Introduction
In this paper we propose a fundamental alternative to conventional methodology
for constructing relational data base manipulation languages [7, 9, 12, 13,
14, 16, 17]. Conventional relational languages, such as DSL Alpha and SQL, are
based on the twin foundations of set theory and mathematical logic [9, 10,
15]. The set theoretic foundation is undoubtedly very necessary. However, with
respect to the mathematical logic are worth a critical examination, since
these restrictions have been transferred to relational languages.
The restrictions that concern us have to do with the methodology of
quantification. In mathematical logic, where sets are involved, quantifiers
are conventionally applied to entire sets of elements [10, 15]. They are never
applied to a subset of a set that is related to an element in another set. The
reason appears to be the lack of the concept of a relationship between sets in
mathematical logic. Clearly, if a set subset is to be related to another set
element, then a definition of that relationship will be needed for qunatification.
The quantification of related subsets is of interest for designers how
relational languages, In natural languages, quantification of related subsets,
using any of the very large number of quantifiers that occur in natural
language, is by far the most common use of quantifiers. This likely means that
if we can develop a sound foundation for the quantification of related subsets,
we can use it for the development of relational languages whose expressions
have a structure, where quantification is involved, that mirrors the structure
of natural language expressions, yet be amenable to unambiguous interpretation
and translation. We believe that we have been able to show how this can be done.
We begin with the concept of a relationship, and show how a formal definition
leads to the definition of many different kinds of relationship. We show that
there is a relationship relation [8] for each kind of relationship. We then
show how the key to quantification of related subsets is the use of such

relationship relations.

1.1 Notation
We wuse upper case letters for attributes or attribute concatenations,
except where otherwise stated. Upper case bold is used for relation names.
Relation schemes are implied throughout, but are not named [157. We use subscripted
lower case for attribute values within a tuple. Thus the relation scheme [T, U, v,
W] could give rise to a relation (instance) T(T, U, V, W), which may have a tuple
‘t(tl’ upy vy, wl). The primary key attribute (or any candidate key attribute) is
underscored, and for reader convenience will always have the same uppe? case letter
as the relation name.
1.2 The relationship concept with relational data bases
A formal definition of a relationship between relations has been proposed

in [5], as follows:

Definition 1

Consider a data base with a set of relations [A, B, C,].

There is a relationship between any arbitrary pair of relations (A, B) of this

data base iff, by a process of relational algebraic operations, involving

only relations from in [A, B, G, ...], it is possible to generate a relation

R(A, B, ...), with A, B as minimal attributes. R is not necessarily a relation

of the data base, and may be empty. R is called the relationship relation

for the relationship.
In other words, there is a relationship between relations A and B if we can form
a relationship relation from A and B, and possibly other relations of the data
base, where the relationship relation contains attributes that are primary keys
in A and B.
1.3 Relationship classification components

The major classification of relationships is into primitive and composite

relationships. Suppose that we use the symbols 1 and #* for relational algebra

projection and join respectively [1, 9].

Definition 2 If two relations A and B from a data base are such that a
relationship relation R(A, B) can be generated from ﬂA,B(A * B), then the
relationship defined by R 1is primitive.
In other words, if we can perform a join of A and B alone, using any join attributes,
and project out a relation R involving the primary key attributes from A and
B, then we have a primitive relationship.
Definition 3. A relationship that is not primitive is composite.
This means that a composite relationship between. relations A and B exists
only if there is a chain of primitive relationships involving other relations
of the data base, with A and B at opposite ends of the chain. The proof is given
in [5]. For example, if A is primitively related to P, and P is primitively related
to Q and Q is primitively related to B then there is a composite relationship
between A and B, and also between A and Q; and between P and B.
There is a large number of primitive and composite relationship types. In every
case it is possible to define the relationship by means of an algebraic expression
that generates the relationship relation. Most relationships types are very
uncommon, and [5] gives a reasonably detailed coverage. In order to illustrate
the natural quantification of relationships in general, for the purpose of this
paper we shall restrict our discussion to the more common relationship types.
These are:
A. PRIMITIVE RELATIONSHIPS

(a) Simple 1l:n relationship. This occurs when A and B contain an attribute

drawn on a common domain, and that attribute is a primary or candidate
key in one of the two relations. If this primary key attribute is

in A, then the relationship is such that for one A tuple, there will
in general be zero or more relatedlB tuples. Simple l:n relationships

are very common.

5

(b) Co-relationship This occurs when A and B contain an attribute drawn

on a common domain that is a primary or candidate key in neither relation.
This type of relationship is very common. It usually has vague semantics
associated with it, and has been given little recognition as a
significant relationship in the literature. Because of the semantic
vagueness asociated with the relationship, to fully characterize it,

we need to define the level of (semantic) significance attached

to any particular co-relationship. These have been defined elswhere

[5, 6]. It can also be shown that the ubiquitous connection

trap is related to levels of significance in co-relationships [6].

B. COMPOSITE RELATIONSHIPS

(a) Composite l:n relationship This occurs if A and B are at opposite

ends of a chain of simple (primitive) l:n relationships. Thus if for
one A tuple there are many P tuples, and for one P tuple many B tuples,
then for one A tuple there are many B tuples, and there is a composite
l:n relationship between A and B.

(b) Matrix or n:m relationship This occurs if there is at least one

intermediate relationship M in the chain between A and B, such
that there is either a simple or composite l:n relationship between
A and M; and between B and M. When the l:n relationships are both
simple (or primitive), then we have the common many-to-many (n:m)
relationship, where for one A tuple there will be zero of more related
B tuples, and for one B tuple, zero or more related A tuples. In
the literature, co-relationship and matrix relationships are sometimes
confused. A little thought will show that theyare quite different.

For each of the above types of relationship there can be a cyclic version, that

is, where A and B are the same relation. Cyclic relationships are covered in detail

in [5 7, and will not be considered further in this paper. Nevertheless it can

be easily shown that the quantification principles demonstrated in this paper
for the major non cycli¢ relationships also apply to cyclic relationships.
2. RELATIONSHIPS AND QUANTIFICATION

The universal quantifier and the existential quantifier are used in mathematical
logic for specifying the quantity of a set of elements for which a logical condition
holds true. A relation is a set of tuples, and so in early relational languages,
such as E. F. Codd's DSL Alpha, entire relations, and only relations, were permitted
to be quantified by these two quantifiers [9, 15]. Thus if we have the relation
P(P, Q, S), the the expression JdPX € P (5 =4) is a valid logical expression
that states that there exists at least one tuple (PX) that is a member of the
set of tuples P, and which has an S value equal to 4. Here the entire relation
P is being quantified. Similarly, the expression VPX € P(S = 4) is a valid
logical expression that for all (PX) tuples in P the S value is 4. The quantity
specified by the existential quantifier is thus at least one member of the
specified set, and the quantity specified by the universal quantifier ¥ is all
members, without exception, of the specified set.

There are other quantifiers as well as the basic quantifiers of mathematical
logic. These are the natural quantifiers of natural language. A list of the
common natural quantifiers is given in the appendix. In mathematical logic these
natural quantifiers are not necessary, since it is always possible to replace
them by basic quantifier expressions,albeit at the expense of simplicity [101.

We have stated that in older relational languages, quantifiers are used
for specifying the quantity of tuples for an entire relation, that is, quantification
of the entire relation. With the exception of the existential quantifier, this
has given rise to profound difficulties for the development of languages for
manipulation of relational data bases, and to date the only quantifier allowed
in the widely used SQL language, which is based on mathematical logic, is the
existential quantifier.

The problem with the use of quantifiers is a disparity between their

use in mathematical logic, and their use in natural language. As an example

of this consider a simple (primitive) l:n relationship between relations P(P, Q, S)
and €(C, P, W, V). We might imagine that tuples of relation P described aircraft
carriers, with each carrier identified by P, and that tuples of C describe aircraft,
with an atrcraft identifed by C, and the carrier on which it is based described

by P. Since P is aprimary key in P and not a primary key in C, the relationship

is clearly primitive and simple 1:n.

Suppose now that we want the carriers with S value 4, on-which at least

one aircraft has W value 7. We specify the set of P tuples:

[PX6P:5=4 A 3JcXx € ¢((W=7) A (P=PX.P))
There is no difficulty with this, for the mathematical logic formulation mirrors
that used in natural language. We want each PX tuple from P such that S is 4,
and where there exists at least one C tuple with matching P value (that is,
at least one related C tuple). The above expression should be studied carefully.
What we want is each carrier tuple for which at least one of the related aircraft
tuples has W value 7. This just happens to be equivalent to wanting each carrier
tuple for which at least one of the entire relation of aircraft tuples has a matching
carrier value and a W value of 7. This type of equivalence is fortunate, for it
enables relational languages to be constructed that permit the use of the existential
quantifier (or equivalent structure) in a manner akin to its use in natural
language, and thus permitting fairly easy use.

Unfortunately, this type of equivalence does not apply to the other quantifiers,
and not even the universal quantifier. For example, suppose that we wanted each
carrier with S value 4 where all of the aircraft on the carrier had W value 7.

We specify the set of P tuples:

[PX€ P:S=4AWCX €C(((W=17A(P="PX.P)) V (P4PX.P))]

This expression does not have a structure akin to any we would use in English.

The structure is due entirely to the requirement that the universal quantifier

be used to specify a quantity from the entire relation C [3, 14, 18]. Specifically, the
expression means that we want each carrier tuple where if we take all of the C

tuples, then they either do not have a matching P value, or have a matching

P value and a W value of 7. Logically this formulation is correct, but could never

be acceptable in a commercial relational language. It is simply too far removed

from everyday use of the universal quantifier. In everyday language we would quantify
the related tuples of C. We would want each carrier where all of the related aircraft
had a W value of 7.

The difficulties that arise with the convention of quantifying entire relationms
can be circumvented in the case of the universal quantifier by using a negated
existential quantifier, since the statement that all the members of a set have
property X means that there is not at least one without property X. It is the
negated existential quanyifier technique that is used with commercial relational
languages such as SQL. Although acceptable, the need for double negatives is an
inconvenience that becomes unacceptable when there is nesting of quantified
expressions [7, 12, 13, 14, 17].

.Moét relational languages permit the existential quantifier and the negated
existential quantifier equivalent of the universal quantifier; and it is the entire
relation that is quantified. ﬁnfortunately, they do not permit any of the large
number of natural quantifiefs, such as for most (a majority of), or for all

but one, or for one and for all [3, 18]. This is likely due to the difficulty, and

often impossibility of quantifying the entire relation in a meaningful way using
a natural quantifier. As an example, using relations P and C, suppose that

we wanted each carrier with an S value of 4 where the majority of aircraft on
the carrier had a W value of 7. Notice the phrase ''the majority of aircraft

on the carrier" is semantically equivalent to 'the majority of related aircraft'.
The author can find no construction, even in plain English, that would permit

the application of the quantifier for most to the entire relation of aircraft

tuples. But, of course, all of the natural quantifiers can be easily applied to

a set of tuples that are related to some tuple.
We can summarize the argument in favor of relational languages that permit
quantification of related tuples, as follows:
A. BASIC QUANTIFIERS

(a) Existential quantifier Can be used to quantify either entire relation

or set of related tuples with ease.

(b) Universal quantifier. Can be used to quantify entire set only with

contrivance in most applications. Can be used to quantify a set of
related tuples. Is replaced by negated existential quantifier in relational
languages that require quantification of entire set.

B. NATURAL QUANTIFIERS

Are in very many cases used only for quantifying a set of related tuples.

From the above it should be clear that quantification of a set of related tuples
would permit expressions that mirror the English language expression, and would
permit the use of all known quantifiers in a simple manner. The problem is defining
"related" tuples.
2.1 Related tuples

Suppose that we have two relations A(é, F, G, ...) and B(E, T, X, ...) that
are related in either a primitive or composite relationship resulting in a
relationship relation R(A, B, ...).

Definition 5 Given an A tuple a(an, ...), the set of related B tuples

with the relationship defined by R(A, B, ...) is

[BXx€B: JRXER(RK.B=BX.B A RX.A=a)]

In other words, if we have any A tuple a(an, ...), then the set of related
B tuples are those whose B values match the B values in those R(A, B) tuples
with A value equal to a . This is illustrated in Figure 1.

In the case of the simple (primitive) l:n relationship, if for one A tuple

there are many related B tuples, then given an A tuple a(an, ...) the related

i the above
B tuples are those with an A value also equal to a - This follows from the a

10

definition, since for each tuple of R(A, B) with A = a there will be a corresponding
B tuple with matching B value.

Because for any A tuple, no matter what the type of relationship, there is a
clearly definable set of (via R) related B tuples, that means that it will be
possible to use the related set of B tuples in the specification of conditions
for selection of an A tuple. And in particular, we could specify a quantity of the
set of related tuples that had to satisfy a condition in order for the A tuple to
be selected. In other words, it will be possible to quantify the set of related
tuples, which means thal it will be possible to use the natural quantifiers for
this purpose.

2.2 Quantification of related tuples

In order to specify an A tuple for selection provided a quantity of related
B tuples satisfy specific conditions, there has to be a way to uniquely specify
the relationship involved. This relationship specification has to permit unique
determination of the set of related B tuples for the A tuple in question, since
between A and B there could be more than one relationship. For example, if we have
relations A(A, E, F) and B(A, B, K, F) where attributes drawn on the same domain
have the same symbol, we will have two distinct relationships between A and B.
There is a simple l:n relationship supported by A, with relationship relation Rl-

R1 can be specified in a conceptual data base definition, as:

Rl(A, B) = ﬂA,B(A) B)

There is also a co-relationship supported by F, with relationship relation R2

R2 can also be specified in a conceptual data base definition, as:
RZ(A, B) = ﬂA’B(A o B)
Suppose now that we wanted each A tuple with E value 6, where most (that
is, a majority) of related B tuples have K value 13. Without a specification of which

relationship is involved, the request is ambiguous. But suppose that it was

the relationship with relationship relation Rl' Then we could specify the request

11
as
[AX € A: AX.E = 6 A J(>V/2) R [related] BX € B (K = 13)]
Here both AX and BX are tuple variables, and the word related is included only
to help readability. The expressions specifies each A tuple for which E is 6,
and for which a mgority of R1 related B tuples have K value 13. If we were dealing
instead with the relationship with relationship relation RZ’ the request could
be specified similarly as:
[AX €A : AX.E=6 A 3 (>v/2) R, [related] BX C B (K = 13)]

These set theoretic expressions clearly depart from the convention of quantifying
only entire relations. Nevertheless, we are departing merely from a convention
that was acceptable in mathematical logic. Expressions of the type shown above
are also soundly based in logic, and are simply an alternative that may be useful
for constructing relational languages that are more natural for use by persons
not trained in mathematics.
2.2 The natural quantifier language SQL?NQ

Set theoretic expressions of the unconventional type shown above are the basis
for the natural quantifier language SQL/NQ. SQL/NQ is upward compatible with SQL,
and the idea is that a user should be ablé\to use either conventional SQL, or
natural quantifier logic [2, 3, 4]. The two requests above would be
specified in SQL/NQ as:

(a) Relationship relation Rl

SELECT * FROM A

WHERE E = 6 AND

FOR MOST Ry [RELATED] B [TUPLES] (K = 13)
(b) Relationship relation R2
SELECT * FROM A
WHERE E = 6 AND
FOR MOST R, [RELATED] B [TUPLES] (K = 13)

12
Quantities inside [] can be omitted and merely help readability. FOR MOST is
a natural quantifier, and quantifies a set of related tuples, not an entire
relation.
For comparison purposes, the conventional SQL expression for the relationship
supported by A (relationship relation Rl) would be:
SELECT * FROM A
WHERE E = 6 AND
(SELECT COUNT(*) FROM B
WHERE K = 13 AND
A.A = B.A)

>

(SELECT COUNT(*) FROM B

WHERE K # 13 AND

A.A = B.A)
The reader is left to decipher the logic behind this. It is clearly quite unnatural,
but neverthless correct and in conformance with the conventions of mathematical
logic. On the other hand the SQL/NQ expressions conform more to the conventions
of the use of quantifiers in natural language. Readers are left to construct the
SQL expression for the case of the relationship supported by F as an exercise.
Very briefly, a reasonable sysntax for SQL/NQ expressions involving quantifiers
with one level of nesting is:
SELECT attributes FROM relation
WHERE simple-conditions AND/OR

xreference~conditions

Here an xreference-condition refers to a quantified set of related tuples that
must obey some simple conditions:
xreference-condition := quantifier relationship-relation [RELATED] related-relation

[TUPLES] simple-conditions

13

If we wish to allow for nesting of quantified sets of related tuples, instead
of the above production for xreference-condition, we could have:
xreference-condition:= quantifier relationship-relation [RELATED] related-relation

[TUPLES] simple-conditions [AND/OR xreference-conditions]
2,4 Expressibility power

The expressibility power of a language is still a subjective measure but is
a loose measure of how concise and understandable are expressions in that language
compared with English. SQL/NQ rates high on such a measure, in comparison with
SQL. This becomes especially apparent when composite relationships are involved.
As an example, consider the relatiomns:
A(A, F, G) B(B, D, C)
P(P, A, T) Q(Q, B, H)

M(E, P, Q, W)
Between A and M, there is one composite l:n relationship, and another between
B and M. This means that there is a matrix relationship between A and B. For this
matrix relationship there will be a relationship relation R(A, B, M) that could
be specified in the conceptual data base definition as:

= * * * *
R(A, B, M) N (AAPPMQQBB)

,B,M
Suppose now that we have the retrieval request involving only A and B and the
relationship between them whose relationship relation is R:

Retrieve each A tuple for which the G value is 6, and where for the majority

of related B tuples the C value is 13.
With SQL/NQ the expression is trivial:

SELECT * FROM A

WHERE G = 6 AND

FOR MOST R RELATED B TUPLES (C = 13)

Here the economy of expression is obtained because of the use of a previously

specified relationship (based on R) and the use of a quantified set of related

14

tuples. In the corresponding SQL expression, we have neither of these conveniences:

SELECT * FROM A, XA
WHERE G = 6 AND

(SELECT COUNT(*) FROM B

WHERE C = 13 AND

B IN (SELECT B FROM Q

WHERE Q IN (SELECT Q FROM M
WHERE P = (SELECT P FROM P
WHERE A = (SELECT A FROM A

WHERE A = XA.A)))))
>

(SELECT COUNT(*) FROM B

WHERE C = 13 AND

B IN (SELECT B FROM Q

WHERE Q IN (SELECT Q FROM M
WHERE P = (SELECT P FROM P
WHERE A = (SELECT A FROM A
WHERE A = XA.A)))))
with the result that we get a complex expression that requires skill in SQL
to construct.
2.5 The mode of association concept and the relationship relation
There is an alternative method of interpreting a relationship relation, that

emphasises the semantics involved, rather than the technical basis for the relationship
(such as the attributes that support it, and so on). This involves the mode
of association concept. A mode of association is simply a set of propositions
in logic R(A, B). An element of the set could be r(az, b3), where a, and b,
identify entities that are the subject and object of the proposition. For example,
if A and B are relations related in a simple l:n relationship, with A identifying

a carrier and B identifying aircraft,then r(az, b3) is the symbolic form for the

15

proposition:

Carrier a, carries aircraft b3.
It is as a set of such propositions that the relationship relation R could
be presented to users.
Conclusions

The convention that that only the basic existential and universal quantifier
be used to quantify entire relations has resulted in very retrictive relational
manipulation languages, such as SQL. However, to permit quantification of related
sets of tuples, which is the equivalent of the technique used in natural language,
it is necessary to use precise definitions of relationships in data base definitions
or schemas. We propose that this be done using relationship relations. This
will enable every kind of relationship possible in a relational data base to be
used in the quantification of related sets of tuples. We have shown in this
paper how this can be done with non cyclic relationships, and given an example
of a language, called SQL/NQ, which is upward compatible with SQL, in which
these techniques are incorporated. An advantage of quantifying related sets of
tuples instead of merely entire relations is that the the complete range of
natural quantifiers can then be used in the language. As we have demonstated,
the use of both quantified sets ofrelated tuples, and natural quantification, will
permit retrieval expressions that both much more concise that those required with

SQL, and also much closer in structure to those of natural language.

10.
11.
12.
13.
14,
15.

16.

17.

18.

19.

Appendix 1. Common natural quantifiers

FOR n, FOR THE n,
FOR EXACTLY n

FOR AT LEAST n,
FOR n OR MORE

FOR AT MOST n,
FOR n OR LESS

FOR AT LEAST 1, FOR ONE OR MORE,
FOR SOME
FOR BETWEEN n AND m

FOR ALL, FOR EACH,
FOR ALL IF ANY, FOR EACH IF ANY

FOR ALL BUT n

FOR ONE AND ALL

FOR NO

FOR SOME BUT NOT ALL

FOR SOME BUT NOT n

FOR SOME BUT NOT MORE THAN n
FOR SOME BUT LESS THAN n
FOR MOST, FOR A MAJORITY OF
FOR A MINORITY OF

FOR x PERCENT OF,
FOR EXACTLY x PERCENT OF

FOR AT MOST x PERCENT OF
FOR x PERCENT OR LESS OF

FOR AT LEAST x PERCENT OF
FOR x PERCENT OR MORE OF

FOR BETWEEN x AND y PERCENT OF

e

=14)

4(>n)

4 (<n)
4(3),3,4(1)

d(0GnAcm)
;l(v)J 4

4(v-n)

4G1A V),JGAV)
4(0) |
4G1a0 ‘v’),:lém‘v’)
(1A) 4@ AN
d(1A <) d(3A<n)
dG1A<n) 4@ A<n)
40 V/2)

(< ¥/2)

4 (xfi00)

4 (S X/loo)

4 (2 x fi00)

4 (> Xf1vo A < ‘j/loo)

17

REFERENCES

1.

10.

11.

12.

Aho, A. V., Beeri, C., and Ullman, J. D., The theory of joins in relational
data bases. ACM Trans on Database Syst., 4(3), 1979, 317-314.

Bradley, J., An extended owner-coupled set data model and predicate calculus
for data base management, ACM Trans. on Database Syst., 3(4), 1978, 385-416.
Bradley. J. SQL/N and attribute/relation associations implicit in functional
dependencies, Int. J. Computer & Information Science, 12(20), 1983.

Bradley, J. A group-select operator for relational algebra and implications
for database machines, IEEE Trans. on Software Syst., to appear.

Bradley, J. A fundamental classification of relationships in relational

data bases, Research Report No. 87/265/13, Univ. of Calgary, Alberta, Canada,
1987, 30 pages.

Bradley, J. Co-relationships, levels of significance, and the source

of the connection trap in relational data bases, Research Report No.
86/250/24, 1986.

Chamberlin, D. D., et al. SEQUEL 2: A unified approach to data definition,
manipulation and control, IBM J. Res. & Dev., 20(6), 1976, 560-575.

Chen, P. P. The entity-relationship model: Towards a unified view of

data, ACM Trans. on Database Syst., 1(1), 1976, 9-36.

. Codd, E. F. Relational database: A practical design for productivity, CACM,

25(2), 1982, 109-117.

Hilbert, D. and Ackerman, W. Principles of Mathematical Logic, Chelsea
Publishing Co., New York, 1950.

Kaplan, S. J. Designing a portable natural language query system, ACM Trans.
on Database Syst., 9(1), 1984, 1-19.

Kim, W. On optimizing an SQL nested query, ACM Trans. on Database Syst.,

7(3), 1982, 443-469.

13.

14.

15.

16.

17.

18.

18

Kim, W. Gajski, D., Kuck, D. J. A parallel pipelined relational query processor,
ACM Trans. on Database Syst., 9(2), 214-242,

Luk, W. S., and Kloster, S., ELFS: English language from SQL, ACM Trans

on Database Syst., 11(4), 1986, 447-472.

Maier, D. The Theory of Relational Databases, Computer Science Press,
Potomac, Md., 1983.

Reiter, R. A sound and sometimes complete query evaluation algorithm for
relational data bases with null values, J. of ACM, 33(2), 1986, 349-370.
Ullman, J. D., Implementation of logical query languages for data bases,
ACM Trans on Database Syst., 10(3), 1985, 289-321.

Welty, C., and Stemple, D. W. Human factors comparison of procedural and
non procedural query languages, ACM Trans on Database Syst., 6(4), 1981,

626-649.

