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Gene alterations are a major component of the landscape of tumor genomes. To assess the significance of these alterations
in the development of prostate cancer, it is necessary to identify these alterations and analyze them from systems biology
perspective. Here, we present a new method (EigFusion) for predicting outlier genes with potential gene rearrangement. EigFusion
demonstrated excellent performance in identifying outlier genes with potential rearrangement by testing it to synthetic and real
data to evaluate performance. EigFusion was able to identify previously unrecognized genes such as FABP5 and KCNHS8 and
confirmed their association with primary and metastatic prostate samples while confirmed the metastatic specificity for other
genes such as PAH, TOP2A, and SPINKI. We performed protein network based approaches to analyze the network context of
potential rearranged genes. Functional gene rearrangement Modules are constructed by integrating functional protein networks.
Rearranged genes showed to be highly connected to well-known altered genes in cancer such as AR, RB1, MYC, and BRCAI.
Finally, using clinical outcome data of prostate cancer patients, potential rearranged genes demonstrated significant association

with prostate cancer specific death.

1. Introduction

Genetic alterations in cancer are the most challenging factors
that might lead to aggressive behavior of cells. Among the
most prevalent forms of genetic alterations observed in
cancer cells are gene fusions, gene amplification, and gene
deletions. Recurrent translocations generally fall into two
categories: functional rearrangements that result in a change
in gene’s activity due either to a change in protein quality or
quantity and the other category is silent translocations that
have no effect on gene’s activity. Functional translocations
can be categorized into two subtypes; one that leads to fused
transcripts resulting in new proteins with different activity
like BCR-ABL in leukemia [1] and EML4-ALK in lung cancer
[2]; on the other hand, it can lead to change in a transcript
quantity by translocating a strong gene promoter to the
intact coding region of an oncogene like TMPRSS2-ERG
[3]. Another functional genomics rearrangement is genomic

deletion which results in loss of DNA segment that might
harbour functional genes. PTEN is a well-studied genomic
deletion in prostate cancer that is anticipated to trigger a
cascade of genomic rearrangements [4]. Figure 1 gives a sche-
matic description of the four rearrangement types.
Identifying gene rearrangements in general and gene
amplification and deletions in particular has been a challenge
during the past decade as it requires deep DNA sequence
analysis of many cancer samples and their paired counter-
parts [5]. Though sequencing cancer genomes can reveal
very precise results about gene fusion or deletions, it is
not an easy task to obtain sequence data, as this needs
fresh tissue and still relatively expensive. Another method
to detect gene rearrangements, namely gene fusion, is to
design special oligo microarray which covers all possible
genomic rearrangements [6]. This method requires some
knowledge about the predicted gene fusion variants and
all possible exon-exon junctions. Recently, RNA-Sequencing
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FIGURE 1: Gene rearrangements, common gene rearrangements in cancer cells. (b) Shows the deletion of some genes at the DNA level
which leads to depletion of corresponding mRNA. (c) Represents the fusion of two genes that leads to fused mRNA and fused proteins. (d)
Represents special rearrangement type that fuses a strong promoter of gene A to the 5 of gene B. This leads to underexpression of gene A

and overexpression of gene B.

have gained attention to identify novel gene fusions [7].
Sequence reads that align across a gene fusion boundary
(so-called split reads) are a strong source of evidence for
gene fusions in paired-end RNA-Seq data. A number of
algorithms and tools have been proposed to find split reads
such as PERAlign [8], MapSplice [9], and deFUSION [10].
The only advantage of RNA-Seq-based algorithms is that
they are able to discover fused transcripts (Figure 1(c)),
but they are unable to discover rearranged genes at the
DNA level (Figure 1(d)) as these types of rearrangements
are not reflected in the RNA sequence. Despite the high
accuracy of the above-described data types to discover gene
rearrangements, obtaining and analyzing (RNA-Seq, oligo-
microarray, deep sequencing) data is very expensive and
extremely challenging as it depends on sequence assembly
and alignment algorithms.

Another source of information to identify potential
functional gene rearrangements or gene alterations that
affect gene expression is microarray gene expression data that
we will use in this work to discover gene rearrangements.
Unlike sequence data that can be easily interpreted to
identify gene rearrangements, microarray gene expression
data requires preprocessing steps. New direction to detect
genomic rearrangements is to use bioinformatics approaches
applied to gene expression data [11]. This problem is
different from the detection of biomarker genes in several
aspects. Biomarkers are differentially expressed in almost all
samples, while gene rearrangements occur in only a subset

of samples. Many studies showed that common biomarker
extraction methods such as t-test, SAM, and so forth are
not proper for detecting gene rearrangements [12, 13] as
these studies attempt to maximize the difference between
all cancer samples against all normal samples. Since fusion
genes and gene deletions are rare genomic events leading to
over expression in subset of cancer samples, new specialized
computational approaches are in need to solve this problem.

Several methods have been proposed to identify rear-
ranged genes from gene expression data (methods are
described in supplementary file available on line at
d0i:10.1155/2012/373506). In the context of this work, we
use outlier genes to refer to potential rearranged genes
or altered genes. All previous methods consider each gene
individually when ranking genes. However, ranking based
on the global properties of the genes would reduce error
rates. Herein, we show that all existing methods detect
biomarker genes as outlier genes; a drawback of existing
methods that we solved in our approach by proposing a
new transformation function. The second advantage of the
proposed method is simultaneous detection of potential
gene amplification and potential gene deletions. None of the
previous methods were reported to detect gene deletions,
though they can be modified slightly to achieve the task of
gene deletion detection. Thus, proposing different methods
that can assess the over expression of a subset of genes
is highly desirable for detecting gene rearrangements using
microarray gene expression data.
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In this paper, we use cancer cohorts (microarray gene
expression data of hundreds of samples) to identify outlier
genes that are overexpressed or underexpressed in subset of
cancer samples using gene expression data. Outlier genes
with overexpression are anticipated to have potential gene
rearrangements, and outlier genes with underexpression are
anticipated to have potential deletion. We propose EigFusion
method that ranks outlier genes based on their effect on
the gene expression matrix largest eigenvalue when removed
from data; this effect could be due to gene overexpression in
subset of samples or underexpression in subset of samples.
After identifying outlier genes with potential rearrangement,
outlier genes are characterized from a systems biology angle.
Network is constructed to link potential rearranged genes by
integrating functional protein networks to identify modules
enriched with potential rearranged genes. Finally, we assess
the clinical significance of the predicted rearrangements
using clinical and survival data.

2. Materials and Methods

2.1. Existing Statistical Methods. Here we define annotations
for the gene expression data, genes, and samples that we will
use across this paper in both the existing methods and the
proposed method section. Let X;; be the expression values
for genesi = 1,2,...,m and samples j = 1,2,..., n. We assume
that samples are grouped into two groups S1 and S2. In our
work, S1 represents cancer samples and S2 represents normal
samples.

In this work, we used all existing methods that are
designed to tackle this computational problem. Cancer
Outlier Profile Analysis (COPA) [14] is considered as the first
algorithm that lead to the discovery of ERG rearrangement
in prostate cancer. Outlier sums [15] were introduced to
improve the rth percentile factor of COPA. The outlier
robust f-statistic [12] is very similar to OS but it replaces
the overall median by the median of normal samples.
Another algorithm is the GTI algorithm [16] that weights
the proportion of outliers by a robust measure of how
outlying the outliers are in a single group. The previous four
methods test for genes that are overexpressed in a subset
of cancer samples regardless of the expression value of the
remaining subset from cancer samples. This might lead to
false positives as the remaining subset in cancer samples
should be normally expressed. The methods are described
in details in the supplementary file. Thus, there is a need
for a more robust method that is not single genes based, is
able to discriminate between biomarkers and outlier genes,
and is not sensitive to the portions of cancer samples in
the dataset. As a consequence, we propose EigFusion as
an effective method to identify outlier genes with poten-
tial gene rearrangements from microarray gene expression
data.

2.2. The Proposed EigFusion Method. A new method called
EigFusion is proposed to predict genes that are overexpressed
(potential fusion genes or amplified) or underexpressed
(potential deletion genes) in subset of samples using gene
expression data. FigFusion standardizes the gene profile

based on a newly defined median value for cancer samples.
One of the important factors to determine in standardizing
the profiles is to decide on the median. COPA and OS use the
overall median, but ORT uses the median of normal samples.
We think the median might be very crucial to distinguish
between outlier genes and biomarkers. Thus, in here, we
use the median of cancer samples to standardize the gene
expression values across all samples. As a result, genes with
high expression values in all cancer samples can be filtered
out. Since some rearrangements might be more frequent for
some genes and might occur in more than half of the cancer
samples, we define three median values for each gene. The
first one is the median of cancer samples (median®'), we then
divide cancer samples into two groups: values greater than
median®' and values less than medianS'. We used the average
of the medians of the three groups, we call it AV GmedianS'.
We defined the transformation function as

~ Xij — AVanledianiSl
X,‘j =

, (1)
)

median ( ’ xij — median;

where median(i) is the median of gene(i) whole profile.
After transforming the expression values, genes were
ranked using the following formula:
E(X;) x (E(X’') — E(X®
Score; = ( l) ( (A. ) ( )), (2)
E(Xinn)

where X; is the transformed expression profile of gene(i)
across all samples and E(X;) is the largest eigenvalue of trans-
formed gene(i) after converting it to matrix by multiplying it
by its transpose, E(%;") is the largest eigenvalue of gene(i)
in cancer samples, E(x?) is the largest eigenvalue of gene(i)
in normal samples, and E()?;X,,) is the largest eigenvalue of
the matrix that have all the genes across all samples without
gene(i). The eigenvalues are large when the expression
values are high; thus, when genes have high expression
values in subset of cancer samples, they will be ranked
high.

2.3. Gene Expression Data Simulation. Synthetic gene expres-
sion data was generated from a standard normal distribution
N(u,8%). Gaussian noise € was added to the expression
values. Expression values of 1000 genes across 200 samples
were simulated, and 10 test genes were added to evaluate
the performance of the algorithms. Test genes were generated
by adding a constant u (the maximum value in the data) to
the expression of k cancer samples in the test genes, where
k is chosen to be 2, 5, 10, 20, 50, 80, 100, 120, or 150; test
genes are represented as testi. For example, test;p means
that there are 10 cancer samples with added constant u;
this gene represents an outlier gene that is amplified in 10
cancer samples. We also divided the 200 samples into cancer
and normal groups. We used different sizes for the cancer
group; we used size 20, 50, 100, 120, 150, or 180 samples.
The aim from this variation in the size of the cancer samples
is to evaluate the performance of the algorithms at different
ratios of cancer to normal samples and assess the statistical
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F1GURE 2: Evaluation of EigFusion performance on synthetic and real cancer data, AUC values are used to assess the performance of fusion
gene detection methods. ROC curves were plotted as 1-specificity versus sensitivity of the methods. We plotted ROC curves for each method
in several cancer samples size (x-axis) and found the area under the curve (AUC) as a measure of performance. (a) Using synthetic data,
COPA and KS showed poor performance over all cases; on the other hand, ORT, GTI, and OS showed that poor performance is affected by
the ratio of the size cancer samples to normal samples. (b) Applying all the methods on real prostate data (Singh data) showed that EigFusion

outperforms the other methods.

power of EigFusion algorithm. In addition, test genes and
size variation are critical to show the drawbacks of existing
methods and how EigFusion can overcome the drawbacks of
the existing methods.

2.4. Protein Module Rearrangements Enrichment. We next
integrated functional protein networks to assess if rear-
ranged genes are functionally related and form modules.
Functional gene rearrangements are anticipated to have
effect on proteins associated with them. We integrated
the identified potential rearranged genes with a functional
protein interaction (FPI) network that covers more than
half of the human genes and has more than 180,000
interactions. FPI was constructed from several data sources
(Reactome, KEGG, CellMap, human PPI) as described
in [17]. Modules with enriched rearranged genes were
further characterized. Reactome FI cytoscape plugin was
used to visualize and cluster the rearranged genes network
[17].

3. Results

3.1. EigFusion Performance Evaluation on Simulated Data.
The receiver operating characteristics (ROC) curve was used
for evaluating the performance of the different statistical
methods and compare them with the proposed method.
ROC curves were constructed using sensitivity and specificity
rates for each method under each cancer samples’ size; a vari-
able that we used to assess the performance of our method
to distinguish between biomarkers and potential rearranged
genes. ROC curves showed to be not very sensitive to false
discoveries. Therefore, we used three statistical measures to
assess the false discovery rate of the methods. We used false
positive discovery rate (FPR)(FP/FP + TP), false negative

discovery rate (FNR)(FN/EN + TN), and f-measure defined
as

precision > recall

f — measure = 2 % — >
precision + recall

3)

where precision is (TP/TP + FP), and recall is (TP/TP + FN).

FP is detected when the method ranks a gene in the
top 10 when it is supposed to be ranked very low in the
ranking list. For example, when the cancer sample size is
50 or 100, most algorithms (excluding EigFusion) ranked
testso and testigo genes, respectively, at the top of the list.
We consider this as a false positive because these genes are
supposed to be biomarkers as they have high expression in
all cancer samples. None of the other methods were able to
distinguish between biomarker genes and rearranged genes
because they standardize expression profile with respect to
overall median. When normal sample size is greater than
cancer sample size, the median will be biased toward normal
samples. Therefore, biomarker genes will not be filtered out
as they will satisfy the IQR threshold and they will be ranked
high. FN is detected when the method ranks positive test
genes, which have high expression in less than half of the
cancer samples, at the bottom of the ranking list.

We compared the performance of EigFusion, Kolmog-
orov-Smirnov (KS) statistics, OS, ORT, COPA, and GTI
under different cancer sample sizes (Figure 2(a)). COPA was
implemented as the 80th percentile of expression values after
transformation of all data points using overall median and
median absolute deviation for a given gene. We used 80th
percentile as it is a medium value between the 90th and 70th
percentile values that are most commonly used in COPA,
plus it showed to give best results on synthetic data. The
other methods were implemented as explained in [16]. As
shown in Figure 2(a), EigFusion, GTI, and OS have high
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F1GURE 3: Evaluation of EigFusion performance on synthetic and real cancer data, AUC values are used to assess the performance of fusion
gene detection methods. We used the (a) positive FDR (PFDR) and (b) negative FDR (NFDR) to assess FDR of each method under different
cancer samples proportions. EigFusion showed to have zero FDR and f-measure value of 1. (c) We further assess the performance of the
methods on real cancer data. We used Singh prostate cancer data with embedded test genes with different cancer proportions. We assessed
the performance of each method based on their ability to identify test;; and testy test genes.

performance across all the variation in the cancer sample
size. ORT performed poor when cancer samples size were
smaller than normal samples size, but the performance was
improved when cancer samples size is larger than normal
samples size. KS showed the poorest performance as it is
not designed for gene fusion extraction. This supports our
hypothesis that traditional biomarker extraction methods are
not suitable for outlier gene detection task. Previous works
[13, 16] showed that traditional methods like #-test and
significant analysis of microarray (SAM) are not suitable for
the functional gene rearrangement detection problem; thus,
our results are in agreement with pervious work.

EigFusion method showed to be very sensitive to the
number of outlier samples; samples that harbour amplified
genes or deletion. It can detect genes with outlier percentage
of 1%, unlike the existing methods that require larger outlier
percentage as they sum the values greater than IQR. When
the cancer sample size was more than 50, most methods
ranked test,, tests, and sometimes test;o at the bottom of the
list. EigFusion showed to be very sensitive to such cases. We
think this is very important as most of the gene fusion cases

are very rare and occur in less than 5% of cancer patients
[3]. Results in Figures 3(a) and 3(b) showed that EigFusion
has zero false discovery rate compared with the other
methods. Though we could not compare the performance of
EigFusion to GTI and OS using AUC values as they showed
very similar performance, f-measure (Figure 3(c)) showed a
distinguished profile for EigFusion.

3.2. EigFusion Performance Evaluation on Prostate Cancer
Data with Embedded Test Rearranged Genes. To test the mod-
els on real cancer expression data, we used gene expression
data of 12600 probes in 59 prostate cancer samples and 87
normal samples [18] with embedded test genes. We used
five test genes that have 10, 20, 30, 40 or 50 samples with
rearranged genes. Good models should rank test|y and test,o
high as they have small subset of samples with potential
fusion. The other test genes have high expression in most
of the samples and thus should not be ranked high as
they would lead to false positive discovery. We showed that
EigFusion outperformed the other methods on real data
(Figure 2(b)) and it ranked testy in the top of the list and



testyo in fifth position. GTI ranked test,o in second position
but was unable to rank test;y in the top 100. COPA also
ranked testy in the 20th position but was unable to rank
testyp in the top 100. The other methods were unable to rank
neither of the test genes in the top 100.

3.3. EigFusion Is Effective in Distinguishing between Biomarker
Genes and Rearranged Genes. We compared the transforma-
tion function proposed in this work with COPA transforma-
tion function as they both transform all data points, unlike
ORT, OS, and GTI that only deal with values in the O; set. We
chose the case when cancer samples size is 50, as an example,
and we compared the effect of the two methods on the tests,
gene (Figure S1.C). In this case, testsq is a biomarker gene and
should be ranked low. EigFusion standardizes the expression
profile of genes based on the number of cancer samples,
unlike COPA which standardizes the expression values based
on the overall median regardless of the ratio between cancer
and normal samples. EigFusion clearly shows how it can filter
out biomarker genes.

3.4. Applications of EigFusion to Cancer Gene Expression Data.
We next demonstrated the affectivity of EigFusion on real
cancer data that harbour ERG rearrangement in around 50%
of the samples. First SAM failed to detect ERG gene as outlier.
EigFusion was applied on prostate cancer gene expression
data as it is among the most heterogeneous types of cancer,
both histologically and clinically. We used MSKCC Prostate
Oncogenome Project data [19] which has 179 samples (131
primary, 19 metastatic, 29 normal). Our goal is to predict
potential rearranged (amplified, deleted) genes that occur in
primary cancer samples, and metastatic. To statistically assess
the significance of the results, we randomly permutated the
the sample labels for 100 time and then find a P value
for each gene. Only genes with P value less than 0.001 we
selected.

TMPRSS2-ERG gene fusions have been reported in
approximately 50% of over 1500 clinically localized prostate
cancer samples [3, 20]. This fusion replaces the 5’ end of
ERG with the 5 untranslated region of TMPRSS2 which
results in overexpression of ERG gene and downexpression
of TMPRSS?2. EigFusion is able to rediscover ERG fusion
as the second top gene in the list (Figure S1.A). SPINKI is
another gene that was predicted to be overexpressed, it plays
a significant role in prostate cancer development. Tomlins
et al. [21] first showed that high levels of serine peptidase
inhibitor Kazal type 1 (SPINK1), which occurs in about 10%
of patients with prostate cancer, were correlated with higher
rate of cancer recurrence. We also found that ERG and
SPINK1 fusions have low cooccurrence rate (less than 2%)
which agrees with the latest research findings about the role
of SPINKI in ERG-negative rearranged prostate samples
[21].

We also identified other amplified genes which are poten-
tial candidates for rearrangements, such as FABP5 (Figure
S1.B) KCNHS8. Many other genes such as PAH, TOP2A,
and CDHI17 (Figure 4) showed to be amplified mainly in
metastatic samples. We compared the set of rearranged genes
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FIGURE 4: Genes altered in prostate samples, 54 genes are selected as
overexpressed in subset of samples (primary or metastatic). Some
genes showed to be overexpressed in only metastatic samples (genes
with all red bars). Other genes showed to be overexpressed in both
primary and metastatic but not normal samples (genes with red and
blue bars). The frequency on the axis is the fractions of samples
with rearrangement (overexpression in subset of samples) over all
samples size. The red bars for example represents the frequency of
gene rearrangement in primary samples.

from Taylor data with genes from Singh data [18]. We iden-
tified that ERG, TFF3, FABP5, SPINK1, ISG15, and MRP4 as
amplified genes representing potential rearrangements.

We further characterized gene rearrangements that are
related to ERG fusion by grouping samples based on
their ERG status: fusion-positive (ERG1) and fusion-negative
(ERGO). We found several genes (SPINKI, ETVI,PHA,
and TFF3) that are overexpressed only in subset of ERGO
samples. Also FABP5 family showed to be more amplified
in ERGO samples, KCNH8 and GPR116 are more amplified
in ERG1 samples (Figure S2). This is very essential to
enable us to group prostate samples into subgroups: each
with specific potential rearrangement signature, which may
have prognostic implications. We also applied EigFusion
on independent prostate cancer data [22] (455 samples) of
known ERG fusion status. The samples were classified as 352
ERG fusion-negative prostate cancer samples (ERGO) and
103 ERG fusion positive prostate cancer samples (ERG1). We
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FIGURE 5: Integrating the discovered potential rearranged genes with functional protein interactions revealed functional modularity of the

rearranged genes with enriched pathways.

detected 18 potential oncogenic rearrangements associated
with ERG negative samples. Interestingly, we found that
ETVI1 is associated with ERGO and has very low co-
occurrence rate with ERG1. On the other hand, we found
25 potential gene rearrangements associated with ERG
fusion positive. Interestingly, SPINK5 was among the genes
associated with ERG fusion.

We have also identified genes that are underexpressed
in subset of the ERG fusion-positive samples. These genes
could be the 5 partner of the gene fusions or could be
deleted in the corresponding samples. We found also several
genes underexpressed in subset of cancer samples like KLK3,
FOLHI, SPON2, A2M, and PCP4. KLK3 has already been
identified and used as a diagnostic biomarker. Thus, the
other genes might be as important as KLK3. These genes
could be either deleted in the corresponding samples or fused
to one or many of the overexpressed genes.

We next asked if EigFusion can also be implemented
to deal with other types of cancer. EigFusion was applied
to ovarian cancer and leukemia gene expression data. We
identified 94 putative rearranged genes in ovarian (Figure
S3.A) and 88 genes in leukemia (Figure S3.B).

3.5. Rearranged Genes Are Functionally Associated. We next
asked if the predicted rearranged genes are functionally
associated and if they are enriched with particular biological
processes. This is important to identify outlier genes that
have influence on its neighbors. Thus, it helps to identify out-
liers that are influenced by rearranged genes. We integrated
FPI network and the predicted set of potential rearranged
genes to conduct core pathway analysis, based on the success
of EigFusion in revealing common pathways alterations in
prostate (Figure 5), ovarian (Figure S3.A), and leukemia
(Figure S3.B) cancer. Results revealed that rearranged genes
tend to form modules and share biological pathways. The
tendency to form modules showed not to be random as we
randomly selected 500 genes for 100 times and we did not

observe any module enrichment in any of the 100 trials.
Table 1 describes that enriched pathways for the rearranged
genes in the three cancers using EigFusion. We analyzed the
pathways for all interacted genes and not individual modules.
Wht-signaling and cadherin signaling are commonly altered.
Ovarian samples are altered in KRAS which is a member
RAS/RAF cancer pathway. Another gene is GNAZ which
is a member of the G protein complex that are involved
as modulators or transducers in various transmembrane
signaling systems. Leukemia samples are altered in integrin
pathways and ERBb receptor family that are part of the
epidermal growth factor (EGF) receptor family of receptor
tyrosine kinases. Leukemia samples are also altered in
RAS/RAF pathway at RACI gene, a GTPase which belongs
to the RAS superfamily of small GTP-binding proteins. We
have also used the top 100 genes identified by COPA and
GTI (supplementary file) and found that the two lists did not
show any significant enrichment of biological pathways.

3.6. Identified Outlier Genes Are Associated with Perturbed
Cancer Pathways. We next investigated if the predicted
outlier genes are associated with master regulators that
have been known to be altered in prostate and ovarian
cancer. We integrated the copy number alteration (CNA)
datasets to conduct pathway analysis of known altered cancer
pathway. A search for altered subnetworks in functional pro-
tein networks identified several known pathways. Putative
rearranged genes in prostate (Figure 6) showed to be highly
associated with cancer master regulators AR, KLK3, ERG,
RBI1, TP53, MCM4, FOXD1, PTK2B, NCOA2, and NCOA1
[23, 24]. Other genes like FABP5, PCP4, SPON2, PAH,
FOLHI, KCNHS, SPINK1, and GPR116 did not demonstrate
any functionally associated modules, nor they are associated
with master regulators. Genes rearranged in ovarian cancer
(Figure S4.A) are highly linked to vital genes like MYC,
BRCA1, and PAX6 that were also altered in ovarian cancer.
This provides further understanding of the deregulated
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TABLE 1: Pathway enrichment analysis for rearranged gene, P values are in (), FDR < 0.005.

Prostate Ovarian Leukemia
Drug metabolism (<0.0000)
Retinol metabolism (<0.0000)

Toll-like receptor signaling (<0.0000)

Receptor-ligand complexes (<0.0000) Integrin cell surface interaction (<0.0000)
Focal adhesion (<0.0000)

ECM-receptor interaction (<0.0000)

Cadherin signaling pathway (<0.0000)
Regulation of B-cell development (0.0001)
Wnt signaling (0.001)

Protein kinase (0.001)

Signaling by FGFR (0.002)

PPAR signaling (0.004)

Calcium signaling pathway (0.004)

Estrogen responsive protein (0.0003) Wnt signaling pathway (<0.0000)
Signaling by PDGF (<0.0000)

Formation of platelet plug (<0.0000)

Receptor-ligand complex (0.001)
Signaling by Rho GTPases (0.004)
P53 signaling (0.005)

FOXA transcription (0.005)

Regulation of bone mineralization (<0.0000)

Pathways in cancer (0.0001)
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FiGure 6: Functional modules of altered genes in prostate. Analyzing the rearranged genes by integrating functional protein networks
and copy number alteration data revealed modularity of rearranged genes and high association with master regulators of well-known
dysregulated pathways in cancer, such as AR, P53, and KLK3. Nodes with solid black border are identified by EigFusion.

pathways in cancer. We noticed that not all the identified
rearranged genes are altered at the copy number level, but
they are associated with altered genes. This indicates that
these genes might not be altered but regulated by altered
genes. We also conducted this analysis on the outlier genes
identified by COPA and GTI. GTI genes showed to be
associated with P53, MYC, RB1, and FYN. COPA genes are
associated with TP53, MYC, RB1, and ACTA1. None of them
showed any association with AR gene unlike EigFusion that
showed that AR is most significant hub gene.

3.7. Validation of Outlier Genes Using Copy Number Vari-
ation Datasets. After discovering rearranged genes in both
prostate and ovarian cancer, we validated the genes using
copy number alteration (CNA) datasets for the same sample
set from which mRNA gene expression data was retrieved.
We selected the top 27 (altered in more than 10% of samples)
genes rearranged in prostate cancer and investigated the copy

number alteration from CNA data (Figure 7). Approximately
half (49%) of discovered genes were altered at the copy
number level. We also observed that some of the genes
were amplified and some were deleted. This shows that
EigFusion can indeed identify amplified and deleted genes
simultaneously. We then validated the prostate genes on
ovarian CNA data. Interestingly, we found that most of
prostate rearranged genes are also rearranged in ovarian
cancer (Figure 8). We also found that the most significant
genes identified by COPA and GTI have 19% and, 29%
respectively, CNV. We then validated the ovarian rearranged
genes using ovarian CNV and found that most of the
discovered genes using EigFusion are copy number altered
genes (Figure S4.B). Figure S4.B only shows the genes with
the highest alteration rate. Ovarian genes did not show
any significant alteration in prostate CNA data. Leukemia
putative rearranged genes were not validated using CNA due
to lack of CNA dataset of the same samples.
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in set of samples.
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FIGURE 8: Validating prostate rearranged genes using ovarian CNA
revealed that most of prostate rearranged genes are altered in larger
portion of samples compared with prostate CNA.

3.8. Survival and Clinical Analysis of Patients with Putative
Rearrangements. We further characterized the association
of the predicted rearrangements and survival data (death
versus no death) and clinical data (aggressive versus not
aggressive). Aggressive samples are defined as samples with
high Gleason score and are in cluster 5 as defined in Taylor et
al. [19]. We represented genes with putative rearrangements
as vector V defined over [0,1] of length m, where m is
the number of samples. V(i) = 1 means that sample i
includes a potential fusion. Death and aggressiveness were
also represented as two vectors of length m. V(i) = 1
when the sample corresponds to death outcome or aggressive
cancer. We found the hamming distance between the genes

and the death and aggressive vectors to find how gene fusion
is correlated with clinical outcome. We found that ERG is
highly associated with death and aggressive cancer. 84% of
samples with ERG fusion have death outcome and around
82% are aggressive samples. MCM4 showed very significant
association with death; 90% of samples with MCM4 fusion
have death outcome. KCNHS8, SPINKI, and GPRI116 also
have significant association with death (Figure 9).

Survival analysis (Figure 9) showed that samples with
rearrangements in the identified 19 genes, that are altered
in more than 10% of samples, showed to be at higher death
risk than samples with no rearrangements (P = 0.00128,
HR: 2.87). We reduced the gene set to ERG, FABP5, KCNHS,
SPINK1, and we found that samples with rearrangements in
these genes are even at higher risk of death (P < 0.0000001,
HR: 4.12). ERG and SPINKI are already associated with
outcome; however, FABP5 and KCNHS8 have not been asso-
ciated with outcome. Here we showed that including FABP5
and KCNHS8 as prognostic biomarkers improves aggressive
cancer detection. Interestingly, rearrangements in prostate
samples showed to be associated with survival in ovarian can-
cer. Ovarian cancer patients with rearrangements in prostate
genes are at higher death risk (P = 0.03, HR: 1.4). We
further used the Swedish prostate cohort data to assess if the
rearranged genes are associated with cancer specific death.
We only found the expression of 16 genes in the Swedish
cohort. Clustering the gene expression data highlighted
three distinct subgroups (low, intermediate, and high risk)
(Figure 10). High risk patients are at higher risk for disease
specific deaths compared to low risk patients (P = 0.005,
HR:1.89). No significant separation was observed between
high and intermediate or low and intermediate groups.

4. Discussion

Here we argue that microarray gene expression data is a
valuable source of information to discover outlier genes with
potential functional gene rearrangements that have effect
on the expression level of downstream genes. Since gene
rearrangements are rare genetic translocation that affects a
small sample of cancer patients and not all of them, it is
feasible to discover genes that are overexpressed (amplified
or fused) or underexpressed (deleted) in subset of cancer
samples. Genes that are overexpressed in subset of samples
are anticipated to be amplified or fused, and genes that are
underexpressed in subset of samples are anticipated to be
deleted. Unfortunately methods like SAM, t-test, and so forth
that are developed to extract differentially expressed genes
are not suitable to detect outlier genes. Previous works that
aimed to identify gene rearrangements using bioinformatics
approaches were limited to the identification of potential
fused genes overexpressed in subset of samples and assessing
the performance using synthetic data with embedded test
genes. Herein, we followed the same approach by testing
our EigFusion method on synthetic data with embedded
tests. One might argue that real expression data does not
follow certain distributions as in synthetic data. To address
this point, we used real prostate cancer data with synthetic
tests to test and compare methods. Unfortunately, there is
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FiGure 9: Clinical association of genes with death and aggressiveness of cancer. To understand the effect of alteration in gene expression,
Kaplan-Meier survival curves are plotted to two sets of genes. (a) Is KM curves for all genes in figure top 25 genes altered. Samples with
alterations demonstrated high risk disease. (b) Is KM curves using only ERG, SPINK1, KCNHS8, and FABP5. Alterations in these four genes
showed higher risk compared with the whole set of genes. (c) Hamming distance is used as a measure to find genes that have high association
with death and aggressive cancer. Both death and aggressiveness were represented as vectors of samples. Distance shows how much gene’s
rearrangements vector differ from clinical vectors (death, aggressive). For example, ERG has distance of 0.16 to death vector; means that

84% of the samples of ERG fusion have death outcome.

no benchmark data that could be used in this study for
performance evaluation purposes.

We compared the performance of EigFusion with all
the methods in the literature that we are aware of that
deal with outlier gene detection. One key factor that we
considered and was not considered before is the size of cancer
samples with respect to the size of normal samples. In this
work, we showed that the ratio of cancer samples to normal
samples significantly impacts the FDR. Existing methods

such as COPA suffers from several drawbacks; first, the user
defined rth percentile. Second, COPA is individual gene
based method, and, most importantly, it fails to distinguish
between biomarkers and genes with potential rearrangement
especially when S2 is greater than or equal to S1. This is
because the median will be biased toward normal samples.
ORT, OS, and GTI also suffered from the same drawbacks.
ORT showed to prefer high cancer proportion, unlike COPA
that showed a decreasing performance as the cancer samples
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Ficure 10: Hierarchical clustering of prostate rearranged genes. Validating the prostate rearranged genes on Swedish cohort revealed three
prostate tumor subgroups with distinct rearrangement profile and different cancer specific death profiles.

proportion increases (Figure 3). Based on Figure (3), ORT
has zero FPR, but high FNR. This is because it is able to
give a low rank to all genes that have high expression in all
cancer samples, and has high FNR because it was unable to
detect fusion genes when the cancer sample size increases.
GTI and OS performed equally and they are the closest to
EigFusion; however, GTI and OS are unable to discriminate
between rearranged genes and biomarker genes when the
cancer samples are less than normal samples (Figure 3), and
they are unable to detect rearranged genes when cancer
samples size increases (Figure 3). Both OS and GTI showed
to have high FPR when cancer samples are less than 100,
and high FNR when cancer samples are more than 100, they
perform best when the samples are equally grouped into
normal and cancer samples. They both showed not to be
affected by the variation in the size of cancer samples. They
ranked the same test genes in the same order regardless of
the cancer samples size variation. EigFusion is a new method
to detect rearranged genes that we proposed in this work
which showed to have better performance compared with
other existing methods. EigFusion is able to overcome one of
the drawbacks of the other methods, which is distinguishing
between rearranged genes and biomarkers genes. EigFusion
identifies both overexpressed and underexpressed gene in the
same run. Thus, we think EigFusion is more generic to be
used to identify genetic rearrangements in general that result
in gene expression change. We also stress on the impact of
cancer samples size with respect to normal sample size, that
should be considered in any gene rearrangement prediction
problem.

In our study, we aimed to characterize outlier genes and
their potential functional gene rearrangements in several
tumor types: prostate, leukemia, and ovarian. We first
focused on functional gene rearrangements in prostate
cancer patients (primary and metastatic) compared with
normal samples (Figure 4). We found that large portion
of these gene rearrangements occur in metastatic samples;

only CCDCI41 showed to be overexpressed in primary
cancer. FABP5 gene is overexpressed in both primary and
metastatic cancer. FABP5 is associated with psoriasis; it is a
chronic immune-mediated disease that appears on the skin,
breast cancer, and metastasis. Examination of the clinical
implications of FABP5 rearrangements revealed that samples
with FABP5 rearrangements are at higher risk of death
(P value = 0.0000001) compared with ERG rearrangements
(P value = 0.18). Furthermore, FABP5 is overexpressed
in samples that have TARP and KLK3 underexpressed,
which indicates that FABP5 might be fused to TARP and
KLK3. TARP gene is embedded within an intron of the T-cell
receptor-gamma (TCRG) locus, which encodes an alternative
T-cell receptor that is always coexpressed with T-cell receptor
delta [25]. TARP was identified to be expressed in a
prostate-specific form of TCRG mRNA in human prostate
and demonstrated that it originated from epithelial cells [25].
This clearly shows that there is specific rearrangement or
alternative splicing mechanism that leads toward aggressive
cancer. Further characterizing FABP5 and TARP, they are
rearranged in ERGO samples, which means that these two
genes could be used to define distinct group of prostate
cancer. Several studies showed that C-FABP or E-FABP is
a metastasis inducing gene overexpressed in human prostate
carcinomas [26]. KCNHS, another significant gene identified
in this work harbours a binding site for ELK-1 transcription
factor, which is one of the ets- transcrption factors family to
which ERG belongs, in its promoter. This might explain the
association between KCNHS8 and ERG.

One of the problems bioinformaticians face is validating
the proposed computational algorithm. In this work, we
validated the identified potential rearranged genes using
CNA datasets for the same samples from which microarray
gene expression data was conducted. Large portion of the
genes were copy number altered, either amplified or deleted
in both prostate and ovarian cancer. Validating prostate genes
on CNA of ovarian data showed interesting result; altered
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genes in prostate are also altered in ovarian but not the
opposite. We also found that ovarian samples have higher
alteration rate than prostate samples. Most of the ovarian
genes are altered in more than 8% of the ovarian cancer
samples; however, prostate genes are only altered in around
2-4% of prostate samples. This reveals that ovarian cancer is
more heterogenous than prostate cancer.

Several other findings have emerged from our analysis,
largely based on the opportunity provided by integrated
analysis of functional protein networks. Putative rearranged
genes are functionally related and form modules that are
enriched in biological pathways, mainly RAS/RAF and cad-
herin signaling pathways. A second finding is that integrating
functional protein networks with CNA data provides insights
on to the dysregulated pathways. EigFusion was able to iden-
tify elements (rearranged genes) in dysregulated pathway, but
integrating CNA and functional networks gave more insights
into the dysregulated pathways as other altered genes, that
EigFusion was not able to retrieve, were identified. Thus, we
believe that integrating EigFusion with functional protein
networks and CNA data would reveal and give detailed
insights into the dysregulated pathways. One of the findings
we were able to retrieve using the integrative approach is
the nuclear receptor coactivator NCOA2 that was previously
shown to alter AR pathway in primary prostate tumors
providing mechanism for its potential role as a prostate
cancer oncogene [19].

Survival analysis revealed that patients with rearrange-
ments in the identified set of genes are at higher risk of cancer
specific death. Using rearranged genes in prostate cancer
helped to identify three subgroups with distinct outcome and
different rearrangement profile. Using ovarian rearranged
gene expression did not show significant prognostic value.
Overall, these discoveries set the stage for approaches to
the treatment of prostate, ovarian, and leukemia in which
rearranged genes or network are detected and targeted
with therapies selected to be effective against these specific
aberrations.

5. Conclusion

Discovering cancer rearrangements can ameliorate the dys-
functional components in cancer cells. EigFusion success-
fully detected outlier genes with potential amplification
or deletion genes (rearranged genes) in subset of cancer
samples in both prostate and ovarian using gene expression
data. EigFusion is the only method that is robust against
variations in cancer sample size. Several genes like ERG,
FABP5, SPINKI, KCNHS, and PAH are highly associated
with outcome data. This set of genes could be used as
prognostic biomarkers for prostate cancer. ADIPOQ and
LY6H are discovered to be rearranged in 14% and 23% of
ovarian samples, respectively. Using CNA to validate the
rearranged genes demonstrated that ovarian cancer patients
have higher rate of alterations per sample. Most ovarian
cancer patients harbour multiple several genes altered.
Integrating functional protein networks assisted to reveal the
modularity of the rearranged genes. This ameliorates the

Advances in Bioinformatics

functional dysfunctional genes as components rather than
single genes. Genes with rearrangements helped to identify
three prostate cancer subgroups with distinct outcome.
Finally, gene expression data is a valuable and widely avail-
able source of information to discover gene with potential
rearrangements.
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