1 cl	 = (ΔlB
1)T XT V XΔl 

slX
T (XT V X)−1Xlsl 

= l 

(1 − hll)2 

1 
2 

11 

ll v 
1− −

Xl
T (XT V X)−1Xlv2 2 2slv v
 slll ll ll =
 

(1 − hll)2 

1 1− −
2 2hllvslv slll ll = 

(1 − hll)2 

rl 
2hll 

=	 (D.4)
(1 − hll)2
 

2
 
as rl 

2 = sl and vll is the lth diagonal element in matrix V .vll 

D.2 Goodness-of-Fit Sensitivity Tests 

•	 The change in D due to deleting the lth group with the same observed independent 

variables 
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Define 
J 

Dw(XB̂(w); y) = 2 wj l(p̃j ; yj ) − l(p̂j ; yj ) (D.5) 
j=1 

yjwhere p̃j = . Taking a second-order Taylor series expansion [32] about B̂, we mj 

have 

Dw(XB̂
1 
(w); y) 

1 ∂Dw(XB̂
1 
(w); y) 1 t 

=Dw(XB̂ (w); y)| ̂ 1 + | ̂ 1 B̂ (w) − B̂
B (w)=B̂ 1 B (w)=B̂

∂B̂ (w)
 

1 tT ∂2Dw(XB̂
1 
(w); y) 1 t


ˆ ˆ+ B (w) − B̂ | ̂ 1 B (w) − B̂1 B (w)=B̂
2∂(B̂ (w))2 

1 tT ∂2Dw(XB̂
1 
(w); y) 1 t 

=Dw(XB̂; y) + B̂ (w) − B̂ | ̂ 1 B̂ (w) − B̂1 B (w)=B̂
2∂(B̂ (w))2 t 

= D(XB̂; y) − (1 − w)dl 
2 − [B̂

1 
(w) − B̂]T XT V X 1 − (1 − w)hll [B̂

1 
(w) − B̂] 

= D(XB̂; y) − (1 − w)dl 
2 

(1 − w)slXl
T (XT V X)−1 t(XT V X)−1Xl(1 − w)sl− XT V X 1 − (1 − w)hll 

1 − (1 − w)hll 1 − (1 − w)hll 

2 rl 
2(1 − w)2hll 

= D(XB̂; y) − (1 − w)dl − . (D.6)
1 − (1 − w)hll 
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where dl is the lth element in the deviance residual vector. The above equation 

uses another important equation [5] 

(X(0)T V X(0))−1 

)−1=(XT V X − XlvllXl
T
 

(XT V X)−1XlvllXl
T (XT V X)−1
 

=(XT V X)−1 +
 11 

)T (XT V X)−1Xlv

)T (XT V X)−1Xlv2 

2 21 − (Xlv 

)−T (Xlv(Xlvll 
2 

ll ll 
1111 

)T (XT V X)−1 

)T (XT V X)−1Xlv 
1 

22 (Xlvll ll 
1 =(XT V X)−1 ll 

1 − (Xlv 
+
 

2 
ll 

2 
ll 

(Xlv )T (XT V X)−1 
ll )

−T hll(Xlvll 
1 
2 

1 
2 

=(XT V X)−1 +
 
1 − hll 

hll(X
T V X)−1 

1 − hll 
=(XT V X)−1 + 

(XT V X)−1 

= ,

1 − hll
 

so that 

(X(0)T V X(0)) = (XT V X)(1 − hll). (D.7) 

Then 

∂2Dw(XB̂
1 
(w); y) 

= (XT V X)(1 − hll),| ̂
B 

When w = 0:
 1

1 

(w)=B̂1 
2∂(B̂
 (w))2 

∂2Dw(XB̂
1 
(w); y) 

= (XT V X)−1 . (D.8)
| ̂
B 

When w = 1:
 
(w)=B̂1 

2∂(B̂
 (w))2 

This implies 

∂2Dw(XB̂
1 
(w); y) 

= (XT V X)[1 − (1 − w)hll].| ̂
B 

1 
(w)=B̂

(D.9)
1 
2∂(B̂
 (w))2 

Finally with (D.6), we obtain 

1 1 2 rl 
2hll 

ΔlD ≈ D1(XB̂ (1); y) − D0(XB̂ (0); y) = dl + . (D.10)
1 − hll 



116 

•	 The change in χ2 due to deleting the lth group with the same observed independent 

variables 

Beckman showed detailed information about how to obtain (C.5) [5]. This quantity 

is obtained in a similar fashion as (C.5). 

χ2(1) = χ2(0) + 
rl 

2 

1 − hll 
(D.11) 

and 

Δχ2 = χ2(1) − χ2(0) = 
rl 

2 

1 − hll 
= χ2 

l . (D.12) 


