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Experimental cioud point data are reported for the polystyrene + 

methylcyclohexane system in the vicinity of UCST. Two samples of polystyrene were 

used. One is nearly monodisperse with Mw;. 31,600 and Ma9,100. The other bas 

Mw=250,000 and Md4,000. The iduence of C a  as an additional component on the 

phase behaviour of the monodisperse polystyrene + methylcyclohexane system is 

investigated for two approximately constant polymer mass hctions. Norrnally C a  

adversely affects the solubility of the polymer. However, it was found that under certain 

conditions of pressure, temperature and compositions, the mixed solvent can be a better 

solvent for polystyrene than either methylcyclohexane or C02 alone. 

The computational part of this work involveci phase equilibrium computations with 

three models applicable to polymer solutions namely, (i) the Sanchez-Lacombe EOS, (ü) 

the Kteintjens-Koningweld EOS and, (üi) the PHSC EOS. Computational düEculties were 

encountered with the conventional successive-substitution flash calculation procedure. It is 

show that these can be eliminated with a simple modification to the iterative procedure. 

A scheme is presented for performing phase boundary calculations when the polymer is 

polydisperse. Multiphase equilibrium caldations were also performed with the models by 

mod@ing an existing multiphase successive substitution algorithm. 

The models used in this work gave a satisfactory representation of pure component 

vapor pressure data for compounds n-hexane, COz and methylcyclohexane. The results are 

also satisfactory for the system CO2 + methylcyclohexane. The models were applied to 
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describe the phase behaviour of two polyrner-solvent systems. The first was a polydisperse 

sample of  polyethylene in n-hexane where the experimental data showed LCST type 

behaviour. The models gave a satisfactory representation of the data includhg vapor- 

liquid-iiquid equilibria The second system was a monodisperse sample of polystyrene in 

methylcyclohexane and the data were rneasured in the vicinity of the UCST. in this case, 

oniy qualitative representation of the data could be obtained by an empirical modification 

to the modds. This may be a consequeme of the polymer parameters ernployed to 

perform calculations. 
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CHAPTER 1 

Introduction 

1.0 General 

Understanding of the phase behavior of polymer solutions is of great importance. 

For instance, in a polyrnerization reactor, it is important to know under what conditions 

of temperature, pressure, composition and polymer moIar mass the reaction mîxture will 

be homogeneous or heterogeneous. In solution polymerization, in order to obtain a 

product with good properties and for kinetic reasons, it is important that the reaction 

mixture be in one phase (de Loos et al., 1996). In some instances it is desirable to carry 

out the reaction in a two-phase region (Folie and Radosz, 1995). Low density 

polyethylene (LDPE) pmduced in a two-phase system has superior film properties owing 

to a narrow molar mass distribution. Sometimes the polymer may precipitate fiom the 

reaction mixture and cause fouhg in the reactor. The production of polyethylene by the 

high pressure polyethylene process (HPPE) is usudiy carried out in a single phase (Folie 

and Radosz, 1995). The reaction is exothermic and a singlephase is more desirable fiom 

a heat rernoval point of view. Aiso, a polyethylene rich phase is viscous and can form hot 

spots in the reactor. This wi degrade the polymer and cause undesirable reactions in the 

reactor. 

The product stream coming out of a polymerization reactor is usually a mixture of 

polymer molecules of varying chah lengths, unreacted monomer(s), residual initiator and 
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catalyst molecules, solvent etc. (Kiran, 1994). Depending on the ultimate use, M e r  

purification is required. Knowledge of the polymer solution phase behaviot is important 

to wry out these steps economically and to develop newer and more economid 

methods. One of the most important technique for separating the polymer from the 

solvent is by s t e m  stripping (McHugh and Guckes, 1985). However, this is a very 

energy intensive process as the solvent may comprise up to 95 wt % of the solution. 

Separation in a polymer solution can also be achieved by a lower criticai solution 

temperature (LCST) phase split (Secher et al., 1988). This type of phase separation 

occurs when the temperature of the polymer solution is raised, usuaily in the vicinity of 

the solvent critical temperature. This type of phase behavior is discussed in detail in a 

later Chapter. The higher temperatures in this case also imply a higher energy 

consumption. However, the LCST temperature c m  be lowered by the addition of a 

supercritical gas as reporteci by among others, McHugh and Guckes (1 985), Secher et al. 

(1988) and Kennis et aL(1990). The density of a gas is strongly dependent on pressure. 

The solubility of the polymer in the solvent mixture is a hc t ion  of density and hence 

pressure can be employed to cause homogeneity or heterogeneity in the system. 

Affécting the solubility of a polymer mixture by addition of a non-solvent, such 

as a supercriticai gas, has applications in areas such as particle formation and 

crystallization (Kiran, 1994). Another important application is the hctionation of a 

widely polydisperse polymer into fiactions with narrower molar mass distributions using 

the supercritical antisolvent (SAS) process (Chen et al., 1994). In this process, the 
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polymer solubility is controlled by adjusting the temperature, pressure and the 

composition of the mixed solvent consisting of a solvent and an anti-solvent. 

A substantial amount of work has been done to understand the phase behavior of 

polymer mixtures both h m  experimentd and theoretical points of view. Experiments, in 

addition to providing important data, enable evduation of equation of state models for 

correlation andfor prediction of phase behavior. An adequate mode1 on the other hand can 

significantly reduce the amount of experimental effort and guide the experimentalist in 

the right direction. 

The subsequent two sections cover some theoretical and experimental 

developments of importance to this work. The final section of this Chapter gives an 

overview of the Chapters to foilow. 

1.1 Equations of state 

The most well known and widely used theory for polymer solutions is the Flory- 

Huggins theory (Flory, 1953). This theory uses an incompressible lattice to mode1 the 

mixture of solvent and polymer molecules. The solvent molecules and the segments of 

the polymer molecules occupy the sites on the lattice. The number of configurations 

available to the molecules comprising the mixture gives the combinatorid entropy of 

rnixing. A van Laar like enthalpy of mixing term accounting for the interactions between 

polymer segments solvent molecules is added to the combinatorid entropy of rnixing to 

get the Gibbs fiee energy of rnixing. This theory and its variations have been successfid at 
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correlating andior predicting upper critical solution temperature behavior and 

closed loop phase behavior- The variations include making the interaction parameter in 

the enthaipy of mWng term composition ancilor temperature dependent. Some important 

work dong these lines bas been done by Nies et al. (1985), Cheluget et al. (1993) and Bae 

et al. (1993). UCST behavior, typified by the transition fiom a two-phase system to a 

one-phase system, occurs because of energetic effects. Closed loop phase behavior 

normally happens when specific interactions such as hydrogen bonding are present. The 

compressibiiity of the polymer solution is not a key issue and thus can be modeled by a 

theory based on an incompressible lattice. However, as mentioned before, polymer 

solutions also exhibit LCST behavior which occurs as a coIlSequence of ciiffereut volume 

expansions of the polymer and solvent molecules. For such systems a theory that 

accounts for compressibility eEects is required. Significant work has been done to extend 

the Flory-Huggins theory to such systems by the inclusion of vacancies or holes on the 

lattice, the number of which varies, to allow for a compressible lattice. Of note are the 

equation of state models developed by Sanchez and Lacombe (1976), Kleintjens and 

Koningveld (1980), and, Panayiotou and Vera (1982). 

in the Sanchez and Lacombe (1976) treatrnent, a pure component is treated as a 

binary mixture of filled and vacant sites (holes) on a lattice. The combinatonal entropy 

term is then obtained lÏom a Flory-Huggins type expression for the number of 

configurations. The Helmholtz fiee energy equation is then obtained by adding an energy 

term to the entropy term. From this fundamental equation the rest of the thennodynamic 
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equations can be derived. This equation of state has tbree pute component parameters 

accounting for the volume of a lattice site, the energy of interactions and the chah length 

of the molecule. A component dependent lattice site volume requires adoption of some 

mixing rule for this quantity in case of mixtures. The parameters of the mode1 are usually 

obtained h m  saturation pressures and densities and in case of polymers h m  liquid 

densities of the polymers. The model has been shown to be successfiii at correlating pure 

component saturation data (Sanchez and Lacombe, 1976), polymer densities (Sanchez 

and Lacombe, 1978) and binary VLE and LLE data for some systems (Lacombe and 

Sanchez, 1976). Lacombe and Sanchez (1976) have also shown that this model, 

depending on the values of parameters used, is capable of exhibithg both LCST and 

UCST type phase behaviors. McHugh and coworkers (McHugh and Krukonis, 1994) 

have shown that the model is capable of describing high pressure polymer-solvent 

behavior with temperature dependent interaction parameters. This model will be 

discussed in detaiI in a later Chapter as it was one of the models used in this work. 

The Kleintjens and Koningweld (1980) treatment is dong similar lines to that of 

Sanchez and Lacombe (1976). A pure component is considered to be a mixture of filled 

and empty sites. The combinatorial enfropy of mixing term is that used by Flory and 

Huggins. They, however, add an empirical entropy correction term to the combinatorial 

entropy of rnixing. They state that this is necessary to get a better quantitative description 

of experimental data. The Helmholtz free energy of mïxing is obtained by adding an 

energy of rnixing term to the two tems mentioned above. The Kleintjens-Koningsveld 
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energy term accounts for the contact surface areas available to segments. Unlike the 

Sanchez-Lacombe equation of state, the volume of a lattice site is fixed a priori and is 

substance independent. The model can have five parameters or more for a pure 

component as  some parameters are temperature dependent The model bas been shown to 

be successfui at describing both pure component and multi-component phase behavior 

(Kleintjens and Koningsveld, 1980; Bec- et al., 1987; Kennis et al., 1990). This 

model was also used in this work and is covered in more detail in a later Chapter. 

The equation of state model of Panayiotou and Vexa (1982) is another variation of 

the lattice fluid approach. As is the case for the two lattice based models mentioned 

above, the compressibiiity effects are introduced by having holes on the lattice. The 

partition fiinction used by Panayiotou and Vera is a product of three ternis. The first term 

is a Flory-Huggins type random combinatonal part. The second term in the partition 

hc t i on  accounts for the non-randomness of molecules on the lattice and the third factor 

accounts for interaction between segments. The non-random factor does not have a 

significant effect on the properties of pure components as shown by Panayiotou and Vera 

(1982). For mixtures, the non-random approximation gives better resdts for one of the 

systems investigated by them. As is the case for Kleintjens-Koningsveld model, the 

volume of a lattice site is fixed a priori. The interaction energy panuneter is given a linear 

temperature dependence and, dong with the chah length of a molecule, thÏs results in 

three parameters for a pure component. The model gives a satisfactory representation of 



7 

pure polymer properties. Recently Wang et al. (1996) and Lee and Damer (1996) have 

shown that this model is capable of exhibiting both LCST and UCST behavior. 

One of the earlier theoreticai equations of state for polymeric systems is that of 

FLory et al. (1964). These researchers derived a partition fünction that was a product of 

three factors. One accounted for the fke volume or, in other words, for the ciifference 

between the actual volume and the hard core volume of the molecules. The second factor 

was a van der Waals like energy term. The third factor was a volume and temperature 

independent combinatorid term. The equation of state was obtained h m  this partition 

function. However, their equation of state does not d u c e  to the ideal gas law at low 

densities and is only applicable to the liquid state. 

Beret and Prausnitz (1975) have developed an equation of state applicable to 

small as well as large molecules. The starting point for this model is the generalized van 

der Waals partition function that takes into account the fiee volume effect, contributions 

from rotational and vibrational degrees of fieedom and the energy of interaction between 

molecules. The free volume factor is obtained h m  the work of Caniahan and Starling 

(1972). For the intermolecular interactions the moIecular dynamic results of Alder et al. 

(1972) are used. The factor in the partition function that acwunts for the rotational and 

vibrational effects is postuiated so as to satise the ideal gas limit, the dose packed limit, 

Prigogine's results for large molecules at liquid like densities and the fact that for simple 

fluids (no rotational and vibrational degrees of &dom) this factor has a value of unity. 

A pure component is characterized by ttiree adjustable parameters reflecting the 
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molecular size, molecular potentiai energy and the number of degrees of fieedom, in 

addition to universai temperature iùnctions in the mode1 fitted to experimental data on 

methane. Parameters are given for three polyrners, however, no results are shown. The 

model is quite complicated and may be difficdt to use for muiti-component mixtures. 

The Chain-of-Rotators equation of state developed by Chien et al. (1983) is 

another attempt to describe the fluid state for srnall and large molecules. The starting 

point for this mode1 is a partition h c t i o n  which is a product of three factors - (i) the 

transIational partition function, (ii) the partition h c t i o n  of an elementary rotator and, 

(iii) an attractive factor which accounts for intermolecuiar interactions. For the 

translational part, the partition fiuiction is obtained fiom Carnahan-Starling's equation of 

state (Carnahan and Starlùig, 1972). The rotational partition function is obtained fiom the 

work of Boublik and Nezbeda (1977). The perturbation attractive term is based on the 

work of Aider et al. (1972). The model has three pure component parameters related to 

the hard core volume of a molecule, intermolecular attractions and flexibility of the 

molecuiar chains. The model is tested for srnall molecule systems only and no polymeric 

systems are investigated. 

A recent model for describing polymer solution phase behavior is the SAFT 

(Statistical Associating Fluid Theory) equation of state (Chapman et al., 1990; Huang and 

Radosz, 1990, 1991). A pure SAFT fluid is a collection of bard-sphencal segments in a 

mean-field of dispersion forces that (i) can be covalently bonded to form chains, and, (ii) 

c m  be weakly bonded to form clusters such as due to hydrogen bonding. The residual 
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Helmholtz energy for this model is given as the sum of a reference part and a perturbation 

part. The reference part of the model has hard-sphere, covalently bonded c h  and 

association contributions. The perturbation part is a power series in density and 

temperature which was obtained by Alder et ai. (1972) fiom molecular dynamics data. A 

non-associating pure component is characterized by three adjustable parameters reflecting 

the energetic interactions, chah length and the volume of a segment. Chen et ai. (1992) 

have shown that the model is capable of showing both LCST and UCST behavior. Hasch 

and McHugh (1995) have also used ihis equation of state to model high pressure polyrner 

solvent behavior. 

The final model coveted in this section is the Perhirbed Hard Sphere-Chain 

(PHSC) equation of state of Song et al. [1994, (a)]. This model was chosen as one of the 

models used in this work and is discussed in detail in a later Chapter. The PHSC equation 

of state has two parts - (i) a reference part, and, (ii) a van der Waals like attractive or 

perturbation term. The reference part is based on the work of Chiew (1990) who obtained 

an equation of state for hard sphere ch- and mixtures. This model has t h e  parameters 

for a pure component that account for the chah length, the hard sphere diarneter of 

segments and an interaction energy parameter. The model has been shown by Song et al. 

[1994, (a)] to give a better description of polymer densities than either SAFT or the 

Sanchez-Lacombe equations of state. Song et al. [1994 (b)] have shown that the model is 

capable of descnbing various liquid-liquid phase diagrams for hypotheticd systems. 
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1.2 Experiments 

For the purposes of this worlc, the cloud point (phase boundary) data on polymer- 

solvent mixtures has been classifieci into two types. First are the measurements that only 

report temperaturecomposition information without any reference to pressure, or it is 

tacitly assumed that the pressure is the vapor pressure of the solvent. Second are the 

measurements that include the information on pressure also. A comprehensive collection 

of the data of the first type is avdable in the data compilation of Damer and High 

(1993). Ln this section ody the papers dealing with polystyrene-methylcyclohexane 

system are covered as this system was investigated in the vicinity of UCST type behavior 

in this work. The review paper by lmre and van Hook (1996) is an excellent source of 

low pressure liquid-liquid demWng data of polystyrene solutions. 

Saeki et al. (1973) measured UCST and LCST type cloud points curves for 

solutions of polystyrene in methylcyclohexane. The polymer sarnples used had a very 

small polydispersivity index and had molar masses 37000, 97200, 200000, 400000, 

670000 and 2700000. The samples were flame sealed under dry nitrogen in cylindrical 

cells and the cloud point was taken as the temperature at which a drarnatic change was 

observed in the pattern of a He-Ne laser beam. Nose et al. (1976) measured coexistence 

curves in the vicinity of the UCST for a polystyrene sample (MW = 37000) in 

methylcyclohexane. Dobashi et al. (1 980) measured coexistence curves in the vicinity of 

the UCST for polystyrene samples having molar masses 10200, 16100, 17300, 20200, 

34900,46400,109000,18 1000 and 7 19000. Concentrations of the phases were measured 
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by differential rektometry techniques. Shinozaki et al. (1982) have measured 

coexistence curves in the neighborhood of the UCST for polystyrene samples with molar 

masses 9000, 17500, 37000, 110000, 233000 and 1260000. Coexistence curves for 

polystyrenes with molar masses 17200 and 719000 have k e n  measured by Dobashi et al. 

(1984) using diEiérentia1 refrzictometry techniques in the vicinity of upper critical solution 

ternperatures. Shen et al. (1991) report upper critical solution temperatures for 

polystyrene samples wiîh molar masses 13000, 23000 and 29000. The criticai 

temperatures were measured by the phase volume method, which is based on the fact that 

at the critical point the volumes of the coexisting phases are equal. Solutions of 

methylcyclohexane and poiystyrene samples having molar masses 17500,42500, 86300 

and 175000 have been investigated by Heinrich and Wolf (1992). The phase diagrams in 

this case were obtained by visual observation. 

A considerable arnount of work has been done to generate pressure-temperature- 

composition cloud point data for polymer solutions. Some important work is covered 

below. First the investigations for binary or pseudo-binary systems (since the polymer 

almost aiways has a molar mass distribution) are covered. This is followed by a review of 

the studies that investigated the effect of an additional component. The list is by no 

means wmprehensive. The reader is referred to the book by McHugh and Knikonis 

(1994) and the article by Kiran (1994) for more references. 

Zeman et al. (1972) report cloud point measurements (pressure-temperature 

isopleths) for the systems polyisobutylene and polydimethylsiloxane in lower alkanes for 
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LCST type phase behavior. The alkanes include ethane, propane, butane, Zmethylbutane 

and pentane. The temperature range is fiom 0-200 O C .  The maximum pressures are in the 

vicinity of 350 bars. The measurements were made in a steel optical ce11 with glas 

windows. The transition fiom clear to a doudy solution was observed over a pressure 

interval of one bar. The temperature had an accuracy of + 0.25 OC. Zeman et al. report 

that on increasing the pressure the LCST boundaries are moved to higher temperatures. 

Zeman and Patterson (1 972) investigated the pressure effects in polyrner-solvent 

systems showing both UCST and LCST phase behavior. The systems investigated were 

solutions of polystyrene in methyl acetate and acetone and polypropylene oxide in 

propane. The data are reported in the fom of Iiquid-liquid isopleths. The apparatus and 

procedure were the same as that of Zeman et al. (1972). The r ed t s  of Zeman and 

Patterson indicate that while pressure always inmases the LCST, the UCST may either 

be decreased or increased. This is related to the sign of the volume of mixing. The authors 

also show that, in the case of polyçtyrene in acetone and polypropylene oxide in propane, 

the LCST and UCST curves merge together as the moiar mass of the polymer is 

increased. 

Saeki et al. (1975) investigated the pressure dependence of upper critical solution 

temperatures in the polystyrene-cyclohexane system. Saeki et al. report an accuracy of 

f 0.005 OC in cloud point temperatures by the aid of the scattering pattern of a He-Ne laser 

beam. The solution was housed in a pressure ceil with two giass windows for the passage 
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of the He-Ne laser beam. Saeki et al. report that the sign of (dT/dPlcfitid is positive for 

the 37000 g/mol and becornes negative as the molar mass of the polymer is increased. 

Saeki et al. (1976) report the pressure dependence of upper and lower critical 

solution temperatures in solutions of polystyrene in tert-butyl acetate and diethyl ether 

over a pressure range of 1 - 50 atm. The experimental procedure was the same as that of 

Saeki et al. (1975). reSUIts of Saeki et al. (1976) show that the UCST type phase 

behavior has a smaller pressure dependence than that of LCST type phase behavior. This 

is the expected redt  as LCST type phase behavior is caused by disparity in volume 

expansions of the solute and the solvent. 

de Loos et al. (1983) investigated the fluid phase equilibria in the system 

polyethylene-ethylene at very high pressures. The temperature range was 380-445 K and 

the pressures ranged fiom 900 to 2000 bar. The measurements were canied out in an 

optical high pressure cell. de Loos et al. (1983) report that the temperature in the high 

pressure autoclave could be maintained constant to within 0.03 K and the pressure in the 

cell was constant to within 0.1 bar. The reproducibility of the rneasured cioud point 

pressures was within 1 bar in most cases. Their resdts indicate that an increase in the 

molar mass of the polymer raises the cloud point pressures or in other words, the polymer 

solubility decreases with molar masses as may be expected. 

Meilchen et al. (1991) report high pressure phase behavior and fiactionation data 

for polyethylene, poly(methy1 acrylate) and two copolymers poly (ethylene-CO-methyl 

acrylate) in propane and chlorodifluoromethane. The copolymers had different 
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concentrations of ethylene and methyl acrylate. The firictionation was carried out using a 

dynamic flow technique. En this tecbnique, the polymer is charged in an extraction 

column and a solvent flows through the column at different pressures. Since the solubility 

of polymers is a function of molar mas, different fractions are obtained at difEerent 

pressures. Meilchen et al. obtained fiactions with polydispersivity indices smaller than or 

equal to 2.2 for poly (methyl acrylate). The polydispersivity indices of the fiactions for 

the two copolymers were less than or equal to 2.4 in one case and 1.4 for the other. The 

polyethylene fiactions had polydispersivity indices less than or equal to 2.3. The cloud 

point measurements were made in a variable-volume view cell. The equipment is capable 

of an accuracy in pressure o f f  2.8 bar at pressure greater than 1000 bar and i 1.4 bar for 

pressure less than 1000 bar. The temperature was measured with an accuracy of I 0.2 OC. 

The cloud point measurements of Meilchen et al. (1991) show that, as the acrylate content 

in the backbone of the copolymer increases, the polar solvent chlorodifluoromethane 

dissolves the copolymer better. 

Wells et al. (1993) investigated the phase behavior of the system polystyrene 

(Mc22000 ghol)  in methylcyclohexane using the pressure pulse induced critical 

scattering technique. This technique enables evaluation of both binodal and spinodal 

pressures and temperatures. Their results for some isopleths indicate that, at pressures less 

than 400 bar, increasing pressure decreases both binodal and spinodal temperatures. 

However, for pressures greater than 500 bar the opposite trend is observed. 
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de Loos et al. (1995) report cloud point c w e s  in fluid systems of ethylene and 

branched polyethylene. The measurements were made in an opticai high pressure ceil- 

The temperature range is 380-445 K and pressures range fiom 90 to 200 MPa. de Loos et 

ai. show that branching of the polymer significantly lowers the cloud point curves as 

compared to those for system with a linear polyethylene with a comparable molar mass 

distribution. 

Recently de Loos et al. (1996) investigated the liquid-liquid phase separation in 

Linear Low Density Polyethylene (LLDPE) - solvent systems. LLDPE is a copolymer of 

ethylene and a comonomer like octene, hexene, propene etc.. The solvents used were n- 

hexane, n-heptane, n-octane, isohexane and cyclohexane. Lower solution temperatures 

were measured in the temperature range of 400-600 K and at pressures up to 13 MPa. 

The observations were carried out in an optical ce11 using the Cailletet apparatus. They 

conclude that for the systems investigated the solvent type is the key to phase behavior 

and factors such as polymer density and the type of comonomer are not so significant. 

Kiran and CO-workers (Kiran, 1994) have made hi& pressure phase equilibrium 

measurements on systems consisting of polyethylene and n-alkanes. Their results show 

that demixing pressures for a polymer solvent mixture increase as the polymer molar 

mass increases. For a particular molar mass polymer, the demixing pressures decrease as 

the carbon number of alkane is increased. 

McHugh and Guckes (1 985) have investigated the effect of a supercritical additive 

on the phase behavior of poly(ethy1ene-CO-propylene) - mixed solvent system. The 
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&cd solvent consisted of 3-methylpentane, n-hexane and methylcyclopentane. The 

supercritical additives used were ethylene, propylene, carbon dioxide and methane. The 

observations were made in a variable voIume view pressure c d .  McHugh and Guckes 

report that, with the addition of a supercritical additive at an approxirnately constant mass 

fiaction of the polymer, the cloud point c m e s  are shifted to lower temperatures. The 

effect is greatest for methane foiiowed by CO,, ethylene and propylene. in sorne cases the 

LCST type cloud point cuve is s W d  by more than 100 OC to Lower temperatUres. They 

also show that, at suniciently high concentrations of methane and ethylene, the UCST 

and LCST type cloud point c w e s  merge. 

Seckner et al. (1988) have investigated the high pressure phase behavior of the 

system polystyrene-toluene-ethane. The observations were made in a variable volume 

opticai cell. The measurements of Seckner et al. show that, with the addition of ethane, 

the LCST type cloud point curves can be shifted to temperatures lower by 231 OC. At 

even higher concentrations of ethane, the LCST and UCST type curves merge to give a 

region of irnmiscibility below the isopieths. 

Kennis et al. (1990) have studied the effect of the addition of nitrogen on the 

phase behavior of linear high density polyethylene (HDPE) + n-hexane system. The 

observations were made in the Cailletet apparatus. Experirnental temperatures range fiom 

393-453 K with pressures up to 7.5 MPa Their tesults show that small amounts of 

nitrogen cause a shifi of the LCST type phase boundary to much lower temperatures at 
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constant pressure, The lowering of temperature is of the order of 22 K per mass percent of  

13 Overview of this work. 

This Chapter is concluded with a brief overview of this work. in Chapter 2 the 

general patterns of fluid phase behavior are covered. The thexmodynamic nature of UCST 

and LCST phase behaviors is discussed dong with the effect of the polydispersivity of 

the polymer on the phase behavior of polymer-solvent systems. Chapter 3 deals with the 

various types of crimputations such as vapor pressure, phase boundary, two-phase and 

multi-phase flash compuiations with equation of state models. in Chapter 4 the 

experirnental method u s 4  in this work is described and the experimental resuits are 

presented. Chapter 5 introduces the model equations employed in this work. In Chapter 6 

the model performance is compared with the experimental data on some systems 

followed by the conclusions of this work in Chapter 7. Then a list o f  literature quoted in 

this work is presented. FinaIly, the tables of data are presented in the appendices dong 

with a bnef discussion of phase equilibrium and stability pertinent to this work. 



CHAPTER 2 

Patterns of naid phase behavior 

2.0 Introduction 

The Chapter begins with a discussion of the phase d e  of Gibbs (1961) whîch is 

essential to the understanding of phase behavior. The following section deals with some 

aspects of critical behavior and azeotropy in binary mixtures. The reader is referred to the 

book by Prigogine and Defay (1954) for a comprehensive coverage of this topic. In the 

following section of this Chapter some features of binary phase diagrams are highlighted. 

Then some typical phase diagrams for polymer solutions are shown and the 

thermodynamic nature of UCST and LCST phase behaviors is discussed. van 

Konynenburg and Scott (1980) have classified the patterns of fluid phase behavior in 

binary mixtures into six cIasses. Their classification scheme is briefly covered with 

emphasis on phase diagrams for polyrneric systerns. The Chapter is concluded with a 

brief discussion regarding the effect of the polydispersivity of the polymer on polymer 

solution phase behavior. 

2.1 Phase rule 

The phase d e  of Gibbs gives the number of degrees of fieedom F for a system in 

equilibrium. This is the number of variables whose values are chosen k l y  before 

conducting an expriment (Denbigh, 198 1). The derivation of the phase d e  follows. 
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Consider an equilibrium of se phases in a n component system. The equilibrium 

conditions are 

T, =T, = ..... =T* (2.1) 

Pi = P z  =.....=Pz (2.2) 

1 - pr, i = l&,n pi =..----- (2.3) 

These are (x-l)(n+2) equations. Each phase is characterized by pressure, temperature and 

independent composition variables, e.g. (n-1) mole hctions. Hence, the number of 

variables for x phases is x(n+l). The difference between the number of variables and 

equations colmeeting these variables is F and is given by 

F = n - ~ + 2 - +  (2-4) 

In speciai cases one has to account for extra conditions and the number of these 

conditions is given by 4. For instance, for a binary azeotrope the vapor and liquid 

compositions are identical and 4 is one. tr critical phases can be counted as n phases with 

+ equal to n-1. This can be seen fiom the following development that is extracted fiom 

the paper by Zernicke (1 949). 

A result fiom analfical geometry states that: k spaces each of dimension m 

situated in a space of dimension n have in common a space of dimension n-k(n-m). Now 

consider two coexisting phases with n components each. This equilibrium &as n degrees 

of fieedom. Therefore each phase exists in a space of n dimensions situated in a space of 

n+l dimensions (P, T, n-1 independent concentration variables). The two n dimensional 

spaces containhg these phases intersect in a space of dimensions n-1 as obtained fiom the 
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result above(k2, n=n+l, m=n). Now consider the case where n phases are becoming 

critical with each other. Before the critical point is reached there are n-l two phase 

equilibria. The x phases become cntically identicai in a space cornmon to K-1 spaces each 

of dimension n- 1. The dimension of this space is given by 

n+  1-(TC- l)[n+l-(n- 1)] = n-2x+3 (2-5) 

The degms of fieedom for a n* phase equilibrium is n-z'+2 fiom the phase d e .  So the 

case where n phases becorne critical with each other can be considemi as a nmial rr' 

phase equilibria with a degree of h d o m  given by 

This gives 

x' =2x-l=x+(7t-l)  (2.7) 

Comparing this equation with equation (2.4) we get for the case where ~r actual phases are 

becoming critical with each other, a value of 4 given by 

$ = n - 1  (2.8) 

A one component system c m  be represented in a pressure-temperature plane. The 

nurnber of degrees of &dom is given by 

F=3-Z-4  (2.9) 

A one phase system in this case has two degrees of fieedom and is a region in the P-T 

plane. A two phase equilibrium has one degree of fkedom and is a curve in the P-T 

plane. A three phase equilibrium or a criticai point has zero degrees of fieedorn and is a 

point in the P-T plane. 
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In order to represent a binary system three dimensions are needed , e.g. pressure, 

temperature and an independent composition variable such as a mole fraction, F in this 

case is given by 

F = 4 - ~ - 4  (2.1 O) 

A one phase system has F=3 and is a region in the P-T-x space. A two-phase 

equilibrium has two degrees of W o m  and is reymented by two surfaces x a ( P , ~ )  and 

xP(P,T). A tbne phase equilibnum bas F=l and is represented by three curves xap(T)], 

xap(T)] and xY[P(J')]. A criticai curve with F=l is given by x c ~ ( T ) ]  and a critical 

endpoint which has zero degrees of &dom requires two points at one P and T in order 

to be represented. A critical endpoint is defined as the condition for which two phases of 

a three-phase equi1ibriu.m becorne identical. 

2.2 Displacement along an equilibrium line (The Gibbs-Konovalow Theorems) 

in this section some important conditions are derived for amtropy and critical 

points in binary systems. The development is due to Progogine and Defay (1954). 

Consider a binary system at P and T with equilibrium mole fiactions in the two phases (I 

and II) to be x,' and x:. The equilibrium conditions are the equality of chernical potential 

(pi) of each component in the two phase 1 and II as given by 

P: =pP 

and 
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Now consider a neighboring equiiibrium state at (P+P). CT+oT), (x; + ki), (xi1 + 

dxil). We have 

p: +dpf = p: +dpfI 

and 

pi  i- dp: = +dp: (2.14) 

Since the neighbouring phase is an equilibrium phase as well the following conditions 

hold. 

dpf = dp: (2.15) 

and 

dp: = dp! 

Now the totai derivative of p,' is given by 

The derivatives of the chernical potential with respect to pressure and temperature are 

given by the following relations 

where vi ans si are partial molar volume and partial molar entropy respectively of 

component i. 

Also the molar Gibbs fiee energy of the system is given by 

g=(l-x2)p1 +X2P2 
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Hence, 

since the summation involving the derivatives of the chernical potential is zero from the 

Gibbs-Duhem equation. 

Further differentiation gives 

From the Gibbs-Duhem equation 

This gives 

Substiîuting in equation (2.21) the following relation is obtained. 

Substituthg the expressions for the derivatives of the chernical potential in (2.17) the 

following equation is obtained. 



Similarly the foiiowiag equation can be derived for phase tI. 

Substitution in equiiibrium relation (2.15) gives for component 1, 

where, As, = s: - si and so on. In a similar manner we get the following equation for 

component 2. 

At equifibrium A p I  = Ah, - T b l  = O which implies Asl = Ah, 1 T . The above two 

equation can be written as 

and 

These are two equations in tenns of variations dP, dT and dx2 dong an equilibrium line. 

Deductions regarding azeotropy and critical behavior in binary mixtures can be made 



fiom these equations and these deductions are collectively known as Gibbs-Konovalow 

theorems ~ o w l k o n  and Swinton (1982), Prigogine and Defay ( 1  954)l. 

At constant jmssure (dP=û) the following partial derivatives for the two phases 

are O btained. 

and 

At constant temperature (dT=O) we get the foiiowing pressure denvatives. 

and 

For an azeotrope x i '  = x,'.~herefore, 
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These equations are also valid at a critical point. However, unlike an azeotropic point, the 

derivation of these conditions is not so obvious as Ahl, Av, etc. are zero for identical 

phases in addition to the compositions k ing  equal. The condition at constant pressure, 

i.e. n/aX = 0, can be obtained as follows ETom equation (2-32). 

At constant pressure consider an equilibrium between two phases in the vicinity 

of the critical point p=T+dT, x)II=x; + dx: , X* + dx2']- Expancihg hl1 and hl% a 

Taylor series around the critical point as given by 

We obtain for component 1 

Sirnilady for component 2 we get 

Using equations (2.39) and (2.40) the denominator in equation (2.32) c m  be *en as 

Now, 



and 

Therefore we have for the denominator in equation (2.32) 

The variations & and d d  are arbitrary. Hence, at the critical point (mla~)~ is epual to 

zero. Similarly the condition (aPli)xh = O can be derived. 

23  Some features of binary phase diagrams 

In binary systems for criticai and azeotropic points the following conditions have 

to be satisfied 

The implication of these conditions is that critical and azeotropic points are points of 

extrema in binary P-x and T-x sections as shown in Figure (2.1). 

Figures (2.2) and (2.3) show the possible location of 1- and 2- phase equilibria 

around a three phase equilibrium in binary P-x and T-x sections (de Loos, 1994). The 

occurrence of these arrangements can be qualitatively understood by an analysis of the 



Figure 2.1. Examples of criticpl and azeotropic points in a binary system. 
P-x sections at constant temperature. 



Figure 2.2. Location of 1- and 2- phase equilibna around a 3-phase equilibrium 
in a binary systern. T-x sections at constant pressure. 

Figure 2.3. Location of 1- and 2- phase equilibria around a 3-phase equilibrium 
in a binary systcm. P-x sections at constant temperature. 
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Gibbs fiee energy vs composition diagrams. On such diagrams, coexisting phases are 

located at points on the fiee energy curves with cornrnon tangent lines (de Loos, 1994). 

Figure (2.4) shows a three phase equilibrium, the phases being 1, U and IIï with 

compositions given by x, < XI, < xI1,. The equilibrium phases have a comrnon tangent 

plane. Now let us say that the conditions of equilibrium are perturbed, for example, by 

addition or extraction of heat. After the perturbation, the possible arrangements of the 

Gibbs fiee energy curves is given in Figures (2.5 qb). If a positive perturbation results in 

the arrangement given by Figure (2.5 a), then a negative perturbation would give the 

arrangement in Figure (2.5 b), and, vice-versa. In the case of Figure (2.5 a), a 1-II-III 

equilibriurn is transformed to a 1-LU equilibrium. For the case shown in Figure (2.5 b) 

there are three options depending on the location of the feed composition XF. If xI < xF < 

XII, then a 1-11-111 equilibrium is changed to a 1-11 equilibrium. If x,, < x~ < xrn, then a I-II- 

III equilibrium is changed to a II-III equilibrium. However, if x~ = xII, then a 1-11-111 

equilibrium reverts to a single phase (phase II). The net result of this analysis is the 

arrangements shown in the Figures (2.2) and (2.3). 

2.4 Some phase diagrams for polymer systems (iiquid phases) 

Figure (2.6) shows some typicd temperature-composition (constant pressure) 

phase diagrams for polymer systems. Upper critical solution temperature (UCST) 

behavior is shown in Figure (2.6 a). In this case the system goes fiom a two phase region 

to a one phase region on increasing temperature. Figure (2.6 b) contains lower critical 

solution temperature (LCST) behavior. Systems conforming to LCST phase behavior go 



Figure 2.4. Three phase equilibnum line in a binary system in a g-x diagram at 
constant temperature and pressure. 

Figure 2.5. Phase transitions around a three-phase iine in a g-x diagram. 



UCST 

UCST + LCST 

(b) LCST 

CLOSED LOOP 

HOUR GLASS 

Figure 2.6. Some T-x phase diagrams at constant pressure for polyrner systems. 
(a) UCST. (b) LCST. (c) UCST + LCST. (d) Closed loop. (e) Hour glas 
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fiom a homogeneous region to a region of immiscibility on increasing temperature. A 

system c m  show simultaneous occurrence of UCST and LCST behavior and this type of 

phase behavior is shown in Figure (2.6 c). In some systems showing this kind of phase 

behavior, LCST and UCST curves merge together to open up a region of immiscibility in 

the middle and this is shown in Figure (2.6 e). It is also possible to have closed Ioop 

phase behavior, in which the loop contains a region of immiscibility, as shown in Figure 

(2.6 d). 

2.5 UCST and LCST behavior 

At a critical point in a binary mixture 

Aiso, the equilibrium phases have identicai properties; Le., 

And the criteria for a critical point must be satisfied; Le., 

with, for a locally stable critical point, 
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Binary UCST and LCST behaviors are shown in the Figures (2.7 a,b). According to the 

figures the convention followed is (X:'-X;)>O. For UCST behavior (z)p>~ in& 

vicinity of C (the criticai point) on the AC side and vice-versa for LCST behavior. The 

sign of the dope is determined by the sign of the denominator (2.44) in the expression 

(2.32), since for a stable phase 

dx; = -dx: (2.5 1) 

This can be seen by expandiug T (for a two-phase equilibrium) in a Taylor series around 

the criticai point in temis if x t  and x: as given by 

and 

The higher order tenns are neglected and the fïrst derivatives are zero at the critical point. 

II Therefore we getdx: = -dx: , since x2 (= Q + e ' )  > x,' (= q +dx:). 

The sign convention followed here is (X?-X:)>O, which gives dx: s dx:. Now 

we have for denominator in equation (2.32): 



Figure 2.7. (a) Constant pressure T-x section for UCST behavior in a bùiary system. 
(b) Constant pressure T-x section for LCST behavior in a binary system. 

Figure 2.8. Molar enthalpy as a tiinction of composition at constant T and P in 
a binary system. 



deno min ator = -2(dx! ) @ 
For UCST [X/& > O on the AC side in Figure (2.7 a)] 

and, for LCST [oT/ûx < O on the AC side in Figure (2.7 b)] 

Hence, near the critical point, the molar enthaipy (h) is convex upwards for 

UCST, and, convex downwards for LCST behavior.. With these deductions in mind, we 

consider Figure (2.8). Assuming, as is generaily the case (Prigogine and Defay, 1954), 

that the curvature of the relation between h and composition does not change sign, the 

formation of a UCST type mixture [ c w e  1 in Figure (2.8)] is endothennic and the LCST 

type mixing (curve 2) is exothennic. 

Inequalities (2.55) and (2.56) can be expressed in ternis of the mixture molar 

entropy, S. 

and 

At the criticai point (2) = 0,  and wc get . terms of r, 



The molar entropy of mixing AsM has the same sign as the molar enthalpy of 

mixing. Now, 

AgM = A h M - T h M  (2.6 1) 

Some insight into the nature of UCST and LCST phase behavior can be gained by a 

consideration of the signs and magnitudes of the two competing effects Ah, and -T AsM. 

For UCST phase behavior, it is the interactions between the components giving a positive 

enthalpy of mixing that cause imrnisciblity. The molar entropy of mixing makes a 

favorable contribution to the molar Gibbs fiee energy of mixing. On the other hand, for 

LCST type phase behavior, the molar enthalpy of mixing is favorable for a condition of 

homogeneity. A negative molar entropy of mixing is responsible for phase separation as 

temperature is raised. On increasing the temperature, the solvent molecules take a more 

expanded state and it is the difference in the densities of the two components that l ads  to 

demixing (Folie and Radosz, 1995). 

This section is concluded by derivation of the slope of the critical pressure- 

temperature curve in terms of curvature properties of molar volume v and molar entropy s 

(Rowlinson and Swinton, 1982). At the critical point the second and third derivatives of 

molar Gibbs fiee energy with respect to composition are zero. In the P-T-x space consider 
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a small displacement (dP, dT and dx) dong the criticai cuve given by the Taylor series 

expansion 

The third term is zero. Therefore, we get for the slope 

2.6 Classification scheme of van Konynenb~rg and Scott 

Although the polymer-solution phase behavior pattenis discussed so far are most 

commoniy observe4 the picture can be more complicated even for binary systems. The 

more complex phenomena dong with the ones shown above are covered below with 

reference to the classification scheme of van Konynenburg and Scott (1980). It is 

assumed tbat the polymer has a well defined molar mas. The effect of polydispersivity of 

the polymer will be discussed in a later section. 

van Konynenburg and Scott have classified binary fluid phase behavior into six 

main types using pressure-temperature projections. The projections employ non-variant 

equilibria (such as the critical point of a pure component and the critical endpoint in a 

buiary system) and monovariant equilibria (such as the criticai and three phase curves in a 

buiary system) to mark regions of different types of phase behavior. With the exception 

of Type VI phase behavior al1 these types are predicted by a simple equation of state such 
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as the van der Waals equation. Azeotropy leads to M e r  subdivisions of these six main 

types but it is not covered here. Al1 experimentally measured systerns to date conforrn to 

this classification with the exception of some systems invoiving water (de Loos, 1994). 

2.6.1 Type 1 phase behavior 

The usual conditions for a b i  mixture to exhibit Type 1 phase behavior are that 

the two substances be of similar chemical types andlor their cntical properties be of 

comparable magnitude. The P-T and T-x projections of Type I phase behavior are shown 

in Figure (2.9 a). This type of phase behavior is characterized by a continuous gas-liquid 

critical curve and the absence of liquid-liquid immiscibiiity. Some examples are mixtures 

of methane with n-alkanes upto n-pentane. Two representative P-x sections are shown in 

Figure (2.9 b). 

2.6.2 Type II phase behavior 

Type II phase behavior has a continuous gas-liquid criticai curve with a liquid- 

liquid critical line at lower temperatures. The iiquid-Iiquid critical line terminates at a 

lower pressure in an upper cntical end point where the two critical liquid phases are in 

equilibrium with a vapor phase. A three phase (liquid-tiquid-vapor) curve extends to 

lower temperatures fiom the upper critical end point. The P-T and T-x projections of type 

II phase behavior are shown in Figure (2.10 a). Some exarnpies of this type of phase 

behavior are binary systems of carbon dioxide + n-aikanes for carbon number n 6<n<12. 



Figure 2.9. (a) Type 1 phase behavior P-T and T-x projections. 
(b) Two constant temperatwe P-x sections for Type I phase behavior. 



Figure2.10. (a) Type II phase behavior P-T and T-x projections. 
(b) Two constant pressure T-x sections for Type II phase behavior 

showing UCST behavior. 
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Also, this type of phase behavior is seen in some polymer solutions although the nom for 

polymer solution phase behavior is Type IV phase behavior discussed below. 

Two representative T-x sections are shown in Figure (2.10 b). As can be seen 

îÏom this figure the T-x curves are of UCST type where on increasing the temperature at 

constant pressure a transition from a region of liquid-liquid imrniscibility to a region of 

one liquid takes place. 

2.63 Type VI phase behavior 

In Type VI phase behavior, there is a continuou Iiquid-vapor criticai line 

connecting the critical points of the two pure components with a liquid-liquid 

immiscibility at lower temperatures. This type of phase behavior differs fiom Type II 

because of the presence of a lower criticai end-point in addition to an upper critical end 

point. The three phase (vapor-liquid-liquid) cuve terminates at lower temperatures in a 

LCEP where again the two liquid phases become critical in the presence of a vapor phase. 

A liquid-liquid critical line emerges fiom this point. The P-T and T-x projections of Type 

VI phase behavior are show in Figure (2.1 1 a). This type of phase behavior is oberved in 

systems comprising chemically complex substances where components may self 

associate or there rnay be inter molecular associations due to hydrogen bonding (e-g., 

polyethylene glycol -t water). 

A representative T-x section for a Type VI system is show in Figure (2.1 1 b). 

The loop encloses the region of liquid-liquid Unmiscibility. 



Figure 2.11. (a) Type VI phase behavior P-T and T-x projections, 
@) Constant pressure T-x section for Type VI phase behavior showhg 

closed phase behavior. 



2.6.4 Type V phase behavior 

Type V phase behavior does not have a continuous gas-liquid critical curve as 

shown in the P-T and T-x projections in Figure (2.12). The gas-liquid critical line 

emerging fiom the critical point of the more volatile component terminates in an upper 

critical end point where the vapor phase is criticai with a Liquid phase in the presence of 

another liquid phase. A vapor-iiquid-liquid curves extends fiom the upper critical end 

point and terminates in a lower critical end point at lower temperatmes. At the lower 

critical end point two liquid phases are critical with each other in the presence of a vapor 

phase. A Iiquid-liquid cntical cuve emerges h m  the lower critical end point and finally 

terminates in the cntical point of the less volatiIe component- This type of phase behavior 

or, type IV discussed below, can be observed in binary hydrocarbon mixtures once the 

two components differ sufficiently in their critical properties. An example is the binary 

mixture of methane and n-hexane. 

Figures (2.13 a&) contain two T-x sections for Type V phase behavior. The 

section contained in Figure (2.13 a) is typical of LCST type phase behavior where a 

transition fiom a region of two liquids to that of one liquid occurs on decreasing 

temperature at constant pressure. However, depending on the pressure of the system the 

phase behavior can be more complicated as shown in Figure (2.13 b). in this case there is 

a region characteristic of LCST behavior. There is also a three phase l i e  (vapor-liquid- 

liquid) bounded by the LCST region, two vapor-liquid regions and one vapor and one 



Figure 2.17. Type V phase behavior P-T and T-x projections. 



Figure 2.13. Two constant pressure T-x sections for Type V phase behavior. 
(a) LCST phase behavior. @) LCST p b w  behavior in the vicinity 

of a the-phase equilibria. 
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liquîd regions. This type of phase diagrams have been observed for a sample of 

polyethylene in n-hexane (Kennis et al., 1990). 

2.6.5 Type IV phase behavior 

Type IV phase behavior is a combination of Type iI and Type V phase behaviors 

as s h o w  in the P-T and T-x projections in Figure (2.14). Depending on the pressure of 

the system different type of T-x sections can be observed as shown in Figures (2.15 a) 

and (2.15 b). Figure (2.15 a) shows simultaneous occurrence of LCST and UCST 

behaviors with a one liquid region in the middle. Figure (2.15 b) shows a littie more 

complex phase diagram. In addition to the LCST and UCST regions there is a three phase 

iine bounded by vapor-liquid, one vapor and one Iiquid regions as shown. 

2.6.6 Type HI phase behavior 

In Type III phase behavior the LCST and UCST branches of the Type IV phase 

behavior merge as show in the P-T and T-x projections in Figure (2.16 a). This bappens 

when the mutual immiscibiiities if the two cornponents becorne suficiently great. For 

instance, in a polymer-solvent system exhibithg type IV phase behavior, if the polymer 

chah length is Uicreased, a transition fiom Type IV to Type in can occur. In Type III 

phase behavior, as in TypeV and Type IV, the gas-liquid critical c w e  is not continuous. 

Figure (2.16 b) shows a T-x section for Type III phase behavior for the case where 

the system pressure is slightly below the pressure minimum on the liquid-liquid critical 



Figure 2.14. Type IV phase behavior P-T and T-x projections. 



Figure 2.15. Two constant pressure T-x sections for Type IV phase behavior. 
(a) Simultaneous UCST and LCST phase behaviors. 
@) LCST phase bdwior in the vicinity of a three-phase equilibria and 

UCST phase behavior at lower temperatures. 



Figure 2.16. (a) Type DI phase behavior P-T and T-x projections. 
(b) Constant pressure T-x section for Type ïïI phase behavior showing 

hour glas phase behavior. 
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curve. The phase diagram observed is of hour glass type with a region of immiscibility in 

the middle. 

2.7 Cloud point curves for solutions of a poiydisperse polymer 

The effect of the polydispersivity of the polymer is discussed with reference to a 

polymer with two homologs with differing chah lengths, following the treatment of 

Koningmeld (1968). Let the solvent and the polymer be denoted by S and P respectively 

with PI and PZ representing the two homologs of the polymer. The solution can be 

represented on a temary phase diagram at constant pressure as show in Figure (2.17). 

The temperature axis is perpendicdar to the plane of the paper. The solid curves Iabeled 

Tl, T2 etc. are binodals at different temperatutes. The binodals represent coexisting phase 

compositions located at the ends of tie-lines. The dashed curves are the spinodals (limit of 

stability). The points labeled Cl, Cl etc. are plait or cntical points depending on the 

terrninology used. At these points the length of tie-lines is zero and the two phases 

become identical. SP is the composition axis for the solutions of P in S with a constant 

ratio of Pl  and Pz. This ratio is determined by the molar mass or chain-length distribution 

of the pure polymer. The line SP corresponds to adding solvent to a polymer with a 

distribution of Pl and Pz given by point P. The cloud point for a known composition 

polymer solution is defined as the temperature and pressure condition at which a second 

phase just appears, Le., one is at the phase boundary. In Figure (2.18) the temperature 

axis is explicitiy s h o w  and contains the binodai surface of a temary polymer solution. 



Figure 2.17. Binodals and spinodals in a te- polymer solution. Modified fiom 
Koningsveld (1 968). 

Figure 2.18. Constant pressure Temperature-composition space for a temary polymer 
solution. Modified fiom Koningsveld (1  968). 
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The plane TPS corresponds to a quasibinary section for which the ratio of P, to P, is 

detennined by point P. 

Let us assume that the pressure and temperaîwe are fixed at p and T, respectively 

and we add solvent S to the polymer P. As more solvent is added we ultimately reach the 

phase boundary at A as shown in Figure (2.1 8). If we add more solvent we would reach 

the point B. Both A and B are points on the binodai but usually do not represent the 

compositions of the coexisting phases. The compositions of the coexisting phases are 

given by the ends of the tie-iines starting at A and B. The quasibinary T-x section 

separating the two-phase region fiom the one-phase region, where x is the cumulative 

concentration of the polymer correspondhg to the polyrner distribution P, is shown in 

Figure (2.19). The important point here is that the peak of the quasibinary T-x section is 

no longer the critical temperature which is the case for a binary solution. Rather it lies on 

the right-hand branch of the T-x section. The maximum of the quasi-binary T-x section 

has been called the precipitation threshoid temperature by Tompa (1956). These 

considerations are also valid for a polyrner of more than two components. The binodal 

curve and the spinodai curve (limit of stability) have a common tangent at the critical 

point. 



Figure 2.19. Constant pressure T-x diagram for a solution of poiydisperse poiymer 
showing the location of the critical point on the right hand branch. 



CHAPTER 3 

Cornputafions 

3.0 Introduction 

This Chapter deals with the aspects of phase equilibrium dcuiations. The first 

section outlines a strategy for a volume solver for an equation of state that cannot be 

solved analytidy for volume roots. A volume solver is the cornerstone of any phase 

equilibrium calcdation with an equation of state. The second section contains a method 

for performing pure component vapm pressure calcdations. This is followed by a 

discussion of two-phase equilibrium caiculations. The method of successivr: substitution 

for performing two-phase constant temperature and pressure calcdations is covered and a 

scheme for doing two-phase boundary calculations is presented. The last but one section 

of the Chapter deals with muitiphase constant temperature and pressure equilibrium 

calculations. Finally, a scheme is presented for discretizing a polydisperse polymer into 

pseudocomponents, based on the knowledge of mass average and weight average molar 

masses. Almost always a polyrner, instead of having a well defined molar mas, consists 

of homologus molecules of varying chah lengths. OAen the only information one may 

have regarding the polydispersivity of a polymer are its average molar masses. Hence, it 

is wnvenient to have a scheme which uses the values of the experimental average molar 

masses to give some information regarding the distribution of molar masses in the 

pol ymer. 



3.1 Strategy for a volume solver for an equation of state 

As mentioned above, in this section a strategy is outlined for solving for volume 

roots of equations of state that cannot be solved analytically. The requirement is that the 

mode1 isotherms have the form shown in Figure (3.1 b). The strategy employs Newton 

tecbnique for solving for the volumes. 

Consider Figures (3.1 a) and (3.1 c). These figures show experimental pressure- 

volume isothems for a pure compound and for a mixture of h e d  composition 

respectively. At the critical point of a pure compound [Figure (3. la)] the following 

equaîions have to be satisfied 

The critical point of a mixture need not satisfy equations (3.1) and (3.2), rather the point 

corresponding to equations (3.1) and (3.2) occurs inside the two-phase region (Mills et 

d.,1980). In both cases, the lefi hand side is the liquid region and the right hand side is 

the vapor region. Also, since normally the mixture bubble point pressures are higher than 

dew point pressures they are no longer connected by horizunta1 h e s  which is the case for 

a pure compound. 

The models are designed to mimic experimental data and hence show similar 

behavior. However, the models connect the two-phase regions by sigrnoidal sections as 



Figure 3.1. (a) Experimental isothems for a pure compound. @) Model isothenns for 
a pure compound. (c) Experimental isothenns for a mixture of constant 
composition. (d) Model isothems for a mixture of constant composition. 
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show in Figures (3.1 b,d). The points in Figure (3.1 b,d) where the first derivative of 

pressure with respect to volume (constant temperature) is zero give the b i t  of 

mechanical stability fiorn the model. The isotherm for the mixture which contains the 

point corresponding to equations (3.1) and (3.2) can be c d e d  a quasicritical isotherm 

At temperatures above the quasicritical temperature the sigrnoidal sections are 

missing h m  the isothenns. This has implications on solving for volumes at a given 

pressure. If P T c  (criticai or quasicritid temperature) there is only one volume root and 

if T a c  there are potentiaüy three volumes root for a given pressure. The Figures (3. 

lb,d) are intended to show the similarities between the pure component and mixture P-V 

behavior for the purpose of solving for the volumes at a given pressure and temperature. 

Based on the nature of isotherms shown in Figures (3.1 b,d) the following strategy 

for a volume solver can be developed. The first step is to determine whether the given 

temperature is above or below the critical temperature or the quasicritical temperature 

(depending on whether one is dealing with a pure compound or a mixture). This can be 

convenientiy done by checking the sign of aP/aV for a range of volumes. The equations 

normally involve terms of the type (v-b) so that b/v ranges fiom one to zero and gives a 

convenient interval. If aP/ûV is always less than zero it corresponds to the case where the 

temperature is greater than the critical or quasicriticai temperature and there is ody one 

root. However, if the mixture temperature is less than the critical temperature or the 

quasicritical temperature (some aP/dV>O) there are potentially three mots. The limit of 

mechanical stability is given by the maximum pressure on an isotherm Pmax and the 



59 

minimum pressure on an isothenn Prnin, If the given pressure is above Pmax then there is 

ody  one liquid like root and if it is l e s  than Pmin then there is only one vapor like root. 

However, if the pressure falIs between Pmax and Pmin then, three volume roots can be 

found. The middle root comsponding to aP/dV>O is to be rejected as it co~~esponds to a 

physically impossible situation. Then one is left with a Iiquid l i e  root and a vapor like 

mot one of wbich can be chosen depending on whether one is looking at a liquid phase or 

a v a p r  phase. Now, at a specified temperature and pressure (and composition if 

necessary) one can soIve the following equation with Newton's method 

f(v) = P(v) - P(specified) = O (3 -3) 

updating v as given by 

where k is the iteration count. When solvhg for a vapur-like root, a reasonable starting 

guess is factor*RT/P where the factor is less than unity. For the case where a liquid-like 

root is required a reasonable guess would be factor*b where the factor is greater than 

unity. The strategy explained in this section was employed for obtainhg volume roots for 

the equations of state used in this work. 

3.2 Pure component vapor pressure calculation 

At an equilibrium between the vapor and liquid phases of a pure component the 

equaiity of chernical potentials has to be satisfied as given by 



where superscripts v and 1 correspond to the vapor and liquid phases respectively. At a 

given temperature g can be taken as a fimction of pressure and then the vapor pressure 

can be obtained by solving the above equation using the Newton method as shown below. 

ôg 1 aP can be obtained fiom the Gibbs-Duhem equation which for a molar amount of a 

pure compound is given by 

-sdt + vdp - dp = O 

At constant temperature 

Hence, 

Equation (3.6) can then be written as 

3.3 Two-phase equilibrium calculations 



6 1 

At a two-phase equilibrium in a nc component system the temperatures and 

pressures in the two phases are equal and the equality of the chemical potentials have to 

be satisfied as given by 

II 
g(i) = pi - O i = 1, ..., nc 

In terms of fugacities fi, equation (3.1 1) can be written as 

g(i) / RT = in fiU - ln fil (3.12) 

The equations are solved through the constrrtint that the mole fractions of the components 

in the two phases sum to unity. This can be expressed as 

yis and xis correspond to the mole fiactions in phases I and II respectively. Equation 

(3.13) can be expressed in a different form by mass balance considerations. The mole 

b a h c e  on component i gives 

Zi = pyi + (1 - P)x~ (3.14) 

where qs are the feed mole fiactions and B is the fiaction of phase 1. 

The equal chemical potential equation is rearranged in the fonn 

yi = Kixi (3.15) 

where Ki is the distribution coefficient of component 1. Ki in general depends on 

temperature, pressure and compositions in tfie two phases. 

Substituting yi=Kixi in equation (3.14) and rearmging it we get 



Now substituting fiom equations (3.1 5) and (3.16) into equation (3.1 3) we get 

This is the Rachford-Rice formulation of the equilibrium problem (Walas, 1985). 

Equation (3.17)*and the nc equations for the equaiities of chernical potentiais of a 

component in the two-phases give (nc+l) equations which can be solved for (nc+l) 

variables. If a constant temperature-pressure two-phase equilibrium is required then Kis 

and p can be solved to give the equilibrium set of xis and yis. Another situation of interest 

is the case when B is zero. This corresponds to a phase boundary calculation (bubble 

point, dew point, cloud point etc.). In this case equation (3.13) is 

This equation with the set of nc equilibrium relations involving chernical potentials can 

be solved for Kis and T or P for a given feed ( q s )  and P or T to give the composition of 

the incipient phase bis). 

3.3.1 Constant temperature and pressure two-phase equiübrium calculations 

In this work, the two-phase equilibrium calculatiom were carrîed out employing 

the conventional successive substitution method (Waias, 1985). The methodology was to 

decouple the solution of the mas  balance equation (3.17), which solves for f3, fiom the 
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solution of equations for equality of chernical potentiais. A set of Kis was chosen as an 

initial guess and the mass balance was solved for assuming the distribution coefficients to 

be composition independent to give the phase fiaction P. This is the Rachford-Rice 

procedure (Walas, 1985). This value of phase fiaction was then used to calculate the set 

of X+ and yis ftom equations (3.16) and (3.17), respectively. The chernicd potentials for 

the two phases were evaluated using this set of XP and yis. if the criterion for equilibrium 

expressed in the set of equations (3.1 1) or (3.12) was satisfied to the specified tolerance 

the cornputarions were stopped. Otherwise a new set of Kis was obtained fiom 

k is the iteration count variable. The process was then repeated with the new set of Kis. 

Coefficient m is a damping or acceleration factor in these computations and its 

significance is discussed below. The following tolerance criterion was norrnally used to 

terminate the phase equilibrium calculations 

Equation (3.19) can be obtained as follows. At equilibrium we have for component 

fi1' = fi' 

In terms of fugacity coefficients +P this relation can be expressed as 

xi+flp = y i 4 f ~  



(filgacity of i) 
I$~ is defined as . Equation (3 -22) gives 

(mole fraction of i)(pressufe) 

Taking the natural logarithm of this equation we get equation (3.19). 

The rnass balance function is a monotonidy decreasing fhction of P as can be 

seen fiom its first denvative with respect to the phase fiaction. 

Hence, for a root (O<P<l) to exist the foilowing inequalities have to be satisfied. These 

are obtained by substituting 9=0 and P I  in equation (3.17). 

33.1.1 Convergence of successive substitution 

The process of solving equilibrium equations simultaneously by successive 

substitution can be represented in vector notation (overbars) as 

-k+! - -k 
Y = f ( y  1 

which is presumed to have a solution y' that satisfies 
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Heidemann and Michelsen (1995) point out that a necessary condition for convergence to 

y* ir that the eigenvalues of the matrix given by 

be less than unity in absolute value, This can be seen as follows. 

In the vicinity of the solution, let us assume at the @+1)* iterate, the error vector is 

given by 

This equation is obtained by expanding f(I)' in a fint order Taylor series expansion 

- 
around the solution vector. Let the eigenvectors of Ë be Üi and the comsponding 

eigenvalues be &. Expanding CL on the set of eigenvectors we get 

The error vector at the (k+l)& iterate is given by 

and at the ~ t + r n ) ~  iterate by 
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It is evident fiom equation (3.34) that the absolute magnitude of the eigenvalues of E has 

to be less than unity for the convergence of the iterative process. It has been s h o w  by 

Heidemaan and Michelsen (1995) that this is not always the case for the solution of 

equilibrium equations by successive substitution. They propose the use of a factor m in 

updating Kis to overcome this difficulty. The relation between the eigenvalues of an 

undamped process (m=I) and a damped process (m4) can be easily established. 

Consider the undarnped process given by 

The behaviour of the pmass  is govemed by the eigenvalues of the matrix N with 

eIements 

The darnped process is represented by 

- 
and the convergence depends on the eigenvalues of the matrix M with elements 



and 

Also assume, 

which implies, 

- -- 
Mx = [1- m(l -A)]: (3 -44) 

which gives the relation between the eigenvalues of the damped and undarnped processes 

A, =1-m(1-h) (3.45) 

The effect of damping is to reduce the magnitude of the eigenvaiues of the undamped 

process to make the modified process convergent. However, a consequence of this is a 

slower convergence as the eigenvaiues of the modifiai prmess are pushed towards unity 

for very smdl damping factors. In some cases the iterative process can be accelerated by 

using values of m > 1 (Mehra et al., 1982). 

Michelsen (1982 a,b) has shown that the direct substitution process converges to at 

least a local minimum. This is s h o w  below following the treatment of Michelsen (1982 

ab). 
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Consider at given P and T one mole of a mixture of composition (~~ ,q , . . . . ,~~) -  This 

splits into two phases with mole numbers (il, 12,-.-,1,,3 and (v,, v2, ..., v,J corresponding to 

phases 1 and II respectively. Conservation of mass requires li + vi = q. We choose lis as 

the independent variables. 

The phase spiit represents a stationary point in Gibbs energy if 

- - a(GL+Gv)'RT=(p[ - p ~ ) / R T = O ;  i =  l,nc (3 -46) 
ai, al 

is satisfied, which is the case for an equilibrium caiculation. 

The stationary point is a local minimum if the Hessian rnatrix is positive definite. 

= 
The elements of the Hessian matrhc B are given by 

The elemme of matrix N can be expressed as 

Now, 

where, L = X I ~  and V = Z v i .  
i i 

Also, 



- 
Nu can be expressed in terms of the elernents of Ë as 

- - - 
and the matrix N in te- of matrices B and 6 as 

- 
where the elernents of '6 are given by 

Therefore, 

- - =-1 - 
Now, D = Q where 6 is a symmetric and positive definite matrix. Therefore using 

Cholesky decomposition (Broyden, 1975) it can be expressed as 

From equation(3.55) after suitable premdtiplication we get 



which can be expressed as 

At the converged solution lA.1~1 and so (1-h) is greater than zero. This impiies that the 

=-1 ==-T - 
rnatrix E BE is positive definite. As a consequence the Hesrian matrix Ë is positive 

definite. This can be seen as folIows. 

=-1 = ~ - r  
Positive deihïteness of E BE irnplies that foi any vector 

Let, 

Therefore, 

Substituthg in expression (3 -60) we get 

- 

This shows that is positive definite. Hence, the converged solution of a phase 

equilibriurn caiculation using successive substitution is at ieast a local minimum. 

3.3.2 Two-phase boundary calculations 

The equations to be solved for a two-phase boundary calculation are 



i.e., equality of chernical potentials of each component in the two phases, and, 

Yi would be the mole fiaction yi of wmponent i in the phase I or the incipient phase, 

when the conditions of equiiibrium are satisfied. q is the composition of the feed phase 

or phase II. 

Equations represented by (3.64) to (3.65) are (nc+l) equations in (nc+l) variables. 

Following the approach of Michelsen (1980) these equations can be solved for using a 

Newton scheme. The most obvious choice of (nc+l) variables is the set of Ki's and either 

T or P. In this work, for this case, the temperature and Ki's were solved for keeping the 

pressure and the feed composition (zi's constant). The variable set is given by the vector 

aT=(ln~I,lnK2,....,h&m InT). As suggested by Michelsen InKi's and InT were used 

instead of simpIy Ki's and T for scaling the variables as a Ki may range fiom very large to 

very small numbers. The Newton procedure for solution is shown in vector notation by 

the following equation 

-k "k-k+l 
g + J  Aa = O  

- 
k is the iteration count. J is the Iacobian given by 



In J , i is the row count and has range 1 through nc and j is the column count and has 

range 1 through nc. is the correction vector. 

The expressions for the derivatives involved in the calculation of the Jacobian are 

presented below. The top left band corner (nc x nc) minor has elements given by 

1 

; i=1,2 ,.., nc; j=1,2 ,,.., nc (3.68) 

T, P 

where, 

nT is the total number of moles of phase 1 Le., n,= CYi. 

The other derivatives involved in the computation are 



So the boaom row of the Jacobian is given by (Y,, Y,, ..., Y ,  O). 

In order to initiate computations, one requires fairIy accurate initial estimates of 

the temperature and the Ki's for one or two points on the phase boundary. Sometimes, a 

point on each side of the criticai point is requited. This is so because a trivial solution, 

(yi- and K+), rnay be obtained if one is very close to the critical point. Rough 

estimates of initiai guesses can be obtained fkom a two-phase flash routine. 

Unfortunately, to our knowledge, udike hydrocarbons there are no good correlations 

available for Ki's for the polymer which rnay be used as initial guesses. Once a point on 

the phase boundary is found, the rest of the phase boundary cm be generated by taking 

small steps dong the phase boundary. 

Since one may be dealing with pseudocomponents having extrernely large molar 

masses, numerical problems may arise due to extrernely small mole hctions and 

distribution coefficients. If such a problem is encountered, that particular Ki can be 

dropped fiom the variable set. 

3.3.2.1 Variable polymer mus fmction 

A variation of the phase boundary calculation problem is the case where the mass 

of the polymer in the mixture is treated as a variable. Then some other variable, Say a Ki, 

couid be fked and substituted for by the mass of the polyrner and the resulting set of 
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equations solved for. The mass of the polymer can be included in the variable set as 

follows. 

Consider phase II or the fixed phase. Let exp(v) be the mass of the polymer in the 

mixture per unit mass of the solvent. The mass fiaction of the solvent, taken as 

component 1, is 

Let wt, be the mass fiactions of the pseudocomponents of the solvent-fiee 

polymer, based on some appropriate rnolar mass distribution. The number of moles of the 

polymer species i present are 

where MWi is the molar mass of the pseudocomponent i. Obviously the number of moles 

of the solvent is nl" =IiMW,. The totai number of moles is given by 

nc 
II 1 n c e v ~ t i  nr  = Z n i  =-+x- 

i-i MI i=2 mi 

and the composition of phase II by 

Now for phase 1 we have 

Yi = Kizi 

and the composition is given by 



The mass of various components wi (i = 24c) per unit mass of solvent is given by 

The moles of solvent in phase 1 are ~ , L ~ / M W , .  The moles of the polymer species are 

Now the derivatives of equilibrium relations gi with respect to the variable v can be 

And for i=l ,nc 

Tbis cm be expressed in a different fonn using chah rule 

where, 

and for k=2,nc 



and 

Therefore equation (3.83) cati be written 

This c m  be simplined further by using Gibbs-Duhem equation and by noting that 

Also, n," = z, n," and n,' = y, n:. nierefore for i = 1, nc the partial derivative of gi with 

respect to v c m  be written 

As shown by Michelsen (1 980) a better way of doing these calculations would be 

to solve equations (3.64) to (3.65) dong with the folIowing equation 

g,+* =aj - S = O  (3.9 1) 
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S is a specification variable which could be used to fix the values of one of the variables, 

Say the mass of the polymer or one of the &S. This gives nc+2 equations in nc+2 

variables. Once a particdar point on the phase boundary is found we have for that point 

which gives the set of equations 

This gives us the set of estimates in the direction of a 

d& / dS is the derivative of the vector of the variables 

(3.94) 

particular change in S since 

with respect to the specined 

variable dong a line where al1 the equations are specified. 

3.4 Constant temperature and pressure multipbase calculations 

These calcuiations were carried out using the multiphase successive substitution 

method of Abdel-Ghani et al. (1994). The method of Abdel-Ghani et al. combines the 

calculation of equilibrium phases with the tangent plane distance (TPD) stability criterion 

developed by Michelsen (1982 a). For an equilibrium to be stable at a given temperature 

and pressure the tangent plane distance has to be greater than or equal to zero at the 

stationary points of the TPD hction. The TPD inequality is given by 



where @i is the chernical potential of the component i in the apparent equilibrium or the 

equilibrium being tested for stability with respect to the addition of the kb phase. The 

stationary points of D satisfi the condition 

pk =ci +&RT (3 -96) 

or in terms of fugacities 

Inf& = hii t e t  (3 -97) 

If a phase is ptesent at equilibrium, e k 4 ,  and, for the equilibrium to be stable with 

respect to the addition of phase k, 020. Therefore, the criterion for a stable equilibrium 

with some phases not present can be expressed as 

L 

g,, = Infi, -Infi -0, = O  (3.98) 

Abdel-Ghani et al. use this criterion as the basis of their equilibrium calculations. 

The initiation of the calculations is done by assuming the existence of the maximum 

nurnber of phases as given by the phase de. In the process of solving for equilibrium 

phases, if two phases become identical with respect to the distribution coefficients of the 

components and the densities of the phases, the number of phases is reduced by one by 

combining phases. Their procedure does not require empIoying one of the existing phases 

as the reference phase. Rather an average fugacity is defined by 



where pj is the fiaction of phase j. As a consequence, at equilibrium 

* 

fi  = fi7; j = 1, ..., x 

which is what is desired. 

Now equation (3.97) gives 

f6 = & exp(0,) = %,Oi exp(Bj)P 

The mole fraction of the component i in the phase j is given by 

X, = Ki Kij exp(0 j ) 

with 

Li 

Kij = $ i  I$ij 

The mole fiactions in a phase have to sum to uni@ which gives 

or in a different fom 

I f  Bi = 0,irnplying the presence of a phase a equilibrium 

For a missing phase ej>O 

A mass balance on component i requises 



where zi is the feed fiaction. Substituthg for xij in the above equation we get 

Finally the mole fiactions in a phase have to sum to unity and we get 

These are x non-linear equations to be solved for mass balance. The solution of these 

equations is equivalent to solving for 

where X,=K,jzi/Ei. When pj is positive, Xij is equal to the mole fraction x,, otherwise 
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The mass baiance equations are solved for using a darnped Newton iteration 

process as given by 

- 
where h is a damping factor. A rnatrix has elewnts given by 

The distribution coefficients Kij are rrpdated using 

I~K,'+' = hiik -ln+ik 

which in tems of fugacities is 

which gives the updatuig formula in tenns of gij 

ln K;'' = ln K: - gi 

The convergence criterion normaily used to terminate the equilibrium calculations 

Was 

Michelsen (1 994) has shown that the fimction 



has derivatives 

Michelsen States that Q(B) is at least positive semidefinite in the region of positive phase 

amounts. Thus the phase split problem is equivalent to a consîrained minimization 

problem with a unique solution. 

3.5 Discretization of a poiydisperse potymer 

In this section a method is described for obtaining molar mass distribution data 

frorn experimentai information on average molecular weights. The methodology is based 

on the recipe proposed by Kang and Sander (1988). This is usefiri because in many 

instances the experimental average molar masses are reported instead of the complete 

experimental molar mass distribution. 

We begin with some tenninology used in this section. For a continuous rnolar 

mass distribution a fkquency h c t i o n  or differential distribution fùnction DCM) is 

defmed as the amount of material per unit change of molar rnass M. The amount could be 

a mass fraction or a mole fraction. A plot of frequency function versus the molar m a s  

gives a differential distribution cuve of the type shown in Figure (3.2 a). The fiactionai 

amount of material having molar masses between MI and M2 is given by the shaded area. 

The total area under the curve is unity. We can also plot the cumulative fiactional amount 

versus the molar mass to give the integral distribution curve as shown in the Figure (3.2 

b). Cumulative mass fraction correspondmg to molar m a s  M is the fiaction of materiai 



Figure 3.2. (a) Dierential distribution curve. 
(b) Integral distribution curve. 
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h a h g  molar mass smailer than or equal to M. The relation between D(M) and the 

integral distribution f'wiction I(M) is given by 

N(M) = D(M)AMy or, dI(M) = D(M)dM 

which gives 

Also, the relation between N(M), the number distribution fûnction, and, W(M), the mass 

distribution fiuiction, is 

The nurnber average molar mass MN for the continuous case is given by 

The mass average molar mass MW for the continuous case is given by 

And the z-average molar mass MZ is 
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The ratios Mw/MN, MZ/Mw etc- give an indication of the spread of the molar masses of 

the polymer or the polydispersivity of the polyrner. Following the usual convention 

Mw/MN is taken as the polydispersivity index of the polymer. 

The average molar masses are defined for the discrete case as follows. The 

number average molar mass is 

where xi and wi are the mole fraction and the weight fraction of component with molar 

mass Mi. The mass average molar mass is 

Using an appropriate distribution function, we can constnict discrete analogs of a 

polydisperse polymer as shown below for the Log-Normal distribution (Lansing and 

Kraemer, 1935) and Schulz distribution (1939). Both these distributions have two 

adjustable parameters and yield discrete pseudocomponents of a polydisperse polycner in 

a fairly straightfôrward manner by the application of Gaussian Quadrature. 

3.5.1 Log-Normal distribution 

Lansing and Kraemer (1935) pointed out the utility of the log-normal distribution 

for quantimg the non-unifonnity of polymers. Subsequently, it was used by Granath 
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(1958) and Koningsveld and Staverman (1968) among others. There are additional 

references in the Granath paper. In recent years Kang and Sander (1988) have employed 

the log-normal distribution to account for the polydispersivity of dextran in phase 

In the log-normal distribution, the normalized number distribution fiction is 

given by FM, where the function F is, 

Mo and P are the parameters of the distribution. Then, 

The number-average molar mass is given by 

and the weight-average molar mas  is given by 

The polydispersivity index is 

Given the experimental values of MW and MN, Mo and B, the parameters of the 

distribution, can be determined fiom equations (3.135) or (3.136) and (3.137). These 

values can then be used to construct a discrete anaiog of the polydisperse polymer 
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through Hermitian quadrature- Hermitian quadrature permits approximation of certain 

integrals through function evaluations at a few points. The quadrature formda is 

Values of Hk and XI, for various number of quadrature points, n, can be obtained fiom 

mathematical tables. In this work these values were obtained h m  Abramowitz and 

Stegun(1972). (IIk Id x ) can be interpreted as the fiaction of polymer with molar mass 

(G(x3 d R). Note that equation (3.135) can be rearranged in the same fonn as equation 

(3.13 8) by a simple transformation as given by 

where x is 

In this form the quadrature formda can be applied to the equation for MN. 

For the discrete case the molar m a s  of the kh cornponent is 

M k = MO ex~@xk ) (3.141) 

and (Hk / 4 X )  is its mole fiaction. Figure (3.3) shows the error in caicdated b as a 

function of number of the pseudocomponents. From this plot some idea cm be obtained 

about the number of pseudocomponents required to represent a particular pdydisperse 

polyrner. 



Figure 3.3. Effect of the number of pseudocomponents on the error in the calculated 
polydispersivîty index. 



3.5.2 Schulz distribution function 

The Schulz distribution function has the mass frequency function given by 

p and a are the parameters of the distribution. 

This is convergent for (p+2)>0. 

The mass average molar m a s  is 

where wi is the mass fraction of the ih pseudocomponent and Mi is its molar mass. 

Let, 

which gives 

Changing the variable of integration in equation (3.144) 

where yks are the zeroes of LaguerreGauss quadrature and 



Now, 

MW = C h i f ( Y i ) ( z ~ j )  (3.149) 

This gives the mass fraction and the molar masi of the ih pseudocomponent 

w i = h i = H i l C H j  (3-1 50) 

and 

Mi = f ~ ~ i ~ z ~ j )  (3.151) 



CEAPTER 4 

Experiments 

4.0 Introduction 

The NO most important techniques for measurement of phase equiiibria at high 

pressures are the anaiytid and the synthetic methods (Schneider, 1994). in the audytical 

rnethod, the components are filied into an autoclave and the system is brought to the 

conditions of temperature and pressure in a heterogeneous region, such as, conditions of a 

vapor-liquid equilibrium. The compositions of the equilibrium phases are determined 

mostiy by sampling and analysis, by chomatography for example. 

In the synthetic method, first a mixture of known composition is prepared. The 

pressure and temperature are then adjusted such that the mixture is in the homogeneous 

region. The pressure andfor temperature is then so varied that the phase boundary is 

reached, as detected by the appearauce of a second phase as in a bubble point, a dew point 

or a cloud point determination. The phase boundary between the two-phase and one- 

phase region is obtained as a pressure-temperature curve for a k e d  composition, i.e. an 

isopleth. This is done for a number of compositions of interest. M e r  having gathered this 

information, the P-x and T-x sections can be prepared by interpolation. The disadvantage 

of this method is that tie-lines connecihg equilibrium compositions in systems with more 

than two components cannot be obtained- 
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In this work the synthetic method was empioyed for making phase equilibrium 

measurements on polystyrene/me~ylcyclohexatle/C02. systems. The experiments were 

performed at The Technicd University of Delft in the Laboratory of Applied 

Themiodynamics and Phase Equilibria under the direction of Dr. Th. W. de Loos. An 

extensive inhsîmcture was in place in this laboratory to assist with performing the 

essential measurements. 

There are two parts to the procedure: 

(i) Preparing a mixture of known composition. 

(ii) Making phase equilibrium measurements on the sampfe. 

In the fïrst section of this Chapter, the procedute for making a filling of known 

composition is desctibed. This is followed by a brief description of the Cailletet apparatus 

used for rnaking phase equilibrium measurements in this work. The subsequent section 

provides information about the materials used. Then the methodology employed for 

rnaking the measurements is discussed briefly. Finally, the results of the measurements 

are presented. 

4.1 Procedure for making a filling 

The fillings are made in a capillary Pyrex glass tube sealed at one end. The tube is 

first weighed and then a known amount of solvent is added to it by weighing. The 

accuracy of the weight balance for this part was f0.01 mg. Typically 100-150 mg of the 

solvent was weighed in. Subsequently a known amount of the polymer is added to the 
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solvent for the measurements where the polyrner is required as one of the components. 

The polymer was weighed in with an accuracy of fl.001 mg. The mass of polymer 

sample added typically ranged from 5-35 mg. A small permanent mapet is added in the 

glas  tube for stining the sample. The capillary tube is then attacheci to a piece of 

equipment called the gas rack. The gas rack is shown schematidly in Figure (4.1). The 

purpose of the gas rack is two-fold. First the solvent is degassed by repeated freezing and 

melting with Iiquid nitrogen under a vacuum. Then a known amount of a gas is added by 

opening the comection to the gas storage. When carbon dioxide was included as one of 

the components it was added via the gas rack. 

In order to add a known amount of carbon dioxide to the sample, the tube 

comection half of the gas rack is nileci with the gas to appmximately the desired 

pressure. In this work the pressures typicdly ranged h m  40-370 mbar. The pressure was 

measured with a tranducer having a range 0-0.1 MPa with an accuracy of 0.01 %. The 

gas is then displaced by mercury and part of it is confined to a bdb  of known volume as 

s h o w  in Figure (4.1). The point to note here is that w h  mercury just touches the tip of 

the bulb the pressure in the bulb is same as the system pressure. From a knowledge of the 

pressure and the room temperature, the amount of gas can be caiculated. As a final step, 

the gas is fiozen with the rest of the sample and sealed with mercury. The tube with the 

fiozen sample is then removed h m  the gas rack and placed in the apparatus for making 

the phase equilibrium measurements. The sample is pressurized in the apparatus before 
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Figure 4.1. Schematic of the gas rack. Modified fiom Stamoulis (1994). 
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melting. In this work mixtures were prepared with an accuracy in the weight !?action on 

the order of 0.0002 to 0.0005. 

4 3  Apparatus for phase equilibrium measurements 

Phase equiiibria were measured in the glas tube Cailletet apparatus describeci by de 

Loos et al. (1986). In this apparatus, visual observations are made of phase transitions in a 

mixture of fixed composition by fixing temperature and varying pressure or vice-versa The 

sample is confineci over mercury in the sealed end of a capiliary glas tube. The open end of 

the glas tube is irnmersed in the mercury in the autoclave. The pressure is applied 

hydraulically with a screw pump with mercury acting as the intermediary. The gIass tube is 

kept at the desired temperature by a thermostat with circuiating fluid. The sample is agitated 

by a small iron magnet stirrer immersed in the sample. The stirrer is moved by a pair of 

button magnets on the outside, which move up and down. The temperature can be rneasured 

with an accuracy of f0.01 K by a platinun resistance thermometer. The temperature of the 

bath can be regulated to within M.02 K. The pressure is measured with a dead-weight 

pressure gauge, which has an accuracy of 0.05 bar. 

4 3  Materials 

in this study, two samples of polystyrene were used for cloud point measurements. 

One was an Aldrich standard (Lot number: 01302 KN) with Me31,600 @mol and 

M e 2 9 , I  00 dm01 as determined h m  gel perneation chromatography. The manufacturer 
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also reports for the same sample M,,,=29,300 gfmol fiom Iight scattering measurements and 

Me28,900 g h o l  fiom membrane osmometry. The other sarnpIe was suppliecl by Novacor 

Technology and Research Corporation (Lot number: 9-1-4823-1) and had a M-,OOû 

dm01 and M~250,Oûû gfmol as determineci h m  gel permeation cbromatography. 

Methylcyclohexane was purchased ilam MERCK-Schuchardt with a guaranteed purity of 

99%. Chromatographie analysis of methylcyclohexane gave a purity of 99.5%. It was 

degassed before use by qxated kezing and melting with hquid nitrogen. The carbon 

dioxide was obtained h m  Air products with a purity of 99.95 wî!??. 

4.4 ExperimentaI method 

The Gibbs phase d e  when appüed k a two-phase equilibrium involving n 

components yields for the degrees of fkeedom F the following equation. 

F = n  (4-1) 

For bubble point, dew point and cloud point measutements the phase boundary is trace& 

Therefore, in principIe, the composition of the sample is fixed. in other words the (n-1) 

independent composition variables are fixed. Now if the temperaaite is fixed then there is a 

unique pressure for the occutretlce of a phase boundary and vice-versa. in this work mainly 

two-phase boudaries were measured. 

The cloud point measurements on the polystyrene(29 100) + methylcyclohexane 

system were made by fixing pressure and varying temperature in intervals of 0.04-0.05 K. 

The cloud point was taken as the lower temperature of the temperature interval over which a 
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turbid phase appeared and disappeared starting h m  a homogeneous liquid phase. When a 

cloud pint was detected, it was confimeci by the disappearance of turbidity at an elevated 

pressure while keeping the temperature constant For cloud point measurements with the 

polydisperse polystyrene sarnple and when CO2 was present the temperature was 6xed and 

the pressure was varied. The cloud point was definecl as the mid-point of the pressure 

interval over which a turbid disperseci phase appeared and disappeared over the whole 

system, starting h m  a homogeneous liquid phase. The maximum uncertainty in pressure 

for cloud point measmemen& when the temperature was held constant was 0.1 MPa. In ail 

cases the cloud point was checked by moving back and forth across the phase boundary. 

The bubble points were m e a d  with an accuracy of 0.01 MPa The methodology 

followed was similar to that for cloud point measurements when the temperature was fixeci 

and the pressure varied. 

4.5 Results and discussion 

4.5.1 Carboa dioxide vapour pressures 

Figure (4.2) shows a cornparison of a few measured vapour pressures with the 

vaiues h m  the Dortmund Data Bank. The vapour pressures were measured with an 

accuracy of 0.01 MPa From the figure it is obvious that the agreement between the 

measurements in this work and the values from the literature is excellent. 



Figure 4.2. Carbon dioxide vapor pressures. (+) Measured. (A) AU property data bank. 
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4.5.2 Carbon dioxide + methylcyciohexane system 

Figure (4.3) shows a few pressure-temperature bubble point isopleths for the system 

carbon dioxide + rnethylcycl~hexatle~ An isopleth is a pressure-temperature ccure of 

constant composition sepamting the two-phase region fimm the one-phase region. For this 

figure, the region above the isopleths is the one liquid region and the region below the 

isopleths is the vapour-iiquid region The isopleths represent the vapour-iiquid phase 

bomdary. The bubble points were measured with an accusicy of 0.01 MPa 

Figure (4.4) contains two pressure-composition sections at constant temperature. 

mese were obtained by interpoiating pressure values b r n  the P-T isopleths for various 

compositions at a fixed temperature. The region above the P-x curves is one liquid and the 

region below the P-x curves is the vapour-liquid region. 

4.53 Poiystyrene(29100) + methylcyclohexane system 

Figure (4.5) contains liquid-liquid pressure temperature isopleths for the system 

polystyrene(29100) + methylcyclohexane. These were measured by nxing pressure and 

varying the temperature in intervals of 0.04-0.05 K. The region to the right of the curves is 

the one iiquid region and the region to the left of the cuves is the liquid-liquid region. The 

isopleths are the locus of cloud points or the points where phase separation just occurs. 

Figure (4.6) contains a few temperature-composition sections at constant pressure. These 

cuves were obtained h m  the data shown in Figure (4.5) by fixing the pressure and 



Figure 4.3. Bubble point P-T isopleths for the system Carbon 
dioxide/~eth~lc~clohexane. CO2 miss percent: (t) 4.83, (+ ) 7.09, (A) 
9.75, (A) 11.19, (0) 15.19. 





Figure 4.5. P-T isopleths for the systern Polystyrene(29 1 ûû)/Methylcyelohexane. 
Polymer mass percent: (*) 3.23, (A) 4.94, (0) 7.26, (+) 8-82, (V) 10.97, 
(A) 12.81, (O) 15.19, (O) 18.21, (O) 20.6, (W) 22.51, v) 26.34. 
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interpolating the temperature for various isopleths. The region above the curves is the one- 

phase region and the region below the curves is the two-liquids region. 

The T-x curves showa in Figure (4.6) represent typical upper critical solution 

temperature behaviour. This is classifieci as Type II behaviour in the scheme of van 

Konynenburg and Scott, However, there is reason to believe that this system actuaüy is of 

Type IV. Saeh et al. (1973) report low pressure measurements on a number of polystyrene 

+ methylcyclohexane systems (differing in the molar mass of polystyrene) which show 

UCST behaviour at low temperatures and as the temperature is raised there is an occurrence 

of lower criticai solution temperahrre or LCST behaviour. In this work measurements were 

made in the vicinity of the qper criticai solution temperature. 

The polystyrene used for the rneasurement shown in Figures (4.5) and (4.6) had a 

polydispersivity index very dose to unity in value. Hence, this system can be treated as a 

binary system and in that case the maximum temperature on a particular T-x curve is the 

upper critical solution temperature, The system polystyrene + methylcyclohexane has been 

investigaîed extemively by a number of research groups for a range of molar m a s  of 

polystyrene. These researchers a h  report the measured UCSTs. This enables a comparison 

between the extrapolated value (P=lbar) of the critical temperature h m  this work with the 

measurements reported in îhe literatrire. The cornparison is in Figure (4.7). The comparison 

is made by plotting the inverse of the criticai temperature in K against the inverse of the 

square mot of  the molar mass of the polymer. It can be seen that the measurements made in 

this work faII dong with the measurements reported in the literature. The mode of plotting 



Figure 4.7. Cornparison of  upper critical solution temperatures for systems 
Polystyrene/Methylcyclohexane. (+) Literature, (A) Measured. 
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is based on the work of Flory (1953) who has shown theoretically that a plot of the inverse 

of the critical temperature versus the inverse of the square mot of the moIar mass should 

exhibit a linear W. The literature references for Figure (4.7) are listed in Table (4.1). The 

list of references was suppiied by Dr. S. Enders (1996). 

This ab-section is concluded with a remark regarding the sign of volume change of 

rnixing for this system in the vicinity of UCST. Consider the following equation derived 

previously . 

The Ieft hand side is negative in this case. Also, for UCST type behaviour the second partial 

derivative of molar entropy with respect to composition is less than zero. Therefore, the 

volume derivative has to be positive. Following an argument simiiar to that empioyed to 

obtain the sign of the enthalpy change of mixing in section (2.5) it can be deducd that the 

volume change of mïxing has a negative sign. 

4.5.4 Poiystyrene(64000) + methylcyclohexane system 

Figures (4.8) contains the liquid-liquid Pressure-Temperature isopleth data for the 

system plysty~ene(64000) + methylcycbhexane. Figure (4.9) contains a few Temperature- 

composition curves. These measutements were made by 6xing the temperature and varying 

the pressure. The cloud points are accurate to within 0.1 MPa 



Table 4.1 List of iiterature references for Figure (4.8) 

1. Wells P.A., de Loos Th.W. and KIeintjens LA., Fluid Phase Equil., 83,383, 1990. 

2. Nose T.and van Tan T., Polymer L e m  Ed. 14,705,1976. 

3. Dobashi T., Nakata M. and Kaneko M., J. Chem Phys., 80,948,1984. 

4. Chu B., Linlium P. Xie IL, Ying Q., Wang 2. and Shook LW., Rev. Sci. Instnun., 62, 

2252, 1991. 

4. Dobashi T., Nakata M. and Kaneko M., J. Chem. Phys., 72,6685, 1980. 

6. Saeki S., Kuwahara N., Komo S. and Kaneko M., Macromolecules, 6,246, 1973. 

7. Shen W., Smith G.R, Knobler C.M. and Scott RL., J. Phys. Chem., 95,3376, 1991, 

8. Shinozaki K., Tan T., Saito Y. and Nose T., Polymer, 23,7280, 1982. 

9. Heinrich M. and Wolf B.A., Polymer, 33,1926,1992. 



Figure 4.8. P-T isopleths for the system Polys~ene(64000)/Methylc~clohexanee 
Polymer mass percent: (a) 2.1 1, (V) 3.3, (A) 5.1 1, (+) 6.48, (A) 9.71, (0) 
13.6. 
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This system also shows UCST behaviour. However, the polystyrene sample used 

for these measurements had a mass average molar mass of 250,000 dm01 and a number 

average molar mass of 64,000 g/mol. As a consequence of the polydispersivity of the 

poIymer the maximum temperature on the T-x curves is in al1 probabiiity not the upper 

critical solution temperature. Rather, it wodd be expected to Lie on the nght hand branch of 

the T-x curve as dixusseci in section (2.7). 

4.5.5 Polystyrene(29100) + methylcyclohexane + carbon dioside system 

The objective of these measurernents was to study the effect of CO2 on the phase 

behaviour of the system polystyrene(29100) + methylcyclohexane. The investigation was 

d e d  out by keeping the polymer concentration approximately constant and replacing part 

of the solvent with carbon dioxide. This was done for two approximate polymer 

concentrations of 0.05 and 0.1 1 mass fraction. 

The expected phase behaviour of the systems such as polystyrene(29100) + 

rnethylcycIohexane + carbon dioxide is shown schematically in Figure (4.10) for relatively 

Iower concentrations of wbon dioxide (McHugh and Krukonis, 1994). At higher pressures 

and lower temperatures (in the vicinity of polymer-solvent UCST) there is a Iiquid-iiquid 

isopleth that separates the one-liquid region fiom the two-liquid region. However, as the 

pressure is lowered there is a transition h m  a liquid-liquid region to a three phase Iiquid- 

liquid-vapour region. Further lowering of tempera- &es a vapour-liquid region. At 

lower pressures and higher temperatures there is a vapour-liquid isopleth that sepatates the 



Figure 4.10. P-T schernatic for a polymer-solvent-solvent mixture of constant 
composition. 
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one-liquid region fiom the vapour-liquid region. As temperature is raised further (in the 

vicinity of polyrner solvent LCST), the phase behavior is an image of that for lower 

temperatureS. The lower temperature branch (in the vicinity of polymer-solvent UCST) is 

show for an approximate polyrner mass k t i o n  of 0.05 and CO2 m a s  fiaction of O. I l  in 

Figure (4.1 1). The point of intersection (VLLE point) of the iiquid-iiquid and vapour-iiquid 

isopleths is unique for a particular composition as a consequeme of the phase d e .  

However, for higher concentrations of CO2 the LCST and UCST type behaviours c m  

merge to give liquid-liquid isopleths of the fom s h o w  in Figure (4.12) for carbon dioxide 

mass ftactions of 0.209 and 0.21 1. For these isopleths the region above the cuïves one 

liquid and the region below the curves is a region of liquid-liquid immiscibility. 

Figure (4.12) contains the iiquid-liquid isopleth data for the system 

polystyrene(29100) + methylcyclohexane + carbon dioxide for an approximate polyrner 

mass fiaction of 0.05. Except for the two CO2 concentrations mentioned in the previous 

paragraph the one liquid region fies to the right of the curves and the two-liquid region is on 

the left of the curves. 

Figure (4.13) contains a few temperature-composition sections prepared h m  the 

data shown in Figure (4.12). The sections are for pressures greater than the VLLE point 

pressures. The region of immiscibility is below the T-x curves. Figure (4.13) shows that 

addition of COz initidy increases the solubility of the polymer a little which is foUowed by 

a sharp decline in solubility as the carbon dioxide concentration is raised. The improved 

soiubility of the polymer in the mixed solvent at lower concentrations of carbon dioxide is 



Figure 4.11. P-T isopletbs for the system Polystyrene(29 1 OO)/Methylcy~lohexandC~~ 
Polymer mass percent - 5.0. Ca mass percent - 1 1  -2. (+) LE; (A) VLE; 
(O) VLLE. 



Figure 4.12. P-T isopleths for the system Polystyrene(29 1 OO)/MethylcyclohexandCOt. 
Polyrner mass percent - 5.0. CO2 m s  percent: (A) O, (A) 3 -77, (a) 7.75, 
(O) 11.22, (0) 12.21, (+) 14.79, (V) 18.12, (+) 20.95, (O) 21.14. 
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Rgure 4.13. Isoban for the system Polystyrene(29 1 OO)/Methylcycldiexane/CO~. 
Polymer mass percent - 5.0. Pressure (MPa): (+) 4, (A) 6, (0) 8, (+) 10. 
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probably related to the density behaviour of systems containing carbon dioxide as found by 

Kordikowski et al. (1995). These researchers report that the liquid density as a fiinction of 

carbon dioxide concentration in certain CO, + organic solvents shows a maximum. They 

point out that, as a consequence of this kind of density behaviour carbon dioxide at certain 

conditions may act as a soivent 

Similar behaviour is observed for the case whxe the polymer mass fiaction is kept 

constant at approximately O. 1 1. The liquid-liquid isopleths for this case are shown in Figure 

(4.14). Figure (4.15) contains a few T-x sections at pressures greater than VLLE point 

pressures. 

The VLLE points deteminecl by the intersection of the LLE and VLE curves are 

plotted for al1 the isopleths showing the behaviour in Figure (4.16). The points shown in 

Figure (4.16) are the temperatures and pressures where a homogeneous phase of the 

indicated composition is in equilibrium with two new phases: (i) a liquid phase and, (ii) a 

vapour phase rich in COz- 

Shown in Figure (4.17) are constant temperature bubble points for the binary 

methylcyclohe~~~le/CO~ system and polystyrene(29100~methylcyclohexane/COZ systems 

at a temperature of 3 13.15 K. At the same carbon dioxide m a s  percent, the bubble point 

pressure is increased by replacing part of the methylcyclohexane with the polymer. 



Figure 4.14. P-T isopleths for the system Polystyrene(29100)/Methylcyc1ohexandC0~. 
Polymer mass percent - 11.0. CO2 mass percent: (A) 2.42, (+) 4.28, (0) 
5.08, (+) 7.42, (a) 10.37, (A) 11.67, (O) 14.57, (O) 16.57. 
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Figure 4.15. Isobars for the system Polystyrene(29100)/MethylcycIohexane/CO~. 
Polymer mass percent - 1 1 .O. Pressure (MPa): (+ ) 4, (0) 6, (A) 8, (+) 10. 
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Figure 4.16. VUE points for the system Polygyrene(29100)/MethyIcy~l0he~antdC~~ 
(+) - 5 mass percent polymer; (A) - 1 1 mass percent polymer. 
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Figure 4.17. Pressure-composition sections (bubble points, T=3 13.15 K) for the systems 
Polystyrene(29 ~OO)/MethylcyclohexanelC~ (+) and 
Methylcyclohexane/CO~ (O). Polymer mass percent - 5.0. 



CHAPTER 5 

Models 

5.0 Introduction 

In this Chapter the three equation of state modeb employed in this work are 

presented. 

The equation of state modeling of polymer-solvent systems has followed two 

main approaches: 

(i) Lattice-based models. 

(ii) ModeIs based on perturbation theory. 

The latîice-based modeIs conceptualize a mixture on a lattice. The fiindamental equation 

in temu of Helmholtz fiee energy is obtained by adding a configurational entropy term 

(Le., a term accounting for the number of contlgurations available to molecules on the 

lattice) to an energetic term accounting for the interaction between segments. The 

perturbation theory approach employs a reference auid, such as a mixture of chahs of 

hard spheres as in the mode1 used in this work. The equation of state for the real fluid is 

obtained by adding a perturbation term to the reference fluid tem. 

The following models were chosen for this work: 

(i) The Sanchez-Lacombe equation of state. 

(ii) Ttie Kleintjens-Koningswld version of the Mean Field Lattice Gas Model. 

(iii) The Pe~zurbed Hard Sphere Chain (PHSC) equation of state. 
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The k s t  two are Iattice based models and, as the name suggests the thud is a 

mode1 derived îÎom perturbation theory. The versions of mode1 equations used in this 

work employ mole number or mole fraction as the principal composition variables 

instead of the traditional choice of site fiaction as the principal composition variable. 

Although the choice is subjective, in the author's opinion the versions presenteà in this 

Chapter are easier to use fiom a computational point of view. 

5.1 Sanchez-Lacombe equation of ahte 

Conceptually, the latiice based equation of state of Sanchez and Lacombe (1976, 

1978) is very shi lar  to the lattice theory of Flory and Huggins (1953) for polyrner 

solutions. The Flory-Huggins theory employs a rigid lattice and, as  a consequence, in 

principie cannot mode1 behavior caused by changes ia compressibiiity, for example, 

LCST behavior. The Sanchez-Lacombe quation of state cùcumvents this shortwming 

by ailowing for a variable number of vacant sites on the lattice. En the Sanchez-Lacombe 

fomdatiiin, as in the treatment of Kleintjens and Koningsveld (1 980) discussed in a later 

section, a pure cornponent is treated as a K i  mixture of vacant and occupied lattice 

sites. 

The number of configurations available on the lattice R, are calcdated h m  the 

expression developed by Guggenheim (1952) in the Iimit of a large coordination nurnber 

z. This is the Flory approximation. The expression for f2 for a nc component mixture is 



where, 

di is the number of segments occupied on the lattice by compnent i. ni is the number of 

molecules of component i. n,, is the number of empty Iattice sites. si is a syrnmetry 

number and Si is a flexibility parameter. fi: is the fraction of sites occupied by the 

component i in the mixture and f, is the hction of empty sites. From equation (5.1) and 

the following equation fiom statisticai rnechanics (Hill, 1986) 

S=RLnR 

the configurational entropy of the mixture can be calculated as 

R is the gas constant. The last swnmation in this equation wiIl tte neglected from here on 

as it does not affect phase equilibriurn computations of interest in this work. 

Sanchez and Lacombe obtain the configurational energy E for their mode1 from 

the following equation (McQuarrie, 1976) 



where $i is a site fiaction, given by 

gij is the pair distribution hction, and E, is related to the depth of the potential well. p is 

the number density of ail segments in the mixture. r is the distance between two 

segments. Sanchez and Lacombe assume that mers have hard cores and interact 

attractively with each other at a distance r via an inverse power law. 

~ ~ ( r )  =m ; r ccij 

qj is the distance of closest approach. 

In the mean field approximation gij is given by 

gij(r)=O ; r < a i j  

g,(r) = 1 ; r >a, (5.9) 

Substitution of equations (5.8) and (5.9) into equation (5.6) yields for E the following van 

der Waal's like expression. 

where the mixture interaction enerI.gy parameter E* is given by 



p is the reduced density of the mixture and is given by 

v' is the mixture lattice site volume and V is the total volume. It is as-ed that v,' = 

3 
Oij . 

The ij energy of interaction, E~*, is given as 

E; =2m; /(n-3) 

The mixture lattice volume v* is calculatecl using the following mWng d e .  

8 .  

'The mode1 has three parameters for a pure component, namely qi , vii and di. For a 

mixture, the cross parameters can be obtained as 

E; = (I - kij),/&;~; 

where kij is a binary interaction parameter, and, 

As a consequence of the mixing d e  for the mixture lattice volume v* and equation (5.16) 

the hard core volumes of the pure-components are preserved. 
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Now the expression for the Helmholtz fiee energy can be calculated tiom 

From the fundamental equation for A al1 the thermodynamic properties of the mixture can 

be obtained. 

Sanchez and Lacombe (1976, 1978) expresseci the model equations with the site 

fiaction as the principal composition variable, Although the choice of variables to work 

with depends on the user, in the author's opinion, the version of model equations with 

mole number or mole fiaction as the principal composition variable is easier to work 

with. The model equations in terrns of the mole numberslmole fiactions are derived now. 

In order to restructure the Sanchez-Lacombe expression for A let, 

Therefore in terms of n2a, $b and nd (a, b and d are these quantities in terms of mole 

fractions) we have, 



The reduced density p.  fi ,  fo and n,, can now be expresseci as 

After substitution we get for A, 

Pressure is related to A by 

P = -(aA / av),, 

and, for the Sanchez-Lacombe equation of state, it is given by 

The chernicd potential of component k c m  be found fiom A by differentiation as given 

by the following expression 

~k = (aA 1 h k  1 , "  (5.32) 

For the Sanchez-Lacombe equation of state it is given by 



pi = -- z n i a i k  
V i = r  

+RT(V - n2 b / nd) in(1- n2b / nd 2dtnd 2(nd)* (C nibit ), 
V ) [ ~ - ( n ~ b ) ~  i.l 

d2  +RT-(dk - -- gnib ik ) [ l+h( l -  n2b / nd 
b d2  nd i,, V 

11 
+RqI + lndk + in(nk / V)] 

5.2 Kleintjens-Koningsveld Mean Field Lattice Cas equation of state 

As mentioned before, in the Mean Field Lattice Gas model, a pure substance is 

conceived as a b h r y  mixture of occupied and vacant sites (holes) distributeci randornly 

(the mean field approximation). Changing the number of holes gives a lattice of variable 

volume and allows for the representation of both gas-like and liquid-lie states. After 

obtaining the energy of mixing AE, the Helmholtz free energy of rnixing is obtained by 

adding the following terms to AE (Kleintjens, 1985): 

(i) A Flory-Huggins cornbinatorial entropy of mixing term (Flory, 1953). 

(ii) An empincal entropy of mixing correction term of the form: constant * +i +j. 

The Helmholtz fixe energy of mixing for the Mean Field Lattice Gas model of 

Kieintjens and Koningmeld for a multicomponent system is given by (Kennis et al., 

1 WO), 
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where, O refers to holes and nc is the number of components. mi is the number of lattice 

sites occupied by component i. N+ is the total nurnber of lattice sites (N+=No+zNimi). 4i 

is the principal composition variable and is a measure of the fraction of sites occupied by 

the component i. 

bi is a temperature dependent pure component parameter given by 

goi =aPi +gPi I Q  (5.3 5 )  

where, spi is related to an empiricai entropy correction tenn. gpi is temperature 

dependent with the temperature dependence given by 

The cross interactions are represented thtough xij and are expressed as 

where, 

y is a parameter related to the d a c e  area of contact. gij is given by 

The principal composition variable +i is given by 

The total volume V is calculated fiom N+ and vo as 

where v, is the constant volume of a lattice site. 



The volume fiactions of holes is 

For a pure component, the parameters required are mi, api, yi, Boii, Blii  if oniy two terms 

are included in the expression for gpi. For a mixture a,, Bo,, BI, etc. are also required. 

The equations so far briefly describe the KIeintjens-Koningmeld model. The 

objective now is to reorganize the model equations so that the equations are expressed in 

terms of total volume and individual mole numbrs. This is to facilitate the evaluation of 

denvatives and computations with the model. 

Define, 

Therefore, 

Let, 



Therefore, 

Now, 

SI can now be expresseci as 

Define, 



With 

and, 

SZ c m  now be exptessed as 

S' = 
n2 h 

V(V + nd) 

With these new definitions the Helmholtz energy of mixing is, 

nc 

-= (V - nb) ln - V-nb +cII~V.  h nimiv, 
RT V 

+na+ng v 
n' f - (na)(nb) + nih - (ng)(iib) - (ngXnd) (5.59) 

+ 
V (V + nd) 

In order to simplify this equation define, 

The final expression for Helmholtz fiee energy of mixing is 



IIC 

-- UV. - (V - nb) ln- '- nb + x n i v o  ln nimi v, 
RT V i-i V 

The pressure is given by the equation 

The chemicai potentiai of component j is given by the following equation 

5.3 PHSC equation of state 

The PHSC equation of state of Song et aL(1994 a,b; 1996) is based on the work of 

Chiew (1990). Chiew devetoped an expression for pressure for mixtures of hard-sphere 

c h a h  modeled by a series of fieely jointed tangent spheres. Cbiew's pressure equation 

has the form 

P=Phs+Pbaid (5.65) 
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P, is the hard sphere part and Ph,,,, accounts for chain connectivity. Each sphere in a 

chain interacts with every other sphere through the hard-sphere potentiai. Song et al. 

(1994 a,b; 1996) added a van der Waals Iike attractive texm to equation (5.65) to get the 

equation for the pressure of a reai fluid. 

The perturbed hard-spherechain (PHSC) equation of state (Song et ai., 1994) is 

where, P is the pressure, T is the temperature, and, is Boltzmann constant. p is the 

number density (number of molecules/total volume), xi is the number fraction of 

molecules and ri is the number of h d  spheres comprishg component i. g, is the pair 

radial distribution fiinction of hard-spheres. bij is the second cross vinal coefficient of 

hard-sphere mixtures and is related to temperature dependent hard-sphere diametea. a, is 

a parameter that reflects the attractive force between two segments. in a later paper (Song 

et al., 1996) the temperature dependence of bij and a, was altered. This does not affect the 

equations that follow. Only the corresponding parameters have to be used. 

bij is obtained fiom the following expression 

2x 2x  b,(T) = -di(T) = -ai Fb(kBT/ E,) 
3 3 

aij is obtained fiom 
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eij is related to the depth of the minimum of the pair potentid and a, is the separation 

distance at this minimum. The mode1 has three pure component parameters namely qi, a, 

and ri. The cross parameters E, and a, are obtained fiom the following equations. 

Eu = (1 - k i j ) d E  (5.69) 

kij is a binary interaction parameter. Fb and Fa in equations (5.67) and (5.68) are universal 

functions d e t d e d  h m  the thermodynamic properties of fluid argon and methane over 

large ranges of temperature and density. in the later version of the PHSC equation of %te 

(Song et al., 1996) these are given by 

F,, (kBT / E) = 0.7303exp[-û.1649(kBT 1 €)ln] + 02697 exp[-23973(kBT / 

(5.72) 

The latter version of PHSC equation of state is the more important for this work as it was 

the one used for most of the calculations. 

Song et al. (1994 a,b; 1996) approximate g, with the expression from the BMCS 

equation (Boublik, 1970; Mansoon et ai., 1971) that is given by 

where q is the packhg fraction of hard-sphere mixtures given by 



tij is given by the expression 

In tenns of the total volume V the pressure equation is 

oc 1 " " 
-RT&(ri - 1)[gii - 11--x z a i n  jrirjaii v id V2 i-i j=i 

where now, 

b, = Nwbij ; aij = ~ : ~ a ~ ~  (5-77) 

R is the gas constant and ni is the number of moles of component i. V is the total volume. 

The equation of state is now in terms of molar quantities. The density now would be the 

molar density and xi would be the mole fiaction and so on. 

Before proceeding with the restructuring we need to introduce some defitions. 

De fine, 



Therefore the original variables q and 5, in gij can be expressed as 

and 

The radiai distribution function g,, after restructuring, in terms of volume is 

A few more definitions foiiow. Let, 

Now the equation for pressure can be written in terms of these dekition as 



where v is the molar volume- This cm be iürher shplified to 

P - - --+- a0 al + al + a a3 -- 
RT v v - b  (v-b)' ( ~ - b ) ~  RTV' 

where, 

Note that %=l -a,. 

The Helmholtz fiee energy of a pressure explicit equation of state can be obtained 

from the following equation (Prausnitz et ai., 1986), 

Ilc " nRT M niRT A(T,V,ni) = C n i ~ ; ( T ' ) +  E P - - ) ~ v + R T ~ ~ ~  ln- (5.95) 
i= I V V i-I V 

The Helmholtz fiee energy fiom PHSC EOS is 

The chemical potentiai of component k is given by the following equation 



Acr k -- V a -In-- 
RT 

(nal) + -- 
V-nb ûn, 

a (nb) 
V - ~ b  ank 

+ I a -(n2a2) + (n2ad a ( n b )  
V-nb ank (V - nb12 ûn, 



CEAPTER 6 

Mode1 Performance 

6.0 Introduction 

This Chapter demonstrates the capability of the models discussed in Chapter 5 for 

correlating andor predictuig the phase behaviour of some pure components and some 

binary and pseudo-binary systems. The first section shows a comparison of experimental 

and calculated vapot pressures and saturation densities for n-hexane, wbon dioxide aad 

methylcyclohexane. The subsequent section compares the mode1 performance versus the 

experimental data for the methylcyclohexane + CO2 system. Next, the performance of the 

models is evaluated for the system poiyethylene + n-hexane. Both cases, (i) when the 

polymer is treated as monodisperse, and, (ü) when the polydispersivity of the polymer is 

taken ùito account, are covered. Finally the attempts made at correlating the cloud points 

for the system polystyrene + rnethylcyclohexme are showa 

6.1 Pure component phase behavior 

6.1.1 n-hexane 

Figure (6.1) shows a comparison of experimental and calculated vapor pressures 

fiom the three models discussed in Chapter 5. The parameters reported by the authon 

(Sanchez and Lacombe,l978; Kennis et ai. ,1990; Song et al., 1996) were used for the 
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KK EOS 

-*--- SL EOS 

Figure 6.1. n-hmne vapor pressures. (@) Data Var&& (1975). 
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these calculations. The parameters were obtained by least squares fitting of selected vapor 

pressure and Iiquid density data without any regard for the critical point. The n-hexane 

parameters are contained in Tables (6.1) to (6.3). Figure (6.1) shows that the models fit 

the experimental vapor pressure data well at the Iower temperatures but significant 

deviations are present at higher temperatures. The equation of state critical points for n- 

hexane are compared with the data in Table (6.4). Figure (6.2) shows a cornparison of 

experimental and calculated saturation densities. 

Table 6.1. Sanchez-Lacombe EOS. 
d 6) v (cm'lmol) 

n-hexane- 8.356 476 13.28 

* Sanchez and Lacombe (1978). 

Table 6.2 Kleintjens-Koningsved EOS. 
m a Y Boi  Po2 

n-hexane- 5.6567 1 -0475 -0.49924 -1.3177 660.72 
CO; 1.29 0.9265 -1.299 -2.63 5 1183.8 
Co2 1.4874 -4.223 5 -0.12683 2.1505 1173.72 
methyl- 4.64 1 0.06369 4.29045 -0.535 1 87 1.98 
cvclo hexane 

v,, = 25 cm31mol. 
* Kennis et al. (1990). vo = 20 cm3/mol. 
** Bechan et al. (1987). vo = 25 cm3/mol. 
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Figure 6.2. n-hexane saturation densities. (a) Data Var@& (1975). 



Table 6.3. PHSC EOS 

methylcyclo hexane' 2.968 
methylcyclohexane 5.256 
Co2 3.930 

- - - - - - . 

* Song et al. (1996). 

Table 6.4. n-beraae critical points. 
mode1 Tc (Oc) pc (bar) 
Sanchez-Lacombe 253.25 36.1 7 
MFLG 243.61 41.73 
PHSC (1996) 263.31 34.7 
data 234.7 30.31 

6.1.2 Carbon dioxide 

In the case of carbon dioxide, the pure component parameters for PHSC model are 

not available in the Literature. Kiszka et d. (1988) report COL parameters for the Sanchez- 

Lacombe equation of state. The parameters were obtained by fitting vapor pressures and 

saturation volumes of CO,. Beckman et al. (1987) report carbon dioxide parameters for 

Kleintjens-Koningweld model. Beckman et ai. obtained the CO2 parameters by 

minimiPng errors in vapor pressures, liquid saturation densities and the critical point. 

The parameters reported by these authors are contained in Table (6.2). Figure (6.3) shows 

a comparison of the experimental and calculated vapor pressures for the Kleintjens- 

Koningsveld equation of state using the parameters reported by Beckman et al. Figure 

(6.4) shows a comparison of the experimental and calculated saturation values for the 

same. It can be seen fiom these figures that, although the fit to 



Figure 6.3. C a  vapor pressures. (A) Data Vargaftik (1975). (-) MFLG EOS. 
Parameters B e c h  et al. (1987). 



Figure 6.4. C a  saturation volumes. (A) Data Vargaftik (1975). (-) MFLG EOS. 
Parameters Beckman et al. (1987). 
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the saturation volume data is good, the calculateci vapor pressures lie consistently below 

the experimental vdues. 

In this work, carbon dioxide parameters were regressed for al1 the modeIs using 

the minimization dgorithm of Nelder and Mead (1965). The approach to parameter 

estimation was, however, different fiom what has been the trend in the literatwe for these 

models. The parameters for the MFLG and PHSC models were obtained by m h h k h g  

an objective fünction (OF) of the f o m  given by 

(6.1) 

CI, CZ and Cg are appropriate weighting factors. Ps and Pc are the vapor pressure and the 

criticai pressure respectively. 

The model Pc and (aP/ûvh were evaiuated at the experimental critical 

temperature. The volume used for the evduation of these quantities was obtained by 

solving the folowing equation at the exprimental aitical temperature. 

This equation is one of the critical point criteria for a pure component. The other is 

( ~ P / & J ) ~  = O. 05-31 

By choosing Cl and C3 large, the model critical pressure is forced towards the 

experimental value. 
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The Sanchez-Lacombe model Tc and Pc cm be obtained analytically fiom the 

critical point criterion mentioned above and the pressure equation and are given by the 

following equations. 

In the case of the Sanchez-Lacombe equation of state, the third term in the objective 

For ail three modek, no attempt was made to force the saturation densities. In the 

author's opinion, it is better to lay emphasis on comlation of the vapor pressures rather 

than fitting of liquid densities to obtain mode1 parameters. For instance, in vapor-liquid 

equilibrium calculations the phase diagranis are anchoreci by the pure cornponent vapor 

pressures. In the case of vapor-liquid-liquid equiiibria invoiving binary or pseudo-binary 

polymer systerns, the three phase condition is close to the solvent vapor pressure and 

hence, for such types of phase behavior, a good correlation of the vapor pressures is more 

desirable. Also, accurate representation of pure cornponent critical points will give a 

better vapor-Iiquid cntical locus and as a consequence the model phase behavior at higher 

pressures wiIl be M e r .  

The new estimated parameters for CO2 in the three models are contained in Tables 

(6.1) to (6.3). Figure (6.5) shows a cornparison of the exgerimental and model vapor 



Figure 6.5. CO2 vapor pressures. (A) Data Vargdk (1975). (-) MFLG EOS. 
(- - -) Sanchez-Lacombe EOS. (- - - ) PHSC EOS. 
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pressures. The fit is the best for MFLG Lattice-Gas mode1 with the magnitude of the h t  

term in the objective fhction (CI = 1) equal to 0.16 15* lo4. The fit for the Sanchez- 

Lacombe equation of state is satisfactory with the maguitude of the first t e m  in the OF 

equal to 0.2 13 73' lo5. Forty two data points were employed for the regression with the 

temperature ranging h m  220 K up to the criticai temperature. The model results for the 

PHSC equation of state are the least accurate of the three models with the magnitude of 

the fint terni in OF wual to 0.994~ 10'). The parameter estimation was done over a 

limited range of temperatutes (273.15 K up to 300 K). Eighteen data points were 

employed for regression. The model aitical points for COz are compared with the 

experimental critical points in Table (6.5). For the two lattice gas models, the forced 

critical points are good with the representation better for ttie MFLG model. The PHSC 

equation of state cntical point is not as satisfactory as the other two models. Figure (6.6) 

shows a cornparison of experimentd and calculated saturation volumes. The predictions 

are satisfactory. In al1 cases the predictions are shifted to slightly higher saturation 

volumes. 

Table 6.5. CO2 critical points. 
mode1 TC ml Pri (bar) - -  - - -  - 

Sanchez-Lacombe 304.2 1 73 -73 
MFLG 304.19 73.81 
PHSC (1996) 305.76 74.37 
data 304.19 73.8 

6.1.3 Methylcyclohexane 



Figure 6.6. C a  saturation volumes. (A) Data Vargaftik (1975). (-) MFLG EOS. 
(- - -) Sanchez-Lacombe EOS . (- - - ) PHSC EOS. 
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PHSC parameters for methylcyclohexane are available in the literature (Song et 

al., 1996). The parameters were obtained by fiîîing vapor pressure and saturated liquid 

density data in the range 0.5 Tc < T < 0.9 Tc. The model vapor pressures are compared 

with data in Figure (6.7). It can be seen that there are signincant deviations at higher 

temperatures. Figure (6.8) shows a comparison of model and experimental liquid 

saturation densities. From the two figures it is obvious that the model completely misses 

the experimental Tc and Pc. 

Methylcyclohexane parameters were regressed for the three models foliowing the 

strategy outlined in the previous sub-section. The rnethylcyclohexane parameters for the 

three models are contained in Tables (6.1) to (6.3). Figure (6.9) shows a comparison of 

experimental and caiculated vapor pressures for the ttuee modeIs. The fit is satisfactory 

for the Sanchez-Lacombe equation of state with the magnitude of the fkst term in OF 

equal to 0.67*10J. The reprewntation of the data is also good for the Kleintjens- 

Koningsveld equation of state with the magnitude of the fïrst term equal to 0.172*104. 

Again the magnitude of the first term in the objective fwiction is the largest for PHSC 

equation of state and is equai to 0.393. The bdk of the error Lies at lower temperatures 

where the vapor pressure is very small. in al1 cases, thirty data points were employed for 

regression of pararneters with the temperature ranging fiom 0' C up to the critical 

temperature. These errors are larger than those for carbon dioxide. However, the 

temperature range involved is also larger in this case. The experimental and calculated 

liquid saturation densities are compared in Figure (6.10). The predictiotis fiom the 



Figure 6.7. Methylcyclohexane vapor pressures. (A) Data Vargaflik (1975). (- - -) 
PHSC EOS. Parameters Song et al. (1996). 



Figure 6.8. Methylcyclohexane saturation densities. (A) Data Vargaiük (1975). 
(- - - ) PHSC EOS. Parameters Song et al. (1996). 



Figure 6.9. Methylcyclohexane vapor pressures. (A) Data VargaEi (1975). (-) 
) PHSC EOS. MFLG EOS. (- - -) Sanchez-Lacombe EOS. (- - - 



Figure 6-10. Me!thylcyclohe~e saturation densities. (A) Data Vargaftik (1975). (-) 
MF'LG EOS. (- - -) Sanchez-Lacombe EOS. (- - -) PHSC EOS. 
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Kleintjens-Koningsveld model are the best and the match is quite good at lower 

temperatures. The Sanchez-Lacombe predictions are shifted to lower densities. The fit for 

the PHSC equation of state is not very good either. The model and data critical 

temperature and pressure are compared in Table (6.6). 

Table 6.6 Methylcyclohexane critical points. 
mode1 T~ CC) P, (bat) 

W .  . u. . 
Sanchez-Lacombe 299.25 34.69 
MFLG 299.1 34.75 
PHSC (1996) 299.43 34.82 
data 299.1 34.7 

For the three compounds investigated in this work it seems that the performance 

of the PHSC EOS is not as good as that of the other two models. However, the reason for 

this couid be an inadequate temperature dependence in the model. Perhaps this is one area 

in which further work will yield a beîter parametrization of this equation of state. 

6.2 Carbon dioxide + methylcyclohexane system 

Figures (6.1 1) to (6.13) show a cornparison between the experimental data and the 

model results for the system carbon dioxide and methylcyclohexane. Two sources of 

experimental data are shown. One is the measurements made in this work over a limiteci 

composition range. The other is the data reported by Ng and Robinson (1979), measured 

over the entire composition range for a few temperatures. Ng and Robinson obtained îheir 

data by the analytical method or, in other words, the equilibrium phases were sampled. It 

is to be noted that the bubble point pressures measured in this work are higher than those 



x (mole fraction) 

Figure 6.11. Methykyclohexane/CO~ system P-x sections. (A) Data Ng and Robinson 
(1979), T = 37.85 O C .  (e) Data Ng and Rob'mn (19793, T = 65.75 O C .  
(m) Data T = 38 O C .  (V) Data T = 65.75 "C. Curves Sanchez-Lacombe 
EOS. 



CO2 mole fraction 

Figure 6.12. MethyIcyclohexane/C& system P-x sections. (A) Data Ng and Robinson 
(1979), T = 37.85 O C .  (O) Data Ng and Robinson (1979), T = 65.75 O C .  

(.) Data T = 38 OC. (V) Data T = 65.75 O C .  Curves MFLG EOS. 
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CO2 mole fraction 

Figure 6.13. Methylcyclohexane/CO~ system P-K sections. (A) Data Ng and Robinson 
(1979), T = 37.85 OC. (e) Data Ng and Robinson (1979), T = 65.75 OC. 
(i) Data T = 38 OC. (V) Data T = 65.75 OC. Curves PHSC EOS. 
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reported by Ng and Robinson. An effort was made to Iocate the source of this discrepancy 

in the two sets of data but the source of the discrepancy couid not be ascertained. At the 

same t h e  there is no reason to believe that the rneasurements made in this work are in 

error. 

For the calculations s h o w  in Figures (6.1 1) to (6.13), the pure cornponent 

parameters estimated in this work were employed. The mixture parameters, or the binary 

interaction parameters, were obtained by fitting these to one or two binary data points 

measured in this work. Figure (6.1 1) is for the Sanchez-Lacombe equation of state for a 

binary interaction parameter of 0.1 1. The experimental data point chosen was at 65.75 O C ,  

which explains the better agreement between the model results and data at this 

temperature.% model predictions at 38 OC lie below the data. A probable reason for this 

is that the model parameters are temperature independent. Overall the model predictions 

versus the data are reasonable. 

Figure (6.12) is for the Kieintjens-Koningsveld model. The mixture pararneters 

employed for the caiculations are: 

a,2 = 0.5 and giz[T(K)] = -1 .O21018 + 42S.O36609/T 

These were obtained by matching the model results at two bubble point pressures at the 

two temperatures of 38 "C and 65.75 O C .  The model matches the data measured in this 

work very well. Overall the fit is very satisfactory. 

Figure (6.13) is for the PHSC equation of state for a binary interaction parameter 

of 0.14. This was obtained in a manner similar to that for the Sanchez-Lacombe model. 
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The mode1 f3s the data measured in this work weil. The overali picture is dso 

63 n-hexane + polyethylene system 

The experimentai data reported by Kennis (1988) and Kennis et al. (1990) were 

used to evaiuate the performance of the models. The data were measured in the vicinity of 

the lower critical solution temperature (LCST). The polyethylene had a number average 

molar mass of 8,000 g/mol and a weight average molar mass of 177,000 g/mol. The 

temperature and pressure ranges involved cross the n-hexane vapor pressure curve and, as 

a consequence, both tiquid n-hexane and vapor n-hexane can play a role in the 

equilibrium and th -phase  vapor-liquid-liquid equilibria (VLLE) can occur. The three- 

phase behaviour occurs near a lower critical solubility condition, and, together, these 

phenomenon present signincant modelling challenges. 

Parameters for pdyethylene are available in the literature and are presented in 

Table (6.7). These parameters were obtained by fitting P-V-T data for polyethylene. 

Kennis et al. (1990) report binary interaction parameters for polyethylene + n- 

hexane system in the MFLG equation of state. The polymer is treated as monodisperse. 

The parameters are a,, = -0.25 and g12 = -0.10. Kennis at ai. (1990) computed only the 

spinodal curves at t h e  pressures and selected the interaction parameters to match the 

minimum temperatures on the spinodai curves to the minimum temperatures on the three 

cloud point isobars. 



Table 6.7. Poiyethylene parameters. 
Sanchez-Lacombe 
(Sanchez and Lacombe, 
1978) 

6) 659 
d W11.47 
v (cm3/mol) 12.7 
MFLG, vo = 20 cm3/mol 
(Kennis et ai., 1990) 
m Ml16.66 
Y -0.95446 
Or, 0.96874 
P o  -0.971 1 
P i 342.9 
B2 247500 
PHSC (Song et al., 1996) 
r 0.04939 M 
Cf (A") 3.825 
&B 324.1 
M = molar mass of the polymer. 

Binary interaction parameters had to be determined for the Sanchez-Lacombe and 

the PHSC equations of state. In the fitting done in this work, the interaction parameter(s) 

were chosen to give 126.7 OC as the LCST at 6 bar. For the Sanchez-Lacombe equation a 

k, = -0.04144 was estimated. 

For the PHSC model, two binary interaction parameters are available: (i) an 

interaction parameter in the energy tena, kijy and (ii) a "size reduction parameter", 5, for 

the polyrner segment number in the perturbation term (Song et al., 1996). In this case, the 

summation "ay' in the perturbation term is given by 2E xi xj Çi ri Gj rj aij. In this work, kij 

was fixed at -0.1 and & was estimated at 0.89538 to get the desired LCST. The use of two 
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parameters was necessary because with kij alone the mode1 codd not fit the LCST well. 

Perhaps the LCST can be fitted with the use of & alone keeping kij = 0. 

It is to be noted that the binary interaction parameters presented so far ody  hold 

for the case when the polymer is treated as monodisperse. The modelling results for the 

monodisperse case are discussed in the next sub-section. The effect of polydispersivity of 

the polymer on phase equilibrium wmputations is discussed in a later sub-section for the 

Sanchez-Lacombe equation of state. 

63.1 Monodisperse poiyethylene 

Figures (6.14)-(6.17) show calculated VLE and LLE cloud-points (solid lines) and 

spinodal curves (dashed lines) for the HDPEh-hexane system at 6, 25 and 50 bar. 

Figures (6.14) and (6.15) are for the Kleintjens-Koningmeld MFLG equation and Figures 

(6.16) and (6.17), respectively, are for the Sanchez-Lacombe and PHSC (1 996) equations- 

The vapor phase composition, which is essentially pure hexane, is not distinguishable 

from the temperature mis. 

Figure (6.14) includes polymer compositions up to 80 mass %, far beyond the 

range of the Kennis et al. (1990) data, in order to give a fiiller picture of the phase 

behavior obtained fiom by the models. The 6 and 25 bar isobars show the presence of 

three-phase lines where the slopes are discontinuous. The lower sections represent LLE 

equilibria. These curves intersect VLE phase boundaries and, fiom the sharp edge 

onwards, the curves correspond to a liquid in equilibrium with a vapor-like hexane-rich 



mass fraction polymer 

Figure 6.14. Caiculated V U ,  U E  and spinodaIs b m  MFLG EOS for the system 
n-hexane -t HDPE. 



- LLE/VLE 
- -Spinodal. 
O Exp. P = 6 bar. 

Exp. P = 25 bar. 
x Exp. 50 bar. 

O 0.08 0.16 

mass fraction polymer 

Figure 6.15. Experimentai cloud point cums and caiwlated VLE, LLE, spinodals h m  
MFLG EOS for the systern n-hexane + HDPE 
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mass fraction polymer 

Figure 6.16. Expenmental cloud point curves and dculated VLE, LLE, spinodals fiom 
Sanchez-Lacombe EOS for the systern n-hexane + HDPE 



mass fraction polymer 

Figure 6.17. Experimental cIoud point curves and caladateci VLE, LLE, spinodals fiom 
PHSC EOS for the system n-hexane + HDPE 
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phase. The three-phase condition is at a temperature very close to the boiling temperature 

of n-hexane (as given by the EOS model) because this is the condition where pure n- 

hexane liquid and vapor phases can be in equilibrium. The pressure of 50 bars is above 

the EOS criticai pressure of n-hexane and no three-phase condition is indicated in the 

caIcuiations. 

The spinodal anves fdl weU inside the phase boundaries and do not provide an 

accurate picture of the equiiibria Furthemore, the LLE curve does not correctly 

repfesent the model behavior at temperatures above the three-phase line. A calculated 

LLE at higher temperature d l  represent a metastable equilibrium whereas the correct 

equilibrium solution will be a VLE condition with significantly different compositions 

and densities of îhe phases. At a pressure of 6 bar one may extend the LLE phase 

boundaries to temperatures far above the three-phase condition, into a region where the 

correct equilibrium involves a liquid solution and almost pure hexane vapor. 

Figures (6.15)-(6.17) compare the calculated LLE and VLE cloud points with the 

Kennis et ai. (1990) experimental cloud-point data. The n-hexandpolymer interaction 

parameters used in the calculations were adjusted to obtain a LCST at 6 bar that was in 

line with the data. As wiii be seen in Figure (6.15), Kennis et ai. (1990) succeeded with 

their parameterization in placing the minimum points on the spinodal curves for the three 

isobars near the experimental minimum temperatures (Le., the LCST points in the binary 

models). The critical temperatures on the 25 and 50 isobars for the Sanchez-Lacombe 

mode1 (Figure 6.16) and the PHSC model (Figure 6.17) appear a bit low, with the 
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Sanchez-Lacombe results farther fiom the apparent experimental values. (The interaction 

parameters were fitted to the 6 bar isobar.) 

The critical solubilities fiom ai l  three models are displaced to higher mass 

fractions of polymer than the data indicate. The Sanchez-Lacombe calculati011~ show a 

flatter coexistence curve with critical compositions not as close to the data as the other 

two models. 

63.1.1 Three-Phase Equiiibria 

The existence of three phase equilibria has implications on the ability of the 

models to match the data. Metastable LLE curves could be computed at higher 

temperatures but wouid be weii inside the cloud point boundaries that are the correct 

equiiibrium conditions according to the models. Parameter estimation procedures must 

take into account the different kinds of equilibria that can occur. 

Figure (6.18) shows some details of the three-phase equilibrium calculated fiom 

the Sanchez-Lacombe equation. Several metastable coexistence lines that are shown in 

the Figure were found through two-phase flash procedures. Also indicated is the region 

of equilibrium between n-hexane rich vapor and liquid phases that lies below the three- 

phase temperature. 

The densities of the n-hexane-rich liquid and vapor phases that coexist on the 

three-phase line can be quite differenf depending on the pressure. For example, the 

densities of the three phases we calculate fiom the Sanchez-Lacombe equation at 6 bar 
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mass fraction polymer 
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Figure 6.18. Caldateci VLE, LLE, metastable VLE and LLE, and the three-phase line 
fiom Sanchez-Lacombe EOS for the system n-hexane + HDPE. 
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are 0.0171 &m3 for the vapor, 0.524 g/cm3 for the middle liquid and 0.572 g/cm3 for the 

more polymer-rich liquid. The mass fraction of polymer in the middle liquid is 0.00467, 

obviously very small but not negiigible. The mass fraction of polymer in the second 

liquid is 0.135. The composition at the LCST (fiom the model) is 0.04 mass fraction 

polymer. 

The consequence of the presence of a three-phase line on the experhents to 

determine the cloud point curve are interesting. If the polymer mas IÏaction lies behireen 

the LCST composition and 0.135, the new phase formed as the coexistence curve is 

crossed will be a second iiquid phase. However, if the polymer mass hction exceeds 

0.135, the new phase will be a solvent-rich vapor of a much different density fiom the 

polymer rich liquid. 

The thesis by Kennis (1988) contains data for the three-phase cloud-poiat 

temperature and pressure at a series of mass fractions of the polyethylene in n-hexane. 

Figure (6.19) shows the temperature-pressure three-phase line data of Kennis (1988) and 

the computed three-phase lines fiom the EOS models. Also shown in Figure (6.19) are 

the calcdated liquid-liquid critical lines for the three models. These lines intersect the 

three-phase lines at a lower critical end-point. The n-hexane + polyethylene system, 

when characterized as a binary mixture, is apparently type IV or type V in the general 

classification scheme for critical behavior. 

The three-phase lines fiom the EOS models are very close to the n-hexane vapor 

pressure curves produced by these models and differ fiom each other because the vapor 



Figure 6.19. Caiculated three-phase and critical lines. Cornparison with data of Kennis 
(1988). 
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n-hexane vapor 

the polymer is 

polydisperse, not monodisperse as is assumed in the EOS calculations. 

The three-phase lines in Figure (6.19) locate the boundary between vapor-liquid 

equilibrium (below the Lue) and iiquid-Liquid equiiibria (above the line). Metastable 

vapor-liquid equilibna can be calculated at pressures above the line. Similady, 

metastable liquid-liquid separafions can be calculated at pressure below the criticai end- 

point pressure. Calcuiations must be done with caution to avoid accepting these 

metastable states as the true equilibrium. 

Figure (6.20) shows the three-phase cloud point temperature against the mass 

k t i o n  of polyrner in the liquid phases. The three models and the Kennis (1988) data 

have very nearly the same critical end-point temperature (where the two liquid phases in 

equilibrium with the n-hexane rich vapor are critical), principaily because the 

hexanelpolyrner interaction parameters were fitted to a low pressure cntical temperature. 

The compositions of the polymer-rich liquid phases, as given by the models, deviate fiom 

the Kennis (1988) data at the lower temperatures. The MFLG model and the PHSC 

model are somewhat better than the Sanchez-Lacombe model in this regard The polymer 

mass fiaction at the minimum three-phase temperature in the Kennis (1988) data is 

somewhat uncertain but appears to be at a considerably lower value than is given by any 

of the models. This character may also be due to the polydisperse nature of the polymer. 

Overall, the three models represent these complex phenornena reasonably. 



Temperature, O C  

Figure 6.20. Liquid phase compositions and temperature dong the three-phase lines. 
Cornparison with data of Kennis (1988). 



6.3.1.2 Equilibrium Calcaiation Methods 

We used flash cdculations to obtain the various cloud-point lines and the three- 

phase conditions. That was possible because the polyethylene was treated as a 

monodisperse polymer with a number average molar mass of 8000, following the 

treatment of Kennis et al, (1990). 

These calculations were probiematic for more than one reason. Problems arise 

due to the extreme asymmetry in the vapor-liquid equilibria and are compounded by the 

large Merences in the mohr masses of the polymer and solvent. Extremely small 

fugacities and mole fiactions for the polymer must be calculated, particularly in a solvent- 

rich vapor-like phase. In some cases, the numbers p a s  the "undefflow" limits of typiçal 

computers. 

Using the Sanchez-Lacombe equation, it was possible to obtain convergence of 

the flash calculations requiring equaiity of the chemical potentials, even of the polymer, 

in al1 the phases. This was true even though the mole fiactions of the polymer feu to the 

order of 10-200. With the other two equations, however, underfiow would occur in the 

mole fiaction of polymer in the vapor. This problem was dealt with by fieezing the 

equilibrium ratio (K = y /  x) whenever the polymer mole fraction became lower than 

10-~'. The difference in chemical potential between the phases was then dmpped fiom 

the convergence criterion. 
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A different kind of numencal problem is that the successive substitution aigorithm 

itself can bewme oscillatory and divergent. The anaiysis of Heidemann and Michelsen 

(1995) show that this kind of instability of successive substitution c m  occur whenever 

any of the equilibrium phases shows strong negative departures fiom ideality. In 

successive substitution procedures, ratios of mole fiactions (K factors) are used in an 

inner loop to find phase amounts and mole fractions. The K factors are updated in an 

outer Ioop untii conditions of equal chernical potentials in al1 coexisting phases are 

reached. Heidemann and Michelsen (1995) suggested a simple "damping" procedure in 

the K f ~ t m  updating algorithm that would result in a convergent process. 

For binary systems around critical points (including the n-hexane/polyethylene 

systems at temperature just above the LCST) damping proves unnecessary and monotonie 

convergence to a solution is possible, even if slow. These conclusions also follow h m  

the Heidemann and Michelsen (1995) analysis. A consequence is that VLE and LLE 

computations can behave differently. Away fiom critical points the behaviors are 

dicbted by the negative deviations in the liquid phases. 

Most of the caiculations done involved looking only for two-phase VLE or LLE 

equilibrium. For VLE, the hexane-rich phase was assigned the larger of two volume 

mots h m  the equation of state (if two could be found). For LLE, liquid-like volume 

roots were used for both phases. The K-value updating scheme employed is; 
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where m is the "darnping factor" needed to obtain a convergent process. 

For multi-phase calculations, we employed a slight modification of a scheme 

presented by Abdel-Ghani (1995) and Abdel-Ghani et al. (1994). There are possibly 

many phases, each with its own set of K-factors defined as Kg = xg 1 ii. The reference 

mole fraction is arbitrary but could be the composition of the mixture king flashed; Le., 

Xi = zi . The inner loop calculates phase amounts and mole fiactions consistent with the 

mass balances, using an algorithm based on a proposal by Michelsen (1994). 

This inner loop algorithm is quite robust and capable of retuming the mole 

fiactions of any number of phases, including some that might have zero amounts in the 

mixture. (The amount of phase j is Pi .) Within the subroutine, the normdizing factors 

for the mole fiactions in the phases are calculateci, x$. When the phase arnount is 
i 

zero (p = O , then the normalizing factor is less than 1.0 (x+ c 1 ). 
i 

In the outer loop, the equilibrium ratios are updated through; 

In this equation, the reference chernical potential is calculated as a weighted average in 

the phases present; Le., ci = x p j p i i  . The compositions of phases not present, once the 
i 

outer loop has wnverged, locate phases that lie above the plane tangent to the Gibbs h e  

energy suditce that defines the multiphase equilibrium. The tangent plane distance is, in 
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fzt, a minimum at these compositions. Equation (6.7) may look unfamilia. but it foliows 

directly fiom the "tangent plane stability test" proposed by Michelsen (1982). It has been 

modified here by inclusion of the damping factor, m, which is needed to obtain 

convergence. 

Table (6.8) and Table (6.9). demonstrate the effect of m on the iteration count at 

different temperatures in VLE and LLE calculations, respectively, using the two-phase 

algorithm and equation (6.6). (As noted, when a mole fraction for substance i was less 

than IO-", the Ki value was not changed.) These results are for the Sanchez-Lacombe 

EOS at a pressure of 6 bar with a feed at the LCST composition of four mass percent 

polymer. If a specified maximum iteration count was exceeded, then either the 

calculations were oscillatory non-convergent or the damping factor was too large. 

Table (6.8), for VLE calculations, shows that as m is decreased h m  30 to 20 the 

iteration count decteases as expected. In this region of the Table, the actual number of 

iterations shown is quite small, mainly because the K value for the polyethylene becomes 

fixed after a few iterations and the polymer chemicai potential difference between the two 

phases does not enter the convergence criterion. For smaller damping factors the iteration 

wunt shows an increase, again suggesting the occurrence of oscillations in computations. 

For a value of 1 1 for m, at the higher temperatures shown, the maximum iteration count is 

exceeded and the calculations fail to converge. 
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Table 6.8. Iteration Couni with Varmus Dun~ ine  Factors. VLE Calculations. 

I I 

T(C) I.C. T (C) I.C. T(C) I.C. 
m 

150.00 17 150.00 35 150.00 20001 

The iteration couats for LLE caiculations are show in Table (6.9). In al1 these 

calculations, the potymer mole fractions in the two phases are of similar orders of 

magnitude and the polymer chernical potentials are driven toward equaüty. Table (6.9) 

shows, as is expected, that darnping is not required at temperatures near the LCST but, 

rather, retards convergence. However, away h m  the LCST there is an optimum value 

for rn that minimizes the number of iterations rquired for convergence. 

Tables (6.8) and (6.9) show that the optimum value of m is a function of 

temperature, pressure and composition. The opthkation of m is a problem that needs to 

be addressed in order to have an efficient algorithm for these kinds of equilibriurn 

computations. Heidernann and Michelsen (1995) have suggested altematives to 

successive substitution for systerns where successive substitution can become unstable. 

Chen, et al. (1993) propose a Newton-Raphson scheme for LLE equilibria in 

polymer/solvent systems. 
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Table 6.9. Lteraîîon Caaat with Various Damping Factors. LLE Calculations. 

1 . 
T(C) E.C. r'(C) I.C. 'T (C) I.C. 'r (C) I.C. 
150.00 364 150.00 180 150.00 87 150.00 2000 1 

The three-phase temperature was located using a modification of the algorithm 

proposed by Abdel-Ghani et al. (1 994) that was described above. Flash calculations were 

initiated with four phases; i.e., a hexane-rich vapor, a hexane-rich liquid, the feed 

composition (4.0 m a s  percent polymer) as  a Liquid, and a polymer-rich liquid. At 

temperatures near the the-phase condition, a solution was found with two phases in 

finite arnounts and a thud (hcipient) phase with z~ < 1 .  nie thrn-phase temperature 
i 

was the unique temperature (at 6 bar) where Exii = 1 for three phases. Equaiity of 
1 

chernical potentials was obtained for both the polymer and the n-hexane in al1 three 

phases in these calcdations with the Sanchez-Lacombe equation. 

Figure (6.21) is a blown up version of Figure (6.18) with emphasis on the hexane 

rich region. In Figure (6.21) the relation between metasbble equilibrium, minimum 
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Extension 

--.-.-.-.-.-.--.-.--------*-.- 

0.000 0.005 0.01 O 0.01 5 0.020 

Mass Fraction Polyethylene in n-Hexane 

Figure 6.21. Calculated VLE, LLE, metastable VLE and LLE, and the thrscphase üne 
from Sanchez-Lacombe EOS. Also shown is the minimum tangent plane 
phase composition. 
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tangent plane phase composition (Michelsen, 1982) and the spinodal is shown. Our 

calculations show the expected behavior that, in general, both the metastable VLE and the 

minimum tangent plane phase compositions can be extended to the spinodal but no 

further. These ctiaracteristics indicate that computations looking for he-phase  

equilibria have to be perforrned with care. 

63.2 Polydisperse polyethylene 

Koningweld and Staverman (1%8), Solc (1970) and Kang and Sandler (1988) 

arnong others have shown that the polydisperse nature of the polymer can have a 

sigmficant effect on phase equilibriurn computations for polymer-solvent systems. These 

authors used various activity coefficient models for their phase equilibrium computations 

at low pressure. In this work the effect of the polydispersivity of pdyethylene was 

investigated on the phase behaviour of the n-hexane + polyeîhylene system. The Sanchez- 

Lacombe equation of state was chosen for this investigation because of its relative 

simplicity and as shown above, its ability to give a satisfactory qualitative representation 

of the data when the polymer is treated as monodisperse. The polyethylene was 

chraracterised employing the method discussed in section 4.5 of Chapter 4. The moIar 

mass distribution of the polymer wsis assumeci to follow the log-normal distribution. 

6.3.2.1 Characterisation of polyethylene 
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The polyethylene sample used by Kennis et al. (1990) had experimental MW and 

Mn of 177,000 glmol and 8000 g/mol respectively which give a polydispersivity index of 

22.125. These values were used for estimating the parameters of the distribution fiinction 

( B = 2.489 and Mo = 1700.78). With a choice of ten pseudocomponents for the polymer 

the calculated MW and Mn were 176,089 @mol and 8000 g/mol respectively. Since the 

calculated numbers give a good representation of the experimental values the number of 

pseudocomponents was assumed to be sufficient. The mole hctions, weight fractions 

and the molar masses of the ten pseudocomponents are reporteci in Table (6.10). 

rable 6.10. Characterisation of Polyethylene into Pseudocomponents. 

mole fraction weight fiaction molar mass 

While doing computations for the polydisperse polymer, the k t  three 

pseudocomponents were left out as their molar masses are unrealistically srnail. The 

seven remaining weight hctions were then norrnalized and used with the conesponding 

molar masses. The weight- and number-average molar masses obtained in this way were 
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176098 and 8 162, respectively, wtiich is a fairiy good representation of the experimental 

values of these quantities. 

633.2 Cloud point curves for the poiydbpene case 

The cloud points were calculated using the scheme described in section 4.3 of 

Chapter 4. In this scheme the non-linear equiiïbrium equations are solved by a Newton 

method. 

Figure (6.22) shows the calculated cloud point c m e  for the system polyethylene 

and n-hexane at 6 bar. The solid c w e  is the cloud point curve or, in other words, the 

phase boundary. The dotted curve is the locus of equiiibriurn incipient phases, also called 

the shadowpoint c w e .  The panuneters used for generating this figure were the same as 

that for the monodisperse case. The same binary interaction parameter was used for n- 

hexane and ail segments of polyethylene, Le., k, was set at -0.04144 irrespective of chah 

length. Figure (6.22) in cornparison with Figure (6.16) shows that the lowest point on the 

cloud point curve is moved to a much lower temperature, approximately 97 OC, and it is 

very close to the temperature axis. 

An interesthg feature is the location of the critical point and the nature of the 

cloud point c m e  in the viciaity of the critical point. Figure (6.23) is a blown up version 

of Figure (6.22) highlighting the cloudpoint cuve in the vicinity of the mode1 critical 

point. The cloud-point cuve shows a cusp with metastable branches. The point on the 

outside where the two cloud point curves intersect is a three phase point where three 
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Figure 6.22. Cloud and shadow point curves fiom Sanchez-Lacombe EOS for the 
system n-hexane + HDPE. k, = -0.04144. P = 6 bar. 
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Figure 6.23. Cloud and shadow point curves fiom Sanchez-Lacombe EOS for the 
system n-hexane + HDPE in the vicinity of the critical point. k, = -0.04144. 
P = 6 bar. 
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Iiquid phases are in equilibrium. The critical point is no Longer the lowest point on the 

phase boundary, as would be the case for a binary system. Rather, it is located on the 

right hand tip of the cusp of the cloud point cuve and is unstable in nature. Solc (1 970) 

reports similar r e d t s  for calculations with a Flory-Huggins type activity coefficient 

mode1 when the molar mass distribution of the polymer is chosen to be log-normal. 

In order to get a better quantitative representation of the data, the binary 

interaction parameter, kii,was le-estimated. This was done, as for the monodisperse case, 

by roughiy fitting the spinodal to the lowest temperature on the experimental cloud point 

cuve at 6 bar. Note, the same kij was used to characterise the interactions between the 

solvent and al1 fhctions of poiyethylene and the pure component parameters used were 

the same as before. The new estirnated k, was -0.1297. The calculated cloud point 

curves, spinodals and experimentd data are contained in Figure (6.24) for this system. 

Figure (6.24) retains the same features as Figure (6.22) but the redts are quantitatively 

far superior. The calculated results are fairly satisfactory vis a vis the experirnental data. 

It is obvious tbat the lowest temperature on the experimental cunres is missed at higher 

pressures, but the slopes of the calculated cuves are similar to the experimental curves. 

Also, the match between the compositions for the lowest temperatures on the calculated 

spinodals and experimental cloud point curves is better. Note that this is dennitely not 

the case for the monodisperse calcdations as show in Figure (6.16). Hence, with one 

adjustable parameter fitted to one experimental temperature, significant quantitative 

improvement results when the polydisperse nature of the polymer is taken into account in 
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Figure 6.24. Cloud point curves and sphodals from Sanchez-Lacombe EOS for the 
system n-hexane + HDPE. kb = -0.1297. Data Kennis (1 990). 
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phase boundary calculations. However, there is the added complication of the type of 

complex behaviour shown in detail in Figure (6.22). It is possible that this a consequence 

of the type of molar mas  distribution employed to discretize the polymer. 

6.4 Polystyrene (MN = 29100) + methylcyclohexane system 

The phase behavior of the system polystyrene (29100) + rnethylcyclohexane 

proved to be dif3ïcult to correlate with any of the models employed in tbis work. Some 

attempts at correlating this set of data are presented. The models used were the Sanchez- 

Lacombe and PHSC equations of state as in this case it was possible to get a qualitative 

representation of the data It is possible that the modification employed for the Sanchez- 

Lacombe equation of state may yield at least qualitatively correct phase behavior for the 

MFLG model. However, this approach was not explored as  there are already a fairly large 

number of model parameters. 

The fit with the Sanchez-Lacombe equation of state is shown in Figure (6.25). 

The polystyrene parameters are contained in Table (6.1 1). The methylcyclohexane 

parameters are contained in Table (6.1). The calculated cloud point curves are narrow and 

the critical compositions are lower than the expenmental values. In order to get the fit 

shown in Figure (6.25) an empirical modification had to be made to the attractive term as 

given by 

d (polymer in the attractive term) = d C; 



mass % polystyrene 

Figure 6.25. Isobars for the system Polystyrene(291 OO)/Methylcyclohexane. Pressure 
(MPa): (+ ) 1 ,  (+) 2, (A) 5, (0) 10, (A) 14. (-) Sanchez-Lacombe EOS, 
P =1 MPa. (--) Sanchez-Lacombe EOS, P = 10 Mpa. 
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This was done following the suggestion of Song et al. (1996) and Hino et al, (1996) for 

the PHSC equation of state. The value of C;, (for the solvent ) was set at unity and, for the 

polymer Q = 0.7389 was obtained by fining the upper criticai solution temperature at 10 

bar. kij was set at zero. A modification of this khd is equivalent to changing the energy 

parameter for the polymer. The polymer density obtained h m  this modification will not 

be the same as that tu which the model parameters were orïginally fitted and it is in fact 

smaller in magnitude. 

Table 6.11. Polystyrene parameters. 
Sanchez-Lacombe 
(Sanchez and Lacombe, 
1978) 
E (KI 735 
d 1540 
v (cm3/moi) 17.1 
PHSC (Lambert et ai., 
1995) 
r 546.207 
(A0) 4.336 

f is  (K) 253.7 
kg = 0.0 1582 

Kiran and coworkers (Kiran, 1994) report that, in order to correlate high pressure 

behavior of polyethylene + n-pentane system with the Sanchez-Lacombe model, they 

had to alter the polymer parameters. They used a smaller interaction ewrgy pararneter in 

order to correlate their data with a non-zen, k,. Their approach is equivalent to the one 

used here. Wang et al. (1996) report correlation resuits using the Sanchez-Lacombe 

equation of state for the system polystyrene + acetone. The experirnental data shows 
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simultaneous occurrence of LCST and UCST type behavior. These researchers used the 

original pure component parameters as reported by Sanchez and Lacombe (1976, 1978). 

The data were correlated with the use of a binary interaction parameter (k,J alone. For 

LCST type behavior, they found that the minimum temperatures are in the right region 

for the isobar fitted. However, the critical compositions are smaller than the experhental 

values and îhe calculated spinodal c w e s  appear to be narrower. Wang et al. (1996) did 

not calculate the binodals for the Sanchez-Lacombe model. Aiso, the pressure 

dependence of LCST temperatures is too small. The UCST spinodal cuve calculated by 

Wang et al. (1996) for the polystyrene + acetone system is approximately 100" C lower 

than the experimentd values. The curves appear to be narrower than the e-rimentai 

data and are shifted to lower compositions. Similar results were obtained by Wang et al. 

(1996) for the system polystyrene + n-hexane. This system also showed sirnuitanmus 

occurrence of UCST and LCST type phase behavior. For the system polyisobutyIene + 

n-pentane, Wang et al. report satisfactory correlation of LCST behavior with the Sanchez- 

lacombe model. It is to be noted that the energy and volume parameters reported by 

Wang et al. (1996) for the Sanchez-Lacombe equation of state are interchanged* It is 

assumed in this discussion that the correct parameters were used h the calculations. 

Figure (6.26) shows a cornparison of the experimental data and calculations &om 

the PHSC equation of state for the systern polystyrene(29 100) + methylcyclohexane. The 

parameters were obtained fiom the paper of Lambert et al. (1995). The polystyrene 

parameters are containcd in Table (6.1 1). The methylcyclohexane parameters are the 
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same as reported by Song et al. (1996) and are contained in Table (6.3). Lambert et aI, 

(1995) argue that a quantitative correlation of liquid-liquid equilibrium data with 

polymer parameters obtained h m  polymer PVT data has been largely unsuccessful 

regardless of the model used. These tesearchers obtained polystyrene parameters by 

fitting these to low pressure LCST and UCST data for a nurnber of polystyrene + 

methylcyclohexane systems. Caiculations in Figure (6.26) with these parameters show 

that the critical compositions are lower than the experimental values. Also, the model 

gives the wrong pressure dependence as the 10 MPa cloud point curve lies above the 1 

MPa curve. For the record, it is to be noted that by using the original polystyrene 

parameters as reported by Song et aI. (1996), and the modification given by equation 

(6.8), it is possible to get quditatively correct phase behavior for the systern 

polystyrene(29100) + methylcyclohexane. 

Hino et al. (1996) have compared theoreticai coexistence curves fiom the PHSC 

model with the experimental coexistence curves for the systems polystyrene + 

methylcyclohexane at low pressures. These authors employed the modification given by 

equation (6.8) [< = 0.771, k, = 0.02161. The calculateci UCST binodals are narrower than 

the experirnental binodais. Also, the critical compositions are much smaller than 

experimental values. They report a simiiar trend for LCST binodals. 

Beckrnan et al. (199û), in their conclusions, mention that for the MFLG model, 

use of modifications to account for non-randomness of mixing may impmve the 

description of phase behavior for systems such as polystyrene + cyclohexane and 
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polystyrene + toluene. The accurate modeling of both the solvent-rich and polymer-rïch 

phases remains a problem. Beckman et al. (1990) do not show any resuits for these 

systems but refer to the Ph.D. thesis of Beckman (1988). It seems fiom the paper of 

Beckman et ai. (1990) though, that these authors obtained polystyrene parameters by 

fitting polystyrene density data 

It is apparent h m  the resdts obtained in this work and the work ofother research 

groups that solutions of polystyrene are dificuit to correlate irrespective of which 

equation of state is used. 

The Chapter is concludeci with an obsewation regarding the success of Wang et 

al. (1996) in correlating simultaneous LCST and UCST phase behavior for the system 

polystyrene + acetone with the Panayiotou and Vera (1982) version of  a lanice-fluid 

model. Although the fit for this system is not excellent, the mode1 is able to give a semi- 

quantitative fit to data with one binary interaction parameter. It is to be noted that Wang 

et al. (1 996) obtained the polymer parameters fiom fiinctional group parameters which in 

turn were obtained by fitting vapor pressures and saturatecl Iiquid densities for low molar 

mass compounds. Perhaps a group-contribution approach followed by Wang et ai. (1996) 

is better for estimating polymer parameters than fitting polymer densities. However, at 

the same time, the results of Wang et al. (1996) for this one system show that the pressure 

dependence of LCST and UCST phase behaviors is quite inadequate. The mode1 resdts 

show only very littie dependence on pressure. 



CHAPTER 7 

Conclusions 

7.0 Introduction 

Significant progress has been made in the equation of state modeiing of polymer 

soIution phase behavior. Equations of state such as the Sanchez-Lacombe model 

(Sanchez and Lacombe, 1976), the Kleintjens-Koningmeld model (Kleintjens and 

Koningmeld, 1 98O), the Panayiotou-Vera model (Panayiotou and Vera, l982), the PHSC 

model (Song et al., 1994a) and the SAFT model (Chapman et al., 1990; Huang and 

Radosz, 1990), to name the prominent ones, are available for the correlation andlor 

prediction of phase behavior in mixtures containing both smaU and large molecules. 

7.1 Pure component behavior 

The models used in tbis work have been shown to be capable of modeling the 

phase behavior of small molecule systems. The results are perhaps not as good as those 

fiom cubic equations of state [ Soave-Redlich-Kwong EOS (Soave, 1972); Peng- 

Robinson EOS (Peng and Robinson, 1976); Trebble-Bishnoi-Salim EOS (Salim, 1990)], 

but show promise. It has been claimed (Song et al., 1994a) that the cubic equations of 

state are not applicable to polymeric systems. 

The quantitative agreement between data and theory can perhaps be made better 

by srnall modifications, such as modimg the temperature dependence of the attractive 
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term. For instance, the Sanchez-Lacombe rnodel has no explicit temperature dependence 

in the attractive part. 

7.2 Polymer Solutions 

The results for polymer solutions are rnixed. For the polyethylene + n-hexane 

system examined, the models gave a fairly satisfactory representation of compIex phase 

behavior. The results for the polystyrene + methylcyclohexane system are not as good 

and only a qualitative representation of the data was obtained. This could be a difïïcult 

system as discussed in the nnal section of the previous Chapter. Also, it is possible, as 

pointed out by Lambert et al. (1995) and Hino et al. (1996), that this may be a 

consequence of the polymer parameters. This raises an important question regarding the 

methodology employed to obtain polymer parameters. 

Usually the polymer parameters are obtained by fitting the polymer density data 

However, there are indications that perhaps this is not the best way of estimating polymer 

parameters. The experience in this work (also that of Hino et al., 1996) vas that the 

polymer parameters so obtained can sometimes push the LCST branch to much lower 

temperatures and an agreement between the theoretical and experimentai curves cannot 

be obtained by the use of a buiary interaction parameter doue. However, it cannot be said 

with certainty whether this is a consequence of the form of the model equation or a 

consequence of the methodology for estimating the polymet parameters. Also, the density 

data for the relevant polymer sample is not always available. 
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Wang et al. (1996) and Lee and Damer (1996) have had considerable success at 

correlating andior predicting phase behavior of polymer mixtures by obtaining polymer 

parameters by a group contributions approach, where the group parameters were obtained 

by fitting the VLE data of mal1 molecule systems. These researchers employed the 

Panayiotou-Vera (1982) version of the iattice-fluid model. Shen et al. (1992) have used 

SAFT to mode1 phase behavior of poly(ethy1ene-propylene) and low molar m a s  

compound mixtures using generalized correlations to obtain polymer parameters. The 

parameters were conelated against molar mass for many compounds having similar 

structure. Their experience was that the polymer parameters obtained by fitting PVT data 

of PEP samples were not as reliabIe as those obtained from the generalized comlations. 

Dohm and P r a k t z  (1990) have shown for the Carnahan-Starling hard-sphere 

reference equation of state (Carnahan and Stariing, 1969) that, the use of a perturbation 

term other than the van der Waals term gives better agreement between data and theory. 

This Line of research rnight be pursued to develop equations of state for polymer solutions 

with improved çorrelating powers. An alternative is to employ a shift of volume to match 

experimental polymer density data while fitting other parameters to mixture behavior. 

73 Computational methods 

The models present signifiant computational challenges owing to their 

complexity. For instance, unlike cubic equations of state, even solving for volume mots is 

not straightforward. In this work, some computational problems associated with the use 
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of these models have been addressed. It is show that the conventionai successive 

substitution flash calcdation procedure can be made to converge with a simple 

modification proposed by Heidemm and Michelsen (1995). The same holds for the 

mdtiphase successive substitution procedure of Abdel-Ghani et al. (1994). A scheme is 

presented for doing phase boundary calculations that accounts for the polydispenivity of 

the polymer. The issue of polydispersivity of polymer in phase-equilibrium computations 

with equations of state for polymer solutions is not a well-addressed area in the literature. 

7.4 Experimental data 

A considerable amount of pressure-temperature-composition data is avaiiable for 

polymer solutions and efforts are under way to generate more data by various groups 

around the world. Polymer solution phase behavior can be quite complex and sometirnes 

show unexpected trends as seen for polystyrene(29100) + methylcyclohexane + carbon 

dioxide system in this work. At certain conditions of pressure, temperature and 

composition the solubility of polystyrene was higher in the mixed solvent than in either 

of the two solvents taken separately. Hence, the experiments have to be performed with 

care and the investigations have to be performed in detail so that no unexpected trends in 

the phase behavior are missed. 



7.5 Recommendations 

Several possible lines of future research are suggested by the discussion in the 

preceding sections. 

The ability of the lattice-gas and PHSC equations of state to fit pure cornponent 

behavior or equilibria in mixtures of smail molecules might be enhanced by 

modifications to the temperature dependence of parameters. 

The equation of state parameters for pure polyrners might be fit to the mixture 

data with a volume shift introduced to improve calculated liquid polyrner density. 

Otherwise, alternatives can be sought for the perturbation terms. 

The convergence behavior of the flash calculation procedures used in the thesis 

rnight be improved. 

The effect of polydispersivity in phase boundary calculations requires further 

exarnination. 

There is a continuing need for high quality experimental data on polymer-solvent 

phase behavior, particularly in regions of multiphase behavior. 
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APPENDIX A 

Phase Equilibrium and Stability 

A.0 Introduction 

In the first section of this Appendix the criteria for equiiibrium in closed systems 

are presented. This is foilowed by a brief discussion r e g d g  the fiuiAsrmental equatiom 

for both open and closed systems. The subsequent section deals with conditions for 

equilibrium in heterogeneous systems. This is followed by a section about Tangent Plane 

Criterion. The Appendix A is concluded with some results regarding the limits of 

stability. 

A.1 Criteria for equiübrium in closed systems 

The first law of thermodynamics for a closed system, Le. a system that does not 

exchange mass with the surroundings, is (Moore, 1972) 

A U = Q + W  (A-1) 

AU is the change in the internai energy of the system. Q and W refer to the heat and work 

trader across the boundaries of the system respectively. The heat and work transferred 

into the system are considered positive quaatities and vice-versa. The differential fom of 

the £kst law is 
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If the work involved is only of the fonn PdV, where P and V are pressure and 

total volume respectively, then this equation can be expressed as 

d u  = dQ - PdV 

-PdV is the work done on the system. 

A statement of the second law is the inequality of Clausius (Moore, 1972) given 

dSZdQ/T, or, dQrTdS (A-4) 

S is the enîropy and T is the temperature. The equality holds for a reversible process. 

Cornbining equation (A.3) and inequality (A.4) we get 

du S TdS - PdV (A-5) 

If the total volume and the total entropy are held constant 

(du),." 0 

Therefore at constant total S and V, for any change in the variables of the closed system 

the internai energy decreases and the equilibrium corresponds to the state of the lowest 

value of interna1 energy. Hence, the equilibrium condition in terms of a virtual 

displacement fiom equilibrium 6U becomes 

(bu) s.v 2 0 

The equilibrium criterion can be expressed in tems of enthalpy (H), Helmholtz 

fiee energy (A) and Gibbs free energy (G) as given below (Moore, 1972). 

The enthalpy is defined as 
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The equilibrium condition in terms of a virtual displacement h m  equiiibrium 6H is 

The Helmholtz energy is deked as 

A=U-TS (A. 10) 

The equilibrium condition in terms of a virtuai displacement in this case is 

@A)T,v 2 0 (A. 1 1) 

The Gibbs fiee energy is defined as 

G = H - T S  

The equilibrium criterion in terms of G is 

(WT.P 2 0 

(A. 12) 

(A. 13) 

A.2 Fundamental equations 

Assuming that dQ = TdS, i.e. the processes involved are reversible, the 

fundamental equations for a closed system are 

du = TdS - PdV (A. 14) 

dH = TdS +VdP (A. 15) 

dA = -SdT - PdV (A. 16) 

dG = -SdT + VdP (A. 17) 

These equations are fundamental equations because al1 the thermodynamic information 

can be obtained h m  each one of them. For instance, 



(A. 18) 

Equation (A. 14) contains al1 the uiformation obtained h m  basic laws- Equations (A. 1 5- 

A.17) are denved h m  it and contain no new information. However, one of these 

equations maybe more convenient to work with than others depending on the application. 

For instance, whiie working with an equation of state mode1 it is convenient to work with 

the fiuidamental equation in terms of A. 

A closed system at equilibrium may be homogeneous or hetemgeneous. That is, 

the system may comprise of one phase or the system content maybe distributed arnong a 

number of homogeneous phases. For each of the homogeneous phases the mole numbers 

of various components present are variables. In this section equations are developed for 

U, H, A and G that account for the variability of composition. The treatment here is very 

brief and the reader is r e f d  to Denbigh (198 1) for a comprehensive discussion. 

Consider a homogeneous phase with nc components. U for the phase c m  be 

expressed as 

U = U(S,V,nl,nz ,.-.- -,a,) (A. 19) 

where, n,, nz, ...., a, are the mole numbers of the components present. The total 

differential of U is 

For constant amounts 



and 

we get 

nc 

du = ~ d s - ~ d v + C ~ ~ d n ~  (A.24) 
i= 1 

pi is the chernical potentid of component i. This is the ftndamentai equation for an open 

system. As before the fundamental quatios can be derived in terms of H, A and G and 

are given as 
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The definitions of the chemical potential are equivalent. Again, the use of a particular 

definition is a matter of convenience. 

By integration of fiindamental equations at constant temperature, pressure and 

composition it can be show (Denbigh, 1981) that the following equations are also vaîid 

for a phase. The derivation of these equations requires the physical knowledge that the 

intensive variables are independent of the size of the phase, whereas, the extensive 

properties are directly proportional to the size of the system. Extensive properties like U, 

V, A etc. are homogeneous functions of order 1 (McQuamie, 1976)- 

This section is concluded by the derivation of the form of Gibbs-Duhem equation 

that relates variations in temperature, pressure and chernical potentials of the components 

present in the phase. The total denvative of equation (A.29) is given by 



The total derivative of U is also given by equation (A.24). Equating tight hand sides of 

equations (A.29) and (A.24) we get the desired fom of Gibbs-Duhem equation given 

below. 

A 3  Conditions for equilibrium in heterogeneous systems 

The conditions for equilibrium in heterogeneous systems wilI be deveIoped using 

the critenon given in the inequality (A.7). As mentioned above, this criterion States that 

when the total entropy and volume of the system are held constant, equilibriurn is the 

state conesponding to the lowest possible value of the interd energy. 

We assume that the system content associates itself into homogeneous masses or 

phases and that no reactions take place in the system. In other words the total number of 

moles of each species is consewed. Each of the phases is described by an intemal energy 

function of the fonn 

Uj = Uj(Sj,Vjy nIy n2 ,....) (A.3 5) 

The interna1 energy of the system as a whole has to be minimized with respect to the 

constraints of constant total volume, constant toial entropy, constant moles of each 

species. This can be done with the method of Lagrangian muitipliers. The Lagrangian 

function for the system is 



T, and the set of bi  are the Lagrangian multiplim. n is the number of phases. The 

conditions for a stationaxy point of the total internai energy are: 

or, 

,. 
P, = P2 =.-...= P, = P (A.38) 

This is the condition for mechanicd equilibrium, i.e. the pressures in al1 the phases are 

e q d -  

,. 
Tl = Ti =....= T, = T (A.40) 

This is the condition for thermal equilibrium, i.e. the temperatures in al1 the phases are 

equal. 

And, 

or, for every phase j where the species i is present 

Fij = bi 
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This is the condition for dihional equilibriurn. The chernical potentials of component i 

in each phase are equai. 

A.4 Tangent Plane criterion 

In this section the Tangent Plane Criterion of Gibbs (Gibbs, 1961) is derived and 

its geometricai significance is briefly discussed. The derivation presented here is due to 

Michelsen (1 982). 

At a given temperature e) and pressure (P? consider a n component phase with 

mole numbers (ni, n2, ...., a. The Gibbs energy of this phase is 

Consider the divison of this mixture into two phases k and j with mole numbers (nI-anl, 

nz-lin,, ..., q,-ZinJ and (an,, 6nz, ...., 6r43 respectively. The amount of phase j (Sn) is 

infihitesimal. The change in Gibbs energy is given by 

A G = G ~  + G ~ - G O  (A-44 

A Taylor series expansion of G' to the first order ternis gives 

Using this result equation (A.44) can be expressed as 
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A necessary condition for the stability of the original mixture is that this quantity be 

positive and this condition is expressed as 

The geometrical interpretation of this inequaiity is that the phase evaluated at the O point 

is stable with respect to phase II if the distance (tangent plane distance D) between the 

O energy hypersurfiice and the tangent plane at point is greater than zero. This is the 

Tangent Plane Criterion of Gibbs. For an equilibrium, a i l  the equilibrium phases have 

the same temperature and pressure, and, the chernical potential of component i is same in 

al1 the phases. Therefore, al1 equilibriurn phases have a cornmon tangent plane and the 

equality sign holds in expression (A.47). if this expression has a negative sign for a trial 

phase relative to any one of the equiiibrium phases, then the equilibrium is unstable and a 

new distribution of phases is required. A zero or positive tangent plane distance for a 

stable phase also implies that at the point of evaluation, the cwature of the energy 

hypersurface has to be positive. 

This section is concluded with a brief discussion regarding a computationd 

application of inequality (A.47) also due to Michelsen (1982). 

Inequality (A.47) can be written as 

where i and j are cornponent and phase indices respectively. n, are the mole numbers in 

phase j. Now D will be positive for al1 sets of {nij) if it is positive at the stationary points 
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of D. The condition of staîionarity can be obtained with the constraint (x nij = nri ) by 
i = l  

the method of Lagrangian muitipliers. 

The Lagrangian in this case is 

The condition of stationarity is 

Now, 

The sumrnation in tbis expression is zero fiom Gibbs-Duhem equation at constant 

temperature and pressure. Therefore, at a stationary point 

fkj 
pkj = RTln-=ej 

fi 

irrespective of the component index. At a stationary point D is given by 

D =Bjnn 

or if one is dealing with mole fiactions in the phase j 

D = O j  

Hence for a phase to be stable with respect to the addition of the phase j, Bj has to be 

greater than zero. If B j 4 ,  then the phase j is part of the equilibriurn and a negative value 

of Bj implies instability. 



This chapter is wncluded with a brief discussion about the spinodal and critical 

points. The reader is referred to the monograph of Heidemann (1994) and the paper by 

Heidemann and Kiialil(1980) for a comprehensive review of this topic. 

We begin with inequality (A.47) written as 

This inequaiity can also be expressed in t e m  of A as 

(A. 5 5 )  

The stability of the " phase is to be tested. Consider a variation around the O point 

given by 

ni = np +hi 

and 

V = V "  +dV (Am 
Let us work with the Gibbs free energy first. Expanding G at 'lQ and Po in a Taylor senes 

around GO we get 



Substituthg in inequality (A.55) fiom equation (A.59) we get 

Hence, O phase is stable if the qiraAtiitic fom is greater than zero. The variation for which 

the quadratic form (QF) is equal to zero defines the spinodal. When the quadratic form is 

zero , the cubic form (CF) has to be zero for a phase to be stable. This can be seen as 

follows. If QF=û for a variation dn , it is also zero for a variation -dn . However, if CF is 

positive for d;; , it is negative for -& , and, vice-versa A negative CF implies instability. 

Also, for stability, the first non-zero higher order term must be of men order and positive. 

The conditions CF=QF=û dong with the restrictions on higher order ternis define a stable 

critical phase. A criticai phase is a stable phase at the Limit of stability. 

Now some familiar nsults for a binary system are derived using inequality (A.55). 

Consider one mole of a binary mixture with the molar Gibbs fiee energy given by 

g=G/(nl+nz). Let, mi/(nl+nz) be the mole b t i o n  of component 1 .  We take x as the 

independent composition variable. For this case ( A S )  can be written as 

Consider a variation in x given by 

x=xO+dx 

Expanding g at and PO in a Taylor series around go we get 



Note, 

Therefore, 

since the swnmation involving the derivatives of  the chernical potentials is zero from 

Gibbs-Duhern equation. Substituting fiom equations (A.63) and (A.65) in inequality 

(A.61) we get 

Hence, for a molar binary mixture the criterion for phase stability and the spinodal is 

given by 

The greater than sign is the critenon for the stability of the O p k  and the equal to sign 

gives the equation of the spinodal. If the quadratic form is equal to zero, then the b i t  of 

stability for the O phase, this phase king critical now, is given by 



And furthermore for stability we require 

Figure (A. 1) demonstrates the geometric interpretation of expressions (A.68) and (A.69) 

for a binary system on a molar basis. In Figure (A.1 a) the quadratic fonn is aIways 

greater than zero or in 0th- words the curvature is always greater than zero and aii the 

phases on the curve are stable. in Figure (A.1 b) the onset of instability (on an 

exaggerated scde) is shown. Figure (A. 1 c) shows the case where two equilibrium phases 

are present (having a cornmon tangent plane). AIso show in this figure are the two 

spinodal phases or points where the curvature or the second derivative of the G-x curve is 

zero. A phase located between an equilibrium phase and the spinodal phase is locally 

stable. A phase iocated between the two spinodal phases is unstable and cannot exist as a 

single phase. 

In terms of Helmholtz free energy the Taylor series expansion gives 

where 

- 
X = (nt,n2 ,...., V)T (A.71) 

Now some familiar results for a molar amount of a pure component are derived using 

inequality (A.70). In this case only variations in the volume are considered. So dX=dV. 



Figure Al. g-x diagnm showing the oiua of instaliility in a ~~MIY system 



Also, -(g) = P.  Therefore, in terms of P and V the criterion for the spinodal of a 
T 

pure component is 

This equation dong with the following equation defines the criticai point for a pure 

component 

Note that a variation of the type 

does not qiiaIif;, as a variation in phase. This merely corresponds to an increase in the size 

of the phase. When working in tenns of A this can be avoided by setting d V 4 .  

A necesssry condition for a point on the spinodal is that the rnatrix 6 with 

(variation dV = O) should have a zero determinant (QeO). The 

spinodal temperature for a fued composition phase at a given pressure can be found by 

treating Q as a function of temperature and then solving for Q(T)-Q using Newton's 

method. 

The temperature derivatives of Q can be obtained nurnerically. 



228 

This chapter is concluded with a suggestion due to Michelsen (1980) regarding 

the calcuiation of criticai points. Michelsen points out that the evaluation of the cubic 

form can be simplifïed by writuig CF as 

where 

where s is a dummy variable. ~~i is obtained by expauding Qu in a Taylor series as 

Partially differentiating with respect to s we get 

Use of this suggestion avoids the evaiuation of the thiid derivative. Q,' can be evaluated 
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Appendix B.1. Liquid-Liquid Equilibria in the system 
Polystyrene(291ûû)/Methylcyclohexsne: 

P-T isopletbs at given mass percent polystyrene. 

Mass percent Polystyrene (29 100) 
3.23 mass % 4.94 mass% 7.26 mass % 8.82 mass % 

T W) P(MPa) T (KI P W a )  T(K) P(MP4 T 6) P(MW 
299.38 1.05 301.3 1.05 302.53 1.05 303.46 1.05 

Appendix B.l (continued). 
Mas  percent Polystytene (29 100) 

1 0.97 mass % 12-81 mass % 15.19 mass % 18.21 mass % 

T (KI P(MPa) T m  P(MW T(K) P(MW T(K) P(MW 
304.05 1.05 304.44 1.05 305.03 1.05 305.45 1.05 
303.48 3.05 303.88 3.05 304.44 3.05 304.41 5.05 
303.06 5.05 303.45 5.05 304 5.05 304 7.05 
302.69 7.05 302.97 7.05 303.53 7.05 303.53 9.05 
302.25 9.05 302.56 9.05 303.1 1 9.05 
301.88 11.05 302.24 11.05 302.62 11.05 
301.52 13.05 301.93 13.05 302.35 13.05 

301.68 14.05 302.17 14.05 



Appendix B.1 (continued). 

Mass percent Polystyrene (29 100) 
20.6 mass % 22.51 mass % 26.34 mass % 

T (KI P(MW T(Q P(MW T (KI P(MPa) 
305.42 1.05 305.43 1.05 305.03 1.05 



Appendir B.2. Liquid-Liquid Equilibria in the System 
f o~styren~64000)/Metbylcydohexrine: 

P-T isopleths at given mass percent polystyrene. 
Mass percent Polystyrene 

2.1 1 m a s  % 3.30 mass % 5.1 lmass % 6.48 mass % 

P(MPa) T(K) P(MW T (KI P W a )  T m  P(MPa) 
329.81 3.95 330.76 2.40 330.91 1.45 330.1 1 2.00 

Appendix B.2 (continued). 
Mass percent Polystyrene 

9.71 mass % 13.60 mass % 

TCK) P W a )  T (KI P(MW 
329.34 1.60 328.36 1.50 
328.59 3.05 328.29 1.60 
327.81 4.55 327.68 3 .O0 
327.05 6.10 327.33 3.50 
326.3 7.70 326.63 4.85 
325.47 9.80 325.86 6.55 
324.86 11.55 325.15 8.25 

324.47 10.10 
323.9 1 1.75 



Appendix B A  Liquid-Liquid Equiiibrh in the System 
Polystyrene(29100)/Methyicyc1ohexane/COZ: P-T isopleths at dincrent masa percent CO2 

and almost constant polystynne concentration (4.79-5.0 mass %.). 

Mass percent Polystyrene 
4.95 mass % 4.94 mass % 4.94 mass % 4.96 mass % 

Mass percent CO2 
3.77 mass % 7.75 mass % 1 1.22 mass % 12.21 mass % 

Appendu B.3 (continued). 
Mass percent Polystyrene 

4.91 mass % 4.94 mass % 4.79 mass % 4.95 mass % 
Mass percent CO2 

14.79 mas % 18.12 mass % 20.95 mass % 21.14 mass % 



Appendix 8 4 .  Liquid-Liquid Equilibria in the System 
Polystyrene(29100)/Methy1cyclohexane/COt: P-T isopleths at d inennt  mass percent CO2 

and aimost constant polystynne concentration (10.9-11.0 mass Oh.). 

Mass percent Polystyrene 
10.99 mass % 10.9 mass % 10.97 mass % 10.91 mass % 

Mass percent CO2 
2.42 mass % 4.28 mass % 5.08 mass % 7.42 mass % 

Appendu B.4 (continued). 
Mass percent Polysîyrene 

10.98 mass % 10.95 mass % 10.95 m a s  % 10.96 mass % 
Mass percent CO2 

10.37 mass % 11.67 mass % 14.57 mass % 16.57 m a s  % 
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