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ABSTRACT 

The major factor that determines the elastic moduli of a rock is the pore 

geometry. Based on the inverse Kuster-Toksoz modelling of sandstone samples, 

it is found that the concentration of round pores is in direct proportion to 

porosity while that of aadcs is small and has no correlation with porosity or day 

content. The variability in the elastic moduli at a given porosity can be attributed 

chiefly to the variability in the crack concentration. Moreover, the effect of cradcs 

on the elastic moduli decreases with inaeasing porosity. Consequently variation 

of the elastic moduli with changing effective pressure will generally become 

smaller at high porosity. 

The effect of fluids on the elastic moduli is most important in the rock of 

low dry elastic moduli. Effective pressure has a greater impact on the dry elastic 

moduli at low effective pressure and the rate of change of the dry elastic moduli 

with respect to effective pressure can be modelled as the quasi-exponential 

function. Temperature has a small effect on the dry elastic moduli unless it 

changes drastically. 
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CHAPTER 1 

INTRODUCTION 

Global oil production is growing at an approximately 2% per annum on a 

smoothed basis, while annual discovery volumes are dwindling (Jack, 1998). This 

trend pushes the oil industry to maintain reserves by making improvements in 

the recovery rate of oil and gas. In fact, recovery on average is low, as indicated 

by BP' s statistics of 13 major fields. Nur (1989) pointed out that a 10% increase 

in recovery efficiency in the United States would amount to a doubling of 

present estimates of recoverable reserves. Analyses by the Bureau of Economic 

Geology indicate that, excluding Alaska, up to 80 billion bbl oil and 180 trillion 

cubic feet gas can be added to current US onshore reserves by infill drilling and 

other enhanced oil recovery methods (Johnston, 1989). 

The most obvious way to significantly enhance recovery efficiency of 

existing fields is to idenbfy bypassed oil zones and conduct idill drilling. 

Reservoirs are much more heterogeneous than anybody likes to believe, leading 

to considerable uncertainty in reservoir description. Reservoir simulation based 

on this reservoir description could not give accurate predictions of reservoir 

performance even though it may be well matched to production data. We still do 

not know what is going on between the wells and how fluids migrate in 

reservoirs. In the past, reservoir engineers only resorted to dense drilling and 

extracting cores for information needed to determine the details of a reservoir' s 

structure and its flow behaviour, an expensive and less efficient way. Today 

repeat or time-lapse seismic surveys in mature fields open a new avenue to track 

fluid flow and target these unswept zones. Recent successful examples in seismic 

monitoring of steam injection, water floods, CO2 flood etc. (Jack, 1998) 



demonstrate a great potential for inferring reservoir conditions from seismic 

data. 

Time-lapse seismic surveys are designed to investigate changes in 

reservoir conditions (saturation, pressure and temperature and sometimes 

porosity) due to production or/and injection by using seismic data. There are 

two closely connected steps involved in the application of this method. Rock 

physics is the basics, which relates reservoir conditions and other reservoir 

properties to the elasticity-anelasticity properties of reservoir rocks and 

consequently veloaties and attenuation. The elasticity of a rock, if the rock is 

isotropic and homogeneous, indudes only two independent elastic constants 

(e.g., bulk and shear moduli), which can be expressed as a function of the elastic 

constants of rock solid and pore fluids and the pore geometry, which vary with 

reservoir conditions. Anelasticity is determined by aacks and pore fluids, which 

also vary with reservoir conditions. Anelasticity is believed to vary much more 

than elasticity as a result of changes in resenroir conditions (Pros et al., 1962). The 

second step involves selecting the seismic attributes, which are most sensitive to 

changes in velocities and attenuation in response to changes in reservoir 

conditions. For example, when water displaces oil zones, P-veloaty increases 

and Sveloaty decreases if the rock is not too stiff. AccordingIy, a reduced travel 

time to the reservoir bottom interface reflection can cause a pull-up on P-P 

seismic section. On P-S section, a pull-down is small due to a slight decrease in 

veloaty. Moreover, an amplitude decrease on both the top and bottom of the 

reservoir can be observed, which may be greater at far offset. In addition, a 

change in effective pressure and fluid viscosity may result in enough change in 

attenuation for the change in the amplitude spectrum on the bottom reflection 

event to be seen. 



Numerous theories and models exist in literature on elastiaty-andastiaty 

properties of rocks. Wang and Nur (1991) and Toksoz and Johnston (1981) 

reviewed the important theories and models up to the publication dates. Despite 

diversity of learning, it is widely accepted that the pore geometry is a major 

factor in determining the elastic moduli and attenuation. The spherical pores are 

most stable and have little effect on attenuation, while the cracks, despite being 

small in volume, may decrease the effective elastic moduli and attenuate seismic 

waves substantially. The existence of varying-shape pores and their role in 

determining the elastic moduli have been dealt with by many authors (Brace et 

al., 1972; Eshelby, 1957; Kuster and Toksoz, 1974; MacKenzie, 1949; Mavko and 

Nur, 1978; Sprunt and Brace, 1974; Timur et al., 1971; Walsh, 1965; and so on). 

Among these theories, Kuster-Toksoz model (KT model), which was derived 

st one based on scattering theory, is recognized as the most realistic and simple- 

and thus used very often in the geophysical community. The assumption that 

pore geomery is simplified as a series of spheroids with varying pore aspect 

ratios (i.e., the pore aspect ratio spectrum) is a reasonable approximation to the 

reality in spite of the noninteracting limitation. The spheres represent relatively 

round pores, and the spheroids of very low aspect ratios are similar to cracks and 

grain contacts. The computation of the effective elastic moduli for a given pore 

aspect ratio spectrum is relatively easy. The inversion of the pore aspect ratio 

spectrum from the effective elastic moduli (derived from veloaty measurements) 

is also fairly amenable to mathematical manipulation. Walsh (1966) formulated 

the problem of attenuation by frictional sliding (frictional dissipation). For 

random orientation of cracks, the Q values for compressional and shear waves 

were computed using the friction coeffiaent K, effective Poisson's ratio o, and 

rock solid and bulk rock moduli as parameters. 



Fluid is another factor to determine the elastic moduli. According to the 

Gassmann equation, both the dry elastic moduli and porosity seem to be the 

most important parameters in the second term. In other words, the effect of 

fluids becomes more obvious at low dry elastic moduli and low porosity. These 

two factors, however, vary inversely with each other. The case of low dry elastic 

moduli and low porosity cannot be expected in a general sense. Which factor 

dominates needs to be addressed. In addition, the fluid effect on the elastic 

moduli is frequency dependent. At high frequencies (a relative concept 

depending on pore geometry and permeability and fluid viscosity), the fluid 

seems stiffer and the Gassmann's equation is invalid. The proposition of the 

concept of the frequency-dependent effective fluid may solve the problem. The 

arithmetic averaging of the bulk moduli of fluids is an example of the 

application. 

Fluid also has an impact on attenuation, which peaks at frequencies at 

which fluid relaxation (or pressure equilibrium) due to squirt flow (local and 

global flows) is reached. Relaxation time depends on pore geometry, 

permeability and fluid viscosity. 

The third factor is the elastic moduli of rock solid, which lack the due 

attention among rock physicists. As a matter of fact, they are not easily obtained. 

Generally speaking, the theoretical models such as the Gassmann equation and 

KT model need the rock solid to be homogeneous and isotropic, which most 

rocks such as sandstones do not satisfy. Sandstones consist of various minerals. 

Quartz, a major sandstone-forming mineral, differs by as much as 40% in elastic 

moduli along the different crystallographic axes (Clark, 1966; Zimmerman, 1991). 

Other minerals such as feldspar, clay, calcite etc. are also anisotropic. The 



anisotropy and homogeneity pose a question of how accurately we can use these 

theore tical models. 

Obviously, it is impossible to cover such a wide range of topics. This 

thesis deals with the factors to determine the elastic moduli with an emphasis on 

the pore geometry of sandstones. A pore geometrical model is proposed to 

interpret the elastic moduli of dry sandstones and their changes with effective 

pressure. The effect of temperature on the dry elastic moduli is also discussed. 

The major factor that controls the impact of fluids on the fluid-saturated elastic 

moduli is investigated. Finally these rock physics principles are applied to 

evaluate the changes in veloaties and acoustic impedance due to recovery 

processes and assess the feasibility of the Blackfoot oilfield. 



CHAPTER 2 

ELASTIC MODULI OF ROCKS 

A medium is said to be elastic if it regains its original dimensions after the 

forces acting on it are removed, that is, the strains must be uniquely determined 

by the stresses and conversely. Furthermore, it is of linear elasticity i f  the strains 

are so small that the strains are in direct proportion to the stresses, which is 

modelled by Hooke's law. Rocks are generally considered to be elastic within the 

range of moderate pressure changes. Pressure changes are considered moderate 

if they do not cause the opening of new cracks and the propagation of old cracks. 

The assumption of elasticity is not completely true because crack dosing is never 

completely reversible (Gueguen and Palciauskas, 1994), as evidenced by 

hysteresis in the closure of a aack due to permanent damage to the crack surface 

(Molz and Hidcman, 1983). In the case of elastic wave propagation, rocks show 

linear elasticity as a result of small strain (less than 10-9, Sheriff and Geldart, 

1995) and Hooke's law is an adequate model. Accordingly, the elastic moduli, 

which model the linear stress-strain relation can be found. In the real world of 

seismology, however, seismic waves in the earth propagate in stressed rocks, and 

small strains due to wave motion are superimposed on the large strains due to 

gravitational and tectonic forces. This complex stressstrain rela tion was first 

addressed in the literature by Murnaghan (1937) and Birch (1938). Birch (1938) 

proposed that the elastic moduli at any initial state are determined by the 

relation of infinitesimal stresses and strains, which are superimposed on the 

large stresses and strains of that state, and he calculated the dependence of the 

elastic moduli of solids on the hydrostatic pressure. In other words, the elastic 

moduli at any initial state can be defined by the tangent moduli at that state in 

the stress-strain curves. This definition of the elastic moduli will be used 

throughout the thesis. 



2.1 Effective medium theories 

Rocks are often viewed as effective media since seismic wavelength is 

much longer than grain size. In other words, despite microscopic heterogeneity, 

rocks behave physically like a homogeneous continuous medium on the 

macroscopic scale. The elastic properties of the effective medium can be defined 

and calculated as the average elastic properties of a representative volume 

element. Intuitively, the elastic moduli of an effective medium depend on the 

elastic moduli of the constituents, their volume fractions and geometric 

distributions over that representative volume element. The first approach to 

determining effective elastic moduli is direct calculation (Gueguen and 

Palaauskas, 1994). It calculates the elastic moduli by dividing volume-averaged 

stress by volume-averaged strain as follows: 

M = S / E  2.1 

where M is the effective elastic moduli. S and E are averages of stresses and 

strains, respectively, over the representative volume element- Let C1, C2, C3, . . . Cn 

represent the volume fractions of n constituents, MI, M2, M3, . . .Mn their respective 

elastic moduli, SI, S2, Sr . . . Sn their respective stresses and ~ 1 ,  €2, ~ 3 ,  . . . En their 

respective strains. Equation 2.1 can be rewritten as: 



The terms & I /  s, &2 / c, ~3 / E . . . ., En / E require a precise geometric model 

for the distribution of constituents. If it is unavailable, the best way we can do is 

to find the upper and lower bounds by assuming some ideal cases. 
- 

If the strain is constant over 

all constituents as indicated by Fig 

2.1, then EI / E = 1, ~2 / E = 1, ~3 / E = 

I , . . ,  ~ n / ~ = Z m d  the effective 

elas tic moduli become arithmetic 

average. This model of isostrain was Stress 

first proposed first by Voigt (1928); it Figure 2.1 Model of isostrain (Voigt) 

is called Voigt' s model. 

The equation with the arithmetic average is as follows: 

Rewrite equation 2.2 as follows: 

According to equation 2.4, if the stress is constant over all constituents as 

demonstrated by Fig. 2.2, then SI / S = 1. S2 / S = 1, S3 / S = 1, .. , Sn / S = 1 and 

the effective elastic moduli are the harmonic average for alI constitutes. 



Reuss (1929) proposed this 

model of isostress, which 

was then called Reuss's 

model afterwards. 

Figure 2 2  Model of isostress (Reuss) 

The equation with the harmonic average is as follows: 

1 / M = CI/MI + C2/M2 + C3/m + . - -+ Cn/Mn 2.5 

Wood (1941) derived the same result when he studied wave propagation 

in a physical mixture of liquids or liquids plus solid particles. The model can be 

applied to uncompacted sediments (no physical contact, or in suspension state). 

Once sediments are contacted, they have non-zero shear rigidity and non-equal 

pressure distribution, and it is no longer valid. 

It can be shown that MV calculated from Voigt's model is the upper bound 

for the average value and MR calculated from Reuss's model is the lower bound 

for the average value (Mv>Mr). Thus, Hill (1952) averaged them in an attempt to 

derive a better approximation: 

M = (Mv + MR)/2 2.6 

(Mv >M> MR ) 

Equation 2.6 is named VRH model after Voigt, Reuss and Hill. The major 

usefulness of these models is their simplicity. However, if the magnitude of the 

elastic moduli of constituents differs sigruhcantly, the bounds provided by the 

models may be too large to be useful. 



As mentioned above, the accurate calculation needs the precise geometric 

details. However, the geometry is never known and there are also mathematical 

difficulties in computation. So equation 2.2 must be restricted to simple models. 

In a general, two phases are only considered with one phase in the form of 

particles embedded in the second matrix phase. The simplest case is dilute 

concentration of spherical and ellipsoidal particles of constituent 2 in matrix 1 

(Hashin, 1983). The definition of " dilute" is that the state of strain in any one 

particle in the effective medium under homogeneous boundary conditions is not 

affected by the other particles. Thus the strain is that of a single particle in an 

W t e  body. 

Rewrite equation 2.2 as: 

M = S / E  

= (ClMi)( & I /  E) + (C2M2 ) ( ~ 2  / &) 

= (CI ~ 1 ) M 1 /  E + (C2~2)M2/ & 

= MI(&- C2 ~2 ) / E + (C2M2 )(&2 / E) 

= Mi + (M2 - MI)C~(E~ / &) 2.7 

For spherical particles, ~2 / E are (Hashin, 1983; Landau and Lifshitz, 

1967): 



where ( ~ 2  / E ) ~  and ( ~ 2  / E ) ~  are volume strain and shear strain respectively, Ki, Kz, 

w, pz are bulk moduli and shear moduli for matrix 1 and constituent 2 

respectively. Substituting 2.8 and 2.9 into 2.7 results in: 

In the case of rocks, equations 2.10 and 2.11 can be simplified as: 

where IG and ps are the bulk and shear moduli of rock solid, Kf is the fluid buk 

modulus and 4 is porosity. If pore space in rocks is empty, equation 2-12 is 

further simplified into: 

For randomly oriented ellipsoidal partides, much more complicated 

expressions were given by Eshelby (1957). 

Strictly speaking, equations 2.12 and 2.13 are not always valid since rocks 

do not always satisfy the assumption of dilute concentration. In other words, 

porosity is not small and the interactions between pores (partides) are not 



negligible. We introduce self-consistent methods to take into account these 

complexities. Assume that a small amount of constituent 2 is embedded into a 

medium that has the properties of the effective medium (K and c() instead of 

matrix 1 (Kl and PI). So equations 2.8 and 2.9 are modified as: 

By considering that constituent 2 is imbedded into the effective medium 

rather than matrix 1, one takes into account the interaction between pores 

(particles). Thus, equations 2.15 and 2.16 should be a better approximation than 

equations 2.8 and 2.9. Substituting equations 2.15 and 2.16 into equation 2.7 leads 

to two coupled equations with two unknowns (K and p), which can be solved 

consistently. Another way to satisfy the assumption of dilute concentration is to 

add a few pores at a time and calculate the effective elastic moduli. The effective 

elastic moduli computed from the previous step are used as the elastic moduli of 

rock solid or matrix to caldate the new effective elastic moduli for the next set 

of pores. The process is repeated until all pores are introduced. 

Another approach is to derive the compressibility (or bulk modulus) of 

the effective medium based on the rate of change of pore volume. Suppose that 

pore space is empty and let V, V, represent the volumes of the representative 

volume element and its pore space, respectively, P be applied external pressure, 

C, Cs be the compressibilities of the effective medium and rock solid respectively, 

and + be the porosity. The compressibility of rock solid can be expressed as (see 

APPENDIX D for detailed derivation): 



Dividing two sides by -V dP and reorganizing it give: 

-(l/V) (dV/dP) = Cs- (dVp/V)/@ 2.18 

The left side of equation 2.18 is the definition of effective medium 

compressibility, and dVp /V on the right is d+ if dVp is small. Rewriting equation 

2.18 leads to: 

C =Cs-d+/dP 2.19 

Equation 2.19 is the general expression of effective medium calculation 

regardless of pore shape and the magnitude of porosity. However, in order to 

find d+/dP, dilute concentration of pores still needs to be assumed. For spherical 

pores, we have the following expression (equation A7 in Appendix A): 

where C is the effective compressibility and vs is Poisson's ratio of rock solid. In 

terms of the bulk modulus, we have (equations A.8 and A.9 in Appendix A): 



For a dilute set of pores, + is small and 4/3p+>&+. We can drop the term 

&+ so that equation 2.22 is almost identical to equation 2.14, indicating the two 

approaches are equivalent. 

For penny-shaped cradcs of average half length cave in the average region 

volume v , ,  another expression can be derived from equation 2.18 (equation 

A.15 in APPENDIX A): 

2 3 16 1 -v, cave 
C =C,(l+- -1 

9 1-2vs v,, 

The effect of pore shape on compressibility can be illustrated by 

comparison of spherical pores and aacks. If we assume that all spherical pores 

have the average radius rave in the average region volume v,,, equation 2.20 can 

be rewritten: 

Equation 2.24 is similar to equation 2.23. By evaluating various values of 

the Poisson's ratio, we found that the coefficient of the last term in 2.24 is two to 

three times that of equation 2.23. In other words, the effect of a aadc on 

compressibility equals the effect of a sphere with a diameter roughly two-thirds 

the length of the crack. However, the porosity of two cases differs enormously. 



The result demonstrates that the compressibility of cracks is enormously larger 

than that of spherical pores. So cracks can decrease the bull< moduli considerably 

in spite of being small in volume. 

KT model is the effective medium theory based on on scattering theory 

(Kuster and Toksoz, 1974). It also needs the assumption of dilute concentration of 

spherical and spheroidal pores, but this limitation may be relaxed to some degree 

in the practical application. The formulae and calculation will be detailed in the 

following chapter . 

Other approaches include applying the extremum principles of minimum 

potential and xninixnum complementary energy to set lower and upper bounds 

(Hashin and Sh-, 1963) and contact theories (Love, 1944; Mindlin, 1949) 

etc. 

2.2 Elastic moduli and densities of rock solid 

As discussed above, an effective medium is generally assumed to be 

composed of a pore phase and a solid phase. The pore phase is a population of 

pores of specified shapes dispersed in rodc solid. The elastic moduli of the 

effective medium are determined by the elastic moduli of rodc solid and the pore 

fluid and the pore geometry (pore shapes and their respective concentration). 

The section focuses on the elastic moduli of rock solid. 

The rodc solid is an aggregate of minerals, whose elastic moduli and 

densities are listed in Table 2.1. Given mineral compositions, the elastic moduli 

of rock solid may be calculated using VRH model or HS model. But the location 

of low-elastic-moduli minerals has a considerable impact on calculation. Other 



two new methods for calculation of the elastic moduli of rock solid will be 

proposed in Chapters 3 and 6. 

Table 2.1 Elastic moduli and densities of major rock-forming minerals 

Minerals 

Quartz 

1 Feldspar 

Density 
(g/m3 ) 

Shale* 

Gulf day 

Clay 
q-tz 
Muscovite 

Calcite 

References K (bulk 
modulus, GPa) 

37.88 

61.98 

Dolomite 

Siderite 

p (shear 
modulus, GPa) 

24.46 

23 

39 

51 -9 

70.2 

Anhydrite 

Aragonite 

'The elastic moduli are obtained from the shale of 1% porosity 

44.31 

29.62 

Halite 

Kerogen 

The pressure dependence of the elastic moduli of rock solid is small. For 

quartz, dK/dP is 0.00957 GPa/MPa and dp/dP is 0.00043 GPa/MPa 

18.82 

8 

33 

30.9 

29.0 

69.4 

123.7 

56.1 

44.8 

(Carmichael, 1989). In the following chapters, we will find that the pressure 

2.65 

2.65 

51.6 

51.0 

1 

24.8 

2.9 

Carmichael, 1989 

Carmichael, 1989 

2.68 

2.55 

2.65 

2.79 

2.71 

2.88 

3.96 

29.1 

38.8 

Touloukian et al., 
1981 

After Mavko et al., 
1998 

Mavko et al., 1998 

Carmichael, 1989 

Mavko et al., 1998 

Mavko et al., 1998 

Mavko et al., 1998 

14.9 

2.7 

2.98 

2.92 

Mavko et al., 1998 

Mavko et al., 1998 

2.16 

1.3 

Mavko et al., 1998 

Mavko et al., 1998 



dependence of the dry elastic moduli is much higher than that of rock solid. No 

experimental results are available for the temperature dependence of these 

moduli, but it may be on the order of (1-9)-10-3 GPa/ OC (after Carmichael, 1989). 

Thus, the change of the elastic moduli of rock solid with pressure and 

temperature is generally neglected in calculation. 

As shown in Table 2.1, the densities of the minerals that constitute most 

sedimentary rocks fall in a relatively narrow range of about 7% (except halite, 

kerogen, siderite) (Sheriff and Geldart, 1995). Variation in porosity is the major 

reason that rodcs vary in density. 

2.3 Elastic moduli and densities of fluids 

There are three reservoir fluids: water, oil and gas. The bull< moduli and 

densities of these fluids depend on the compositions, temperature and pressure. 

2.3.1 Water Most sandstone reservoirs are preferentially water-wet, with 

irreducible water (or connate water) saturation in the range of 10-50% (25% on 

average) (Smith et al., 1992). It is a most common reservoir fluid. Wave 

propagation in water has been studied extensively, and a vast amount of acoustic 

data is available (e.g., Cannichael, 1989; Spiesberger and Metzger, 1991). Batzle 

and Wang (1992) present formulae to calculate seismic velocities of pure water 

(to 100 OC and about 100 MPa) and brine as follows: 



where Vw is pure water velocity (m/ s), T and P are temperature (OC) and 

pressure (MPa) respectively, Wij are constants given in Table 2.2 

where VB is brine velocity (m/ s), S is salinity @pm). Given density (p), the bulk 

modulus of water can be calculated: 

Table 2.2 Coefficients for water properties computation 

Similarly, the expressions for the densities of brine and pure water are: 



where pb and p, are the densities of water and brine in g/cm3, S is the weight 

fraction (ppm) of sodium chloride, P and T are in MPa and "C (Batzle and Wang, 

1992). Equation 2.28 is limited to sodium chloride solutions and can vary when 

other mineral salts are present. 

2.3.2 Oil Oil consists chiefly of hydrocarbons, which vary in carbon 

number. Light oil, a mixture of hydrocarbons of low carbon number, can dissolve 

large quantities of hydrocarbon gases, which sigruficantly decrease the modulus. 

Heavy oil contains heavy hydrocarbons and viscous bitumen. Bitumen can be 

stiffer and denser than water. Oil is characterized by the parameters, API, Rso, Bo 

and yp. API is the American Petroleum Institute oil gravity number, defined as 

where yo is the ratio of the oil density to water density at standard conditions. Ro 

is the ratio of the volume of solution gas to that of oil at standard conditions; Bo is 

the ratio of the volume of oil at reservoir conditions to that of the oil at standard 

conditions. y, is specific gravity of gas. Vazquez and Beggs (1980) proposed a 

relationship to compute the bulk modulus of oil above bubble point pressure: 

where K is in GPa , P is reservoir pressure in MPa, R, is solution gas ratio, 

scf/STB, at bubble point pressure, T is reservoir temperature in yg is specific 

gravity of separator gas at separator pressure of 100 psig, and API is gravity 

number of stock-tank oil in OAPI. 



The density of oil is more dependent on temperature than pressure. The 

relation can be described as (Batzle and Wang, 1992): 

where p, and po are the densities of oil at formation (I? and T) and standard 

conditions, P and T are in MPa and oC. Equations 2.32 and 2.33 assume that the 

composition of the oil is unchanged, exception for gas dissolving in oil at 

elevated pressure and temperature. 

With gas dissolving in oil, the density can be calculated according to mass 

balance as follows: 
std std sld 

P o  = 
P o  +R, PG 

B 0 

where dtd and are the densities of gas and oil at standard conditions, B, 

and R, are the oil formation volume factor and solution gas oil ration at 

reservoir pressure and temperature. 

2.3.3 Gas The isothermal compressibility of gas is (see APPENDIX B 

for derivation): 

where P is pressure and Z is the compressibility factors or gas deviation factors. 



The process of wave propagation in a gas is adiabatic not isothermal. In 

most solid materials, the difference between the isothermal and adiabatic 

compressibilities is negligible. However, due to the larger coefficient of thermaI 

expansion in gas, the temperature changes associated with the compression and 

dilatation of an acoustic wave have a substantial effect. Adiabatic compressibility 

is related to isothermal compressibility through y, the ratio of heat capacity at 

constant pressure to heat capacity at constant volume (Batzle and Wang, 1992). 

Thus the adiabatic compressibility of gas can be expressed as: 

The inverse of equation 2.36 is the bulk modulus: 

Equation 2.37 has three parameters (y, Z and aZ/aP), which depend on 

pressure and temperature. The shapes of the isotherms of compressibility factors 

Z for nearly all real gases are similar, which Leads to the development of the Law 

of Corresponding States. It states that all pure gases have the same z-factor at the 

same values of reduced pressure and reduced temperature (McCain, 1990). 

Reduced pressure and reduced temperature are defined as: 

Pr = P/ PC and Tr= T/Tc 



where PC and Tc refer to the critical pressure and critical temperature 

respectively. The law has been extended to cover mixtures of closely related pure 

gases, in which case Ppc and TF, called pseudocritical pressure and temperature, 

are used instead of PC and Tc. Therefore Pr and Tr are replaced by Ppr (=P/ Ppc)and 

T, (=T/ T,), pseudoreduced pressure and pseudoreduced temperature, 

respectively (McCain, 1990). Z is related to Ppr and Tpr by (Eiatzle and Wang, 

1992) 

where 

Thomas et al. (1970) found a simple relationship between yg (the ratio of 

the gas density to air density at standard conditions) and PPr , Tpr: 

where P is in MPa and T is in absolute temperature [T=T(oC)+273.15]. The 

parameter y can be estimated as (Batzle and Wang ,1992): 



Therefore the bulk modulus of gas can be expressed as: 

where dZ/i3Pp, can be obtained from equations 2.39 and 2.40. In addition, Batzle 

and Wang (1992) also derived the expression of gas densities based on Thomas' 

work (1970): 

- 28.8ygP Pg = ZRT 

In summary, if gas specific gravity and reservoir pressure and 

temperature are given, we can calculate Pp, and Tpr , which are used to calculate 

y, Z and aZ/dPpb then K,. 

2.4 Frequency dependence of the elastic moduli of fluid-saturated rocks 

Fluid is a factor to affect the effective elastic moduli but its impact is 

limited to the rocks of low dry elastic moduli, which will be detailed in Chapter 

6. This section will discuss the frequency dependence of the fluid effect. 

If pores of varying shapes in rocks, as assumed in the simple case for 

theoretical calculations, are small and noninteracting, fluids are trapped inside 

these pores without relative motion and frequency does not affect the elastic 

behaviour of fluids. In reality, pores in reservoir rocks are connected, enabling 



fluid movement to take place in response to the movement of the solid 

framework and stress change caused by the passing of a seismic wave. Three 

kinds of relative movements in connected pores exist: 1) relative movement at 

high frequencies along the direction of wave propagation because inertia causes 

the fluid motion to lag behind that of the solid framework; 2) local flow 

perpendicular to the direction of wave propagation, with fluids moving out of or 

into cracks induced due to pore-scale pressure gradients; 3) global flow in the 

same direction as the local flow, resulting from saturation heterogeneity or 

patchy saturation on a coarse scale. At low frequencies, there is no relative 

motion along the direction of wave propagation because the motion of the solid 

framework and fluids is coupled by viscous friction, and the local and global 

flows have enough time to equilibrate the pressure distribution. At high 

frequencies, however, the movement of the solid framework and fluids are 

decoupled, and the local and global flows do not have enough time to reach a 

fluid pressure equilibrium at half period. The movement of fluids out of phase 

with the solid framework and the unrelaxed state of fluids always lead to a stiffer 

rock and higher velocity. Velocity dependence on frequency is called velocity 

dispersion. In the following, we will discuss the effect of frequenaes on the 

elastic behaviour of fluids. 

2.4.1 Gassmann's equation 

If the fluid keeps in equilibrium during the process of deformation, we 

can derive the bulk modulus of a fluid-saturated rock from the bulk modulus of 

its corresponding dry rock as follows (see APPENDIX C for detailed derivation): 



where K, Kd, Kt and K, are the bulk modulus of the fluid-saturated rock, dry 

rock, fluid and rock solid, respectively, and $ is porosity. Equation 2.46 is the 

well-known Gassmannf s equation. The model assumes fluid pressure 

equilibrium, which is satisfied when the seismic frequency is low enough that 

local and global flows can equilibrate the pressure distribution over all fluid 

phases. It is called the low or zero-frequency model. Note that in the derivation 

we use Kr, the effective bull< modulus of the pore fluid mixture. Under the 

condition of fluid pressure equilibrium, Kr can be calculated using the harmonic 

average (Wood's or Reuss's model). 

2.42 Global-flow dispersion 

If the pressure equilibrium between the different fluid phases cannot be 

reached due to coarse-scale saturation heterogeneity (patchy saturation), the 

harmonic average is no longer a valid method for calculating the effective bulk 

modulus of the fluid mixture. It can be shown that for well-consolidated rocks 

the volume weighted arithmetic average of the fluid phases is the appropriate 

fluid bulk modulus for the Gassmann's equation (Mavko and Mukerji, 1998, see 

APPENDIX E for proof). 

Mavko and Mukerji (1998) has shown that, for Massilon sandstone (soft 

rock), the fluid bulk modulus approximated with the arithmetic average always 



overestimates the bulk modulus of the fluid-saturated rock while, for Estaillades 

limestone (stiff rock), the arithmetic average does a good job of estimating the 

fluid modulus. 

2.43 Local-flow dispersion 

At high fkequenaes the pressure equilibrium cannot be reached on grain 

scale between soft cracks and stiff pores. It is not appropriate to calculate the 

bulk modulus of the fluid-saturated rock just by b ~ g i n g  the bulk modulus of 

the fluid (one fluid assumed in the pore space) into the Gassrnann' s equation. 

So far, there has been no theoretical model to compute the bulk modulus of the 

effective fluid, which depends on seismic frequency, pore geometry, 

permeability and fluid viscosity. Here we only give a qualitative discussion. 

When a wave propagates, it deforms rock, resulting in pressure changes in 

fluid. Spherical pores are less compressible, tending to shelter the contained fluid 

and therefore having relatively less pressure changes, while compliant aadcs are 

more compressible, tending to transfer more of the stress change to the pore fluid 

and therefore having relatively more pressure change (after Mavko and Jizba, 

1991; Wang and Nur, 1991). This phenomenon can be illustrated with the 

following formula: 

AS=Aa+AP 2.47 

where LS is the total stress increment, Ac is the effective stress increment, and AP 

is the fluid pressure increment. 



When stress is applied, pores are deformed. If AS is the same, spherical 

pores have more change in o and less change in P than flat aacks due to the 

lower compressibility, and more change in fluid pressure occurs in flat aacks. 

This case is independent of AS being compressive or extensive. If AS is 

compressive, fluid pressure in flat cracks will increase more than that in 

spherical pores; if AS is extensive, fluid pressure in flat cracks will decrease more 

than that in spherical pores. 

It is the pressure difference between spherical pores and flat aacks that 

leads to grain-scale fluid movement called local flow. If frequencies are high, the 

fluid cannot reach pressure equilibrium within a half period. The fluid within 

cracks maintains a higher or lower pressure, depending on whether AS is 

compressive or extensive. The higher or lower fluid pressure resists further crack 

deformation by A!3 and cracks become stiffer. If frequencies are low, the fluid has 

enough time to reach pressure equilibrium and aS continues to deform aacks, 

resulting in softer aacks. It is noted that spherical pores go the opposite, i.e., 

softer at high frequencies and stiffer at low frequencies. Cradcs, however, 

contribute much more strain to the whole rock' s due to the high 

compressibility. The end results are chiefly affected by the behaviour of a a h .  

To summarize: 

Compressive: Aa=SW, LIP (high frequency)> W (low frequency) + 

Am (high frequency)< Aa (low frequency)+ 

AV(high frequency)<AV (low frequency)+ 

M (high frequency)>M (low frequency)+ 

Vel (high frequency)>Vel (low frequency) 

Extensive: -Ao= - A S A P ,  hP Ough frequency)> bP (low frequency) + 



I -A= 1 (high h.equency)< I - Am I (low frequency)+ 

I -AV I (high frequency)< I -AV I Oow frequency)+ 

M (high frequency)>M (low frequency)-+ 

Vel (high frequency)> Vel (low frequency) 

where AV is volume change, M is the elastic modulus of rock, and Vel is the 

velocity of rock. Thus velocity depends on frequency. The higher frequency, the 

larger elastic modulus and the higher velocities. 

The local flow mechanism was introduced by Biot (1962), 0' Connell and 

Budiansky (1974) and Mavko and Nur (1979), and regarded as a major 

contribution to velocity dispersion by Dvorkin et al. (1994), Murphy (1982,1984 

a,b), Murphy III et al. (1986), Tithnann et al. (1984), Wang and Nur (1990) and 

Winkler and Nur (1979). Akbar et al. (1994) defined the unit of local flow and its 

length (i-e., characteristic length), which Dvorkin et al. (1994) considered a 

fundamental property that doesn' t depend on frequency, fluid viscosity or 

compressibility and can be determined experimentally. At a given frequency, the 

length, in which local flow can equilibrate, is based on a diffusivity constant: 

where K and + are the permeability and porosity of flat cracks respectively, q is 

fluid viscosity, Ct is compressibility [Ct=C(fluid compressibility)+Cr(pore volume 

compressibility)] and f is wave frequency (after Craft and Hawkins, 1991). If the 

characteristic length is small, and shorter than L, fluid pressure will reach 

equilibrium and therefore no dispersion occurs. This case happens to well- 

rounded and well-sorted sandstones or rocks at high effective pressure. The 

theory has been verified with no local-flow dispersion showed for glass beads 



(Winkler, 1985). Winkler (1986) also found veloaty dispersion decreasing with 

elevated effective pressure. If the characteristic length is big, and longer than L, 

fluid pressure will be in non-equilibrium, leading to stiffer rock and higher 

veloaty, i.e., dispersion. This case is often observed at ultrasonic frequency in 

velocity measurements (Winkler 1985,1986; Wang and Nur, 1990). 

Local flow is further complicated by saturation heterogeneity on 

grain scale. If the characteristic length is small or wave frequency is low, fluid 

pressure tends to be equilibrated regardless of uneven fluid distribution in pores 

of different shapes. In this case, the bulk modulus of the effective fluid can be 

modeled with Wood' s equation (1941) and the bullc modulus of the fluid- 

saturated rock can be calculated using Gassmann equation (1951) as discwed in 

section 2.4.1. If the characteristic length is big or wave frequency is high, 

however, the b e  modulus of the rock depends entirely on detailed fluid 

distribution in pores of different shapes. In laboratory, Knight and Nolen- 

Hoeksema(l990) observed during imbibition veloaty changes with water 

saturation, which is very similar to Domenico effect (1974). Before the critical 

water saturation (a saturation beyond which velocity begins to increase quickly), 

water absorbs along the pore wall and grows layer by layer with increasing 

water saturation, and gas forms a continuous network going through all pores of 

different shapes. The effective bulk modulus of fluids inaeases with inaeasing 

water saturation. But the density of fiuids increases with a rate higher than the 

increase in the effective bulk modulus of fluids. The end result is veloaty 

decrease with water saturation increasing. This scenario has been modelled by 

Endres and Knight (1989). The local flow is less active due to the fluid pressure 

difference between spherical pores and aacks being minimal for high- 

compressibility gas. Beyond the critical saturation, water fills fully thin pores. 

The absence of gas in cracks can cause sigruhcant change in the bulk modulus. At 



low frequencies or for rocks of low characteristic length, fluid pressure 

equilibrium is reached, i.e., the compressibility is still controlled by gas according 

to the Wood' s equation. However, at high frequency, local flow can' t 

equilibrate fluid pressure, and water in cracks is unrelaxed, resulting in an 

increase of the bulk modulus and veloaty. 

In water-wet rocks, very thin cracks are occupied by water, and oil and 

gas stay in large pores. We can calculate the diffusivity constant assuming the 

following parameters. 

K=~(MD)=~o"~(~*) ,  $=O.Ool(only consider cracks ), q=l(cp)=l~-3 (Pas) 

CFC + Ct = 1oeg/2.3 + 10"~/10/0.001= 1.04*10~(1 /pa), f = 100 Hz 

Using equation 2.48, L can be calculated as: 

Obviously the number exceeds the characteristic length (on the order of 

millimeter, Dvorkin and Nur, 1993), implying the fluid pressure always in 

equilibrium. This result indicates that no dispersion due to local flow will occur 

within seismic frequencies. At ultrasonic frequencies (e.g. 1mHz) in laboratory, 

however, L is only 0.031 cm, smaller than the characteristic length. Accordingly, 

local flow cannot equilibrate the fluid pressure distribution. 

2.4.4 Biotvs flow dispersion 



At very high frequencies, the motion of the solid framework and fluids are 

decoupled and velocity dispersion happens. Biot (a and b, 1956) developed a 

model covering a full range of frequencies. The characteristic frequency fc, which 

divides the high and low frequency, is defined as: 

where q is the fluid viscosity, & is the porosity of rock, pr is the density of rock, k 

is the permeability of rock. If f < fc, f is considered as low frequencies. His model 

of very high frequencies is shown as follows: 

where: 



w=a#pf  

p u  = (I-a) 4 pr 

a: tortuosity, (a=l for parallel tube and a=2-3 for sandstone) 

pd , pr : density of dry rock and fluid 

& , & , Kt : bulk moduli of dry rock, rock solid and fluid 

The dispersion due to Biot's flow is small compared with that due to local 

flow at ultrasonic frequencies (0.1-n.106 hz) (Wang and Nur, 1990). Therefore, at 

seismic frequencies, Biot's flow dispersion is negligible. 

2.5 Conclusions 

The theoretical derivation shows that the pore geometry affects the elastic 

moduli substantially. A crack decreases the elastic moduli much more than a 

sphere does unless the latter is enormously larger than the former in volume. 

The elastic moduli of minerals are another factor. The existence of 

minerals of low elastic moduli may have a more effect. In a general, the elastic 

moduli of minerals are not sensitive to the changes in pressure and temperature. 

The pore fluids can increase the elastic moduli of fluid-saturated rocks 

appreciably especially at high frequencies. But the effect is conditional on low 

dry elastic moduli, which will be dealt with in Chapter 6. In seismic frequenaes, 

local-flow dispersion may never occur, Biot's flow dispersion is negligible, and 

global-flow dispersion may be roughly approximated with the arithmetic 

average of the bulk modulus of fluids. In addition, the bulk modulus of fluids 

espeaally oil and gas depend on the compositions, pressure and temperature. 



CHAPTER 3 

A PORE GEOMETRICAL MODEL FOR SANDSTONES 

3.1 Introduction 

The elastic moduli of dry sandstones are determined by the elastic moduli 

of rock solid and pore geometry. The former may depend chiefly on day content 

since the elastic moduli of the other major sandstone-forming minerals do not 

differ by so large amounts (after Zimmennan, 1991). The latter refers to a series 

of varying-shape varying-volume pores. Due to difficulty obtaining pore 

geometrical details, efforts have t3iw made by many authors to simply connect 

porosity and day content to the elastic moduli, evidenced by the linear velocity- 

porosity-day models (Castagna et d., 1985; Kowallis et al., 1984; Han e t al., 1986; 

Tosaya and Nur, 1982). These models are key to link reservoir properties to 

seismic observables. Without pore shape information, however, such a 

quantitative relationship does not exist in a general sense. At a given porosity, 

the elastic moduli vary becaw of the variability in day content and in the 

distribution of pore volume to different pore shapes. For theoretical 

interpretation, it is therefore necessary to distinguish the role these two factors 

play in affecting the elastic moduli and further to find a quantitative pore 

geometrical model to give a reasonable explanation of nonexistence of the 

relationship between the elastic moduli and porosity in general and the 

possibility of linearity in some specific situations. 

The increase of the elastic moduli with increasing effective pressure is 

caused by the closure of cracks. The magnitude depends not only on the amount 

of cracks dosed but also on the distribution of other pores. In other words, it is 



controlled by pore geometry. It is again important to use this pore geometrical 

model to assess the change of the elastic moduli with effective pressure at 

varying porosity. 

In this chapter, the KT model (Kuster and Toksoz, 1974), which is 

recognized as the most realistic and simplest one among effective medium 

theories, was selected to obtain the pore geometry (simplified as the pore aspect 

ratio spectrum) of two sets of sandstone samples horn Han et al. (1986) and 

Khaksar et al. (1999). First, the numerical modelling and the inverse problem 

(Cheng and Toksoz, 1979; Toksoz et al., 1976) were formulated to obtain the pore 

aspect ratio spectra of these sandstone samples based on velocity measurements. 

The results were then analysed to establish a pore geometrical model, which 

interprets the dry elastic moduli and their change with effective pressure and 

linearity in specific situations. In addition, the effect of day is also discussed. 

3.2 Forward numerical modelling of elastic moduli and velocities based on 

pore aspect ratio spectra 

The KT equations were derived based on scattering theory. It is assumed 

that pore spaces in rocks can be represented by spheres and oblate spheroids, 

which are randomly distributed in rock solid (Toksoz et al., 1976). The effective 

moduli K and p can be expressed as a function of the elastic moduli of rock solid 

(ISs and b) and pore fluid (Kt and pf) and the pore aspect ratio spectrum. The 

pore aspect ratio spectrum is the volume concentration distributions [c(-)] of 

pore aspect ratios (am). The pore aspect ratio (am) is defined as the ratio of the 

length of the short axis to that of the long axis on pore moss section. The volume 

concentration [c(-)] is the volume of pores of aspect ratio a, divided by the total 



buk volume of the rock. The KT equations relates the pore aspect ratio spectrum 

to the elastic moduli as follows (Kuster and Toksoz, 1974): 

K - K ,  - Kf -K, K f  -Ks g c c a - , - ~  1 .-.. - 
+ 3 uU(a-J  

3.1 
3K + 4 p ,  3 K , + 4 p S  3 K ,  + 4 ~ ,  , =2  

where Tiijj and Tijij (see APPENDIX F for the formula) are scalars, dependent on 

K, ps, Kf, pt and pore aspect ratio am. The density of rock (p) is derived from the 

pore concentrations and the densities of rock solid (ps) and pore fluid (pf) : 

where M is the total number of pore aspect ratios. 

The velocities (Vp and Vi) are related to the effective moduli as: 

In order to model the change of effective moduli and veloaties of a rock 

with effective pressure (defined as differential pressure between confining 

pressure and fluid pressure, i.e., P = PC - Pr), we have to model the change of the 

pore aspect ratio spectrum with effective pressure. The expression to compute 



the fractional change (Ac/c) in the volume of a sphere or oblate spheroid (a,) 

due to an increment in effective pressure (AP) (after Toksoz et al., 1976) is: 

where is the concentration corresponding to the pore aspect ratio am at 

pressure P (generally taken to be atmospheric pressure PO), K (pressure 

dependent) is the static b& modulus of the dry rock, Eim (pressure dependent, 

see APPENDIX F for the formula) are functions of the aspect ratio a m  and 

effective matrix moduli K~mand PA* calculated as the static elastic moduli of the 

dry rock with all pores except those with aspect ratio a,. The volume 

concentration of an oblate spheroid is expressed as c(-) = (4m3am /3)/v (r is the 

radius of the spheroid and v is the total bulk volume of the rock). dc(-)/c(-) is 

then equivalent to dam /am if we assume changes in r are minimal. Under these 

conditions, the rate of change in volume is the same as the rate of change in 

aspect ratio. However, spherical pores do not deform in shape while deaeasing 

in volume. The pore aspect ratio spectrum at any effective pressure Pn (AP=Pn-PO) 

can be calculated as: 



Using equations 3.1 to 3.7, the elastic moduli (K and p) and velocities (Vp 

and Vs) at any effective pressures can be calculated if the pore aspect ratio 

spectrum at Po and other parameters in these formulae are specified. 

3.3 Inversion of pore aspect ratio spectra from velocity measurements 

To determine the pore aspect ratio spectrum of a rock fiom velocity 

measurements at different effective pressures is an inverse problem. We choose a 

set of pore aspect ratios (from 1 to very small numbers), assign the 

corresponding concentrations and calculate theoretical veloaties as a function of 

effective pressure according to equations 3.1-3.7. Then the pore aspect ratio 

spectrum is adjusted and the calculation is repeated until a good fit to the 

experimental data is obtained. This process is time consuming since we 

simultaneously resolve both the pore aspect ratios and their respective 

concentrations. To simpl@ problem, the pioneering work of Cheng and Toksoz 

(1979) and Toksoz et al. (1976) was used as a guide. For a number of sandstones, 

they (Cheng and Toksoz, 1979; Toksoz et al., 1976) found the distributions of 

pore aspect ratios, which are very similar even though they differ in pressure 

dependence. The major difference is variation in the volume concentrations. 

Hence, it is possible to choose one of them to represent the distributions of pore 

aspect ratios in our samples. In this study, the set of pore aspect ratios of the 

Navajo sandstone (Cheng and Toksoz, 1979; see table 1) was selected to represent 

the set of pore aspect ratios of al l  samples due to its wide range of distribution. 

Accordingly, the inverse problem reduces to resolving the volume 

concentrations of the pore aspect ratios for these samples. 



At any pressure P, equations 3.1 and 3.2, by substitution of equations 3.6 

and 3.7, are converted to: 

whose left-hand sides are known from velocity measurement. The terms inside 

the braces on the right-hand sides can be calculated using equation 3.5 and 

APPENDIX F if the values of K and Eim in equation 3.5 are given. By denoting xm 

= C(am) /am, equations 3.8 and 3.9 are simplified to b = Ax.  b is 2x1 matrix and A 

is 2 x M  matrix. At another effective pressure, another set of two equations can 

also be formulated similarly and incorporated. Thus the size of A depends on the 

number of effective pressures, at which velocities (Vp and Vs) were measured, 

and the number of pore aspect ratios. If we have N effective pressure points and 

M pore aspect ratios, A will be (2N)xM and b is (2N)xl. According to equations 

3.5,3.8 and 3.9, A is a function of x if the differences between static and dynamic 

moduli are ignored. b depends on velocity measurements. In addition, we must 

satisfy the following constraint of to tal porosity: 



where 4 is porosity. Thus, there are only (M-1) independent variables. The new A 

and b (termed as A1 and bl) can be obtained by solving any xi from equation 3.10 

and substituting it into b=Ax. 

To solve bl=Alx it is necessary to compute A1 and bl, which are 

functions of x. Moreover, x also must impose other two constraints: 

The second is the noninteraction assumption (Kuster and Toksoz, 1974) 

and may be relaxed to xm c 1 (Toksoz et al., 1976). Consequently, the problem 

mathematically reduces to solving the non-linear equations bl=Alx subject to the 

constraints in equation 3.11. 

bl=Alx can be solved by constructing an objective function and 

minimizing it in the feasible areas delineated by the constraints in equation 3.11 . 
The objective function is defined as: 

At any x, the gradient (g) of S is calculated as: 



where A l T  is the transpose of Al. Given an initial guess, the minimum can be 

found by decent gradient method subject to the constraints. 

3.4 Parameter acquisition 

In order to achieve the above computation, we need to know the 

parameters in these equations. Unfortunately, these parameters are not easily 

obtained. The KT equations require that the matrix solid materials be 

homogeneous and isotropic, which most sandstones do not satisfy. Sandstones 

consist of various minerals. Quartz, a major sands tone-forming mineral, differs 

by as much as 40% in elastic moduli along the different crystallographic axes 

(Clark, 1966; Zimmerman, 1991). Other minerals such as feldspar, day, calcite 

etc. are also anisotropic. The anisotropy and inhomogeneity pose a question of 

how accurately we can use the model. Generally, these minerals in sandstones 

are more or less randomly orientated due to the process of deposition and 

statistical isotropy may be reasonably assumed. Brown and Korringa (1975) 

investigated the effect of mineral anisotropy on the Gassmann' s equation and 

found that it is still applicable even though anisotropic minerals are uniformly 

orientated as if the porous medium were carved out of a single crystal. 

Consequently, the restriction of mineral anisotropies may be Lifted. The second 

assumption of homogeneity can be satisfied if constituent minerals are 

statistically randomly distributed. ' Statistically randomly distributed' refers to 

the constant probability of any minerals in any position (stress bearing or stress 

free) with the magnitude determined by their respective volume fractions. Then 

given the mineralogical compositions (and their respective elastic moduli), the 

VRH model may be employed to compute the elastic moduli of the solid 

material. However, minerals are not statistically randomly distributed espeaally 



for day. The contribution of a mineral to the elastic moduli of the solid material 

stems from its participation in the stress bearing area and the probability at this 

position depends on not only the volume fraction but also the process of 

deposition and diagenesis. In other words, it is impossible to calculate the elastic 

moduli of the rock solid solely based on the volume fractions. Clays may chiefly 

fill the large pores with less amounts at grain contacts or as rock fragments. Some 

fine-grained quartz and feldspar may not support stress in clay-rich siltstone. In 

addition, the elastic moduli of day minerals are difficult to measure because of 

the difficulty of obtaining samples of 'pure day' that are large enough to 

perform tests on (Zimmerman, 1991). Some data are available in literature 

(Woeber et al., 1963; Wang et al., 1980), but they are measured on an aggregate of 

day minerals, which contains microporosity (Kowalh et al., 1984). Toksoz et al. 

(1976) proposed that at very high pressures, pores dose and the velocities can be 

interpreted in terms of matrix moduli. Yet the method is impractical to apply 

since sandstones will fail with grain crushing and cleavage fracturing before all 

pores dose (Zhang et al., 1990). Second, even if dosing of all pores is assumed in 

the range of elasticity, the minerals staying at stress free areas are included in the 

calculation of the elastic moduli of the rock solid, which is not right as stated 

above. In this paper, we present a new theoretical approach to attack this 

difficulty. At high effective pressure (assumed still in the range of elasticity), 

cracks or low-aspect-ratio pores dose and the remaining ones staying open can 

be interpreted as spherical shape, in which case the second terms on the right in 

equations (1) and (2) vanish and Ks and ps can be solved from velocities. The 

velocities at high effective pressure can be acquired through extrapolation if 

velocity measurements are unavailable. However, the definition of 'high 

effective pressure' differs among authors who studied different sandstones. 

Khaksar et al. (1999) obtained the microcrack-closure pressure of approximately 

81 MPa for twenty-two sandstone samples. Freund et al. (1992) set 120 MPa as 



the boundary value to distinguish the large non-linear rate of velocity inaease at 

low pressures from the small linear rate at high pressures. Jones (1995) 

considered 60 MPa to be high effective pressure. St. Peter sandstone is flattened 

around 30 MPa in the veloaty-pressure curves, lower than Berea and Bandera 

sandstones (Tosaya and Nur, 1982). West Delta Block sandstones' rate of veloaty 

inaease declines at 20 MPa (Kowa.Uk et al., 1984). Despite the variability of 'high 

effective pressure' among individual samples, we can choose a high value to 

represent all samples. The high value does not affect the calculation substantially 

if approximately linear elasticity is assumed in the range of 'high effective 

pressure'. The effective pressure of 100-120 MPa, which is high enough to dose 

all cracks and low-aspect ratio pores for most sandstones, is considered to be the 

' high effective pressure' in this study. According to this principle, we calculated 

the velocities at these pressures by extrapolation, and then obtained the elastic 

moduli of rock solid for all samples through equations 3.1 and 3.2. The results 

are shown in Tables 3.1 and 3.2. Figure 3.1 shows that increasing clay content 

decreases the elastic moduli of rock solid. The values of the calculated solid 

elastic moduli and their decrease with increasing day content are within 

expected ranges. 

Figure 3.1 Elastic moduli of rock solid versus clay content for the samples from Han et al. (1986) 
on the left and from Khaksar et al. (1999) on the right. Porosity ranges from 10% to 20%. 



The left (Han et al.'s data, water-saturated) of Figure 3.1 exhibits a larger 

gradient of the deaease of the shear modulus with increasing Jay content than 

that of the bulk modulus, but the right (Khaksar et al.'s data, dry rod<) does not. 

This behaviour may come from the more effect of day on the shear modulus than 

on the bulk modulus in the presence of water. 

The integral on the right hand side of equation 3.5 must be evaluated. K 

and Eim are static properties, which vary with effective pressure. If the static 

modulus is approximated by the dynamic modulus, the integral can be 

calculated numerically. Given an initial guess of the pore aspect ratio spectrum, 

K and Eim at atmospheric pressure are computed through equations 3.1 and 3.2 

and APPENDIX F. Suppose that the values of K and Eim keep constant over a 

small subinterval of hP. Aa/a and Ac/c and the new pore aspect ratio spectrum 

over that small subinterval can be calculated. The new pore aspect ratio spectnun 

is the starting point for the next subinterval. The process is repeated until AP is 

reached. 

3.5 Inversion results 

The inversion scheme was applied to seventy-five water-saturated 

sandstones (Han et al., 1986) and twenty-two dry sandstones (Khaksar et al., 

1999) measured as a function of effective pressures. The first set contains a wide 

range of porosity and day content and were sampled from a variety of geological 

settings. The second set was taken from sandstone reservoirs within the gas- 

producing fields in the southern Cooper Basin, South Australia. A detailed 

description of these samples and experimental conditions can be found in Han et 

al. (1986) and Khaksar et al. (1999). In inverse KT modelling, the elastic moduli of 



fluid were set to be 2.3 GPa for the first set and 0 GPa for the second set. The 

results are shown in Tables 3.1 and 3.2 where the first rows are the pore aspect 

ratios and the following rows are the corresponding volume concentrations for 

the samples. These pore aspect ratio spectra are under atmospheric pressure. The 

elastic moduli of rock solid and the percentage mismatch errors of Vp and Vs are 

in the right four columns. As seen in Figure 3.2 the errors are no more than a few 

percent. So the inversion results are reliable. Figure 3.3 depicts the fit of 

theoretical calculations (black lines) based on Table 3.1 and equations 3.1 to 3.7 to 

velocity measurements (red solid circles) for four samples in the first set. The 

corresponding dry veloaties represented by green lines were also computed. It 

can be seen that with increasing effective pressure dry P-wave velocities 

approach water-saturated ones but there is no such trend for S-wave veloaties. 

Figure 3.4 plots the fits of theoretical calculations based on Table 3.2 and 

equations 3.1 to 3.7 (green lines) to veloaty measurements (red solid cirdes). 

Table 3.1 Pore aspect ratio spectra and elastic moduli of rock solid 
for the first set of seventy-five water saturated sandstones 
at atmospheric pressure 
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Figure 3.2 Velocity percentage errors for the first set (left) and the second set (right). 

Figure 3.3 Results of inversion for samples 6, 14, 25 and 42. The red solid circles are velocity 
measurements from Han et al. (1986) for water-saturated sandstones. The black and green solid 
curves are theoretical velocities calculated based on Table 3.1 for water- saturated and dry 
sandstones respectively. Upper curves are compressional wave velocities and lower curves are 
shear wave velocities. 



Figure 3.4 Results of inversion for samples Dl and S4. The red solid circles are velocity 
measurements from Khaksar et al. (1999) for dry sandstones. The green curves are theoretical 
velocities calculated based on Table 3.2 for dry sandstones. Upper part is compressional wave 
velocities and lower part is shear wave velocities. 

3.6 Pore aspect ratio spectra and the elastic moduli of dry sandstones at 

atmospheric pressure 

Porosity, one of the most important physical properties of rocks, is 

defined as the ratio of the volume of all pores to the total bulk volume of the 

rock. It contains some information about pore geometry. Failing to consider pore 

shapes, however, it cannot uniquely determine the elastic moduli. In this section, 

the factors responsible for the variability of the elastic moduli at any given 

porosity will be discussed with emphasis on the effect of pore geometry. 

The bulk modulus and shear modulus for seventy-five dry sandstones 

(Han et al., 1986) were calculated from Table 3.1 using equations 3.1-3.7 and were 

then plotted against porosity in Figure 3.5. As shown, the points are scattering 

below an approximate linear trend, indicating the poor correlation of the elastic 



Figure 3.5 Plot of porosity versus bulk modulus and shear modulus for the first set of seventy- 
five dry sandstones. 

moduli with porosity. There are two factors, ia., day content and pore geometry, 

which contribute to the variability in the elastic moduli at any given porosity. 

The first step is therefore to separate their effects and then examine their 

importance in elastic moduli determination. In terms of pore geometry, it is 

natural to resort to weighting the volumes of all pore shapes (or pore aspect 

ratios). More weight is given to thin cracks (low aspect ratio pores) than to round 

pores (high aspect ratio pores). The sum of the weighted volume concentrations 

of pores of all pore aspect ratios instead of porosity is expected to represent the 

total effect of pore geometry on the elastic moduli. It should uniquely determine 

the elastic moduli if day content is disregarded. After trial-and-error 

experiments with the KT modelling, the weight coefficients are the inverse of the 

pore aspect ratios for pores lower than 0.1 in pore aspect ratios and are 3.3 for 

spherical pores. To test the validity of this principle, we plotted in Figure 3.6 the 

sum of the weighted volume concentrations against the dry elastic moduli for 

seventy-five sandstones assuming the elastic moduli of rock solid are &=37 GPa 

and pS=44 GPa. As predicted, the sum of the weighted volume concentrations are 

almost perfectly correlated with the dry bulk moduli and strongly correlated to 

the dry shear moduli. Therefore the sum of the weighted volume concentrations 



is a parameter to quantify the total effect of pore geometry. In order to view the 

effect of day content on the elastic moduli, Figure 3.6 were redrawn but with the 

elastic moduli of rodc solid from Table 3.1. As shown in Figure 3.7, day content 

does perturb the elastic moduli, especially shear modulus, but the amount of 

perturbation does not change the linear trend substantially considering the 

drastic variation of day content in Figure 3.8. 

Figure 3.6 Plot of weighted concentrations versus dry elastic moduli computed based on 
the constant elastic moduli of rock solid (&=37 GPa and p5=44 GPa). 

Now we return to Figure 3.5 to distinguish two factors of day content and 

pore geometry for their effects on the variability in the elastic moduli at any 

given porosity. Figures 3.9 and 3.10 are the aossplots of total porosity versus the 

sum of the weighted volume concentrations and total porosity versus day 

content. The reverse of y-axis order is for convenience of comparison due to the 

inverse variation of the elastic moduli with the sum of weighted volume 

concentrations and with day content. Figure 3.9 is very similar to Figure 3.5 

especially for the bulk modulus. Figure 3.10, however, has no resemblance to 

Figure 3.5. 



Figure 3.7 Plot of weighted concentrations versus dry elastic moduli computed based on 
the elastic moduli of rock solid from Table 3.1. 

Figure 3.8 Plot of weighted concentrations 
versus clay con tent. 

Figure 3.9 Plot of total porosity versus 
weighted pore concentration. 

Figure 3.10 Plot of total porosity versus 
clay content. 



The above results strongly suggest that pore geometry is the major factor 

to influence the elastic moduli, especially the bulk modulus. Clay content plays 

secondary role. This conclusion agrees with the observations by many other 

authors such as Zimmennan (1991). 

Figure 3.11 plots the relationship between total porosity and porosities of 

pores of varying pore aspect ratios. For convenience, we call aspect-ratio-equal- 

twne  pores round or spherical pores, any other pores cracks because their 

aspect ratios are small, less than 0.1. Strictly speaking, cracks refer to pores of 

very small aspect ratios. As shown in Figure 3.11, the porosity of spherical pores 

is less changeable, proportional to total porosity with a good linear trend, but the 

crack porosities of different pore aspect ratios vary, especially at low porosity, 

with no systematic connection to total porosity. Consequently, at any given 

porosity the variability in the sum of the weighted volume concentrations 

indicated in Figure 3.9 is not caused by round pores but by cracks that take up 

only a small fraction of pore volume concentrations. This is further supported by 

Figure 3.12, in which the weighted volume concentration for round pores is 

linearly related to total porosity, but the weighted volume concentration for 

cracks varies especially at low total porosity. 

Figure 3.13 shows that the variability in the weighted crack concentration 

at any given porosity is chiefly due to the change of the aadc volume 

concentration, which stems from a relatively minor change in the volume 

concentration of round pores (see the right plot of Figure 3.5). The few abnormal 

points on the right of Figure 3.13 results from a shift of pore volume to thin 

cracks , in which case the weighted aadc concentration is large despite the small 

aadc concentration because a considerable portion of aack volume is distributed 

among low-aspect-ratio cracks. 
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3.7 Effect of round pores on the variability in the elastic moduli 

It is found by KT modelling that the decrease in the elastic moduli due to 

addition of the same amount of pores of the same pore aspect ratio will be larger 

for rocks of high elastic moduli than for those of low elastic moduli. In other 

words, rocks of high elastic moduli are more sensitive to addition of pores than 

those of low elastic moduli. As indicated in Figure 3.11 (upper left) and Figure 

3.12 (right), the elastic moduli solely due to round pores would increase linearly 

with decreasing porosity. Consequently, adding a certain amount of cracks 

would decrease the elastic moduli more for low-porosity sandstones than for 

high-porosity sandstones. Figure 3.14 demonstrates the role of round pores in 

determining variability in the elastic moduli. Small cyan points represent the 

elastic moduli computed assuming only the existence of round pores. The green, 

red and blue points were obtained by adding low, medium and high weighted 

crack concentrations respectively. Being more sensitive to cracks at low porosity 

is evidenced by the increasing departure of red points from small cyan points 

with decreasing porosity. 

Figure 3.14 Plot of total porosity versus elastic moduli for four cases: spherical pores only (cyan), 
low aack concentration added (green), medium crack concentration added (red) and high aack 
concentration added (blue). 



According to this principle, the variability in the elastic moduli at any 

given porosity as shown in Figure 3.5 not only depends on the variability in the 

weighted aack concentration as shown in Figure 3.12 (left), but also is affected 

by porosity. The lower porosity, the more variable the elastic moduli. This 

conclusion is also meaningful in the interpretation of the change of the elastic 

moduli with effective pressure because the dosing of the same amount of cracks 

may lead to more increase in the elastic moduli at low porosity than at high 

porosity. The issue will be discussed further. 

3.8 A pore geometrical model for sandstones 

The concentration of round pores is in direct proportion to porosity, but 

the crack concentration varies with no systematic connection to porosity in a 

general sense. The linearity between the elastic moduli and porosity caused by 

round pores can be severely altered in the presence of cracks. The conceptual 

model of pore geometry is summarized in Figure 3.15. 

Figure 3.15 Conceptual model of pore geometry for sandstones 
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According to this pore geometrical model, the linearity between the elastic 

moduli and porosity depends on aacks. If the aack concentration is less variable 

and changes regularly with porosity, a linear relationship results. Reservoir rocks 

formed under a speafic geological setting may have this pattern of crack 

distribution. The cemented sand model (Mavko, 2000) predicts two cases of grain 

contact cementation. The first type cements both round pores and grain contacts, 

which leads to the decrease in the crack concentration (grain contact is viewed as 

aacks) with decreasing porosity. According to Figure 3.15, a steeper linear 

relationship between the elastic moduli and porosity is expected. The second 

type cements only round pores and grain contacts stay the same at all porosity. 

Consequently a linear relationship more gentle relative to the first type can be 

observed. These results are consistent with theoretical caldations (Mavko, 

2000). 

The second set of dry sandstones were sampled from the gas-producing 

fields in the southern Cooper basin, south Australian. The cradc concentration 

may vary regularly with porosity because of similar geological environments. 

Figure 3.16 does show a linear increase of the cradc volume concentration and 

the weighted crack concentration with increasing porosity. According to the pore 

geometrical model, it is predicted that the linearity exists between the elastic 

moduli (and velocities) and porosity. This prediction is proven by calculations 

using KT modelling in Figure 3.17. 

However, cradc occurrence is not dearly understood. It is questionable 

that sandstones in similar geological settings would have aadc distribution 

similar to the above two cases. Caution must be taken when trying to set up a 

linear relationship based on a small number of samples in a specific area because 

such linearity may not be developed. This is a fertile field for future smdy. 



Figure 3.16 Plot of total porosity versus the volume concentrations of cracks of varying aspect 
ratios (upper part and lower left) and the weighted crack concentration (lower right) 
for the second set of sandstones. 
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Figure 3.17 Plot of porosity versus the dry bulk modulus and shear modulus. 
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stays the same. As a result, a more linearity can be seen in Figure 3.19 than in 

Figure 3.5. 

Figure 3.18 Plot of total porosity versus weighted concentration of spherical pores (right) and 
weighted crack concentration (left) at 40 MPa. 

Figure 3.19 Plot of porosity versus dry bulk modulus and shear modulus at 40 m a .  

The third case is fluid saturation, at which the variation of the bulk 

modulus decreases according to the Gassrnann' s equation. The drastic change 

in Figure 3.5 (left) is expected to be reduced when sandstones are water- 

saturated. Figure 3.20 is the water-saturated bulk modulus calculated using the 

Gassmann's equation. It trends much more linearly than Figure 3.5 (left). 



Figure 3.20 Plot of porosity versus water- 
saturated bulk modulus (Kf=23 GPa). 

3.9 Pore geometry and change of the elastic moduli with effective pressure 

The increase of the elastic moduli with increasing effective pressure 

depends on the amount of dosed cracks. As seen in Figures 3.5 and 3.12 the 

elastic moduli at any given porosity vary mainly due to variation in the aadc 

concentrations. As a result, when effective pressure increases, sandstones with 

more cracks (including thin cracks) will increase more in the elastic moduli than 

those with less cracks. This variation accounts for the variability in the 

dependence of the elastic moduli on effective pressure at any given porosity as 

shown in Figure 3.21. The increase of the elastic moduli with effective pressure is 

also affected by round pores. Assuming the same crack concentration (induding 

thin cracks), with increasing effective pressure sandstones of low porosity will 

increase more in the elastic moduli than those of high porosity because the 

inaeased effect of cracks on the elastic moduli (see section 3.7 for details). This 

result is illustrated in Figure 3.21 and is also observed by hrorkin et al. (1996). 



Figure 321 Plot of total porosity versus the rate of change of elastic moduli with respect to 
effective pressure at 10 and 30 effective pressure points for the first set of dry sandstones (see 
next chapter for detailed calculation). 

Figure 3.22 Plot of total porosity versus rate of change of the elastic moduli for the dry 
sandstones, which are lower than 3 GPa in bulk modulus at ahnospheric pressure (see next 
chapter for detailed calculation). 



3.10 Effect of day content on pore geometry 

The effect of day on the pore geometry is poorly understood. Xu and 

White's model of day-sand mixture (Xu and White, 1995) that sets the aspect 

ratio to be 0.15 for sand-related pores and 0.04 for day-related pores seems that 

day would shift pore space to low-aspect-ratio pores. Figure 3.23, however, 

indicates that for the first set of dry sandstones no relationship exists between 

day content and the concentration of spherical pores and low-aspect-ratio cracks. 

Figure 3.24 further shows no correlation between day content and pore aspect 

ratio for the second set of dry sandstones. Therefore, day is not correlated to 

pore geometry. As stated previously, the effect of clay content on the elastic 

moduli is due to its effect on the elastic moduli of rock solid as shown in Figure 

3.1. 
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Figure 3.23 Plot of clay content versus concentration of spherical pores and low-aspect-ratio 
cracks, respectively, for the first set. 
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Figure 3.24 Plot of clay content versus concentration of spherical pores and low-aspect-ratio 
cracks, respectively, for the second set. 

3.11 Discussion 

An application of exploration seismology is to delineate porosity zones 

using seismic amplitude or veloaty measurements. With the linear equations 

developed by some authors (Castagna et al., 1985; Han et al., 1986; Kowallis et al., 

1984; Tosaya and Nur, 1982), geophysicists tend to linearly correlate velocity and 

porosity. Otherwise, this problem is intractable. According to this research, 

linearity between porosity and the elastic moduli is possible in some cases. 

Despite no dear evidence, the crack concentration and porosity for resenroir 

rodcs under similar geological settings may trend regularly with porosity. 

Reservoir rocks are always under certain effective pressure as to dose cracks. 

Reservoir rocks are always saturated with fluids to decrease the difference of the 

elastic moduli. These situations are favorable for linearity for in-situ reservoir 

rocks. 

Weak linearity between porosity and the elastic moduli also poses a 

problem for deriving porosity from sonic well logging. As shown in Figure 3.5, at 

the same porosity, the elastic moduli may vary signihcantly, especially at low 



porosity. The porosity obtained from the Wyllie equation will be overestimated 

for rocks with more cracks and underestimated for rocks with few cracks. The 

reason for this discrepancy is that the Wyllie equation is based on ray theory, but 

the propagation of borehole sonic wave is according to effective medium theory. 

In seismic monitoring of production or injection, the change in effective 

pressure in response to the change in pore fluid pressure may cause enough 

changes in the elastic moduli and velocities to be detected seismically. The 

evaluation of these changes is thus of great significance to time-lapse seismic 

surveys. The change in the elastic moduli with effective pressure depends on the 

amount of cracks, which open or dose in response to effective pressure, and the 

distribution of other pores. At high effective pressure, most cracks have dosed 

and no much change with effective pressure can happen. This favours shallow or 

strongly-overpressured resewoirs. At high porosity, the decreased effect of 

cracks on the elastic moduli results in the small change of the elastic moduli with 

effective pressure. This favours sandstones of small or medium porosity. 

The role of day is disputable in determining elastic moduli. This research 

indicates that it has no effect on pore aspect ratio spectra and consequently on 

the change of the elastic moduli with effective pressure. Taking a dose look at 

day, clay in aggregates forms round pores (microporosity) in addition to flat 

pores between fine grains no matter where it is located, and it has no preference 

to any specific type of pores. In grain-supported sandstones with relatively small 

amounts of day, the change in day content may affect the amount of day located 

in grain contacts, which in turn affects the elastic moduli of rock solid, but the 

number of grain contacts, a key factor to influence the quantity of flat pores, is 

controlled by porosity and grain size not day content. So the amount of day does 

not exert any influence on pore aspect ratio spectra. If day content increases to 



the limit, where sandstones are day-supported, porosity consists largely of 

miaopores and may be more stable than grain-supported, but, as stated 

previously, no quantitative relations between day content and pore aspect ratio 

spectra can be expected. The exception is shale, in which day minerals are 

aligned along the bedding plane, and flat pores dominate pore space. 

3.U Conclusions 

We have presented a method of obtaining pore aspect ratio spectra by 

inverting the laboratory measurements of ultrasonic compressional- and shear- 

wave velocities as a function of effective pressure. It is found that the 

concentration of spherical pores is in direct proportion to porosity, while that of 

cracks, despite being small, vary among individual samples with no connection 

to clay content. The Linearity between porosity and the elastic moduli depends on 

how the aadc concentration varies with porosity. Linearity is possible when 

cracks change regularly with porosity or when most cracks close at high effective 

pressure or when pore space is saturated with fluids. We have also discovered 

that the effect of cracks on the elastic moduli deaeases with increasing porosity. 

Consequently the variation of the elastic moduli with changing effective pressure 

will generally become small at high porosity. In addition, day has no effect on 

pore aspect ratio spectra and consequently on the change of elastic moduli with 

effective pressure. 



CHAPTER 4 

A QUANTITATIVE MODEL FOR THE RATE O F  CHANGE O F  
THE ELASTIC MODULI O F  DRY SANDSTONES WITH 
EFFECTIVE PRESSURE 

4.1 Calculation of the rate of change of the dry elastic moduli with effective 
pressure 

Based on Tables 3.1 and 3.2 and equations 3.1-3.7, the dry elastic moduli 

for the two sets of samples were calculated at the effective pressures, at which 

velodties were measured in laboratory. The relationship of velocity versus 

effective pressure for some samples is shown in Figures 3.3 and 3.4. Figures 4.1 

and 4.2 are the corresponding reiationship between the dry elastic moduli and 

effective pressure. The circles are the theoretical calculations of the dry elastic 

moduli. 

There are many functions, which can fit the theoretical values in Figures 

4.1 and 4.2. However, the fitting model should satisfy the observations that with 

increasing effective pressure the elastic moduli increase rapidly in the beginning 

and then followed by levelling off almost to a constant at high effective pressure. 

The exponential function dM/dP=a*exp(-bP) is a good candidate to model the 

rate of change of elastic moduli with effective pressure. By integration, M=A - 
B*exp(-bP). In fact, several authors have employed similar functions to do 

regression analysis. Eberhart-Phillips et al. (1989) proposed the formula V=A + 
K*Pe - B*exp(-D*Pe) to fit the veloaty-pressure relationship. Khaksar et al. (1999) 

found that despite good fit of data using this formula both positive and negative 

K is unrealistic and inconsistent with the pressure dependence of wave velocities 

when extrapolating to high pressures. They developed dV/dP = a*exp(-b'P), i.e., 



V = A - Beexp(-FP). Similarly, Zhang and Bentley (2000) obtained the 

exponential relationship to describe the rate of change of the dry elastic moduli 

with effective pressure: dM/dP = a*exp(-b*P). However, the data show that the 

error percentage for the exponential model is considerable. The reason is that the 

logarithmic of dM/dP {obtained from another fitting model, y=[al +bl* 

ln(x)]+[a2+b2/x]} is not a straight line but a polynomial in most cases. The 

numerical experiments demonstrate that the cubic polynomial is the best 

function to model the index of dM/dP=exp[f(P))]. In Figures 4.1 and 4.2, the 

solid and dashed lines are regression lines (fitted with the function, y=[al+bl* 

ln(x)]+[a2+b2/x], which give a reliable estimate of the relationship between the 

dry elastic moduli and effective pressure. The good fits of Khaksar et d.'s data 

with the exponential function are due to the effective pressure-velocity curves 

being flatter than the effective pressure-elastic moduli curves. 

Due to great variability in the magnitude of the elastic moduli between 

samples, a direct empirical formula would require more parameters as 

mentioned above. For simplicity, it is better to deal with the rate of change of the 

elastic moduli with effective pressure, which vary less between individual 

samples. 

The regression lines for the relationship between the elastic moduli and 

effective pressure were used to calculate the derivative with respect to effective 

pressure (rate of change). We plotted the derivative against total porosity to 

examine the effect of porosity. Figure 3.21 for the first set of sample. 



Figure 4.1 Plot of elastic moduli versus effective pressure for the first set of dry sandstones. The 
red and black circles are the theoretical calculations of bulk and shear moduli respectively. The 
red solid and black dashed lines are the corresponding regression lines. 

Figure 4.2 Plot of elastic moduli versus effective pressure for the second set of dry sandstones. 
The red and black circles are the theoretical calculations of bulk and shear moduli respectively. 
The red solid and black dashed lines are the corresponding regression lines. 



4.2 A quantitative model for the rate of change of the dry elastic moduli with 

effective pressure 

The goal of this section is to develop an empirical expression to predict the 

rate of change of the dry elastic moduli with respect to changing effective 

pressure. The expression can then be used to estimate, in the absence of 

laboratory data, the change in the dry elastic moduli due to changes in reservoir 

pressure. As stated previously, the best model to fit the rate of change of dry 

elastic moduli with effective pressure is: 

where M is the dry elastic modulus, P is the effective pressure and a, b, c, d are 

scalar coefficients. In most cases, b, c and d are approximately -0.14,0.002 and - 
9.6~106, respectively, and the only difference is the coefficient a. This simplifies 

greatly regression analysis. 

As shown in Figure 3.21, the rate of change of elastic moduli with effective 

pressure may be roughly divided into 5 sections in terms of the variability with 

porosity. The greatest variability occurs with porosity lower than 10%. The 

section ranging between 10% and 15% is also very variable. Appreciable decrease 

in variability is in 15% to 20%. The range from 20% to 25% varies less. The 

smallest variability is in the section of large porosity greater than 25%. For each 

porosity section, the upper and lower bounds and the average values were 

calculated at the effective pressures, at which velocities were measured, 

according to the regression equations. Figure 4.3 is the results, in which the 

upper and lower bounds and the average values are also fitted respectively with 

equation 4.1. Figure 4.3 indicates that two major factors affect the rate of change 



of the dry elastic moduli with effective pressure. The higher the porosity, the 

Lower the rate of change and the less variability; the higher the effective pressure, 

the Lower the rate of change and the less variability. It is also noted that the rate 

of change of the bulk modulus with effective pressure is larger and more variable 

than that of the shear modulus. 

The validity of these models can be tested by applying them to other 

sandstones. D. Freund (1992) measured the veloaties of 88 dry samples taken 

from the well SALZWEDEL 2/64 at depths of 3340 to 3670 m, Germany. These 

dastic rocks are strongly consolidated with porosity from 0.515%. The effective 

pressure, in which measurements were made, ranges between 8 to 300 MPa. Yet 

the values we used to calculate the rate of increase of elastic moduli with 

effective pressure are those under 80 MPa because grain crushing will happen at 

high effective pressure (Zhang et al., 1990). About 70% of the samples for the rate 

of change of the bulk modulus and 57% for the rate of change of the shear 

modulus fal l  in the range delineated by the maximum and minimum lines. Some 

points out of the range are twice as large as the maximum line and others tend to 

be zero, implying that there is more variability in crack concentration in these 

samples than is shown in Figures 3.11 and 3.12. M. S. King (1966) measured the 

velccities of several dry sandstones under elevated effective pressures. The 

increase of elastic moduli with effective pressure for Banda, Berea and Torpedo 

sandstones can be predicted from the equations in Figure 4.3, but the models in 

Figure 4.3 slightly underestimate St. Peter sandstone and overestimate Boise 

sandstone. Navajo sandstone (Cheng and Toksoz, 1979) fits very well in the 

range. 

In summary, the empirical equations to model the rate of change of dry 

elastic moduli with effective pressure were derived and their dependence on 



porosity was also induded. The rate of change of the dry elastic moduli for a 

large portion of sandstones f d  in the range defined by these empirical 

equations. 
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Figwe 4.3 Rate of change of dry elastic moduli with effective pressure. The range with data from 
both sets of samples is represented by the solid lines; the dotted lines are only with the data from 
the second set; the dashed Lines are extrapolation. 

4.3 Conclusions 

The rate of change of elastic moduli with effective pressure for all 

sandstones can be fitted well with the quasi-exponential function, i.e., dM/dP = 

exp[f(P)], f(P) is a cubic polynomial. Its upper and lower bounds for each 

porosity sections are also found and modelled in this quasi-exponential function. 

Data from other sources indicate that the empirical bounds work well for a large 

portion of sands tones. 



EFFECT OF TEMPERATURE ON ELASTIC MODULI O F  DRY 
SAJYDSTONES 

Temperature affects the elastic moduli of a dry rock by changing the 

elastic moduli of the rock solid (e.g. quartz and day) and its pore aspect ratio 

spectrum. The former is negligibly small, as discussed in Chapter 2, and will not 

be considered. The latter plays a significant role. When temperature increases, 

pore volume increases (even if the magnitude is small) and differential thermal 

expansion of the constitute minerals may cause new cracks to open (Hellwege, 

1982), especially at grain boundaries. The opening of cracks occurs whenever 

temperature increases at a rate higher than lOOOC /100MPa at high temperature 

(Kern, 1978). Below 2000C, however, the experimental data (Wang and Nu, 1988; 

Carmichael, 1989) do not observe the opening of cracks, a non-linear event. 

Therefore, with the exception of extreme thermal event such as those associated 

with steam flooding, the change of elastic moduli with temperature is 

attributable to the pore volume change, a linear event. 

In order to find the slope of the straight line, velocity measurements and 

their change with temperature are collected. Carmichael's (1989) data for clry 

sandstone are plotted in Figures 5.1 and 5.2, which show a linear trend for the 

bulk and shear moduli. The slope can be approximated as: 

The above equations are used to calculate elastic moduli in order to assess 

whether or not the deviation from the measurements is reasonable. Wang and 



Nur (1988) measured a series of velocities at different temperatures. Table 5.1 

shows the measured versus calculated values for MassiUon sandstone. The 

densities in Table 5.1 were calculated based on the formulae, p m  = (I+) *p~, 

where pw and pp are the densities of dry sandstone and rock solid respectively, 

and 4 is porosity. Since the change of density with temperature is small and 

roughly on the order of a few percent over 1000 O C  (Carmichael, 1989), the 

change of pa, over the range of 100 "C is negligible. 

T i c 9  

Figure 5.1 Bulk moduli versus temperature for sandstone (after Carmichael, 1989) 

Temperature versus shear modulus of dry sandstone 
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Figure 5.2 Shear moduli versus temperature for sandstone (after Carmichael, 1989) 



Table 5.1 Dry veloaties and elastic moduli for Massillon sandstone 

The experimental and calculated values show the same trend and the 

order of magnitude of the variation is small. The change in b u k  and shear 

moduli with temperature is also small. In the case of Massillon sandstone, 7% 

and 10% changes for bulk and shear moduli respectively occur for 100°C change 

in temperature. 
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FEASIBILITY OF SEISMIC MONITORING OF SANDTONE 
RESERVOIRS 

6.1 Introduction 

Recent examples of time-lapse seismic surveys (Jack, 1998; Sonneland et 

al., 1997) have demonstrated potential for inferring reservoir conditions from 

seismic data. It appears that the seismic detectability of changes in reservoir 

conditions due to production or injection is most pronounced in poorly cemented 

and poorly consolidated sandstone reservoirs. These zones are easily observed at 

shallow depths or in geopressured zones, which are a result of undercompaction 

in rapidly deposited sedimentary basins and can be located at great depths. In 

this paper we examine the effect of the major recovery processes on seismic 

velocities and acoustic impedance for sandstones of varying porosity and 

effective pressure, and then find the factors most sensitive to changes in reservoir 

conditions. The depth effect on seismic monitoring of sandstone reservoirs is also 

discussed. The method presented here can be also used as a tool to analyze 

feasibility of seismic monitoring of sandstone reservoirs. 

6.2 Quantitative rock physics models 

6.2.1 Relationship between porosity and dry elastic moduli. All physical 

properties (such as mechanical, acoustic, electrical, thermal, magnetic etc.) of 

rocks are influenced by pore structure (after Gueguen and Palciauskas, 1994), 

one of the most common descriptions of which is porosity. So in prediction of 

elastic behaviour, porosity is an important parameter. Nur et al. (1991 and 1995) 



found a linear trend of elastic moduli between the mineral values at zero 

porosity and the suspension values at the critical porosity. The critical porosity 

separates the rnedmical and acoustic behaviour into two distinct domains, i.e., 

the load-bearing domain and the suspension domain. This leads to the 

convenient mathematic expressions for calculation of dry elastic moduli at high 

effective pressure in the load-bearing domain (Mavko et al., 1998): 

where & and pd are dry bulk and shear moduli, I<6 and ps are bulk and shear 

moduli of rock solid or grain, OE is critical porosity (40% for sandstone, Mavko et 

al., 1998), c) is porosity. Obviously & = pd =O at $ =+=. High effective pressure 

refers to pressures at which rocks are almost linearly elastic and the change of 

elastic moduli and veloaties with effective pressure tend to be zero. For most 

sandstones, 100 MPa may be considered high enough to flatten the curve. IG and 

ps are influenced by clay content, but the exact formula to describe their 

relationship is unavailable in literahue. Based on the linear relationship of 

velocities to porosity and day content (Castagna et al., 1985; Han et al., 1986; 

Tosaya and Nur, 1982), we may extrapolate velodties to those at zero porosity 

and predict the change of the elastic moduli of rock solid with day content. 

The increase of dry elastic moduli with effective pressure can be explained 

in terms of dosing of cracks, which are very small in volume. The study in 

Chapters 3 and 4 calculated dry elastic moduli of sandstone samples at a variety 

of effective pressures and found the quasi-exponential relationship between the 

rate of inaease of dry elastic moduli and effective pressure as follows: 



where Kd and are in GPa, P is effective pressure in MPa, Al, B1, C1, Dl, A2, 

B2, C2, D2 are constants, which vary among individual sandstones because 

porosity and crack concentration differ. The study in Chapters 3 and 4 also found 

that the rate of change of elastic moduli with effective pressure generally 

becomes low with increasing porosity and derived these constants for the 

average case at different porosities. These constants were used in this Chapter. 

We employed Han's empirid linear relationship of velocities to porosity 

and day content (Ha. et at., 1986) to predict the change of the elastic moduli of 

rock solid with day content. This was achieved by extrapolating velocities to 

those at zero porosity based on this hear relationship. Then according to 

equations 6.16.4, dry elastic moduli were expressed as a function of porosity 

and effective pressure at a given day content. Supposing 10% of day content, the 

contour of dry elastic moduli was drawn on the plane of porosity and effective 

pressure (such as Figure 6.1). 

6.2.2 Elastic moduli of fluid-saturated sandstones Gassmann's model 

connects the elastic moduli of the fluid-saturated rock to the corresponding dry 

elastic moduli through the following equations: 

where Ku and pu are the bulk and shear moduli of the fluid-saturated rocks, Kt is 

the fluid bulk modulus, 4 is porosity. When the rock is saturated with more than 

one fluid, the bulk modulus of the effective fluid is used. If fluids equilibrate in 



pressure in one period when seismic wave propagates, they are considered to be 

homogeneously distributed and the bulk modulus of the effective fluid is a 

harmonic averaging of the bulk moduli of all fluids (Reuss model); if fluids differ 

in pressure between different phases of fluids on a coarse scale, the bulk 

modulus of the effective fluid can be approximated as an arithmetic averaging 

(Mavko et al., 1998). Obviously, whether harmonic or arithmetic averaging is 

used depends on seismic frequency. Mavko et al.(1998) uses LC to idenbfy these 

two cases. If the scale of saturation inhomogeneity is small relative to seismic 

wavelength and at the same time larger than LC, the arithmetic averaging are 

used. Otherwise, pressure is assumed to be equal among fluids. Lc=(KKf /f  

where f is the seismic frequency, r is the permeability, and and Kr are the 

viscosity and bulk modulus of the most viscous fluid phase (Mavko et al., 1998). 

In practice, the size of r e g h  containing different fluid phases is unknown. 

Considering a hydrocarbon pool, the water resides with the pore space next to 

the grain walls and in cracks while the oil or gas stays in the center of the pores. 

This situation happens in most water-wet sandstone reservoirs before 

production. Despite saturation inhomogeneity on the grain scale, simple 

calculations indicate that pressure equilibrium occurs in seismic frequency. It is 

thus safe to assume fluids before production are homogeneously mixed. After 

production or injection, the situation becomes much more complicated. When 

water or other fluids flood oil or gas, fluid fingering or patchy saturation on 

coarse scale may happen. Mavko et al. (1998) simulated patchy saturation with 

data from a West Texas reservoir. Laboratory results also seem to support patchy 

saturation. The drainage curve discordant with the imbibition curve (Knight et 

al., 1990), in which fluids are considered homogeneously mixed, is evident for 

the existence of patchy saturation. Water flooding gas experiments (Wang et al., 

1991) show the compressional velocity increases by more than 5%, implying a 

possible patchy saturation. In these two cases, if fluids are assumed to be 

homogeneously distributed, velocity increase with increasing water saturation 



cannot take place according to Domenico' s effect (Domenico, 1976). Most 

importantly, Someland et al. (1997) observed that sonic velocities increased 

where water had displaced oil in the Gullfaks Field, Norwegian North Sea. It is 

therefore reasonable to assume patchy saturation after fluid drive or flood. 

6.2.3 Veloaties and acoustic impedance of fluid-saturated sandstones The 

bulk density of fluid-saturated sandstones is simply the weighted-by-volume 

average of the constituent densities given by the equation: 

where pop pS pv and pr are densities of oil, gas, water and rock solid respectively. 

The P-, Swave velocities and acoustic impedance of fluid-saturated 

sandstone reservoirs are calculated as: 

Based on 6.1 - 6.10, we can calculate the velod ties and acoustic impedance 

before and after a certain recovery process at varying porosity and effective 

pressure and then idenbfy the most important factors, which cause the velocity 

and acoustic impedance changes. If the regional compaction curve and the fluid 

gradient are given, the velocity and acoustic impedance changes due to the 

recovery can be predicted in terms of effective pressure and depths. The method 

can be used to study feasibility of seismic monitoring of reservoirs. 



6.3 Quantitative evaluation of production or injection processes in terms of 

velocities and acoustic impedance 

Before application of the rock physics model to feasibility study in the real 

geological setting, we should evaluate the validity of the dry elastic moduli at 

varying porosity and effective pressure calculated based on our theoretical 

model and see if they can approximate those in situ with the same porosity and 

effective pressure. According to our study, the volume concentration of round 

pores at some porosity is in direct proportion to the magnitude of that porosity, 

but the aack volume concentration is variable, depending on effective pressure 

and other lithological factors. Despite being very small in volume, aadcs can 

contribute a lot to decreasing elastic moduli. This leads to the uncertainty in 

elastic moduli for a given porosity and effective pressure. However, porosity and 

elastic moduli become linearly related when cracks dose at high effective 

pressure, as indicated by the KT model (Kuster and Toksoz, 1974) and the linear 

relationship proposed by Nur et al. (1991 and 1995). Equations 6.3 and 6.4 are 

derived from the average case of crack concentrations for 97 sandstone samples. 

So the dry elastic moduli in our theoretical model are the average values, around 

which those in situ may vary. It is also noted that the variability around the 

average case becomes less when porosity increases due to decreasing effect of 

aacks on elastic moduli, which implies that for high-porosity sandstones the 

theoretical values may be accurate. 

6.3.1 Water drive Many of the most important reservoirs in the world are 

producing by water drive, in which the goal of seismic monitoring is to idenhfy 

bypassed oil pockets for infill dding. The most important characteristic in water 

drive is that pressure remains high at low rates of production. Clark (1969) 

pointed out that pressure still maintained 70% of the initial even after 60% of the 

oil had been produced horn reservoirs. The water drive may be therefore 



reasonably considered as a process of water substitution for oil with a small 

pressure drop. Temperature can also be assumed constant because replacing 

water is located close to replaced oil. These assumptions imply that the changes 

in fluid properties such as bulk moduli and densities are muumal * .  during water 

drive. 

To enable the calculation of velocities and acoustic impedance of rocks at 

certain porosity and effective pressure, a group of parameters have to be 

assigned, including fluid bulk moduli and densities, irreducible water saturation 

before production and residual oil saturation after water drive. We chose to use 

the data of fluid properties from Domenico (1974) and the average case of 

irreducible water saturation and residual oil saturation for sands tone reservoirs 

from Smith et al. (1992). Figure 6.1 shows the contours of the absolute change 

and the percentage change in fluid-saturated bulk modulus due to fluid 

substitution by water drive, with the dotted lines as the contour of the dry bulk 

modulus. The absolute change in fluid-saturated bulk modulus is affected by 

both dry bulk modulus and porosity as shown in the Gassmann equation 

(equation 6.5) and the left part of Figure 6.1. For a given porosity, the lower the 

dry bulk modulus, the more the change. For a given dry bulk modulus, the lower 

the porosity, the more the change. However, in most cases, the decrease in dry 

bulk modulus is accompanied by the increase in porosity. What happens to this 

complex situation? According to the left of Figure 6.1, the absolute change 

always increases along the opposite direction of Kt gradient regardless of 

porosity and it also increases in most other cases. So the dry bulk modulus may 

play a major role. Since the fluid-saturated bulk modulus decreases with 

decreasing the dry bulls modulus in most cases shown in Figure 6.2, the 

percentage change is generally predominantly controlled by the dry bulk 

modulus. The effect of porosity is Limited to the range of low porosity and low 

effective pressure. This is shown in the right of Figure 6.1. Figure 6.3 shows the 



Vp and A1 percentage changes. The shape of the Vp and A1 percentage change 

contours to those of dry buLk modulus further indicates that dry bullc modulus is 

the most important factor. The smaller the dry elastic modulus, the greater the 

percentage changes. If the minimum changes are set in order for these changes to 

be observable on seismic sections (Jack, 1998; Lumley et al., 1997), the largest 

values of dry bulk modulus to create these changes may be found from Figure 

6.3. These values would be larger at low porosity due to the porosity effect. 

The contrast between the bulk modulus of the original and the substituted 

fluid is another factor because the fluid bulk modulus affects fluid-saturated bulk 

modulus through the Gassmann equation. Figure 6.4 shows a considerable 

increase in the percentage changes due to an increase in water bulk modulus (to 

3.1 GPa). The percentage increase is large for small dry b& modulus. Similarly, 

a large decrease in the percentage changes takes place in Figure 6.5 due to a 

decrease in water bulk modulus (to 1.4 GPa). 

Figure 6.1 Contours of the absolute change and the percentage change in fluid-saturated bulk 
modulus. The dotted lines are dry bulk modulus. The absolute change of the fluid-saturated bulk 
modulus is defined as L U ( = b r  - &foref where Idrt, and Kbefare are the fluid-saturated bulk 
modulus after and before water drive, respectively. The percentage change is hK/Kber,,*100%. 
Fluid properties are assumed: before production, Do=0.749(g/cm3), Ko=0.67 (GPa), So=75%, 
Dw=l.O89(g/cm3), Kw=2.38 (GPa), Sw=25%; after water drive, Do=0.749(g/cm3), Ko=O -67 (GPa), 
So=15%, Dw=l.O89(g/an3), Kw=2.38 (GPa), Sw=85%. 



Figure 6.2 Contours of the fluid-saturated bulk modulus before and after water drive. The fluid 
properties are the same as those in Figure 6.1. 

Figure 6.3 Contours of Vp and AI percentage changes. Fluid properties are the same as those in 
Figure 6.1. The Vp percentage change is defined as AVp/VpbefoE*lOO% = (Vp-after -Vpbefore)/Vp 
wom*lOOO/~, where Vpa~er and Vpwom are the primary wave velocity after and before water drive, 
respectively (the same below). The AT percentage change is defined as hAI/AIkfo,*lOO% = (&,- 
-&efore)/AIbefore *lOOOh, where A h -  and AIkr,, are the acoustic impedance after and before 
water drive, respectively (the same below). 



Figure 6.4 Contours of inaease in the Vp (left) and AI (right) percentage changes due to an 
inaease in water bulk moduius (to 3.1 GPa). The contour lines of the percentage changes are 
computed based on the same fluid properties as those in Figure 6.1. The increase in Vp percentage 
change is defined as (AVp/Vpwore *100%)adjusted water builr modulus - (AVp/Vp-more *lm%)or ig id  case. The 
increase in A1 percentage change is defined as (AAI/AIwore *lOO%)adjusted mter b u ~ ~  modulus - 
(hAI/AIbefore *I OO%)original case* 

Figure 6.5 Contours of decrease in the Vp (left) and A1 (right) percentage changes due to a 
decrease in water bulk modulus (to 1.4 GPa). The contour Lines of the percentage changes are 
computed based on the same fluid properties as those in Figure 1. The decrease in V, percentage 
change is defined as (AVp/Vpberom * l O O % ) o r i g ~  - - (AVp/Vp-before *100%)adjusted water bullc modulus. The 
decrease in A1 percentage change is defined as (AAI/AIhro, *100%)oriw - (M/AIbefore 

*lOOOh)adjusted water bulk modulus* 

Fluid density may play a signihcant role in the percentage changes. By 

increasing density contrast between oil and water, Vp percentage change will 

decrease and the A1 percentage change will increase. The maximum effect of 



fluid density on the percentage changes can be obtained by comparing the 

percentage changes with large density contrast (0.7 for oiI and 1.14 for water, 

Gretener, 1993) with those with small or no density contrast (1.0 for both oil and 

water, Gretener, 1993). Irreducible water saturation and residual oil saturation 

are also set to be small. In Figure 6.6, the amount of decrease or inaease in the 

percentage changes depends on porosity. The higher the porosity, the more the 

decrease or increase. Yet the value is relatively small, having no substantial 

impact on the percentage changes espeaally at high porosity. In the real case of 

water drive, the density effect will be smaller because the density contrast will 

not be so large and irreducible water saturation and residual oil saturation may 

not be so small. Thus, the fluid density contrast is not as important as the fluid 

bulk modulus contrast in water drive. 

Figure 6.6 Contours of decrease in Vp percentage change (left) and increase in AI percentage 
change (right) due to an inaease in the density contrast (0.7 for oil, 1.14 for water). The decrease 
in Vp percentage change is defined as (AVp/VpwOE 100%)d b i t y  - u ~ u  - (AVp/Vwom 
*100%)lag density cmtnst. The increase in AI percentage change is defined as ( W / & e f o t e  *100%)1~ge 
density CO-t - (M/AIberore *lOO%)srrull density contrast. The percentage changes are based on the 
following data: before production, Do=l.OO(g/an3), KO-0.67 (GPa), !30=9096, Dw=l.OO(g/an3), 
Kw=2.38 (GPa), Sw=lO%; after water drive, Do=l.OO(g/cm3), Ko4.67 (GPa), H%, 
Dw=l.O89(g/cn3), Kw=2.38 (GPa), Sw=95%. 



The saturation affects the percentage changes because it affects the fluid 

density and bulk modulus. Suppose two cases: small changes in oil and water 

saturations before and after water drive, and large ones. As demonstrated in 

Figure 6.7, the contours of the increase in the percentage changes due to 

increasing saturation contrast are almost parallel to the percentage changes (for 

the small saturation contrast), just as those observed due to the change in water 

bulk modulus in Figures 6.4 and 6.5. The inaease is different than that indicated 

in Figure 6.6. This implies that the saturation effect on the fluid bulk modulus is 

much more important than on the fluid density. So the saturation effect on the 

percentage changes is due to its effect on the fluid bull< modulus. 

If fluid pressure drops after water drive, the dry elastic moduli will 

inaease in response to an increase in effective pressure, and simultaneously the 

densities and bulk moduli of oil and water will decrease in response to a 

decrease in fluid pressure. The increase in the dry elastic moduli is affected by 

porosity and effective pressure, as indicated by equations 6.3 and 6.4. The 

decrease in the densities and bulk moduli of oil and water can be influenced by 

both fluid temperature and pressure. As shown in Figure 6.8, the curves are 

almost linear and the density gradient with pressure for both water and brine is 

smaU in the range of 0.0002-0.0003 (g/d) /MPa,  despite varying temperature 

and salinity. The change of oil densities with pressure is more complicated 

because Rso will evolve with pressure. Above the bubble-point pressure (or 

constant compositions), however, it becomes simply pressure and temperature 

dependent. Batzle and Wang (1992) proposed the formula (see equations 2.32 

and 2.33) to compute the density of dead oil at any temperature and pressure. 

The gradient may be extended to that of live oil above the bubble-point pressure. 

As shown in Figure 6.9, the gradient at pressures less than 70 MPa is a little 

larger than that of water, between 0.0004-0.0008 (g/cm3) /MPa. Considering a 



small drop of fluid pressure and the small effect of density in Figure 6.6, the 

effect of density change for oil and water is not of significance. 
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Figure 6.7 Contours of increase in Vp (left) and A1 (right) percentage changes (left) due to 
increasing saturation contrast. The inaease in Vp percentage change is defined as (AVp/VpbeCore 
*lOOO/o)ruge saturation contrast - (AVp/Vptwfore *lOOO/o)rmall saturation contat. The inaease in AX percentage 
change is defined as (AAI/AIbefore *100%)hrpe s a w t i o n  m-t - (M/AIbefore *loo%)- =-tion m-t. 

The small saturation change is assumed to be: before production, Do=0.749 (g/cm3), Ko=0.67 
(GPa), So--50%, Dw=1.089 (g/crn3), Kw=2.38 (GPa), Sw--50%; after water drive, Do=0.749 
(g/cm3), Ko=0.67 (GPa), So=30%, Dw=l.O89(g/cm3), Kw=238 (GPa), Sw=70°h. The large 
saturation change is assumed to be: before production, Do=0.749 ( g / d ) ,  Ko=0.67 (GPa), 
So=90°h, Dw=I.O89 (g/cm3), Kw=2.38 (GPa), Sw=lOOh; after water drive, Do=0.749 (g/cm3), 
Ko=0.67 (GPa), So=5%, Dw=l.O89(g/cm3), Kw=2.38 (GPa), Sw=95%. The percentage changes in 
this figure are based on the data of the small case. 

Figure 6.8 Change of water density with pressure. The calculation is based on equations 2.28 and 
2.29. 



Figure 6.9 Change of oil density with pressure. The calculation is based on equations 2.32 and 
2.33. The equations are applicable to the oil of constant compositions. 

Figure 6.10 is the change of the bulk modulus of water with pressure, 

showing that the gradients of the bullc modulus of water with pressure are 

similar at the same salinity in spite of temperature variation. The gradient 

difference due to salinity changes is insignificant. Most importantly, the 

magnitude of the gradient is not large. Except for a drastic pressure drop, the 

substantial decrease of the bulk modulus of water will not take place. For 

example, 5 MPa pressure decline causes at most 0.05 GPa decrease, failing to 

produce appreciable modification to the results. For the change of oil bulk 

modulus with pressure, the equation (20b) of Batzle and Wang (1992) or equation 

2.31 may be used to evaluate the gradient if it is assumed that the oil is above the 

bubble-point pressure. Figure 6.11 is the results based on the equation (20b) of 

Batzle and Wang (1992). Despite increase in the gradient, the magnitude of 

gradient is still small. If pressure does not drop by a large amount, the decrease 

in oil bulk modulus is not considerable. 



Figure 6.10 Change of water bulk modulus with pressure. The calculation is based on equations 
22!3,2.26,2.27,2.28 and 2.29. 

Figure 6.11 Change of oil bulk modulus with pressure. The calculation is based on equations 2.32 
and 233 in chapter 2 and equation 20b in the paper by Batzle and Wang ( Batzle and Wang, 
1992). 

Figure 6.12 is the contours of increase in the percentage changes due to an 

increment of 5MPa in effective pressure in addition to fluid substitution. It does 

not consider the deaease of the fluid bulk modulus and density due to pressure 

drop. As expected, the inaease in the percentage changes becomes large and 

appreciable at low effective pressure and small at high effective pressure. So the 

percentage changes are sensitive to effective pressure chiefly at low effective 



pressure. When a decrease in the bulk moduli of water and oil due to pressure 

drop after water drive is included, the percentage changes will be smaller than 

those without considering the change in fluid bulk modulus. As indicated in 

Figure 6.13, the difference is negligibly small. It is therefore conduded that fluid 

pressure drop in water drive causes the increase in the percentage changes 

chiefly through increasing dry elastic moduli at low effective pressure. 

Figure 6.12 Contours of increase in Vp (left) and AI (right) percentage changes due to a decrease 
of 5MPa in fluid pressure in addition to fluid substitution. The inaease in Vp percentage change 
is defined as (AVp/Vpbefom *100%)5MPa fluid pressure drop PIUS nuid substitutions - (AVp/Vphfom *lOOOh)only fluid 

substitution- The increase in A1 percentage change is defined as (AAI/AIwa, *100%)s~p, auid pressure dmp 

PIUS fluid substitution - (AAI/AIbefore *100%)only fluid s~ttstitution. The C O ~ ~ O U ~ S  of Vp and percentage 
changes due to fluid substitution are the same as those in Figure 6.1. 

Figure 6.13 Contours of deaease in Vp (left) and AI (right) percentage changes due to a decrease 
of fluid bulk moduli (0.05 for water and 0.1 for oil, after water drive). The decrease in Vp 



percentage change is defined as (AVp/Vpbefom *100%)without nuid ehan* - (AVp/Vpbefore *lOO%)wilh nuid 

hp The decrease in A? percentage change is defined as (AAI/AI-, * l O O % ) w i h t  thtid change - 
(M/AIffi, *loo%)- nuid ch;mge. The contours of the percentage changes are caused by a 
combination of fluid substitution and a decrease of 5MPa in fluid pressure with the same fluid 
properties as those in Figure 6.1. 

It is also found that fluid pressure drop (by 5 MPa) causes the inaease of 

Vs, which is in sharp contrast to the decrease due to fluid substitution. This 

behavior may be used to distinguish purely fluid substitution from a 

combination of fluid substitution and fluid pressure drops. In purely fluid 

substitution, Vp increases (the left of Figure 6.1) while Vs decreases (the left of 

Figure 6.14); in the case of a combination of fluid substitution and fluid pressure 

drop in water drive, both Vp and Vs inaease (the left of Figure 6.13 and the right 

of Figure 6.14). However, caution must be taken because fluid pressure drop may 

be small and may not offset the deaease of Vs due to fluid substitution. 

Figure 6.14 Contours of the Vs percentage change. V, percentage decrease is defined as -AVs/Vs- 
before *100%. Vs percentage increase is defined as AVs/Vkh, *100%. The left is the Vs percentage 
decrease due to purely fluid substitution, and the right is the Vs percentage increase due to a 
combination of fluid substitution and a decrease of 5MPa in fluid pressure. The fluid properties 
are assumed the same as those in Figure 6.1. 



For gas reservoirs, water drive will cause the greater percentage changes 

because of the greater contrast in the bulk modulus between gas and water even 

if gas residual saturation in the water-drive zone is normally in the range of 30- 

50% (Smith et al., 1992). Figure 6.15 is the contour of the computed percentage 

changes based on the fluid properties from Domenico (1974). Obviously, Vp and 

A1 percentage changes are larger than those for water-drive oil reservoirs as 

shown in Figure 6.3. 

Figure 6.15 Contows of Vp and A1 percentage changes. Vp percentage change is defined as 
AVp/Vpbefo~ *loo%. AI percentage change is defined as AAI/AIwom *TOO%. Fluid properties are 
assumed: before production, Dg=O. 103(g/cm3), Kg=0.021 (GPa), Sg=75%, Dw=l.O89(g/cm3), 
Kw=2.38 (GPa), Sw=Z%; after water drive, Dg=O.l03(g/cm3), Kg=0.021 (GPa), Sg4- 0%, 
Dw=l.O89(g/cm3), Kw=2.38 (GPa), Sw=60%. 

6.31 Water flood For weak water drive resulting from low permeability or 

insufficient size of aquifers, pressure maintenance by water injection, before 

reservoir pressure drops appreciably, will generally lead to greater oil recovery. 

Water flood is thus the dominant fluid injection recovery technique in oil 

industry. In water flood, cold water is injected into reservoirs at high pressure to 

displace oil. It changes the reservoir conditions. Lowering the temperature 

increases the elastic moduli of rock framework (dry rock), but the amount of 



increase is negligible if there is no drastic temperature change (Zhang and 

Bentley, 1999). The densities and bulk moduli of oil and water are also affected 

by temperature. According to Figures 6.8 and 6.9, the density gradient with 

temperature is roughly 4.05285 (g/an3)/1000~ for water and -0.07545 

(g/crn3)/1000~ for oil. However, as explained in Figure 6.6, the percentage 

changes resulting from a small density modification are not appreciable. In 

Figure 6.10, the bulk modulus of water does not change monotonically with 

temperature. It peaks around 60°C and decreases away from that point. So the 

range of temperature change needs to be specified in order to compute the 

change of bulk modulus. In Figure 6.11, the gradient of oil bulk modulus with 

temperature is approximately -0.67779 (GPa) /lOO°C. Moreover, high injection 

pressure decreases the elastic moduli of rock framework (dry rock) and increases 

the densities and bulk moduli of fluids. Yet the pressure effect on the fluid bulk 

modulus and density is believed to be insigruhcant if pressure change is not 

drastic as indicated in Figures 6.8 to 6.11. Another important parameter is the 

salinity of injected water. Generally speaking, brine is preferred economically 

and technically to fresh water because a shortage of surface fresh water exists in 

many potential water flood areas and fresh water causes day expansion, which 

decreases permeability. 

Suppose that an injected fluid with the same properties as that in Figure 

6.1 causes an increase of 5MPa fluid pressure and a decrease of 50°C 

temperature. As a matter of fact, injection pressure cannot be so high that it 

generates fractures and reduces sweep efficiencies, and injection temperature 

cannot be so low that it preapitates wax in pore space. In the Bradford oilfield 

(USA), water flood reduced temperature only by a maximum of 6.1°C (Sayre et 

al., 1952). Figure 6.16 shows the results based on these assumptions (no drastic 

change in pressure and temperature). 



Figure 6.16 Contours of Vp and A1 percentage changes. Vp percentage change is defined as 
AVp/Vp-before "100%- AI percentage change is defined as AAI /AIM~~~  *100%. Fluid properties are 
assumed: before production, Do=0.749(g/an3), Ko=0.67 (GPa), So=75%, Dw=l.O89(g/<n3), 
Kw=2.38 (GPa), Sw=25%; alter water injection, Do=0.787(g/cm3), Ko=1.02 (GPa), So=15%, Dw- 
inj=l.O89(g/an3), Kw-inj=2.38 (GPa), Sw-inj=60%, Dw-irr=l.llS(g/d), Kw-irr=2.60 (GPa), Sw- 
irr=25%. 

The added injection pressure alters the percentage changes for the zones 

of low effective pressure so much that they become negative at relatively low 

porosity. The reason is that the effect of decreased dry bulk modulus due to 

increased fluid pressure on the percentage changes exceeds that of increased 

fluid bulk modulus due to fluid substitution. With increasing porosity, the effect 

of the fluid bulk modulus on fluid-saturated bulk modulus is increasing while 

that of the fluid pressure is decreasing. As a result, Vp and A1 will increase. If 

porosity is very high, there are always the positive percentage changes in water 

injection. Figure 6.17 is the case that the bulk modulus of injected fluid increases 

to 3.1 (GPa). As expected, the negative area decreases and the positive 

percentage changes expand. 



Figure 6.17 Contours of Vp and AI percentage changes. nuid properties are assumed: before 
production, Do==O.749(g/an3), KozO.67 (GPa), So=75%, Dw=l.O89(g/crn3), Kw=238 (GPa), 
Sw=25%; after water injection, Do=0.787(g/an3), Ko=l.Ol (GPa), So=15%, Dw-inj=l.O89(g/an3), 
Kw-inj=3.10 (GPa), Sw-inj=60%, Dw-irr=1.115(g/cm3), Kw-irr=2.60 (GPa), Sw-irr=25%. 

Vs percentage change is always negative in water injection as shown in 

Figure 6.18 because of the combined effect of increased density and decreased 

dry shear modulus. This may be a criterion to distinguish it from water drive, in 

which Vs percentage change may be positive due to inaeased effective pressure. 

Figure 6.18 Contours of Vs percentage 
changes. Fluid proper ties are assumed: 
before production, Do=0.749(g/cm3), 
Ko=O.67 (GPa), So=75%, Dw=l.O89(g/cm3), 
Kw=238 (GPa), Sw=25%; after water 
injection, Do=0.787(g/cm3), Ko=l .Ol (GPa), 
So=15%, Dw-inj=l.O89(g/cm3), Kw-inj=3.f 0 
(GPa), Sw-inj=60%, Dw-irr=l.l15(g/ca3), 
Kw-irr=2.60 (GPa), Sw-irr=25%. 



6.33 Gas cap drive On many occasions, gas and oil coexist in separate 

phases in reservoirs. Gas bubbled up to the top and formed a gas cap and oil is 

located on the bottom. When oil production proceeds, oil level falls and the gas 

expands down into the section of the reservoir originally containing oil. Pressure 

maintenance and recovery rates depend on the size of the gas cap. The larger the 

volume of the gas cap, the less the pressure will drop and the higher percentage 

of oil will be produced from beneath the cap. In gas cap drive, pressure decline 

will be an important control on Vp and AI percentage changes by increasing the 

elastic moduli of rodc framework (dry rodc). As mentioned in the previous 

section, the effect of pressure on the fluid density and bulk modulus is not 

sigruficant and will be neglected in calculation. Figure 6.19 depicts the 

percentage changes for a pressure drop of 5 MPa. The large increase in Vp and 

AI takes place at low effective pressure. As opposed to water injection, there are 

positive percentage changes at relatively low porosity and the negative 

percentage changes at high porosity. The positive is due to the increase in dry 

elastic moduli and the negative is due to the decrease in the fluid bulk modulus 

due to gas substitution. 

Figure 6.19 Contours of Vp and AI percentage changes. Fluid properties are assumed: before 
production, Do=01749(g/cm3), Ko=0.67 (GPa), So=75%, Dw=l.O89(g/an3), Kw=2.38 (GPa), 
Sw=25%; after gas cap drive, Do=0.749(g/cm3), Ko=0.67 (GPa), So=15%, Dg=O.l03(g/cm3), 
Kg=0.021 (GPa), Sg=60%, Dw=l.O89(g/cm3), Kw=2.38 (GPa), Sw=25%. 



6.3.4 Gas injection To augment inadequate gas cap drive by gas injection 

is a conventional recovery operation. Similar to water injection, fluid pressure 

buildup will decrease the Vp, Vs and AI. Displacement of oil by gas further 

decreases Vp and AI, but increases Vs due to the density decrease. Figure 6.20 is 

the Vp and A1 percentage changes due to an increase of 5MPa in fluid pressure. 

At low effective pressure, the Vp and A1 decrease a lot, but at high effective 

pressure the decrease becomes small. At high porosity, the decrease is large and 

seems independent of effective pressure. This reflects the major effect of the 

decreased fluid b& modulus due to the gas displacement of oil. In Figure 6.21, 

Vs decreases at low effective pressure but inaeases at high effective and at high 

porosity due to the decreased density. 

Figure 6.20 Contours of Vp and A1 percentage changes. Fluid properties are assumed: before 
production, Do=0.749(g/cm3), Ko4.67 (GPa), So=75%, Dw=l.O89(g/<n3), Kw=2.38 (GPa), 
Sw=25%; after gas injection, Do=0.749(g/cm3), Ko=0.67 (GPa), So=15%, Dg=O.l03(g/cm3), 
Kg=0.021 (GPa), Sg=60%, Dw=l.O89(g/cm3), Kw=2.38 (GPa), Sw=25Oh. 



Figure 6.21 Contours of Vs percentage 
changes. Fluid properties are assumed: 
before production, -.749(g/cm3), 
Ko=0.67 (GPa), !%3=75%, Dw=l .O89(g/cm3), 
Kw=2.38 (GPa), Sw=25%; after gas injection, 
Do=0.749(g/m3), Koa.67 (GPa), So=15%, 
Dg=O.l03(g/crn3), Kg=0.021 (GPa), Sg=60°h, 
Dw=l.O89(g/cm3), Kw=238 (GPa), 
Sw=25%. 

6.3.5 Solution gas drive Many oil reservoirs are volumetric, with the porous 

area completely surrounded by impermeable rodcs. A reservoir of this physical 

nature inevitably becomes a solution gas drive type of reservoir when produced. 

Below the bubble-point pressure, the production is a result of expansion of the 

gas released from solution. With the oil withdrawal, pressure declines and more 

gas evolves from solution. When the gas saturation reaches the critical value, gas 

begins to flow and pressure drops faster. At the final stage, the pressure is so low 

that both oil and gas flow ceases with large quantities of oil remaining in the 

reservoir rocks. So solution gas drive is the most inefficient type of primary 

recover drive. The sigruficant changes in reservoir conditions are substantial 

pressure drop and the occurrence of gas on grain scale. The increase in effective 

pressure leads to the increase in Vp, A1 and Vs, but the existence of gas may 

deaease Vp and AI, but increase Vs. Figure 6.22 is the Vp and AI percentage 

changes due to a fluid pressure drop of 10 MPa. The large Vp and A1 increase 

take place at low effective pressure. At high porosity, the Vp and AI decrease 

due to the decrease in the fluid bulk modulus and the decreased effect of the 

fluid pressure. Figure 6.23 is the Vs percentage increase. The situation is very 

similar to what happens in gas cap drive. 



Figure 6.22 Contours of Vp and AI percentage changes. Fluid properties are assumed: before 
production, Do=0.749(g/cm3), Ko=O.67 (GPa), So=75%, Dw=l.O89(g/cm3), Kw=2.38 (GPa), 
Sw=25%; after solution gas drive, Do=0.749(g/cm3), Ko=0.67 (GPa), %=IS%, Dg=O.l03(g/cm3), 
Kg=0.021 (GPa), Sg=60%, Dw=l.O89(g/an3), Kw=2.38 (GPa), Sw=ZOh. 

Figure 6.23 Contours of Vs percentage 
changes. Fhid properties are assumed: 
before production, D0=0.749(g/d), 
Ko=0.67 (GPa), So=75%, Dw=l.O89(g/crn3), 
Kw=2.38 (GPa), Sw=25%; after solution gas 
drive, Do=0.749(g/cm3), Ko=0.67 (GPa), 
So=15%, Dg=O.l03(g/cn3), Kg=0.021 (GPa), 
Sg=60%, Dw=l.O89(g/cm3), Kw=238 (GPa), 
Sw=25%. 

6.3.6 Steam injection Steam injection increases the reservoir temperature 

and displaces oil, which was originally very thick and viscous and as a result did 

not migrate readily to producing wells. There exist three zones away from the 

injection well: steam-swept, hot water drive (due to steam condensing) and cold 

oil bank. Temperature increase lowers the elastic moduli of both pore fluids and 

dry rock. The former can be calculated according to Figures 6.10 and 6.11. The 

latter is approximated with linear equations (P lang  and Bentley, 1999; also see 

equations 5.1 and 5.2 ) as follows: 



where & and are the dry bulk and shear modulus (GPa) and T is temperature 

( OC). When temperature increases, differential thermal expansion of constituent 

minerals may generate new cracks, especially at grain boundary, leading to the 

large decrease in dry elastic moduli. If this case happens, these formulae are no 

longer valid. Below 200°C, however, the opening of new cracks was not observed 

in experiments (Wang and Nur, 1988; Carmichael, 1989). Considering high 

injedion pressure, equations 6.11 and 6.12 may hold for steam injection. 

Simultaneously, high injection pressure further decreases the dry elastic moduli. 

Suppose an increase of temperature by 120°C and of fluid pressure by 10 MPa. 

Figure 6.24 is the Vp and A1 percentage changes due to steam drive. The Vp and 

AI percentage decreases extend to high effective pressure and relatively low 

porosity because of the large decrease of both the fluid bulk modulus and the dry 

elastic moduli caused by steam substitution, high temperature and high fluid 

pressure. 

Figure 6.24 Contours of Vp and AI percentage changes. Fluid properties are assumed: before 
production, Do=0.99(g/cm3), Ko=2.50 (GPa), So--90%, Dw=l.O89(g/cm3), Kw=2.38 (GPa), 
Sw=lO%; after steam injection (with steam substitution), Do=0.899(g/<m3), Ko=1.687 (GPa), 
So=lO0/0, Dg=O.l03(g/d), Kg=0.021 (GPa), Sg=80%, Dw=1.026 (g/an3), Kw=2.10 (GPa), 
Sw=lO%. 



6.4 Depth effect on seismic monitoring of sandstone reservoirs 

Porosity reduction with depth or, more accurately, with effective pressure 

is a complex result of mechanical compaction and chemical diagenesis. With 

burial, the number of grain contacts will increase, contact types will change 

(Taylor, 1950), and grain fracturing may take place, leading to porosity 

reduction. Simultaneously, chemical processes such as dissolution, replacement 

and cementation further influence porosity. These mechanical and chemical 

actions depend on many geological factors such as grain size and compositions, 

amount of unstable minerals, pore fluid composition, temperature, geological 

time etc.. It is therefore frequently not possible to successfully obtain a simple 

and universal compaction curve. However, regional compaction curves, which 

may be caused by some dominant geological factors, do exist, as found by many 

authors (Atwater and Miller, 1965; Chilingarian, 1983; Somosna, 1989; so on). For 

normally consolidated sediments, Mailart (1989) proposed the following 

expression: 

where + is porosity at depth z, +r is residual porosity at great depth, +, is porosity 

at surface (taken to be 40% for sandstone), and P is an empirical parameter that 

may include the effects of chemical diagenesis. If effective overburden pressure 

is a h e a r  function of depth z, equation 6.13 can be converted to the porosity- 

effective pressure relationship as follows: 



where y =P/(pb - h)g,  P is effective pressure. From equation 6.14, a plot of 

porosity versus effective pressure can be created for specific areas by assigning 

the parameters obtained from regression analysis of sandstone porosities. Figure 

6.25 is the compaction curve of sandstone plotted on Figure 6.3 (Vp and A[ 

percentage changes from water drive), where f3 = 0.0005 / m (Einsele, 1992), pb = 

2.3 *1@kg/m3, p, = 1.04 *I03 kg/m3, g = 9.8m/s2 and 4, = 5% are assumed. Along 

the compaction curve to high effective pressure, porosity deaeases and 

consequently Vp and A1 percentage changes become small. Thus a relationship 

can be established between effective pressure and the percentage changes. It 

enables us to predict the percentage changes at varying effective pressures for 

reservoirs that may be located at different depths. As shown in Figure 6.25, if we 

set a minimum of the percentage changes required to seismically monitor 

recovery processes, the maximum effective pressure can be estimated, above 

which time-lapse seismic surveys cannot differentiate the changes in resenroir 

conditions. 

Figure 6.25 Compaction curve of sandstones. The Vp and A1 percentage changes are the same as 
those in Figure 5.1 



Effective pressure is not equivalent to depth if formation pressure is not 

hydrostatic or sediments are not normally compacted. Their relationship can be 

expressed as follows: 

where D is the depth, Pd is the effective pressure, Sgd is the overburden 

pressure gradient and Pf-grd is the formation pressure gradient. In most cases, the 

overburden pressure gradient can be roughly estimated. So the relationship 

depends chiefly on the formation pressure gradient. If the formation pressure 

gradient is constant (say, hydrostatic or normal compaction), the depth and 

effective pressure are linearly correlated. In the section with overpressured 

zones, however, the formation pressure gradient varies and the depth is no 

longer uniquely related to effective pressure. Instead their correlation depends 

on formation pressure gradient. Figure 6.26 is the graphical representation of the 

change of the depth with the formation pressure gradient at a given effective 

pressure. The larger the formation pressure gradient is, the deeper the depth at 

which reservoir conditions can be monitored seismically. 

Now that effective pressure does not correspond to depth in many 

situations, the parameter 'depth' should be used with caution. The deep-situated 

reservoirs are not necessarily infeasible for time-lapse seismic surveys because 

effective pressure may be small due to the high formation pressure gradient. In 

the oilfields of the North Sea, the widespread abnormally high fluid pressure 

leads to low effective pressure and high porosity at great depths. At 2000 m, 

porosity is as high as 34%. Above 3000 m, porosity still maintains 24%. In the 

Gulf of Mexico, some sands buried at 6000m deep bear almost the same porosity 

as when they were deposited (Domenico, 1974). These reservoirs are good 

candidates for time-lapse seismic surveys despite deep depths. 



Figure 6.26 Change of the depth with the fluid pressure gradient at a given effective pressure (20 
MPa). Assume S* = 0.225 bar/m (2.3+103 kg/m3*9.8m/s2 /lm. 
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6.5 Discussion 

In terms of rock physics the most important changes due to hydrocarbon 

recovery are the pore aspect ratio spectrum (a description of pore shape and 

volume concentration) and the bulk modulus of the effective fluid. The variation 

of elastic moduli of rock solid is negligbly small. The change in pore aspect ratio 

spectrum is caused by the changes in pressure and temperature. The change in 

the bulk modulus of the effective fluid is due to the changes in saturation and 

pressure and temperature. 
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Effective pressure can change the pore aspect ratio spectrum either 

elastically or irreversibly. When the amount of change is not drastic, the opening 

or dosing of existent cracks occurs, leading to a change in dry elastic moduli. At 

high effective pressure, most cracks are closed and little change is expected in 

-25 



response to effective pressure change. In addition, at high porosity, effective 

pressure may not play as sigruficant a role due to the decreasing effect of cracks 

on elastic moduli. Therefore, the change in effective pressure strongly influences 

the dry elastic moduli only for reservoir rocks of low high porosity at low 

effective pressure. When the amount of change in effective pressure is 

substantial, the decrease may generate hydraulic fractures, greatly decreasing 

dry elastic moduli, and the increase may crush grains, decreasing porosity and 

consequently increasing dry elastic moduli considerably. This case is difficult to 

model. 

Temperature change can deaease or increase pore volume, which in turn 

modifies dry elastic moduli by a small amount. This is the situation most 

encountered in hydrocarbon recovery. But the large temperature increase such as 

steam injection may create cracks due to differential thermal expansion, 

tremendously decreasing dry elastic moduli. 

The bulk modulus of the effective fluid is affected by pressure, 

temperature and saturation. Pressure and temperature can cause phase changes 

and consequently changes in the fluid bulk modulus. Pressure and temperature 

also influence directly the fluid bulk modulus as shown in Figures 6.8,6.9, 6.10 

and 6.11. Fluid drive or flood can change saturations, which may be 

heterogeneously distributed on coarse scale (patchy saturation). It is noted that 

whether or not the change in the bulk modulus of the effective fluid has a 

significant effect on the fluid-saturated elastic moduli and velocities depend 

chiefly on the magnitude of dry elastic moduli as shown in Figure 6.3. The 

smaller the dry elastic moduli, the larger the change in velocity and acoustic 

impedance that will take place. 



When the effect of fluid substitution on Vp and AI is opposite to that of 

change in effective pressure, Vp and A1 can increase or decrease. In the range of 

low porosity and low effective pressure, Vp and A1 depend on the effect of 

effective pressure. At high porosity, Vp and A1 are generally determined by the 

impact of fluid substitution. 

6.6 Conclusions 

The feasibility of seismic monitoring of sandstone reservoirs depends 

chiefly on the magnitude of dry elastic moduli, the contrast in the fluid buk 

modulus, and the changes in pressure and temperature. The fluid density does 

not have a significant effect. The contrast in the fluid bulk modulus includes the 

effect of saturation, pressure and temperature. The good candidates for time- 

lapse seismic surveys are the reservoir rocks of low dry elastic moduli with a 

large fluid bulk modulus contrast, the reservoir rocks that undergo a large 

pressure change at low effective pressure, and those subject to a large 

temperature change. The sandstones of high porosity at low effective pressure 

are most suitable for seismic monitoring. They may be located at shallow or great 

depths depending on the fluid pressure gradient. In the absence of laboratory 

data, the method in the paper can be used to predict the change of Vp and A1 

with effective pressure and depth. 



CHAPTER 7 

FEASIBILITY OF SEISMIC MONITORING OF THE BLACKFOOT 
RESERVOIRS 

7.1 Introduction 

The Blackfoot reservoir is located southeast of Calgary. In the following, 

we investigate the potential for using time-lapse seismic surveys to infer changes 

in the pressure and fluid distribution within the resemoir due to production and 

injection. The goal of time-lapse surveys is to provide information useful to 

reservoir engineers in their production decisions. Since the Blackfoot reservoir is 

a representative of the glauconitic incised-valley system, the study also provides 

useful information as to the value of conducting time-lapse surveys over an 

important class of Alberta hydrocarbon reservoirs. 

The Blackfoot reservoir is an incised channel filled with porous cemented 

sand. In the area of interest (Figure 7.1), the reservoir consists of three cross 

cutting channels at an approximate depth of 1550 m below ground level (Dufour, 

et al., 1999). From top to bottom they are the upper channel, the lithic channel 

and the lower channel (Figure 7.2). The lithic channel is more cemented and 

pressure data indicate that it is a hydraulic barrier between the upper and lower 

channels. At the location of well 09-08, the thickness of the layers are 

approximately 25 m, 5 m and 12 m for the upper, Lithic and lower channels, 

respectively. The average porosity of the producing pools is approximately 0.20. 

The area of interest appears to be isolated from other reservoirs in the channel 

system by shale plugs to the north and south. 



7.2 Exploration and production history 

The first three-D seismic survey was conducted over the area in 1993. 

Subsequently, the discovery well 09-08 was drilled and it was first tested on 

August 31, 1994. The original pressure and temperature in the reservoir were 

11,770 KPa and 45.9 OC respectively. The interpretation is that the upper channel 

contained an oil leg of approximately 9 m underlying a gas cap of 16 m. The 

lower channel was interpreted as oil filled. Subsequently wells 08-08, 00/09-08, 

02/09-08 01-08, 16-05 and 09-05 were put on production. In December, 1994 the 

gas oil ratio (GOR) began to rise rapidly, indicating that the bubble point had 

been reached. Consequently, water injection was started in 08-08 in August, 1995 

with OO/O9-08,02/09-08 and 01-08 continuing as production wells. In November 

of 1995, a 3D3C seismic survey was completed over the area (Yang et al., 1996). 

At this time the pressure in the upper pool was 11474 KPa, but the lower pool 

pressure had been reduced to 8722.1 KPa. As production and injection continued, 

the upper pool maintained its pressure and the lower pool continued to dedine 

in pressure. Water breakthrough was not observed at the producing wells. 

Finally, a two-D seismic line was shot through the location of 09-08 in 1997 

(Stewart, et al., 1997). By September 28,1998, the pressure in the lower pool had 

declined to 6,046 KPa while the upper pool maintained a pressure of 

approximately 11,200 KPa. 



Figure 7.1. Blackfoot Reservoir Isopach (Courtesy of J. Dufour, PanCanadian Petroleum). 



Figure 7.2. North-south aoss section of Blackfoot reservoir showing lower channel (30), lithic 
channel (35) and upper channel (40) (courtesy of J. Dufour, PanCanadian Petroleum). 



7.3 Data acquisition 

In the previous chapter we discussed the feasibility of sandstones in a 

general sense with the dry elastic moduli obtained from the theoretical model 

and the fluid properties assumed from literature. In order to conduct feasibility 

study in an actual hydrocarbon reservoir, however, we need the accurate data of 

the dry elastic moduli and fluid properties from wherever they are available. In 

the following, we will deal with the acquisition of these data. 

7.3.1 Gas Measured values of the Blackfoot specific gravity of gas at standard 

conditions were not available, so the specific gravity of the Rodcyford upper 

Manville formation gas (0.786) was used as a surrogate (Galas, et al., 1995). The 

specific gravity of gas needs to be corrected for separator pressure and 

temperature. An assumed separator pressure of 689.5 KPa and an assumed 

temperature of 15.6"C were used with equation (1) from Vasquez and Beggs 

(1980) to obtain a corrected specific gravity of 0.772. The bulk modulus (KG) and 

density (pG) of the gas at specified reservoir pressures and reservoir temperature 

of 45.9 OC were estimated using equations 2.39-2.45 (in Chapter 2). 

73.2 Oil Three measurements of the Blackfoot oil yielded an average 37.0 * 

API (839.8 kg/m3 at standard conditions). The oil formation volume factor (Bo) 

and solution gas oil ratio (Rs) at selected reservoir pressures and temperature 

were provided by PanCanadian Petroleum (Table 6.2, Jacques Millette, pers. 

corn.). Equation 2.31 for an undersaturated oil is used to compute the 

compressibility and bulk modulus (KO). The density of the oil at reservoir 

conditions (pJ is derived from mass balance: 



where p,'td and are the densities of gas and oil at standard conditions (also 

see equation 2.34). Results are found in Table 7.1. 

7.3.3 Water The connate water salinity is approximately 25,000 ppm 

(Galas, 1995). Water density (pw) was approximated using equations 2.28 and 

2.29. The water bulk modulus (Kw) was  approximated using equations 2.25-2.27 

and Table 2.2. Results are found in Table 7.1. 

Table 7.1 Fluid properties 

Table 7.2 PVT values 

Pressure 
m a )  

11830 
11200 
6046 

KG 
(Gpa) 

0.0213 
0.0196 
0.0089 

Pressure 
P a )  
11830 
11200 
6046 

Bo 
(Rm3/Sm3) 
1.1876 
11786 
10917 

PG 

(Kg/rn3) 

143 
134 
64.8 

Rs 
(Rm3/Sm3) 

71.2 
67.6 
32.16 

Kw 
(Gpa) 

- 2.53 
2.53 
2.49 

KO 
(Gpa) 

0.565 
0.562 
0.0606 

Pw 
(Kg/m3) 

1011 
1011 
1009 

Po 

(Kg/m3) 

764 
768 
798 



7.3.4 Fluid Mixhue Properties In general, gas, oil and water will exist in the 

pore spaces with saturations Sc, So and Sw, respectively. The mixture of fluids 

can be viewed as an effective fluid in terms of their collective effect on the elastic 

properties of the fluid-saturated rock. The density of the effective fluid was 

calculated as the volume-weighted average using the in situ density of gas, oil 

and water. The bulk modulus of the effective fluid depends on the details of the 

fluid distribution. Before production, it is calculated with the isostress model or 

the harmonic averaging of the fluid bulk moduli. After fluid drive or flooding, it 

is calculated with the isostrain model, or the arithmetic averaging. 

7.3.5 Porosity Porosity was estimated using core and well log data from 

08-08. A full  waveform sonic log and a density log were run on October 1,1996 

(check date). The average density of the solid grains as determined from core 

data is 2.65 gm/an3. The assumed fluid saturations are %=0.75 and Sw=0.25 in 

the gas zone of the upper channel, So=0.75 and Sw=0.25 in the oil zone of the 

upper channel and So=0.75 and Sw=0.25 in the lower channel. The porosity at 

each point of the density log was calculated as follows: 

where p, is the solid grain density derived from core measurements, pr is the 

density of the effective fluid and p, is the density from the well log. 

7.3.6 Dry elastic moduli The undrained elastic moduli were obtained from the 

full wave form compressional and shear wave velocities and the bulk density 

derived from 08-08 density logs. The solid bulk modulus (Ks) is assumed to be 40 

GPa, a typical value for quartz. Given the known values, the dry bulk modulus 

was estimated by solving the Gassmann equation as follow: 



where & is the dry bulk modulus, K, is the undrained bulk modulus, $ is 

porosity, Ks is the bulk modulus of rock solid, Kt is the bulk modulus of the 

effective fluid. The dry shear modulus is considered to be equal to the undrained 

shear modulus because the fluid effect can be neglected. 

7*3.7 Change of dry elastic moduli with effective pressure The dry 
elastic moduli increase with inaeasing effective pressure. Zhang and Bentley 

(1999), based on the seventy-five sandstone samples from Han et al. (1986), 

developed the exponential function to express the relationship between the rate 

of change of dry elastic moduli and effective pressure. The average case for these 

samples could be modelled as: 

where Kd and are the dry bulk and shear moduli respectively in GPa and P is 

effective pressure in MPa. 

7*4 Scenarios for computation of seismic responses 

Three scenarios will be compared (Figure 7.3). The first scenario 

represents the original conditions in the reservoir. The upper channel has a gas 

zone and an oil zone. The lower channel has an oil zone. Scenario 2 represents 

condition in November, 1995 away from the water flood zone. The lower channel 



has reached bubble point, and now contains all three fluid phases, gas, water and 

oil. Gas and oil saturations were computed from production data and mass 

balance given estimated reservoir volume. Water is at residual saturation. The 

upper channel is assumed to have no change in saturation or gas-oil contact 

location, but the density and bulk modulus have bee corrected for change in 

pressure. The dry moduli have been corrected for effective pressure changes. 

Scenario 3 represents conditions in November, 1995 in the water flood zone. 

Since pressure has not been maintained in the lower channel, we assume that no 

water is in this zone. The zone is assumed to have the same conditions as in the 

area away from the water flood, that is a mixture of gas, oil and water. Within 

the upper channel in the water flood zone, we assume that water has displaced 

gas and oil to residual saturations of %=0.3 and So=0.25, respectively. Densities 

and dry moduli have been corrected for changes in fluid pressure and effective 

pressure. 
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Figure 7.3 Reservoir condition scenarios used in computation of seismic responses 

7.5 Synthetic seismograms 

The velocities and acoustic impedance of three scenarios were computed 

for synthetic seismograms. Figure 7.4 shows the comparison of synthetic 

seismograms calculated for the original conditions versus scenario 3, in the water 

flood zone. NMO corrected shot gathers for the original conditions, water flood 

conditions and their differences are displayed. In addition, trace one of the 



original condition shot gather is plotted against trace one of the difference plot. 

In this case, a large percentage change in the trace amplitude is aeated by the 

change in conditions. In addition, there is a noticeable difference in the AVO 

response between original and water flood responses. 

Figure 7.4. Comparison of a NMO corrected synthetic shot gather seismogram of the original 
reservoir conditions with that of post-production inside of the water flood area. In the lower 
portion of the figure, trace one of the original response is plotted with trace one of the difference. 

Figure 7.5 shows the difference between original conditions and the post- 

production conditions outside of the water flood area. The change in response is 



not as great as within the water flood area. Also, the character of the AVO 

response change is different. Although reduced, the proportional change in the 

response of trace one is sigmficant. 

Figures 7.6 show the difference in response for areas within and outside 

the water flood zone. The results indicate that a reasonably strong difference 

should exist between the two areas. 

Figure 7.5 Comparison of synthetic seismogram of the original reservoir conditions with post- 
production conditions outside of the water flood zone. In the lower portion of the figure, trace 
one of the original response is plotted with trace one of the difference. 



7.6 Difference Between 1995 and 1997 Surveys 

The 1997,2D3C high-resolution line was shot across the location of well 

00/09-08. A line was extracted from the 1995 3D-3C data volume that was 

contiguous with the location of the 1997 2D3C high-resolution line. A match 

filter was applied to the 2D3C data. The match-filtered output was subtracted 

from the extracted line from the 1995 3D-3C data volume and the results are 

shown in Figure 7.7. Several anomalies of the same magnitude exist, but the 

largest anomaly on the section is in the Blackfoot reservoir zone. The cause of the 

difference in seismic response is unclear. Water has not been produced from 

00/09-08, indicating that the water flood front had not arrived at the well 

location. By the time of the 1995 survey, the lower reservoir had already reached 

the bubble point, so gas would be present in the lower reservoir during the 

acquisition of both surveys. Pressure was maintained in the upper reservoir 

during the interval between the surveys. One difference between the smeys is 

that the pressure in the lower reservoir had declined between 1995 and 1997. An 

explanation for the differences between the surveys and an analysis on whether 

or not the seismic response differences are significant remain issues for future 

work. However, the fact that an apparently observable change in seismic 

response is located in a region where the reservoir conditions had not changed 

drama tically is encouraging. 



Figure 7.6 Comparison of  synthetic seismogram of outside the water flood with inside the water flood 

zone. 

7.7 Conclusions 

Three scenarios of fluid and pressure distribution within the Blackfoot 

reservoir have been tested for differences in seismic response. Synthetic shot 

gathers were generated for each scenario and were compared. The predicted 

changes in seismic response were si@cant. The actual change in seismic 

response may be equally significant. The seismic response of the 1997 2D3C was 

compared with a contiguous line extracted from the 1995 3D-3C seismic data 



volume. Only moderate changes in the reservoir pressure were expected. 

Nevertheless, the largest change in the difference section is found at the location 

of the Blackfoot reservoir zone. The change is only slightly larger than some 

other changes in the difference section, but the results are encouraging, given the 

moderate change in the reservoir conditions. The results indicate that small to 

moderate changes in the seismic response would be observed in time-lapse 

seismic monitoring of the Blackfoot reservoir. The results also indicate that the 

water flood zone would be seismically distinct from the non-water flood areas. 

Figure 7.7 Difference Section. The left section was extracted from the 1995 3D-3C seismic data 
volume across the same location of the 1997 2D-3C seismic survey. The 1997 match filter profile is 
shown to the right. The difference between the two sections is shown in the center. The highest 
amplitude anomaly is located in the Blackfoot reservoir zone. 



CHAPTER 8 

CONCLUSIONS 

Pore geometry is the major factor to influence the elastic moduli of rocks. 

The compressibility of cracks is enormously larger than that of spherical pores. 

Consequently, cracks may decrease the elastic moduli substantially in spite of 

being small in volume. Another factor is the elastic moduli of rock solid. The 

effect depends chiefly on the amount of minerals of low elastic moduli such as 

clay. Note that the elastic moduli of rock solid are less affected by pressure and 

temperahue. The bulk modulus of the pore fluid can increase the elastic moduli 

of the fluid-saturated rock considerably, especially at high frequencies. 

It is found from the pore aspect ratio spectra obtained fiom the inverse KT 

modelling of ninety-seven sandstone samples that the concentration of round 

pores is in direct proportion to porosity while that of cracks, despite being very 

small, vary among individual samples. The uncertainty in the elastic moduli for a 

given porosity can be attributed chiefly to that in the crack concentration. It is 

also discovered that the deaeasing effect of cracks on the elastic moduli with 

increasing porosity. 

In terms of rock physics the most important changes due to hydrocarbon 

recovery are the pore geometry and the fluid bulk modulus. The change in pore 

geometry is caused by the changes in pressure and temperature. The change in 

the fluid bulk modulus is due to the changes in saturation and pressure and 

temperature. 

Effective pressure can dose or open cracks and affect the elastic moduli. 

At high effective pressure, most cracks are dosed and no much change in the 



elastic moduli occurs. At high porosity, the opening or dosing of aa& does not 

affect the elastic moduli appreciably because of the decreased effect of aadcs on 

the elastic moduli. 

Temperature change can decrease or increase pore volume, which in turn 

modifies the elastic moduli by a small amount. This is the situation most 

encountered in hydrocarbon recovery. But the large temperature increase such as 

steam injection may create cracks due to differential thermal expansion, 

tremendously decreasing the elastic moduli. 

The fluid bulk modulus is affected by pressure, temperature and 

saturation. Pressure and temperature can cause phase changes, and can also 

influence the fluid bulk modulus directly. Fluid drive or flood can change 

saturations, which may be heterogeneously distributed on coarse scale. 

However, the effect of the pore fluid on the elastic moduli of the fluid-saturated 

rocks is generally limited to the rocks of low dry elastic moduli. This implies it is 

signihcant for rocks of high porosity at low effective pressure. 

The good candidates for time-lapse seismic surveys are the reservoir rocks 

of low dry elastic moduli with a large fluid bulk modulus contrast, the reservoir 

rocks that undergo a large pressure change at low effective pressure, and those 

subject to a large temperature change. The sandstones of high porosity at low 

effective pressure, which may be located at shallow or great depths depending 

on the fl~d pressure gradient, are most suitable for seismic monitoring. The 

Blackfoot oilfield, due to high effective pressure and not high porosity, is 

marginally feasible for seismic monitoring. 
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APPENDIX A 

Compressibility of the rock with spherical pores and cracks 

First we consider the simple case of dilute concentration of spherical 

pores. W e  assume numerous regions can be divided, each having one pore with 

the same porosity. Pressure at any point at the boundary between these regions 

equals the external pressure dP due to the great distance between pores. The 

tangential stress (GO) and strain (Q) at the boundary of a spherical pore is (Walsh, 

1965): 

where v, and Es are Poisson' s ratio and Young' s modulus of rock solid, vp and 

v are the volume of the spherical pore and the volume of the region containing 

the pore. Since the perimeter of a circle is in direction proportion to the radius, 

(ratio of the change of the perimeter to the perimeter) is equal to dr/r (r is the 

radius), which is (dvp /vp)/3. So dvp /vp = 3%. Thus, 

Dividing two sides of equation A.3 by vdP/vp gives 



If dvp is small, dv,/v is equal to d+. So equation A4 is reformulated as: 

Since Cs = 3(1-2vs) / Es (Sheriff, 1984), equation A.5 can be rewritten as: 

Substituting equation A.6 into equation 2.19 (in Chapter 2) results in: 

We invert equation A.7 to find the expression for the effective bulk 

modulus: 



Since v, = (3Ks2fi)/[2(3Ks+ps)] (Sheriff, 1984), the equation A.8 is: 

In the case of dilute concentration of narrow cracks, we have the same 

assumption as that for spherical pores. Equation 2-18 (in Chapter 2) are 

rearranged as follows: 

C = Cs-l/VdVp/dP 

= (CsVPdP - PdVp) / (VPdP) 

or, for a single region, 

C = (C,vPdP - PdvP) / (vPdP) A.11 

The first term in the numerator on the right-hand side of equation A.11 is 

the strain energy associated with the region if there is no aadc, and the second 

term is the increase in strain energy dw, due to the cracks. Following the 

approach of Sack (1946), Walsh (1965) derived dwp for the penny-shaped aadc of 

half length c for a single region as: 

16(1- vS2)c' 
dw, = C, PdP 

9(1- 2vS) 



The total strain energy dWp due to all aadcs is found by summing the 

values dwp in equation A.12 over the total number of regions N: 

Substituting A.13, which is -dWp due to dVp being negative, into A.10 

leads to: 

If we define an average half crack Length cave, where N 6 v e 3  = XS and an 

average region volume vave, where Nv., = V, A.14 can be rewritten as: 



APPENDIX B 

Isothermal compressibility of gas 

The gas equation of state is: 

where P, V, T are pressure, volume and absolute temperature respectively, R is 

the universal gas constant, n is the mole number, Z is the compressibility factor 

or gas deviation factor. Z is defined as the ratio of the volume actually occupied 

by a gas at given pressure and temperature to the volume the gas would occupy 

at the same pressure and temperature if it behaved like an ideal gas. The 

isothermal compressibility of gas is: 

Differentiating equation B.l with respect to pressure: 

Substituting equation 8.3 into B.2 gives: 



APPENDIX C 

Derivation of the Gassmann's equation 

Consider a representative volume element (V) subject to an external 

hydrostatic pressure (dP), which is supported by the fluid (dPf) and the rock 

frame (dPef f )  on the solid framework. In the process of deformation, the fluid are 

assumed not to moss the element boundary. According to the definition of 

compressibility of the fluid-saturated rock, we can write 

where C is the compressibility. The volume change (4V) has three components, 

i.e., the volume change of fluid due to the fluid pressure [Cf(+V)dPf] , the volume 

change of the rock solid due to the fluid pressure [Cs(l-+)V dPf] and the volume 

change of the rock solid due to the effective pressure (CsVdPe). The first two 

components are understandable, and the third component is not direct but can 

be proved (see Appendix D for derivation). Thus, 

where Cf and C ,  are the compressibilities of fluids and rock solid respectively. 

Alternatively, the volume change (-dV) can be divided into two parts, the 

one due to the effective pressure (CdvdPeff) and the other due to the fluid 

pressure (C,VdPf). The first is the definition of dry buk modulus. The latter is 

the change of the bulk volume when dPf is applied on the volume element. The 



application of hydrostatic pressure dPt on the volume element results in the 

uniform hydrostatic pressure of magnitude dPt throughout the rock solid 

(matrix). Consequently a uniform dilatation throughout the whole rock solid 

occurs (Geertsma, 1957). This state of stress and strain is exactly the same as that 

which would occur if the pores were hypothetically filled up with rock solid 

materials and the boundary conditions on the outer surface were left unchanged 

(Z immm, 1991). This leads to the bulk volume change equal to CoVdPr. Thus, 

where Cd is the compressibility of the solid framework. Solve dPtand dPeff from 

equations C.2 and C.3: 

Note dP=dPf+dPd. Substituting equations C.4 and C.5 into C.1 and 

reorganizing it result in: 

1 -= dP 
C (-dV/V) 

Rewrite equation C.6 in terms of the bulk moduli (Kf, Ks, Kd) of the fluids 

the rock solid and the solid framework: 



C 7 is the Gassmann' s equation. 



APPENDIX D 

The effect of effective pressure on the volume change of rock solid 

First, define the bulk and pore compressibilities as foIlows (Zimmerman, 

1991): 

where V and V, are the b u k  volume and the pore volume, respectively, P is the 

fluid pressure and S is the total stress. 

According to the principle of superposition, an infinitesimal change 

in stress can be resolved into two components. Consequently, the strain is also 

the sum. When [dS, dP} (dS=dP assumed) is applied, the bulk volume change is: 

where Cs is the compressibility of rock solid. 

(dS, clP) can be separated into [dS, 0) and (0, dP), which, according to 

equation D.l and D.2, have the volume changes respectively: 



Equating equation D.4 and equation D5 plus equation D.6 gives: 

CpVdS=CbsVdS+CbpVdP 

ia., Cbp=CbsCs 0.7 

The buIk compressibility (Cbp) can be related to the pore compressibility 

(C,) through use of the Betti reciprocal theorem of elasticity (Sokolnikoff, 1956; 

Zimmerman, 1991). This theorem states that if an elastic body is acted upon by 

two sets of forces, say F1 and F2, the work done by F1 acting through the 

displacement due to F2 will exactly equal the work done by F2 acting through 

the displacement due to F1. Applying the theorem to the two sets of forces {O,dP} 

and {dS,O}, the work done by the first set of force acting through the 

displacement due to F2 and the work done by the second set of force acting 

through the displacement due to Fl are: 

Equating equation D.8 and equation D.9 gives: 

Substituting equation D.10 into equation D.7 resdh in: 

Equation D.ll can be reorganized as: 



Equation D.12 indicates the volume change of rock solid (dVs) due to 

effective pressure is CsVdPeff (dS=dPeff). 



APPENDIX E 

Effective bulk modulus of the fluid mixture due to patchy 

saturation 

Suppose that the fluids (oil, gas and water) are well separated in space 

with patch sizes significantly larger than the critical diffusion length LC (L = 

( I c K r / f r l ) O 5 ,  K is the permeability, r) and Kr are the viscosity and bulk modulus of 

the most viscous fluid phase, f is the seismic frequency) and their average 

saturations are So, SS, S,. In the case of the constant shear modulus over all 

patches, the P-wave modulus is a harmonic averaging of the P-wave moduli of 

these patches, written as (Hill, 1963; after Mavko and Mukerji, 1998): 

where the operator c > refers to a volume average. 

The Gassmann' s equation for a single patch with a single phase of fluid 

can be expressed as (after Mavko and Mukerji, 1998): 



where 4, = 4 / (1 - K d  / &). If Kt cc &, E.2 can be approximated as: 

Substituting equation E.3 into equation E.1 results in: 

By inverting E.4, we obtain: 

If Kg KO, Kw << (Kd + 4/3p), equation E.5 can be reorganized as: 



@ (K, + 4/3jf) + - K, 
K 

where <Kr> is an arithmetic averaging of the bulk moduli of fluids. Equations E.3 

and E.6 indicate that for completely separated fluid phases, the volume weighted 

arithmetic average of the fluid phases is the appropriate fluid bulk modulus for 

the Gassmann's equation. 



APPENDIX F 

The parameters for the KT equations 

where 






