A Subset FORTRAN Compiler for a Modified Harvard Architecture

- J. R. Parker

Abstract

The architecture of the target computer clearly has a great impact on the design of a
compiler’s code generator. In particular, the near complete separation of the code and
data memories of the TMS32010 microprocessor creates some interesting problems.

I. Introduction

FORTRAN is a relatively old programming language. Its age shows up in every aspect
of its design; the use of line boundarys as statement terminators, the lack of any dynamic storage
allocation, the lack of procedure nesting, and the prevailence of labels and GOTO statements,
and many other characteristics have caused this language to fall into disuse in many applications
areas. Still, many programs originally written in Fortran are still in use, and in some areas, partic-
ularly engineering and heavily numerical disciplines, it it still very popular.

A great deal of signal processing software has been written in Fortran, which is one
motivation for interest in a TMS32010 Fortran compiler. Indeed, Fortran has become the
language by which workers in signal and image processing can communicate their methods. When
the TMS32010 signal processor and its successors became commercially available, it seemed inev-
itable that a Fortran language compiler would sooner or later be needed for them.

II. The Target Processor

A block diagram of the TMS32010 appears in figure 1. Being a Harvard type architec-
ture, the data memory and the code memory are physically separate and logically distinct. Access
to operands in data memory is very fast: on the order of 100 nSec. Access to instructions in pro-
gram memory is also very fast ( ), but to access data residing in program memory can take 1.2
microseconds or longer. As a result, operands should always be stored in data memory. There are
two problems with this. First, data memory is quite small, only 144 16 bit words, so it will often
be the case that not all data will fit. Second, there is no fast mechanism for loading constants of
arbitrary size into the data memory. There is a load constant instruction, but this is only effective
for unsigned numbers less than 256. The alternative is a slow transfer from program memory.

Other features of the TMS32010 architecture also interfere with normal code genera-
tion. The program memory is not very large, consisting of at most 4096 words (12 bit address). A
cross compiler would be difficult enough to implement, but a native compiler with reasonable
language features would be nearly impossible. Also, the hardware stack has only four levels; since
return addresses are stored here, this is a serious restriction. The TMS32010 is an accumulator
based processor with very few registers, and these all have a special purpose. This creates a prob-
lem with storage for temporary variables, which must be allocated in data memory. There are
only two addressing modes that are at all general: direct from data memory, and indirect
through an auzilliary register to data memory. There are a few instructions with unique modes,

PP



PC {12 bits
Instruction
Control IAddress |
Stack
Program
4x12 Meamory
L)
(o o < - 3 (PUSH) 4K x 16
| T
i t
| l(TBLﬁ)
1 - K
: [ /
ARO
: o) AR ARP
Data ! T
Memory P
144x 16

by

t
}
: M MPY || shift f—
Data
N LGop)_
Accumulstor P

l

Shifter|
I}

Figure 1 - The TMS32010 Processor

such as the load constant instruction described above, but these are limited in application.

The attractive features of the processor, especially for signal processing, are its speed
and simplicity. A sixteen bit by sixteen bit multiply, giving a thirty-two bit result, takes 200
nanoseconds. This speed is possible in part by the use of instruction pipelining, which in turn is
made possible by the separation of program and data memories. While assembler programs for
specific purposes can be made to run very quickly, the code generated by a compiler will not take
full advantage of the architecture and will be much slower as a result. The programmer makes a
speed/programming time tradeoff on many systems, but it is more pronounced on this special pur-
pose computer.

It is possible to 'extend’ the data memory by connecting a fast memory to the I/O
ports and reading from the memory using IN and OUT instructions. This uses extra hardware
that can be constructed in many incompatable ways. Because of this, the F320 compiler was
designed for use with the basic processor with no extensions; however, because of the way that
I/0 is implemented, the option of extending the processor remains.



III. The Compiler

The compiler, named F320, was written in PASCAL, and implements a subset of the

FORTRAN 66 language. There are also a few extensions that apply specifically to the target pro-
cessor, and are mostly implemented as builtin functions. Restrictions of note are:

Separate compilation is not implemented. Subroutines, functions, block data, and the main
program must reside on the same source file. This violates a basic tenet of FORTRAN, but
should not be a very serious problem in practice; given the restricted program memory size,
F320 programs will of necessity be small. Moreover, this allows the checking of the number
of arguments passed to a routine against the number declared.

The number of dimensions allowed on array variables is two or less. Again, the small
memory creates the need for this restriction. Not only do multidimensional arrays grow in
size very quickly, the code needed to computed the address grows in size also. Very few
FORTRAN programs use three or more dimensions in any case.

For reasons discussed later, variables residing in COMMON storage cannot be passed by
reference as arguments.

Some features not involving the generation of code were omitted. Principal ameng these are
equivalence statements and statement functions. Since the major interest of the study
relates to the generation of code, these features were thought to be unimportant.

The only data types implemented so far are INTEGER and LOGICAL, and arrays of these.
Floating point is being examined very carefully, and if included will be at the programmer’s
option. The inclusion of REAL variables in a program will result in the appropriate library
functions being included in the object file. Fixed point may be a more reasonable alternative
given the memory size of the machine.

All input and output involves unformatted integers. FORMAT statements are often inter-
preted at runtime, requireing both memory and time. The TMS32010 performs 16 bit output
in 400 nanoseconds, which seems like a better idea. 1/0 is performed directly to and from a
selected I/O port on the chip to simplify interconnection.

Should a production compiler be implemented, the omissions above can all be corrected.

IV. Code Generation

The compiler generates assembler code, which in turn requires two more passes to

assemble, making a total of three passes. The optimizer is an optional fourth pass. Most of the
hard decisions in the code generator were the result of the tradeoff between the small memory size
and the fast speed of the processor.

1.

Local variables and arguments were allocated space in data memory. This includes variables
whose declarations are allowed to default. Common variables reside in program memory,
resulting in slower access times and more extensive code generation for variable access. This
gives the programmer an explicit means of controlling the space-time tradeoff for a particu-

lar application. The sample TMS32010 code below shows the difference in accessing local
and common variables.




L]

PROBLEM: Load the accumulator with the value of

variable A.
Declaration: Declaration:
INTEGER A INTEGER A
COMMON /X/ A
Simple Local: Get value Simple common: Get value
LAC A/ Load acc with CALL LDAC / Load acc with address
/ contents of dec A+X / of Ain block X.
/ location A TBLR * / Move from prog. Mem.
/ into data memory.
LAC * / Load value into Acc.

The LDAC procedure is used to load a constant of
arbitrary size into the accumulator.

The LDAC procedure is a library routine, which will only be loaded if it is used. In fact, the
same 1s true of all library procedures, such as builtins and the divide and exponentiation
routines.

Temporary variables used during the evaluation of an expression are allocated on a kind of
stack, implemented by using one of the two auxilliary registers in indirect mode. In this
mode, the operand resides at the address indicated by the register, which may be incre-
mented or decremented after the access. The ™*’ character in assembly programs indicates
this mode of access through whichever auxilliary register is indicated by a 1 bit register

called the auzilliary register pointer, or ARP. Hence a 'push’, or store of a temporary, would
be coded as:

SACL *-

which stores the current accumulator value through the current AR into data memory, then
decrements the AR that was used. In this scheme, the AR used is initialized to 143, the

highest address in data memory, and grow down towards zero. Popping a temporary value is
performed by:

MAR *+ / Increment AR value
LAR * / Load Accumulator through AR.

Note that the increment must be done first, so in general this takes two instructions,
although the optimizer can eliminate many of these.

Subroutine calls use a normal CALL instruction, which places the return address on the
hardware stack. Since there are only four levels, the subroutine first pops this address from
the stack and moves it into program memory. This permits the nesting of calls more than

three deep; the instructions that move data to and from program memory (TBLR and
TBLW) also use the top of the stack. The code for a call to a subroutine X appears below:

CALL X SUBROUTINE X

produces: produces:

call X_ r X: dec 0 / Place for return address
X pop / Get Return address

sacl ¥/ Store in data mem.
call LDAC / Load program memory address
decr_X / into accumulator
tblw *  / Store return address in
/ program memory.

The return statement generates code to reverse this process, placing the return address

e e s e st 3 ol A 1 . e e



back on the stack.

Arguments were a problem. The restricted memory and stack size permits few reasonable
solutions, and of course FORTRAN passes all arguments by reference. Since all of the com-
pilation units reside on the same file, the solution that was chosen involves writing the
addresses of the actual arguments passed into the actual locations allocated for the formal
arguments. If these do not exist by the time the subroutine is called, they are allocated, and
will be not be reallocated when the actual subroutine statement is seen. This could be
modified for separate compilation, but is much simpler without. The value stored in the
argument address is the address of the variable or expression passed, in data memory. For
this reason common variable cannot be passed by reference; they do not reside in data
memory, and the subroutine receiving the argument will have no way of knowing in which
memory the address is appropriate. Solutions were tried involving negative addresses for
common variables and allowing common to exist only in addresses that do not overlap with
data memory (IE address > 144). The complexity of the code needed to properly determine
the location of the argument at runtime and retrieve its value was too great considering the
rewards. In any event, common variables are shared among all subroutines and functions,
and the value of a common variable can be passed as an expression. Other solutions are to
allocate common variables in data memory, or to implement a call by value result. The
former solution is unacceptable, the latter is under investigation.

Division and exponentiation are implemented as assembly code procedures, using a normal

call-return sequence instead of the slower scheme above. The instruction set includes a mul-
tiply, but not a divide, instruction. Sample code for two simple expressions is:

Expression: 1%2+1 Expression: K/1*3

lac 0 /Load 1 lac 2 / Load K, addr 2

sacl -/ Store temp sacl -/ Store value

lack 2 / Load 2 lac 0 / Load I, addr 0

mar *+ / Pop I val sacl *  / Store value

It * / into multiplier  call div_ / Perform division.

sacl *  / Store 2 sacl *-  / Save result

mpy * / Multiply lack 3/ Load constant 3

pac / result to Acc mar *+ [ Pop value from stack
sacl *-  / push result It * / Div result into multiplier
lack1 /[ Load 1 sacl * [ constant 3 to stack

mar *+ / Pop result mpy * / Multiply

add * / And add 1. pac / Result to accumulator
TIME: 2.4 Microseconds TIME:  19.6 Microseconds

Optimized level 1:

lac 0 lac 2
sacl * sacl *-
lack 2 lac 0
It * sacl *
sacl * call div_
mpy * sacl *
pac lack 3
sacl * It *
lack 1 sacl *
add * mpy *
pac
TIME: 2.0 Microseconds TIME: 19.4 Microseconds

Optimized level 2:

1t 0 / 1into multiplier lac 2

mpyk 2/ Mult. by 2 sacl *-
lack 1/ linto acc. lac 0
apac / Add result sacl ¥




call div_

It *
mpyk 3 -
pac
Time: 0.8 Microseconds TIME: 18.8 Microseconds

The above code shows a number of things. First, optimization can reduce execution time by
a factor of three in some cases. Second, the lack of a division instructions costs dearly, and
division should therefore be used sparingly if possible. Third, the use of data memory as a
’stack’ for temporaries is shown, as is the fact that the stack need never get very deep.

V1. Conclusions

The choice of a Non-Von Neumann processor as the target of a compiler, even a sim-
ple one, can result in the need to make painful compromises. Clearly, other choices could have
been made at various points in the implementation of the F320 compiler, and some of these are
still being explored. For example, there is obvously much work to be done in the optimization of
the code that would be very profitable, and this is being done. Still, much of the advantagee of a

special purpose processor can be lost in a high level language code generator - much more than for
a more general purpose device.

Work is continuing with an implementation of floating point and fixed point numbers,
with the optimization pass, and with the construction of very efficient formatted 1/O routines.

References
[1]  Texas Instruments Ltd., TMS82010 User’s Guide, 1983.

[2] Baldwin, R.D., Thr Backward-Directed GOTO in FORTRAN, SIGPLAN Notices Vol. 19
No. 8, Aug 1984.

(3] VanTuyl, R.R., On Evolution Of FORTRAN, SIGPLAN Notices Vol 19 No. 11, Nov. 1984

[4] Aho, AV, Ullman, J.D., Principles of Compiler Design, Addison-Wesley Publishing, Read-
ing Mass., 1977.




