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ABSTRACT 

While medical images are normally displayed and 

analysed in two dimensional ( 2D) form, 3D data are actually 

available in some situations. In this thesis it is shown 

that true 3D processing of this data is advantageous. This 

result is expected in the same way that 2D processing is 

better than using 1D operations on 2D images. Processing 

by the mean filter for noise reduction, and the variance 

filter for edge enhancement are examined. These filters 

are chosen for their low directional sensitivity and their 

extensibility to multidimensional forms. Application of 

these filters to a 3D synthetic image demonstrates the 

advantage of 3D processing. Tests of the filter methods 

showed that edge detection was possible with RMS noise 

levels as high as 3.0 times the height of the edge. These 

techniques applied to the left ventricle edge detection 

problem in nuclear cardiac scintigrams confirm that 3D 

processing produces better edge enhancement than does 2D 

processing. 
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Chapter 1 

INTRODUCTION 

11 The Problem 

The location of discontinuities in a signal is often 

desired in signal processing. In multidimensional signals, 

or images, these discontinuities are edges or boundaries 

between different regions of the image. The edges can mark 

boundaries between regions of different intensity, texture, 

variance or some other characteristic. The accurate 

location of these edges is frequently central in the 

interpretation of images. For these reasons the detection 

of region-defining edges in multidimensional signals is an 

important area of study. 

The importance of this edge location problem has led 

to the development of many edge enhancement 

techniques[1-7]. All edge enhancement techniques are 

limited by image resolution, sharpness of the edge, and 

particularly, signal-to-noise ratio ( a definition is given 

in Section 1.3.4). As the noise level on a signal 
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increases, the edges in the signal become more difficult to 

detect. Consequently, a high signal-to-noise ratio is 

desirable. Because of limitations in some practical 

applications, a high noise level must be tolerated. In 

such cases, methods of noise reduction can be employed. 

The drawback with these methods is that while, they reduce 

the level of noise in a signal, they also tend to distort 

and blur edges in an image. As a result, accurate edge 

detection and image interpretation may be difficult to 

achieve. 

A specific example of this problem occurs in 

radiological medical imaging. In medical images, edges 

between regions of different intensity represent boundaries 

between anatomical structures and/or anomalies. Presently, 

high levels of noise must be tolerated because the only way 

to reduce the noise in the imaging process is to increase 

the radiation dose, thereby increasing the risk to the 

patient. Since the side effects of radiation can be life 

threatening, a signal processing solution to the low 

signal-to-noise ratio must be sought. 
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1.2 Purpose 

The work done for this thesis was motivated by needs 

in nuclear medical imaging. In medical imaging, image data 

are sometimes available in three dimensions. An example of 

such data is computed tomography ( CT) scans. A single CT 

scan is a two dimensional image representing a slice of the 

patient's internal anatomy. Each sample in the scan is 

derived from the body's ability to absorb radiation at that 

location. A series of scans of adjacent slices combine to 

form a three-dimensional data set with three spatial axes. 

Another example of three-dimensional image data is 

nuclear cardiac scintigrams. The process of producing a 

cardiac scintigram involves injecting a gamma radiation 

source into the patient's blood. Radiation emitted by each 

region of the body is then counted. The scintigram, a two 

dimensional image, is formed from the counts by letting 

each image sample equal the gamma radiation count emitted 

by the corresponding part of the body. Regions of the body 

containing a large amount of blood, such as the heart, have 

high counts and can be seen in the scintigram. Because of 

the movement of the heart during the counting process, the 

scintigrams must be gated to the heart's beat. A series of 

16 scintigrams is produced with each scintigram 

corresponding to a temporal fraction of the heart's beat. 
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The scintigrams combine to form a data set with two spatial 

axes and one temporal axis. A more complete description of 

the acquisition, properties, and utilisation of nuclear 

cardiac scintigrams is given in Chapter 5. 

The purpose of this thesis is to show how 

three-dimensional signal processing can be applied to these 

three-dimensional signals. This application is intended to 

improve noise reduction and edge enhancement in 

three-dimensional data with a low signal-to-noise ratio. 

The expected improvement is analogous to that obtained for 

two-dimensional data by processing in two dimensions rather 

than in one dimension at a time. Three categories of noise 

reduction techniques are examined to find a method suitable 

for edge detection applications. Of these techniques, the 

mean filter, a type of linear norirecursive filter, is shown 

to be most suitable. The novelty of three-dimensional 

processing raises the need for an edge enhancer that is 

applicable to any multidimensional situation. A variance 

filter is proposed to fill this need. The mean filter for 

noise reduction and the variance filter for edge 

enhancement demonstrate the effectiveness of 

three-dimensional image processing. 
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1.3 Definitions  

In order to avoid confusion among terms which are 

common to both statistics and signal processing, but have 

different meanings in each field, the terminology used 

throughout this thesis is defined in this section. 

1.3.1 Samples 

The term " sample" in statistics can refer to a set of 

data which is taken from a larger population. For example, 

one could have a sample of 100 height measurements of 

people in Calgary. In this case the sample contains 100 

data and is taken from the population defined by the people 

who live in Calgary. In signal processing the term 

"sample" has a different meaning. A sample in signal 

processing refers to a single datum which represents the 

value of a signal at one specific position ( spatial or 

temporal). In the previous example of height measurements 

of people in Calgary, a sample in signal processing would 

refer to the value of the height of one particular person. 

For the work presented here the term sample refers to 

samples in the signal processing sense, that is, an 

individual datum. The term "pixel" refers to a sample in a 

two dimensional signal and the term "voxel" refers to a 

sample in a three dimensional signal. 
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1.3.2 Windows and the Filtering Operation  

The term "window is used frequently here. A window 

always corresponds to a single sample and is the set of all 

samples within a region of specified size. Windows are 

usually centred on the sample to which the window 

corresponds. To help clarify what is meant by a window, 

two examples are illustrated in Figure 1.1. The first of 

these examples shows a one-dimensional window five samples 

long. The second shows a two-dimensional window which 

measures three pixels on a side. In this thesis the size 

of a window refers to the number of samples in a window, 

and the width of a window refers to the length of the 

window on a side. For example a three-by-three, 

two-dimensional window has a size of nine and a width of 

three. In image processing it is not required that windows 

be square, and in fact, they may be any shape. It must be 

noted that in the present context windows are square. 

The concept of a window is central to the filtering 

operation referred to throughout this thesis. In the 

filtering operation each output sample, y1 , is a function 

of the corresponding input sample, x1 and the samples in 

the window at that position. The subscripts used here 

refer to a two dimensional example, but may be extended to 

any number of dimensions. Figure 1.2 illustrates the 
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filtering ' operation pictorially. 

1.3.3 Multidimensional Signals  

Signals in one, two and three dimensions are discussed 

in this thesis. The terms " one-dimensional", 

"two-dimensional" and "three-dimensional" are abbreviated 

as " iD", " 2D" and " 3D". 

1.3.4,Signal-to-Noise Ratio 

The concept of signal-to-noise ratio(SNR) is important 

in signal processing. In the strictest sense SNE is the 

ratio of signal energy to noise energy. In edge 

enhancement applications, SNR is defined by[S] 

SNE = (h/(-) 2 

where h = edge height 

and ,-y = standard deviation of noise. 

Thus, in this definition, the square of the edge height is 

used instead of the signal energy. 
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1.3.5 Edge Enhancement, Tracking and Detection 

Edge enhancement refers to the process by which edges 

in an input signal are transformed into peaks in an output 

signal. The process of edge tracking is the process of 

following the peaks in an edge enhanced image to determine 

the perimeter of the object defined by the edge. Edge 

detection involves, first, enhancing edges in an image and 

then, tracking them, that is, the combination of edge 

enhancement and edge tracking. 

1.4 Outline  

Noise reduction methods can improve SNR which in turn 

may lead to better edge detection. In low SNR cases, to 

which this work is targeted, noise reduction methods are 

used in combination with edge enhancement in order to 

improve results. A review of commonly-used noise reduction 

and edge enhancement methods is presented in Chapter 2. 

The limitations of these methods are highlighted. 

Limitations of the common edge enhancers reviewed in 

Chapter 2 lead to the proposal of the variance filter as an 

edge enhancer. The proposed variance filter is analysed in 

Chapter 3 where it is shown that the variance filter 
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exhibits all the desirable properties of an edge enhancer 

and that it can be easily extended to work in any 

multidimensional situation. The analysis also demonstrates 

the advantage of processing data in 3D as opposed to 2D or 

1D. Also in Chapter 3, the variance filter is compared to 

other commonly used edge enhancers. 

A test demonstrating the behavior of the mean filter 

for noise reduction and the variance filter for edge 

enhancement is presented in Chapter 4. The test results 

support the theoretical work done in Chapter 3. The edge 

enhancement property of the variance filter is demonstrated 

and the argument for 3D processing versus 2D processing is 

supported. 

The processing techniques tested in Chapter 4 are 

applied to cardiac scintigrains in Chapter 5. Cardiac 

scintigrams are used in medicine to diagnose the condition 

of the left ventricle of the heart. The left ventricle is 

the "work horse" of the human heart and is important to any 

patient's health. Although some automated method for 

outlining the left ventricle is normally supplied with 

nuclear cardiac scintigram equipment, none is entirely 

successful and manual methods are often necessary in order 

to achieve accurate results. In this chapter it is shown 

that, even with a rudimentary edge following algorithm, 
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improved results in enhancement and outlining of the left 

ventricle may be obtained. It is concluded that with more 

sophisticated edge tracking algorithms the variance filter 

combined with some form of noise reduction in 3D can 

produce excellent results in edge detection. 

Finally, in Chapter 6 the theoretical, test and 

application studies are summarised. Suggestions are made 

for the direction of future research in the problem of 

accurate edge detection. 
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Figure 1.1 Examples of filtering windows 
(a) 1D window of width 5 
(b) 2D window of width 3 
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Figure 1.2 The filtering operation 
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Chapter 2 

REVIEW OF NOISE REDUCTION 

AND EDGE ENHANCEMENT METHODS 

2.1 Introduction  

The detection of edges in images has been a major area 

of research in image processing for many years. 

Consequently, many techniques for edge enhancement have 

been presented in the literature. Since all edge 

enhancement methods are limited by SNR it is important also 

to understand noise reduction methods in image processing 

and their effect on edge enhancement. 

The first section of this chapter deals with noise 

reduction. Three categories of noise reduction techniques 

are reviewed. This review demonstrates the trade-off 

between effective noise reduction and blurring of edges in 

the image. It is also shown that filter methods which rely 

on bimodal probability distributions in a window at an 

edge, such as the median filter, behave differently in low 

SNR situations where the probability distributions are no 

longer bimodal. 
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The second section of this chapter is a review of some 

common methods for edge enhancement. Their advantages and 

limitations are outlined. The idea of using the variance 

function for edge enhancement is also introduced in this 

section. 

2.2 Noise Reduction Methods  

For the purposes of this thesis, noise reduction 

methods are classified into the following categories: 

1. Linear nonrecursive filters 

2. Median filters 

3. Linear recursive filters 

Each category of filter is dealt with separately. 

Linear nonreoursive filters are described in general and a 

specific example, the mean filter, is examined. Next, the 

median filter is presented. It is argued that the median 

filter relies on a bimodal probability distribution in the 

image in order to 

that when the SNR 

distributions may 

and disadvantages 

discussed. 

preserve edges. Further, it is shown 

is low enough, the probability 

not be bimodal. Finally, the advantages 

of linear recursive filters are 
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2.2.1 Linear Nonrecursive Filters  

In a linear nonrecursive filter, the filter output, 

is a linear function of the samples in the window at 

the corresponding input sample, xi,j . Filter output is 

derived only from input signal samples, hence, these 

filters are nonrecursive. In contrast, the output of a 

linear recursive filter, as described in Section 2.2.3, is 

derived from a linear function of input signal samples and 

previous output signal samples. 

Linear nonrecursive filters have the property of 

finite impulse response (FIR)[9]. The FIR property means 

that the output of the filter due to an impulse input will 

be finite in duration. One can understand this intuitively 

by realizing that only if the impulse input falls inside 

the window can it affect the output. Since the window is 

finite in size, the output due to the impulse must also be 

finite in size. 

A FIR filter can also be thought of as a matched 

spatial filter ( MSF). A NSF is a FIR filter which is 

matched to a specific input signal. It is the optimum FIR 

filter for detecting that particular signal. The impulse 

response of the NSF is equal to the input signal which the 

filter is to detect[1O]. 
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Linear nonreoursive filters can be used for many 

purposes. To reduce noise, the filter must detect a signal 

of constant level obscured by noise. The optimum FIR 

filter for this task is a MSF matched to the constant 

level. A mean filter is the result. In a mean filter, the 

output sample, y1 is equal to the mean of all the samples 

in the window centred at xii. for each sample in the input 

signal. Mathematically the mean filter is given by 

= (x x1 is in w. .) N l,m , m 

where N = size of the window, and, 

= window centred at sample i,j 

(2.1) 

The improvement in SNR realised by the mean filter is given 

by[ 113 

SNR = N(SNRx) . (2.2) 

Although the mean filter is the ideal MSF for constant 

levels, it is rare that one encounters an image containing 

only one constant level. At points where one level ends 

and another begins, i.e., at edges, the mean filter tends 

to blur or smear the two levels together. This effect is 

illustrated for a 1D case in Figure 2.1, where the edge is 

blurred across 11 samples. The number of samples across 

which the edge is blurred is equal to the window width. In 
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multidimensional cases the blurring is restricted to the 

width of the window in each dimension. 

Linear nonreoursive filters may also operate in the 

frequency domain. Standard texts such as Pratt[12], or 

Gonzalez and Wintz[13] describe how to use fast Fourier 

transform ( FFT) windowing to reduce noise in an image. 

This method is effective but has drawbacks. FFTs are 

computationally intensive. 2D FFTs take a relatively long 

time to compute and in 3D the process would be far too 

cumbersome to be useful. 

In one variation of the mean filter proposed by 

Lee[14] , a local estimate of the mean ( as in the mean 

filter) is combined with a local estimate of the variance 

to obtain the best estimate of a pixel value. The method 

is effective in images where there is low noise. However, 

in situations where the SNE is less than 1, noise reduction 

is not as good, although edges are not blurred as much as 

with the mean filter. 

A signal which has been subject to distortion and has 

additive noise can be recovered by a Weiner filter, a 

variation of the MSF[15]. The Weiner filter selects the 

optimum weighting of two filters, the inverse of the 

distortion and a NSF. The process of Weiner filtering was 
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demonstrated in 2D by Ekstrom[16]. Abramatic and 

Silverman[17] used nonlinear modifications to Weiner 

filtering to take into account edge information and improve 

filtering results. In applications studied for this 

thesis, there is no applicable model for a distortion 

process and the Weiner filter reduces to a MSF. 

The mean filter is a linear nonrecursive filter and 

therefore exhibits the property of finite impulse 

response. It has been shown that as a matched spatial 

filter the mean filter is the optimum FIR filter for 

detecting a constant level obscured by noise. The FIR 

response property leads to finite blurring of edges in 

images. These properties make the mean filter an 

acceptable approach to noise reduction in images. 

2.2.2 Median Filters  

The median filter follows the same basic filtering 

operation as linear nonrecursive filters, but a nonlinear 

rather than linear function is used. Calculation of the 

median of a set of numbers is done by first rank ordering 

that set. The median is then the value at the centre of 

the ordered numbers. The use of the median as a filtering 

function is given mathematically by 
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Median{x1 ml is in w i, j .) (2.3) 

For a normally distributed variable the mean, median and 

mode ( the mode of a variable is the value which occurs most 

frequently) are equal. Therefore, the median shares the 

desirable feature of the mean filter in that it is the 

optimum FIR filter for the detection of a constant level. 

This research presents an original analysis of the 

median filter. This analysis is extrapolated to show the 

limitations of the median filter. The important difference 

between the mean and the median occurs when the filter 

encounters an edge. At an edge, the extent to which the 

median filter behaves like a mean filter depends on the 

likelihood that the median will equal the mean. At an 

edge, the probability distribution of samples in the window 

is bimodal and symmetrical as shown in Figure 2.2. Figure 

2.2 shows the distribution as being continuous. For the 

continuous distribution the median will equal the mean. 

The histogram of samples in a window represents an 

approximation to the continuous probability distribution. 

The accuracy of the approximation depends on the number of 

samples used to calculate that approximation. An increased 

window size will serve to increase the accuracy of the 

histogram in the window. Therefore, as the number of 

samples in a window is increased the likelihood that the 
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median will equal the mean also increases. If the number 

of samples is sufficiently low, the median will be 

different from the mean, and be drawn towards one of the 

two modes. Ideally, there will be no sample values near 

the mean and each pixel will be clearly associated with one 

mode. 

The distribution shown in Figure 2.2 represents a case 

with low noise making two modes clearly visible. If the 

standard deviation of the noise is increased the two modes 

join together. There will no longer be two modes in the 

distribution at the point where the standard deviation of 

the noise is equal to one half of the step size at the 

edge. Figure 2.3 shows a series of bimodal distributions 

based on the sum of two normal distributions with an equal 

probability for each mode and equal standard deviations. 

The single mode which exists when the standard deviation is 

half the step size corresponds to the median and the mean 

of the distribution. When noise is high, the output of the 

median filter is not apt to fall near one of the two sides 

of the edge. It is most likely that the median will equal 

the mean. 

Figure 2.4 shows the median and mean filtering of two 

identical 1D signals with different noise levels. In the 

situation where there is no noise the output of the median 
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filter is identical to the input, but the mean filter has 

blurred the edge. In contrast, the case where the noise is 

one half the step size shows that the median filter blurs 

the edge as much as the mean filter. The presence of noise 

has modified the behaviour of the median filter such that 

it behaves similarly to the mean filter. 

Several variations on the median filter have been 

used. A separable median filter for noise reduction in 2D 

was demonstrated by Narendra[18]. An adaptive median 

presented by Stein and Fowlow[19] used a priori knowledge 

of edge height to decide whether or not to use the actual 

median of a particular window or to use a different 

percentile. Lee and Kassam have used several variations of 

the median filter including what they term a modified trim 

mean ( MTM) filter[20]. 

Narayanan and Rosenfeld used global statistics to 

select which pixels in a window to use as input to a mean 

filter[21]. Their method takes advantage of the optimum 

MSF characteristic of the mean while attempting to avoid 

edge blurring. Global statistics are used to find the 

modes in an image. Each mode corresponds to one area of 

constant intensity. The mean of the entire window is used 

to determine to which mode the central pixel in the image 

belongs. Only those pixels which fall within a specified 
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range about the chosen mode are used to calculate a second 

average. This selection process should therefore take only 

those samples which correspond to a single mode, that is, 

one constant level, and avoid blurring between levels. 

The global statistics method is mentioned here along 

with the median filter, and its variations, because they 

all exhibit the same fault. It is assumed that the noise 

on the image is low enough that modes corresponding to 

different image regions exist. As demonstrated above, not 

all the modes exist in a high noise situation, and 

therefore, any method which relies on distinct modes fails 

in high noise. 

The median filter has some of the desirable properties 

of the mean filter. Under conditions where noise is low 

and the number of samples in a window is not large, the 

median filter can reduce the amount of blurring in noise 

reduction. In general, in high noise situations, the 

median filter and other filters which rely on distinct 

modes will not preserve edges as they may do with low 

noise. 
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2.2.3 Linear Recursive Filters  

In relation to the basic filtering operation, the 

output of a recursive filter may be thought of as a 

function of the samples in two windows, one window being on 

the input signal and the other on the output. Only outputs 

which have been previously calculated can be used in the 

window over the output. For a linear recursive filter, 

each output sample is a linear function of input samples in 

the corresponding window and previously calculated 

outputs. The filter is recursive because previous outputs 

are fed back into the filter, and it is linear because the 

filter uses a linear function of window samples. 

Linear recursive filters are designed in two steps. 

First, a stable analogue transfer function is produced 

based on a stable analogue design. Second, a stable 

s-domain transfer function is derived from the analogue 

transfer function by means of the bilinear transform. A 

detailed explanation of the 1D technique is found in 

Antoniou[22]. Bruton and Bartley[23] extended this method 

to multidimensional filters. 

Linear recursive filters have advantages over linear 

nonrecursive filters. In general, a linear recursive 

filter requires a smaller window to attain the same noise 
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reduction. A smaller window reduces the number of 

computations required for each filter output. In addition, 

steeper transitions between pass bands and rejection bands 

in the frequency response of the filter are realisable with 

recursive filters[24]. 

There are two drawbacks to the use of recursive linear 

filters. First, recursive filters have nonzero phase 

response. This is a problem, particularly in cases where 

edge detection is important. Edges are blurred 

asymmetrically and the edge position will be shifted. This 

problem can be easily compensated for by passing the filter 

over the data twice, in opposite directions. The result of 

passing the filter twice in opposite directions is a zero 

phase response and no shifting of edges[25]. 

Second, recursive filters have infinite impulse 

response ( IIR)[26]. Theoretically, the output of an hR 

filter passing over an edge will never reach equilibrium at 

that edge. In practice, however, the output can be assumed 

to have reached equilibrium if the output is within some 

arbitrary fraction of the step size. The net result is 

that, as the bandwidth of the recursive filter is 

decreased, the SNR is improved, but the filter takes longer 

to reach equilibrium at an edge and blurring will be 

severe. 



25 

Linear recursive filters are advantageous because 

excellent noise reduction may be obtained with a smaller 

window, as opposed to a linear nonrecursive filter. Also, 

much steeper transitions from the pass band to the 

rejection band are realisable with linear recursive 

filters. A nonzero phase response is exhibited by linear 

recursive filters, but this may be easily compensated for. 

The greatest disadvantage to linear recursive filters 

arises out of their hR property. With hIR, the blurring 

at edges may be infinite and depends entirely on the filter 

bandwidth. 

2.2.4 Summary-of-Noise Reduction Methods 

Of the noise reduction methods reviewed, only the 

median filter and its variations are effective in reducing 

noise while maintaining the edges in an image. In 

situations where the SNR is low, all the filters, including 

the median, fail to remove noise without blurring edges. 

In each case a trade-off is made between noise reduction 

and edge preservation. Because of its simplicity, 

effective noise reduction, and known, finite blurring ( due 

to FIR) the mean filter is used in the present study. 



26 

2.3 Edge Enhancement Methods  

The need for accurate detection of edges in digital 

images has led to the development of many edge enhancement 

methods. Because of the volume of literature on edge 

enhancement only a brief outline of some better known 

methods is given in this section. These methods are: 

1. Thresholding 

2. Derivative methods 

3. Non-linear masks 

4. Sliding statistical tests 

Advantages and disadvantages of each of the edge 

enhancement methods are presented. 

2.3. 1 Thresholding 

Thresholding is the simplest method of edge 

detection. A threshold value is selected based on some a 

priori knowledge of the two levels which constitute the 

edge. Then the threshold is used to determine whether or 

not any individual sample is part of an object or 

background. Suppose an object is higher in intensity than 

the background. If a sample value is greater than the 

threshold value it is assumed that the sample lies inside 
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the object. Similarly, if a sample value is lower than the 

threshold it is assumed that the sample is in the 

background. As such, thresholding is not strictly edge 

detection or enhancement but detection of object versus 

nonobject data. However, since an edge is the face between 

object and nonobject data, thresholding can provide 

rudimentary edge detection. 

2. 3.2 Derivative Methods  

An extensive description of derivative methods is 

given by Pratt[27]. Derivative methods use either the 

first derivative, as in the compass gradient method, or the 

second derivative, as with Laplacian masks, to detect 

edges. The derivative methods have several major 

handicaps. Because the derivative operators are linear, 

derivative methods are linear nonrecursive filters. The 

transfer function of a derivative filter is that of a high 

pass filter. For this reason derivative filters amplify 

high frequency noise. In particular, Laplacian filters are 

virtually unusable in low SNR situations. 

When a noise reduction filter has been previously 

applied to an image, image edges are blurred. The 

magnitude of the derivative at a blurred edge is less than 
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that at a sharp edge. Therefore, gradient filters exhibit 

diminished performance due to blurred edges after noise 

reduction. 

Because the compass gradient filter is used later in 

this thesis for comparison purposes, it is described here 

in some detail. The mathematical formulation of the 

compass gradient filter is given by 

. 1 = + x i-I- (x•i i, 3+1 + + x ].+1,j-1 + x11 ) - 

(x ii, j+1 + xi- i, 3 . + xi-1' j -1 + 2x 1. , 3 .) . (2.4) 

Equation ( 2.4) is for a 2D window of width 3. Figure 2.5 

shows the mask of filter coefficients which are applied to 

a window to implement the filter. Each coefficent in the 

mask is used as a multiplier for the corresponding sample 

in the window. The direction in which edges are enhanced 

is indicated in Figure 2.5. 

As indicated in Figure 2.5, the compass gradient 

filters exhibit the undesirable property of being 

directionally sensitive, that is, each compass gradient 

filter enhances edges in one particular direction only. In 

practice, edges may have any orientation. Normally two or 

more compass gradient filters sensitive to different 

directions must be combined to eliminate directional 
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sensitivity. 

2.3.3 Nonlinear Masks  

In response to the inadequacies of gradient methods, 

several ad hoc methods have been developed to improve the 

performance of edge detectors. These include the Sobel, 

Roberts, and Kirsch detectors which are all described by 

Pratt[28]. Analysis of these filters is difficult because 

they are all nonlinear. They eliminate some of the 

problems with the derivative filters. Lower noise and 

directional sensitivity have been achieved with these 

filters. The performance of these filters was analysed by 

Abdou and PrattC29J. Nonlinear mask edge detectors are 

usually developed by some intuitive process and, therefore, 

may be difficult to extend to any multidimensional 

situation. 

As with the compass gradient filter, the Sobel edge 

detector is used later in this thesis for comparison 

purposes. It is, therefore, presented here in some 

detail. The Sobel edge detector is defined by 
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y1, = (X2 + Y2)"2 

where 

X = ( 2x1+1 + xj+1 + 

(2x i . -i, 3 x i-I ' j+1 + • i-i, 3 

and 

Y = (2x i'3+1 + x111 + x i-1,j+1 - 

(2x 1. , j-1 + x.1+ + 

(2.5) 

Equation ( 2.5) is for a 2D window of width 3. Figure 2.6 

shows the two coefficient masks ( the X mask and the Y mask) 

for the Sobel filter. Although one may devise schemes to 

extend the Sobel filter to 3D applications, this extension 

is arbitrary. The arbitrary nature of this extension 

raises the question; is the extended filter a 3D version 

of the 2D filter, or is it an entirely different filter. 

Also, it is not clear how to use different window widths 

with the Sobel filter. These problems make the Sobel 

filter inadequate for universal application. 

2.3.4 Sliding Statistical Tests 

Sliding statistical tests use tests of statistical 

probability to determine edge locations. This is done by 

first considering each sample to be a potentional edge and 

two windows, one on each side of the potential edge, are 
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examined. Some statistic from each of the two windows is 

compared to determine if there is some significant 

difference between the regions. If the difference is 

significant, it is concluded that an edge has been found. 

For each sample, a window is examined an either side of a 

potential edge. For example, an edge may be found by 

comparing the means of the two windows on either side of 

the edge. The comparison of means is done using the 

student t test[30]. Variations on this approach are 

numerous. Edges separating different regions of texture 

can found by comparing variance or some other indicator of 

texture and testing for the significance of the 

difference. Similar work has been presented by Bovik, 

Huang and MunsonC31]. 

The major disadvantage to this method is that the 

filters are sensitive to edge orientation. DeSousa[32] 

only demonstrates his work in 1D profiles of an image. In 

multidimensional images the two windows for the statistical 

tests must be reoriented to find edges of different 

orientation. In 3D, with the number of possible edge 

orientations, this becomes impractical. 
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2.3.5 Summary of Edge Enhancement Methods  

For high SNR cases, thresholding is the simplest and 

most effective method of edge detection. When the SNE is 

low, edge enhancement filters must be used. Derivative 

filters suffer from either too much directional 

sensitivity, as with the compass gradient, or too much 

susceptiblity to noise, as with the Laplacian operator. 

Nonlinear operators exhibit good characteristics for edge 

enhancement, but are not easily extended or modified as 

applications change. Sliding statistical tests are 

effective edge enhancers but, as with the compass gradient, 

they are too sensitive to edge orientation. 

What is needed is an edge enhancer that is not 

sensitive to edge orientation, not overly susceptible to 

noise, and is easily extended to any multidimensional 

application. Such a filter is the variance filter. The 

variance filter, presented later in this thesis, meets all 

these needs. 
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2.4 Summary-of Noise Reduction and Edge  

Enhancement Methods  

While the median filter is able to reduce noise 

without blurring edges in high SNR cases, in low SNR cases 

it cannot avoid blurring edges. It must be concluded then 

that of all the noise reduction methods presented, each is 

equal in low SNR applications. Because of its simplicity 

and finite edge blurring, the mean filter is the noise 

reduction method applied through the remainder of this 

thesis. 

Of the edge enhancers presented here, all exhibited 

some property which made them good edge detectors, but all 

were limited in some respect. This conclusion led to the 

author's development of the variance filter as an edge 

enhancer. The variance filter exhibits an excellent blend 

of all the desirable edge detector properties. Chapter 3 

goes on to analyse the variance filter and show why it 

should be used in edge enhancement. 
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(a) 

U8 

(b) 

Figure 2.1 Demonstration of mean filter blurring 
(a) original 1D signal with a sharp edge 
(b) mean filtered ( width = 11) signal with 

blurring 
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Figure 2.3 Bimodal probility density function for 
varying standard deviation 
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(a) 

(b) 

Figure 2.4 Comparison of mean and median filtering 
(a) original 1D signal with a sharp edge 
(b) signal after mean and median filtering 
(c) signal after addition of noise (, = 0.5) 

and mean and median filtering 
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(C) 

Figure 2.4 ( continued) 
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-1 1 1 enhances positive 
edge transitions in 

-1 -2 1 this direction 

Figure 2.5 Gradient filter mask 

X mask Y mask 

-1 0 1 -1 -2 -1 

-2 0 2 0 0 0 

-1 0 1 1 2 1 

Sobel operator = (X2 + Y2)112 

Figure 2.6 Sobel filter masks 
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Chapter 3 

A VARIANCE FILTER FOR EDGE ENHANCEMENT 

3.1 Introduction 

From Chapter 2 it can be seen that each of the 

presently used edge enhancers has some shortcoming. 

Although each edge enhancer exhibits some desirable 

property, some method which combines all these properties 

into one filter is beneficial. At this point the variance 

filter is introduced as an edge enhancement filter because 

it accomplishes this blend of desirable edge enhancement 

properties. 

The variance filter follows the same basic filtering 

operation as other filters presented so far. In this case 

the filtering function is nonlinear and it is used 

nonrecursively. The variance filter is given 

mathematically by 

= variance(xi m I Xlm is in W 1. , .3 .) 

Each sample in the output image is an estimate of the 

variance of the corresponding input sample. In image 

regions where there are no edges, this estimate would 

(3.1) 



correspond to an estimate of the noise in 

edge, however, the estimate is distorted. 

distortion or inaccuracy which allows the 

enhance edges. Since the variance can be 
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the image. At an 

It is this 

variance to 

calculated for 

any set of samples, arranged in any order, the variance 

filter is applicable to windows of any shape, size, or 

dimension. The indifference of the variance towards the 

order of samples leads to the filter being isotropic. It 

is the variance filter's universal applicability which 

makes it well suited to 3D applications and the comparison 

of 2D and 3D filtering. 

The variance filter as an edge enhancer is analysed in 

two ways. First, in Section 3.2, it is analysed 

independently of other filters to determine SNR limitations, 

for accurate edge detection. Second, in Section 3.3, the 

filter is compared to two common edge detectors. 

3.2 Variance Filter Limitations Imposed by Noise  

In order to know the limitations of the variance 

filter with respect to SNE, the effects of edge blurring 

and additive noise on window variance must be understood. 

This section illustrates these effects on variance. It is 

shown how the chi-square, X2, distribution can be used in 
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conjunction with an understanding of blurring and noise 

effects to determine the filter's limitations. 

3.2.1 Effect of Blurring on Window Variance 

In order to improve edge enhancement, an image may be 

prefiltered to reduce noise. Since noise reduction filters 

have the property of blurring edges, it is important to 

understand what effect the blurring has on the variance at 

an edge. 

Because blurring takes place only at edges, a window 

placed symmetrically across an edge is examthed. The edge 

is of unit height and the symmetrical placement ensures 

that half of the window's samples are on the high side of 

the edge and the other half on the low side. Initially, it 

is assumed that there is no noise on the signal. With no 

prefiltering, the histogram of the samples in the window is 

shown in Figure 3.1. The equation for the variance, cy 2 of 

a variable, x, is given by 

2 1 2 1 2 
= ( -.x) 

Applying equation(3.2) to the data of Figure 3.1 yields 

= 0.25 

(3.2) 

(3.3) 
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Therefore, the maximum possible variance for an edge of 

unit size is 0.25. 

If the edge is blurred, the variance for the window 

decreases. Let a be the number of discrete levels in the 

histogram for a window at an edge. It is assumed that the 

samples are distributed evenly among the discrete levels. 

For example, in the ideal case ( Figure 3.1) there are two 

discrete levels with the samples evenly distributed between 

them. In this case cx2. Figure 3.2 shows examples of 

histograms with a=5, and 'cx=lO. Such histograms result from 

prefiltering and cx is a blurring parameter. The worst case 

for the variance filter occurs when the samples are evenly 

distributed among the possible values. Data from a window 

with a specified value for cx are used to daloulate ,y2 using 

Equation(3.2). Therefore, it is possible to plot variance 

versus the blurring parameter, a. This is shown in Figure 

3.3. Note that the variance depends only on the shape of 

the distribution, not N, the number of samples in it. 

Figure 3.3 is useful because it predicts the value of 

the peak variance after blurring. The shape of the curve 

indicates that after the blurring parameter is increased to 

approximately cx10, there is little change in the variance 

with increased blurring. In fact, the variance is limited 

to about cx2=o.08 for any blurring above cx20. Thus, with 
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either a 2D filter of width 5 ( i.e. x=25), or a 3D filter 

of width 5 ( i.e. c':=125), the expected variance at an edge 

is approximately 0.08. 

3.2.2 Effect of Noise on Variance 

So far only the case of no noise has been examined. 

The variance for a signal with noise can be expressed by 

modifying equation(3.2). In the following equations the 

subscript ' s' refers to the signal, the subscript ' a' 

refers to the noise. The modification of equation(3.2) 

yields 

2 - L. 2 
( a- - -' x+x) - 

N s n 

Equation ( 3.4) expands to 

2 1 2 a- - - (Zx5)2 • N. n i 2 N - 1 2 .. X (-Exa) + 

22x5x - 22Zx5Zx 

The first and second terms of Equation(3.5) form the 

(3.4) 

(3.5) 

variance of the signal and the third and fourth terms form 

the variance of the noise. The fifth term is the 

correlation of the signal to the noise. Since the signal 

and noise are normally statistically independent this 

correlation may be assumed to be zero. The mean of the 

noise, and hence the summation of the noise, is expected to 
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be zero so the sixth term may also be assumed to be zero. 

Thus Equation(3.5) reduces to 

2_ 2 + 2 
y 
5 n (3.6) 

Eq.uation(3.6) states that if the noise is not correlated to 

the signal, the variance of a signal obscured by noise is 

equal to the sum of the variance of the signal and the 

variance of the noise. Thus, peaks in the variance due to 

edges in the signal are still peaks when noise is added. 

However, there is some degree of uncertainty in the peak 

and noise variances. This uncertainty leads to the 

obscuring of variance peaks when the noise level is high, 

as is shown in the following sections. 

3.2.3 Confidence of Variance Estimate 

As with the mean, the variance calculated for a window 

is only an estimate of variance in that region. The degree 

of confidence in the variance estimate, is defined by the 

chi-square (X2) distribution. The X distribution is a 

probability function and defines a confidence interval for 

an estimated variance based on that estimate and the 

degrees of freedom used to calculate it[33]. For example, 

a 90 percent confidence interval for c72 is defined by 
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2 
  < o- <   , (3.7) 

X %/df 4 5%/df 

where df is the number of degrees of freedom, and S is the 

estimate of the variance. The number of degrees of freedom 

is equal to the number of samples in the estimate minus 

one. The X2/df distribution is shown in Figure 3.4 for 

three values of df. In Figure 3.4, the function f(X2) 

refers to the probability distribution, or the probability 

density function, of the X2 variable. For convenience, 

tables are normally used when working with the 

distribution. An example of such tables is shown in Dixon 

and Massey[34]. As an example, if one were to estimate the 

variance at a particular pixel with a 2D window of width 5, 

there would be 25 samples in the estimate, and 24 degrees 

of freedom. From a X2/df distribution table the calculated 

95 percent confidence interval is 
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2 
  < . < (3.8) 

1.64 0.517 

This means that one is 95 percent confident that the actual 

variance, cr2, for this window lies between these two 

limits. 

3. 2. 4 Maximum Noise for-Accurate-Edge-Detection 

At this point all the information has been presented 

to allow the calculation of the maximum noise with accurate 

edge detection. The output of the variance can be divided 

into two regions: 1) background, regions where no edge is 

present, and 2) peaks, regions where an edge is present. 

So long as the values of the variance peaks are greater 

than the background values, edge detection is possible. 

When background values are as great as peak values, errors 

in edge detection occur. Figure 3.5 shows a typical 

profile of the variance filter output. The confidence 

intervals for the peak variance and the background variance 

are also shown in Figure 3.5. When the two confidence 

intervals do not overlap, the background is not likely to 

vary higher than the peak; edge detection is possible. If 

the intervals do overlap, background samples may be 
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mistaken- for peak samples and errors in edge detection will 

occur. The limiting case occurs when the gap between the 

two confidence intervals equals zero. 

The background variance is the variance of the noise 

after prefiltering and the peak variance is the variance at 

the edge plus the background variance. Therefore, the 

difference between the peak variance and the background 

variance is the variance of the step. As indicated in 

Equation(3.7), a multiplier based on the X2/df distribution 

is applied to the variance estimate to establish a 

confidence interval. Let U and L be these multipliers for 

the upper and lower limits of the confidence interval. The 

limiting case for noise, when the gap between the 

background and peak confidence intervals is zero, is then 

expressed by 

L(2 2 n = U( c) 

Rearranging Equation(3.9) yields 

2 
07 step 

2 
= 

n 

(U/L - 1) 

(3.9) 

(3.10) 

Note that in Equation ( 3.10) cs- represents the noise energy 

in the image after prefiltering. If a mean filter is used 
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for prefiltering, noise energy before mean filtering is 

given by 

2 2 
= 

in n (3.11) 

which is simply another way of stating Equation(2.2). 

Equation(3.1O) is used to calculate the maximum allowable 

noise after prefiltering. The maximum noise before 

prefiltering is then calculated from Equation(3.11). 

An example using an edge of unit height is presented 

here. If a 2D filter of width 5 is used the number of 

pixels in the window, N, is 25 and the number of degrees of 

freedom, df, is 24. From a X2/df table, U and L can be 

found for a confidence interval of 90 percent. The size of 

the confidence interval chosen here is arbitrary. Figure 

3.3 indicates that the expected variance at the step is 

0.08. Application of equation(3.10) shows that the maximum 

allowed noise variance before prefiltering is 0.049. If 

the image is prefiltered with a mean filter, the allowed 

noise before prefiltering is calculated with 

Equation(3.11). The maximum allowable noise increases by a 

factor of N=25, yielding a value of 1.225 for the noise 

variance. 

The selection of the confidence interval affects the 
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result of the above calculation. In the above example the 

confidence interval was 90 percent. This means that the 

probability of classifying a peak as background was 0.05 

and the probability of classifying a background sample as a 

peak was 0.05. The probability of making an error is the 

combined probability of making each type of error. For the 

above example we get 

p(error) = 0.05 + 0.05 - (0.05)(0.05) = 0.0975, ( 3.12) 

that is, the probability of making an error at an edge with 

the input noise at the defined limit is 9.75 percent. 

The selection of the confidence interval is 

arbitrary. It was found during the testing presented in 

Chapter 4 that a confidence interval of 90 percent yields 

results which corresponded well to the observed practical 

limits. 

3.2.5 Advantages of 3D Processing 

At this point it should be apparent that it is better 

to process image data in 3D wherever possible. Two effects 

lead to this conclusion. Firstly, increased window size 

yields better filtering results. Secondly, a greater 
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filter width causes more blurring and distortion of edges. 

3D processing takes advantage of an extra dimension in the 

data to increase window size and reduce window width. 

To illustrate briefly, suppose that one were to filter 

a signal to reduce the noise variance by a factor of 

approximately 120. If the signal is processed in 1D, a 

window exactly 120 samples long is required and edges are 

blurred by this amount. However, in 2D a window of width 

11 contains 121 pixels and edges are blurred by 

approximately 11 pixels. Continuing to 3D, a window of 

width 5 contains 125 voxels and blurs edges by 

approximately 5 voxels. Thus, as the number of dimensions 

increases, window width and blurring decrease while 

maintaining the same level of noise reduction. 

In general, it may be concluded that as many 

dimensions as possible should be used in processing 

images. 

3.2.6 Summary of Noise Limitations  

The effects of blurring and noise on the variance 

filter have been shown analytically. In conjunction with 

the X distribution, these effects can be used to calculate 



52 

the noise limitations of the variance filter. The analysis 

presented demonstrates the advantages to processing data in 

3D rather than 2D. 

3.3 Comparison of Edge Enhancers  

Abdou and Pratt[35] used the following criteria in 

comparing the performance of edge enhancers: 

1. Directional sensitivity 

2. Decay of filter output as a function of 

distance from edge 

3. Probability of true detection versus 

a false detection 

Each criterion is described in this section, along with its 

application to the variance filter. The criteria are used 

to compare the variance filter to the compass gradient and 

Sobel edge enhancers. Since current literature deals 

primarily with 2D filters of width 3, it is this 

configuration that is used throughout this section. This 

restriction is also necessary because the Soble edge 

enhancer is a 2D width 3 filter and is not easily 

modified. 
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3.3.1 Directional Sensitivity 

The evaluation of directional sensitivity of edge 

detectors is done using a plot of the filter output versus 

the orientation of the edge. The window is assumed to be 

centred over a sharp edge. The intensity of each pixel in 

the window is the fraction of that pixel which is on the 

high intensity side of the edge. The derivation of pixel 

intensities is shown in Figure 3.6[36]. 

Ideally the variance filter would exhibit zero 

directional sensitivity, that is, the variance filter is 

isotropic. However, because of the nature of sampled 

multidimensional data there is some directional 

sensitivity. This is entirely due to edges not lining up 

with the orientation of the axes used for sampling. A 

graph showing the output of the variance filter versus the 

orientation of the edge is in Figure 3.7. The values of 

the filter output are normalized to the output at zero 

degrees orientation for comparison purposes. 
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3.3.2 Filter Decay 

Filter decay is evaluated with a plot of filter output 

versus the distance of the edge from the centre of the 

window. As with the orientation test, pixel intensities 

are equal to the fraction of the pixel which lies on the 

high intensity side of the edge. Because of the nature of 

sampled data the output of the variance filter decays 

differently depending upon the direction of the decay. 

Therefore, two plots are used, one using the distance from 

a vertical edge, and one using the distance from a diagonal 

edge. Figure 3.8 shows how these distances are 

caleulated[37]. 

Two curves depicting the decay of the variance filter 

output are shown in Figure 3.9. In Figure 3.9, the 

vertical edge decay is shown as having a peak when the 

variance is offset half a pixel from the edge. This is 

because, in this ease, the edge falls directly between 

pixels. In the case of the diagonal edge, it is not 

possible for the edge to lie exactly between pixels. If 

the edge does not fall directly between pixels then the 

edge is blurred during sampling and the variance output is 

reduced. For this reason, the peak seen for the vertical 

edge is not observed for the diagonal edge. 
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3.3.3 Probability of Detection of Edges  

The performance indicators discussed so far do not 

include the accuracy of detection given specific noise 

conditions. In order to evaluate the accuracy of 

detection, a plot of probability of correct detection 

versus probability of false detection is used. This plot 

is generated from probability distributions of the variance 

(or other edge enhancer) on the background and the variance 

at an edge. Figure 3.10 shows a sketch of the probability 

density functions for the variance in edge and no-edge 

regions. Also illustrated in Figure 3.10 is an arbitrary 

threshold. Probabilities of detection and false detection 

are calculated based on this threshold. The probability of 

detection is given by 

= p( 2 > threshold 1 edge) 

and the probability of false detection is given by 

P  = p(c 2 > threshold 1 no edge) 

(3.13) 

(3.14) 

By varying the threshold throughout the range of the two 

distributions, and calculating the probabilities for each 

threshold, a set of points on a probability of detection 

versus probability of false detection curve is generated. 

Since the probability distribution of the variance is 
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well known and given by the X distribution this 

probability curve can be generated analytically. This is 

not true of all edge enhancers, but the probability curve 

may be generated numerically. The numerical method can be 

used for any edge enhancement method and is therefore used 

for comparison purposes. 

The numerical evaluation works as follows. 

1. Generate a histogram for the edge detector applied to 

sample background windows. 

2. Generate a histogram for the edge detector applied to 

sample edge windows. 

3. The histograms are numerical approximations to the 

probability distribution of the edge detector. 

4. Pass a threshold through the histograms and at each 

threshold calculate the probability of detection and 

the probablity of false detection as given by 

equations(3.13) and ( 3.14). 

5. Plot the probability of detection versus the 

probability of false detection. 
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The background sample windows were generated by adding 

normally distributed noise of a known standard deviation to 

a constant level of zero. The two different sample windows 

used for edges are: 

1. Smooth vertical edge 

2. Smooth diagonal edge 

The sample windows are shown in Figure 3.11. Noise of a 

known standard deviation was added to each of the above 

windows. 

Figure 3.12 -shows the probability plots for the 

variance filter with a SNR of 10, applied to each of the 

two edge windows. It should be noted that the two curves 

lie virtually on top of each other, indicative of the 

isotropic nature of the variance filter. The selection of 

a SNR of 10 is arbitrary and may be any value, so long as 

it remains consistent for comparison purposes. 

3.3.4 Comparison of Edge Enhancers  

Figures 3.13 and 3.14 compare the variance filter with 

the compass gradient and Sobel edge enhancers using the 

sensitivity to orientation and decay performance 

indicators. As presented, the Sobel enhancer exhibits the 
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lowest sensitivity to orientation. However, the square of 

the Sobel enhancer has the same sensitivity as the variance 

filter. This is perhaps a fairer comparison, since the 

variance does not apply a square root operator. The small 

amount of sensitivity that is exhibited by the variance 

arises from the sampled nature of the data. 

The decay of most of the edge detectors is nearly the 

same. Decay depends upon the window width for all the 

filters and consequently, there 

value here, other than that the 

the others do in this respect. 

is little information of 

variance filter behaves as 

The comparison of probability of detection plots is 

the most revealing of the comparisons. Two separate plots 

are used to compare the probability of detection. These 

plots are in Figure 3.15 and compare the variance, Sobel, 

and compass gradient enhancers for each of the two edge 

windows described in Section 3.3.3. 

From Figure 3.15 it can be seen that the variance 

filter exhibits good edge enhancement properties, is only 

marginally poorer than the Sobel filter, and is better than 

the compass gradient filter. Thus the primary advantages 

to the variance filter are its isotropic nature and its 

versatility. 



59 

3.3.5 Summary of Edge Enhancer Comparison  

It has been shown that the primary reasons for using a 

variance filter are 1) its low sensitivity to edge 

orientation, and 2) its versatility. If one were to filter 

only in 2D there are better alternatives to the variance 

filter, but, having demonstrated the advantages to 

filtering in 3D, the property of versatility becomes 

important. It is this property which makes the variance 

filter an excellent choice for examining 3D processing. 

3.4 Summary of VarianceAnalysis  

A method for calculating the noise limits for variance 

filter edge detection has been established. The variance 

filter has been compared to two common edge enhancers using 

the criteria of sensitivity to edge orientation, filter 

decay, and probability of detection. This comparison has 

shown the validity of the variance filter as an edge 

enhancer in 3D applications. In Chapter 4 the variance 

filter used in combination with the mean filter is tested 

with artifically generated images. The analysis presented 

here is supported by the test results and the advantages of 

3D processing are further demonstrated. 
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Chapter 4 

FILTER TESTING 

4.1 Introduction 

A review of noise reduction methods in Chapter 2 shows 

that a mean filter is the best method for reducing noise 

where edge detection is important. The review of edge 

enhancement methods in Chapter 2 also reveals that 

currently available edge enhancement methods have many 

shortcomings. The variance filter introduced 

avoids some of these shortcomings. Thus, the 

of the mean filter and the variance filter is 

the most suitable method for edge enhancement 

in Chapter 3 

combination 

deemed to be 

and detection 

in -3D data. Before the variance filter can be applied to 

clinical data, it is necessary to test the filtering 

process in a controlled situation. To achieve this aim, 

the performance of the variance filter is evaluated with a 

test image. The objectives of this test are to: 

1. verify that the variance filter could be used for edge 

enhancement, 

2. verify the theory detailed in Chapter 3, and 

3. compare filtering in 2D and 3D. 
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The listed objectives are achieved by first, applying the 

filters to a test image with a low noise level. This is 

sufficient to verify that the variance does indeed behave 

as an edge enhancer. Second, Equations ( 3.10) and ( 3.11) 

are used to calculate the theoretical limits for the noise 

level input to the filters. These noise limits are 

calculated for all possible combinations of 2D and 3D, 

width 3 and width 5, and with and without prefiltering. 

Thirdly, the filters are applied to the test image with 

noise levels at the calculated limit. The results of the 

application may then be used to verify the theory of 

Chapter 3 and to compare 2D and 3D filtering. 

In this chapter the artificially generated test image 

is presented. The combination of the mean and variance 

filters is then demonstrated on the test image with low 

noise. Results of tests with both 2D and 3D filters, with 

and without prefiltering are presented. From these 

results, the theory of Chapter 3 is verified and a 

comparison of 2D and 3D filtering is done. 
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4.2 The Test Image 

Methods developed in this study are to be eventually 

applied to the accurate location of the left ventricle in 

human cardiac scintigrams ( a full description of the human 

heart and cardiac scintigrams is found in Chapter 5). 

Cardiac scintigrams consist of a set of 16 2D images 

synchronized with the beat of the heart. Thus, a set of 

cardiac scintigrams is a 3D data set with two spatial axes 

and one temporal axis. In the images, the left ventricle 

appears as a roughly oval shaped object that varies in size 

during the heart beat. At the end diastole phase ( when the 

ventricle is largest) the left ventricle measures 

approximately 15 pixels on its longest axis and 10 pixels 

on its shortest axis. Depending on the patient, at the end 

systole phase ( when the ventricle is smallest), the left 

ventricle may measure anywhere from 3 to 8 pixels on any 

axis. 

The test image is designed to simulate roughly the 

time-varying left ventricle spatial dimensions. Figure 4.1 

shows pictorially how the test image is generated. The 

left ventricle is represented by a disc of constant 

intensity in the spatial domain. Sample values of the disc 

and the background are unity and zero respectively. In the 

temporal domain, the radius of the disc varied between 3 
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pixels and 13 pixels in a sinusoidal fashion. 

As with any simulation, there are variables which 

confound the interpretation. For example, in scintigrams 

the edges are not sharp and the left ventricle can be as 

small as 3 pixels in diameter. However, the model is 

sufficient to meet the test requirements. 

4.3 The Processing Sequence 

The testing of the filter sequence is done as 

follows: 

1. Generate the left ventricle model ( le. discs) 

2. Add noise of a known variance to the image 

3. Use a mean filter to reduce the noise in the image 

4. Use a variance filter to enhance the edges 

5. Use a simple edge tracking algorithm to follow the 

enhanced edge 

Step 3 is omitted when it is desired to examine the 

variance filter independently of prefiltering. The above 

sequence is illustrated by the four images shown in Figure 

4.2. Because of the difficulties in displaying a 3D data 

set in its entirety, 2D slices in the spatial domain are 

shown. The noise level in Figure 4.2(a) is 0.5. The 
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filters which produced the images in Figure 4.2 are 3D and 

of width 3. As expected, the variance filter enhances the 

edge of the disc. 

A radial search algorithm is used to track the 

enhanced edge. This algorithm is shown pictorially in 

Figure 4.3. In the radial search algorithm, samples along 

a radial path are searched for a maximum. The centre which 

defines the radial path is at the centre of the image, and 

therefore, the algorithm must assume that the object is 

centred in the image. Once a maximum is found along a 

search path, it is assumed to be at an edge. The two 

samples radially adjacerxt'to the maximum are used to 

determine whether the maximum is just 

just outside the edge. 

edge, then the adjacent 

taken to mark the edge, 

If the sample 

sample on the 

inside the edge, or 

is just outside the 

inside of the edge is 

otherwise, the maximum is used. 

The algorithm searches a series of radial paths and outputs 

a set of points which all lie just inside the edge. An 

example of the points detected by this algorithm is shown 

in Figure 4.2(d). This method of edge tracking is simple. 

Sophisticated edge tracking algorithms are considered to be 

beyond the scope of the present study. 
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4.4 Theoretical Versus Test Results  

Equations ( 3.10) and ( 3.11) are used to predict the 

maximum allowable noise to be added to the test image. The 

predictions used here are based on a 90 percent confidence 

interval. Tables 4.1 and 4.2 show the predicted limits as 

calculated from Equations ( 3.10) and ( 3.11). Table 4.1 

shows the noise limits for the filter sequence without 

prefiltering. Similarly, Table 4.2 shows the noise limits 

for the filter sequence with prefiltering. With one 

exception, these calculated limits are used as the noise 

levels for testing. The exception occurs when prefiltering 

is used with the 3D width 5 case. In this case, a lower 

noise level, is used. The reason for this 

exception is discussed later in this section. 

Test results are presented in Figures 4.4 through 4.11 

Figures 4.4 through 4.7 show the results of the test 

without prefiltering and Figures 4.8 through 4.11 show the 

results of the test with prefiltering. 

In Figures 4.4 through 4.7 it can be seen that, within 

the limits of the specified confidence interval, edge 

detection is successful. The theory presented in Chapter 3 

predicts that with a 90 percent confidence interval, edge 

detection should be possible with a 9.75 percent chance of 
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a background sample being mistaken for an edge sample 

and/or vice versa. More specifically, the theory predicts 

that, of 25 points on the detected edge, 2.5 points ( 2 or 

3) will be in error. Note that these errors do not include 

those points which are displaced from the edge because of 

blurring. The results presented in the figures support 

this prediction. It should also be observed from Figures 

4.4 through 4.7 that wider variance filters produce broader 

peaks. The significance of this observation is shown in 

Figures 4.8 through 4.11. 

As expected, prefiltering allows edge detection with 

lower SNR. However, the improvement realised by 

prefiltering is tempered by the effects of blurring as 

shown in Figures 4.8 to 4.11. These effects are evident in 

two ways. First, blurring reduces the effectiveness of the 

edge enhancer. This reduction leads to improvements less 

than those initially expected from Equation ( 3.11). 

Second, blurring distorts the shape of the edge. Thus, the 

predicted noise limit for the prefiltered, 3D width 5 case 

was not attainable. Although edge detection was possible 

with the 2D width 5 case, severe distortion due to edge 

blurring was observed. Blurring at edges reduces the noise 

limit and causes errors in the shape of the detected edge. 

The failure of the theory to predict the noise limits 
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in the cases where blurring is severe exposes a flaw in the 

modelling of errors in Chapter 3. Only peak and background 

samples are considered in Chapter 3. Because of blurring, 

intermediate-value samples occur near edges. These samples 

are not explicitly peak or background samples. The 

intermediate values are greater than the values of the 

background samples. Therefore, it is not unlikely that a 

sample near an edge may vary higher than the sample at the 

edge. The effect is, that although the edge has been 

correctly detected, its position is shifted from where it 

should be. Figure 4.12 illustrates, in a 1D analogy, why 

these errors are possible. The amount of shifting of the 

detected edge is restricted by the amount of blurring, and 

is, therefore, controllable by the window width. 

Furthermore, 3D processing may allow edge detection in 

cases where it is not possible with 2D processing. The 

numbers in Table 4.2 illustrate this. The maximum noise 

level with a 2D width 5 filter was calculated to have a 

standard deviation of 1.11. Although the 3D width 5 filter 

did not meet its expectations, edge detection was possible 

with a noise level 3.0 times that of the step size. 

Therefore, if one is dealing with a case where the standard 

deviation of the noise is twice the step size, edge 

detection would not be possible without 3D processing. 
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4.5 Filtering in 2D Versus 3D  

As was stated in Chapter 3, whenever possible, it is 

advantageous to filter data in 3D rather than 2D. The 

predicted limits of the filters calculated in Section 4.4 

were borne out in practice with the exception of window 

width effects. The theory indicates that the 2D width 5 

filter should be similar in performance to the 3D width 3 

filter. However, the comparison of figure 4.5(o) to figure 

4.6(o) shows the effects of window width. The extra 

blurring in the 2D width 5 case results in a 

poorly-detected edge. 

Therefore, an increase in the number of dimensions 

used for processing results in either 1) a larger number of 

samples in a window of the same width, or 2) a comparable 

number of samples in a window of smaller width. The 

combination of these two effects means that reliable edge 

detection in data with a lower SNR can be achieved by 

increasing the number of dimensions in processing. 



TABLE 4.1 

Number of width N df U L CF 2 2edge 
dimensions 

2 3 9 8 2.92 0.515 0.222 0.047 0.216 

2 5 25 24 1.73 0.857 0.222 0.138 0.366 

3 3 27 26 1.69 0.666 0.222 0.142 0.376 

3 5 125 124 1.25 0.819 0.222 0.419 0.648 

TABLE 4.2 

Number of width N df U L 2 dge 2 before 
e dimensions prfi1tering 

2 3 9 8 2.92 0.515 0.1 0.017 0.38 

2 5 25 24 1.73 0.657 0.08 0.049 1.11 

3 3 27 26 1.69 0.666 0.08 0.052 1.18 

3 5 125 124 1.25 0.819 0.08 0.151 4.34 
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Figure 4.2 Example of data in the filtering 
sequence ( standard deviation of 
noise = 0.5) 
(a) original image ( radius = 8) 
(b) after 3D width 3 mean filter 
(c) after 3D width 3 variance filter 
(d) points on the detected edge 
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Figure 4.3 Pictorial description of the radial 
search algorithm 
(a) 2D slice of variance filter 

output 
(b) profile of the slice along AB 
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Figure 4.4 Output of the filter sequence ( no 
prefiltering) with 2D width 3 filters 
(a) original (c O.2l6) 
(b) variance filter "output 
(c) points on the detected edge 
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Figure 4.5 Output of the filter sequence (no 
prefiltering) with 2D width 5 filters 
(a) original (a n =0.368) 
(b) variance filter output 
(C) points on the detected edge 
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Figure 4.6 Output of the filter sequence ( no 
prefiltering) with 3D width 3 filters 
(a) original (c nb O.376) 
(b) variance filter output 
(c) points on the detected edge 
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(a) (b) 

(0) 

Figure 4.7 Output of the filter sequence ( no 
prefiltering) with 3D width 5 filters 
(a) original (o 0.648) 
(b) variance filter%utput 
(c) points on the detected edge 
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(b) (a) 

or 
(C) (d) 

Figure 4.8 Output of the filter sequence ( with 
prefiltering) with 2D width 3 filters 
(a) original ( s 0.39) 
(b) mean filter output 
(c) variance filter output 
(d) points on the detected edge 
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Figure 4.9 Output of the filter sequence ( with 
prefiltering) with 2D width 5 filters 
(a) original (=O.l.11) 
(b) mean filter output 
(c) variance filter output 
(d) points on the detected edge 
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(a) (b) 

(d) (c) 

Figure 4.10 Output of the filter sequence ( with 
prefiltering) with 3D width 3 filters 
(a) original (y 1.18) 
(b) mean filter routput 
(c) variance filter output 
(d) points on the detected edge 
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(0) (d) 

Figure 4.11 Output of the filter sequence ( with 
prefiltering) with 3D width 5 filters 
(a) original ( iy 3.0) 
(b) mean filter noutput 
(c) variance filter output 
(d) points on the detected edge 
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Chapter 5 

APPLICATION TO 

NUCLEAR CARDIAC SCINTIGRAMS 

5.1 Introduction 

Although the methods presented in this thesis are 

applicable to any multidimensional signal processing 

application, the motivation for the study was a problem in 

nuclear medical image processing. This problem is 

detection of the left ventricle in nuclear cardiac 

scintigrams. While it is recognized that the properties of 

nuclear cardiac scintigrams differ somewhat from those of 

the test image considered in Chapter 4, the methods 

developed in this thesis may, never the less, be applied to 

both cases. 

An understanding of the functioning of the human heart 

is beneficial to understanding the application to cardiac 

scintigrams. Therefore, a brief description of blood 

circulation through the heart is presented. The concept of 

the " ejection fraction" is also presented. The process of 

producing nuclear cardiac scintigrams is described in 

Section 5.2.3. Finally, in this chapter, the results of 
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application of 3D noise reduction and variance filtering to 

nuclear cardiac scintigrams are presented. 

5.2 Description of the Human Heart 

and Cardiac Scintigrams  

5.2.1 The Heart 

The description given here is illustrated in Figure 

5.1[38]. The heart consists of two distinct, vertically 

separated, halves. Each of the halves contains two 

chambers, an atrium and a ventricle. The right half of the 

heart carries unoxygenated blood. The right atrium ( C) 

receives unoxygenated blood from the body via the superior 

and inferior vena cava ( A,B). Blood then passes from the 

right atrium ( C) to the right ventricle ( D). The right 

ventricle pumps the blood, via the pulmonary artery ( E), to 

the lungs to be oxygenated. The left half of the heart 

carries oxygenated blood. Oxygenated blood from the lungs 

is passed by the pulmonary vein ( F) to the left atrium 

(G). The left ventricle ( H) receives blood from the left 

atrium ( G) via the mitral valve. The left ventricle then 

pumps the oxygenated blood to the rest of the body through 

the aorta ( I). 
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The body depends on the left ventricle to supply it 

with oxygenated blood. Because of the work the left 

ventricle must do to pump blood to the entire body, it is 

normally the part of the heart to fail first in the event 

of heart failure. For these reasons, the left ventricle is 

important in medical diagnosis. 

5.2.2 Phases of the Heart Beat and Ejection Fraction 

The beat of a heart can be divided into two phases. 

These phases are called systole and diastole[39]. The 

systole phase is the compression phase of the heart beat 

where blood is pumped from the heart to the lungs and to 

the rest of the body. The diastole phase is the phase 

where the heart muscle fibres lengthen and the heart fills 

with blood. 

The efficiency with which the heart pumps blood to the 

rest of the body is of interest in medical diagnosis. A 

figure of merit called the ejection fraction is used in 

medicine to evaluate the efficiency of the heart. The 

ejection fraction is calculated by [ 40] 

V ED V ES 
- 

Ejection fraction =   (5.1) 

V ED 



102 

where V ED and V ES are the volumes of blood in the left 

ventricle at end-diastole and end-systole, respectively. 

The ejection fraction is the fraction of blood pumped from 

the left ventricle during the systole phase. 

5.2.3 Nuclear Scintillation Camera 

The importance of the left ventricle in medical 

diagnosis raises a. need to examine a patient's internal 

anatomy. Nuclear scintigrams provide physicians with one 

method of viewing a patient's internal anatomy without 

surgery. For this reason, nuclear sointigrams are a 

valuable diagnostic tool. The process of producing a 

sointigram follows these steps [ 41]: 

1. Radio-active material which emits gamma radiation is 

injected into a patient's blood stream. 

2. Gamma radiation emitted from the patient's blood 

passes through the first stage of an Anger camera. 

This first stage is a lead collimator which selects 

only those gamma rays which have been emitted by 

specific regions. 

3. After the radiation has been collimated it passes 

through a sodium iodide crystal. Upon striking the 

crystal the gamma radiation causes photons to be 

emitted from the crystal, thus producing 
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scintillations. 

4. An array of photo-multiplier tubes is used to detect 

the scintillations. The array of photomultipliers has 

coarse resolution. The resolution is increased by 

using electronic weighting circuitry to calculate the 

position of a scintillation by comparing the relative 

intensities of the scintillation as determined by each 

photo-multiplier tube. 

5. The intensity of each pixel in the resulting image is 

the number of gamma rays calculated to have been 

emitted from that location. Consequently the 

brightness of a pixel in a scintigram indicates bow 

much blood is in the patient's body along the path 

determined by the collimator. 

The apparatus for producing scintigrams is illustrated 

pictorially in Figure 5.2. 

The scintigrams used in the present study were of the 

human heart. Regions containing more blood appear bright 

in a scintigram whereas those containing little blood 

appear dark. Since the heart contains a relatively large 

amount of blood compared to the surrounding tissue, it is 

shown clearly in a scintigram. 

In order to minimize the patient's risk, a small 
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dosage of radiation is used. Although the small dosage 

protects the patient, it means that the scintigram must be 

produced over a period of several minutes. The heart 

changes its shape during this time. In order to reduce the 

amount of blurring that would occur because of the heart's 

own movement, a series of sixteen scintigrams is produced. 

The scintillation camera is gated by the beat of the 

patient's heart so that each sixteen images corresponds to 

only one sixteenth of the heart's beat. A length of time 

equal to one sixteenth of the heart beat period is short 

enough for the heart to be considered stationary. 

The resolution of the scintigrams is 64 pixels 

square. The left ventricle of the heart measures 

approximately 15 pixels across in end-diastole images. In 

end-systole images the left ventricle may be as small as 3 

pixels across and is normally 5 to 10 pixels across. 

The test images employed in Chapter 4 contain normally 

distributed noise, and contain objects and backgrounds with 

uniform intensities. However, the noise in the scintigrams 

is a combination of Poisson noise and some unknown 

background distribution due to radiation sources 

surrounding the heart[42]. In addition, the left ventricle 

region of a scintigram has a nonuniform intensity. In 

spite of these differences, it is shown in the following 



105 

sections that the variance filter is effective for 

enhancement of the edges of the left ventricle. 

5.3 Modification to the Edge Tracking Algorithm 

Unlike the images in Chapter 4, actual scintigrams 

contain other features in close proximity to the feature of 

interest. In this case the feature of interest is the left 

ventricle and other features are the atriums and the right 

ventricle. The presence of unwanted edges in the heart 

images motivated a change in the edge tracking algorithm. 

In Chapter 4, it was assumed that only one edge could 

be found along any radial search path. This assumption is 

not valid with the heart images. Therefore, the edge 

tracking algorithm is modified for use with cardiac 

scintigrams. The modified radial search works as follows: 

1. Select a point known to be in the centre of the object 

of interest. 

2. Search along one radial path from the selected centre 

to find an edge which is known to be an edge of the 

left ventricle. 

3. Track the rest of the edge by searching along 

succesive radii as in step 2, but searching only 

within a specified range centred about the radius of 
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the edge as detected by the previous search path. 

The modified radial search algorithm is illustrated in 

Figure 5.3. Step 2 is acheived by searching along a radial 

path away from the rest of the heart. The result is that 

the detected edge must be an edge of the left ventricle. 

As has been stated, the objective of this work is not to 

develop edge tracking algorithms, so the edge tracking 

method remains simple. However, as is shown, even with 

this simple edge tracking algorithm, excellent results were 

obtained for most images. 

5.4 Filter Sequence  

The heart images were processed using the same 

sequence described in Chapter 4 for the simulation. The 

filter sequence as applied to the heart images is as 

follows: 

1. Load heart images into a 32x32x32 array. The heart 

,images are each 64x64 in resolution so only a 32x32 

region centred on the left ventricle is taken. The 

sequence of 16 pictures is repeated twice in the array 

so that edge effects can be ignored. See figure 5.4 

for an illustration of how the image is prepared for 

processing 
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2. Use a mean filter to reduce the noise in the image 

3. Use a variance filter to enhance the edges 

4. Use the simple edge tracking algorithm to follow the 

enhanced edge 

5. Use the tracked edge to define the region of the left 

ventricle. Integrate the mean filtered image over 

this area. The integral of this area is equal to the 

sum of two volumes of blood; one volume being that of 

the left ventricle, and the other, the volume of blood 

in front of and behind the left ventricle along the 

line of sight defined by the collimator. 

An example showing steps one through four in the filtering 

process is given in Figure 5.5. In this example, and all 

others in this chapter, a 3D window of width 3 was used for 

processing the data. 

5.5 Results of Application 

to Cardiac Scintigrams  

Figures 5.6 through 5.10 show the results of 

application of the filter to a set of 5 test cases. For 

each of the 5 cases, the detected boundaries for the first 

and ninth image in the sequence are shown. The set of all 

sixteen detected boundaries are also presented. The 
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boundaries are shown overlaying the original-unprocessed 

scintigrams. 

The first four cases demonstrate successful runs. The 

detected edges correspond to the edge of the left 

ventricle. In the fifth case, the method has failed. The 

failure in this case is due to the small size ( 3 or 4 

samples in diameter) of the left ventricle at end-systole. 

The edge detected is a combination of the left ventricle 

edge and the boundary of the remainder of the heart. In 

order to be able to deal with objects of a small size which 

have been distorted, as is the case here, different methods 

would have to be developed. 

The detected edges shown in Figures 5.6 through 5.10 

were used to calculate the integral of the left ventricle 

region of each scintigram. Figures 5.11 through 5.15 show 

the resulting plot of the integral versus position in the 

heart beat cycle. As was stated in Section 5.4, the 

integral of the left ventricle region equals the volume of 

blood in the left ventricle plus the volume of blood in the 

foreground and background. If the foreground and 

background quantities can be estimated, the ejection 

fraction can be calulated from the data in the integration 

curves. Errors in the integral at end-systole are obvious 

in Figure 5.15. Again, these errors are due to the small 
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size of the left ventricle in the image. 

5.6 Summary of Cardiac Scintiram Application 

The simple edge tracking algorithm employed in Chapter 

4 was modified to tackle the problem of additional 

irrelevant edge information contained in the scintigrams. 

This simple edge tracking method falls short of what may be 

accomplished with careful study of the edge tracking 

problem, but for the purposes of this thesis the method was 

adequate. 

The filter sequence was demonstrated and worked well 

on the trial cases used. With the exception of the end 

systole scintigrams of one case, the filter sequence 

sucoesfully enhanced and tracked the edge, and was able to 

produce a plot of the integral of left ventricle region. 

Problems encountered in the applications suggest areas 

for future study. Further work should be directed towards 

better edge tracking which can tackle the problem of 

missing edge information. Also, automatic detection may 

fail if the left ventricle is too small for enhancement. 

Algorithms may be modified to allow for human intervention 

in the case of failure in automatic detection. 
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Figure 5.1 Cut-away view of the human heart 
showing blood circulation 
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Figure 5.2 Apparatus for producing nuclear cardiac 
scintigrams 



112 

2D slice of the 
variance output 

C 

B 

search entire 
profile AB 

A 
profile AB 

B 

p— search only this 
-.'4 region of profile AC 

A profile AC C 

Figure 5.3 Pictorial description of the modified 
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Figure 5.4 Generation of a 3D image from a set 
of nuclear cardiac scintigrains 



114 

(a) (b) 

(d) (c) 

Figure 5.5 Example of the 3D filter sequence applied 
to cardiac scintigram data showing the 
end diastole and end systole images at 
each step 
(a) ( b) original image 
(c) ( d) mean filter output 
(e) ( f) variance filter output 
(g) ( h) points on the detected edge 
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(e) (f) 

(g) (h) 

Figure 5.5 ( continued) 



116 

(b) (a) 

(C) 

Figure 5.6 Results of application to cardiac scintigranis 
(case 1) 
(a) points on the detected edge for the end 

diastole 
(b) points on the detected edge for the end 

systole 
(c) points on the detected edges for all 16 

scintigramS 



117 

(b) (a) 

(c) 

Figure 5.7 Results of application to cardiac scintigrams 
(case 2) 
(a) points on the detected edge for the end 

diastole 
(b) points on the detected edge for the end 

systole 
(c) points on the detected edges for all 16 

scintigrams 
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(b) (a) 

(c) 

Figure 5.8 Results of application to cardiac scintigrams 
(case 3) 
(a) points on the detected edge for the end 

diastole 
(b) points on the detected edge for the end 

systole 
(c) points on the detected edges for all 16 

sciritigrams 
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(a) 
(b) 

44 

I. 

(c) 

Figure 5.9 Results of application to cardiac scintigrams 
(case 4) 
(a) points on the detected edge for the end 

diastole 
(b) points on the detected edge for the end 

systole 
(c) points on the detected edges for all 16 

scintigrams 
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(b) (a) 

(c) 

Figure 5.10 Results of application to cardiac scintigrams 
(case 5) 
(a) points on the detected edge for the end 

diastole 
(b) points on the detected edge for the end 

systole 
(C) points on the detected edges for all 16 

scintigrams 
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versus time in the heart beat ( case 4) 
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Chapter 6 

DISCUSSION 

6.1 Introduction  

Results presented throughout this thesis are 

summarised in this chapter. Conclusions about noise 

reduction and edge enhancement are restated. It is 

reiterated that 3D processing is advantageous in image 

processing. Results of filter testing and application to 

nuclear cardiac scintigrams are also repeated here. The 

chapter concludes by presenting recommendations for two 

areas of further study. 

6.2 Summary of Conclusions  

6.2. 1 Summary of Noise Reduction Methods 

Noise reduction methods were divided into three 

categories; 1) linear nonrecursive filters, 2) median 

filters, and 3) linear recursive filters. Filters in all 

three categories were shown to be valuable for noise 

reduction. However, a problem common to these filters is 
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edge blurring. 

The review of noise reduction methods in the three 

categories led to conclusions about the suitability of each 

method in edge detection applications. Linear recursive 

filters require caution when used in edge detection 

applications because of infinite blurring. The median 

filter and related methods rely on bimodal distributions 

and lose their advantages in low SNR applications. The 

best method for noise reduction in low SNE applications, 

where edge detection is important, is the linear 

nonrecursive filter. For images containing constant 

levels, this filter was shown to be a mean filter. 

6.2.2 Summary of Edge Enhancement Methods  

Several methods for edge enhancement were examined in 

Chapter 2. These methods were divided into the categories 

of 1) thresholding, 2) derivative methods, 3) nonlinear 

masks, and 4) sliding statistical tests. Each of the edge 

enhancers examined suffered from some shortcoming which 

made it unsuitable for 3D processing. It was therefore 

desirable that some method be found that could blend all 

edge enhancer properties with extensibility. Such a filter 

is the variance filter and was described in detail in 
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Chapter 3. Its desirable properties as an edge enhancer 

were demonstrated and its limitations were defined. In 

comparing the variance filter to other edge detectors, the 

variance filter was demonstrated to be an acceptable edge 

enhancer with easy extensibility to any multidimensional 

application. 

6.2.3 Advantages to Three Dimensional Processing 

It was concluded in Chapter 3, from an analysis of the 

mean and variance filters, that is more advantageous to 

process image data in 3D rather that 2D. In general, as 

many dimensions as possible should be used in processing 

data. The conclusion arose from the observation that an 

increased number of dimensions in processing increases the 

number of samples in a window and/or permits a reduced 

window width. Smaller window widths produce less blurring 

and lead to more accurate edge detection. Also, it was 

observed that 3D processing permits edge detection in cases 

where it is not possible with 2D methods. 
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6.2.4 Summary of the Filter Testing 

The mean and variance filters were tested with 

artificially generated images. Results of the testing 

clearly supported the theory in Chapter 3. The simulation 

also demonstrated the inability of the theory to predict 

errors caused by blurring at an edge. For example, in 

cases where the window width was large, the theoretical 

predictions were not supported. Test results also 

supported the argument in favor of 3D processing as 

presented in Chapter 3. 

6.2.5 Summary—of the_Application_to_Cardiac_Scjntjrams 

The mean and variance filters were applied to nuclear 

cardiac scintigrams. Results of the application were 

presented in Chapter 5. Excellent results were obtained 

from the application of the mean and variance filters in 

conjunction with a rudimentary edge tracking algorithm. In 

the majority of test cases the left ventricle of the heart 

was successfully detected. Exceptions arose from one of 

two reasons. Either the left ventricle in the image was 

too small for detection by these methods, or, not all the 

edge information was contained in the original image. 
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6.2.6 Main Conclusions  

The main conclusions of this thesis are repeated 

here: 

1. Linear nonrecursive filters should be used for noise 

reduction in applications where edge detection is 

important. More specifically, when constant levels 

are in an image are obscured by noise, a mean filter 

should be used. 

2. The variance filter is a good edge enhancer and its 

versatility makes it valuable for any multidimensional 

application. 

3. Image data should be processed in 3D rather than 2D, 

whenever possible. In general, as many dimensions as 

are available should be used. 

6.3 Recommendations for Further Study 

Two important problem areas were identified in this 

thesis. These problems suggest directions for further 

study. 

The first major problem was in the theoretical 

analysis. Errors that occurred because an edge was blurred 

were not modelled. Rather, only those errors where 
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background samples are mistaken for variance peaks were 

accounted for. Since the probability distribution of the 

variance, the chi-square distribution, is well known, an 

excellent opportunity exists to model the edge detection 

errors which occur at broad edges. Such a model would 

enable the evaluation of edge enhancers based on the 

accuracy of the edge detected for an object. This would 

provide a significant improvement over the evaluation of 

edge enhancers using probability curves like those 

presented in Chapter 3. Although the probability curves 

are useful in comparing methods, conceptually, they are 

removed from the real problem of defining the boundary 

around an object. 

The second major problem encountered in the study was 

the tracking of an edge, after an edge enhancer had been 

used. A question continually arises in image processing 

literature; after using image processing techniques, how 

does one convert the image data into some convenient 

mathematical model usable by a computer? The human vision 

system performs the human equivalent to this task 

continually, but the problem is almost hopelessly 

complicated for computers. As was indicated earlier, the 

method used in this study was simple and rudimentary, but 

it was not reliable. Some people have advocated 

"artificial intelligence" as the solution to this problem. 
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The recommendation here is that the task be divided 

between the computer and its human operator. This 

symbiotic process allows the computer to do quickly what it 

does best. A human operator would only intervene in cases 

where the computer was not able to follow successfully the 

edge. Only two things need to be developed to allow this 

process to happen. First, the automated computer algorithm 

must be able to determine when it has failed, and second, 

an interactive process facilitating easy operator 

intervention is needed. These developments would allow the 

computer to do quickly what it can do best, but take 

advantage of " real intelligence" when needed. 
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