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ABSTRACT

Six scenarios of flow data have been captured for the former Canada Creosote site
over several years. Six corresponding MODFLOW steady state numerical models for the
site have been constructed to analyse the data.

A new, automated sequential optimization procedure has been developed to
maximize the usage of the information in the scenarios so as to reach a common set of
optimized transmissivities for the model zones. The procedure controls the variances, and
minimizes the overall residuals’ sums of squares of the lack of fit. An application of
industrial optimization concepts enables well-conditioned matrices to be formed by the
use of variable weights in the optimization. The optimized values produce lower residuals
than the existing “expert input” from hydrogeologists.

Different optimized quantities with unlike units and magnitudes are compared by

arrm FAVVONIAN

the use of a new measure named weighted optimized non-dimensicnal norm (WONN).
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1.0 Introduction

The former Canada Creosote site (Figure 1.1-site plan) is located adjacent to the
south bank of the Bow River on the western edge of downtown Calgary, and covers an
area of approximately 18 hectares. Wood preserving operations at the site occurred over a
period of approximately 38 years from 1924 to 1962, and involved the use of tars,
creosote and petroleum oils. Pentachlorophenol was used during the 1950s.

The site is underlain by sand and gravel fill (1 to 6.7m thick) and alluvial sands
and gravels (1 to 5 m thick). Bedrock typically occurs at a depth of 6 to 9m and is
comprised of sandstone and shales. The water table occurs at a depth of 4 to 7m below
ground surface, and is situated within the alluvial sands and gravels. The groundwater
flows towards the river. Investigations at the site initiated by Alberta Environment in
1988 to assess the orphaned site showed that the major form of contamination beneath the
site is free creosote that occurs as a pool within the alluvial sands and gravels that infills a
depression in the bedrock surface. This pool lies below the water table, encompasses an
area of approximately 31,000 m”, and is estimated to contain 4750 m> of creosote.
(Golder Associates Ltd, 1990)

To minimize contaminant loading to the Bow River from the site, a groundwater
contaminant control system is installed at the site. The components of the system include
a partially enclosing bentonite slurry and secant pile wall, a set of clean water and dirty
water pumping wells and a dirty water treatment plant. The wall is designed as a physical
barrier to the direct flow of creosote related nonaqueous phase liquids. The clean and
dirty water pumping wells are to control the groundwater mounding behind the wall
which would otherwise drive the dissolved phase of the contaminants around the ends of
the wall or beneath it through the bedrock (CH2M G&S 1997). The clean water pumping
wells are to intercept the inflow of groundwater into the creosote area, so as to minimize
the amount of water flowing through the creosote plume area. The dirty water pumping
wells are to stop the dissolved phase of the creosote from leaving the containment area.

The dirty water will be treated to extract the dissolved creosote before the cleaned water
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4
is released back to the environment. The free creosote is slowly being extracted as well,

in small quantities, as the economics of creosote disposal become more attractive.

To support the development of an effective groundwater management strategy,
CH2M Gore & Storrie Limited developed a groundwater flow model for the site on
behalf of Alberta Environmental Protection. The model was developed to provide the site
manager with a reliable decision support tool with which to assess current and future
pumping scenarios (Figure 1.2). The United States Geological Survey model MODFLOW
was selected as the primary groundwater flow model, and model design and post-
processing was done with Visual Modflow by Waterloo Hydrogeologic Software Ltd.
Model calibration and validation are reported ( CH2M G&S 1996 ). Since the report,
more measurements have been made and additional measuring stations installed.

The northern boundary of the model is the Bow River. The boundary is modelled
by fixing the river elevation reference to a measured level in a monitoring well directly
adjacent to the river. This level is projected up and down stream at a gradient of .002. The
southern boundary corresponds to the southern escarpment of the Bow River floodplain.
A single constant value of 1050.3m above sea level is chosen as the fixed hydraulic head
of this boundary. The bottom boundary is impermeable bedrock, and the east and west
boundary of the model domain are modelled by no flow cells.

For studies performed todate, recharge into the region is regarded as a second
order process, and its magnitude for the simulation is zero. A value of 0.15 is chosen for
the specific yield of the region, and 1e-6 is chosen for specific storage.

The model is divided into regions or zones of constant hydraulic parameters.
These zones have been adjusted in calibration procedure and are shown in Figure 1.3.
Hydraulic transmissivities are extremely difficult to measure in the field, and the
determination of the transmissivities to use in the zones is a time consuming process.
Efforts are made to derive the proper values from geological information of the site and
pumping tests results. Then these values have to be modified in calibration procedure
based on measurements. After the calibration, the model predictions to new events at the

site have been reported to be satisfactory (CH2M G&S 1997).
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1.1 Model calibration

The computer model calibration and validation against monitoring well

measurements has been described in the 1996 CH2M G&S report. Some of the

assumptions of the model include:

- Recharge is not included in the model

- Storage values are not used in steady state simulations

The state of the groundwater level at the site can be broadly classified into a high
level and a low level due to the different river stages in the summer and winter. During
these two states it is assumed that the water level does not change significantly. Thus
steady state simulations are appropriate. The present study does not deal with the transient
states in between the high and the low levels, and events during ice-jam situations. Ice
jam may cause the river level to rise during low flow conditions. The rise in river level
may occur in a relatively short time (within hours) and may cause water to flow into the
contaminated area from the river. Such an occurrence is not a steady state but a transient
event.

Six sets of head measurements for the steady state scenarios have been provided
for use in this present study. They are:

a. Scenario 1 or Scenl, May 1993: natural site conditions where river stage is high due
to spring flood, and site groundwater elevations are high due to spring recharge. This
is called the pre-wall, high season scenario with no wells pumping.

b. Scenario 2 or Scen2, September 1992: site conditions where river stage is low and
groundwater elevations are at or near seasonal lows. This is the pre-wall, low season
scenario, no wells pumping

c. Scenario 3 or Scen3, June 1995: High river stage season after the wall was finished.
This is the postwall, high season scenario with no pumping wells

d. Scenario 4 or Scen4, December, 1995: Low river stage season 8 months after the wall

was installed. This is the post wall low season scenario no wells pumping



7
e. Scenario 5 or Scen5, Junel7 1997: High river stage season after the wall was installed

and clean and dirty wells are pumping. This is the post wall, with wells high season
scenario
f. Scenario 6 or Scen6, October , 1996: Low river stage season after wall was finished

with the wells pumping. This is the post wall with wells, low season scenario.

The hydraulic head measurement well location for each scenario, and the clean
water and dirty water pump well locations for the last two scenarios are shown in a series
of 6 maps, figures 1.4a to 1.4f, each corresponding to a scenario.

These head measurements, together with model domain grid information,
boundary conditions, and transmissivity values obtained from calibration against the head
measurements for the zones in the domain, are provided by CH2ZMG&S for this study.

The models are used with the Visual Modflow pre and post processors. They have
been converted for use with a different pre- and post-processing set of programs called
Groundwater Vistas for this present study. Groundwater Vistas is a product by James and
Douglas Rambaugh of Environmental Simulations Inc., of Herndon, Virginia. Figure 1.5
shows a sample of Groundwater Vistas output of hydraulic head contour map with flow

direction arrows for scenario 5.

1.2 Review of Inverse Modelling, Parameter Estimation and Optimization with
Prior Information and Weights

To obtain a good fit between measured head data and computed results from flow
models such as MODFLOW, the model parameters, such as hydraulic conductivity, are
calibrated against the observed head data. The method of calibration used is manual and
labour intensive. This thesis presents a methodology to automatically calibrate system
parameters of hydraulic conductivity (Carrera and Neuman, 1986a) for the scenarios of
the Canada Creosote site.

Parameters such as hydraulic conductivity or vertically averaged transmissivity

tensors are constitutive variables, and as such should be calculated, as oppose to field
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15
variables (eg hydraulic heads) which are measured (Cushman, 1986). To calculate the

parameters from measured head data, inverse modelling is used. Inverse modelling
proceeds in a direction opposite to that of forward modelling.

In forward modelling of subsurface flow, the spatial and temporal distribution of
hydraulic heads of a modelled area is defined by function F of parameters p;(x), that is,
h(x,t) = F(pi(x)), where p; can include parameters such as conductivity or transmissivity
(Carrera and Neuman, 1986b). Inverse modelling, on the other hand, calculates the
parameters from head distributions, that is, pi(x) = Ri(h(x,t)). The traditional formulation
of the steady state Cauchy problem for groundwater flow in mathematical physics gives
R; =F", and the solution of the inverse modelling for the parameters depends on how
well-posed the problem is. In the context of classical mathematical physics, the solution
to the inverse modelling problem depends on whether the parameters are identifiable,
unique, and stable: For the classical problem the solution is unique if and only if the
parameters are identifiable. (Carrera and Neuman, 1986b).

The inverse modelling technique in this thesis takes the indirect approach
(Neuman and Yakowitz, 1979) . The indirect approach minimizes head residuals between
the measurements and the modelled results. The classical solution technique is no longer
used here, and hence the parameter identifiability and uniqueness may or may not be
related. The three properties of the parameters can all be associated with the ill-
conditioned matrices assembled for the problem, and can be explained thus (Carrera and

Neuman, 1986b):

Identifiable parameter: indicated by the rank of the Jacobian matrix being equal to the

number of decision variables or parameters to be found;

Unique Parameter: Hessian matrix is positive definite, or the objective function is convex
within the domain of definition of parameters. It is difficult to ensure a global minimum
for the objective function so that there is global parameter uniqueness. However, when
prior information restricts the solution to a minimum in its neighbourhood, the solution is

acceptable even without the assurance of a global minimum. Prior information on the

15
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Parameters is prior knowledge gained through the modellers’ experience, judgment or

existing measurements.

Stability: Small changes in head data gives large oscillations in parameter estimates. This
is especially true if the data is noisy and the Jacobian matrix is ill-conditioned. An
eigenvalue analysis will illustrate this point in subsequent section of this thesis. Instability
is sometimes unavoidable in the analysis, but meaningful results can still be obtained by

reducing the dimensionality of the parameter space.

These considerations will be relevant to indirect inverse modelling, and will be
discussed as they arise. In particular, more recent papers outline assessment methods to
quantify parameter identifiability in inverse modelling (Speed and Ahlfeld, 1996) by the
use of the raw coefficient of varjation. Classical applied analyses enable the assessment of
the noise and instability problem by using the eigenvalue methods (Lanczos, 1964).

Other considerations affecting the effectiveness of the inverse modelling of
parameter estimation are related to the scale of the head measurements and prior
information as compared to that of the model (Ginn and Cushman, 1990). Scale
incompatibility is an issue that has to be addressed by modellers.

_ Also incompatible are the different types of residuals in the objective function in
Carrera and Neuman (1986a), consisting of head residual and parameter prior information
residuals. These residuals have different units and are kept separate from each other in
augmented matrices. The program PEST (see section 1.3) adopts the same separation of
the residuals in inverse modelling. In spite of the fact that these residuals are
incommensurate, an overall minimum is obtained for the residuals at the optimal point.
This study proposes a special non-dimensional measure for different types of optimized
quantities with dissimilar units (including head residuals and parameter uncertainties), to
facilitate comparison for decision making.

Finally, much research effort in parameter estimation by inverse modelling in the
subsurface flow has been spent in identifying the nature and the statistical structure of the

errors and numerical algorithms, with little apparent transfer of technology from other
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fields of study (such as engineering), which use very similar techniques in optimization.

The recent papers on the use of factor space analysis in groundwater applications utilized
some of the response surface analysis concepts (Weiss and Smith, 1998a,b). This type of
work could prove to be fruitful.

In this thesis, well established techniques in experimental design such as the
analysis of variance (ANOVA), and manufacturing optimization strategies used by
Genichi Taguchi and other engineers (see for example, Roy, 1990) are applied to the data
analyses. Results generated quantitatively demonstrate improvements over the “expert
input”, in the overall minimization of residuals in the optimization of the scenarios.
Scaling of optimized measures could be used to compare different criteria for decision

making purposes.
1.3 The purposes of the present study

As has been explained in the last section, hydraulic transmissivities are parameters
that are difficult to measure in the field. By the use of computers and automated
techniques, this study attempts to obtain a set of groundwater flow parameters such as
hydraulic transmissivities, thrbugh the use of optimization technique and indirect inverse
modelling methodology for the Canada Creosote site in Calgary, Alberta.

The method to optimize transmissivities with the help of numerical models is to
form an objective function with the residual between the hydraulic heads measured at the
monitoring wells and the computer model output. The value of the objective function is
then minimized by the use of some methodology, such as the Gauss-Newton technique.
The optimum hydraulic transmissivities are found when a global minimum is reached for
the objective function. The theory of this technique is well documented (Cooley and Naff,
1990, Chauvent, 1991). Other relevant statistical techniques can be applied to the
analyses to give a measure of uncertainty to the numerical results. Numerous applications
of these techniques to groundwater flow applications can be found in the literature

(Neuman and Yakowitz, 1979, Yeh, 1986, Cooley, 1977, just to name a few).
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The numerical package used in this study for optimization using the result of

MODFLOW is the Parameter Estimating software from Watermark Computing (1994),
- called PEST. This program can be run in conjunction with Groundwater Vistas, and
allows the use of weighted prior information for the parameters. Weights for the
measurements are also allowed. The use of prior information for the parameters is to
reduce the parameter uncertainty, but at the expense of the model fit (Yeh, 1986, page
106). The “proper” use of weights for both the prior information and the measurements
will enhance the parameter estimates.

Herein lies a special challenge for this study. The existence of six scenarios with
different monitoring well locations and boundary conditions presents a unique
opportunity for parameter estimation, which are constitutive variables of the groundwater
flow governing equations, and should be the same for all scenarios of the same spatial
region.

One of the main objectives of the study is to devise a methodology to optimize the
six scenarios in sequence by using different head and prior information weighting
methods to achieve minimum overall head residuals. This sequential optimization will

also have several benefits over single optimizations:

a) The uncertainty of parameters can be reduced simultaneously as the lack of fit between

model output and measurements is minimized.

b) The parameter prior information is generated from one sequential step to another,
based on head data from observation wells and scenario numerical models of the same

region. The problem due to incompatible scale (Ginn and Cushman, 1990) is minimized.

¢) There is room for technical innovation. Concepts from manufacturing optimization can
be adopted. Industrial process optimization has two components - one is the search for the
optimal point, the other, which is just as important, is to minimize the variance of the

process (Taylor, 1991). While the exact mechanics of factory-style minimization of
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process variance is not possible in groundwater applications, the concept can certainly be
transferred. The coefficient of variation method to determine parameter identifiability
(Speed and Ahlfeld, 1996 ), is refined here by specifying and controlling the parameter
standard deviation. A variance control variable weighting method is used in a new

sequential optimization process. All are developed and used in this study.

d) Decision support: The different scenarios are modelled with different number of zones
of transmissivity. With the use of sequential optimization a model choice can be made
with the comparison of “norm” measures of selected optimization criteria that can best

represent the modellers’ wants and needs.

v - <~ o322 1 I TP UIE S o8 AP Y.~
1e resul the sequential cptimization will be compared with the resulis from

the manual calibration performed by expert hydrogeologists.
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2.0 The Process of Parameter Estimation

This section details some of the background, the mathematics and the
optimization techniques used in the program PEST™ or Parameter Estimation, a model
independent parameter estimation algorithm produced by Watermark Computing, 1994.
PEST is based on the Gauss-Levenberg-Marquardt procedure. The least squares method
as applied to the indirect inverse modelling technique in groundwater hydrology is
explained in the first subsection 2.1. The use of prior information and weights as they
relate to the sequential optimization process, and the concepts of penalty function and the
optimization process, Lagrange multipliers, the canonical convergence ratio, eigenvalue,
eigenvector and noise analyses, are explained in sections 2.2,2.3. Section 2.3.1 contains
a discussion of the penalty function and the associated eigenvalue analyses. The
similarities between techniques used in optimization and experimental design are

explained in section 2.4 as well as the use of ANCVA to examine the optimized results.

2.1 The least squares method in inverse modelling

The groundwater hydraulic head distribution at the former Canada Creosote site is
monitored by a number of observation wells, at which the water level or hydraulic heads
are measured. These measurements are made on a continuous basis throughout the year.
The northern boundary of the numerical model is the Bow river, and is modelled as a
fixed head boundary (see Figure 2.1). The southern boundary, corresponding to the
southern escarpment of the Bow River floodplain, is a fixed head boundary as well, the
constant value of which is based on previously calibrated results (CH2MG&S 1997
report). The concept of the numerical model of the groundwater flow at the former
Canada Creosote site can be described by a general relationship of indirect inverse
modelling ( section 1.2):

Measured hydraulic heads = (Transfer or mapping matrix) (site parameters-

transmissivities)
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Which relates “n” measurements of heads to “p” parameters of transmissivities.

Based on a model of the groundwater system with linear parameters, matrix
equations between the heads and the parameters are as shown (page 51, Cooley and Naff,
1990):

Y=XB)+¢ 2.1)

Where X is a sensitivity matrix of n rows and p columns, each value of X is the system
response to a unit change in the parameter,
B is a vector of true system parameters, dimensioned pbyl,
Y is a vector of independent variable of hydraulic heads, dimensioned n by 1,
€ is the true error or disturbance vector of the model of dimension n by 1:
the true error is random, and thus it represents the stochastic part of the model.
n is the number of measurements or observations,

p is the number of parameters or factors (transmissivity) to be optimized.

For this study, the system parameters of interest are the hydraulic transmissivities
c;)ntained in the vector B, and the true system errors in the vector €, both of which are
unknown. However, the mathematical description of the groundwater flow physics
through the use of the system of programs MODFLOW provides information to the
sensitivity matrix X, and measurements from observation wells at the site constitute the
entries into the dependent variable vector Y.

If estimates of B and € can be found such that the error structure of the true model
is duplicated as much as possible, then the resulting model is the best possible
approximation. The optimization method used to find the error structure closest to the
true model in this study is the least squares method. The least squares method is designed
for an overdetermined system of equations such that the number of measurements
exceeds the number of parameters to be optimized : n>p. Surplus measurements in

overdetermined systems of equations can be used to take advantage of all measurement
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information. This advantage outweighs the potential disadvantage of having outliers in

the measurement data. The least squares method does not emphasize the outliers as does

the Chi-squares method.

If estimators of the true parameters in vector B are those in vector b, and the true
€rTor vector entries in € are estimated by elements in vector e, then the least squares
method requires the residual vector e (an estimator of the error vector ) to be formed

(Cooley and Naff, 1990, page 52):

y=X(b)+e 2.2)
Where ¥ is the estimate vector from monitoring locations
e is the estimated residual vector

b is the estimates of the true parameters

The least square method leads to the true variance of the disturbance:

me =E(&"€)/n (2.2a)
Where E is the expected value operator,

ozm,c is assumed to be unbiassed with zero mean

An estimator for 6%y is 62, which is defined:

c?*=eTe/n (2.2b)

Where e is an estimate of €.

The sum of sqaures term e”e is abbreviated as S(b). The least square procedure is one
that will find the parameter set b that will minimize S(b) for all possible b. The value of
S(b) from PEST is equivalent to the sum of sqaures of lack of fit (SS,,r) in ANOVA,

which will be explained in subsection 2.4.
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The S(b) (or @ in PEST) is defined as the objective function and the parameter

set that minimizes it will be the optimal parameter set. The indirect inverse modelling
equations to find the transmissivities by minimizing head residuals in the objective
function are non-linear, and iterations are required to find the parameters ( Carrera and
Glorioso, 1991). If the non-linear relationship is linearized by means of replacing the
original mapping matrix by a Jacobian or sensitivity matrix, obtained by taking the linear
term of a Taylor’s expansion at some starting values of the parameters, then a system of
linear equations (Cooley and Naff, 1990) results.

In the optimization process, the working parameter set has to be systematically
altered to dynamically find a global minimum for the objective function. The non-linear
mapping in PEST is already mentioned in the subsection, and to distinguish the
incremental changes in the model estimates of y-the measured heads, and the parameter
estimates b, the following notations are used:

Yo is the computer model generated vector of heads at the monitoring well

locations

by the corresponding parameter set used
If another estimated parameter set b is in the neighbourhood of by, a first order Taylor’s

theorem expansion leads to the approximate update in the computed head values,
V= Yo + X(b - bo) (23)
Where X is the Jacobian or sensitivity matrix.

The linearized, unconstrained objective function takes the form

S(b) = (¥ - Yo- X(b - bo)) (¥ - Yo- X(b - by)) (2.4)

Substituting equation 2.2 into the equation for S(b) (Cooley and Naff, 1990, page 53):

S(b) =(¥ - Yo- X(b - bo)) (¥ - Yo- X(b - b)) = (eTe ) @2.5)
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S(b) is a quadratic function in parameter (or factor ) space spanned by the vector b. In
parameter space ( up to a dimension of p), the square of the length of this vector b (inner
product) has the geometric interpretation of the square of the radius from the center of the

parameter space to the quadratic surface of S(b):
b™b = (b,® + b2 +....b,2) (2.6)

Where the b?, b,? up to bp2 are on each of the individual parameter axis. Each axis of
the parameter space is equal to the inverse of the corresponding square root of the
eigenvalues of the normal matrix (Weiss and Smith, 1998a). The normal matrix, a first
order approximation of the Hessian (see section 2.3.1), is obtained by the differentiation
of the objective function S(b) with respect to each of the parameters (equation 2.7). There
is an inverse relationship between the covariance matrix (equation 2.30a) and the normal
matrix, therefore the axes are also proportional to the square root of the eigenvalues of the
covariance matrix.

To minimize the objective function in equation 2.4, the quadratic function S(b) in
its linearized form above is differentiated with respect to each of the parameters and the

resulting equation set to zero:

Sh) =0 j=l....p Q.7)
ab;

The actual mechanics of the differentiation can be found in (Cooley and Naff, 1990), and
from the minimization, the result of the linearized upgrade vector u for the parameters is

shown below:

u=X"X)" XT(y-vyp) (2.8)
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As an example, the jth parameter upgrade vector is used to calculate the next (j+1) value

of the parameters:

bj.1 = b; + Bu; (2.9)
Where B is a scalar calculated by using a ratio containing the Jacobian matrix (PEST
manual).

A diagonal weighting matrix can be used for the measurements and the prior
information (if available), to reflect the importance of or confidence in the values.
Without prior information, the optimization process to find the vector b is an
unconstrained optimization. When there is prior information available, it can be
incorporated into the objective function S(b) as linear, equality penalty functions with
appropriate weights.

The forms of the weighted objective function and the parameter upgrade vector
are shown below, with the generalized weighting matrix Q :

The unconstrained, weighted objective function takes the form

S(b) = (¥ - Yo- X(b - bo))" Q (¥ - Yo- X(b - by)) (2.10)
Where Q is a diagonal weighting matrix

The parameter upgrade vector, u, can then be found,

u=X'QX)"' X"Q (¥ -yo) (2.11)

To numerically eliminate the problem due to instability during the optimization
which could manifest itself in fluctuations of parameter values, lower and upper bound
values for each parameter to be optimized will have to be specified in the input to PEST.
The bounds will prevent extremely large values of the parameters that lead to numerical
failure of the program, but will not be a solution to instability itself. If there is instability,
the parameter will stay at the upper and lower bound, as will be explained below.

If an element of the parameter set in equation 2.11 reaches the maximum or

minimum bound values and stays there, then the corresponding component of u either
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i) becomes large (positively or negatively) such that the parameter is cut off by the

bounds,
ii) or it is zero, and the parameter is not upgraded.

The coefficients of the linear combination of (y-Y,) come primarily from the
sensitivity matrix X, the square of its inverse and their products with the weighting
matrices. If the value of the element of the upgrade vector is so large that the parameter
increases (or decreases) beyond the bounds, the results of the optimization are considered
“Insensitive”, by groundwater modellers, to that parameter. The corresponding elements
of the sensitivity matrix for this parameter will be small.

In the case that an element of the upgrade vector for the parameter becomes zero,
the linear combinations of (Y-Yo) is very unlikely to be identically zero for different steps
of the optimization. Hence the coefficients of (¥-Yp) are most likely the quantities to be
identically zero for that parameter, in order for that element of the upgrade vector to
vanish. In this regard, the parameter which stays at the maximum or minimum bounds is
more appropriately termed “over-sensitive” than “insensitive” in the optimization
process. The corresponding elements of the sensitivity matrix for this parameter will be
large. .

Parameter insensitivity (or over-sensitivity) is a symptom, not a cause. The
instability of the parameter can be due to identifiability or uniqueness, but it can always
be traced back to the system of equations in the normal matrices. One of the most
common solutions to instability is to reduce the dimension of the parameter space, that is,
to reduce the number of parameters to be optimized and the rank of the normal matrix.
The “correct” number of parameters or factors to be included in a model of data has been
studied extensively in applied factor analyses. Many rules have been proposed, some of
which depend on the judgment of the researcher. For simplicity, when insensitivity of
parameters occurs in this study, a reduced number of parameters is usually used for the
next optimization until no instability occurs. This is somewhat similar to the “common
factor” methodology in applied factor analyses (Rummel, 1970, page 104).

With the inclusion of prior information, the weighting matrix can be further

refined by an augmented matrix (Cooley and Naff, 1990), consisting of Q; and Q,, for the
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samples (or measurement) and parameters respectively. Similarly, the residual errors e in

equation 2.2 will also have components of es and ep. The form of the objective function
S(b), with the use of prior information for the parameters, is therefore redefined as

follow:

S(b)=e; " Qse; +e, Qe (2.12)
The assumption of zero correlation between the prior information on the parameters and
the measurements (or samples) is tacit in the above equation, since the weighting matrices
are in block diagonal form.

In the present study, the use of prior information on the hydraulic transmissivity
parameters stems from a new screening sequential process. The theoretical part of the use
of weights in the optimization process is described in the next subsection. The theory will
be applied to scenario data of the former Canadian Creosote site in sections 3, 4 and 5.
The weights used are the inverse of ihe estimaicd variances (Yeh, 1986) of the parameters

obtained from prior optimization step(s). The use of weights is discussed in section 2.2.
2.1.1 Confidence limits and weights for prior information on parameters

This subsection shows the relationship between the PEST output of the
confidence limits, and the calculation of the prior information weights for the parameters
in the matrix 2, .

The variance due to the model lack of fit, which is computed by using the eror
estimator e in the objective function S(b) from section 2.1, can be approximated by 6 2,

which, in its simplest form, is equal to

Ot “= S(b)/(n’-p) = e"e/(n’-p) (2.13)
Where S(b) is the objective function at the solution
n’ is the number of measurements and prior information

P is the number of parameters to be optimized. For this study, the number
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of prior information is equal to the number of parameter to be optimized in a

sequential procedure.

Cref %js the “reference variance”.

When the measurements are independent and the weighting matrix is an identity

matrix, the variance and covariance matrix Cov(b) is:
Cov (b)= Cpr > (X'X)"! (2.14)

The diagonal terms of this matrix Cov (b) are the estimates of the variances of each of the
p parameters. The diagonal terms are denoted by sp;, i from 1 to p. The confidence limits

for the parameter b; , at the 95% confidence level are

bi + (Fosw(1,0°-p) o) (2.15)
Where Fgs¢(1,n°-p) is the value of the F distribution.

The linearized confidence interval, is based on the linearized least square
procedure. In spite of being a linear projection of the variance of the parameter, the
confidence interval reflects the conditioning of the normal matrix. Large confidence
ﬁmits imply an ill-conditioned matrix. As a confirmation, the values of the largest and
smallest eigenvalues of the normal matrix show whether it is ill-conditioned or not. Ili-
conditioned matrices also give rise to severe convergence problems and unstable

solutions in the inverse modelling. This will be further explored in section 2.3.
2.2 Variances and the use of weights

The special challenge this study faces is the assessment of hydraulic transmissivity
for the zones of the region of study based on data collected at different times of the year

and at different locations of monitoring wells, in the six scenarios. Since the area of study

is the same model region for all six scenarios, the hydraulic transmissivities for the same
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zones should be the same for all scenarios (Figures 1.4a to 1.4f). Due to the differences in

time and monitoring locations, the optimized hydraulic transmissivity for the same zone
is different for individually optimized scenarios.

A new sequential forward feeding procedure (sffp) is used to find a common set
of parameters that will minimize the total S(b) or SS;.¢ for all six scenarios. The
procedure sequentially optimizes parameters of single scenarios through a random
sequence of the six scenarios, beginning with an unconstrained optimization of the first
scenario. The unconstrained results of the first scenario are then passed onto a
constrained optimization, again, of the first scenario as prior information of the decision
variables (parameters). Prior information has been introduced in section 1.2.

There are arguments both for and against generating prior information and
inverse modelling of parameters using the same set of hydraulic heads. On the one hand,
the unconstrained optimization results are not usually used as prior information again for
the same model in a subsequent optimization. This has been explained in (Carrera and
Neuman, 1986a, page 203): The prior head errors and prior parameter estimate errors are
assumed to lack cross-correlation, and theoretically head values used for inverse
modelling should not be used to derive prior estimate for parameters.

However, a procedure similar to the first step of the above sffp is used by Theil
>(Cooley and Naff, 1990, page 74, Theil, 1963) for a linear model. It was found that the
estimates of the parameters obtained by using the unconstrained minimization had a bias
in the order of the square root of the reciprocal of the number of measurements (see
section 2.2.1). The subsequent constrained optimization using prior information from the
first run provided solution to the complete problem. Since the optimization of the sffp is
based on a linearized procedure, it should perform well in providing the solution to the
constrained problem with the self-generated prior information. So, the same set of
hydraulic heads are used for inverse modelling as well as generating prior information of
the parameters in the first step of the sffp.

After the first step, the results of the constrained optirization are used as prior
information for the optimization of the same set of decision variables of a second

sequence scenario, and so on (see schematic chart 2.0 below). The total SSy,¢ for all six
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scenarios based on each of the optimized parameter set from the sequential steps are

compiled. The set of optimized parameters that gives the lowest overall SS;,s will be the
chosen set of optimized parameters to be used for all six scenarios.

The true errors € in equation 2.1 can be separated into measurement or sample
error, & and prior information error, or € , in the same manner as the error estimator e at
the end of section 2.1. The variances for these errors are in augmented matrices shown

below:

Varres_l = rVar(ss) 0 ]
leg] L 0 Vare, )l (2.16)

The assumptions for the true errors are that they have a normal distribution with the same
variance and zero mean. While some of the errors for the parameters may be correlated,
and the actual error statistical distribution may not be truly normal, it is nevertheless a
good working assumption and a convenient starting point for analysis. The assumed form

of the variances for the two types of true errors are:
Var(es ) = Vs Geom ,
Var(ep ) = Vp Gcom (2.17)
Where Vi is the scaled variance-covariance matrix for the samples or measurements, is
symmetric and positive definite and of order n,

V5 is the scaled variance-covariance matrix for the prior information, is symmetric

and positive definite and of order p for the sequential forward feeding procedure.
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sffp Schematic showing first three steps

Uncopstonined optimization of
ncopstraine ization o

stam!}xg scenalgg.gi‘ d: L
model and measurement variance and
arameter estimation variance

Constant or variable weights from
Mode! and Measurement variance

Prior information weights from
Parameter variance

Second step
Optimization with prior information on
parameters, starting scenario. Find:

model and measurement variance and
arameter estimation variance

Repeat weights calculation

Third step
Optimization with
or information
Second Scenario

Chart 2.0 Flow chart of the sequential forward feeding procedure (sffn)

Equation 2.16 now becomes

Var[ &1 = Peom [ Ve 0 ]
Le ] Lo v, J (2.18)

Where czcom is defined as the common variance for the transformed disturbance of

1V 2} (Cooley and Naff, 1990).

In (Cooley and Naff, 1990), the common variance for both the samples or
measurements and the items of prior information is the same, and the distinction lies in
the variance-covariance matrices which are in blocks of V; and Vp in an augmented
matrix V. For this study, the common variances for the transformed or untransformed
disturbances refer only to the samples or measurements. The variances for the items of
prior information has been introduced in section 2.1.1 as the reciprocals of the elements
of Q.
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The sample common variance relationship in equation form, is
Var(V'?%) =1 6°com (2.19)

Where I is the identity matrix

V is the variance-covariance matrix (RHS matrix of equation 2.18)

€ is the error vector (LHS vector of equation 2.18)

From equation 2.19, the value for the common variance is
& com = E((V) (V" %))/(n"-p)

or S em=E(eT V!e)/(n’-p) (2.20)
Where E is the expected value operator,

n’ is the number of measurements and items of prior information,

p is the number of parameters to be optimized
Equation 2.20 will mean that if an estimator of the error vector is used, then the sum of

sqaures term S(b) following equation 2.3 and the form of equation 2.20, will become

Sh)=ef V'e (2.21)

The sum of sqaures term can be generalized to

Sh)=e" Qe (2.22)
Where Q is a general diagonal positive definite weighting matrix
The weighted least square formulation of the objective function is equation 2.22,

for optimal weighted least square optimization (Cooley and Naff, 1990),

Q=Vv! (2.23)
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Unfortunately, V is never known so we must estimate it to the best of our ability (Carrera

and Neuman, 1986a).
Again, the form of the sum of sqaures term showing both sample or measurement

and prior information weighting is (also section 2.1) :

Sh)=e's Qs e +e", Qp e, (2.24)
If the measurements are totally uncorrelated, and all the errors have the same normal

distribution with the same variance, then equation 2.19 becomes

Var(e) = I 6%comy (2.25)
Where the V matrix ( that is, Vs + V,, in equations 2.17) becomes an identity matrix,
6 comu is the common variance of the untransformed disturbance, €.
The transformed disturbance is shown in equation 2.19.
The cr:comu is equal to ozcom if the variance-covariance matrix is equal to the identity

matrix (assumption of independence).

2.2.1 Weighting Matrices for the Sequential Feed Forward Procedure (sffp)

With the foregoing discussion, the weighting strategy for the sequential feed
forward procedure (sffp) can now be addressed. The weighting for the prior information

and measurements are discussed separately.

I) Weights for prior information on the decision variables of logarithmic hydraulic

transmissivities, log Kx
The logarithmic values of the hydraulic transmissivities are used in the

optimization to increase the speed and stability of the process (PEST manual). The

logarithmic hydraulic transmissivities are assumed to have a normal distribution (a
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property of the lognormal distribution, Ang and Tang, 1990). The error for the log Kx is

assumed to be normally distributed with zero mean and equal variances. At the start of
any random sequence in the sffp, the magnitude of the variances of the log Kx is
unknown. The first step in the sffp is to perform an unconstrained (with no prior
information) optimization to estimate both 6%cop, for the samples and the variance for each
parameter. These estimates are outputs available from the program PEST.

A similar procedure was performed by (Theil 1963) to estimate the common
variance and to solve the normal equation from least square. Theil found that the
unconstrained optimization using least square (ie the first step in sffp) may cfegte a bias
on the estimates of the order of (1/n)"%. With the measurement sample size range for the
six scenarios in this study, the possible bias range could be 0.2 to 0.3 m2/day in the
parameters values.

After the initial step, the weighting matrix for the prior information on the

AT Yrevese

T 1
decisicn vaiidoics O

o

i subsequeni siip steps is set to the reciprocai of the parameter

variance from the previous step.
I) Weights for the measurements of hydraulic head at monitoring wells

The magnitudes of V; and therefore Qg must be approximated. Two approaches

are explained for approximating Q.
The first approach- constant Qg:

The variance V; of all the measurements is the same and related to the accuracy of
the physical measuring devices. The measurement error is assumed to be N(0, 0.01) and
uncorrelated between measurement points. The chosen variance reflects the physical limit
of the accuracy of the measuring devices, and the use of normal distribution with zero
mean conforms to previous assumptions . The weighting matrix is :

€, for all steps in first approach = (1/0.1)? (I)
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Qs=100(1) (2.26)

The weighting matrix will therefore have diagonal terms of 100, for all measurements and
all steps in the sffp.

The assumption of uncorrelated measurements is a good one, since spatial
correlation of measurements is weak at worst (Carrera and Neuman, 1986a).

However, applying the reciprocal of the assumed measurement error variance to
the measurement term in S(b) in equation 2.24 as weight is not completely accurate. The
so called measurement error is actually the sum of model and measurement efror (see
equation 2.3). As well, the mathematical process in equation 2.3 filters out the
measurement noise, which is assumed to be normal with zero mean (Carrera, 1988, page
567, Carrera and Neuman, 1986a), and thus de-emphasizes the measurement error

variance.

The second approach- Variable weighting matrix Q,:
Step 1) For the initial step in the sffp, the measurement or sample common variance is
unknown, but with the assumption of measurement independence, equation 2.25 is used.
This also means that the variance matrix V for this approach is equal to the identity
matrix I. A unit weight is used for the measurements in this step.

For ease of reference, a counting index k is used to indicate the steps of the second

approach. For the unconstrained optimization step, k = 0.

Step2 to 6) From the results of step 1, the variance of the measurements is estimated by :
Var(e, ) = Vs 6 come = I 52 (2.27)

Where e; is the estimator of the true error vector,

2 . - .
G comu 1S the common variance of the untransformed disturbance g,
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Vs =1, covariance matrix of measurements is equal to the identity matrix for

independent measurements
? = (S(b)/n’-p) = G comu (2.28)
S(b) is the value of the objective function at the optimum point,

n’ and p are defined as in equation 2.20

The inverse of the estimated sample error variance s> I, from the first step, is
utilized as a diagonal weighting matrix in the second step. The weighting matrix is then

updated for subsequent steps:

2 -l
Qi1 =@s7k) (2.29)
For k=0t 5
Prior 1o discussing ihe variabic weights used for the sampies, the covariance

matrix of the model parameter estimates from a linearized error analysis, with prior

estimate for the parameters, is presented (Carrera and Neuman, 1986a, page 205):

Z=[(/sH XTVIX) + G (2.30)
Where Zp is the parameter covariance matrix with prior information on the parameters

Vs is defined in equation 2.27 for the measurements or samples

X is the Jacobian matrix

Cy is the joint covariance matrix of the prior parameter estimates

The parameter covariance matrix X, is made up of two components: the sample or
measurement variance and the parameter variance respectively . For the sequential
procedure sffp, an estimate of the second component of the parameter prior information
covariance matrix is known at the beginning of the optimization. It is the covariance
matrix of the estimated parameters of the previous step. The diagonal terms of the

parameter covariance matrix of the previous step are used to form weights
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for the prior information input to the present step - a procedure to be described in section

4.

To examine the first component due to the sample variance, the first term in the
bracket in equation 2.30 is singled out. This term is denoted by Cov(b). In looking at this
term alone, the overall parameter estimate covariance is equivalent to having no prior
parameter information.

The importance of the weighting in the sequential procedure for the samples is
shown by the formula for Cov(b). It is a measure of the quality of parameter estimation.
Its value should be small when the estimates have low uncertainties. Hence, with
reference to the sequential process sffp,

Cov(b) =" krt X" Vs ik X ) (2:302)
Where Cov(b) is the estimate of the covariance matrix of the parameters based on sample

variance alone

V is defined above for equation 2.30

k=0to5
However, with the measurements assumed independent, V., , for k=0 to 5, is equal to
the identity matrix (see equation 2.27).

When the weight of equation 2.29 is applied to 2.30a, the covariance matrix of

estimated parameters is:

Cov(b) = s% k1 (XT Qs 1t X)!
=57 XT (Isk ) 1X)!
= (8% et/ 7)) XT X! (2.31)

This procedure has a normalizing or scaling effect on Cov(b). If the estimated
sample common variance for the untransformed disturbance 6%¢omy (OF its estimate, s%)of
the present step (or k+1) is the same as that for the prior step, k, (which is unlikely as the
number and locations of the monitoring wells are different from scenario to scenario),

then the error variance estimate for the present step will be normalized to unity:
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When this happens, Cov(b) of the estimated parameters depends only on the

inverse of the product of the Jacobian matrix and its transpose in equation 2.31. If the
elements of the Jacobian matrix are large, then the uncertainties of the estimated
parameters are small. The effects of the common variance of the samples are controlled.

The overall parameter covariance, Zp, based on both the sample and the prior
information covariance, will be reduced when both RHS components of equation 2.30 are
controlled. In addition to the above variable weights for the samples, separate weights
equal to the inverse of the parameter prior information covariance matrix diagonal terms
of the previous step are used for the parameter estimation, in section 4. The overall values
of X, , the parameter covariance, are small, and an overall improvement of the parameter
estimate is achieved.

This is an innovation in applying a concept from manufacturing optimization
(Taylor, 1991) to groundwater modelling. The variance of a manufacturing process is
groundwater flow is not a factory process that can be controlled to a large extent, the
sequential optimizatiori in this study provides an ideal situation to control the variance
through the steps. Even when the s for the two steps are different, the method is still
thought to be somewhat effective because the sample common variance for the
uritransformed disturbance from scenario to scenario is not expected to be drastically
different.

The normalizing procedure will achieve a scaling effect in bringing the magnitude
of the weighted error variance estimate closer to unity. This may enhance the parameter
estimation accuracy of the calculations better than the constant value of 0.01 for Vs (see
2.4.1-I) from the first approach: The magnitude of the weight here changes with the steps
in sffp, according to the sum of squares of the particular scenario run. More importantly,
the uncertainty of the estimated parameters is controlled while the optimization algorithm
searches for the smallest SSof , thus both objectives of decreasing the lack of fit error and
the parameter uncertainty can be achieved. This is an improvement over individual

optimization, in which the use of prior information only improve the parameter accuracy,
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but at the expense of the model fit to the data. In fact, the use of prior information can

“only make the model fit worse” (Yeh, 1986).

The differences between the two approaches are obvious from the above
discussion. The use of a constant V; for the first approach is to use the best understanding
of the measurement accuracy to maintain an unbiased estimate of the variance of the
transformed disturbance. The second approach attempts to control the weighted estimate
of the variance of the untransformed disturbance from step to step.

The effectiveness of the approaches will be tested empirically in sections 3 and 4.

A scaling procedure using s® in equation 2.28 above has been applied to a first
order approximation of the Hessian matrix in an independent study by (Weiss and Smith
1998b). It should be pointed out here that the Weiss and Smith method is used in the
scaling and the construction of an approximation of the Hessian and its inverse, which

follows classical theories in the improvement of convergence and eigenvalue structure of

&

the approximation (see Luenberger, 1984, pagc 275). The appiication is fundameniaily
different from the intention of the method applied here in the sequential process. It will be
useful to compare the eigenvalue ratios for approaches I (constant weights) and II
(variable weights) in sequence 1 to see if there is an improvement in the eigenvalue

structure. This will be carried out in section 6.

2.3 The eigenvalue and eigenvector analysis and the noise problem

Recall in section 2.1 the equations used in PEST are outlined, and both the
parameter upgrade vector and the covariance matrix depend on the inverse of the normal
matrix. The key equations are repeated here for completeness:

The parameter upgrade vector is:

u=X"QX)"' XTQ(y - vo)

The parameter covariance matrix is
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C(b) = 0Zcom X'QX)"!

Where (X TQ X) is the normal matrix

The parameter upgrade vector is derived directly from the least square formulation. While
the X matrix (Jacobian) is not symmetric, the normal matrix is symmetric. Its eignevalues
will be real and positive (except when the normal matrix is ill-conditioned to the extent
that it is almost singular, then no solution can be found).

Solution of matrix equations that requires inversion of a large matrix is a
cumbersome procedure, especially when the procedure involves physical measurements
such as y. These physical measurements which are often limited to an accuracy of not
more than 0.Im. Small fluctuations of the measurements (noise) could be exaggerated to
an unacceptable degree when the upgrade vector is obtained by multiplying the inverse of
the normal matrix.

Lanczos (1964) gives an eigenvalue checking procedure to see whether there is a
potential noise problem. If the weighting matrix © in the normal matrix is an identity

matrix, the upgrade vector becomes

u=X"X)"' XT(¥- yo) (2.32)

Suppose X and u are both transformed into an orthogonal reference system by means of
the matrix U which contains the eigenvectors of X*X as columns (the eigenvectors are

also output of PEST):

u=Uu (2.33)
X=U'XU (2.34)

Where u and X are now both in the orthogonal reference system. Equation 2.32 becomes
u=XX" XY - Vo) (2.35)

Where (X™X) is now a diagonal matrix with the eigenvalues e =e/’..... &,
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p being the number of parameters to be optimized.

If X; is a column of X, then the i® component in the product of X (Y - Vo) becomes,

Xi (¥ - Yo) = & (¥ - Yo) cos 6; i=1...p (2.36)

Where 8i is the angle between X; and (Y - Y,). Equation 2.35 becomes

u=(y-Yo)cos 8;/¢; (2.37)
Consequently, the value of the upgrade vector is dependent on the magnitude of the
eigenvalue e;. If the small eigenvalue is extremely small compared to the largest
eigenvalue, then a small fluctuation in (Y - Y,) will cause a large change in the upgrade
vector. The criterion for determining whether there is a potential noise problem is the
square root of the ratio between the largest and smallest eigenvalues. The magnitude of
the square root term, when compared to the accuracy of the measurements, can indicate
whether noise will be amplified. For instance, in our present problem, assuming the
accuracy of the measurement is in the order of 0.1m, and the magnitude of the heads at
the monitoring wells are at approximately the 1000 m mark, there could be a noise
problem if the square root of the eigenvalue ratio is 10* or higher. A slight error could be
blown up to the same order of magnitude as the head measurements.

An example of the eigenvalue ratio is shown in section 6.
2.3.1 Penalty functions and the associated eigenvalue analyses

An understanding of the background for the use of prior information and weights
for the sequential procedure can be obtained by examining the classical theories (from
Luenberger, 1984, Lanczos 1964, Gill et al. 1981) of penalty functions, eigenvalue and
eigenvector analyses of the resulting matrices.

Penalty functions can be used to form an unconstrained optimization which
approximates the effects of a constrained optimization. The approximation is

accomplished by adding to the objective function a term that prescribes a high cost of for
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the violation of the constraint. The general form of a penalty function optimization

process is:

minimize q(c,x) = f(x) + cP(x) (2.38)

wrt X

Where f(x) is a continuous function
C is a penalty parameter that determines the severity of the penalty, and the degree
of the approximation to the constrained problem. As the magnitude of ¢
approaches large values, the approximation to the original constrained problem
becomes more accurate.
P(x) is the penalty term that is a positive, continuous function, and it becomes

zero inside of the feasible region where the condition is not violated.

The above equations can be used as a theoretical basis for a discussion on the
sequential process to be detailed in chapters 3 and 4. The prior information that was used
from file to file for the hydraulic transmissivities, carries with it penalty parameters.
When the penalty parameter ‘c’ increases in value in the sequential process (see
illustration below, excerpted from section 6), the unconstrained optimization

approximates the constrained optimization closely:

The penalty parameter c (Wp°) input to steps, seq 1, 14 zones model
logKxno. [step1 step 2 step 3 step 4 step 5 step 6
8 . B5505]  398.76] 730.86] 333.10| 1274

The sums of squares residual for the model fit can be easily obtained by applying
the analysis of variance (section 2.4) to the resulting model outputs from the later

sequential steps.

2.4 Assessing the Results of the Optimization
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In the design of experiments it is common to assess the results of the experiments

and the model performance by comparing them to the actual measurements. The analyses
of the variance (ANOVA) between the experimental results and observations will then
show whether the model assumed by the experimenter is adequate to describe the physics.

In the present application of inverse modelling techniques, different sets of
optimized parameters produce different model outputs at the monitoring locations, which
can then be compared to the observations. It is logical, then, to examine the model output
compared to the observations in a similar manner to the design of experiments, so that
information regarding how well the model results fit the measurements, the precision of
the measurements and the adequacy of the parameters used in the model can be analysed.
By the analyses of these variances, the best parameter set can be found, by inverse
modelling, on: the basis that it can reduce the overall sum of squares of the lack of fit
between model results and measurements, in well-defined ways.

This approach can be visualized by assuming the design of experiments proceeds
in one direction, ending in the ANOVA and the verification of the model. Proceeding in a
different direction is the inverse modelling technique, optimizing the parameter sets to
produce a minimum residual, then ending at the ANOVA task of examining the
performance of the model and the parameters:

This section summarizes the techniques used in the ANOVA, and is excerpted

from an experimental design text (Deming and Morgan, 1987).
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2.4.1 Analysis of Variance (ANOVA) for linear models - Sums of squares

The different sums of squares of the data and model output can be classified into
the following categories, each category represents a stage in response space (Deming and
Morgan, 1987). The relationship of these stages will be summarized at the end. A
schematic relationship of ANOVA to optimization and experimental designs is shown in
chart 2.1.

D) The total sum of squares, SSt

SStis defined as the sum of squares of the measurements or observations. If yis
the vector of measurements, then

SSr=y'y (2.39)

The degree of freedom associated with SSt is equal to the number of observations.

I) The sum of squares due to the mean, SSpean

This is defined as the sum of squares of the mean measurements. If Y is the vector
of mean measurements, obtained when the sum of the measurement values is divided by
the number of measurements, then,

SSmean =Y Y (2.40)

This sum of squares has one degree of freedom.
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Duplication, ANOVA
Comparison of results
tc measurements

'y

Experimental Design Randomization, P

Blocking. etc

Different
Scenarics

Optimization, Inverse modelling
of parameters

Chart 2.1 The use of ANOVA
IIT) The sum of squares corrected for the mean, SScor
The mean of the measurements can be subtracted from each of the individual

measurements to produce the measurements corrected for the mean:

SScorr = (Y-Y) ' (¥-Y) (2.41)

The degree of freedom for this sum of squares is the number of observations minus one.
The sum of squares and their degrees of freedom are additive:
IV) The sum of squares due to factors or parameters, SSg

The vector of model outputs of hydraulic heads is y¥. The sum of squares of

factors or parameters is:

SSue= (- V'Y - 1 (2.43)
For linear models the number of degrees of freedom could be the number of parameters

minus one, p-1, or p, depending on whether the model contains a constant term or not.
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V) The sum of squares of residuals, SS,

The sum of squares of the residuals is made up of two parts: the sum of squares of
lack of fit, SSjr ,and the sum of squares of purely experimental uncertainty, SS,..
SSpe requires results from duplicated experiments to be properly assessed. Based on
stable, identical simulations conducted in this study, results from identical simulations are
the same, so SSq. is zero. Assuming SSy. to be negligible, the sum of squares of residuals

is therefore identical to that for the lack of fit:

SSc =SSt = (Y- V) (Y- ¥) (2.44)

The degree of freedom associated with this term is the difference between the number of

observations and the number of parameters.

The sums of squares are again additive, as are their degrees of freedom (Chart

2.2):

SScorr = SSfact + SS¢ (2.45)
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Sum of Square-of measurements
SStotal
' I Sum of Square
%"u'g ?J ti%u&r:an SSmean SScorr | Corrected for the Mean
[

SSfact_ SSlof

Sum of Square due to Factars Sum of Square of Residuals

or Parameters or Lack of Fit

Chart 2.2 illustrates the relationship of the sums of squares:
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3.0 The optimization of the hydraulic transmissivity parameters of the former

Canada Creosote site

The former Canada Creosote site is underlain by sand and gravel fill (1 to 6.7 m
thick), and alluvial sands and gravel up to 5 m thick. Bedrock is at a typical depth of 6 to
9 m and is comprised of sandstone and shale. The water table is situated within the
alluvial sands and gravel, at a depth of 4 to 7m. The Bow River borders the northern edge
of the site and the direction of groundwater flow is towards the Bow, except during ice
Jamming events on the river. The creosote Non Aqueous-Phase Liquids), occurs in both
heavier and lighter than water phases, and lies within the alluvial sands and gravel. The
total volume of the NAPL is approximately 4750 cu m (Golder and Associates, 1990).

The containment system for the pollutants consists of a cofferdam, which was
removed in March, 1997, a partially enclosing bentonite-slurry and secant-pile wall and a
pumping system which controls the groundwater flow into the area. The pumping system
is comprised of clean water (CW) pumping wells, which minimize the inflow of clean
groundwater into the area in which the plume of creosote is located; and dirty water (DW)
wells which extract the groundwater from the contaminated area for a dirty water
treatment plant (DWTP) (CH2M Gore & Storrie Ltd, 1997). The treatment plant removes
the creosote from the water and discharges the cleaned water. The efficient operation of
the system depends on the groundwater flow which in turn depends on the hydraulic
transmissivity of the natural and fill material at the site. Despite efforts to directly
measure the hydraulic transmissivities, much interpretation is required for the assignment
of hydraulic transmissivities to the zones across the site. An alternative is to calculate
these constitutive variables from inverse modelling as outlined in section 1.2.

In this inverse modelling study, numerical models are used to estimate the
hydraulic transmissivities of the aquifer. As mentioned in section 1.2, parameter
identification through inverse modelling is the process of selecting an optimal set of
parameters by using observations of the dependent variable ( hydraulic heads at
monitoring wells). The number of observations is limited and finite, whereas the spatial

domain is continuous and the dimension of its hydraulic transmissivity parameter is
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theoretically infinite. The reduction of the number of parameters from an infinite

dimension to a finite number of zones is the process of parameterization (Yeh, 1986).

The optimization program PEST, when faced with a large number of parameters
to be optimized against a limited number of measurements or observations, will conclude
the search of the optimized parameter set with a number of the parameters fixed at the
upper or lower bounds. The parameters are unidentifiable with the available data. This is
an indication that the parameters are insensitive to the available data. The background of
this occurrence is explained in section 2. There is a need to screen and to limit the number
of hydraulic transmissivities used as decision variables for the optimization process.

There are six scenarios of steady state events at different times of the year, which
were collected over several years:

The analyses of the optimized results begin with screening test runs for the
different scenarios. These cases can be regarded as the models of the same spatial
domain, each having different boundary conditions and stresses for the particular time
during which the head measurements were made. The number and spatial locations of the
measurements are different for each scenario due to changes in operations and installation
and destruction of wells over the years. A meticulous manual calibration was performed
on the well data of six separate sampling events (table 3.1) by the staff and consultants of
CH2M G&S to correspond to high and low river stages (CH2M G&S reports,
1996,1997).

The six scenarios are: before the installation of the containment wall, after the
containment wall and after the wall with clean and dirty water pumping wells. Each
corresponds to distinct sampling event. All scenarios to be discussed are modelled with

steady state simulations.

Table 3.1 Models of the same spatial domain at the former Canada Creosote Site

Scenl high river stage before the wall was installed. Also known as the

hi-pr-wa file

Scen2 low river stage before the wall was installed. Also known as the
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lo-pr-wa file

Scen3 high river stage after the wall was installed. Also known as the hi-
wal file

Scend4 low river stage after the wall was installed . Also known as the lo-
wal file

ScenS high river stage after the wall was installed with CW's and DWs

pumping*. Also known as the junel7-h file

Scen6 low river stage after the wall was installed with CWs and DWs
pumping*. Also known as the oct-p-hk file

*CW denotes clean water wells;: DW denotes dirty water wells

Scenarios Scenl and 2 contain data collected before there was any remedial
measure to contain the creosote, and at a time when the data collection system was not as
complete as the other scenarios. Therefore the quality and the quantity of 3ata were
somewhat inferior to those of Scen3 to 6. In the simulation and analyses that follow, all

six files are used, with an emphasis on the last four.

3.1 The expert input, log transformation, identifiability of transmissivities and the
analyses of variance (ANOVA)

All the simulation scenarios have transmissivities produced by hydrogeologists
after examining the site information. These values are the expert input, to distinguish
them from the values generated by optimization. The screening and systematic reduction
of the number of parameters to be optimized takes several steps.

The first step is to reduce the number of transmissivity zones to be optimized in
order to eliminate the unidentifiable and insensitive parameters (section 1, 2). Parameter
or factor selection and factor dimension reduction is not a simple task, and often it is
achieved by subjective judgement of the modeller (Rummel, 1970, “common factor
analyses”). There is a quantitative screening process for the identifiable parameters

proposed by Speed (1996) based on the coefficient of variation (cov), which can be

51




52
applied to the transmissivity values from unconstrained optimization. The cov is a ratio of

the parameter standard deviation to its mean (o/u, see Ang and Tang, 1975). The ratio is
often used as a measure of the dispersion or variability of the parameter about its mean.

The transmissivities that have high cov values will not be identifiable by the
optimization process, and the modeller’s judgment will be required to either take these
transmissivities out of the decision variable set or to incorporate them in other meaningful
ways to be discussed later. Transmissivities with low cov values are identifiable by the
indirect inverse modelling.

From the manual calibration process and through expert analyses, 24 zones of
transmissivity have been identified for the Canada Creosote site 2-layer model (Figures
3.0a,b). Based on the expert calibration, some of the 24 zones have identical

transmissivities (transmissivities), as shown below:

Table 3.2 Zones of Transmissivity with “expert” estimates- 24 zones

Index Transmissivity zone Kx in m2 /day
numbers
1 1,2,3 0.1296
2 4 0.648
3 5 10.368
4 6,7 12.96
5 8,9 15.552
6 10,11 31.04
7 12,13 38.88
8 14,15 46.656
9 16,17 51.84
10 18 54.432
11 19 62.208
12 20,21 90.72
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13 22 103.68

14 23,24 388.8

Both the program Groundwater Vistas and the template file of PEST treat input
transmissivities with the same values as one zone, so whenever a 24 zone model is used,
the identical transmissivities above are made slightly different to separate them into
different zones.

An important aspect of the optimization process is the log transformation ( base
10) of the transmissivities. The transmissivities are assumed to have a lognormal
distribution. The program PEST manipulates the log values to make use of the normal or
Gaussian distribution properties, one of which is that the mean and the standard deviation
as parameters of the distribution are the same as those of the transmissivity - the log
transmissivities. When the cov is calculated by the ratio of the standard deviation to the
mean, the calculation is performed with transmissivities and not log-transmissivities. The
conversion from lognormal distribution parameters to the cov of the variate
(transmissivities) can be found in (Ang and Tang, 1975), and is summarized by the

following formula:

cov of transmissivity = [exp(Var (InT)) - 1 i 3.D)

Where cov is the coefficient of variation of transmissivity, denoted by T,
Var (InT) is the variance of the natural log transformed transmissivity. The
variance is a parameter of the lognormal distribution, and is obtained from the
diagonal terms of the PEST output variance and covariance matrix,

Log T from PEST is converted to In T by means of a change of base.
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It is often assumed that the distribution of errors of the log transmissivities estimates are

Gaussian with zero mean (Carrera and Neuman, 1986a). In real life there are exceptions
to the assumption of Gaussian, zero mean of the log transmissivity errors

(Ginn and Cushman, 1990). However, for this study normality is assumed. This is highly
convenient for the calculations. The normal distribution of log-transformed transmissivity
errors is also equivalent to the untransformed errors having a lognormal distribution.

To assess the identifiability of the zones, a table for “raw coefficient of variation”
(Speed et al, 1996) is constructed below for the 24 transmissivities in table 3.3.
Parameters with low cov values are identifiable and therefore used as decision variables.
The standard deviation and mean estimates for the parameters are obtained by
unconstrained optimization of the 24 zone models of the scenarios. The optimizations are
performed for groups of 5 zones or fewer each time to reduce instability by reducing the
dimensionality of the parameters. The resulting condition numbers (Speed et al, 1996,
Weiss and Smith, 1998b), which are the ratios of the largest eigenvalue to the least
eigenvalue of the normal matrix, are below 10°, indicating that matrices are not ill-
conditioned and instability due to noise is not significant (see section 2.3). Upper and
lower bounds are required input to parameters on the decision variable list. The bounds
are to prevent fluctuations of the parameter values in an unstable situation (see section
2:3). The upper and lower bounds used were specified as input to PEST in terms of
hydraulic transmissivity. The upper bounds were 1000 m2 /day and later changed to and
maintained at 4000 m2 /day, and the lower bound is 10™* m2 /day for all parameters to be
optimized.

The diagonal terms of the covariance matrix of the parameters from the
optimization are used as the log variance for the parameter (denoted by variance in table
3.3). The cov for each of the parameters is calculated by means of equation 3.1. The
identifiability of the parameter is based on an assessment of the cov values.

To use the table 3.3 for identifiable parameter selection, there are several relevant
considerations:
Firstly, instability of the parameter has to be determined. When the mean values of

decision variables stay at the upper (4000.m2 /day) or lower (le-4 m2 /day) bounds, then
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the decision variables are insensitive to the optimization (see detail discussion in section

2.3). Transmissivity zone 18 and 22 are both at the upper bound of 4000 m2 /day, and are

thus excluded from the decision variables.

Tables 3.3 Parameter estimation and coefficients of variation for the 24 zones

zone 1 2 3 4 5 6
variance | 2.94e2 402.4 178.7 16.41 327.6 3.137
cov 9.99e50 | 9.99e¢50 | 9.99¢50 | 7.81el8 | 9.99e50 | 4088.88
zone 7 8 9 10 11 12
variance 3.311 4.712 22.78 7.41e-3 2078 2.78e-2
cov 648529 | 2.66e5 1.68e26 .2002 1.4175 3981
zone 13 14 15 16 17 18
variance 1109 68.16 9.474 2.72e-2 .2088 .878
cov .8946 9.99¢50 | 8.08el0 3935 1.4232 -
- zZone 19 20 21 22 23 24
variance 3236 4.566 7763 14.63 2168 471e-2
cov 2.1355 1.81e5 7.7656 - 1.4685 5324

Note: *-* denotes mean value at upper or lower bounds, no cov calculated

9.99e50 denotes a cap on cov value if log variance exceeds 50.

Secondly, transmissivities with the lowest cov are chosen for further optimization.
But the choice of the magnitude of cut-off cov is arbitrary; other than the obviously large
cov values, there is not a “standard” magnitude of the cov that can be used as a “cut-off™.

There is also the balance between a large cov magnitude for cut-off and the

reasonably small number of decision variables required for a stable optimization.
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With the number of observation wells ranging from 12 to 26 for the six scenarios,

five decision variables were observed to work well, in terms of stability. Using the above
tables as illustration, the cov less than 8.0 is used as a cut-off, ten zones (number 10, 1 1,
12, 13, 16, 17, 19, 21, 23 and 24) are identifiable. The number of zones is more than 5.

A compromise is made to determine which zones to select for screening tests.
Nine zones out of the ten above will be used : 10, 11,12, 13, 16, 17, 20, 23, 24. Many of
these zones have the same expert calibrated transmissivity (see table 3.2). To reduce the
number of decision variables to 5, the zones with identical transmissivities are grouped
together. They will be optimized as groups. With this arrangement, a 14 transmissivity
zone model is created, in which 5 zones with index number, in table 3.2, of 6,7,9, 12 and
14 will be the decision variables. These decision variables will contain the transmissivity
zones of 10,11,12,13,16,17, 20, 21, 23 and 24, of the original 24 zone model, in groups.
After using the 14 zone model for the screening optimization, the 24 zone model will be
used again to seek the optimal point of minimum SSi¢ for all six scenarios combined.

The set of 14 transmissivity zones used in all six scenarios are listed in table 3.4
below. With the measurements from each scenario and the model outputs, a series of
calculations can be carried out to find the sums of square and the corresponding variance
by means of ANOVA.

A general classification of the types of variances, already discussed in section 2.4,

is:

SSt (total sum of squares)

SStean (sum of squares of the mean)

SScore (sum of squares corrected for the mean)

SSract (sum of squares of the factors or parameters)

SSg (sum of squares of the residuals or the lack of fit) = SS¢

Assuming that the pure experimental error is negligible for computer simulations.

Each type of variance is calculated by dividing the appropriate sum of squares by its

degree of freedom. The procedure for the calculation of the variances were discussed in
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section 2.4. The square root of the variances for the residual (or lack of fit) for the six

scenarios using the expert calibrated parameters are shown in figure 3.1.
Figure 3.1 Standard deviation of lack of fit with expert calibrated parameters for six

scenarios

Standard deviation for six files Baseline Data of

Expert Input
S 0.4
Sa
-§§ 0.3
s 02
s 2
235 0
[+-1
n 0+ ; t ; t |
S1 S2 sS3 sS4 S5 S6

File designation Scen1(S1) to Scen6 (S6)

The expert calibration produced reasonably uniform performance between the six
scenarios with somewhat lower values of the standard deviation of the lack of fit in

s_cenarios S3 and S6.

3.2 Screening tests for transmissivities, model with reduced parameters

The transmissivities for simulation in the last section (expert calibration) are interpreted
from the site hydrostratigraphic units and hydrogeologic information and then calibrated
to a best expert fit to the observations of the six scenarios. To better understand their
effects in the simulation and the optimization process to follow, more screening tests are
performed on them.

Scen6 was used to delineate which transmissivity (Kx) zones are identifiable
using the given head measurements, have stable estimates of the parameter values, and do

not have large uncertainties (Weiss and Smith 1998a,b). The large uncertainties are an
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indication of ill-conditioned matrices. The ill-conditioning will worsen the noise

problems in the data and will cause unstable estimates, as explained in section 2.3. The
screening tests attempted to optimize all 14 zones. The 14 transmissivity zones with the
corresponding expert calibration transmissivity values for the two layer model are shown

in table 3.4;

Table 3.4 Zones of Transmissivity Chart with “expert” estimates

Transmissivity zone Kx Kx
numbers m?2 /day m2 /s
1 .1296 .0000015
2 .6480 .0000075
3 10.368 00012
4 12.96 .00015
5 15.552 00018
6 31.04 .00036
7 38.88 .00045
8 46.656 .00054
9 51.84 .0006
10 54.432 .00063
11 62.208 .00072
12 90.72 .00105
13 103.68 0012
14 388.8 0045

The spatial distribution of these zones is illustrated in Figure 3.1. In preliminary
analyses, parameter zones Kx1 and Kx3 were determined to be insensitive to the head

data in scen6, and delayed convergence in the optimization algorithm. Consequently, the
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expert parameter estimates for Kx1 and Kx3 are used as prior information with a weight

of one.

Parameter Kx4 has an effect on scenario Scen6. The presence of pumping wells
(Table 3.1 CW and DW) causes draw down of the water level close to the wells. If Kx4 is
adjusted in the optimization to unrealistic levels, then the observation well would be dry
in the MODFLOW simulation. The “expert” input for this Kx prevents this occurrence,
thus Kx4 is kept at the “expert” input value and out of the optimization decision variables
set.
For this optimization, the upper and lower bounds for all parameters are set to 1000.0 and
le-4 m2 /day respectively. Results of the optimization of 12 unconstrained paraméters

and Kx1 and Kx3 with prior information are shown in table 3.5.

3.2.1 The Decision Variables for the 14 Zone, 2 Layer Model - cov with magnitude of

parameter standard deviation
The discussion in section 3.1 dealt with the selection of the decision variables
from the 24 zone, two layers model to the formation of the 14 zone two layer model. This

section examines the decision variables to be used in the 14 zone, two layers model to

Table 3.5 Optimized results of Transmissivities (Scen6) with 95% Confidence Limits

Parameters Estimated value 95 % Lower Limit | 95 % Upper Limit
Kx m?2 /day m?2 /day m2 /day
Kx1 .129520 7.852656e-2 213626
Kx2 17.2213 1.599289¢-9 1.854398el1
Kx3 10.3728 6.2884 17.1102
Kx4 13.0985 12.699 13.5105
Kx5 18.2793 8.08488e-5 4.132813e6
Kx6 21.0574 9.13883 48.5199
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Kx7 22.6541 2.48818 206.258
Kx8 .107649 4.348048e-6 2665.16
Kx9 13.1952 1.2451 139.838
Kx10 621.045 80.5147 4790.39
KxI11 563.744 8.319523e-4 3.820G22¢
Kx12 59.2753 786072 4469.77
Kx13 109.637 1.074439e-5 1.118756€9
Kx14 112.585 9.20596 1376.87
Table 3.6 cov for 14 zone model from scen6
Kx No 1 2 3 4 5 6 7
In Variance .0544 115.95 0544 0002 | 33.036 | .1514 | 1.0603
In mean -2.0435 | 2.8461 | 2.3392 | 2.5725 | 2.9058 | 3.0473 | 3.1203
cov - 1.51e25 - - 1.49¢7 | 4044 | 1.3739
Kx No 8 9 10 11 12 13 14
In Variance | 22.2467 | 1.211 9072 | 39.1810 | 4.0618 | 56.6243 | 1.3626
In mean -2.2289 | 2.5799 | 6.4314 | 6.3346 | 4.0822 | 4.6972 | 4.7237
cov 6.77e4 | 1.5351 | 1.2154 | 3.22¢8 | 7.5550 | 1.98¢12 | 1.7048

Note: “-“ denotes transmissivities excluded from this cov calculation, see explanation
p

in section 3.2

verify that the same variables are indeed identifiable. With reference to table 3.6,

transmissivities with cov values higher than 8.0 will be excluded from being the decision

variables. Six transmissivities are below the cut off: Kx 6,7,9,10, 12, 14.

The cov is not an absolute measure of the dispersion of transmissivities from the

mean. For the same magnitude of cov, transmissivity with a higher mean can tolerate a
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higher standard deviation than a transmissivity with a lower mean. This can be

demonstrated by examining the estimated transmissivity mean and standard deviation
from the lognormal distribution parameters of In variance and In mean in table 3.6 above.
The cov, which is the ratio of estimated transmissivity standard deviation to the
estimated transmissivity mean, is given by equation 3.1 and tabulated in table 3.6. The
conversion of the distribution In mean to the transmissivity mean is given by (Ang and

Tang, 1975):
transmissivity mean = exp( In mean + 0.5(var(in T))) (3.2)
Where In mean is the natural log of the mean as in table 3.6, it is a distribution
parameter,

Var(In T) is defined in equation 3.1.

The transmissivity mean and standard deviation for the six zones are calculated

from equation 3.1 and 3.2 and tabulated in table 3.7:

Table 3.7 Potential decision variables - transmissivity mean and standard deviation

-Decision variable Kx No. 6 7 9 10 12 14 -
Transmissivity mean estimate | 21.360 | 45.027 | 14.791 | 676.51 | 86.942 | 128.02
m?2 /day
Transmissivity sd estimate | 8.6371 | 61.860 | 22.707 | 822.25 | 66.606 | 218.25
m2 /day
Decision accept | accept | accept | reject | accept | accept

The decision to accept five of the six decision variables is based on the magnitude
of the parameter standard deviations.

After this process of elimination, the number of parameters to be optimized is
reduced to 3, namely, Kx 6,7, 9,12,14. Other scenarios were also tested. Eight runs in

total are made: Seven with Scen4, one with Scen3, resulting in the same five parameters
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being identified again as the ones to be included in the decision variable set. These results

agree with the 24 zone results in section 3.1, in which the compromise between the

number of decision variables and the stability of the parameter estimates is attained.

3.2.2 Individual optimization for the six scenarios

The objective of the individual optimization is to optimize the 5 selected
transmissivity zones values (parameters) for all six scenarios, independently. No prior
information is used in the individual optimization runs, and all the weights for the'
measurements are set to unity. After the optimization runs, the sets of optimized
parameters for Kx 6,7,9,12 and 14 and their 95% confidence limits, are obtained and
listed below in Table 3.8. The section on the lower right hand corner is a listing of the
values of Gef® (sigma sq in the table) of equation 2.13 for each of the individual
optimization.

The individual optimization are the best fit we can expect from any given
scenario, using the current set of decision variables. The variances of lack of fit will be
the lowest that could be expected from the process, for each individual scenario. It is also
evident that the Kx values changed from file to file, and their mean values showed
significant deviation even on a log scale plot. Log scale plots for Kx6 to Kx14 based on
the above table are shown in Figures 3.2a to 3.2e. Figure 3.3 compares the individual sum

of squares to those determined from the expert values.

3.2.4 The search for an “average” or “central” set of parameter values: the Monte

Carlo simulation

This subsection details efforts to find an “average” set of parameter values which
are suitable for and common to all six scenarios (Scenl to Scen6). From the different
values of the Kx in table 3.4, an attempt is made to obtain one set of common values that

can be used throughout the simulations to produce overall low lack of fit. Two common



means of averaging Kx are to take the mean or the median value of the six optimization

runs.
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Table 3.8 Individually optimized results of 5 Kx in m2 /day for each of the six scenarios:

Scenario |Kx6 95%lo  |95%hi  |Kx7 95%Ilo  |95%hi
St 118.677| 1.00804| 13971.8] 210.714| 8.71574| 5094.29
S2 368.775| 9.05E-02| 1.60E+06| 34.5877| 7.66E-02| 1.56E+04
S3 0.402728| 5.94E-02] 2.73097| 7.08819| 6.69E-01| 75.0498
S4 1.20327| 7.83E-03] 184.872| 8.33855| 1.74E-01] 398.686
S5 32.8448| 11.9935| 89.9477| 87.6232| 4.57063| 1679.82
S6 35.5833| 14.5318| 87.1313] 36.0534| 3.25243| 399.656

Kx 9 95%lo  |95%hi - |Kx 12 95%lo  |95%bhi
S1 100.733| 1.10539] 9179.73] 200.613| 0.197815| 203451
S2 412.46] 1.95E-01| 8.73E+05| 299.391| 7.77E-02| 1.15E+06
S3 6.45113| 8.76E-01] 47.5342] 4.18459| 3.10E-01| 564825
S4 1.14496| 4.79E-03] 273.801 2.25338| 6.75E-03| 751.835
S5 40.8816| 0.831702] 2009.5 1000 2.60844| 383370
S6 56.3888| 6.76935| 469.72 86.573| 14.5844| 513.899

Kx 14 95%lo 95%hi Expert Scenario [sigma sq
S1 1000] 13.256] 75437.4JKx6=31.04 |S1 0.033
S2 981.730! 1.00E+01] 8 B4E+04IKx7=38 88 152 0.0308
S3 77.1418| 8.48E+00] 701.905|Kx9=51.84 |3 0.0062
S4 16.0114] 1.44E-01| 1779.05|Kx12=00.72]|54 0.045
S5 932.035] 13.5095| 64302.2|Kx14=388.8155 0.019
S6 383.37| 66.6656| 2204.62 S6 0.0201

Note: Sigma sq iS Crer 2, see above discussion

Expert denotes expert calibration results
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Log tansformed Kx6 values with 95%
confidence limits

Individually optimized Kx 6 values for 6 scenarios Scen1 to Scen6

scenario number and expert input

& log kx6
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Figure 3.2a Log transformed plot of individually optimized Kx6 values for each scenario

Figure 3.2b Log transformed individually optimized Kx7 values for each scenario
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Figure 3.2e Log transformed individually optimized Kx14 values for each scenario

Individually optimized Kx14 values for six scenarios Scen1 to Scen6

&log kx14 !
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Log transformed Kx14 with 95%
confidence limits

Scenario number and expert input

Figure 3.3 Comparison plot: SS; ind is based on individually optimized values

SS; exp inp is based on expert input
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Comparison Plot of Sums of Square for individual and expert input
cases
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Scenario file Scen1(S1) to Scen6 (S6)
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An arithmatic mean of the Kx can be obtained as an output of Monte Carlo

simulation by means of the program Crystal Ball. This measure is affected by the
magnitudes of the extreme values within the set of Kx, and the calculation does not take
into account the uncertainty in the value of Kx indicated by sp>. A measure less affected
by the large range of values of Kx is the geometric mean, which can be obtained by
dividing the sum of the log transformed values of Kx by the number of Kx (that is, 6).
But this measure still does not account for the uncertainty. A more appropriate average
measure in this case is the median.

Medians are not affected by extreme values in the set, and the means and
standard deviations of the Kx can be used in a Monte Carlo simulation of the parﬁcular
KXx. The position of the median will be affected by the spread of the resulting Kx
realizations in the Monte Carlo simulation, thus accounting for the uncertainties indicated
by the PEST output.

The assumption used in the Monte Carlo simulation is that all of the log
transformed Kx belong to normal distributions with means and standard deviations taken
from the individual optimization runs for the six scenarios. The program Crystal Ball is
used to generate the output statistics for the combined input of the six lognormal inputs
from the individually optimized runs for each Kx.

The method of Shooman (1968) is used to determine how many simulations are
required to obtain a 1% error in the mean value of the parameter at the 95% confidence

level (Ang and Tang, 1990):

Percentage error of simulation = 200(( 1-pf)/(ss(pt)))°5 3.3)
Where the percentage erroris 1,

pf has a value of 0.5 for the estimated probability,

ss is the number of simulations

In 19 out of 20 simulation trials (a confidence of 95%), the means have an

accuracy of + 1% of their estimated values, if the number of trial samples ss is equal to

40,000.
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Each of the Kx is input into the program with six lognormal probability

distribution curves, one from each of the six scenarios. The means and the standard
deviations of the curves are furnished by the individual optimization of the last section.
40,000 values from each of the input lognormal distributions curves are produced, using
the random number sampling within the computer program. This makes a total of
240,000 trials for each combined Kx estimate. The combined estimate for each Kx is
compiled one at a time, on an output distribution chart (Figure 3.4). This chart shows the
frequency of the realizations. From this output, the mean and the median are found. The
final Kx output are tabulated in table 3.9.

The remaining results for the other Kx are presented in APPENDIX A. The sums of
square due to lack of fit for the median and the mean(or average) are shown in table 3.9.

Table 3.9 values from the Monte Carlo simulations and other “average” measures:

Type /Kx Kx6 Kx7 Kx9 Kx12 Kx14
Median 3422 35.15 5i.45 138.46 911.74
Mean 92.85 64.12 103.11 265.82 565.09
Geo mean 17.08 33.30 29.85 60.50 275.1
Expert 31.04 38.88 51.84 90.72 388.8
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Figure 3.4 Combined value for Kx6 from Crystal Ball simulations

CrystalBall Report
Simulation started on 12/6/97 at 19:13:24
Simulation stopped on 12/6/97 at 19:35:53
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Forecast: Combined value for Kx6 Cell: C7
Summary:
Certainty Levelis 96.84%
Certainty Range is from -Infinity to +Infinity m/day
Display Range is from 0.00 to 450.00 m/day
Entire Range is from 0.00 to 1,204.53 m/day
Alter 240,000 Trials, the Std. Error of the Mean is 0.27
Statistics: Value
Trials 240000
Mean 92.85
Median 34.22
Mode ---
Standard D aviation i3i.08
Variance 17,180.97
Skewness 1.56
Kurtosis 4.03
Coelf. of Variability 1.41
Range Minimum 0.00
Range Maximum 1,204.53
Range Width 1,204.53
Mean Std.Error 0.27
Forecast: Combined value for Kx6 (log)
240,000 Trials Frequency Chart 2,236 Outliers
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Figure 3.5 Comparison plot for median and mean against expert input

Comparison of expert input kx results to median and average kx
results from individual optimized files
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As can be seen, the median values produced sum of squares of lack of fit similar to the
trend of those from the expert input, however, the sums of square for both the median and

the average inputs are higher than those from the expert input (eg the total SSr for the six

scenarios with expert input is 8.133, as compared to 9.243 from averaged input and 9.85
from median input). Figure 3.5, shows that the averaged input seems to produce the most
even sum of squares of lack of fit for all six scenarios.

The “average measures” approach failed to improve on the overall variances of
the expert input, therefore some other method has to be devised to seek an improvement.
It can be argued, though, that results from the expert input values are similar in trend to
those from “average measures” input, and that the experts chose transmissivities that are

similar to an averaged measure.
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4.0 The optimization of model parameters by sequential feed forward procedure

The last section describes the use of an “average’ measure designed to generate
results that will be acceptable over the suite of six scenarios. In this section, with the use
of prior information and weights, a new sequential feed forward procedure (sffp) is

introduced to reduce the overall sums of squares of the lack of fit.

4.1 The use of prior information and weights

The use of prior information with optimization in inverse groundwater modelling
is to alleviate the instability problem and to improve the conditioning of the normal
matrix (Neuman and Yakowitz, 1979, see also section 2.1). Prior information and its
weights are introduced into the system of matrix equations as penalty terms, and their
anticipated effects on the system of equations have been explained in section 2.1.

Recalling the discussion in section 2.2, weighting is separated into sample (or
measurement) and prior information weights. The sequential procedure, which will be
discussed in the next section, begins with an unconstrained optimization without prior
information. So the first step in the sequence has sample weights only.

There are two approaches to obtaining the sample weights. This has already been
explained in section 2.2, but is reproduced here for completeness: The first approach is
when the sample weights are selected as the inverse of the estimated variance of the head
measurements. The head measurement errors are assumed to be independent, normally
distributed with a standard deviation of 0.1m. Consequently, the weighting matrix is

constant for all the optimizations and recalling equation 2.26 :

Qs=100(I), a diagonal matrix

The second approach for weighting is based on a concept of the control of process
variance (see section 2.2.1). The assumption is that the measurements errors are

independent and of equal magnitude, thereby making the variance-covariance matrix Vs
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an identity matrix (equation 2.27). The variable weights, calculated by the inverse of an

estimate of the common variance for the untransformed disturbance (equations 2.27,

2.29):

s? = (S(b)/n-p) = comu

12, =Q. k=0to5

These weights are used purely to scale the common variance of the present step, to near
unity (section 2.2.1, equation 2.31).

The anticipated result is that the variance of the sffp calculation is controlled, and
the propagation of the variance to the parameter estimate will also be controlled. If the
estimation of Cov(b) of equation 2.30a has less uncertainty, then the estimation of the

parameters will be closer to their true values, and the overall SSiof will be minimized. The

first step of the unconstrained optimization uses 1.0 as welghts in accordance with the
identity matrix.

As a prelude to the empirical tests with the two approaches, unconstrained
optimization with two randomly selected scenarios (S1 and S3) are performed with PEST
sample weights of 1.0 and 10.0 to examine the differences in results. All other variables
are the same for the scenarios selected. The weights of 10 and 1 have no appreciable
effect on the unconstrained optimization.

While the unconstrained optimization parameter estimates are not affected by the
sample weights, the estimates of the error in the parameter estimates will be affected and
Cov(b) is used to calculate the prior information weights of the next step.

As an illustration of the use of prior information and weights, the following
exercise with the case file Scen4 is conducted to examine the variances of the optimized
values. The starting values for Scen4 for the five parameters are the expert input in table
3.2. Weights for the PEST input for both the Kx and the measurements are set to unity.

The optimized results for Scend, and the 95% confidence levels are in table 4.1:
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Table 4.1 Optimized values for Scen4, with the 95% confidence limits

Kx mean 95%lo 95%hi

6 31.7183 13.8764 72.5009
7 38.7328 6.34517 236.436
9 315772 7.69387 129.599
12 721418 8.17619 636.536
14 270.822 41.7305 1757.58

4.2 The sequential forward feeding procedure (sffp) and ANOVA

The objective of this optimization is to show the effects of the optimization of the
six steady state files in sequence, in which the 5 optimized parameters are updated for
each optimization and passed onto the next file for use as prior estimates, with the
appropriate weights. Again, the discussion in section 2.2 applies.

Some of the sequential optimization effects to be studied include:

1. Importance of the order of the sequential optimization,
2. The importance of sample and prior information weights,
3. The importance of the starting scenario,
4. The retention of the optimized information from scenario to scenario,
5. The value of the optimized parameters during and at the end of the sequential
procedure.
Results generated during the feed forward procedure are compared to the best
possible results computed from individual scenarios (section 3.2.2).

4.2.1 The reference sequence in chronological order

The starting sequence follows the chronological order of the six scenarios to
examine the overall sum of squares of the lack of fit for the sequence. The chronological
order is logically appealing because the site measurement and control systems evolve
with time and more and better data should be collected towards the last steps of the

sequence. Whether this is the case remains to be determined. If the overall sums of
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squares do decrease with the reference sequence order, then the claim on improvement

over time can be substantiated.
The reference sequence begins with Scen1 and ends with Scen6, and an
unconstrained optimization of Scen1 provides the input to the first sequence step of

constrained optimization of the same scenario.

Table 4.2 Reference sequence has the following six steps (Steps 1 to 6):

Step in sequence Scenario optimized Comment

1 S1 Input to S1 from unconstrained

optimization of S1

2 S2 Input to S2 from step 1
3 S3 Input to S3 from step 2
4 S4 Input to S4 from step 3
S S5 Iipui io S5 from siep 4

(@)
%]
N

Input to S6 from step 5

Output from step 6 (S6)

The sole purpose of this sequence is to examine if there is a decrease of overall
sums of squares for the chronological ordered reference sequence steps. The plot of the
sums of squares of the reference sequence and the expert input is shown in figure 4.1.

Variable weighting for the samples is used.
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Figure 4.1

Sum of square of residuals from reference sequence, variable weights

Sum of square m2

step1 step2 step3 step4 step5 step6 exp inp
Source of data, steps of sequence

The reference sequence results show that the sffp does improve on the expert
input overall sum of squares, and there is a general trend of a decrease in the sums from
the first scenario to the last. However, the decrease is not monotonic. It is evident that in
steps 4 and 5 the sums increase over that of step 3. This fluctuation of the overall sums of
squares supports the idea that by mixing up the order of other sequences to non-
chronological steps may achieve lower sums of squares than what the reference sequence
can produce.

The sequences that follow (sequence 1 to 4) use randomly mixed sequences of the
six scenarios. The results will show that the order of the sequence is important to reduce
the overall sums of squares, and depending on the order, better or worse results than the

expert input can be obtained.

4.2.2 The first sequence

The first sequence starts with the individually optimized parameter values and
variances of file S4 and ended with the file S2. The sequence begins with a scenario data
file from the period after the wall is installed. The measurement data is considered to be
of better quality than the two scenarios before the wall (S1 and S2). The sequence ends

with one of the before the wall scenarios (table 4.3):
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Table 4.3 Sequence 1 has the following six steps (Steps 1 to 6):

Step in sequence Scenario optimized Comment
1 S4 Input to S4 from unconstrained
optimization of S4

2 S5 Input to S5 from step 1

3 S6 Input to S6 from step 2

4 S1 Input to S1 from step 3

5 S3 Input to S3 from step 4

6 S2 Input to S2 from step 5
Output from step 6 (S2)

Table 4 shows the source of the input to each step of the optimization. From the
icsulis of each prior sicp, the sampie and the prior information weights are calculated and
put forward to the next scenario optimization. Since there are two approaches in finding
the sample weights (section 2.2), there are two sets of results for sequence 1. The
following is a method to assess the sequence results for the two approaches:

For each of the sffp steps above, including the output from step 6, the optimized
pararneter sets are found by PEST. The parameter set from each step is then fed back into
the scenario files to find the total SSr -sum of squares of the lack of fit, for the six
scenarios. The total SSr for sequence steps are found in Fi gures 4.2 and 4.3. The expert
input (exp inp) is also plotted for reference. As can be seen, the variable weights approach
outperforms the constant ws approach for each step of the optimization. The total SSr for
the variable weights approach exhibits less fluctuations than the constant weight
approach.

The variable sample weights performs better than the constant weights, and details
of it are examined further. For the variable weights, the evolution of the decision
variables as the sffp proceeds are plotted in figures 4.4 to 4.8. The discussion on the

series of weights used for the steps in the sffp are shown in section 6.
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The ANOVA analysis follows the formulae in section 2.4.1. The ratio of SSfacc to

SScorris termed the coefficient of multiple determination (R?), and is a measure of how
much of the variance in the data has been accounted for by the factors or parameters in
the model. The higher the value of this ratio, the better the parameter performance. If the
value of the SSgc: was small with a high R?, then a large proportion of the overall
variance was captured by the parameters or factors, but the actual magnitude of the sum
of squares of the factors is small. This will indicate a set of parameters that work really

well.

Figure 4.2 The total SSr for approach I - Constant Qs at 10- Sequence 1

Sum of squares of residual for six files with input from sequence
1 and expert-APPROACH 1: Weight =10

19.43

Sum of square of six files- m2

step1 step2 step3 step4 stepS step6 exp inp
Sources of input, steps in sequence 1

Figure 4.3 Total SSr for approach II - variable Qs - Sequence 1
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Sum of squares of residual for six files with input from sequence 1
and expert-APPROACH I, Variable Weights

7.80 1

7.40 5

N
38

of square of six files- m2
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o
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step1 step2 step3 step4 step5 step6 exp inp
Sources of input, steps in sequence 1

The following plots are from the results of sequence 1, using the second (variable

weight ) approach:
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Figure 4.7 Plot of Kx12
Sequence 1 data vs Optimized Kx 12 with 95% confidence limits
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Figure 4.8 Plot of Kx 14
Sequence 1 data vs Optimized Kx 14 with 95% confidence limits
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Figures 4.9 to 4.11 for sequence 1 show the magnitudes of the squares root of the

variances during each step of the procedure. The plots show the relative increase or

decrease in standard deviation for the lack of fit, standard deviation for the parameters
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and the coefficients of multiple determination for each of the steps in the sequence
respectively:

Figure 4.9 The plot of standard deviation for the lack of fit, sequence 1, for each step

The standard deviation of lack of fit for sequence 1 steps
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Parameter (factor) standard deviation for sequence 1 steps
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Figure 4.10 The plot of standard deviation for the factors, sequence 1, for each step

Figure 4.11 Plot of coefficient of multiple determination, sequence 1, for each step
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It can be seen from figures 4.9 to 4.11 that the lack of fit standard deviation increased

where the scenarios S1 and S2 were involved. Both the factor (parameter) standard
deviation and the coefficient R> decreases towards the end of the sequence for S2.

For sequence 1, the optimized parameters from the output of step six are
compared to results from the individual optimization (section 3.2.2) and the expert input
cases are plotted for comparison in figure 4.12. The total sum of squares of lack of fit for
sequence 1 step 6 is lower than that for the expert input. The errors are more evenly
distributed over the six scenarios in the sequential optimization results as compared to
those from the expert input. The last step of sequence 1 is the optimization of file S2,
which causes a marked decrease in the lack of fit sum of squares. This brings the
interesting question to mind: does this sequential procedure retain some “memory” of the
optimization steps it went through?

To investigate this question, the results from step 5 are used to calculate the sum
of squares for the lack of fit, and is compared to those from step 6 in figure 4.13. It is
found that indeed the results from step 5 of sequence 1 does have a higher sum of squares
for file S2, prior to the optimization of S2 in step 6, indicating that the sequential
procedure retains the some effects of the last step in the process of optimization. Just how
much is retained from the previous steps will depend on many factors. The area of search
for a minimum in parameter space will ultimately determine the overall sums of squares
magnitude. The area of search in turn depends on the starting values (or default values of
transmissivities, which in this case are the expert input), the parameters being optimized
and the weights used in the prior information. It is also noted that the sum of squares for
scenario S1 increases significantly with the optimization of S2 in step 6, while the
remaining sums of squares stay more or less the same.

This indicates that for any particular optimization with one of the six scenarios,
because of the “unique” locations of the monitoring wells of each scenario and
consequently a different objective function, the prior information and weights from a
previous file may not ensure the best results in generating the lowest sum of squares for
the next optimization. This is acceptable as the objective of the sequential optimization is

to obtain a global best fit which is preferred to any individual fit.
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Figure 4.12 Comparison plot-sums of squares of lack of fit from end results of

sequencel,step 6

Comparison plot of sum of square for individual and expert input
cases
with sequence1 step 6
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Figure 4.13 Comparison plot of step 5 sequence 1 results to step 6 sequence 1
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Thus how well the final optimized results will apply to all six scenarios depends
on

1. The order of the sequence:
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This is important because when sequence 1 results are compared to those from the

reference sequence, the differences are entirely due to the different order of the
sequences.

2. The variable weighting of the samples and prior information,

3. The files themselves (how dissimilar they are)

4. The starting file(s) before the penalty parameter becomes large. This factor is
especially important for the application of the sffp in section 5. The changes in the
penalty parameter (section 2.3.1) for sequence 1 is shown in table 6.2 in section 6, and an

illustration is reproduced below:

The penalty parameter ¢ (Wp°) input to steps, seq 1, 14 zones model
Kx step 1 step 2 step 3 step 4 step 5 step 6
8 3099 5525 396.70] 73988 310 12747

A comparison of the sample and parameter weights is included in section 6.

Both of the total sums of squares for the lack of fit in figure 4.13 are lower than
those for the expert input. If SSiof is the only criterion for optimization, the parameters
associated with the lowest sum of squares will be taken as the “best” set of optimized
parameters.

Other measures of a “best” solution exist. There are the considerations pertaining
to the parameter uncertainties, which can become a major objective for optimization in
itself (Weiss and Smith, 1998b). A new method is devised and explained in the latter part
of this section to help with the decision-making and selection criteria.

With reference to Figure 4.3, the improvements of the sffp sequence 1 on the
sums of squares of lack of fit over the expert input are obvious in all step results. Step 4

of sequence 1 reduce the overall sum of squares of the expert input by 13.2%.
4.2.3 The second sequence

The second sequence is found in table 4.4, and the results in Figures 4.14 and

4.15:
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Table 4.4 The steps in sequence 2

88

Step in sequence Scenario optimized Comment
1 S6 Input to S6 from unconstrained
optimization of S6

2 S1 Input to S1 from step 1

3 S2 Input to S2 from step 2

4 S4 Input to S4 from step 3

5 S5 Input to S5 from step 4

6 S3 Input to S3 from step 5
Output from step 6 (S3)

Figure 4.14 Approach I - constant Vs, sequence 2

Sum of square for six files - m2

Sum of squares for all six scenarios and expert input for

sequence 2-APPROACH -Ws=10.

step2 step3 step4 stepS . step6 exp inp
Source of input from step result in sequence 2
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Sum of squares for all six files and expert input for sequence 2-
APPROACH II, VARIABLE WTS

15.46

Sum of square for six files - m2

step1 step2 step3 step4 step5 step6 exp inp
Source of input from step result in sequence 2

Figure 4.15 Approach II - variable weights, sequence 2

Again, the fluctuations in the SSr from approach I exceed those from approach IT. Both
sequences reach the lowest sum of squares of the lack of fit at the initial step. The
variable weights achieve a much more controlled overall sums of squares than the
constant sample weights.

The results for sequence 1 and 2 show that in general, the best and the most stable
results in the sffp are obtained from a variable sample weighting approach, because the
common variance for the untransformed disturbance of the previous step can match and
control that of the present step.

The remainder of this section will dedicated to the results from the second
approach only. The sum of squares for the end results (step 6) of this sequence is shown
in figure 4.16. The sum of squares of lack of fit for sequence 2 step 6 is slightly higher

than that of the expert input.
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Comparison piot of sum of square for sequence 2 step 6, individual
and expert input cases
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Figure 4.16 Sum of squares for lack of fit for sequence 2 step 6
4.2.4 The third and fourth sequences

The third sequence has scenario S2 as a starting point, as shown in table 4.5, the

sum of squares results are shown in figure 4.18:

Table 4.5 structure of the third sequence

Step in sequence Scenario optimized Comment
1 S2 Input to S2 from unconstrained
optimization of S2

2 S1 Input to S1 from step 1

3 S3 Input to S3 from step 2

4 S4 Input to S4 from step 3

5 S5 Input to S5 from step 4

6 S6 Input to S6 from step 5
Output from step 6 (S6)
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Comparison plot of sum of square for sequence 3 step 6, individual
and expert input cases

——SSrind
——SSr exp inp
—&—SSr seq3s6

Sums of squares

Scenario numbers

Figure 4.17

Figure 4.18 Overall sums of squares of lack of fit with sequence 3 steps as input

Sums of squares for six scenarios in sequence 3 and expert input

39.21

Sum of squares six files-m

step1 step2 step3 step4 step5 step6 exp inp
Sources of data input

The starting values of some of the parameters in sequence 3 (Kx14,12) remain
relatively unchanged during the optimization process. As shown in figures 4.19 and 4. 20,
the final sum of squares for the lack of fit of sequences 3 is higher than that in the expert

input case.
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Sequence 3 Data vs Optimized Kx 14 with 95% confidence limits
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Figure 4.20 Kx12 in sequence 3 optimization
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For the other sequences these parameters do exhibit changes in value during the

sffp steps by as much as an order of magnitude.
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The steps of sequence 4 are listed in table 4.6, and the overall sum of squares in figure

4.21:
Table 4.6 Steps in sequence 4

Step in sequence Scenario optimized Comment
1 S2 Input to S2 from unconstrained
optimization of S2

2 S3 Input to S3 from step 1

3 S4 _ Input to S4 from step 2

4 S6 Input to S6 from step 3

] SSs Input to S5 from step 4

6 S1 Input to S1 from step 5
Output from step 6 (S1)

The summaries of total sums of squares for sequences 3 and 4 are shown below:

Figure 4.21: Sum of squares for all six files and expert input for
sequence 4

Sums of square six files-m2

step1 step2 step3 stepd step5S step6 exp inp
Source of input

The overall sums of squares in sequence 4 are all more than the expert input. The
above are the results of the five sequences of optimization for the six scenarios.
References to the results will be made in sections that follow for comparison and analyses

purposes.
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4.5 The use 24 Kx zones for sffp

The discussion in section 1.2 shows the importance of the reduction of the number
of parameters in indirect inverse modelling. The use of the coefficient of variation (cov)
as a guideline to reduce the dimensionality of decision variables from 24 to 14 and a
subsequent verification of the “reduced dimension” model.

The techniques used in the optimization of the 24 zones are based on the findings
of the sffp for the 14 zones. It is shown in the 14 zones’ sequence 3 optimization that it is
possible for the values of the decision variables to remain essentially unchanged during
the sequential steps. It is also shown that the sequential starting scenario values of the
parameters are important in the subsequent optimization.

With the similarities between the results of section 3.1 and 3.2 on the identifiable
parameters, the optimization of the 24 zone model is performed using the 14 zone model
resulis as a guide: The iinked zones in the i4 zone modei are now de-coupied, and will be

optimized as separate zones in the 24 zone model.

4.5.1 The 24 zone optimization strategy

With the results of the previous sections, the optimization process has been
streamlined in the following way:
The cov guideline is again used to find the parameters which will be used as decision
variables. With the cut-off cov at 8.0, nine zones selected in section 3.1 as the
compromise will be used. In addition, zone 19 will be added to the nine, making a total of
10 decision variables - number 10, 11, 12, 13,16,17, 19, 20, 23 and 24. With the
exception of zone 19, all were present in the previous 14 zone models as decision
variables, although some were linked as one zone (see table 3.2). These will be optimized

in a sequential procedure in the same order of sequence 1.
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Table 4.7 The 24 transmissivity zones

95

Hydraulic Transmissivity Zone Kx in m2/day
Number Expert Input
1 .1296
2 .14688
3 16416

4 .648
5 10.368
6 12.96
7 12.969
8 15.552
9 15.561
10 31.104
11 31.113
12 38.88
13 38.889
14 46.656
15 46.665
16 51.84
17 51.849
18 54.432
19 62.208
20 90.72
21 90.729
22 103.68
23 388.8
24 388.81
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The values of the Kx which occupies the same zone in table 3.2 have been
modified slightly so that the MODFLOW preprocessor Groundwater Vistas and PEST
template file can recognize them as separate zones. The sequence steps and order are the
same as those in section 4.2.2. As in the 14 zone model, the optimization begins with an
unconstrained optimization, then step by step using variable weights (approach II) and
results of the previous step as prior information for the decision variables of the next step.
In the unconstrained optimization, the 24 zones are optimized in groups of 5 or fewer
zones, to insure stability. Beginning in step 1, all ten zones are used as decision variables
in the optimization, with prior information.

The results for the ten decision variables are shown in figures 4.22a to 4.22j, and
the sum of square plot is figure 4.23. with step zero denoting the unconstrained
optimization step. The actual magnitudes of the variables do not change significantly
from step to step.

Figure 4.22a 24 zone model optimization, sequence 1, Kx10

24 zone sequence 1 run data Optimized Kx 10 with 95% confidence
; limits

¢log kx10
=log 95%lo
=log 95%hi

Log Optimized Kx 10

Step0 Step1 Step2 Step3 Steps4 Step5 Step6
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Rt R
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24 zohe sequence 1 run data Optimized Kx 11 with 95% confidence
limits

Log Optimized Kx 11
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2b 24 zone model optimization, sequence 1, Kx11

-~ ~ a A

Zc 24 zone model optimization, sequence i, Kxiz

24 zone sequence 1 data Optimized Kx 12 with 95% confidence limits
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24 zone sequence 1 data Optimized Kx 13 with 95% confidence limits
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Figure 4.22d 24 zone model optimization, sequence 1, Kx13
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Figure 4 22e 24 zone model optimization, sequence 1, Kx16
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24 zones sequence 1 data for Kx17 with 95% confidence limits

&log kxi7
==l0g 95%hi

1% Jo senfea pazjwjdo Boq

Step2 Step3 Step4 StepS Step6
in sequence 1

Step1

StepO

steps

sequence 1, Kx17

ization,

mizaty

ti

22f 24 zone model op

-

4

Figure

Kx19

ation, sequence 1,

miz

ti

22g 24 zone model op

4

Figure

24 zone sequence 1 data optimized Kx19 values with 95% confidence

limits

& log kx19
=log 95%lo
=!0g 95%hi

61 x) pazjwndo 6o

Step5 Step6

epd

t

Step2 Step3 S

Stept

Step0

quence 1

in se

steps

99



100

24 zones sequence 1 optimized kx 20 with 95% confidence limits
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Figure 4.22h 24 zcne model optimization, sequence 1, Kx20
Figure 4.22i 24 zone model optimization, sequence 1, Kx23
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Figure 4.22j 24 zone model optimization, sequence 1, Kx24

24 zones optimized sequence 1 kx 24 with 95% confidence limits
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The sums of square of six scenarios of the 24 zone model can be compared to those in

figure 4.3 of the 14 zone model (same sequence). The total sums of square for the 24
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zone model are very close for all six steps, and the lowest sum of square of 6.8671 in step

6 is an improvement over that of the figure 4.3, which is 7.06 for step 4 of the 14 zone

model in the same sequence.

4.6 The ANOVA for the lowest sum of square of lack of fit, 14 and 24 zone models

The focus is now on the optimal parameter sets from the sffp modelling. Two
models have been used, a 14 zone model which contains linked zones with identical
transmissivities from the expert input, and a 24 zone model which contains all zones
created by experts, zones with identical transmissivities have been de-coupled. The
models have been explained in detail in section 3.

From the results of the sffp, the lowest sum of square of lack of fit (SSy) is from

sequence 1, step four of the 14 zone model. The lowest SSo¢ for the 24 zone model is

arized in
1Zeg T

aaea a

from step six. These results are sumr table 4.8:

Table 4.8 Lowest SS)o¢ results from optimized 14 and 24 zone models:

Comparison between 14- and 24 zone models
sequence 1 step 4 for 14 zone, step 6 for 24 zone

) 14 zone 24 zone
SSfact 3.8438 7.6846
R? 0.8527 0.8849
Overall SSlof six scenarios 7.06 6.8671
Standard dev lof six scenarios* 1.4758 1.4475
Max parameter est variance 1.88E-02] 5.30E-02]
Max parameter est stand dev 1.37E-01 2.30E-01
eigenvalue ratio largest/least 6.57 106.48

* Note: The standard deviation of the lack of fit for all six scenarios is calculated by
dividing the corresponding SSlof by the degree of freedom and taking the square root.

The parameters for the above optimized 14-and 24 zone models are shown below.

The table shows that the 24 zone model has the higher value of R?, and SSfact.

This will mean that the 24 zone transmissivities account for more of the variance in the
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data than the 14 zone model, but the small difference in the R2 value shows that the added

parameters in the 24 zone model are better, though not by much. Overall, the 24 zone
model parameters are better in reducing the SSlof for all six scenarios than the 14 zone
model, but again, not by much (less than 3 %).

The maximum parameter variance for the decision variables is higher in the 24
zone model than the 14 zone model, indicating a higher uncertainty for the 24 zone model
parameters. The eigenvalue ratio for the normal matrix is also higher for the 24 zone
model, the matrix in the 24 zone model is therefore not as well conditioned. There are
both favourable and unfavourable aspects of using the models. The parameters sets are:

Table 4.9 24 zone optimized parameters

Hydraulic Conductivity Zone Kx in m2/day
Number

1 .130*
2 .147*
3 .164*
4 .648
5 10.368
6 12.960
7 12.969
8 15.552
9 15.561
10 35.436
11 40.194
12 49.931
13 11.843
14 46.656
15 46.665
16 16.972
17 70.321
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18 54.432
19 23.636
20 206.131
21 90.729
22 103.68
23 236917
24 327.028

Note:* denotes transmissivities that have been modified slightly so as to separate them.

Slight changes were made in the original data in the least significant digit in the m2/sec

values, and have been transferred into PEST and shown now in m2/day values.

Table 4.10 Optimized parameter set for lowest SSlof - 14 zones model

Transmissivity zone numbers Kx
m2/day
1 .1296
2 .6480
3 10.368
4 12.96
5 15.552
6 31.4881
7 56.5948
8 46.656
9 25.1224
10 54.432
11 62.208
12 54.4468
13 103.68
14 255.32
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4.7 Decision support tool: The Weighted Optimized Non-dimensional Norm

(WONN)

This section describes a flexible new tool to select the “best” model and parameter
values, not on a single measure such as the lowest sums of squares of the lack of fit, but
on a combination of a number of measures that may be relevant to the modeller. A typical
collection of these measures is shown in table 4.8 above. Since these measures have
unlike units, combining them will require some scaling.

The simplest way to describe this straight forward method is to use the example of

the 24 zone versus the 14 zone optimized results:

The 24 zone result (table 4.8), has a total SSlof of 6.8671 m? or a standard deviation of
lack of fit of 1.4475 m, and the highest parameter standard deviation of 2.3e-1 m2/day.

The 14 zone result has a total SSlof of 7.06 m? or a standard deviation of lack of fit of

1.4758 m, and the highest parameter estimate standard deviation of 1.37e-1 m2/day.

Both the total SSlof (or standard deviation, lof) and the variance of parameter estimate are
measures to be minimized, and the lower their values, the better. The non-dimensional
quantity that can be used to combine these two measures is calculated using the following
methodology.

The WONN procedure:

Step 1- choose the measures of “goodness’ of solution. In this example, the standard

deviation of the lack of fit and the highest standard deviation are selected.
Step 2- The chosen measures of estimated parameters should be better when smaller in

order to use the scaling procedure in the next step. If the measures are better when

maximized, then the suggested scaling step next should be modified.

105



106
Step 3- Form a vector of the same type of measure. In this example, there are two vectors,

one for the standard deviation of the lack of fit for the 14 zone model, the other for the
highest parameter estimate standard deviation. Each vector will have two elements: one
each for the 14 and 24 zone models. Normalize both vectors by using the largest value in
that vector. Entries in both vectors will consist of the highest number of 1 and decimals.

The elements in the vector are now dimensionless.

Step 4- Extract the dimensionless numbers for each model and form two new vectors, one
for the 14 zone, the other for the 24 zone model. Find the length of the vector by taking
the root sum of square for the elements of the new vectors. Weights can be added to
emphasize or de-emphasize any particular element in the new vectors. If weights are used,

the same weights have to be applied to the same elements in both vectors.

Step 5- The weighted or un-weighted shortest length vector will be chosen.

An example using the above numbers are used to perform the above procedure:

1. Scale the standard deviation of the lack of fit and the highest parameter variance by
means of the largest value in the set. For the lack of fit it is (1.4475, 1.4758) or
(0.9808, 1) for (24 zone model, 14 zone model). For the parameter standard deviation
itis (2.3e-1, 1.37e-1) or (1, 0.5957) for (24 zone model, 14 zone model).

2. The non-dimensional norm is the inner product of the non-dimensional vector
containing the lack of fit standard deviation and the parameter standard deviation

elements for the particular model:

For the 24 zone model:
(0.9808,1).(09808) = (0.962+1)=1.962 @4.1)

¢ 1)

For the 14 zone model:
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(1,05957).( I ) = (1+0.3549)=1.3549 4.2)

(0.5957)

The weighted optimized non-dimensional norm for the 24 zone model is the
square root of equation (4.1), or 1.401, and that for the 14 zone model from equation (4.2)
is 1.164. The better choice, taking the lack of fit and parameter standard deviations into
account, is the 14 zone model which has a lower norm.

The choice for the 14 zone model is obvious, because the model with the lowest
norm will have the best combination of sum of square of lack of fit and parameter
uncertainty.

The above example treats both elements in the vector with equal emphasis, and
the norm is calculated as if the vector elements are orthogonal to each other. While the
elements of the vector are different aspects of the same optimization, and thus may not be
truly orthogonal in a strict mathematical sense, they are, however, important indicators of
the quality of the optimization, and as such can be treated equally by the modeller.

In the case when the modeller assigns more importance to one element of the
vector than the others, it can be achieved by giving weights to the elements. Again, using
the above example, if the standard deviation of the lack of fit is deemed 5 times as

important as the parameter standard deviation, a factor of 5 is used:

For the 24 zone model:
(0.9808*5, 1) . (0.9808*5) = (0.962*25+ 1) =25.05
( 1 )

For the 14 zone model:

(1*5,0.5957).( 1*5 ) = (1%25+0.3549)=25.3549
(0.5957 )
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The 24 zone model weighted optimized non-dimensional norm (WONN) is now

5.005, and that for the 14 zone model is 5.035, thus making the 24 zone the better choice.
The use of weights can place emphasis on any element at all in the vector.

The vector may contain more than two elements. In addition to the above, the
ratio of eigenvalues can be used as an indication of the conditioning of the matrices, and
can be included in the vector (ratios from table 4.8). Again, the lower the eigenvalue ratio

gives the better conditioned matrices:

For the 24 zone model:
(0.9808*5,1,1).(0.9808*5) = (0.962*25 + 1+ 1) = 26.05
( 1 )
( 1 )

For the 14 zone model:
(1*5,0.5957,0.0617) . ( 1*5 )= (1*25 +0.3549+ 0.0038) =25.3587
(0.5957 )
( 0.0617 )

Calculating the wonn’s will make the 14 zone model a better choice again.
Other measures such as computer computation time required can be added to this
calculation of norm to find the best model. More than two model choices can be

compared at once. Any norm with 3 components or fewer can be presented graphically.
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5.0 Application of the sequential feed forward procedure (sffp) to an arbitrary

starting point simulation (asp) of the six scenarios

The optimization results of the last sections are derived, using the expert input as
starting points for the transmissivities of the numerical model. The purpose of this section
is to start the optimization of all the transmissivities at some arbitrary point, with minor
differences for each of the 14 zones so that the PEST template program can distinguish
each zone, to examine the effects of the starting point on the sffp.

The starting points for the transmissivities are arbitrary, yet reasonable. They
represent some average physical transmissivity values of the soil medium in the area. In
this case, the geometric mean of the expert input transmissivities is adopted, then it is
varied by the least significant digit for each of the 14 zones to form the starting points. A
table of the starting values is shown in table S.1.

This simulation is important for the modelling of groundwater flow because, if
successful, the sffp will enable a modeller to obtain a set of transmissivities for the zones
of the model from the measurements, through an automated procedure and with

significantly reduced input from the expert hydrogeologists.
5.1 The sffp algorithm for the arbitrary starting point (asp) scenarios
The following algorithm is developed for the asp simulations:
D The 14 zone model is used in the asp simulations. 14 transmissivities at or close to
the geometric mean of the original expert input values ( of 22.0304 m2/day) are tabulated

in table 5.1:

Table 5.1 14 zones of transmissivity for unconstrained optimization, asp simulations

Zone number Transmissivity, m2/day Log transmissivity

1 22.0304 1.343022
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2 22.0305 1.343024
3 22.0306 1.343026
4 22.0307 1.343028
5 22.0308 1.343030
6 22.0309 1.343032
7 22.0310 1.343034
8 220311 1.343036
9 22.0312 1.343038
10 220313 1.343040
11 220314 1.343042
12 22.0315 1.343044
13 22.0316 1.343046
14 22.0317 1.343048

These will be used as siariing values throughout the unconstrained optimization, and wiil

only be replaced by selected results from the optimized transmissivities from the sffp.

2) A detailed screening process for all parameters in the 14 zone model is performed
using unconstrained optimization. Sets of decision variable with 5 parameters or fewer
for each of the scenarios 3 to 6 will be optimized each time, to cover all 14 zones. This is
necessary in order to have a small dimensioned decision variable space to avoid
optimization-related dry cell problems described in section 3, and to make use of all of
the information in the data sets.

Recall the screening procedure in section 3, in which the screening is performed
with only scenario 4. Scenario 4 was selected previously because the unconstrained
optimization was on groups of up to 10 of decision variables. Due to this higher
dimensionality of the variables, the optimization encountered difficulties with both dry
cell occurrences which terminated unconstrained optimization attempts, and many
insensitive parameter values which stayed at the upper or lower bounds of the optimized

parameter range. The dimension of decision variables was not reduced in that
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optimization, therefore only scenario 4, which performed the best under those conditions,

was used as the screening scenario in section 3.

In the present case, when dry cells occur in the unconstrained optimization of 5
decision variables, the dimensionality of the optimization is again reduced: two groups
containing 3 and 2 decision variables are used in two separate unconstrained
optimizations. By successive reduction of the dimensionality of decision variables, dry

cell occurrence is avoided.

3) The unconstrained optimization results are tabulated and screened by using the log-
transformed values of the means and variances of the parameters. The log-transformed
values of the transmissivities are assumed to obey the normal distribution, and hence are
used as numbers in subsequent calculations.

The criterion for selecting “suitable” optimized transmissivities to replace those in
table 5.1, and (or) to be used as prior information in the sffp steps to follow, is based on
the raw coefficient of variation and the variance of the parameter. The raw coefficient of
variation (cov) is calculated by using equation (3.1).

The cov is not an absolute measure of the variation of the parameter. For the same
cov, a parameter with a higher mean can tolerate a higher standard deviation. Therefore,
an additional requirement is imposed on the magnitude of the log standard deviation
estimate of the parameter, to ensure the proper selection of parameter values. To require
the parameter log standard deviation to be zero is not realistic, therefore an arbitrary
reference is set. It is the square root of the reference variance of the measurements for the
starting scenario of sequence 1, which is S4. The numerical value of this reference is
0.39. The advantages of using a reference like this are that the level of the reference is
low, and that the parameter log standard deviation estimates close to this value, both
higher and lower than 0.39, can be of equal importance.

The difference between 0.39 and the log parameter standard deviation, together
with the values of cov, will form the axes in the weighted optimized non-dimensional

norm (WONN) for the choice of the parameter as a decision variable.
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The application of the selection criterion will be illustrated below with reference

to the optimized values from the unconstrained optimizations.

4) After applying the WONN selection process in step 3, selective starting values for
transmissivities are identified from the unconstrained optimization results. These starting
values take the places of the default values in table 5.1. Also, prior information for the
first 5 decision variables are obtained from the same process.

The order of the first sequence ( see section 4) is used for the cycle 1 optimization.
After the sequence of optimization is completed, the optimized set of parameters that
gives the lowest SSlof for all six scenarios will replace the starting values of the
parameters in the table of transmissivities as the new default values. This is the end of

cycle 1 of the optimization.

5) Cycle 2 of the process begins the same as cycle 1, with a higher cov cutoff and the
log standard deviation requirement. 5 different parameters are selected and optimized
again with the order of sequence 1. At the end of cycle 2, five more optimized parameters
of this cycle which produce the lowest sum of squares of the lack of fit will replace the

existing default values of transmissivities.

6)  Cycle 3 or any subsequent cycles that are necessary, are performed in the same
manner as for cycle 2, on the remaining decision variables. If, at the end of cycle 3, the 14
zones are updated completely, then the new transmissivities can replace the arbitrary

starting point database of transmissivities in table 5.1.

7) If desired, knowledge from the first pass that optimize all 14 zones can be used as
prior information on a second pass of optimization, in which cycles are repeated as in the
above steps, to obtain a lower overall sum of squares of lack of fit. This will improve on
the performance of the asp simulations.

The new set of 14 transmissivities will be compared to the expert input.
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5.2Asp simulation, first pass, cycle 1
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Following steps 2 3 and 4 of the above algorithm, the unconstrained optimization

results for the parameters and their log transformed values, the cov calculation with

equation 3.1, results are in tables 5.2, 5.3.

The selection of the parameters using the cov in table 5.2 and the log standard

deviation is described below:

The cut off cov is set at 1.2. This value is chosen to include approximately five of the

parameters for decision variables. The additional requirement is that the parameters that

Table 5.2 Log mean and Var(log T) of parameters from unconstrained optimization

Source scenario for log mean table of var (log T)

Kx 3 |s4 5 %6 Kx 3 ) 5 %6
1] 36021 45809 36021 31461 1| 6.54E+00] 4.31E+00] 1.70E+02] 3.42E+00)
2| -20516] 36021] -1.1107] 01 2| 4518 1779 1077] 3398
3| 27340 1.1741] 3e021] 14821 3] 9683 2597 1987 4527
4 32023 -1.9547] 12605 2. 4  4067] 1729 04979 0.4400
5 36021 36021 00308 3. 5 6.26 66| 3404 09479
6| 02147] 0830 1.3070] 1.2850 6| 304E02]  0.327] 595603 1.04603
7| 0808 21847 13805 1. 7| 879802 05773] 4.66602] 717603
8 -1.3935 09522 1.9088] 2. 8 4134 03914 2883 0.7749
9 1.1015] 04947 13045 09679 9 01723 44.12| 6.80E02] 342502
10| -32840] 12994 14672 0.10 10| 1.59E+01] 6.40E+01| 1.51E+00] 3.49E+00
11| 31180 1.1338] 04336 1.0660 11] 1485 0.1849] 7052 05209
12| 15136 33127] 23338 14231 12| 2.376-01] 2.135:00| 1.07E+01] 1.50601
13|  1.8899] 14041] 264100 1. 13 1.016] 6867] 1219 0.1857
14 25865| 26923 17445 2.0004] 14| 543602 3.806-02] 2.08E-02] 1.04E02
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Table 53 Log standard deviation of parameters, cov using transmissivity standard

deviation and mean (equation 3.1)

Source scenario for log standard deviation-sd Cov using In values and equation 3.1

Kx IS3 s 53 S3) K |S3 4 s3] 3
11 25573 20755 13212 1. 1|[3.38¢7] [9.16e4] [9.9%e57] | 8.6810E+03
2 212555 133385 32810 1.8432 2[999e52]  |[999e57] | 25085E+12 8 1676403
3 9828 5009 140089 21271 3 9.9000E+62 7.9062F+291[9.99e57] | 1.62806:08
4 704771 51584 07056 06640 4 1.5300E+57] 8.0510E+19 36070E+001 306885400
S 25020 25694 18451 O 5[1.61e7] [397€7] 829865408 [1.23¢:1]
6 01745 o571 00771 00323 6 4.1847801 215915400 1.7895E01| 74179500
7 02965 07598 02160 O 7| 77050E01| 451066+00] 52972601 1.9600E01
8 2032 06256 16981 08343 8 S5.7470E+04 26396E+00) 208536+03 7.7364E+00)
9 04151 6. 02608/ 0.1848 9 122195400 6.2377E+60] 6.5806E01| 4455501
100 39862 79083 12279 186794 10[1.97e19 9.9900E+62 54460E+01| 1.0341
] 12186 04300 26561 07217] 11] 5.1237E:01| 1.29065+00| 1.31506+08] 38507E+00
120 04871 14534 32672 03877] 12| 1.5871E:00 28406E+02 1.9244E+12] 1.10006+00
13 10080 26201 11038 O. 13 1.47476+01] 8.0624E+07] 252986+01| 1.29405+00
14 02330 01959 014300 0.1 14 S.7753601| 4.7253601] 34124E01| 2383501

Note: []denotes parameters at maximum or minimum bounds of optimization, and are

thus eiiminated from selection process.

9.99 52 is the maximum value for cov with log variance greater than 50.

are below the cov cut off should have a log standard deviation closest to 0.39 (see step 3

above). The parameter below the cov cutoff and with log sd value closest to 0.39 will be

chosen. A parameter by parameter discussion follows (default values are those in table

5.1), with reference to tables 5.2, 5.3.

Kx1 : Use default value to start.

Kx2 : Use default value to start.

Kx3 : Use default value to start.

Kx4: Use default value to start.

Kx5: Use default value to start.
Kx6 : 3 with cov below cutoff - S3, S5, S6. Use WONN to choose decision variable and

start value:
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The WONN matrix for Kx 6
Source of cov S3 Ss S6
cov vector 41847 .17895 074179
normalized cov 1 42763 17726
(0.39-1log sd) vector 2155 3129 3578
normalized sd diff .60229 87451 1.
WONN 1.16737 97023 1.01559
Comment reject accept reject

The S5 unconstrained optimization result is chosen to be starting value and decision

variable. Value of parameter is 20.2791 m2/day, log value is 1.307049, in table 5.2.

Kx7 : 3 cov below cutoff: S3, S5, S6. Use WONN to choose decision variable and start

value:
The WONN Matrix for Kx7
Source of cov S3 S5 S6
cov vector .77050 52972 .1969
normalized cov 1 .6875 .2555
(0.39-log sd) vector .0935 .174 3578
“normalized sd diff 2613 4863 1

WONN 1.0284 .8337 1.0321
Comment reject accept reject

The S5 unconstrained optimization result is chosen to be the starting value and decision

variable. Value of parameter is 24.1245 m2/day, log value is 1.3825 in table 5.2.

KXx8 : Use default starting value.

Kx9 : Two cov values below cutoff, but their magnitudes are close together (.659, .446).

Place more emphasis on the log sd’s closeness to 0.39 by either using just the
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(-39-log sd) axis for wonn or place a weight of 2 on the log sd difference to use both axes.

The latter is adopted:
The WONN Matrix, Kx 9
Source of cov S5 S6
cov vector .659 4456
normalized cov 1 6762
(0.39-log sd) vector . 1292 .2052
normalized sd diff 6296 1
WONN- wt of 2 on 1.6080 2.1112
sd difference
Comment accept reject

Decision variable and default value chosen to be 20.1583, log value is 1.304454 in table

5.2.
Kx10 : Use default value to start.

Kx11 : Use default value to start.

Kx12 : 1 with acceptable cov and log sd. Use as starting value and decision variable.

Value is 26.4914, log mean=1.423105 in table 5.2.

Kx13 : Use default to start.

Kx14 : All cov and log sd acceptable and cov values are close in value. Place more
emphasis on the log sd difference by applying a weight of 2, same as for Kx 9.
The WONN Matrix, Kx 14

Source of cov S3 S4 S5 S6
cov vector 5775 4725 3412 .2385
normalized cov 1 8181 .5908 4130
(0.39-log sd) vector 157 .1941 247 .2862
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normalized sd diff .5486 6782 .8630 1

WONN- wt of 2 on 1.4845 1.5841 1.8244 2.042

sd difference

Comment accept reject reject reject

Choose S3 unconstrained value as starting value and decision variable: value is 385.914,

log mean =2.586491 in table 5.2.

To summarize, the starting values of transmissivities for sequence 1, cycle 1 are in table
5.4. The decision variables have been identified above, with their weights for the prior
information of the parameters. The decision variables are, Kx6, 7, 9, 12 and 14, same as
in section 3 and 4.

Sequence 1 is executed with the starting values in table 5.4, and the 5 decision
variables. The results of the sequential optimization from each step are then used to
replace the starting values in table 5.4 for each of the six scenarios to calculate the SSlof.
The total SSlof for each set of input is plotted against the expert input total SSlof for
comparison, and is shown in figure 5.1.

The parameter set that produced the lowest SSlof (step 4) is used to replace the
values of Kx 6, 7, 9, 12, 14 for cycle 2. The starting values of cycle 2 will utilize the
‘optimization results of cycle 1.

5.3 Asp simulation, first pass, cycle 2

The starting values of cycle 2 is in table 5.5 below. The selection of the decision
variables for this cycle is based on a higher cov cutoff of 10. The value of the 0.39 for log
sd is not enforced in this cycle, except in the case where more than one choice of
parameter value is available from table 5.3, the parameter with log sd value closest to
0.39 will be chosen.

After a selection process similar to cycle 1, the decision variables with the prior

information weights for the parameters are described below.
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First pass, cycle 1 starting values
Kx Values log values
1 22.0304 1.3430
2 22.0305 1.3430
3 22.0306 1.3430
4 22.0307 1.3430
5 22.0308 1.3430
6 20.2791 1.3070
7 24.1245 1.3825
8 22.0311 1.3430
9 20.1583 1.3045
10 22.0313 1.3430
11 22.0314 1.3430
12 26.4914 1.4231
13 22.0316 1.3430
14 385.914 2.5865
Table 5.4
Figure 5.1
Sum of square of residuals from the first pass, sequence 1, cycle 1,
arbitrary input, variable weights
14.00
12.00
[\ )
E 10.00
e
S 800
o
< 6.00
o
§ 4.00
2.00 £
0.00 £

stept step2 step3 step4 step5 step6 exp inp
Source of data, steps of sequence

Table 5.5
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First pass,cycle 2 starting values

Kx Values Log values
1 22.0304 1.3430
2 22.0305 1.3430
3 22.0306 1.3430
4 22.0307 1.3430
5 22.0308 1.3430
6 21.7833 1.3381
7 36.2496 1.5593
8 22.0311 1.3430
9 21.9249 1.3409

10 22.0313 1.3430

11 22.0314 1.3430

12 16.5103 1.2178

13 22.0316 1.3430

14 360.696 2.5571

4 decision variables for cycle 2:

Kx 4: Log mean is 2.568202.

Kx 8 : Log mean is 0.9522.

119

Kx 11 : There are two values that have cov below cutoff. The WONN matrix for Kx11is

Source of cov S4 S6
cov vector 1.2905 3.8507
normalized cov 3351 1.
(0.39-log sd) vector -.04 -3317
normalized sd diff .1206 1
WONN- wt of 2 on 4129 2.2361
sd difference
Comment accept reject

Log mean of decision variable for Kx 11 is 1.1338.

Kx 13 : log mean is 1.0669.

Zone 10 could have been included in this cycle, but it caused scenario 5 to

terminate in the sffp by the occurrence of dry cells. Thus zone 10 is left to the end to be

optimized by itself.
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Sequence 1 order is again used in the sffp, and the total SSlof is plotted in figure 5.2.

Parameters Kx 4, 8, 11 and 13 that produced the lowest SSlof in step 4 of sequence 1
replace the existing starting values of those parameters in table 5.5, and form the starting

values for cycle 3.

5.4 Asp simulation, first pass, cycle 3

The starting values of cycle 3 is shown in table 5.6 below. The 4 parameters that
become the decision variables are those remaining ones with the most reasonable cov and
log sd in tables 5.2 and 5.3. The exception is Kx 10, which creates a problem of dry cell
for scenario S, will be optimized by itself.

Kx 1:log mean =3.1461.
kx 2 : log mean = -.1568.
Kx 3 : log mean= 1.4821.
Kx 5 : log mean=0.0826.

Figure 5.2
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Sum of square of residuals from first pass, sequence 1, cycle 2,
arbitrary input, variable weights

Sum of square m2

step1 step2 step3 step4 step5 step6 exp inp
Source of data, steps of sequence

Table 5.6
First pass, cycle 3 starting values
Kx Values Lchvalues
1 22.0304 1.3430
2 22.0305 1.3430
3 22.0306 1.3430
4 23.2605 1.3666
5 22.0308 1.3430
6 21.7833 1.3381
7 36.2496 1.5593
8 18.9886 1.2785
9 21.9249 1.3409
10 22.0313 1.3430
11 17.811 1.2507
12 16.5103 1.2178
13 27.0172 1.4316
14 360.696 2.5571

Figure 5.3
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Arbitrary input first pass, sequence 1, cycle 3, variable weights

Sum of squares

step2 step3 step4 step5 step6 exp inp
Source of input, step of sequence-dry cell in step 1

The sffp sequence 1 order is used to find the lowest SSlof, and the results are plotted in
figure 5.3. The parameter values of step 4 of cycle 3 for kx 1, 2, 3, 5 replace the existing
default values in table 5.6.

5.5 Asp simulation, first pass, cycle 4
The starting values for cycle 4 is in table 5.7.
Table 5.7 starting values for cycle 4

First pass, cycle 4 starting values

Kx Values Log values
1 15.0233 1.1768
2 1.93603 0.2869
3 22.0822 1.3440
4 23.2605 1.3666
5 14.1031 1.1493
6 21.7833 1.3381
7 36.2496 1.5593
8 18.9886 1.2785
9 21.9249 1.3409
10 22.0313 1.3430
11 17.811 1.2507
12 16.5103 1.2178
13 27.0172 1.4316
14 360.696 2.5571
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The decision is Kx 10 by itself, and its log mean is 1.4672. The sffp sequence 1

order is again used, but dry cell occurred in step 2 (scenario 5). The sequence is re-started
again using an unconstrained optimization for scenario 5 at that point, and the sequence is
resumed after that point. The overall sums of square of lack of fit for the steps are in

figure 5.4.

Figure 5.4 Asp simulation, first pass, cycle 4

Arbitrary input, first pass, Sequence 1, cycle 4, variable weights

8.45
8.40
8.35
8.30
8.25 £
8.20 43
8.15
8.10
8.05
8.00
7.95

of squares

Sum

step2 step3 step4 stepS step6 exp inp
Source of input, step of sequence-dry cell in step 1

The value of Kx 10 from step 5 is selected to complete the set of 14 zones transmissivity
values. As can be seen, the asp simulation results in an overall sum of square of lack of fit
approaching that of the expert input, at 8.17 m® The 14 zones of optimized values that
produce this result are in table 5.8. The comparison of these results to the expert inputs

are shown in table 5.12 in the next subsection.
5.6 Asp simulation, second pass, cycle 1

In this second pass of asp optimization, information from the first asp pass is used
to maxim:ize the effect of the choice of decision variables for each cycle, and to attempt to

lower the sum of square of lack of fit further. The prior information is not used as

weights, but as guidelines to select decision variables and starting values for
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First pass, cycle 4 end values

Kx Values Log values
1 15.023 1.1768
2 1.936 0.2869
3 22.082 1.3440
4 23.261 1.3666
5 14.103 1.1493
6 21.783 1.3381
7 36.25 1.5593
8 18.989 1.2785
9 21.925 1.3409

10 13.744 1.1381

11 17.811 1.2507

12 16.51 1.2177

13 27.017 1.4316

14 360.696 2.5571

Table 5.8 End values of first pass, cycle 4 of asp simulation

optimizations in the cycles of the second pass. A distinctive feature of the previous asp
optimization is that cycles 1 and 2 of the first pass used the most identifiable parameters
of the 14 zones based on the criterion of modified cov with variance control. For these
two cycles, the overall sums of squares are higher than those for the expert input. The
third cycle, with the relatively not so identifiable parameters, br01‘1ght the overall sum of
squares much closer to the expert input standard.

Based on this observation, a parameter that affected the first pass, cycle 3
optimization (Kx 2) will be utilized in the following way: The unconstrained optimization
value for Kx2 will be used as starting value for the new cycle 1 optimization - a value of
log mean of Kx2 is -0.1568. This starting value of Kx2 will be used until it is optimized
as a decision variable. Then its optimized value will replace the starting value. The 5
decision variables will remain the same as those in the first pass. Similarly, the starting
values for these five parameters (Kx 6,7,9,12,14) will be the same as those in cycle 1 of
the first pass.

A parameter by parameter discussion can be found in section 5.2 for zones other

than Kx2. The starting values and decision variabies are summarized:
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Second pass, cycle 1 starting values

Kx Values Log values
1 22.0304 1.3430
2 0.697 -0.1568
3 22.0306 1.3430
4 22.0307 1.3430
5 22.0308 1.3430
6 20.2791 1.3070
7 24.1245 1.3825
8 22.0311 1.3430
9 20.1583 1.3045

10 22.0313 1.3430

11 22.0314 1.3430

12 26.4914 1.4231

13 22.0316 1.3430

14 385.914 2.5865

Table 5.9 Starting values for second pass, cycle 1
the decision variables are the same as those in section 5.2, with Kx 6,7,9,12 and 14.

The sequence 1 order is used with the starting values in table 5.9, and the 5
decision variables. The total SSlof for each set of input is plotted against the expert input
total SSlof for comparison, and is shown in figure 5.5.

The parameter set that produced the lowest SSlof (step 4) is used to replace the
values of Kx 6, 7, 9, 12, 14 for cycle 2. The starting values of cycle 2 will utilize the

optimization results of second pass, cycle 1.
5.7 Asp simulation, second pass, cycle 2
The starting values of cycle 2 is in table 5.10 below. The selection of the decision

variables are based on observation of results from the first pass, cycle 3, together with the

values of the cov. Kx1, 2, 4, 8, 13 are selected as decision variables.
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Figures.5
Sum of square of residuals from second pass, sequence 1, cycle 1,
arbitrary input, variable weights
9.00
8.80 -
N
€ 8.60
g_ 8.40
< 8.20
E 8.00
(7]
7.80
7.60 {52 ; : : : :
step1 step2 step3 step4 stepS step6 exp inp
Source of data, steps of sequence
Table 5.10
Second pass, cycle 2 starting values
Kx Values ng values
1 22.0304 1.3430
2 0.697 -0.1568
3 22.0306 1.3430
4 22.0307 1.3430
5 22.0308 1.3430
6 23.8273 1.3771
7 39.3631 1.5951
8 22.0311 1.3430
] 17.6245 1.2461
10 22.0313 1.3430
11 22.0314 1.3430
12 22.028 1.3430
13 22.0316 1.3430
14 362.766 2.5596

Sequence 1 order is again used in the sffp, and the total SSlof is plotted in figure 5.6.
Parameters Kx 1, 2, 4, 8 and 13 that produced the lowest SSlof in step 4 of sequence 1
replace the existing starting values of those parameters in table 5.10, and form the starting

values for cycle 3.
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Figure 5.6

Sum of square of residuals from second pass, sequence 1, cycle 2,
arbitrary input, variable weights

Sum of square m2
[o.]
8

2.00
0.00

step1 step2 step3 step4 stepS step6 exp inp
Source of data, steps of sequence

5.8 Asp simulation, second pass, cycle 3

The starting values of cycle 3 is shown in table 5.11 below. The remaining 4
parameters become the decision variables, the parameters with the most reasonable cov
and log sd are chosen as prior information values.

The sffp sequence 1 order is used to find the lowest SSlof, and the results are
plotted in figure 5.7. The parameter values of step 5 of cycle 3 for kx 3, 5, 10, 11 replace
those in table 5.11 as the complete set of optimized variables for this second pass of the
asp simulation. The complete set of variables has a lower SSlof for all six scenarios than
the expert input.

It is also worth noting that the second pass, with its usage of the prior information
of the first pass to group the decision variables for the optimization cycles and to choose
the starting values, is successful in controlling the dry cell occurrence in the first pass.

Only 3 cycles are required in the second pass as compared to 4 in the first.
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Second pass, cycle 3 starting values

Kx values log values
1 13.796 1.1398
2 0.38472 -0.4149
3 22.0306 1.3430
4 35.2644 1.5473
5 22.0308 1.3430
6 23.8273 1.3771
7 39.3631 1.5951
8 41.1752 1.6146
9 17.6245 1.2461
10 22.0313 1.3430
11 22.0314 1.3430
12 22.028 1.3430
13 15.4587 1.1892
14 362.766 2.5596

Table 5.11

Figure 5.7

Sum of square of residuals from second pass, sequence 1, cycle 3,
arbitrary input, variable weights

step1 step2 step3 step4 step5 step6 exp inp
Source of data, steps of sequence

Some of the asp results are almost identical to the expert input (eg, Kx2, 7, 8, 14),
whereas others are different. Referring to the second pass and expert input results, with
the exception of Kx 1 and 10, which have a difference of over two orders of magnitude,

the differences among the three sets of transmissivities in general are considered not too
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large, considering the natural variability of the transmissivities. For the log transformed

values the differences are even smaller.

The arbitrary starting point simulation with the sequential process can enable a set of
optimized transmissivities to be found. This set of transmissivities can perform better in
reducing the SSlof than the expert input, and has statistical estimates of uncertainties and

(linearized ) confidence limits associated with each value.

Table 5.12 complete set of second pass asp optimized values for six scenarios,

comparison to expert input and first pass results

Second pass, cycle 3 end values, compare to first pass and expert input

Kx First pass values Second pass values exp inp

1 15.0233 13.796 0.1296

2 1.93603 0.385 0.648

3 22.0822 33.265 10.368

4 23.2605 35.264 12.96

5 14.1031 62.572 15.552 )
6 21.7833 23.827 31.04

7 36.2496 39.363 38.88

8 18.9886 41.175 46.656

9 21.0249 17.625 51.84
10 13.7437 0.251 54.432
11 ~ 17.811 19.507 62.208

12 16.5103 22.028 90.72
13 " 27.0172 15.459 103.68

14 360.696 362.766 388.8
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6.0 Analyses, conclusion and future research

The results from the last sections are highlighted here and further analysed. This
section begins with a discussion on the noise problem which may hamper efforts in
inverse modelling without the benefits of prior information.

6.1 Eigenvalues ratio analysis, noise contamination

From a set of scenario optimization results, which have been obtained under

unconstrained and constrained (with prior information) conditions, eigenvalues from the

covariance matrices are obtained and listed in table 6.1.

Table 6.1 Eigenvalue analysis

Case un Largest eigenvalue | Smallest eigenvaluc | Sqguare root of ratio
Unconstrained (No 512.8 3.8135e-5 3.667e3
Prior Information)
Constrained (With 2.2759e-2 2.2223e-5 3.20el
Prior Information)

The ratios are calculated in accordance with the discussion in section 2.3. It can be
seen that the unconstrained case is close to having a potential noise problem due to ill
conditioning. In contrast, the problem with prior information, using unit weights, is much
better conditioned. An ill-conditioned matrix will take much longer to solve. The time
required to find a solution in an unconstrained optimization case is usually three or more
times longer than for a constrained case. When the matrices are nearly singular, PEST
may fail to find a solution after days of computing.

Equation 2.33 can also be used to examine the weakness of the representation of
the parameters in the original reference system (a skewed reference system, which has
axes that are not perpendicular to each other). The parameters in the orthogonal reference
system (spanned by the eigenvectors) can be expressed as a linear combination of the

skewed reference system parameter vector in equation 2.33. If the elements in the column
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of the U matrix corresponding to the smallest eigenvalue are examined, the components

that made up the orthogonal matrix U in the skewed reference system is weak
(particularly in the case where noise is a problem) for that eigenvalue.

The PEST manual recommends the examination of the eigenvector corresponding
to the largest eigenvalue. If the vector has more than one dominant element, then these
parameters are not identifiable, because a strong correlation exists among them.

The ratios of the largest to the smallest eigenvalues in table 6.1 can also serve to
indicate the effectiveness of the weighting scheme. As mentioned in the last paragraph of
section 2, the variable weighting (approach II), is numerically similar to classical methods
of scaling and preconditioning the construction of an approximation to the Hessian. In
other words, the classical scaling is performed to improve the eigenvalue structure of the
construction process of the inverse Hessian.

Another way to show that there is numerical similarities between the new

£,
b
3]
9
2,
O
2]
Q
rh
N
3

sequential process and the classical method is to examine the eigenv,
resulting normal matrices for the steps of a sequential process. If the variable weighting is
functioning in a similar fashion to the classical methods, then the eigenvalue ratios are
expected to be lower than those from the steps of the constant weighting schemes
(approach I) of the same sequence.

' The eigenvalue ratios for the constant and variable weights cases for the steps in
sequence 1 are calculated and shown below in table 6.2. As can be seen, the ratios are
everywhere lower in the variable weights case, up to over 30 times lower in instances
than those obtained by using the constant weights. The ratios are plotted in figure 6.0 for
steps 2 to 6.

As was expected, the variable weights do produce better conditioned matrices
than constant weights. The proper scaling of the modelling and measurement error
variances by the use of variable weights derived from the previous step of the sffp does
share numerical similarities to the classical construction methods for the approximation to

the inverse of the Hessian.
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Table 6.2 Calculation of eigenvalue ratios for constant and variable weights

constant wt (approach 1) variable Wt (approach )
steps in seq Jlargest eigv L Jsmallest eigv S Jratio L/ S |largest eigv L |smallest eigv S Jratio L./ S|
Step1 339 34
step2 0.
Step3 9.56E
stepd 9.15
step5 6.00E:
Step6 0.1615]

Figure 6.0 eigenvalue ratios for steps 2 to 6 for sequence 1

Comparison of eigenvalue ratios between constant wt and variable wt
for seq 1

300.00

P e e nal
— A DAL WL

'—.—\ariable wt |

g g
5 8

elgenvalue ratias(largest to
smallest)

step2 step3 . stepd stepS step6
sequence 1 steps from 2to 6

6.2 The weights as penalty parameters in the prior information

The changes of the value of sz for sequence 1 and 3 in the 14 zone sequential
feed forward procedure (section 4) are shown below in table 6.3, 6.4 respectively.
Figure 6.1 shows the evolution of the Kx 6 weight ratio for sequence 1 which is typical of
all other decision variables. The maximum ratio is at step 4, which means that the
parameter has the lowest uncertainty at that step. The lowest SS,¢ also occurs at that step,

therefore the overall minimization of the parameter uncertainty and sum of square of lack
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of fit both occur at the same point in the sffp. This is in contrast to Yeh (1986) (see also

section 1.3).

Table 6.3 sffp sequence 1, 14 Kx zones - parameter weight Qp®

The prior information weight Wp? input to steps, seq 1, 14 zones model

Kx step 1 step 2 step 3 step 4 step5r step 6
6] 3399 5525] 398.76] 739.86] 333.101 127.47
71 710  21.60] 9510 174.67] 117.73]  41.00
9] 11.65] 30.30 92.21] 201.62] 105.37]  50.07]
12 490] 22.95 65.10] 110.48]  53.26]  43.48
14 6.64 2643 71.35] 20329] 94.06] 36.69
obs wt- Ws? 2500 2222]  36.34] 44.15] 186.69] 4956
Wp/Ws Kx6 117 1.58 3.31 4.09 1.34 1.60]
Wp/Ws Kx7 0.53 0.99 1.62 1.99 0.79 0.91
Wp/Ws Kx9 0.68 1.17 1.59 2.14 0.75 1.01
Wp/Ws Kx12 0.44 1.02 1.34 1.58 0.53 0.94
Wp/Ws Kx14 0.52 1.09 1.40 2.15 0.71 0.86

Note: observational weights are the inverse of the reference variance

Figure 6.1 Weight ratio Qp / Qs for sequence 1, Kx14
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Table 6.4 sffp sequence 3, 14 Kx zones - parameter weight sz

The penalty parameter ¢ (or sz) input to sequence 3, 14 zones model

Kx step 1 step2 |step 3 step4 |step5 [Istep6
6 0.35 1.58 6.76]  37.30]  34.87|] 172.76
7] 0.65 2.93] 1254]  30.75] 24.38]  50.19)
9| 0.42 1.85 6.99] 30.12] 27.09] 43.04
12 0.36 1.56 3.54] 18.96] 19.13]  27.86
14 1.20] 5.20] 8.54] 24.50] 22.70]  31.69
obs wt Ws? 3248 4409 3510 60.19] 24.01 30.72
lo6Wp/Ws= 0.10 0.19 0.44 0.79 1.21 2.37
KX7Wp/Ws= 0.14 0.26 0.60 0.71 1.01 1.28
Kx9Wp/Ws= 0.11 0.21 0.45 0.71 1.06 1.18
Kx12Wp/Ws= 0.10 0.19 0.32 0.56 0.89 0.95
Kx14Wp/Ws= 0.19 0.34 0.49 0.64 0.97 1.02

Figure 6.2 Comparison of weight ratios, €2, / Q; of sequences 1 and 3, Kx 6

Weight Ratio, Wp/Ws Sequences 1 and 3
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of Q,

It can be seen from the above tables 6.3 and 6.4, and figure 6.2, that the evolution

and Q, are different for the two sequences. Sequence 1 shows a high Qp? at the

beginning, some 100 times the starting sz values of sequence 3. Sequence 1 has a

narrower confidence band than sequence 3 and it also outperforms sequence 3. This

indicates a better conditioned matrix in the starting file of sequence 1. It illustrates the
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importance of starting the sequence with a file having the magnitudes of the sample and

parameter weights close to each other: They are both present as the sample weight and
the inverse of the parameter prior information covariance in the equation for the overall

covariance matrix for the parameters (see equation (2.30)).

6.3 Assessing the use of the modified coefficient of variation with variance control as

a parameter selection criterion

As indicated in section 5.5, the first pass, cycles 1 and 2 of the asp simulation,
based entirely on the modified cov cutoff, did not produce a lower sum of squares of lack
of fit than the expert input. This suggests that the most identifiable parameters may not be
effective in reducing the lack of fit errors. On closer exarmination, however, the higher

sums of squares errors are due to scenario 1. Figures 6.3, 6.4 for cycles 1 and 2 show the

n

contributions of each scenario to the overall sums of squares.

Figure 6.3
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Figure 6.4

ASP simulation first pass, sequence 1, cycle 2, step 4,
contributions to overall sum of squares from each scenario

sum of square

St s2 S3 S4 S5 S6
scenario numbers

It can be seen that scenario 1 has the largest sum of squares contribution for both cycles.
By contrast, cycle 3 of the first pass shows a decline of the contribution to the sum of
squares from scenario 1 of 2.398 m?, almost half of the values of cycles 1 and 2.

This is not surprising, since both scenarios 1 and 2 have been excluded from the
unconstrained optimization for the calculation of cov and standard deviation at the
beginning of the asp process. Data in both scenarios 1 and 2 are deemed to be less
accurate than the rest of the suite of six scenarios, therefore they have not been used in the
screening process.

However, the same scenarios are part of the overall sum of squares calculations.
The net effect is that the most identifiable parameters based on the last four scenarios may
differ from the most identifiable of the first two. Had all six scenarios been used in the
unconstrained optimization and the calculation of the cov, the need for the second pass of
the asp simulations may diminish.

Thus, the modified cov is effective as a means of parameter selection based on

parameter identifiability.

6.4 Conclusion and future research areas
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The automated search for the optimal set of hydraulic transmissivities for the

former Canada Creosote site requires the understanding, analyses and appropriate
manipulation of the information in six steady state scenarios of ground water flow. The
information contained within the six scenarios of the site has been used to obtain the
optimal site transmissivities by means of indirect inverse modelling, through the use of
the program systems PEST and MODFLOW, and by a newly implemented method of
sequential feed forward procedure (sffp).

An innovative method in variance control transferred from industrial optimization
has been adopted for use in the sffp. The control is based on the scaling of the common
variance of the measurement and modelling error, by using similar quantities from the
previous step of the sffp, as variable weights. The empirical tests conducted with the new
variance control show lower overall sum of square of the lack of fit for the six scenarios
throughout the steps of the sffp, as compared to the results from the use of a constant
common variance method. The variable weighting also produce better conditioned
matrices when eigenvalue ratios are examined. This is an expected result, as classical
theories in the construction of the approximation of the inverse of the Hessian predict
better conditioned matrices due to proper scaling.

The sffp is applied to a model with 24 transmissivity zones, and to the another
model of the same spatial region with 14 zones. The latter is obtained from linking zones
of the former which had identical transmissivities after expert calibration. Decision
variables are selected for optimization by considering the identifiabiliy, uniqueness and
stability issues of the parameters through screening processes. The sffp produces
optimized sets of parameters from both models which minimizes objective functions of
the models. The optimization process produces parameter sets in modelling groundwater
flow at the Canada Creosote site which show
i) The overall sum of square of the lack of fit,

i) The uncertainty of the optimized parameters, and
iit) The conditioning of the matrices produced during the optimization.

The above are all better when their magnitudes are lower.
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A flexible, general method of weighted optimized non-dimensional norm (wonn)

is introduced to combine measures of the “goodness” of the solution in order to compare
the results of the different methods. The 14 zone model with optimized parameters is
assessed to be a better model for the site based on the wonn results. The optimized
parameter set is thus obtained for overall good results for all six scenarios.

An arbitrary starting point (asp) simulation for the 14 zone model was conducted.
The starting values of all the zones are set to the geometric mean of the expert calibration
values, which represents a reasonable starting point for the simulations. By unconstrained
optimization of scenarios S3 to S6, and by successive application of the sffp in three
cycles using a new algorithm developed for the asp, transmissivity values close to the
expert input are found. These asp generated transmissivities perform better than the
expert input in terms of overall sums of squares. This algorithm will be very useful in
automated determination of optimal transmissivities, with a minimum amount of input
from experts.

This study presents many innovative methods to assess the optimal parameter set
for steady state inverse modelling with more than one data scenario. Future research in
this area should concentrate on speeding up the sffp sequence order assessment and
streamlining the sequential process. Variance control, the general measure of wonn and
the asp algorithm are potentially very powerful tools for the groundwater modelling field.
A more rigorous theoretical study should be initiated to explore the exciting new ideas,

and to expand them to include automatic zoning for transmissivities.
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Appendix A

This appendix contains the results of the Monte Carlo simulations for
transmissivity zones 7, 9, 12, 14 of the 14 zone model. The mean and median
of the results are used in the calculations
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Simulation started on 12/6/97 at 19:43:18
Simulation stopped an 12/6/97 at 20.0551

Forecast: Combined value for Kx7

Summary:

Display Range is from 0.00 to 250.00 m/day
Entire Range is from 0.44 to 289.78 m/day
After 240,000 Trials, the Stud. Error of the Mean is 0.15

Statistics: Value
Trials 240000
Mean 64.12
Median 35.15
Mode —
Standard Deviation 7130
Variance 5,083.40
Skewness 126
Kurtosis 3.16
Coeff. of Variability 1.1
Range Minimum 0.44
Range Maximum 289.78
Range Width 289.34
Mean Std. Error 0.15
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Crystal Ball Report
Simulation started on 12/6/97 at 20:10.03
Simulation stopped on 12/6/97 at 20:32:12

Forecast: Combined value for 09

Summary:

Display Range is from 0.00 to 500.00 m/day
Entire Range is from 0.00 to 1,484.23 m/day

After 240,000 Trials, the Std. Error of the Mean is 029
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Statistics: Yalue
Trials 240000
Mean 103.11
Median 5145
Mode -—
Standard Deviation 14323
Variance 20,51569
Skewness 162
Kurtosis 405
Cosft, of Veriahiline 139
Range Minimum 0.00
Range Maximum 1,48423
Range Width 1,48423
Mean Std. Error 029
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Forecast: Combined value for Kx12

Summary:

Crystal Ball Report

Display Rangs is from 0.00 to 1,250.00 m/day
Entire Range is from 0.00 to 1,695.67 m/day

After 240,000 Trials, the Std. Error of the Mean is 0.71

Simulation started on 12/6/97 at21:14:43
Simulation stopped on 12/6/97 at 213656
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Statistics: Value
Trials 240000
Mean 265.82
Median 138.46
Mode —
Standard Deviation 346.05
Variance 119,749.38
Skewness 143
Kurtosis 351
Coeff. of Variability 130
Range Minimum 0.00
Raings Maximum 1,695.67
Range Width 1,695.67
Mean Std. Error 0.71
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Crystal Ball Report
Simulation started on 12697 at 20:49:12
Simulation stoppsd on 12/6/97 at21:1133

Forecast: Combined value for Kx14

Summary:

Display Range is from 0.00 to 1,100.00 m/day
Entire Rangs is from 1.53 to 1,035.81 m/day

After 240,000 Trials, the Std. Error of the Mean is 0.86
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Statistics: Yalue
Trials 240000
Mean 565.09
Median 911.74
Mods —
Standard Deviation 42239
Variance 17841145
Skewnsss 0.18
Kurtosis 122
Coeff. of Variability 075
Range Minimum 153
Hange Maximum 1,039.81
Range Width 1,03428
Mean Std. Error 0.86
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