
WCCCE2006 Katrin Becker

Encouraging CS Novices to Write

K. Becker
University of Calgary

2500 University Drive NW
Calgary, Alberta T2N 1N4

beckerk@ucalgary.ca
403-220-5769

(fax) 403-284-4707

Abstract
Communication skills are arguably among the most important skills for Computer
Science (CS) professionals, and if not at the very top of the list, then certainly near it [1].
Yet oddly, other than writing code and associated program documents, CS students are
rarely given writing tasks in their CS courses. This paper will examine some possible
reasons for why there are few writing tasks other than programming and documentation
assigned in CS courses, and what benefits could be realized through more and varied
forms of writing. A strategy that has been implemented twice at the author’s institution is
outlined. It involves the use of short, 250-500 word “reading responses”, where students
are encouraged to produce what are essentially editorial pieces on some topic relating to
the course content. The details of the assignment, as well as the intended outcomes will
be outlined. The concept proposed in this paper was implemented in the fall of 2006 in a
small class of 30 first year students, and was used again in a larger section of the same
course, where there were approximately 100 students. Some initial student reactions are
outlined. Suggestions for further examination and development of the concept are
suggested.

1.0 Introduction
 Communication skills are arguably among the most important skills for Computer
Science (CS) professionals, and if not at the very top of the list, then certainly near it [1].
Yet oddly, other than writing code and associated program documents, CS students are
rarely given writing tasks in their CS courses. The notion of the importance of writing is
not new – the “Writing Across the Curriculum” movement was quite popular in the 70’s
[2], and experienced somewhat of a resurgence in the form of “Writing to Learn” in the
90’s [3]. However, somewhere along the way many CS programs seem to have lost touch
with this notion. Perhaps this is not surprising – in the quarter century since the initiative
first became popular the discipline of computer science has undergone many changes, far
more than most other disciplines in the sciences. Similarly, CS Education has changed
dramatically in that time. The ACM recommendations for undergraduate programs in
1978 was a 20-page document [4] and outlined what was, at the time, considered to be a
comprehensive and fairly complete degree. By contrast, the current document has been
divided into four separate volumes, and the CS volume alone totals 240 pages [1].

 The discipline of computer science has grown – there is so much “more” to it than
there was twenty-five years ago, and yet an undergraduate degree is still a four year

WCCCE2006 Katrin Becker

program. One of the consequences of this growth is that many CS faculty feel hard-
pressed to cover as much content as possible in the hopes of providing a comprehensive
education. For many, this results in a curriculum that ends up being a mile wide but only
an inch deep. The focus in CS Education must change from providing students with
encyclopedic knowledge of several programming languages and a dozen or so
applications and tools, to a thorough grounding in the fundamental principles of CS and
skills in problem solving, critical analysis, communication, and other forms of higher
order thinking.

 Modes and ease of access to factual information have also changed dramatically
in the last decade. Ten years ago, this author often told her students that if they wanted to
conduct “real research”, they would have to learn how to use the library. Ten years ago,
the web was still relatively young and populated largely by commercial sites and general
information – much like a glossy or supermarket magazine. Now, it is possible to do the
bulk of one’s research from home, while still in your pajamas. About the only sources
that still require a physical presence in a library are monographs – and even many of
these are now available in digital form online (on sites like book24x7.com).

 It is becoming obvious that simply knowing a great number of facts no longer
passes for a comprehensive education. On the other hand, it is also true that just knowing
where to find a great many facts is also insufficient. “Knowledge exists only as a function
of living tissue. Knowing where to find knowledge or poems or speeches is nothing like
having that material as a part of one’s living tissue. It affects how we think and feel, and
education is about precisely these things. The emphasis that has lead away from rote
learning, and in this way eventually learning by heart, has been one that gradually and
greatly impoverishes minds.” [5 p.68] If we accept this premise and combine that with
the notion that the CS body of knowledge has become too large for a four-year program,
then the problem becomes a matter of deciding which facts and other writings are
important to have “as part of one’s living tissue”, and which ones can safely be left “out
there” to be Googled as necessary. Perhaps part of the answer comes from allowing at
least some of this to sort itself out naturally and organically. This is where writing to
learn comes back into the picture. The process of writing one’s thoughts and opinions
naturally causes us to review and eventually remember certain facts, passages, events,
and people.

2.0 Background
 It is known that in order to be effective, lasting, and transferable, that practice
must be placed within a meaningful context, and combined with critical feedback that
affords the learner an opportunity to re-engage with the material and practice what was
learned [6]. Another way to put this is that knowledge must be used and applied in order
to be useful, and one way to do this is through writing. Computer Science programs have
always included a substantial amount of programming, and this certainly qualifies as use
and application of learning. However, this chiefly provides only one perspective, and in a
classroom situation, programming is often viewed as a “one-shot” operation: the program
is written, tested, documented and submitted for grading; after which that particular
solution is rarely looked at again. There are a number of ways of altering this approach

WCCCE2006 Katrin Becker

that can make it more closely approximate what students will experience in professional
practice [7-9], but that is not the focus of this paper. This paper examines alternative
forms of writing not commonly used in CS classes.

 These days, there are many more forms of writing than those that existed when
the notion of “Writing across the Curriculum” was first conceived of – including, but not
limited to: peer-reviewed published works, term papers, research reports, editorial
critiques, blogs, online forum postings, chat exchanges and email. Some of these have the
potential to improve learning in measurable and significant ways. Email, for example,
does not have the same effect as posting to public forums. One reason appears to be that
email is seen as “private” and not for public consumption [10], and so tends to be treated
more casually. This is important because there is a positive correlation between some
forms of student use of in class communication and final exam grades, but there is no
significant difference between final scores of email users and non-users [10]. The amount
of effort students put into their writing has a direct impact on their grades. If we assume
that final grades are a reliable measure of student learning, then proof-reading and editing
written work are important for learning. This in turn implies that we should find ways to
promote this kind of activity if we want to help students develop to their fullest potential.

 Writing as communication in the classroom has other benefits as well. A recent
case study of introductory CS courses at a large university [11] found that classroom
climates in CS tend to be more defensive (evaluative, controlling, strategic, superior, and
deterministic) as opposed to supportive (descriptive, problem-oriented, spontaneous,
empathic, equal, provisional), and the former is known to be a less appealing
environment for women and minorities. Writing in the classroom is one way to move
towards a more supportive climate, which may also have the added benefit of helping to
retain a greater number of women in the discipline.

3.0 Writing to Learn in CS
 Writing supports at least three roles in a CS program: 1) writing is a
communicative skill important in the discipline; 2) writing is an effective way to learn as
it involves the entire brain in all the processes: doing, depicting, and symbolizing [12],
and 3) writing as a means of communication in the classroom helps to foster a more
supportive and inclusive climate [11].

 Big term papers are rare in CS. One reason for this is that assessing written works
is a time-consuming task, and no-one wants to mark them. Another is that many CS
faculty feel under qualified to assess written works, and prefer to leave what they see as
language arts to the English department [13]. Typically in CS courses, when term papers
are assigned at all, they are assigned only once in any given course, and are generally due
at the end of the term. This means that although students will sometimes receive feedback
on their efforts, they often receive it after the end of term, and they will not have an
opportunity to reflect on that feedback and re-apply it in a new effort. Further, CS
students are famous for their unwillingness to write – more than a few will tell you that
they chose a CS program expressly to avoid those pesky term papers and essays so often
required in the humanities and social sciences. The bad news is that CS professionals

WCCCE2006 Katrin Becker

have at least as great a need to learn how to develop a cogent argument, and an ability to
skillfully critique the writing of others as anyone in the so-called softer sciences.
Computer Scientists need to learn the discourse of their discipline. What this means is
that our students need more practice writing.

 It is widely accepted that by and large, writing improves with practice. In order to
improve the writing and communication skills of our CS graduates, we need to provide
many and varied opportunities for them to practice. The current solution to this need at
the author’s institution, in use for the last few decades, is to have another faculty offer a
course on technical writing that is either required, or highly recommended. While this is
certainly a step in the right direction, this approach has several problems, not the least of
which is that “generic” technical writing does little, in fact, to prepare future practitioners
(in any profession) for the many and varied writing tasks they will face in their
professional careers. Further, it is a single course offering, typically taught by faculty
who are not computer scientists, and offered to students from many disciplines in
addition to CS. Although the skills taught are important and are often well-taught, it is
not enough. Skills cannot be taught in isolation from the context in which they need to be
used, at least, that cannot be the only exposure that students have [14]. All of this implies
that if we are to help our CS students learn better communication skills, we must offer
them opportunities to practice writing, not only in one course, but in many, and within the
context of their own discipline.

4.0 Start Small: Reading Responses
 One step towards providing writing opportunities has been added to the second
introductory programming course (CS102) taught by the author. This course is intended
primarily for CS majors, and its main focus is on learning object oriented programming,
currently using Java. There are fairly typical programming assignments in the course that
account for 50% of the course grade, as well as two exams, which together account for
another 30%. For the remaining 20% of the course grade students are asked to choose
from various possible tasks, including doing demos of their programs, writing
assessments of the course and its content, writing reading responses, and other tasks that
can be arranged through individual agreements with the instructor. Different weightings
are given to different tasks. It is the reading responses that are of interest in the current
context. While the bulk of the lecture time is taken up with talk of programming in Java,
the course outline and schedule suggests various additional readings that are either
directly related to the main lecture topics, a peripherally related topic (such as GUIs), or
some other item with relevance to CS that has appeared in a newspaper or someplace
like SlashDot (/.). These other readings may be related to research, politics, business,
health, or any other topic that has an obvious tie to computer science, programming, or
professional practice. Students are informed of the readings and given links to the
sources, but the topics may or may not be discussed in the classroom. These readings are
intended to supplement the more traditional course content and provide some sense of the
bigger picture of what it means to be a computer scientist. They are also intended to
become possible subjects for students’ reading responses. These reading responses
require the student to write a short, 250-500 word essay, where students are encouraged
to produce what are essentially editorial pieces, as opposed to writing “notes” or a

WCCCE2006 Katrin Becker

summary. Students may also choose to write on some other topic relating to the course
content.

 This approach was implemented in the fall of 2006 in a small class of 30 first year
students, and was used again the next semester in a larger section of the same course,
where there are approximately 100 students. The rationale for implementing this
particular approach was that CS students are often reluctant to write, yet it is important
that they practice. One way to get reluctant students to write is to make it easy for them to
try by starting small. The size of the item they must produce and the time commitment
needed to complete it is small (250-500 words), and the impact this item has on their final
grade is also small (3%). As a result the perceived risk to the student is reduced, making
it easier for them to try.

 Most students were quite tentative with their writing at first, and since there is no
set deadline for these responses, it typically took a month or so of classes before the first
ones were submitted. Allowing this lead time seems to be significant as the nature and
general culture of any particular class will take some time to develop and become known.
Generally, the responses that were submitted early in the term tended to be non-
committal. They either echoed some opinion offered by the instructor in class, or
accepted whatever opinion was offered by the author of the piece being critiqued.
Interestingly, this changed once the class had had a chance to develop as a community.
The responses submitted then tended to be far riskier in terms of the opinions they
offered, in some cases disagreeing entirely with the instructor’s bias. In this course
teaching assistants typically marked the assignments, but all responses were read and
graded by the instructor herself. Each response was read and the instructor added some
comments on both the content and writing style. In many cases subsequent submissions
were longer and more involved than initial ones, indicating that the first reaction to their
writing had had a positive effect on the students.

5.0 Conclusions
 Whether this practice had a measurable effect on student grades is not known at
this time, but the feedback offered during the term indicated that students liked this
approach and generally found that it enriched the course as a whole. They appreciated the
connection that this activity created between what they were learning in school and what
was happening “out in the world”. Writing of this sort fosters a connection and
interaction between the instructor and the students on a more personal level than some
other activities, partly because the task deals with opinions, rather than just facts. This in
turn helps build community and a sense of membership in a community of practice.

 The use of current events allows us to essentially kill two birds with the same
stone by bringing research and timely events into the classroom, thus helping students to
learn about being a computer scientist in addition to the typical learning about computer
science.

 The approach described in this paper helps to encourage contacts between
students and faculty, uses active learning techniques, and respects diverse talents and

WCCCE2006 Katrin Becker

ways of learning. These are three of the “Seven Principles for Good Practice in
Undergraduate Education” as defined by Chickering and Gameson in 1987 [15]. It was
found the amount of additional time required to grade these reading responses was easily
counterbalanced by the responses themselves – many of them turned out to be very
enjoyable to read!

 On the whole the addition of reading responses to the course content was a
positive experience, both for the students and the instructor, and will be continued. There
are, of course other ways to encourage writing, such as: letter to an author; book review;
writings based on abstracts; writing from a pro- or con- position; write what is already
known before a discussion; memos; announcements; hypothetical conversations; etc. [16]
Writing in almost all of its forms helps develop critical thinking skills through “reflection
in action” [17]. We could all consider including more writing in our computer science
courses. Perhaps through further investigation we can even begin to discover whether
certain writing tasks are more beneficial to computer scientists than others.

6.0 Further Resources
WAC:
writing is the responsibility of the entire academic community,
writing must be integrated across departmental boundaries,
writing instruction must be continuous during all four years of undergraduate education,
writing promotes learning, and
only by practicing the conventions of an academic discipline will students begin to
communicate effectively within that discipline.
WAC Resources:
http://owl.english.purdue.edu/handouts/WAC/
http://owl.english.purdue.edu/handouts/WAC/intial.html
http://wac.colostate.edu/intro/

Writing Guides and Information:
Cleveland State University Writing Center:
http://www.csuohio.edu/writingcenter/writproc.html
How To Write a Paper in Scientific Journal Style and Format:
http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html

7.0 References
[1] "Computing Curricula 2001: Final Report of the Joint ACM/IEEE-CS Task Force

on Computer Science Education," IEEE Computer Press, Los Alamitos, CA
December 2001.

[2] S. H. McLeod, "Writing across the Curriculum: The Second Stage, and Beyond,"
College Composition and Communication, vol. 40, pp. 337-43, 1989.

[3] R. Moore, "Writing to Learn Biology.," Journal of College Science Teaching, vol.
23, pp. 289-95, 1994.

[4] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L. Engel, and G. Stokes,
"Curriculum '78: recommendations for the undergraduate program in computer

http://owl.english.purdue.edu/handouts/WAC/
http://owl.english.purdue.edu/handouts/WAC/intial.html
http://wac.colostate.edu/intro/
http://www.csuohio.edu/writingcenter/writproc.html
http://abacus.bates.edu/%7Eganderso/biology/resources/writing/HTWsections.html

WCCCE2006 Katrin Becker

science— a report of the ACM curriculum committee on computer science,"
Communications of the ACM archive, vol. 22, pp. 147 - 166, 1979.

[5] K. Egan, Getting it wrong from the beginning: our progressivist inheritance from
Herbert Spencer, John Dewey, and Jean Piaget. New Haven: Yale University
Press, 2002.

[6] J. Bransford, National Research Council (U.S.). Committee on Developments in
the Science of Learning., and National Research Council (U.S.). Committee on
Learning Research and Educational Practice., How people learn: brain, mind,
experience, and school, Expanded ed. Washington, D.C.: National Academy
Press, 2000.

[7] K. Becker, "Death to Deadlines: A 21st Century Look at the Use of Deadlines and
Late Penalties in Programming Assignments," presented at WCCCE 2006 - The
Western Canadian Conference on Computing Education, Calgary, Alberta, 2006.

[8] M. A. Patton, "The Importance of Being Flexible with Assignment Deadlines,"
Higher Education in Europe, vol. 25, pp. 417-23, 2000.

[9] M. D. Jackson, "A Distance-Education Chemistry Course for Nonmajors,"
Journal of Science Education and Technology, vol. 7, pp. 163 - 170, 1998.

[10] M. K. Barbour and M. A. J. Collins, "The Act of Online Writing as an Indicator
of Student Performance," presented at 27th, Chicago, IL, October 19-23, 2004,
2004.

[11] K. Garvin-Doxas and L. J. Barker, "Communication in Computer Science
Classrooms: Understanding Defensive Climates as a Means of Creating
Supportive Behaviors," ACM Journal of Educational Resources in Computing,
vol. 4, pp. 1-18, 2004.

[12] J. Emig, "Writing as a Mode of Learning," in The Writing Teacherés Source
Book, G. Tate and E. P. J. Corbett, Eds., 2nd ed. New York: Oxford U P, 1988,
pp. 85-93.

[13] J. D. Hartman, "Writing to learn and communicate in a data structures course,"
presented at the twentieth SIGCSE technical symposium on Computer science
education, Louisville, Kentucky, United States, 1989.

[14] J. Lave and E. Wenger, Situated learning: legitimate peripheral participation.
Cambridge [England]; New York: Cambridge University Press, 1991.

[15] A. W. Chickering and Z. F. Gamson, "Seven Principles for Good Practice in
Undergraduate Education," AAHE Bulletin, 1987.

[16] B. G. Davis, Tools for teaching. San Francisco: Jossey-Bass, 1993.
[17] D. A. Schön, The Reflective practitioner: how professionals think in action. New

York: BasicBooks, 1983.

