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Abstract

The extreme value distributions of random fields are critically important in relia-
bility and safety analysis and they are generally approximated using point-process
methods, which have their own limitations.

In this thesis, the tube method, an alternative approach first suggested by Sun
(1993), is improved and an asymptotic approximation for the maxima of a 2D dif-
ferentiable non-homogeneous Gaussian random field is developed. This method is
based on geometrical concepts and it provides the approximation directly without
any assumption about the random field and with little computational effort.

The relationship between geometrical concepts and the extreme value distribution
of a random field is discussed. Then the development of the proposed tube method
is demonstrated in detail, followed by comparisons between the proposed method
and existing methods. The extreme value distribution associated with boundaries
and endpoints of the random field are also studied and the corresponding formulas
are given.

The accuracy and the efficiency of the proposed method are verified by simulation
and compared with other existing methods for 2D differentiable Gaussian random
fields, homogeneous and not. The application to practical problems is demonstrated
by an application to air pollutant concentrations, during which, the complete analy-
sis procedure of the tube method is outlined and the application of the discretization
methods of random fields to the tube method is discussed. The verifications, com-
parisons and applications show that the proposed method is accurate, efficient and

flexible in its application to any type of Gaussian random field.



Acknowledgements

I would like to express my sincere thanks to all of those contributed in some way to
the development of this research and my education.

I am particularly indebted to the chairman of the thesis committee Professor
M. A. Maes for his caring guidance and continuing encouragement throughout the
period of this research. His resourcefulness knowledge and constructive criticisms
expand the limits of my own capacity. I was exceedingly fortunate to have been able
to learn from him.

I also owe an enormous debt of gratitude to my former supervisor, Professor Jie
Li, for his guidance on my study.

My appreciation is also extended to the remaining members of the thesis com-
mittee and my fellow students: Ingrid Farasyn and Luc Husye.

This research was made possible by a University of Calgary Graduate Teach-
ing Assistantship and the support from the secretaries in the Department of Civil
Engineering.

I am also extremely grateful to my wife, parents and the family of my sister for

their encouragement, love and inspiration.

iv



Table of Contents

Approval Page
Abstract
Acknowledgements
Table of Contents
List of Tables

List of Figures

Nomenclature

1 Introduction and Objective

1.1 Introduction . . . . . . . . .. ... .. L e
1.2 Objectives . . . . . . . . . . . . e
Random Fields and Extremes
2.1 Imtroduction . . .. .. .. .. ... ... ..... e
2.2 Basic Concepts of Random Fields . . . . .. . ... ..........
23 Extremes . .. . . . . . . .. e e e e
2.3.1 Level Upcrossings of Stochastic Processes . . . . . . .. .. ..
2.3.2 Exceedancesof Sequences . . ... ... ... ... ...,
2.3.3 Extremesof Random Fields ... ... ... ..........
2.4 Discretizationof random fields . . . . . ... ... ... ... ...
24.1 Introduction . .. . .. ... ... ... ..o

2.4.2 Extension Optimal Linear Discretization Method . . ... ..

ix

xiii

Pt



2.4.3 Discretization by Earthquake Ground Motion Model . . . . . 28

3 The Tube Method for 2D Random Fields 35
3.1 Imtroduction . . . . .. .. . ... . ... e 35
3.2 Geometry and Maxima of Random Fields. . . ... ... ... .... 36

32.1 Imtroduction . . .. .. ... ... ... .. .. ... .. ... 36
3.2.2 Geometrical Representation of A Random Field . . . ... .. 36
3.2.3 Geometry of Maxima of Random Fields. . . . ... ... ... 40
33 VolumeoftheTube . ... ... . ... ... ... ......... 44
331 Weyl'sFormula. . . ... . ... ................ 45
3.3.2 Volume of an (n — 1)-Dimensional Manifold .. ... ... .. 47
3.3.3 Neighborhood of a Manifold ... ................ 50
334 VolumeoftheTube. ... ... ................. 55
3.3.5 EvaluationofanIntegral . . . . ... ... ........... 63
336 ProposedFormula. . ... ... ... ... .......... 72
34 Maximaof Random Fields . . .. . .. ... .. ... ......... 73
34.1 Existing ResultS. . . . . . o oo oo oo 74
34.2 Proposed Formula. ... ... ... ... ............ 76
343 Comparison . . . . . . . . . .t it e 78
3.4.4 Simplification for Homogeneouscases . . . ... ... ... .. 79
3.5 Probability Associated with Boundaries and Endpoints . . . . . . . . 81
35,1 Boundaries .. ... ... . ..... ... .. .. ..... 82
352 Endpoints . .. ... ... . ... ... 82
3.6 Summary (2D Random Fields) . . . . . ... ... ........... 84
3.7 Random Fields with Non-zeroMean . . . . . ... ... ........ 85



4 Verification and Application 87

4.1 Introduction . . .. . .. ... ... .. ... ... ... ... 87
4.2 AnmalysisProcedure . . . . . . . ... ... ... .. ... ... ..., 87
43 \Verification . ... ... ... ... .. 91
43.1 Harmonic Series Model . . . ... ... ... .......... 91

4.3.2 \Verification by Simulation . ... ... ... .......... 92

433 EffectofOverlap ... ... ... ... .. ... ........ 96

4.3.4 Comparison with Vanmarcke’s Approach . . . . ... ... .. 102

4.3.5 Comparison with Adler’s Formula . . . . ... ......... 108

4.4 Practical Application . . . . .. ... ... ... ... . ... ..... 109
44.1 Imtroduction . . . .. ... ... . ... ... .......... 109

442 AirPollutionData . . . ... ... ............... 110

4.4.3 Horowitz’'s Approach . . ... ... . ... ... ........ 111

444 DataApalysis . . .. .. ... ... ... . ... .. .. ... 114

4.4.5 Discretization of the Random Field . . .. .. ... ... ... 122

4.4.6 Results of the Tube Method . . . . ... ... ......... 130

5 Conclusions and Recommendations 135
5.1 Summary and Conclusions . . . . ... ... ... ........... 135
5.2 Recommendations . . . . ... ... ... .. ... . ......... 139
Bibliography 142
A Simplification of ¥, (8) , %2 (8) 148

B Verification of ¢c; = (hf‘l,h.}'2> - <h1’§,h'2*'1> = —1 for the 2D Homoge-

neous Case

154



C 8h(t .
Formulas for _a:(,'l and %2 in k-D Case 159



List of Tables

4.1 Estimated Parameters of Filter Properties in Ground Motion Model . 130



2.1
2.2
2.3

3.1
3.2
3.3

3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

Upcrossings of the Level 8 by a Sample of the Stochastic Process Z (t) 14
Exceedances of the Level 8 by a Sequence z; (i =1,2,....n) . . . . . . 17
Model Used to Discretize Earthquake Signals and Other Stochastic

Processes . . .. .. .. . ... ... 30
Relationships between # and r for then =2 and n =3 Cases . . . . . 40
Neighborhoods of 1D and 2D Manifolds . . . . .. ........... 43

Points on the Unit Sphere Surface Considered by Equation (3.43) for
k=landk=2cases. . .. ............ . .......... 53
Points Close to the Boundaries and Endpoints, which are not Included
by Equation (3.43) but Make Contributions to the Extreme Value

Distributionina2D case. . . ... ... ... . .. ... ..., 54

a2Dcase . .. ... ... .. 83
Analysis Procedure of the Tube Method . . . .. ... ........ 90
Extreme Value Distribution of the Homogeneous Example . . . . . . 94
Samples of Variances of the Non-homogeneous Example . . . . . . . . 96
Extreme Value Distribution of the Non-homogeneous Example . . . . 97
Overlap by Large Manifold . . . .. ... .. ... ........... 99
Overlapby Small B . . . . . . ... ... ... ... ... ... .... 100



4.7 One-Dimensional Manifold M on the Surface of a Three-Dimensional
Unit Sphere . . . . . .. .. . . .. ...
4.8 Part of Manifold M with Constant r(t) Equal to the Radius of Cur-

4.9 Part of the Manifold M with Constant r(t) Less than the Radius of

4.10 Overlap for Part of the Manifold M with Constant r(¢) Larger than
the Radiusof Curvature . . . . . . ... .. ... ... ... .....
4.11 Example Results Obtained Using the Tube Method, Vanmarcke’s Im-
proved Formula and Simulation for a 2D Homogeneous Gaussian Ran-
domField . . . ... ... .. ... .. ... . ...
4.12 Daily Maximum 1-hour Average Ozone Concentrations at RAPS Sta-
tion 109 . . . . .. . e
4.13 Log-transformed Ozone Concentraions and Mean Value Curves . . . .
4.14 Log-transformed Zero Mean Ozone Concentrations . ... ... ...
4.15 Standard Deviation of Transformed Ozone Concentrations and Best

fits Curves . . . . . . L e e e e e e

4.16 Correlogram of the Normalized and Transformed Ozone Concentrations120

4.17 Part of the Correlogram and the Fitting Correlation Function
4.18 Estimated Spectrum for Normalized and Transformed Ozone Concen-

trations . . . . . . . . ... e e e e e e e e e

. 121

4.19 Spectral Density of Normalized and Transformed Ozone Concentrations123

4.20 The Change of the Standard Deviation of the Random Field After

Discretization . . . . ............ e e e e e e e e e e e



4.21 Comparison of Extreme Value Distributions of Annual Maximum Ozone

Concentrations at RAPS Station 109 . . . . . ... ... ... ....



a; (t)

dp

Ci
C2
C3

c(t)

Cov [X,Y]

hi(t)
h*(t)

Nomenclature

i** discretization function of a ground motion process

area of a random field with rectangular domain

i** deterministic parameter

square root of the absolute value of the metric tensor matrix M
coefficient related to the sencod derivatives of h(t)

equal to c; + 1

¢ for the one-dimensional case

covariance matrix of the nodal values of the random field Z(t)
covariance of the random variables X and Y

coefficient of variation of P

i*" unit coordinate vector related to the manifold M

i** unit coordinate vector related to the manifold M*

i unit coordinate vector related to the neighborhood N (M)
tangential vector of boundary a at endpoint i of the random field Z(t)
tangential vector of boundary b at endpoint ¢ of the random field Z(t)
k x k matrix with components g5,

vector listing the normalized discretization function of the random field
Z(t)

i** normalized discretization function of the random field Z(t)

vector listing the discretization function of the random field Z(t)



mi;(t)

ny

i** discretization function of the random field Z(t)

second derivatives of h(t)

k x k matrix with components hy;

vector defined in equation (3.66)

k x k matrix with components h;;

vector defined in equation (3.109)

unit-impulise response function of the second order linear filter
representing the local soil

probability density function (p.d.f.) of Z(t)

cumulative distribution function (c.d.f.) of Z(t)

probability density function of a x,-random variable

k x k unit matrix

imaginary unit

function defined in equation (3.26)

function defined in equation (3.27)

the dimension of the random field Z(t)

k-dimensional manifold on the surface of the unit sphere S™
(n — 1)-dimensional manifold on the surface of the unit sphere S™
metric tensor matrix of the manifold M or M*

mean value function of a random field

the metric tensor coefficient, the scalar product of E; and E;,
component of M

[** coordinate vector normal to the space spanned by E;



2 B Y

P ()
qx(t)
r(t)

Te

Tn

R(7)
R(s,t)
Rzz(t;,t,)
or R(t;,t,)
R

the dimension of the unit sphere S™

number of the boundaries of the random field Z(t)

number of the endpoints of the random field Z(t)

number of samples of the random field Z(t)

number of samples of the random field Z(t) that exceed the threshold 8
the neighborhood of the manifold M

number of upcrossings of 8 by Z(t) in [0, T]

estimated P (G)

projection matrix onto the space spanned by n;, n, ..., n,,

projection matrix onto the space spanned by E,, E,, ..., E, y
probability that the maximum of a random field is greater than 3
modulation function of the &** filter representing the local soil

the distance between the endpoints of U and h(t)

r(t) at a specified t

radius of curvature of the manifold M

random variable having a x,-random variable with probability density
function

a sample of R,

autocorrelation function of a homogeneous random field

autocorrelation function of a random field

autocorrelation function of the random field Z(t)

n-dimensional space



8

HOMOK

intrinsic scalar curvature of the manifold M

n-dimensional unit sphere

power spectral density of a wide-sense homogeneous random field
time vector

it* component of the vector t

domain of the random field Z(t)

acceleration of the soil layer relative to the bedrock

vector with uniform distribution on the n-dimensional unit sphere
nodal value of a random field at time point t

the volume of the n — 1-dimensional neighborhood of the manifold M
i** component of the random pulse train representing the discretized
white noise W (t)

stationary white noise process

a sample of a random variable

a ramdom variable

a sample of a random vector

a random vector

i** component of the random vector X

vector of endpoints of h(t)

a random field

a sequence of random variables

a sample of Z;

angle between two boundaries at point 3



B(t)

Wy

&f

An

a specified threshold level

variable level to be considered in the case of a non-zero-mean random field
Gamma function

Kronecker delta

time interval

spectral moment of a stochastic process, defined by equation (2.31)

i*" eigenvalue of the covariance function R(t;, to)

number of upcrossings of 8 by Z(t) per unit time

function defined in equation (3.127)

function defined in equation (3.128)

intensity of the white noise W (¢)

standard normal distribution function

i*® eigenvector of the covariance matrix C

constant standard deviation of a random field

standard deviation function of a random field

variance of the random field Z(t)

time vector difference t; — t;

frequency vector

the volume of the surface area of a n-dimensional unit sphere

natural frequency of the second order linear filter representing the local soil
damping ratio of the second order linear filter representing the local soil
angle between the vectors U and h(t)

a matrix defined by equation (2.30)



E{g(X)}
Pij

ANB
#{A}
(x,y)

X

P (4)

expected value or mean value of the arbitrary function g(z)
dimensionless coefficient of correlation of two random variables
the intersection of sets A and B

number of occurrence of event A

scalar product of two vectors x and y

length of the vector X : |X]| = \/(3(,_)()_

probability that the event A occurs



Chapter 1

Introduction and Objective

1.1 Introduction

Traditionally, structural analysis is based on deterministic methods: all loading pa-
rameters, material and geometric properties are considered to be known with cer-
tainty. To quote Lin (1963): ”since no material is perfectly homogeneous, no beam
is perfectly uniform, and no rivet perfectly fits a hole, etc., it is clear that the prob-
abilistic viewpoint is more realistic”.

The simpler deterministic approach may of course be satisfactory if uncertainties
regarding material properties are small and loads and load effects can be predicted
precisely. In reality however, loads (especially dynamic ones such as loads due to
earthquake, blast, wind loads, sea waves) are usually difficult to predict and the
uncertainties in geometric parameters, material properties (especially in the case of
composite materials), and boundary conditions may be large, depending on different
situations. Therefore, it is often more reasonable and accurate to use a probabilistic
model in structural analysis.

In the last two decades, much effort has been devoted to the research and applica-
tions of probabilistic theory in the general area of engineering mechanics and struc-
tural engineering and probabilistic design requirements have been incorporated in
most building codes. In practice, the uncertainties or responses in the analysis mod-

els are often represented by 1- or 2-dimensional random fields (see section 2.2). Those
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dependent only on continuous time, such as earthquake ground motion, dynamic re-
sponse at a specified point, and those dependent on one-dimensional space, such as
structural parameters of bar elements, are 1-dimensional random fields, whereas 2-
dimensional random fields usually have domains such as space-space or time-space,
for instance, wind load on a high-rise building or space-space (boundary conditions
or parameters of a plate).

In many engineering problems, particularly in the area of reliability and safety
analysis of structures, it is always necessary and important to evaluate the extreme
value distribution of random fields. Two main failure mechanisms can be consid-
ered in the probabilistic structural analysis (SSlnes, 1997): 1. the system may fail
due to the maxima response exceeding a certain threshold once (first-passage); 2.
the systemn may tolerate several response exceedances of a certain limit (cumulative
damage). In both cases, the extreme value distribution of the response plays an
important role. Similarly, the maxima of other random fields are also of major con-
cerns in probabilistic structural analysis and it is concluded by several authors (e.g.
Yao and Wen, 1996) that a common feature of structural reliability techniques is
the reformulation of the problem into a time-invariant one using the extreme value
distribution of the random fields in some time domain.

The development of extreme value theory of random fields dates back to the early
work of Rice (1944, 1945) in the 1940’s. Subsequent progress and applications can
be found in several papers and books by Powell (1958), Gumbel (1958), Leadbetter
(1967, 1983), Adler (1981), Vanmarcke (1983) and others. For stationary random
fields, considerable methodology is derived in Cramer and Leadbetter (1967) and

Leadbetter (1983) and for non-stationary sequences in Leadbetter (1983). Approxi-



mation equations for the extreme value distributions of homogeneous random fields
can be found in Adler (1981) and Vanmarcke (1983), whereas those for stationary
Gaussian vector processes can be found in Breitung (1994). Bounds are derived for
univariate non-stationary Gaussian processes and for non-stationary Gaussian vector
processes in Breitung (1990).

A common feature of these widely used methods is that they are approximation
methods based on point process theory of exceedances or upcrossings. According to
Adler (1981), there are only six exact formulas for the extreme value distributions
of random processes, corresponding to six covariance functions of random processes.
For k-dimensional random fields and other random processes (k = 1), we are forced
to turn to asymptotic results in order to obtain any information at all about these
distributions. This may be enough for most engineering problems since they usu-
ally deal with the upper tail probabilities of one or two-dimensional random fields.
However, problems may occur in the applications of traditional methods to practical
situations. First, one should verify that the obtained approximations are not only
bounds, but asymptotically exact, by proving that the approximating point process
converges to a Poisson process which involves much more complicated mathemat-
ics than the derivation of the approximation itself (Breitung and Maes, etc., 1995).
Second, traditional methods for the extreme value distributions of random fields are
mostly limited to the homogeneous cases, while practical problems are often non-
homogeneous.

A different approach named the ’tube method’ was first recommended by Sun
in 1993. This method calculates the approximations directly so that it avoids the

verification of the convergence of the point process of exceedances to a Poisson pro-
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cess. Furthermore, it can easily be extended to non-homogeneous random fields. As
described by the name ’tube’, this new approach is based on geometric concepts. By
analyzing the problems of the maxima of random fields, one can find that they are
related to the volume of neighborhoods of a manifold on the surface of a unit sphere.
For a one-dimensional case, the manifold is a curve on the surface of the unit sphere,
whereas the neighborhood, consisting of the points contributing to the extreme value
distribution, looks like a tube around the curve. This leads to the name of the tube
method.

As early as 1930’s, formulas for the volume of neighborhoods of a k-dimensional
manifold embedded in an n-dimensional unit sphere have been suggested. Hotelling
(1939) derives a formula for the one-dimensional case, followed by a formula derived
by Weyl (1939) for the general k-dimensional case. Weyl’s formula is applicable to
any finite dimensional manifold. However, as shown in Chapter 3, it involves the
scalar curvature in its higher term corresponding to higher dimensional manifolds
(k > 2), which is difficult to evaluate directly.

In Sun (1993), Weyl’s formula is used directly in the derivation of the extreme
value distribution of a differential non-homogeneous Gaussian random field with
constant variance and no boundary. Without listing the details of the derivation,
Sun gives a two-term approximation formula. Following Sun’s footsteps, Maes and
Breitung (1996) extend the tube method to random fields with time dependent vari-
ance and propose an improved two-term equation similar to Sun’s formula (Sun,
1993) but more general. Farasyn (1997) investigates, tests and improves the tube
method mainly for one-dimensional random fields. By combining Hotelling’s formula
(Hotelling, 1939) for the volume of neighborhoods with the problem of the maxima



of stochastic processes, Farasyn (1997) derives approximations for the maxima of
one-dimensional non-stationary Gaussian processes, and also develops a formula for
the probability associated with the endpoints of the stochastic processes.

Since Sun’s two-term formula, as well as Maes and Breitung’s extended formula
are both derived directly using Weyl’s volume formula (Weyl, 1939), the second
terms of both formulas involve the scalar curvature. In an application of the tube
method to a practical problem, Sun (1991) used a simulation method to obtain the
scalar curvature in a special case that the metric tensor matrix (equation (3.28)) is
diagonal, in order to avoid calculating it directly. But this method is not suitable
for practical problems since it consumes too much computational effort in addition
to the fact that the special condition is not always satisfied in practical situations.
Therefore, in order to enhance the feasibility of the tube method, the formula for the
volume of neighborhoods has to be improved to get rid of the scalar curvature. It
will be shown in Chapter 3 that the scalar curvature is generated in the evaluation
of an integration involved in the calculation of the volume of neighborhoods. So the
focus is to find a different way to evaluate that integral.

An effective effort in this direction, is the projection method, introduced by
Breitung (1997). A scalar vector product, which is much easier to evaluate, is derived
to substitute the term involving the scalar curvature in Weyl’s formula. Although it
will be shown that this particular scalar vector product is incorrect, the projection
method will prove to be an effective method to improve the volume formula in

Chapter 3.



1.2 Objectives

The main objective of this thesis is to develop a practical algorithm for the approxi-
mation of the extreme value distributions of 2D differentiable Gaussian random fields
by improving the tube method.

This is achieved using Breitung’s projection method (1997). Comparisons be-
tween the proposed formula and the Monte Carlo simulation method, other existing
methods, together with practical applications show that the tube method is applica-
ble to general classes of 2D differentiable Gaussian random fields and it is accurate
and efficient.

This thesis is organized as follows: following the introduction, Chapter 2 sum-
marizes basic concepts of random fields and traditional extreme value theory, then
discretization methods of random fields are discussed and two efficient discretization
methods are introduced, since the tube method requires that random fields must
be expressed in a discrete form in terms of a set of random variables. Chapter 3
is devoted to the investigation of the tube method. A formula for the volume of
neighborhoods of a 2D manifold on the surface of an n-dimensional unit sphere is
developed using Breitung’s projection method. Based on this, an approximation
of the extreme value distribution of a 2D Gaussian random field is derived. The
details of the derivation are demonstrated. In Chapter 4, the analysis procedure
of the tube method will first be outlined. Then a simulation method is performed
to test the accuracy of the proposed formula. Furthermore, comparisons between
the tube method and other existing methods are made. Lastly, the tube method is

applied to a practical problem in order to verify its feasibility in practical situations.



Conclusions and recommendations are given in Chapter 5.



Chapter 2

Random Fields and Extremes

2.1 Introduction

Random fields and extreme value theory are introduced in this chapter. In section
2.2, the basic concepts of random fields in civil engineering are summarized. Tra-
ditional extreme value theory is outlined in section 2.3. In section 2.4, two efficient
discretization methods of random fields are discussed in detail, as the discretization

of a random field is an important step in practical problems involving random media.

2.2 Basic Concepts of Random Fields

Many engineering problems are typified by temporal or spatial random variations.
Often, it is not precise enough to represent them by random variables only. Con-
tinuous or discrete random field models are the only way to accurately reflect those
realities and they are fundamental for design or prediction purposes.

The theory of random fields was first introduced in the 1970s. Significant ad-
vances and applications have been made in recent years, especially with the develop-
ment of the stochastic finite element method and reliability analysis. In this section,
the basic concepts of random fields are introduced.

The random field is a natural extension of the one-dimensional stochastic process

to a multi-dimensional Euclidean space. It can be regarded as a random variable



system defined on the parameterized space in which each point is corresponding
to a random variable. Examples of stochastic processes are market fluctuations on
the stock exchange, earthquake ground motion, etc., whereas sea waves, structural
parameters, wind loads and soil properties are examples of random fields. A detailed
study of the properties of stochastic processes can be found in many well known
books, for instance Lin (1967) or Papoulis (1991), whereas clear descriptions of
properties related to random fields can be found in Adler (1981) or Vanmarcke (1983).
Since stochastic processes can be regarded as special one-dimensional cases of random
fields, it is only necessary to introduce the properties of the general case of random
fields.

Let Z(t), t = (¢1,ts, ..., tx) € T, denote a random field defined within the domain
T, where k is the dimension of the random field. The value k¥ = 1 means that Z(t)
is a stochastic process and k& = 2 means Z(t) a plane random field. For any value
of the deterministic parameter t, Z(t) is a random variable Z = Z(t) whose value is
described only by the probability laws that govern the random field. For an observed
value z = z(t), assume event A = {Z < z}, with Pr(A) denoting the probability that

A occurs which is defined by the cumulative distribution function (c.d.f.) of Z:

Pr[A]|=Pr{Z <z] = Fz(2) (2.1)

F(z) increases monotonically from 0 to 1 as z increases from -oo to +o0o. The prob-

ability density function (p.d.f.) of Z is defined by the derivative of Fz(z):

fz(z) =dFz(2)/d=z (2.2)
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The c.d.f. and the p.d.f. may not completely reflect the probability laws that
define a random field. In a strict probability sense, the probability laws are finite
dimensional distributions which are represented by the joint cumulative distribution

function of random variables at fixed point t; (i = 1,2, ...,m),

FZ (zlv 224 -y Zm; tl: t21 "wtm)

= Pr [Z (tl) <zNZ (tg) <zzN..N Z(tm) < Zm] (2.3)

for finite m. However, in practical situations, it is almost impossible to evaluate the
probability structure of a random field by means of the finite dimensional distribu-
tions since they can hardly be determined. Instead, the first two order moments,
expected value function m(t) and autocorrelation function R(t,t’) can be used to
represent the probability structure of a random field, where t and t’ are two distinct
points in the domain T.

The expected value function m(t) and autocorrelation function R(t,t’) of the

random field Z(t) are defined separately as,
m(t) = E{Z(t)} (2.4)

R(t,t') =E{Z(t) Z(t)} (2.5)

in which E {-} is the expected value operator, defined as,

E{g(X)} = [ 9@ f(s)ds (26)
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in which X is a random variable with the p.d.f. f(z) and g(z) is an arbitrary function

of z. The variance of Z(t) is,
Var [Z(t)] = E{[Z(t) - m(¢)]*} = o* (¢) (2.7)

whose square root o (t) is referred to as the standard deviation function of Z (t).

It is the homogenous property of a random field that corresponds to the station-
arity of a stochastic process. Similar to a stochastic process, a random field is called
strict-sense homogeneous when its finite distribution function is not dependent on
t or wide -sense homogeneous when the first two moments are invariant to t. For
the wide-sense situations, m(t),o(t) are constants and the autocorrelation function
is not a function of t either but a function of 7 , which denotes the time interval

t—t = (t; —t),t2 — tyy -y tn — t,) = T =(71, T,..., o) between t and t’, then
R(t) = R(t —t') =E{Z(t)Z(t + 7)} (2.8)

For a Caussian random field, all finite dimensional distributions are normal dis-
tributions and completely determined by the first two moments. This means that
all the probability structures of a Gaussian random field depend only on m(t) and
R(t,t'). Therefore, a Gaussian random field is strictly homogeneous if it is weakly
homogeneous and the estimation of the first two moments is sufficient. In this thesis,
we mainly deal with the Gaussian random field.

For the two random variables Z; = Z (t,) and Z; = Z (t;) with mean values m;,

mo and standard deviations o, and o9, respectively, the covariance of them is defined
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as the expected value of the product of the deviations from their respective means,

Cov [Z]_, Z2] = E {(Z1 - ml) (Z2 et mg)}
= E {Z]_ Zg} — mimsy (2.9)

= R(tl,t2) —mims (2.10)

according to equation (2.5).
Dividing the above covariance by o1 and o, leads to the dimensionless coefficient

of correlation between Z; and Z, :

Cov|Z,, Z
oy = S22 2] (2.11)
0102

p12 = 0 means Z; and Z, are uncorrelated. Independence between two random
variables implies lack of correlation, but not vice versa except for those of normally
distributed random variables.

The above definitions are all limited to the time domain. In the analysis of
the frequency domain of a homogeneous random field Z (t), one of the most use-
ful definitions is the power spectral density, which is the Fourier transform of the

autocorrelation function R (7) of Z (t):

S (w) = 51; i *: R(r) e“"dr (2.12)

where w = (wy,ws, ...,wn) is a vector of frequencies and 4 is the imaginary unit: ¢ =

v—1.
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2.3 Extremes

As introduced in Chapter 1, research about maxima of random fields has mostly been
limited to the one dimensional case. The existing higher dimensional approaches are
generalizations of the well established one-dimensional theory. In this section, tradi-
tional one-dimensional extreme theory is first outlined, followed by the introduction
of Vanmarcke’s and Adler’s approaches as the examples of the few studies of max-
ima of higher dimensional random fields. Most of the approaches are based on the
following concepts of point process theory.

A point process generally refers to a series of discrete events occurring in time,
or space, or both of them, according to some statistical law. Of major concern is
when the events are the occurrences of upcrossings of a high level 8 by a stochastic
process or a random field and exceedances of a high level 8 by a sequence of random

variables.

2.3.1 Level Upcrossings of Stochastic Processes

Given is a differentiable stochastic process Z(t) with derivative process Z'(t) and

defined in the interval {0, T]. Then the event

Z(to) = B and Z (o) > 0 (2.13)

means that a path Z(t) crosses the level B from below at a time point %, which is

called an upcrossing as shown in Figure (2.1). The upcrossings define a point process
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with the number Nj(T') of upcrossings of 8 by Z(t) in [0,T] equal to:

No(T) = #{t €[0,T],2(t) = B and Z (t) > 0} (2.14)
! ) |
3 upcrossmgs ;

) A\nﬂ.er\/\[\M \f\
MVWV\

Figure 2.1: Upcrossings of the Level 3 by a Sample of the Stochastic Process Z(t)

Our major concern is the upper tail probability of the maximum of Z(t), which

can be expressed as,

P (mqq.xZ(t) > ﬂ)
= P(Z(0)> B) + P(Ng(t) >0) — P(Z(0) > B,Ns (t) > 0) (2.15)

P(B)

For large 3, only the second term is important,

P(8) ~ P (N5 (t) > 0) (2.16)
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since

P(Z(0)>pB) —0, as 8— oo (2.17)

In order to evaluate equation (2.16), the following assumptions are usually made
(Li, 1992):

1. In the interval (¢,¢ + dt), dt — 0, there is at the most one upcrossing.

2. The numbers of up-crossings in disjoint intervals are independent.

Assume that the expected number of S-upcrossings by Z(t) per unit time at time
t is Ag(t), then the expected number of B-upcrossings by Z(t) in the interval dt is
Ag(t)dt.

The point process of S-upcrossings that satisfies the above two assumptions is
asymptotically a Poisson process with intensity Ag(t). Therefore, these assumptions

are usually called Poisson assumptions. On the basis of them, we can obtain,

P() ~ P(Ns(t)>0), asf— oo
= l—exp(— /0 " s(t) dt) (2.18)

where Ag(t) has been given by Rice (1944, 1945):

) = [ 7 ) for (8,7 1) a2 (219)

in which f, (,B .z, t) is the joint probability density function of Z(t) and its deriva-
tive Z'(t).
The above representation for the probability of the maximum is widely used for

stochastic processes. However, since it is based on the Poisson assumptions, there is
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always a need to prove that the approximating point process converge to a Poisson
process. This involves much more complicated mathematics than the calculation of
the probability of the maximum itself and it always imposes a great limitation upon
practical applications. One of the properties of the method we will propose is that

it successfully avoids making these assumptions.

2.3.2 Exceedances of Sequences

A sequence is a set of ordered observations or random variables with a discrete
domain, for instance, the temperatures at specified time intervals and structural
parameters at described points. Therefore, the domain of a sequence can be time as
well as other dimensions such as space.

Let {Z:; i=1,2,...,n} be a sequence of random variables, defined as follows:
Zi =m; + Xi (2.20)

where m; is a bounded sequence and X; is a stationary normal sequence with zero
mean, variance o2. Let the coefficient of correlation between X; and X;.x be pi
(2.11),

B (XiXi+x) /0'2 = Pk (2.21)

pr satisfies,

oo
S <o (2.22)
k=1
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The exceedance of a level 8 by this sequence means,

max X; > (2.23)

i=12..,n

which is shown in Figure 2.2.

i
.
: B
.
Z. .
L4
A4 .
*
. . 14 .
* 'Y *
. °®
IS TN R . * .
. - > - M -
¢ . . . ¢ - t
° . * . . .
! .
. . . L4 .
! . .
| S
I
| PS ¢ L) * L 4 * |
| i

Figure 2.2: Exceedances of the Level 8 by a Sequence z; (1 =1,2,...,n)

Based on the Poisson assumptions similar to those made for maxima of stochas-
tic processes, the extreme value distribution of the sequence (with coefficients of
correlation satisfying equation (2.22))can be proven to be asymptotically (Horowitz,
1980):

B—cn—m*

4 )| n— o0 (2.24)

Pmax X; > 6, i=1,2,...,n) ~ 1 —exp [—exp(—

with,

cn = (2logn)2 — (1/2)(2log n) =2 x (loglogn + log 4) (2.25)
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d, = (2logn)~? (2.26)
m* = dylog [n‘l > " exp(mi/dn) (2.27)

i=1
Equation (2.24) is an extension of the corresponding extreme value formula for
sequences of independently and normally distributed variables and is suitable for
sequences of normally distributed variables with coefficients of correlation satisfying
equation (2.22). Since it is based on the convergence of the point process of ex-
ceedances to the Poisson process, the verification of the Poisson assumptions should,

strictly speaking, be made for all applications.

2.3.3 Extremes of Random Fields

a. Vanmarcke’s Approach
Vanmarcke’s approach (1983) for the extreme value distribution of random fields
include a basic formula and an improved formula.

For a 2D differentiable homogeneous random field Z(t,,t2) with zero-mean, stan-
dard deviation o and domain T, the basic formula is asymptotically exact as the

threshold g is relatively large:

P (8) = P (mgx Z(t1,82) 2 ) ~ 1 — expl(—pipa0) = dopg, 00 (2.28)
in which ag is the area of the time domain T and ug is defined by,

1 [0 A2 (2.29)

T e ¢ ——e———————

where fz (z), Fz (z) are the marginal probability density function and the cumulative
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distribution function of Z(t;,t2) respectively, defined by equations (2.2) and (2.1),

A, is a matrix with components as follows,

Ao A
Ay = 20 Al (2.30)

Al Aoz
where )i (i,j = 0,1,2) are the spectral moments of the spectral density function
Sz,2, (wi,w;) defined by equation (2.12):

/\,'j = /td,'(.:.ljSzlz2 (w,-,wj) dw (2.31)

in which w = (w;,wj), Z: (i = 1,2) denote Z(t;,%2) considering that only £; is a
variable.

Based on (2.28), Vanmarcke develops the improved formula,

Pim =P<ma.th ,t2) > ) =1-F ) {_ sl [1_ (_I‘ﬂ.R>]}
(2.32)
where 83, Fz(z), ug and aq are the same as those in the basic formula. The value

Lg g is defined by:

1
Nl T Unf?? SR -lA 2.3
HB,R o 1-— FR (ﬂ) UZ;UZQ l 11I ( 3)

in which Z, (i = 1,2) are the first derivatives of Z; and g3, are the variances of

i

the derivative field. fr(z), Fr(z) are the p.d.f. and the c.d.f. of the envelope

(Vanmarcke, 1983) of the random field respectively. If the random field is Gaussian,
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we have (Vanmarcke, 1983):
z z?

fr@) = Zow(-gz), 220 (2.3

2

Fr(z) = I-an(x)dz=1—exp(—§;) L zz0  (235)
And A in equation (2.33) is a 2 x 2 matrix with components,

ij Aij i 12 ] 2
Al = 2= () (- ) (230

where (i,7 = 1,2) and £ are the spectral band widths and they are defined by,

/\2
(1 _ 20
e =41 — —— 2.37
AooA40 ( )
e® =,/1- .szﬂ_ (2.38)
- Aooros :

The improved formula (2.32) is more accurate than the basic one (2.28) when the
threshold is small. Both the basic and improved formulas are conjectures and based
on an extrapolation of one-dimensional results obtained using Poisson point-process
theory. Note also that Vanmarcke’s approach is limited to homogenous random
fields.

b. Adler’s Approach
Based on the research of Belyaev and Piterbarg (1972a, 1972b), Adler (1981) pro-

posed a general formula for the k-dimensional differentiable homogeneous Gaussian
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random field Z(t) with zero-mean, unit variance and domain T :

P (mla_.x Z(t) > ﬂ)

T A (2:39)

where (3, ag are the threshold and the area of the domain T, respectively. A is a

matrix similar to A;; in Vanmarcke’s formulas but a k x k one. ¥(z) is defined by,
¥ (z) = (Varz)~! exp(——;-zz) (2.40)

Adler’s approach is also based on an extrapolation of one-dimensional results
obtained using Poisson point-process theory. It will be shown in Chapter 4 that
both Vanmarcke’s and Adler’s formulas are special cases of the more general result

developed in this thesis.

2.4 Discretization of random fields

2.4.1 Introduction

In most applications, the representations of random fields themselves cannot be used
directly. Instead, representations consisting of random variables are achieved using
discretization methods.

Since our interest lies in the maxima of random fields, it is important to choose
an accurate and efficient discretization method with respect to tail probabilities. In

this section, two different discretization methods are discussed.



2.4.2 Extension Optimal Linear Discretization Method

In practical situations, the transformation of a random field into random variables
plays an important role. We should try to keep as much information as possible about
the random field during discretization. There are seven widely used transformation
methods which include the midpoint method (Der Kiureghian and Ke, 1988), the spa-
tial averaging method (Vanmarcke and Grigoriu, 1983), the shape function method
(Liu, 1986), the optimal linear discretization method (Li and Der Kiureghian,1993),
the weighted integral method (Takada, 1990) and the truncated Karhunen-Loéve
expansion method (KLE) (Spanos and Ghanem, 1989). Of all these methods, KLE
is the most efficient one, provided that the exact eigenvalues and eigenfunctions of
the autocovariance function of the random field can be obtained. However, such
a condition cannot always be met in practical problems. According to Li and Der
Kiureghian (1993), the most useful discretization approach is the Extension Optimal
Linear Discretization Method (EOLD). It is proved to be more efficient than most of
other existing methods and it is more practical than KLE for the reason mentioned
above. Therefore, this method is introduced in this section and it will be applied to

the subsequent analysis in this thesis.

a. Optimal Linear-estimation (OLE)

For a Gaussian random field Z(t), t = (¢, t2, ..., t,) € T, the information we have is
the first two moments m(t) and R(t,t’). The objective is to find the representation
of the random field in terms of random variables according to the basic rule that
such a representation should have a probability structure as close as possible to that

of the original random field.
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For every discretization method, the first step is to divide the random field into
finite elements. The smaller the element size, the more precise the discretization
will be. Infinitely small elements are required for exact discretization. However,
practical considerations dictate a finite number. In the divided random field, each
nodal point is a fixed point, t;, at which the corresponding nodal value, V(t;), is a
random variable.

Assume that the number of the nodal points is n, then the random field Z(t) can

be described by a linear function of nodal values as follows,

Z(t) = a(t) + BV (E) =a(t) + (b(E), V(E),t €T (241)

i=1

in which a(t) is a scalar function of t, while b(t), V(t) are functions of t with elements
of b;(t) and V(t;) respectively. The next step is to determine the expressions of a(t)
and b(t) according to the basic rule. Li and Der Kiureghian (1993) achieved this by
employing the basic notions of optimal linear-estimation (OLE) theory (Vanmarcke,
1983), that is, by minimizing the variance of the difference between Z(t) and Z (t)

subject to the latter being an unbiased estimator of the former in the mean:
Minimize Var [Z(t) — Z(t)] (2.42)

subject to

E{z(t)-Z(t)} =0 (2.43)

The solution is,

a(t) = m(t) — (b(t), m) (2.44)
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b(t) = C~' - d(t) (2.45)

where m is the vector of mean values of V(t), while d(t) is a vector consisting of

the covariances of Z(t) with the elements of V(t),

( E{Z(t)-V(t:)} ) ( R (t,t,) )

ay = | BEOVE) || R 2.46)

\E{Z®)-V(t)} ) \ Rt )

and C is the covariance matrix of V(t) which is assumed to be non-singular,

R(t1,t;) R(ty,t3) --- R(ty,t,)
R(t1,t,) R(tst :

c— (t1,t2) R(t2,t5) (2.47)
R(ti,t,)  --- R(tn,t,)

Hence, the discretized random field is,

Z(t) =m(t) +d(t)TC-[V(t) —m], teT (2.48)

Note that the discretized random field has the same mean value as that of the
original random field. On the other hand, OLE theory took into account the corre-
lation structure of the random field by minimizing the variance of the error in (2.42)
at every nodal point. That is why such a method is comparatively more accurate

than most of the other discretization methods which do not account sufficiently for
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the correlation structure.

Furthermore, it is seen that, although the random field is successfully represented
by a set of random variables, the elements of V(t) are all dependent. In most of the
practical problems, independent random variables are generally preferred. Therefore,
Li and Der Kiureghian (1993) extended the OLE method by means of the spectral

decomposition method.

b. Spectral Decomposition Method
The spectral decomposition method was first introduced by Liu and Belytschko
(1986) by using the fact that any non-singular covariance matrix can be brought
in a diagonal form.

Since the covariance matrix C is an n x n non-singular symmetric matrix, there

must exist eigenvalues ); and eigenvectors ®; (i = 1,2,...,n), that satisfy:

They can easily be obtained by any eigenvalue method such as the QR method
(Burden, et al., 1978).

The eigenvectors are normalized such that

(@,’, §J> = 6ij (2.50)

Then the vector V(t) can be expressed in terms of a vector 7 with independent
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elements,

Vit)=m+&-7 (2.51)

where @ is the n x n eigenvector matrix with elements ®;. It is easy to verify that
the covariance matrix of 1 is a diagonal matrix with diagonal elements A;, Az, ..., An-

Therefore, 7; can be presented as,

N = \/A—iXi (2-52)

where X; are uncorrelated random variables and obviously independent when they
are normally distributed.

Now the equation (2.51) can be rewritten as,

V{t) =m+3 JAX®s (2.53)

i=1

Assume that the eigenvalues in (2.53) are ordered in decreasing magnitude and
recall the fact that the information contained in the covariance matrix is concentrated
in the larger eigenvalues and eigenvectors. Therefore, at a given level of accuracy,
V(t) can be represented by r < n terms of the largest eigenvalues and the number

of random variables X; needed can be reduced as well. Hence,

V(t) = m+ er VAXi®s (2.54)

=1



c. Extension Optimal Linear Discretization Method (EOLD)

Substituting equation (2.54) in (2.48) yields the random field approximation,

Z(t) = m(t)+_zr: —%Q{d(t), teT (2.55)
= m(t)+§r:X,-h;(t) (2.56)

=1

The combination of OLE with the spectral decomposition method is called the
extension optimal linear discretization method (EOLD). As outlined, its efficiency
lies in the use of an optimal shape function and the representation in terms of a
smaller number of independent random variables. The number of random variables
always determines the computational efficiency in many practical situations.

In the application of EOLD, enough attention should be paid to the accuracy of
the discretization, since both the transformation from the random field to dependent
random variables and the use of a smaller number of random variables could cause
errors, while the results of many applications are sensitive to the errors, especially
with regards to tail probabilities.

As discussed in Li and Der Kiureghian (1993) and Wei (1995), the errors in the
discretization mainly depend on:

1. [, the size of each element

2. a, the correlation length

3. the autocorrelation function of the random field

4. r, the number of random variables used

For a random field to be discretized, the correlation length and the autocorrelation

function are fixed. It is appropriate to scale the element size ! and to choose 7 in
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such a'way as to attain a given level of accuracy. Since correlation lengths and
autocorrelation functions of different random fields can be different, the optimal [
and r for these fields depend on the required level of accuracy. Even for specified [
and 7, the errors may vary along the domain of the random field. Therefore, both
the global accuracy and the accuracy at selected points should be verified when

discretizing a random field.

2.4.3 Discretization by Earthquake Ground Motion Model

a. Basic concept

This discretization method was originally developed by Der Kiureghian and Li (1996)
for modeling earthquake ground motions. Since it achieves the representation con-
sisting of independent random variables by a very simple procedure, it is suitable
to almost any kind of non-stationarity to be modeled or discretized. Similar to the
EOLD method, it also minimizes the variance of the error between the original ran-
dom field and its approximation to obtain the optimal shape functions. The major
difference between them lies in the fact that the ground motion model does not
require eigenvalue solutions, which may be a huge computation problem when the
number of nodal points is large. Therefore, the present method is introduced and
compared with the EOLD method in the applications in Chapter 4.

In practical applications for design or prediction purposes, earthquake ground
motions should be modeled as stochastic processes since there is no way to deter-
ministically estimate the ground motion at a site during a future earthquake.

We.ca.n consider an earthquake ground motion as a ground surface response

of the local soil system or wave propagation path subject to the movement of the
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bedrock (Der Kiureghian and Li, 1996; Farasyn, 1997). Therefore, the corresponding
dynamical model can be constructed by assuming that the local soil system is a
linear filter, the movement of bed rock is a broad-band white noise excitation and

the response is the absolute acceleration:
iy (t) + 2wty (8) + whug (£) = —W (t) (2.57)

in which W (t) is a white noise excitation, (s represents the damping ratio of the
soil system and wy its natural frequency. iis(t), %(¢) and uy () are the acceleration,
velocity and displacement of the soil layer relative to the bedrock, respectively. Our
interest lies in the ground motion which is the absolute acceleration at the ground
surface. It is defined by,

Z(t)=1s7(t) +W(t) (2.58)

The above concepts are illustrated in Figure 2.3.
According to Clough and Penzien (1975), the exact solution of a filter that re-

sponds to a white noise input, the ground motion, is equal to,
[4
Z(t) = /0 W () hy (£ — T)dr (2.59)
in which h #(t) is the unit-impulse response function of the filter which is given by,

h¢ (t) = — (Cysin (wqt) 4+ Cs cos (wat)) exp (—Cwyt) (2.60)
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Figure 2.3: Model Used to Discretize Earthquake Signals and Other Stochastic Pro-
cesses

with

wqg = Wf\/l—c% (2.61)

— 972

c, = ‘ff_(l__zg_f)_ (2.62)
1-¢5

Cz = 2CfQJf (2.63)

b. Discretization
Similar to other problems dealing with random media, the earthquake ground motion
Z (t) must be represented as a discretized form in terms of random variables as

follows,

2() = 3" Wias(t) (2.64)

=1
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where n is the nodal number, W; (i = 1,2, ..., n) are Gaussian random variables with
zero mean and variances o2, and a;(t) are the discretization shape functions which
are deterministic.

The objective of any discretization method just is to estimate o7 and a;(t). Firstly,
the random variables can be expressed by discretizing the white noise excitation since
it only originates from the randomness in equation (2.57). That is,

W;=[fF W(t)dt i=1,2,..,n (2.65)

ti—1

where t; (¢ = 0,1,...,n) denote a set of closely and equally spaced time points at
intervals At = ¢; — t;_;. Therefore, the sequence W; represents W (¢) in the discrete
form of a random pulse train. It is easy to show (Clough and Penzien, 1975) that W;
are statistically independent Gaussian random variables with zero mean and constant
variance,

in which the intensity ®, is the constant power spectral density (2.12) of the white
noise W (t).

The natural choice for a;(t) is the unit-impulse response function given by equa-
tion (2:60) but it is not the best. Similar to the EOLD method, the better choice
is obtained by minimizing the variance of the discretization error between Z(¢) and
Z(t). The solution is given by Der Kiureghian and Li (1996),

1 min(tk)

a; (t) = At Sy hy(t —T)dT (2.67)
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where h (t) is defined by (2.60). For detail about the derivation, one refers to

Farasyn (1997). Insertion of (2.60) in (2.67) gives the following expression for a; (2):

’

0 t<ti
F\/ITT’«J {exp (—ywy (¢ — ti-1)) sin (wa (¢ — t:im1) — 6)}
a; (t) = +a; ;i1 <t<t

5\71—“;_—4; {exp (—Cywy (t — ti—1)) sin (wa (t — ti1) — 6)

—exp (—Cpwy (¢ — t;)) sin (wa (t — t:) — 0)} ti<t
(2.68)

with

@ = arccos((y) (2.69)

Note that a; (t) is equal to zero until £ = £;_; and it attains a peak value at ¢t = {;.
The magnitude of the peak value depends on the damping ratio (y and the frequency
wf.

So far, the ground motion is successfully discretized in terms of independent
random variables. But such a discretization only defines a stationary process while
the ground motions are typically non-stationary in both the time and frequency
domain.

The temporal non-stationary can be taken into account by multiplying (2.64) by

a deterministic modulation function g(t). This gives,

2(6) = 3. Wia(t)es(0) (2.70)

To account for spectral non-stationarity, we can consider the ground motion as
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the summation of several independent absolute accelerations of different filters. The
corresponding natural effect is that the soil system has several soil layers, each having

its own natural frequency. The discrete representation can then be rewritten as,

20) = W S gs(t)as (@) (2.71)

=l  j=1

where k is the number of the filters, g;(t;) denotes the modulation function of the
j-th filter and a;;(t) is the shape function corresponding to the i-th random variable
and j-th filter.

Recall that W; are independent random variables with zero mean and variance
02 defined by equation (2.66), so that normalizing gives,

w:
g

X; = (2.72)

Therefore, X; are standard normal random variables. Substituting the above

equation in (2.71) results in the general discretized form,

= f: X;hi(t) (2.74)

=1

Although the above representation is developed originally for modeling earth-
quake ground motions, it allows almost any kind of non-stationary processes to be
modeled, simply by selecting the parameters in filter properties and modulation

functions. Similarly, when it is used for a discretization purpose, it is necessary to
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estimate the suitable filter properties and modulation functions to attain a given
level of accuracy. Such a method is much more convenient than the EOLD method
since it does not require eigenvalue solutions. However, if the estimated parameters
can reflect precisely the original probability structures, the ground motion method
can be as efficient as the EOLD method. On the other hand, as indicated by the
applications in Chapter 4, it may sometimes be difficult to obtain the optimal set of

parameters.



Chapter 3

The Tube Method for 2D Random Fields

3.1 Introduction

In this chapter, the method of the ’tube’ is discussed in detail. A formula for the ex-
treme value distributions of 2D Gaussian random fields is developed. The method we
propose is slightly different from other methods for random fields, and the differences
are pointed out in detail.

In the first two sections, the relationship between the problem of the maxima of
random fields and purely geometric principles is discussed. It is shown that extremes
are related to the volume of neighborhoods of a manifold on the surface of a unit
sphere. Section 3.3 describes the volume of neighborhoods corresponding to a 2D
random field. It is related to the problem of the maxima of random fields in section
3.4. This leads to a formula for the extreme value distribution of a 2D Gaussian
random field with zero mean. The formulas developed in section 3.3 and section
3.4 do not consider the total volume of neighborhoods that make contributions to
the extreme value distribution. Approximations of the probabilities associated with
endpoints and boundaries of the random field are discussed in section 3.5. A sum-
mary is given in section 3.6. Finally, in section 3.7, it is shown that the tube method
can easily be applied to random fields with non-zero mean and variable correlation

structure.

35
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3.2 Geometry and Maxima of Random Fields

3.2.1 Introduction

As explained in the previous chapters, our prime interest lies in the maxima of
random fields. Let a k-dimensional differentiable zero mean Gaussian random field
on aset T C RF be defined by Z(t), t = (t1,t2, .-, tk) € T. Then the complementary
cumulative distribution function of the maxima of the random field can be written
as:

P(g) = P(max Z(t) >6) (3.1)

where f is the threshold.

In traditional extreme theory, such a problem is generally solved by an asymp-
totic approximation of Z(t) by a Poisson point process which involves checking and
verifying the use of Poisson distribution. It is shown in this chapter that this problem

can, instead, be interpreted on the basis of purely geometric concepts.

3.2.2 Geometrical Representation of A Random Field

In practice, the expression of a random field, Z(t), cannot directly be used in a
practical problem and it needs to be transformed into a format consisting of random

variables and deterministic functions as follows,

Z(t) =3 Xibi (t) (32)

i=1

where X; (i = 1,2,..,n) is a sequence of independent standard normal random

variables and the functions h (t) are a set of twice continuously differentially deter-
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ministic functions. As discussed in section 2.4, many discretization methods can be
used to transform random fields into such a format, for instance, the EOLD method,
the ground motion model method, the KLE method, etc.

Due to the independence of X;, the correlation function Rzz (t;,t,) and the

variance o2 (t) of a random field Z(t) can be expressed as:

Ryz (b1,62) = 3B (62) B (£2) (3.3)

i=1

and

0% (t) = Rzz (t,t) = |n*(t)]> = 3 [h; (0], (3.4)

i=1
respectively. Notice that X; and h!(t) (¢ = 1,2,...,n) can be expressed in vector
format with X = (X1, X3, ..., X») a vector of independent standard normal random
variables and h*(t) = (h}(t), R3(t), ..., h3(t)) a vector of time dependent deterministic
functions. Therefore, the random field can be rewritten as the scalar product of these

two vectors:

Z(t) = (X,h*(t)) (3.5)

This is the starting point for introducing the geometric concepts.
Introducing,
R.= /X[’ = X (3.6)

X
U=3% (3.7)
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We obtain:
X=R,-U (3.8)

It can be seen that R2 is a x*-random variable with n degrees of freedom so that

R, is a xn-random variable with probability density function:

0 ™ <0
fxa (Ta) = -5 (3.9)

Pherten (-F) o

Since X is a standard normal distributed vector, U must be a unit length vector
with uniform distribution so that all samples of U form an n-dimensional unit sphere

S™ in the n-dimensional space R™. The sphere S™ is defined by:

St = {z 22 = (21,22, ey Zn) ,Xn:z? = |z|2 = 1} (3.10)

=1

Furthermore, it can be proven that the random vector U is independent of R, =
X
Rewriting the expression of Z(t) (3.5) by inserting equation (3.8) and using the

independence property, we get:

Z(t) = (X,h%t))

= R.-|b*(t)[- (U - h(t)) (3.11)

with,

h(t) = Iﬂ—égl (3.12)
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This time, the geometric meaning of such a random field expression is clearer.
Note that, at a given t, h(t) is 2 deterministic n-dimensional vector with unit length
in the n-dimensional space R®. Then for t = (¢,ts,...,tx) € T, endpoints of h(t)
form a manifold M, with domain T, embedded on the surface of the n-dimensional

unit sphere S™ (3.10):
M = {h(t) : t € T, h(t) = (h1(t), h2(£), ..., ha(t))} (3-13)

For the case of £ = 1, M describes a t dependent curve on the surface of S™.
While for k = 2, it is a two-dimensional area on the n — 1-dimensional unit sphere
surface. On the other hand, U denotes a vector with endpoint on the surface; the
endpoint of each realization of U corresponds with one point on the surface of the
unit sphere.

Assume that the angle between the vectors U and h(t) is 8, while the distance
between the endpoints of U and h(t) is r(t) . Using elementary trigonometry, we
have,

6 = a.rccos(l—r(;)z) (3.14)

r(t) = 1/2(1 —cosf) = tanf, § — 0 (3.15)

Figure 3.1 shows the relationships between 6 and r (r(t) at a fixed t) for n = 2,

and n = 3 cases.

Since U and h(t) are all unit length vectors, their scalar product can be expressed
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Figure 3.1: Relationships between @ and r for the n =2 and n = 3 Cases

in terms of 4 as:

(U - h(t)) = |U] - |h(t)| - cos§ = cosb (3.16)

3.2.3 Geometry of Maxima of Random Fields

By introducing the above geometric representation of a random field Z(t), the ex-

treme value distribution can be rewritten as:

PB) = P (mTax (U -h(t) > Wi(tﬂ)
B
= P (n,lrmﬂ < arccos(Rn—.lﬂth)l))
(3.17)

Recall that R, is a yn-random variable with the probability density function
defined by equation (3.9), then P(B3) can be evaluated by the integration of the



conditional probability with respect to R,:

P(g) = /:_ P (mTine < arccos(ri‘(tﬂ)) Fuo (7) dra

Ih* (e}

The integration area is obtained from the fact that,

B
maxcosf > ————— 0 —0
T = R.- ()]
or,
. B

B !

hence we have:

B
) = <
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(3.18)

(3.19)

(3.20)

(3.21)

Now, the conditional probability in (3.18) is related to a geometric probability.

Recall that § is the angle between U and h(t) while arccos(;lf,(—t)l) is a deterministic

function dependent on t, so m’ll‘n 0 < a.rccos(mf_(—t)-l) describes a set of realizations of

U, which have angles less than a.rccos(#_(t)') with h(t). According to the geometric

meanings of U, h(t) and the relationship between r(t) and 6, it can also be explained

as a set of points on the unit sphere surface with distances less than r(t) from the

manifold M, where r(t) is a function of arccos(—£-—:) and therefore r(t) becomes
ra-h*(t)]

very small with 8 — oo for the fixed r,, and |h*(t)].

We can define the points on the unit sphere and satisfying the condition mint 8 <

arccos(;ﬁ%) as the neighborhood N(M) of a manifold M, and assume that a



parametrization for it is given in the form:
N(M) = {U :U € 5™, max (U - h(t)) > r(t), t € T} (3.22)

where U denotes the vector whose endpoint is the uniformly distributed point form-
ing the surface of an n-dimensional unit sphere and h(t) is a function with domain
T C R* and values in S™ C R". To facilitate this interpretation, Figure 3.2 shows
the neighborhoods of two 1- and one 2-dimensional manifolds M.

For the one-dimensional case, the sub-manifold M is a curve with interval ¢ €
(0,T) so that the neighborhood N (M) looks like a tube with radius r(¢) around the
curve. This explains the origin of the name of the tube method. In this thesis, we
will refer to the neighborhood of the sub-manifold M as a 'tube’, no matter what
the dimension of the sub-manifold is.

Now it is clear that, of all the uniformly distributed points on the surface of an n-
dimensional unit sphere, only those in the neighborhood N(M) make a contribution
to the extreme value distribution. Therefore, the conditional probability in equation
(3.18) can be determined in terms of the ratio of points in the neighborhood N (M),
i.e. the volume V,,_;(N) of N(M), to all the points on the surface of the unit sphere,

i.e. the volume w;, of the surface area of the unit sphere:

P (m%no < arcoos(— |i'(t)l)) _ Vn: ’EN ) (3.23)

The denominator, wy,, can easily be evaluated by the widely used equation for



n=4, k=2

Figure 3.2: Neighborhoods of 1D and 2D Manifolds
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the surface area of a sphere with radius one (Kendall, 1961):

(S

2

-
= e (3.24)
"Tr(y)

where I' (-) is the Gamma function (Abramowitz and Stegun, 1972).

Now the only thing left is the calculation of the volume of an (n — 1)-dimensional
neighborhood (tube) of a k-dimensional sub-manifold embedded on the surface of an
n-dimensional unit sphere. Once the volume of the tube is obtained, the calculation
of the extreme value distribution is straightforward.

The above discussion represents the basic idea of the tube method. It is seen that
the problem of maxima becomes more intuitive by introducing geometrical principles.
There is no need to verify the assumptions regarding the Poisson process and it does
not matter whether the random field is homogeneous or not. The key problem in the
tube method is how to obtain the tube volume; this will be discussed in the following

section.

3.3 Volume of the Tube

In this section, the calculation of the volume of a tube is studied. First, Weyl’s
formula (1939) for the volume of a tube is introduced and its limitation is pointed
out. Then the volume of an (n — 1)-dimensional ma.njfold is outlined. Finally, a
formula for the volume of the tube of a 2D sub-manifold is developed by means of

Breitung’s projection method (1997).
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3.3.1 Weyl’s Formula

As early as 1930s, the calculation of the volume of a tube had been studied by
Hotelling (1939) and Weyl (1939). Hotelling studied the one-dimensional case (k =
1), while Weyl proposed a more general volume formula which is given below.
Assume that M is a k-dimensional manifold (without boundary) embedded in
the hypersphere S™ for a finite n, where M and S™ are defined by equations (3.13)
and (3.10) respectively. As in the preceding section, h(t) denotes a deterministic
n-dimensional vector with unit length in the n-dimensional space R™ at a given
t, t = (t1, %2, ...,tx) € T; the endpoint of h(t) forms the manifold M; U denotes a
vector with endpoint forming the surface of the unit sphere S*; let § be the angle
between U and h(t) and r(t) the distance between the endpoints of them. The
relationship between 6 and r (t) is shown in equations (3.14), (3.15) and Figure 3.1.
Then according to Weyl (1939), the volume V,,_; of the tube N defined by equation
(3.22) is equal to: |
V() mm- 3 e (6 (3.25)
e=0,2,4--
where N means neighborhoods, m = n — 1 — k, wp, is the surface volume of an

m-dimensional unit sphere and given by equation (3.24). J.(f)'s are the incomplete

beta functions:

Jo(8) = /0 ? sin®~(z) - cos*(z)dzx (3.26)

Je(0) = k(k+2)--.1(k+e—2) [ st @) - cod (@ (327

where e = 2,4, ..., < k.
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The coefficients «. in equation (3.25) are geometric constants related to a k-
dimensional differentiable manifold M which is defined by the metric tensor matrix
M (Weyl, 1939; Sun, 1993). The components of the metric tensor matrix M are

given by the following inner product (Kreyszig, 1968, page 310):

(6,7 =1,2,...,k) (3.28)

oh(t) 6h(t)> % Oh(t) Oh(t)
mes(8) = < o) -
d at,- 6t,- I=ZI at,- 8t,-
in which t = (£, ¢2, ..., ) € T. Note that M is symmetric.
kg is the volume of the sub-manifold M and it is defined by:

Ko = [r |det M2 dt (3.29)

It can relatively easily be calculated in comparison with other geometric terms.
Weyl did not explain the explicit geometric meaning of the second coefficient x2
which is defined by:

Ko = [r (—5/2 — k(k — 1)/2] - |det M|*/2 dt (3.30)

where S is the so-called intrinsic scalar curvature of the sub-manifold M and it is
a function of the partial differentials of m;;(t) (3.28) with respect to &, (z,J,! =
L,2,..., k).

The calculation of S involves the computation of the Riemannian curvature ten-
sor, the Ricci curvature tensor and the Christoffel symbols (Kreyszig, 1968), which
is very tedious and not really suitable for practical engineering problems. Directly

applying Weyl’s formula to equation (3.23) can result in a formula for the extreme
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value distribution (Sun, 1993). Obviously, such a formula also includes the scalar
curvature tensor which is very difficult to calculate. In an application (Sun, 1991)
of it, a simulation method is used by Sun to estimate S in the special case that the
corresponding metric tensor matrix is diagonal. But this is not applicable to the
general case in which the metric tensor matrixes are not always diagonal. Therefore,
a more practical formula for the tube volume should be developed. In the following
sections, Breitung’s projection method (1997) is used to derive an accurate formula

for the tube volume in 2D cases.

3.3.2 Volume of an (n — 1)-Dimensional Manifold

The volume of an (n — 1)-dimensional manifold M* embedded on an n-dimensional
unit sphere, (that is, the M* is part of the surface of the unit sphere), is well known
(Thorpe, 1979) and is used to derive the formula for a tube volume. Note that the
present section is restricted to the case that the manifold has a dimension equal to
one less than that of the unit sphere. The more general case of a k-dimensional
manifold is discussed in section 3.3.3.

Assume that an (n — 1)-dimensional manifold M* is given in the form:

M* = {h(t) : t € T,h(t) =(h1(t), ha(t), ..., hn(t))} (3.31)

where h(t) is a unit length vector with domain T, t = (¢1,%2,...,¢t,;) € T, and
values in S® C R™. Note that the difference between the two manifolds defined by
the equations (3.13) and (3.31) is that the former is k-dimensional and the latter is

(n — 1)-dimensional with k < n — 2. Assuming h(t) is one-to-one, then the volume
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of M* is determined by the integral (Thorpe, 1979):
Va1 (M") = /T |det (E3(t), E3(6), -, Ba_y (£), h(t))| dt (3.32)

Where E} (i = 1,2,...,n — 1) are the unit coordinate vectors in the direction of £,

which are defined by:

. _ Oh(t) _ Ohy(t) Oha(t)  Oha(t)
B = = o g ) (3.33)

They denote the velocities of the manifold M* in the direction of ¢; so that the co-
ordinate vector fields along the surface, E}(t), E5(t), ..., E;,_;(t), form the tangential

space of the surface at the point u = h(t). Therefore, we have:
E;(t) - h(t) =0 (i=1,2,..,n—1) (3.34)

This means that the injective vector function h(t) is normal to the tangential

space at each point u. Then equation (3.32) can be rewritten as:

Va1 (M)
( Ei(t)-Ei(t) --- Ej(t)-E;_,(t) Ei(t)-h(t) \%
= [ |aet 3 E E dt
En_i(t)-Ej(t) --- E;_,(t)-E;_,(t) E;_,(t)-h(t)
\ h(t)-Ej(t) --- h(t)-E,(t) h(t) -h(t) )
- /T det (E3(t) - Ej(8))|" dt (3.35)
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= /T |det (M)[ /2 dt (3.36)

where M is the metric tensor matrix defined by equation (3.28).
An intuitive explanation why the coordinate vectors can be used to measure the

volume of a manifold is shown in Figure 3.3.

S3
-
A ] E:2
at, fooo 7 A’z
— at,  Eu
at,
—

Figure 3.3: Area Magnification along the Parametrized 2D Surface of a 3D Unit
Sphere

It is shown that the small shaded rectangle is mapped by the transformation ¢
to the surface of a unit sphere S3. When At; — 0, the mapped area on the surface
of the unit sphere is closely approximated by the rectangular area above it.

For our problem, M is a k-dimensional sub-manifold defined by equation (3.13).
Of our interest is the volume of the neighborhood (tube), which is expressed by
equation (3.22) and consisting of the points on the surface of the unit sphere with
distance less than r(t) from M. In order to evaluate the tube volume by using

equation (3.23), the neighborhood N (M) should first be expressed explicitly.
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3.3.3 Neighborhood of a Manifold

The volume of the tube (3.22) depends on the k-dimensional sub-manifold M (3.13)
and the distance r(t) (3.15). M is defined by its own metric tensor matrix with the
components defined by equation (3.28). To evaluate these components, we should
first find the corresponding coordinate vector fields of M .

Let
_ Oh(t)  Ohy(t) Oha(t)

E: Ot; = ot; ' ot

Oha(t), . _
or )y (E= 1,2 K) (3.37)

be the coordinate vectors of the sub-manifold M at the endpoint y = h(t) (y €M),
where k is the dimension of M. Similar to those coordinate vectors defined by equa-
tion (3.33), E; denote the velocities of the sub-manifold M in the direction of ¢; and
E,(t), E5(t), ..., Ex(t) are the coordinate vectors along the surface of the unit sphere

at the endpoint y = h(t) (y €M) . Therefore, we have:
Eit)-h(t)=0, (i=12,..k) (3.38)

As defined by equation (3.28), the components of the metric tensor matrix M of

the sub-manifold M are equal to:
mij (t) = Et(t) ) Ej(t)a (21.7 =12, .., k) (339)

So far, the sub-manifold M is determined as long as the injective vector h(t) is
known. But the volume of the tube cannot be obtained only by using the character-
istics of M with the k-dimensional coordinates £;, and the corresponding coordinate

vectors E; (i = 1,2, ..., k) since the tube itself is (n — 1)-dimensional. The orthogo-
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nal complement of the space spanned by E: (i = 1,2,...,k) should be determined in
order to describe the neighborhood of M.

Assume that the coordinates for a point z in the (n—1)-dimensional neighborhood
of M are (t1, b, .o Ly U, U, ey Um), (M=n—1— k). At each endpoint of y = h(t),
a point in M, we can determine the unit vectors n; along the surface in the direction

of u; (j =1,2,...,m) by:

E,-'nj =0 (3°40)
n;-n; =0 (3.41)
y-n;=0 (3.42)

where (i = 1,2,..., k), (j,[= 1,2,...,m), (j #1). It is seen that n; (j=12,..,m)
span an m-dimensional orthogonal system which is normal to the k-dimensional
space spanned by the E; (1 =1,2, .., k).

Now we can construct a parametrization function for the points in the neighbor-
hood of M by using the (n—1)-dimensional coordinate system (t1, 22, ..., tk, U1, U2, - Um)-
As mentioned in section 3.2, we are interested in the probability of maxima when
the threshold f is large, that is, the distance r(t) is very small, so that each point z

satisfying equation (3.22) can be expressed as:

2= (1+ D)2y + > wn)  Jul =0 (3.43)

=1

where u = (u3, 4z, .-, Um), (M =n —1—k) and (y € M). It can easily be verified
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that

2
(L a2

m
lz| = JIYI2+ S wn;
=1

= i+l -1+

=1 (3.44)

which means that z is a unit vector.

It should be noted that the equation (3.43) does not include all the points in the
neighborhood which satisfying equation (3.22). Actually, it considers only the points
in the space spanned by n;, ny, ..., ny,, that is, the space normal to the space of E,,
E,, ..., E; as shown in Figure 3.4 for the special cases k =1 and k = 2 respectively.

As shown in Figure 3.5, other points close to the boundaries and endpoints of
the sub-manifold M and satisfying equation (3.22) also contribute to the extreme
value distribution and therefore should also be included as well for general cases.
It is difficult to consider these points directly in equation (3.43) and to get the
corresponding volume formula. For the lower dimensional cases, £ = 1 and k = 2,
the extreme value distribution associated with these endpoints and boundaries will
be evaluated separately, which is discussed in detail in section 3.5. For convenience,
we refer to the area of a random field corresponding to the points involved in equation
(3.43) as the main area of the random field or a random field without boundary.

The maximum variance of the random field in the domain T, to which the extreme
value distribution is very sensitive, often occurs within the main area of the random
field. Therefore, the exceedance probabilities contributed by the main area are often

much larger than those by boundaries and endpoints. However, as indicated in



53

n=4 k=2

Figure 3.4: Points on the Unit Sphere Surface Considered by Equation (3.43) for
k=1 and k = 2 cases
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X
N\
r/ \.

points around the endpoints .\
points around the boundaries

{2

\

n=4, k=1

Figure 3.5: Points Close to the Boundaries and Endpoints, which are not Included
by Equation (3.43) but Make Contributions to the Extreme Value Distribution in a
2D case.
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Chapter 4, contributions by boundaries and endpoints cannot be neglected in general

cases.

3.3.4 Volume of the Tube

Denoting the coordinate vectors of the tube by E; (i=1,2,...,n—1), we can obtain
the primary representation of V,_;(N), the volume of the (n — 1)-dimensional tube,

according to equation (3.32):
Vo i(N) = / / det (B, Bz, ... Ba1,2)| dudt (3.45)
T Jjul<r(e)

The coordinate vectors E; (i = 1,2, ...,n — 1) are the changes of the unit vector

z given by (3.43) with respect to the coordinates (i1, t2, ..., tk, U1, U2, ey Up)

~ 0z
s == — ) — vee 3.46
E; 3’ (j=1,2,...k) (3.46)
Eix = 2, G=1,2,..,m) (3.47)

In order to evaluate the tube volume defined by equation (3.45), the above two
equations should first be expressed explicitly.
Insertion of the equation (3.43) into equation (3.46) and (3.47) yields:

0z 2n-1/2,0Y | <
— = A+ [u)Y"(ZTZ+D w
3 lul*) (at,- ;

On;
ot;

m on.
= ) AE + Y was) (G=12,0k) (3.48)
J

=1
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d(1 +Juf)~/2
Ou;

0z
5 = (L+[ul) ™0+

a'U-,’ z, (i = 11 27 it ] m) (3'49)

Notice that the unit vectors y and n; are all dependent on t, not on u .

The second term in equation (3.49) is a vector parallel to z so that it has no
contribution to the value of the determinant in the volume formula (3.45) and it can
be ignored.

Now the only unknown term in the equations of the coordinate vectors is gt—“;
According to equations (3.40), (3.41) and (3.42), the choice of n; depends on the
manifold M and its derivatives. Therefore, the tube volume depends on M and its

derivatives but not on n;.

First, from the property of being normal to the unit vector y, we have,
n;y=0 (3.50)
by differentiating the above equation with respect to ¢;, we have:
—.y=-n- -2 =-n-E;= (3.51)

with (: = 1,2,..., m), ( § = 1,2,...,k). This raeans that the vectors Qat'—‘; are also
orthogonal to the unit vectors y so that they must lie in the tangential space of
the sub-manifold M at the point of y. Since the tangential space is spanned by the

coordinate vectors {Ej, Eo, ..., Ex,ny,n2,...,0n}, %%‘;_i can be expressed in terms of
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them. We assume the form to be as follows:

ani k- m
5 = > G Eu+ ) g5m (3.52)
7 p=1 v=1

where gi,, g}, are unknown coefficients dependent on n;, t; and E, or n,. As n;,
ng, ..., N, span the space orthogonal to the space spanned by E;, Eo, ..., Eg, they
do not influence the value of the determinant in the tube volume formula (3.45).
Therefore, the second term in equation (3.52) can also be ignored and there is only
a need to find the coefficients g5,.

By using the relationship between E; ({ = 1,2, ...,k) and n; (i = 1,2,...,m), we
have,

En; =0 (3.53)
The differentiation of the above equation with respect to ¢; results in:

on; _
E; - o+ 7, ;=0 (3.54)

Now it is necessary to introduce the second derivative of sub-manifold M. Let it

be defined by:

by = 82h(t) _ (azhl(t) 82hy(t) azhn(t))T =h; (3.55)

T 8udt;  \ Otot; T oot T anot;

with (I, 7 = 1,2, ..., k). It is obvious that hy; is the curvature of the manifold M. And
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let H denote the vector matrix of hy; :
H= [hlj]t,j=1,2,,_,,k (3.56)

Notice that H is symmetric.

Making a substitution of equation (3.55) into (3.54), we obtain:

on;
ke R, N 3.97
E( ,ij = h(J n; ( )

Multiplying both sides of equation (3.52) by E; and then inserting the above

equation into it, we get the following equation:
ony k. LA
E - g = Z g;-#E[-E# + E g;-,,El-n,, = —hz_,' Ny (358)
] pu=1 v=1
Recall that E;-n, = 0 and E;-E,, = my,, we have:

k
Y ghmu=—hy-n;, (G lLp=12 ..k, (E=12,.,m) (3.59)
p=1

ie.,

(9;1\

gi.
(mu1, M, ..., k) fz = —h;;-n; (3.60)

\ 9 /

As defined by equation (3.28), M is a metric tensor matrix so that it is always
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positive and non-singular. Therefore, we can define its inverse matrix as follows:

M = (m; ip=12,..k

Also, let be defined m k x k matrices G; by:

G: = [g;'#]

jvl“=lv2v-'nk

in which (i = 1,2, ...,m).

Then equation (3.60) can be rewritten in the following form:
G;=-M1'H-n;
This finally gives the expression of g;:”. Furthermore, by introducing,
H=-M1H

g, can be simplified as,

—

G; = Hwn;

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

which is more explicit. Note that Hisalsoakxk symmetric matrix with components:

k
hyj =3 my-hy;
p=1

(3.66)

Now that the representation of % is explicit, the same can be applied to gﬁ_.

However, it is necessary to simplify the representation of %‘7 before inserting it into
¢
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(3.45) for the tube volume. As discussed before, the second term in the parametriza-

tion function of %tﬂji can be ignored so that we can express —37’:- in the form:

a m k . A
5ti. = (1 -+ |u|2)_1/2(EJ- + Zu, Z g;“E,‘) +--- (] =12,.., k) (3'67)
7 i=1 p=1

where - - - denotes the terms ignored.

By introducing the Kronecker delta §;y,

Li=we .
b ={ (je=12 e K)

0, j#n
and extracting E,, we can rewrite (3.67) as follows:

a m k B
oo = (L [l 2+ L D G + (3.68)

Ot; i=1 p=l

This can be rewritten in a matrix form:

o
ot;
8 9
611 + X7 uigly - O+ 2ing ULk E,
= (1+u): : s : 3 B
I bk + TT wighy - Ork + Ty Wibke ] E,
E,
a1 [ =
= (1+|ul®)2 LI,C+Zu,-G,- o+
=1

By



61

E,
= (I+u»i-A-| 1 [+ (3.69)

Ey

where I is the k& x k unit matrix, G; is defined by equation (3.63) and A is equal
to:

A=L+> uG: (3.70)
i=1

Having the explicit expressions (3.49) of g‘: and (3.69) of %‘;, we can obtain an
alternative format for the volume of the neighborhood by inserting (3.49), (3.69) and

the expression of z (3.43) into (3.45),

Vi (N) = [r /|u|<r<t) |det (Ex.Be, .. Ea 1,2)| dudt

( E, \
A-
E,
= 2y-n/2 |det dudt
.[T-/[’u|$r(t)(1+|u! ) e n; u
Nm
N\ Y )
( E,
= Hy-n/2ldet {A- | : dudt 3.71
[r/|u|gr(t)(1+lu| ) de : u (3.71)
\ \ B

where y € M and it originates from the expression of z (3.43).
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Similar to those discussed before, all the terms with n; are neglected because
they are normal to the space spanned by E;, Eo, ..., E; and therefore they do not
influence the value of the determinant. The last transformation is similar to that of
equation (3.35).

The determinant in the integral in equation (3.71) can be rewritten as:

E, E;
det | A- : = |det A -det

Ex Ex
= |det Al - |det (Bu(t) - E;(£))[}/2,

= |detA|- |det (M)|*/2 (3.72)

where M is the metric tensor matrix defined by equation (3.28). This gives the

following tube volume formula:

- |det (M)|/? dudt (3.73)

Vn— N = / 2y-n/2
(W)= [ f )

i=1

det {Ik + ZuiG,]

Recall that |u]| is the distance between the points in the neighborhood and those

in the sub-manifold M, that is |u] = r (t). Assume that r = r(t) at a fixed t, then

we have,
u=|u|-|—3—|=r-V (3.74)

so that,
uy=7-V, ((=12,..,m) (3.75)

V] =1 (3.76)
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Using polar coordinates, we have:
du=r""dr.dv (3.77)
Then V,,_;(N) can be rewritten in the form:

pm—1 m N
n-1(N) = —F £ ViG:| dV |det (M)|? drdt
Vo (N) /r-/rSr(t) (L+712)2 /|'V|=1de [Ik+r; ] |det (M)|? dr
-1

rm 1
= —_— det AdV |det (M)|? drdt 3.78
/I‘/rSr(t) T )F /IVI=1 e |det (M)|? dr (3.78)

Note that the integration area of V is the surface area of the m-dimensional unit

sphere.

3.3.5 Evaluation of an Integral

So far, the preceding derivation is similar to Weyl (1939). The next step is to evaluate

the integral involved in equation (3.78),
/ det AdV (3.79)
Vi=1

in which the k x k matrix A is defined by equation (3.70) and V = (W4, V3, ..., V).
Different evaluations of the integral result in different formulas for the tube volume,

each of which will be discussed in turn.



a. Weyl’'s Method

Weyl (1939) decomposes the determinant in (3.79) as follows:

det A = det [I,c +ry V,(?r,] =141+ +--- (3-80)

i=1

Then he gets the expansion of the integral:
/m—l det AdV =wm - {1 + % [-5/2 — k(k - 1)/2)]} + o(r?) (3.81)

where w,,, the surface area of an m-dimensional unit sphere, is defined by equation
(3.24). As mentioned in section 3.3.1, S is the intrinsic scalar curvature of the
sub-manifold M which is a function of the partial differentials of m;;(t) defined
by equation (3.28) with respect to t; (I = 1,2,...,k). S is difficult to evaluate in
a practical problem. Therefore another evaluation of the integral, involving no S,
should be developed in order to avoid calculating the intrinsic scalar curvature.
Breitung (1997) made a successful effort in this direction. By means of a "pro-
jection method’, an approximation formula for the integral (3.79) is proposed which
is much easier to evaluate. Although it will be shown that Breitung’s formula is
incorrect, the projection method is really an effective idea and it will be used in this

thesis to develop an accurate formula for the tube volume in 2D cases.

b. Breitung’s Projection Method
Based on the assumption that G; (i = 1,2,...,m) are symmetric matrices and the

condition r — 0, Breitung (1997) expands the determinant in the integral (3.79) as
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follows:

det A = det [Ik+rZV,-G,-

i=1 J
= det [ +rB]

= l+4+r-tr(B)+ %2 - itr(B ®B) — tr(B2)J +o(r?) (3.82)

in which ¢r(B) is the trace of B and ® denotes the Kronecker product of two matrices.
This formula is derived by the facts that any symmetric matrix can be rewritten in
a diagonal form by a suitable rotation and the trace of a matrix is invariant under

rotation.

By substituting equation (3.82) into (3.79) and revising it, Breitung obtains:

m
t AdV = Vin,-h-h;;n; 2 .
/le det AdV = 3 /M=I ViVin-he-byyn,dV + o(r?) (3.83)

i,j=1

with (1 =1,2,...,m) and (,5 = 1,2, ..., k).
To evaluate the above equation, Breitung introduced the projection method.

It is seen that the term mn; - hy; are the projections of the vectors hy; onto the

subspace spanned by the vectors n; (i = 1,2, ...,m), that is,
b =P.h; (3.84)

in which h,*JT are the projections and P is the projection matrix onto the space

spanned by the normal vectors nj, ny, ...,n,,. Since n;, n,, ...,n,, are dependent on

E,, E,, ..., E; and y, the projection matrix P is difficult to obtain directly. However,
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by noting that the orthogonal system n;, ny, ..., By, is normal to the space spanned
by Ei, E,,...,Eg, ¥, and all of them together form the space R™, one can determine
P by the fact that the projection matrix onto a space is equal to the unity matrix
minus the projection matrix onto the space that is normal and complementary to
this subspace (Breitung, 1994). Therefore, to evaluate the matrix P, the projection
matrix P* onto the subspace spanned by E,, Es, ..., Ex and y should first be found.
Using the facts that y is a unit vector and normal to the coordinate vectors E,
E,, ..., Ex, one obtains,

P* = EM'ET+yyT (3.85)

with E defined by,
E = (E,, E,,...,Ex) (3.86)

Notice that P* is an n X n symmetric matrix. Then the projection matrix P can
be determined by:
P=L-P* =1,— EM'ET —yy* (3.87)

in which I,, is the n x n unit matrix.

By applying the projection method introduced above, Breitung obtained:

(1)
sw=1pufv

/v[ det AdV = wr, [1+— (b, b)) | +o(r?) (3.88)

where w, is the surface volume of an m-dimensional unit sphere and it is defined by
equation (3.24).
However, it is easy to find that the assumption on which the above equation is

based is incorrect. That is, the matrixes G; may not be symmetric. According to
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the definition in equation (3.63),
G =-M1H-n (3.89)

it is clear that although M~! and H are symmetric, their products G; are not

necessarily symmetric,
(-M~*H) = -HT (M) =-H-M'#-M"H (3.90)

So, Breitung’s formula for [y, det AdV is incorrect.

Even so, the projection method is a useful tool for the following section.

c. Evaluation of 2D Cases by Projection Method
According to the previous discussion, it is clear that the key aspect of evaluating the
volume of the tube is how to determine the integral [y, det AdV.
Considering that the random fields in practical engineering problems are always
1D or 2D, we will focus on the lower dimensional cases in this thesis, especially k£ = 2.
Actually, the value of the determinant of A can be obtained exactly for the lower

dimensional cases. When k =2, G; (i = 1,2,...,m) are 2 x 2 matrixes, we have,

det A = det |l +T Z ViG; (3.91)

L i=1

rY, Vgl rIn Vigi

— det |L + i 9%1 2t 9%2 (3.92)
ryi Vign XL Vige
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since the matrix A is also a 2 x 2 matrix, it follows that,

m m
det A = 1+7Y Vigi, +7>_Vigs

i=1 i=1
+r? Z V:'nghggz —r? Z ViVJ‘gi2ggl (3.93)
t,7=1 i,7=1

For the 1D and 3D cases, similar results can easily be obtained as well.
Now we expand the integral for £ = 2 in the following form,
det AdV = av+ry [ VighdV
./|V|=1 V=1 ; vie1 911

- P} 2 - I/zV i ] dV
+ry° /IVI=1 VigsdV +1° ) /IVI=1 911932

i=1 ij=1

-r* 3 [ ViVigiaghaV (3.99)

i,j=1

Recall that V = (W}, Vs, ..., Vi, )T is a vector with unit length and that its endpoint
is a uniformly distributed random variable. Therefore, the domain of the endpoint

of V is the surface area of the m-dimensional unit sphere. This gives,

/M 14V =wn (3.95)

where wp, is the surface area (or volume) of an m-dimensional unit sphere and it is
defined by equation (3.24).
Due to symmetry, we also have,

[, ViV =0 (3.96)
Vi=1
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[ VvidV =0, (i#3) (3.97)
V=1

For the evaluation of fiy,-, V2dV, we begin with the fact that [V]| = 1,i.e,
S V=1 (3.98)

Since the endpoint of V is a uniformly distributed random variable and (1, V2, ..., Vin)

form an orthogonal system, it results,

E{gvi’} =1= iE{Vf} =1 (3.99)

=1

where E {-} is the expected value operator, defined by (2.6).

Due to symmetry, it gives,

B (V7)== (3.100)
m
Because of symmetry, we have once more:
/ V2V = E { v,?dv}
[Vi=1 |Vi=1
= / E{V?}dv (3.101)
vi=1

Insertion of equations (3.95) and (3.100) into the above equation results in,

/M_l V2V =%’" (3.102)
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Then the integral fiy,_, det AdV can be rewritten in the form,

r2 [& . . moo
[onderAdV mum {14 D[St~ Sotst |} G109
Vi=t L ot =1
Substituting the representation of gj; by its definition in equation (3.63), we get,

/ det AdV
|Vi=1

,'.2 m - m -
= wm{l'*‘a[Zhll’ni'h22'ni—zhl2'ni’h21'ni}}

i=1 i=1

= Wm {1+7—TZ- [Eu' (f:ntnn) -hyg — by - (imn,) 'Em]} (3.104)
i=1

i=1

Taking into account that n;, ng, ..., form an orthogonal system, we can con-
clude that 37, n; - n; is the projection matrix onto the space spanned by n;,
ns, ..., Ny, i.e.,

S n-n;=P (3.105)

where P is the projection matrix onto the space spanned by the normal vectors ny,
no, ...,n,, and can easily be determined based on equation (3.87). Therefore, the
evaluations of the integral formula (3.104) and the tube volume become manageable.
For simplification purpose, the term [} in the integral (3.104) can be rewritten
in the following form by introducing equation (3.105),
m ~ m ~
[ﬁll ) (;nz : ni) ~hyy —hyp - (;nz ’ ni) : h21:|

= [ﬁu P-hgy — hys - P?im] (3.106)
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According to the derivation in Appendix B,
P=PT.P (3.107)
This gives,

[Eu P-hyp—hy;s-P- E21] = [Eu -PT.P-hy —hyp - PT-P- 521]

= (hfi,h%) — (b, h,) (3.108)
The latest transformation is performed by introducing equation (3.84),
hf; =P - hy; (3.109)
At last, we obtain the simplified form of the integral,
/M=1 det AdV =wp, {1 + -"T-nf ((bf;,h%) — (b, b, )} (3.110)

d. Comparison Between Breitung’s and Weyl’s Methods

Considering Breitung’s formula (3.88) for 2D (k = 2) cases, we have,
2
= " (ht ht 2

In comparison to our proposed formula (3.110), it can be seen that Breitung’s
formula only considers the diagonal elements of G; while it neglects others. This will

result in a larger tube volume and therefore a larger maxima probability.
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Notice that the formats of the three formulas for the integral are very similar.
Based on this, although we are mainly dealing with the case k = 2, it is better to
choose the following format for the integral in the advance derivation for the maxima

probability for general purpose,

2
/ det AdV =wp, (1 . 62) (3.112)
[V]=1 m
with,
c2 = (hf;,hh) — (b, hfi), for k=2 (3.113)

It is clear that only the expressions of c; are different in the three formulas for
the integral. Since c; only depends on the manifold M, the following derivation for
the maxima probability is applicable to general cases and there is only a need to
change c; when considering different random fields. According to the definition of

h; (3.84), it is obvious that c; is related to the curvature of the manifold M.

3.3.6 Proposed Formula

Insertion of equation (3.112) into (3.78) results in the explicit representation of the

tube volume,

rm-l 2
_ LI I 114
Va—1(N) ,[.[‘./1:51'(1:) a +r2)n/2wm (1 + ~ 62) cdrdt (3.114)
in which
c1 = |det (M)[*? (3.115)

which is a function of t and c; is given by (3.113) for k = 2.
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According to equation (3.15), with » — 0, r is approximately equal to tan . This

gives an alternative form for the tube volume,

m—le
Va—1(N) = // osm_locos"ﬁ-wm(1+ 0822 ::L)c sec? 0dOdt

= / (wm / sin™ ! 0 cos® 8d8 + wn, / 1 sin™*! 0 cos*~2 048 - cz) c;dt
T ] o m

= A (Wi Jo(8) + w2 (8)ca) crdt (3.116)

where Jy(6), J>(8) are the same as those defined by equation (3.26) and (3.27).
Since the above equation is derived using equation (3.43) directly, as discussed
in section 3.3.3, it is not the total volume of the tube but the volume of the tube
corresponding to the main area of the random field.
By comparing with Weyl’s formula (3.25) for the tube volume, we can see that
the first two terms of Weyl’s formula are almost the same as our proposed formula
except that the expression of c; is different. Our formula is accurate for 2D cases and

successfully avoids the calculation of the scalar curvature in Weyl’s equation (3.25).

3.4 Maxima of Random Fields

In previous sections, the basic idea of the tube method is outlined and the relationship
between geometric concepts and the maxima of random fields is given by equations
(3.18) and (3.23). In fact, the probability distribution of maxima of a random field is
related to the ratio of the volume of a tube and the surface volume of a unit sphere.

Since the tube volume has been given by equation (3.116), the derivation of the

maxima of random fields is manageable. By using Weyl’s (1939) formula for the tube
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volume (3.25), Sun (1993) proposed a two-term formula for the extreme value distri-
bution without listing the derivation process. Farasyn (1997) derived a corresponding
formula for the one-dimensional cases by means of Hotelling’s (1939) equation and
also developed the formula for the probability associated with endpoints. Before

presenting our own derivation, Sun’s and Farasyn’s results will be introduced briefly.

3.4.1 Existing Results

a. Sun (1993)

Suppose Z(t) is a differentiable non-homogeneous Gaussian random field with unit
variance, domain T and without boundary (see the discussion in section 3.3.3). Then
as the threshold 8 — oo, the extreme value distribution of the random field is equal
to,

P(B) = P(max Z(t) 2p) = roth5(B) + r2¥; (B) + 0 (¥3 (6)) (3.117)
where kg, ko are the same parameters as those in Weyl’s formula (3.25) for the tube
volume and 97 (8) (e = 0,2) are defined by,

. 1 ® (k+1-e)/2-1
Ye (B) = STre/i i D/2 /ﬁ2 . u )/2-1 exp(—u)du (3.118)

Note that Sun’s formula is applicable to the k-dimensional random field (% is
finite) with unit variance. Furthermore, the direct use of Weyl’s formula is the cause
that Sun’s formula does not include the contributions by boundaries and endpoints

but is based on the scalar curvature S which is difficult to calculate.
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b. Farasyn (1997)
Considering a differentiable non-homogenous 1D Gaussian random field Z(t) with

domain T = (0, T'), Farasyn (1997) found,

P(B) = P(maxZ(t)2p)

- 27r/ ( T T )c(t)dt-i—%@ (—IF@(OT)
+5 (- lh'ﬁ(T)|)+,§ (%) (3:119)

in which 8 — oo and @ (-) is the standard normal distribution function. The second
and third terms are the contributions by endpoints and the last term represents the
probability associated with discontinuous jumps, with M the number of discontinu-

ous points. Farasyn defined c(t) by,

o= \F (& (40)

Recalling that = B = hi(t), this gives,

jhe(t)|
N . 2

d—h(t) dh(t)
dt  dt
= [det(E,Er)] "

(3.121)

This means that c(t) is actually equal to c; as defined by (3.115) for the one

dimensional case.
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3.4.2 Proposed Formula

As discussed in section 3.2.3, for a k-dimensional differentiable Gaussian random
field Z(t) with zero mean, domain T and the discrete format (3.2), the maxima of
the random field is related to the volume of a tube, V,,_;(N). According to equations

(3.18) and (3.23) in section 3.2.3, we have,

P(f) = P(maxZ(t) >f)

o B
= o 00 5 i) o

= /_°; VouWN) ¢ () dr (3.122)

o Yn

where 3 is the threshold; |h*(t)| is the standard deviation of the random field, the
components of h*(t), A} (t) (i = 1,2,...,n), are a set of twice continuously differ-
entially deterministic functions; f,, (r,) is the probability density function of y,-
random variables, which is defined by equation (3.9); wr, is the surface volume of an
m-dimensional unit sphere and it is defined by equation (3.24).

The tube volume V,_;(/V) has been given in equation (3.116). Introducing it, we

get,

P(B) / [wm /_%T Jo(0) fx, (tn)dr, + :‘ /_1“ J2(8) fy (Tn) dre - 2| c1dt
o (3.123)

where c; is given by (3.115); c2 is given by (3.113) for k = 2, and Jy(8), J2(6) are
defined by (3.26) and (3.27) respectively.



By defining,
(B = T2[, 5O ) (3.124)
h(g) = = /;T J(6) f (ra) dra (3.125)

we finally obtain,

PB) = [40(B)-cdt+ [ 4:(8) cr-crds
Prs (B) + Pr2 (B) (3.126)

As discussed before, c; is related to the curvature of the manifold M (3.13).
Therefore, the second term of the final result of the maxima of the random field is
related to the curvature of M as well.

The process of the simplifications of equations (3.124) and (3.125) are given in

Appendix A. The results are:

1 kE+1 2
1 k-1 2
v:00) = =T ( 2 '3 |h*(t)|2) (3.128)

where I' () is the incomplete gamma function (Abramowitz and Stegun, 1972) defined

by,
00
['(a,z2) = / u*le tdy (3.129)

2z

As mentioned in section 3.3.6, the tube volume V,_;(N) given by (3.116) rep-
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resents only the volume of the tube corresponding to the main area of the random
field. Therefore, it only includes the probability associated with main (central) area
of the random field. The probability associated with boundaries and endpoints, is

discussed in section 3.5.

3.4.3 Comparison

By comparing the proposed formula (3.126) with Sun’s (3.117), we can find that
the differences between them are: first, o (3), 2 (8) in the proposed formula are
functions of t since they are for random fields with time dependent variances; second,
K2 in Sun’s formula involves the scalar curvature S.

In order to compare with Farasyn’s formula (3.119), we go back to the derivation
for the tube volume in section 3.3.5 and consider the k = 1 case.

According to equation (3.91), we have for k =1,
detA=1+r) Vg (3.130)
i=1
Using equations (3.95) and (3.96), we get the simplified integral,
/ det AdV =wp, (3.131)
[VI=1
It follows that for k=1:

P@) = [ % () cudt (3.132)

This means that the second term in equation (3.126) vanishes when k£ = 1.
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Actually, we can get the same result by analyzing equation (3.126) directly. Since,
¢ = (bf;, hh) — (b, bf;) (3.133)

hi, hj;, h}; are all equal to zero when k = 1 according to the definition (3.84). This
gives ¢; = 0 and equation (3.132).
From equation (3.127), we have ¢ (8) for k =1,

1 i
Yo (B) = o &P (—W) (3.134)

Combining with the fact that ¢(¢) = ¢; for £ = 1, one can conclude that the first

term of Farasyn’s formula (3.119) is a special case of our proposed formula (3.126).

3.4.4 Simplification for Homogeneous cases

The proposed formula (3.126) is valid for the general non-homogeneous case. Obvi-
ously, it can also be applied to the homogeneous case.

According to section 2.2, for a homogeneous random field Z(t), the variance 0%
and the correlation function Rzz (t,t')a.re not dependent on t. This means that
the functions g (8), ¥ (8) in the proposed formula are not functions of t in the

homogeneous case. For the elements of the metric tensor matrix M (3.28),

my; (t) = Eq(t) - E;(t)
h(t) Oh(t)
8t; ot
dh*(t) oh*(t) 1
ot.  ot; of
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_ aRzz (S, t) L
- le—t = (3.135)

It is clear that m;; (t) is also not dependent on t, since Rz (s, t) is time invariant.

Therefore, the proposed formula (3.126) can be rewritten as,

P(B) = (8) i [ dt+s(8) 1 [ cadt (3.136)

In Sun’s formula (3.117) (Sun, 1993),

=y = 2 K1)

137
2 2 (3-137)

According to the definition (Kreyszig, 1968), the scalar curvature S is a function
of the partial differentials of m;; (t) with respect to t. Since m;; (t) does not depend

on t for the homogeneous case, S is equal to zero. This gives for k = 2,

Co =Ky =—1 (3.138)
in Sun’s formula, which can be rewritten as,

P(8) =[5 (8) — 43 (B)] - [ at (3.139)

In our proposed formula, for k£ = 2, we have:

c2 = (b}, b)) — (b, b (3.140)
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But as shown in Appendix B,
c2 = (hf;,bh) — (b, hf ) = —1 (3.141)

which coincidences with ¢; = k2 = —1 in Sun’s formula for the 2D homogenous case.
This gives an alternative format for the proposed formula for the 2D homogenous

case,

P(B)=[s ()~ 2 (B)]-e1 [ at (3.142)

The above equation is exactly the same as (3.139), since 9, (8) is equal to 2 (3)
in the homogenous case.

In general, we may express the proposed formula (3.126) in the following format:

PB) = [[0(8)+v2(0)-cil-crdt
= [ @B - %@ -cdt+ [[42(8)-cs-cidt  (3143)

in which c3 = c3 + 1, the first term and the second term represent the probability
associated with the homogeneous component and the non-homogeneous component

of the random field, respectively.

3.5 Probability Associated with Boundaries and Endpoints

As mentioned in section 3.3.3 and shown by Figures 3.4 and 3.5, equation (3.43) only

considers the points in the space spanned by n;, ns, ..., L, the space normal to the



82

space spanned by E;, E,, ..., E;. Therefore, the proposed formula (3.126), which is
derived using equation (3.43), is only suitable for the random field without boundary.
The probability associated with boundaries and endpoints themselves needs to be

considered separately.

3.5.1 Boundaries

For the two-dimensional case, the probability associated with boundaries can easily

be obtained by applying Farasyn’s (1997) one-dimensional formula. We have,

Pb(ﬁ)z%,zzw/, ( 2 [h* (t;)]? ) 14ty (3.144)

where n, is the number of the boundaries, c; is defined by equation (3.115). Since half
of the tubes around the boundaries have been considered by the proposed formula
(3.126) for the main area of the random field, the factor  must be put in front of

the right hand side of the above equation.

3.5.2 Endpoints

The formula for the probability associated with endpoints in 2D case can be obtained
by slightly revising Farasyn’s (1997) endpoint formula. Note that part of the points
around the endpoints and making contributions to the maxima probability have
been involved in the formulas for main area and boundaries so that we only need to
consider the remainder.

At each endpoint ¢, we define o; as the angle between the two boundaries. It can
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be determined by,
E.-E,

——IEaI By (3.145)

Q; == arccos

in which E,, E, are the tangential vectors of the two boundaries at the corresponding
endpoint and are defined by equation (3.37).

As indicated in Figure 3.6, the shaded area has been considered by the main area
and the boundary formulas, while the ratio of the neighborhood points left around

the endpoint divided by the total is,

T— 0y
14
— (3.146)

—
considered by boundaries

E, /

considered by main area

Figure 3.6: Points around Endpoint Contributing to the Maxima Probability in a
2D case

By applying Farasyn’s (1997) endpoint formula involved in equation (3.119), we



get the equation for the probability associated with endpoints for the 2D case,

T B
P(B) =3 or ‘I’ (— e (ti)l) (3.147)

i=1

where n, is the number of the endpoints; t; is the fixed location of the endpoint ¢ in

the random field; ® (-) is the standard normal distribution function.

3.6 Summary (2D Random Fields)

By adding the probabilities contributed by the main area (3.126), the boundaries
(3.144) and the endpoints (3.147) together, the following global formula for the

extreme value distribution in a two-dimensional case is obtained,

PB) = [40(8)-cdtt [ 42(8)-cr-crdt

22w T\ 2 ()P

=1

= B
375 () (3149
in which,
¢z = (hfy, hiz) — (b b) (3.149)

and ¢, v (8) ,92 (B) are defined by equations (3.115), (3.127) and (3.128) respec-
tively. Note that c; is a function of the first derivatives of the manifold M, c; is a
function of the second derivatives of M and it is equal to —1 when the random field

is homogeneous. Since the maximum variance of the random field usually occurs
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within the domain of the random field, the first term of equation (3.148) is usually

dominant, unless the maximum variance occurs in the boundaries of the random

field.

3.7 Random Fields with Non-zero Mean

The tube method discussed in the previous sections is based on the assumption that
the random field Z(t) has zero mean. Actually, it can easily be applied to random

fields with non-zero mean.
Any random field Z*(t) with non-zero mean can be expressed as the summation

of its mean value function m(t) and a random field Z(t) with zero mean:
Z*(t) =m(t) + Z(t) (3.150)
Of interest is the extreme value distribution of the random field Z*(t), that is,

P(6") = P (mpx 2°(t) 2 8°) (3151)

where * is the threshold.

By using the equation (3.150), the above equation can be rewritten as,

P(g) = P(mpxz(t) 2 —mit))

P (m%x Z(t) > B (t)) (3.152)

Therefore, the original problem is transformed to that for the extreme value
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distribution of a random field with zero-mean and time dependent threshold 3 (t) =
B* — m(t)- Since the tube method is not limited to the constant threshold problem,
the above equation can easily be evaluated by applying the tube method.

It can be concluded that the assumption of the zero-mean random field in the
derivation of the tube method does not affect the generality of the method. But in
the application of the tube method to a non-zero mean random field, we should keep
in mind that a strongly fluctuating mean value function will affect the quality of the
tube method, similar to the effect of the fluctuation of the variance function, which

will be discussed in detail in the following chapter.



Chapter 4

Verification and Application

4.1 Introduction

In the preceding chapter, the new tube method for the extreme value distribution of
a two-dimensional differentiable Gaussian random field is explained. In the following
sections, the calculation procedure for the proposed formula is first outlined. Then
it is compared with other existing methods for verification purposes; the properties
of the tube method are discussed in detail. In section 4.4, the tube method is
applied to other practical problems. The global procedure including data analysis,
the application to the discretization of a random field and the practical application

of the tube method are illustrated for a data set of air pollution measurements.

4.2 Analysis Procedure

A summary of the analysis procedure is given in the flowchart of Figure 4.1.

According to Chapter 3, the discretization format (3.2) of a random field should
first be obtained. The expressions of the deterministic functions, hf(t) ( = 1,2, ...,n)
in equation (3.2) have to be known, where n is the dimension of the unit sphere and
t = (t1,t2,...,tx)€ T, k is the dimension of the random field (considered here, are
the cases k=1 or k = 2).

With reference to equations (3.115), (3.149) and (3.145), it can be seen that the

87
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parameters c;,c; and ¢; in the proposed formula (3.148) are all functions of the

derivatives of hi(t) (i = 1,2, ...,n), which are defined by equation (3.12):

hi(t) _ hi(t)
[h*(t)] o (t)’

hi(t) = (i=1,2,...,n), (4.1)

where o (t) is the standard deviation function of the discretized random field and
it is determined by equation (3.4). The remaining parameters, 9o (8) (3.127) and
¥a (B) (3.128), are time dependent functions of o (t) . Therefore, in order to obtain
the extreme value distribution, the standard deviation o (t) and the derivatives of
hi(t) (i = 1,2,...,n) should be evaluated at any time t in the domain T, and the
corresponding formulas should be expressed explicitly and put into the program
directly. As shown in Appendix C, these formulas are quite involved.

Due to the complication of those functions involved in the time integration, a
direct integration over the time domain is impossible and a numerical integration
method must be used. By comparison, we found that Simpson’s formula (Burden et
al., 1978) for a 1D case is a comparatively accurate and efficient numerical method.

That is,

n—1

[ o= at L@+ 30+ £ 3 S + 5 S| (42
a k=1 k=1

where t € [a,b], At is the time interval; n is the number of the nodal points and i
are the nodal points within the domain, ¢; = a + k%*. Simpson’s formula for a 2D

case can be obtained by the extension of the 1D formula to a 2D case. Assuming
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that the time domain is a square, we obtain,

[ fde = SRS fe) +2 5 £(85) + 4 (8
Y ) 16T ) +ET 6] (43)

in which t = (t1,t2), t1 € [a,b], t2 € [¢, d]; t. are the endpoints of the time domain,
t2 mean the time points on the boundaries and with odd numbers for ¢, or &3;
to® are the time points within the domain with even numbers for both ¢; and &»;
other parameters, tf, t2° and t2¢ are time points defined similarly. By choosing
the intervals small enough, Simpson’s formula can give quite satisfactory accuracy
(Burden et al, 1978).

For the calculation procedure, first, at any chosen time point t, derivatives of
hi(t) and the variance o2 (t) can be evaluated by substituting t in the correspond-
ing formulas given in Appendix C. Second, the matrixes involved in the formulas
(3.115), (3.149) and (3.145), E, H, P, which are defined by (3.37), (3.56) and (3.87)
respectively, can be calculated. Then the integrations in equation (3.148) can be
evaluated by using (4.2) and (4.3). Finally, the summation of the integrations is
the extreme value distribution. It should be noted that the probabilities associated
with the endpoints, the boundaries and the main part of a random field have to be
calculated separately.

The calculation procedure of the tube method is summarized in Figure 4.1.
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Figure 4.1 Analysis Procedure of the Tube Method
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4.3 Verification

The objective of this section is to verify the accuracy of the tube method. Section
4.3.1 introduces a harmonic series model, on the basis of which, different kinds of
random fields can easily be constructed. In section 4.3.2, by means of numerical
examples, the simulation method is used to verify the accuracy of the tube method
in different situations. Section 4.3.3 is devoted to the discussions about the overlap
associated with the tube method, which affects the quality of the tube method.
Comparisons between the tube method and other existing approaches, Vanmarcke’s
and Adler’s methods, for the maxima of random fields are conducted in sections 4.3.4

and 4.3.5, respectively.

4.3.1 Harmonic Series Model

In order to verify the accuracy of the tube method by numerical examples, we first
consider a harmonic series model consisting of cosine and sine terms. The format for

a two-dimensional Gaussian random field Z (t) is the following:

Z(t) = Z Xgi_lazi_l COS(wzi_ltl) Sin(QJ2i_1t2) + Xg,'ag,' COS(wgitl) sin(wz,-tg) (44)

i=1

where X; (i = 1,2,...,n) are independent Gaussian random variables; a;,w; (2=
1,2,...,n) are deterministic parameters . It is clear that the harmonic series model
has the required format (3.2) for the tube method. By choosing suitable parameters,
different kinds of random fields can be obtained. They are very useful to illustrate

the geometry properties of the tube method.
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4.3.2 Verification by Simulation

a. Simulation Method
Consuming huge amount of computations, the Monte Carlo simulation method is
still widely used as an ’exact’ method to verify the accuracy of other approximative
methods, especially in the area of reliability.

To simulate a Gaussian random field Z(t), (t = (¢1,£3,...,tx)€ T, generally k = 1

or k = 2), it is convenience to use the discretized version (3.2) of the random field:

Z(6) = Y- Xhi(t) (45)

=1

where X;, hi(t) (¢ = 1,2,...,,n) are independent normally distributed random vari-
ables and deterministic functions respectively. First, independent normally dis-
tributed random numbers can be generated by the transformation from independent
identically distributed random numbers, which are generated by a random number
generator. Then a number n, of samples z(t) of the random field can be obtained
by substituting the random numbers into the above equation. Assume that n.. of

the n samples satisfy the following equation,
maxz(t) > 8 (4.6)

in which 3 is the threshold, the exceedance probability P (3) of Z(t) can be estimated

~

by P:

P(B)~ P ="e= (4.7)

n;

As n, increases, the approximation P becomes better. According to Rubenstein
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(1981), for a given level of accuracy in terms of the coefficient of variation (COV') of

P, the corresponding n. can be determined by the following equation,

COVp ~ \/ [nzf’ (1- 13)] (4.8)

Our interest is in the upper tail probability, which is always very small. Obviously,
the required n, must be very large. This means that the computational effort is very
large. That is why the simulation method for random fields is a verification method,

not a practical one.

b. Homogeneous Random Field
By using the harmonic series model, we can construct the following two-dimensional

homogeneous random field,

4
Z(t) = 0.5 Z(X4,’_3 sinw,-tl sin wits + X4i_2 cos wity sin witsy
i=1

+X4i_1 sin w,-tl cos wits + X4i ces w,-tl Ccos w,-tg) (49)

in which ¢,, t; € [0, 1]; X; (i = 1,2, 3,4) are independent Gaussian random variables;
w; (i=1,2,3,4) = £, %, 7, 2n. Therefore, the dimensions of the unit sphere and the
random field are n = 16 and k = 2 respectively. It can easily be verified that the
variance is unity everywhere.

The results from both the tube method and the simulation method are shown
in Figure 4.2. Both the simulation interval and the integration interval of the tube
method are taken as At; =0.05 (i = 1,2).

In Figure 4.2, TM means the tube method; the line labeled 'TM Without Bound-
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Figure 4.2: Extreme Value Distribution of the Homogeneous Example

ary’ denotes the results which are obtained using the tube method, without consid-
ering the probability associated with the boundary; the second line in the legend
means the results obtained using the tube method but without considering the sec-
ond term in equation (3.148); the third and fourth lines mean the results obtained
using the tube method equation (3.148) and using simulation respectively.

It can seen that, for the large threshold f, the results obtained using the tube
method are in excellent agreement with those obtained with the simulation. Fur-
thermore, neglecting the probability associated with boundaries underestimates the
exceedance probability in this example. This is due to the large variance along the
boundaries and the comparatively small time domain. This shows that, in a general
case, the contribution of boundaries and endpoints cannot be ignored. The graph

also shows that the second term in equation (3.148), which is related to the curvature
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of the manifold M, plays an active role as well. The simulation results are based on
106 simulations, which take almost two days on a 80486 PC, in sharp contrast to the

few minutes spent on the tube method, to obtain the final results.

c. Non-homogeneous Case
Similarly, a two-dimensional non-homogeneous random field can be constructed as

follows,
4
Z(t) = Z(X2i—1 sin w;t, sin wits + X2i cos w;t; cos witg) (4.10)

i=1

where #;,t2 € [0,1]; the frequencies w; (i = 1,2,3,4) =

NS

, 5:™,2m. Then the dimen-
sion of the unit sphere is n = 8.

Five samples of the variance of Z (t) are plotted in Figure 4.3, in which ¢, is a
variable and ¢, are constants. Final results are plotted in Figure 4.4, in which, TM
means the tube method; the solid line denotes the results obtained using the simu-
lation; the dashed lines denote the results obtained using the tube method, whereas
the second line in the legend means the results do not consider the contribution of
the endpoints. It shows that the accuracy of the tube method is very good in this
example, even though there is small difference of 18 % at 3 = 3 between the results
obtained using the two methods. Furthermore, ignoring the probability associated
with endpoints causes large errors. The variances shown in Figure 4.3 explain the
reason for this. It can be seen that the maxima variance occurs at the endpoints.

Due to the fluctuation of the variance, both the simulation interval and the
integration interval of the tube method are chosen as small as 0.02. Because of this,
the 106 simulations, on which the simulation results are based, take around 10 days

on a 80586 100Hz PC, while just a few minutes are needed for the tube method on
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the same PC.
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Figure 4.3: Samples of Variances of the Non-homogeneous Example

4.3.3 Effect of Overlap

Even though the tube method is seen to perform very well in the preceding examples,
it can also be seen that the tube method slightly underestimates the extreme value
distribution in some cases, especially when the threshold is small or the fluctuation
of the variance is large. The direct cause for this can be attributed to the ’overlap’
associated with the tube method, which has been discussed for the one-dimensional
case by Farasyn (1997).

In order to explain the ’overlap’ of the tube method, we have to go back to

geometric principles. As discussed in section 3.2, for a random field defined by
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equation (3.2),
Z(t) = zn:X,-h{(t) (4.11)

i=1
where X; (i = 1,2,...,n) are independent normally distributed random variables
and hi(t) (¢ = 1,2,...,n) are deterministic functions, the exceedance probability is
related to the ratio of the volume of the neighborhoods N(M) of the manifold M
(defined by equation (3.13)) and the surface volume of an n-dimensional unit sphere.
The neighborhood N (M) is formed by the points on the surface of the unit sphere
within a distance r(t) from the manifold M. And r(t) is determined by

;
0 =20~ ey -

where £ is the threshold and |h*(t)|? is the variance at a given point t, r, is a sample
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of R, which is defined by equation (3.6).

There are two kinds of ’overlap’. The first one is caused by too large an area of
the manifold M on the surface of a unit sphere or too small a threshold. Obviously,
a unit sphere has a certain surface area so that the manifold M on the surface of the
unit sphere cannot be too large. Otherwise, the surface area may be double-counted
when calculating the volume of the neighborhood N(M). The higher dimensional
cases are too complicate to be imagined. It is intuitive and helpful to consider the
n = 2 or n = 3 case. Figure 4.5 depicts the overlap caused by the large area of
the manifold M (k = 2) in the n = 3 case. According to equation (4.12), the
distance r(t) is proportional to the threshold 8 when r, and |[h*(t)| are fixed. And
the maximum of r(t) is equal tov/2 as 8 — 0. As shown by the n = 2 case in Figure
4.6, even for a manifold M (k = 1) with an area that is not too large, an overlap
may occur for a large distance r(t) corresponding to a small threshold. However,
it is clear that with an increase of the threshold, such an overlap will vanish if the
manifold M itself has no overlap. Therefore, the case indicated in Figure 4.6 will
usually not be a problem, since our interest lies in the upper tail probability.

Another kind of overlap is related to the radius of curvature of the manifold M.
For simplification, we consider a one-dimensional random field (k = 1) defined by
equation (4.11). The corresponding manifold M on the surface of the unit sphere
is a curve, as shown in Figure 4.7. Figure 4.8 depicts an amplified local part of the
manifold which has a constant radius of curvature r. from point a to b. Recall that
the area of the tube around the manifold curve on a unit sphere surface includes only
the area perpendicular to the curve, which is calculated along the curve. In the case

that the distance r(¢) along the curve from point a to b is constant and equal to the
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radius of curvature 7., the tube area around the curve from a to b has no overlap as
shown in Figure 4.8.

As illustrated in Figure 4.9, overlap does not occur either when 7(t) is less than
the radius of curvature r.. But for the case r(t) > r., which is indicated in Figure
4.10, it can be seen that the c area may be counted several times when calculating
the tube area along different parts of the manifold curve. Clearly, . can be referred
to as a critical radius which imposes a limitation on the overlap that can occur
at a given time. Obviously, the threshold B and the radius of curvature of the
manifold influence this kind of overlap, which will become more serious when 8 and

the radius of curvature are small. Apart from the effect of 8, the radius of curvature
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Figure 4.8: Part of Manifoid M with Constant r(t) Equal to the Radius of Curvature

Te

is determined by the vector h*(t) and the variance |h* (t)[%. Before normalization,

h(t) = I_E% (4.13)
the manifold M* = {:z:‘, z* = (h}(t), h3(t), ...,h,‘,(t))T} can be regarded as a path
or an area with the length [|h*(t)|in an n-dimensional Euclidean space. By normal-
ization, M* is projected onto the surface of a unit sphere. And the corresponding
projection area is the manifold M. It is clear that if the fluctuation of the variance
|h*(t)| is large, the manifold M will be more curved than it is before normaliza-
tion. That is why the tube method applied to a homogeneous random field is more
accurate than when it is applied to a non-homogeneous one.

According to the above discussion, it is clear that the tube method has its own
limitation. Special attention should be paid to the magnitude of the time domain

and the fluctuation of the variance of a random field, in any practical application.



102

Figure 4.9: Part of the Manifold M with Constant r(t) Less than the Radius of
Curvature r,

Nevertheless, considering that a large random field can be divided into smaller ones
and the variance variation in most practical random fields is not too large, the tube

method is generally accurate and efficient.

4.3.4 Comparison with Vanmarcke’s Approach

Introduced in Chapter 2, Vanmarcke’s 2D extreme value equations (Vanmarcke,
1983) is compared with the tube method in the following. Theoretical analysis is

performed, followed by a numerical example.

a. Theoretical Analysis
In this section, we review Vanmarcke’s asymptotic method applicable only to 2D
homogeneous Gaussian random fields and compare it with the tube method.

For a homogeneous Gaussian random field Z(¢t;,t;) with zero mean and standard
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Figure 4.10: Overlap for Part of the Manifold M with Constant r(¢) Larger than the
Radius of Curvature r.

deviation o, the probability density function fz(z) of Z(t,,t2) is given by

f20) = = opl-23) (414)

An approximate series is given by Dwight (1961) for evaluating the cumulative

distribution function Fz(z) :

Fz (Z) =

\/;_ﬂ_z exp(—gi—z) -®(z/0) forlargez/c (4.15)

where

+ - (4.16)

1 3 1-3-5
S(u)=1— 5+ ——

since ® (3/c) approaches unity when the threshold f is relatively large, Fz (8) can
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be approximated by:
2

Fz(B)~1- WorT exp(—5 3 (4.17)

Then Vanmarcke’s basic formula (2.28) can be rewritten as,

1 (B2\"? B2 /2 -3

Py (B) ~ o2 (?) rexp | =5~ ] G0" |[Aul"" -0 (4.18)

where P,m; (8) denotes the extreme value distribution of the random field, 8 is

the threshold, ag is the area of the rectangular time domain and Ay, is defined by
equation (2.30).

According to equations (2.31) and (3.135), one component Az of A1y, the spectral

moment of Z(t1,%,), can be rewritten as,

A = / w2Sz, 2, (wy) dw,

— / Sz 2 (1) dwy
OR;,, (s,t) |
= T 9s0t =F

— EI'EI . 0-2 (4.19)

where Z; denotes Z(t,,t,) with only t; a variable; Rz, z, (-) is the autocorrelation
function defined by equation (2.5) and E; is a coordinate vector defined by equation
(3.37). Similarly, we can obtain,

/\11 = E]_'Ez . 0'2 (420)

Aoz = Eg-Es - 62 (4.21)
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Aso = hyy-hy; - 02 (4.22)
Aos = hyp-hy - 07 (4.23)
A2z = hyyhgp - 02 (4.24)

where hy; (i = 1,2) are defined by equation (3.55). It can be seen that these param-
eters involved in the tube method are related to the spectral moments of Z(ti,2).
Now |A11|1/ 2 can be rewritten as,

1/2

EE, E.E
PR 52 (det M)Y2 . o2 (4.25)
EyE: ErE

|A11|1/2 —

in which M is the metric tensor matrix defined by equation (3.28). Insertion of the

above equation into (4.18) yields,

1 (B B’ 1/2
Poms8)~ 575 (7)o (i) -0~ @M (429

On the other hand, by applying the tube method to the same random field

Z(t1,t2) with the domain T, we repeat the first term in equation (3.136),

Pr1 (B) =0 (B) - ¢ /T dt = (B) - ao - (det M)/2 (4.27)

since the area of the random field with rectangular domain ag = fpdt and ¢; =

(det M) /2 which is defined by equation (3.115). 1 (8) is given by equation (3.127),

1 k+1 3?
w(8) = izt (4 2 0) (429)
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where I (+) is the incomplete gamma function defined by equation (3.129) and it has

the following expansion formula (Abramowitz and Stegun, 1972):
’32
r (a, %3’)
gﬂ)““ ( 32> a—1 (a—1)(a—2)
) expl-i=) |1+ + R
(202 202 z (_;%)
f—oo [ 32 a—1 B2
~o (2 —_ 4.29
(20’2) P ( 202 (4.29)

Using the above equation, we have the approximation equation of 1 (B) for the

k = 2 case,

B—co 1 ﬁ2 1/2 '32

202

Insertion of it into equation (4.27) yields,

202

2\ 1/2 2
Py (B) ~ 5}13—/2 ( - ) - exp (—Eﬂa—?) -ag - (detM)I/2 (4.31)

which is the same equation as (4.26).
It can be concluded that Vanmarcke’s basic formula (2.28) is the same as the first
term of our proposed formula (3.148) when the threshold is large and the random

field is two-dimensional, homogeneous and Gaussian.

b. Comparison with a Numerical Example
For general purposes, we use Vanmarcke’s improved formula (2.32) for the numerical
comparison. Considering a 2D homogeneous Gaussian random field Z (£1,t2) with

zero mean and unit variance, the probability density function fg(r) and the cumu-
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lative probability distribution function Fg (r) of the envelope (Vanmarcke, 1983) of

Z(ty,tz), in Vanmarcke’s improved formula, are given as follows (Vanmarcke, 1983),

fr(r) = rexp (—g) , 120 (4.32)
Fr(r) = l1—exp (_f;) , r>0 (4.33)

The p.d.f. fz(2) and the c.df. Fz(2) of Z(t;,t2) are given in equations (4.14)
and (4.15) respectively. As introduced in Chapter 2, other parameters AGDand 0
(i, j = 1,2), defined by equations (2.36), (2.37) and (2.38) respectively, are all related
to the spectral moments. According to the foregoing discussion, they can easily be
evaluated using E; and h;; (3,7 =1,2).

We use the example expressed by equation (4.9) once more. Figure 4.11 shows
the results obtained using the tube method, Vanmarcke’s improved formula and the
simulation.

It is clear that the results obtained using Vanmarcke’s improved formula coincide
perfectly with those obtained using the first term of the proposed formula (3.148)
when g is large enough.

Therefore, we can conclude that Vanmarcke’s formulas are virtually the same as
the first term of the proposed formula for 2D homogeneous Gaussian random fields
when the threshold is large. This means that they do not consider the probability
associated with endpoints and boundaries of the random field and also neglect the
probability related to the curvature of the manifold M (3.13). As illustrated in the

preceding sections, these probabilities cannot be ignored in general situations. Fur-
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Figure 4.11: Example Results Obtained Using the Tube Method, Vanmarcke’s Im-
proved Formula and Simulation for a 2D Homogeneous Gaussian Random Field

thermore, Vanmarcke’s approach is only applicable to homogeneous random fields.

4.3.5 Comparison with Adler’s Formula

Let Z(t,, ;) be a two-dimensional (k = 2) homogeneous Gaussian random field with

zero mean and unit variance o2 = 1, according to Adler’s formula (2.39), it can be

seen that this formula is also an asymptotic one and can be rewritten as,
Pua(B) = P (max Z(tn,t2) > B) ~ @r) ™ X (B) (8)" 1Aul"Pa0 (434

where (3, ag are the threshold and the area of the rectangular domain T of the random

field respectively; ¥ (8) is defined by equation (2.40) and A, is defined by equation
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(2-30), |Au|1/ 2 is given by equation (4.25):
|An|Y? = (det M)/2 . 6® = (det M)*/2 (4.35)

since the variance is unity.
Substituting the above equation and the expression of ¥ (3) (2.40) into (4.34),

we obtain for k = 2,
_3 B> 1/2
Paa(B) ~ (2m) 72 Bexp(—) (det M) aq (4.36)

Obviously, it is the same as equation (4.31) for o = 1.
This means that Adler’s formula is also the same as the first term of our proposed
formula (3.148) for two-dimensional homogenous Gaussian random fields with zero

mean and unit variance when the threshold is relatively large.

4.4 Practical Application

4.4.1 Introduction

In this section, the tube method is applied to a practical problem involving air
pollution. The entire procedure, from the analysis of ’crude’ data, the discretization
of the random field, to the calculation of the extreme value distribution, is discussed
in detail. Difficulties that may occur are pointed out during the analysis. The
comparisons between the results obtained using the tube method and those using
traditional approaches are made at the end. They show that the tube method is

feasible, accurate, efficient and it can easily be applied to practical problems.
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4.4.2 Air Pollution Data

In the analysis and control of air qualities, the annual maximum concentration of an
air pollutant at a particular location is of major concern. Due to random fluctuations
in a variety of weather and emission variables, the maximum concentration at a fixed
time is a random variable. For the extreme value distribution of the concentration of
an air pollutant, Larsen’s procedure (1977) is widely used. In practice, air pollutant
concentrations are measured at different points in time. So, they form sequences of
data. Larsen’s procedure is based on extreme value theory for sequences outlined in
section 2.3.2 and the assumption that these sequences are stationary.

Horowitz (1980) pointed out that the stationarity requirement presented a poten-
tial difficulty for Larsen’s procedure, since air pollutant concentrations exhibit sys-
tematic seasonal, weekly, and diurnal periodicities so that non-stationarity should be
considered. In a practical example, he developed a non-stationary representation for
air pollutant concentration sequences and verified it by the x? test, a periodogram
analysis and simulation. Then by extending the extreme value traditional theory
to non-stationary sequences, he obtained the corresponding extreme value distribu-
tion and indicated that the results obtained using Larsen’s procedure were incorrect.
In the following, Horowitz’s approach is introduced using the air pollution data
(Horowitz, 1980). Subsequently, the tube method is applied to this data set and the
results are discussed and compared with those obtained by Horowitz’s method.

The data set considered consists of air quality data obtained during the St. Louis,
Missouri, Regional Air Pollution Study (RAPS). They are daily maximum one-hour

average ozone concentrations measured at RAPS Station 109 during 1976. The data
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are shown in Figure 4.12.

4.4.3 Horowitz’s Approach

In analyzing the maxima of the ozone concentrations, Horowitz (1980) considered
the mean value as a time dependent function. As shown in Figure 4.12, the air

pollutant concentrations clearly need a time dependent model.
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Figure 4.12: Daily Maximum 1-hour Average Ozone Concentrations at RAPS Station
109

Let Z' (t) be the observed maximum 1-hour average ozone concentration (in ppm.)

onday t (1 <t < 366), Horowitz expressed Z (t) by the following equation:
log Z'(t) = m(t) + X, (4.37)

in which m(t) is a deterministic function of £ that gives the mean value of the stochas-
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tic process on day ¢; X, is a stationary sequence of normally distributed, possibly
auto-correlated random variables with zero mean, constant variance o2 satisfying

equations (2.21) and (2.22), that is,

E(X:Xek)/o? =pr foraltand k> 1 (4.38)
Y pt<oo (4.39)
k=1

where pi is the coefficient of correlation.

By applying the extreme value theory for sequences outlined in section 2.3.2,
Horowitz derived the corresponding asymptotic approximation for the extreme value
distribution of Z' (t) for large n (the number of data, n = 366 for the set of air

pollution data),

P (max(Z,, Zy, ., Z,) > B) = 1 — exp { - exp[~(8 — bn)/an]} (4.40)
where,
an = obn/(2logn)Y? (4.41)
bn = exp(oc. + fy) (4.42)
fz=o(2logn)™"*log {n-l glexp (210 n)”?m(t)/a]} (443)

and ¢, is defined by equation (2.25).

When m(t) is a constant, the above equations (4.40) through (4.43) are almost
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the same as those in Larsen’s procedure and they describe the Type I extreme value
distribution (Leadbetter, et al., 1983).
For the data given in Figure 4.12, according to equation (4.37), Horowitz esti-

mated the following quadratic-mean-value equation,

log Z'(t) = —4.00 + 1.73 x 1072t — 4.7 x 1072 + X, (4.44)

in which X, are normally distributed random variables with zero mean, standard
deviation o = 0.32 and coefficients of correlation px = (0.38)%, T p2 = 0.17.

Therefore, the above equation satisfies the equation (4.38) and (4.39), the ex-
treme value distribution can be evaluated directly by equations (4.40) through (4.41).
The results are compared with simulation based on equation (4.44) and those from
Larsen’s procedure by Horowitz (1980). The comparison shows that the asymptotic
distribution function (4.40) approximates the simulated distribution well except in
lower tails whereas Larsen’s procedure overestimates the distribution greatly.

The improvement made by Horowitz is expected since air pollutant concentrations
are clearly time dependent. However, this improvement is not enough to reflect the
reality of air pollutant concentrations. First, the variance should also be regarded as
time dependent, as illustrated in the following section of data analysis. Second, equa-
tions (4.40) through (4.41) do not consider the correlation structure between random
variables. Horowitz verified that his approach was applicable to random sequences
independent or not by neglecting the correlation structure, once the equations (4.38)
and (4.39) are satisfied. However, the correlation structure of a stochastic process

does affect the extreme value distribution. This is due to limitations of traditional
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extreme value theory, but they do not arise in the case of the tube method as shown

in the following sections.

4.4.4 Data Analysis

For any practical problem involving random media, it is a basic and important step
to find the optimum representation of the actual random field. As illustrated by
Horowitz (1980), an unsuitable representation can cause serious errors.

Air pollutant concentrations Z (t) are usually assumed to be lognormally dis-
tributed. By simple transformation, the corresponding normal stochastic process
Z(t) can easily be obtained:

Z(t) = log [Z (¢)] (4.45)

Therefore, there is only a need to estimate the first two moments and the cor-
relation function, since they contain all the required probability properties of the

normal stochastic process Z(t).

a. Mean Value Function
The mean value function 77 (¢) (k : the order of the function) of Z(t) can be estimated
by the least square (LS) method, that is, by minimizing the square error between

the estimated function 7 (t) and the realizations of Z(t)

minimize i [mx(t) — Z(@)] (4.46)
t=1
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Assume that m(t) is a polynomial function,
k .
m(t) = ) ait’ (4.47)
i=0

in which a; are deterministic parameters; ¢ is time and k is the order of the polynomial
function. Differentiation of equation (4.46) with respect to a; yields the following

linear equations,

- . ¢ Y ¢ )

1 ?:1 t T ?:1 tk Qo ?:1 Z(t)

Tt VR LI 3 A a; n  Z(t)t

t=1 t=1 t=1 .4 & — { t=1 > (4.48)
KRR Al SRS AT ot 1 L% | L = Z(e)t )

By solving the above equations, the expression of the mean value function can be
obtained. Figure 4.13 depicts the log-transformed data Z(t) (1 <t < 366) and the
mean value functions with orders k = 2 and k = 10. The £ = 2 is the mean value
function used by Horowitz (1980). It can be seen that the 10-th order mean value
function fits the realizations Z(t) better, especially for larger Z(t) (160< t < 280)
and Z(t) around the two ends of the domain. Although Horowitz mentioned that
functions with orders greater than 2 were found not to improve the fit obtained using
equation (4.44), the comparison in section 4.4.6 will show that the effects of different
order mean value functions are considerable.

In the application of the LS method, it is found that the LS method is not
accurate at both the beginning and the end of a time domain. For the purpose of

accuracy, it can be assumed without loss of generality that Z(t+ one year) = Z(t),
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(0]
05+ k=2 (4.47)
1l k=10 (4.47)

Log-transformed data

Figure 4.13: Log-transformed Ozone Concentraions and Mean Value Curves

thus we can extend the time domain by copying the data at both ends of the time
domain, then the accuracy of the mean value function corresponding to the original

time domain is improved.

b. Variance Function

Figure 4.14 shows the zero mean data obtained by :

Z(t) — olt) (4.49)

where Z(t) are the log-transformed data plotted in Figure 4.13, Mjo(t) is the mean
value function of order 10.
To estimate the variance function ,(t) (v : the order of the function), it is

reasonable to assume that variances are constants within short periods of time, for
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instance 10 days. Then by using the moving average method (Chatfield, 1984),

we obtain the variance shown in Figure 4.15. It is clear that the variance is time

dependent as well.
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Figure 4.14: Log-transformed Zero Mean Ozone Concentrations

Now the LS method can be applied to obtain standard deviation functions. The

10-th order and 19-th order standard deviation functions are indicated in Figure

4.15. Generally speaking, the larger the number of the parameters used in the

standard deviation function, the better the fit will be, but the statistical error on

the larger number of estimated parameters will increase. Note that the uncertainties

associated with these parameters are not included in the final statistical prediction.

These uncertainties may be very large. The horizontal dashed line in Figure 4.15 is

o = 0.32, which is the standard deviation function used by Horowitz for the extreme

value distribution. It will be shown in section 4.4.6 that extreme value distributions
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Figure 4.15: Standard Deviation of Transformed Ozone Concentrations and Best fits
Curves

based on different standard deviation functions are different, particularly in the upper
tail.
Having functions of the mean value and the variance, we can normalize the orig-

inal process by
Z(¢) — mx(t)
Gy(t)

where Y'(¢) is the normalized process. The statistics of the normalized data cor- .

Y(t) = (1 <t < 366) (4.50)

responding to the 10-th order mean value function and the 10-th order variance

function are shown as follows,

0.0035 (4.51)

E(Y)

1.0667 (4.52)

ay
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m = —0.128 (4.53)

in which E(Y) and oy are the expected value and the standard deviation of Y'(¢)

respectively; v, is the coefficient of skewness determined by:

n -\3

where Y; (i = (1,2, ...,n), n = 366) are normalized sequences. These mean that the
normalized data Y'(t) are almost standard normally distributed.

c. Autocorrelation Function
In practice, sequences of air pollutant concentrations tend to be highly correlated,
rather than independent (Patel, 1973). Therefore, the autocorrelation function of
air pollutant concentrations should be estimated and considered in extreme value
applications.

According to Chatfield (1984), coefficients of correlation p; can be approximated

by,
Pk = — (455)

with
1 n—k
Cr = n—lz E(Y, . Y;'+k), k >0 and la.rge n (4.56)
R i=
where Y; are the normalized data.
The correlogram of the normalized data Y (t) (1 < ¢t < 366) corresponding to the
10-th order mean value function and the 19-th order standard deviation function is

plotted in Figure 4.16. It shows that concentrations within five days are strongly
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correlated. Due to physical reasons, the autocorrelation should approach zero as
k increases. But the correlogram becomes more and more irregular for large time
interval k, which is due to the decreasing number of the data used for the calculation
of the coefficients of correlation as k increases. The coefficients of correlation in
equation (4.55) are discrete and therefore cannot be used directly in the tube method.

The following function is chosen:

R(k) = (0.4436)F (4.57)

which is plotted in Figure 4.17 by a solid line. It can be seen that this equation

approximates the correlogram well.

Autocorrelation

| 0 20 40 60 80 100 120 140 160 180 200 |
% Time Interval (day) ‘
|

Figure 4.16: Correlogram of the Normalized and Transformed Ozone Concentrations
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Figure 4.17: Part of the Correlogram and the Fitting Correlation Function

d. Spectral Analysis

The Analysis in the preceding sections is limited to the time domain. A spectral
analysis is also necessary. By means of the Fast Fourier Transformation (IMSL,
1996), the spectra for the normalized data Y'(¢) is calculated and plotted in Figure

4.18. The corresponding first three dominant frequencies w; are,

wy = 0.1396; wy = 0.3840; w3 = 0.8552 wunits (4.58)

The corresponding spectral power density function S (w) can be determined by:

n—1

Sw)y=2-> px-e A Ar (4.59)
k=0
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Figure 4.18: Estimated Spectrum for Normalized and Transformed Ozone Concen-
trations

where coefficients of correlation p, are defined by equation (4.55), A7t is the time
interval, w denotes the frequency and 7 = /—1. Figure 4.19 depicts the spectral
power density function of Y (t). Both of the two figures 4.18 and 4.19 show that

basic frequencies of Y (t) concentrate in the domain lower than 2 units.

4.4.5 Discretization of the Random Field

As discussed in section 2.4, the tube method requires the format (3.2) of a random
field in terms of random variables. Of the all discretization methods, the Extension
Optimal Linear Discretization method (EOLD) (Li and Der Kiureghian, 1993) and
the Ground Motion Model method (GMM) (Der Kiureghian and Li, 1996) are the
most accurate and efficient. Both these methods are used to discretize the stochastic

process of air pollutant concentrations in this section.
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Figure 4.19: Spectral Density of Normalized and Transformed Ozone Concentrations

a. Extension Optimal Linear Discretization Method

Instead of discretizing the original stochastic process Z(t), we can simply discretize
the normalized process Y'(¢) (4.50). First step, the appropriate element size of Y (t)
should be determined on the basis of the required level of accuracy and endurable
CPU time. As illustrated in Figure 4.17, the correlation length a of Y () is about
5 days. According to the discussion in Li (1993) and Wei (1995), a satisfactory
accuracy usually is acquired when f: < 0.1, where [ is the size of each element.

Therefore, we select [ as either 0.5 day or 0.25 day.

Based on the introduction in section 2.4, Y (¢) can now be expressed as,

7(t) = 3 Vib() (4.60)

=1

where n is the nodal number and equal to @ + 1, V; are random variables of nodal
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values, and b;(t) are defined by equation (2.45), in which the components of the
covariance matrix C (2.47) and the vector d(t) (2.46) are defined by equation (4.57).
It is clear that the matrix C is known at specified nodal points. According to the
spectral decomposition method (see section 2.4.2), V; can be represented in terms of

the eigenvalues and eigenvectors of C,

V= i \/A—,-X,-Qi (4.61)

i=1

in which, 7 < n, A;,®; are the eigenvalues and eigenvectors of the covariance ma-
trix C respectively and they can easily be calculated. While X; are independently
standard normal variables. By inserting the above equation into (4.60), we have the

discretization format of Y (¢) in terms of X;,

Y(t) = Xr; %@?d(t) (4.62)

=1

where the vector d(t) is defined by equation (2.46).

To make a quantitative assessment of the accuracy of a discretization, the most
commonly used measure is to compare the error in variance. Such a comparison is
made in Figure 4.20, which shows that the choices of element size [ = 0.25 day and
! = 0.5 day both result in sufficient accuracy by noting that the original variance
of Y (¢) is unity. Furthermore, examples will show that the change from [ = 0.5 to
[ = 0.25 almost does not affect the extreme value distribution. This means that
! = 0.5 is enough for a high level of accuracy. Since increasing the number of

elements may greatly enhance the computational effort, especially in the spectral
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decomposition, a larger element size is preferred if the accuracy is satisfactory.
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Figure 4.20: The Change of the Standard Deviation of the Random Field After
Discretization

Finally, the required discretization format of the original stochastic process is

obtained by using equation (4.50),

Z(t) = mie(t) + 55 (t) Z \/_‘I’Td(t) (4.63)

i=1

Notice that, in the above equation, ik(t) and &, (t) are obtained before the
discretization, while \;, ®;and d(t) are all related to the autocorrelation function
(4.57) and they can easily be evaluated by applying (4.57).

According to the discussion, it is clear that the key thing in the discretization of
a random field is how to model the correlation structure of the random field.

To apply equation (4.63) to the tube method, we rewrite it as follows using



equation (4.57),

20) = M0+ Y o, () 8TdE)

1—1

= (t) +Z \/_ v(t)Z@,JR(t t;)

=1 Jj=1

— )+ 2 zhl (8)

=1

where &,;(i =1,2,...,r5 7 =1,2, ...,n) are components of ®;.

Then we get,

by (2) =""(t)zjq> R(t—t;)

z j=1

mwn=¢immf
- - 1/2
= {Z y [;@,JR(t } }
= Gy (t)
. h (t) 1
Insertion of (4.57) yields,
Oh? 0o, ot & Oy " OR(t —
ét(t) — \(/%/ ;q)zJR(t ts )+ ii) J;l(pt]_(—tat_t—
_ Z@,JR(t ;) [aA v () | 5. (£)1n0.4436

3)
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(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)
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Ohi(t) 1 & L
—_ \//\_i;%}z(t t;) In0.4436 (4.71)

The equations (4.66) through (4.71) can now easily be inserted into the required

tube procedure.

b. Ground Motion Model Method
Since this method was originally developed to model earthquake ground motions, it
is only applicable to stochastic processes with zero mean. Therefore, we apply it to

the discretization of the process:

Y(t) = Z(t) — m(2) (4.72)

For the ground motion model method, the discretization format is given by equa-
tion (2.73). To find the discretization format of a stochastic process, it is appropriate
to estimate filter properties and modulation functions required for this format, by
trying to keep as much information of the probability structure as possible.

Recall that, in the ground motion model method (see section 2.4.3), the output
of a filter subject to a white noise input is an acceleration process. Therefore, in the
literature, the problem of estimating the parameters of filters is linked to the so called
dynamic system identification problem since both the output and the input of the
filter are known. As a comparatively accurate and efficient method, the Extended
Kalman Filter method (Hoshiya et al., 1984) was originally used to estimate those
parameters. Although this method works well for constructed processes, it fails to
converge for the air pollutant concentration data. The reason may be due to the

strong fluctuation of the air pollutant data and the strict condition for convergence
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of the Extended Kalman Filter method.
Another commonly used method for parameter estimations is to minimize the

square error between the data Y'(¢) (1 <t < 366) and the approximations Y (),
minimize "3 {E[FOP()] -YOY ()} (<tt<366)  (473)
t ¢

Obviously, the more time points ¢, the more accurate the estimations will be. For
the ground motion model method, Y (t) is expressed by equation (2.74), therefore

(4.73) can be written as,

{E [g Yihi (¢) - i Yihi, (t)] - Y(t)Y(t')}2
= {[1 ;E(Yz Ye) b (t) b (¢ )] —Y(t)Y(t')}2

n 2
Zt: > { [IX; hi (£) b (t)] - Y(t)Y(t')} (4.74)

where 1< £, t' < 366 and n is the number of the specified nodal points.

By choosing appropriate time points, numerical approaches (such as the Newton
method) can be applied to search for the lowest point. But the efficiency is very low
due to the fluctuation of the ’crude’ data, the large number of unknown parameters
and the three summations in the above equation.

In order to improve the efficiency, we can choose the variance function as the
modulation function. Thus the number of unknown parameters is reduced. Accord-

ing to equation (2.73), the stochastic process of air pollutant concentrations can be
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rewritten as,

n k
Z(t) = (t) +5.,(6) D X: Y ay(t)

=1 Jj=1

= k(L) + 5y(t) znj X:hi(t)

i=1

= M(t) +5u(t)Y () (4.75)

in which & is the number of filters, X; is a independently standard normal variable,
a;(t) is the shape function corresponding to the i-th random variable and j-th filter,
n =366, hi(t) = L5, ai;(t), and Y(¢) = T2, X:hy(2).

Now ?(t) is a stochastic process with zero mean and unit variance.

Then the ’crude’ data are smoothed. According to equation (4.73), we can see
that the essence of this method is to estimate parameters by minimizing the error
of correlation structures, while the error is caused by the discretization. Therefore,
we can substitute Y (¢)Y (t') by a smoothed correlation function defined by equation

(4.57). Then we get the alternative format of equation (4.74),

2.2 { [.Sn_: hi (&) hi (t)] ~ R(t - t')}2 (¢, t =1,2,...,366) (4.76)

t =1

Now, the efficiency of searching for the absolute minimum is improved greatly.
The parameters corresponding to the minimum of (4.76) are given in table 4.1.

Substituting these parameters into equation (2.68), we get the deterministic ap-
proximation of a;;(t) (i = 1,2,...,,366; j = 1,2,...,k; k : number of filters). Hence,
the discretization format (2.74) is obtained and it is ready for the application of the

tube method for the extreme value distribution.
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Table 4.1: Estimated Parameters of Filter Properties in Ground Motion Model

z 1 2 3

w; (frequencies) 0.1384 | 0.4846 | 0.8458

§; (damping ratioes) | 0.9650 | 0.7320 | 0.9400

In comparison with the EOLD, it can be seen that the focus of both methods
is to find the optimal approximations of stochastic processes, which contain enough
correlation information. The EOLD uses the spectral decomposition method which
consumes a lot of computational effort when the element number is large, but it
uses the correlation function directly so that it is more accurate. The ground motion
model method uses the minimization approach to approximate correlation structures.
This approach is much simpler but the accuracy is lower since it is an approxima-
tion method. However, if the absolute minimum point in the ground motion model
method can be found, this method should have the same accuracy as the EOLD but

a higher efficiency.

4.4.6 Results of the Tube Method

With the discretized random fields (4.64) and (4.75), the tube method can be applied
to the extreme value distribution of air pollutant concentrations by following the
procedure outlined in section 4.2 and the flowchart Figure 4.1.

The final results of the extreme value distributions using different methods are
plotted in Figure 4.21:

Curve 1: Horowitz’s method (see section 4.4.3), 2-nd order mean value function
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Figure 4.21: Comparison of Extreme Value Distributions of Annual Maximum Ozone
Concentrations at RAPS Station 109

(Figure 4.13), constant o = 0.32;

Curve 2: the tube method, 2-nd order mean value function (Figure 4.13), constant
o = 0.32, using the correlation function (4.57) and EOLD;

Curve 3: the tube method, 10-th order mean value function (Figure 4.13), con-
stant o = 0.32, using the correlation function (4.57) and EOLD;

Curve 4: the tube method, 10-th order mean value function, 19-th order standard
deviation function (Figure 4.15), using the correlation function (4.57) and EOLD;

Curve 5: the tube method, 10-th order mean value function, 19-th order stan-
dard deviation function, using the correlation function (4.57) and the ground motion
model method, in which the frequencies are given by equation (4.58) and the damping

ratios are all assumed to be 0.6;
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Curve 6: the tube method, 10-th order mean value function, 19-th order stan-
dard deviation function, using the correlation function (4.57) and the ground motion
model method, in which the parameters are obtained by equation (4.76) and given
in table 4.1.

It is clear that the results from different methods and assumptions are quite
different.

Curve 1 and curve 2 are obtained using the same mean value and standard de-
viation functions. It can be seen that the difference between the two results is large
for lower probability levels. Due to limitations of traditional extreme value theory,
Horowitz’s method does not consider the correlation structure of the random field
and the fluctuation of the variance. The effects of the correlation structure of a
random field on the exceedance probabilities depend on different situations; on the
other hand, according to the analysis in the previous sections, it is obvious that the
variance of the air pollutant concentrations needs a time dependent model, similar
to the mean value function. It is difficult to say that which one of the two results
is more accurate since we have only one sample of the air pollutant concentrations.
However, there is no doubt that the tube method is more flexible and feasible.

The distinction between curve 2 and curve 3 is due only to the mean value func-
tions. Although Horowitz (1980) stated that any order of the mean value functions
greater than 2 had been found not to improve the fit obtained between mean value
functions, the large difference between curves 2 and 3 indicates that the accuracy
of a mean value function has a great influence on the exceedance probabilities. The
effect of the accuracy of the mean value function on large exceedance probability is

almost the same as that on small one, since the two lines are virtually parallel.
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The difference between curves 3 and 4 lies only in the variance functions used. It
shows that the effect of the accuracy of the variance functions on larger exceedance
probability is much smaller than that of the mean value functions. But it increases
quickly with the decreasing of the probability. This is coincident with the fact that
small exceedance probabilities are sensitive to the peak values of the variance of a
random field. Therefore, it is important to use the time dependent model of the
variance.

The comparisons among curves 4, 5 and 6 illustrate the accuracies of the two
discretization methods, the EOLD and the GMM. The results given by curve 4 is
more reliable than those by curve 6, because the former are obtained using directly
the correlation function of the stochastic process, in contrast to approximating the
correlation function in curve 6. Curve 5 denotes the results obtained by assuming
that the spectral of the output in ground motion model is the same as that of filters.
The coincidence between curves 4 and 5 indicates that the ground motion model
may also be accurate, provided that precise parameters in filter properties can be
obtained.

The most reliable results should be those shown by curve 4, the results obtained
using the tube method, since they are obtained using a more precise mean value,
variance and correlation structure. In addition, the tube method gives the extreme
value distribution directly by avoiding making Poisson assumption.

In summary, the tube method is much more flexible to be combined with com-
monly used data analysis methods, discretization methods and it has no limitations
to consider correlation structures and the fluctuation of the variance, therefore, the

results obtained using the tube method is more reasonable. Data analysis, the pro-
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cess to find the approximation of an original random field, is also important since it

is the basis of the analysis.



Chapter 5

Conclusions and Recommendations

5.1 Summary and Conclusions

An important element in probabilistic structural analysis, the extreme value distri-
bution of random fields is studied using the tube method in this thesis. In contrast
to traditional extreme value theory based on point-process theory (See Section 2.3),
the tube method can directly approximate the extreme value distribution of both
homogeneous and non-homogeneous random fields. Furthermore, it can be extended
to higher dimensional random fields without much additional effort. Since random
fields in practical problems are mostly 1- or 2-dimensional, and since Farasyn (1997)
concentrated on the 1-dimensional case, this thesis focuses mainly on the extreme
value distribution of 2-dimensional random fields.

Prior to the analysis, important concepts about random fields, traditional extreme
value theory and discretization methods of random fields have been introduced in
Chapter 2.

It is shown that traditional extreme value theory is based on Poisson assumptions
and the verification of the convergence of the exceedance point-process to a Poisson
process may consume much computational effort. On the other hand, the extensions
of traditional extreme value theory to higher dimensional random fields are always
limited to homogeneous cases.

Since the tube method requires the discretized format of a random field, two
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accurate and efficient discretization methods are introduced. The Extension Optimal
Linear Discretization (EOLD) method is more accurate but it involves an eigenvalue
problem, which may be too large a problem for a large number of random variables.
The Ground Motion Model (GMM) method, on the other hand, is more efficient and
its accuracy depends on the searching results of an absolute minimum point.

In Chapter 3, the tube method has been studied in detail. It is indicated that
the problem of the maxima of a random field is related to the volume of neighbor-
hoods of a sub-manifold embedded on the surface of a unit sphere. To evaluate the
approximation of the maxima, Weyl’s tube volume formula (1939) cannot be used di-
rectly since it involves the intrinsic scalar curvature. By following Weyl’s derivations
(1939) and introducing Breitung’s projection method (1997), an accurate formula for
the volume of neighborhoods of a 2D sub-manifold is successfully developed, which is
much easier to evaluate. Based on this formula, an approximation of the maxima of a
2D random field is derived. The superior efficiency of this approximation lies in that
it only involves integrations along a 2D manifold of the surface of a unit sphere and
the calculations of the first two derivatives of the manifold, furthermore, it gives the
asymptotic extreme value distribution directly without any assumption and verifica-
tion. Special formulas corresponding to the extreme value distributions associated
with endpoints and boundaries are developed as well, which enlarge the feasibility
of the tube method. Finally, a global formula for the extreme value distribution of
a 2D random field is given.

The objectives of Chapter 4 have been to verify the accuracy and efficiency of

the proposed tube method and its feasibility in practical problems.
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e The full analysis procedure of the tube method is outlined. It is shown that,

although involving complicated formulas, the tube method is easy to program.

e Simulation methods are used to verify the accuracy and efficiency of the pro-
posed formula. Both of the homogeneous and non-homogeneous examples give
satisfactory results. For the homogeneous case, the coincidence between the
results of the tube method and those of the simulation is perfect for large
thresholds. For the non-homogeneous example, the difference between them is
18% at the threshold of 3. On the other hand, the results of the tube method
were obtained after a few minutes on an ordinary PC, in comparison to the

several days by the results of the simulation.

e The main factor which affects the quality of the tube method, namely the
‘overlap’ of the manifold corresponding to the random field, is discussed. It is
explained that the overlap is related to the fluctuations of the variance or/and
the mean value function of the random field. The tube method is not suitable
for a random field with strong fluctuations of the variance or/and the mean
value function. But this is not a major problem since those fluctuations in

practical random fields are usually weak.

e The proposed formula is compared with the existing approaches for the extreme
value distribution of a 2D random field. Both the theoretical comparison and
the numerical example show that Vanmarcke’s and Adler’s formulas are al-
most the same as the first term of our proposed formula for large thresholds.
Therefore, the Vanmarcke’s and Adler’s formulas are only one part of the tube

method for the special situation of a 2D homogeneous Gaussian random field
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without boundary and without considering the effect of the second derivatives

of the manifold M (equation 3.13).

e The tube method is applied to a practical problem for the extreme value dis-
tribution of air pollutant concentrations. The whole procedure, from the ex-
pression of the original random field, the discretization of the random field to
the application of the tube method is discussed. The results obtained using
the tube method are compared with those obtained using Horowitz’s method
(1980) which is based on traditional up-crossing theory. It is indicated that
the tube method can easily be combined with data processing methods and
discretization methods of random fields and it is more flexible than traditional
methods since it can easily consider the correlation structures and the fluctu-
ations of the variance function of the random field. Although it is not suitable
to evaluate the accuracy of the tube method due to lack of samples, it is clear
that the results using the tube method are much more reasonable. It is also
shown that the expression and the discretization of the original random field
are important as well, since they affect tail probability greatly. Among the dis-
cretization methods, the EOLD method is the first choice for a comparatively

small random field.

In summary, we can make the following conclusions about the tube method in

comparison to the existing approaches:

e The proposed tube formula for 2D fields can give the approximation of the
extreme value distribution directly and accurately with little computational

effort.
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e It is suitable for any type of 1D and 2D Gaussian random fields, homogeneous

or not.

e It can easily be applied to practical problems and it is flexible enough to con-
sider the probability properties of random fields and to be combined with other

methods such as discretization methods.

e It is not suitable for random fields with large domains or/and strong fluctuating
variances or mean values. But these are not major problems since large random
fields can be divided into small ones and the fluctuations of the variances or

the mean values in practical random fields are usually weak.

5.2 Recommendations

Since the tube method is a new computational approach for extremes of random
fields, additional work on the following topics would considerably enhance the per-

formance of the method in practical situations.

e Factors affecting the quality of the tube method. Factors affecting
the quality of the tube method, other than the ’overlap’ studied in this work
(section 4.3.3), should be investigated. For instance, higher order derivatives

of random fields, shape of the domain.

e Various statistics related to the extremes of random fields. As men-
tioned at the beginning of Chapter 1, first-passage and cumulative damage are
the two main failure mechanisms considered in probabilistic structural analysis.

Statistics such as the cumulative excursion time and the duration of a single



140

excursion of a random field can be of interest in the assessment of the safety
of a structure. Therefore, it is necessary to derive the corresponding formulas

for these statistics.

Extension to non-Gaussian random fields. Our present work is limited
to a Gaussian random field. Since there also exist non-Gaussian random fields
in practical situations, it seems desirable to extend the tube method to non-
Gaussian random fields. In section 4.4, we already applied the tube method to
the log-normally distributed random field of air pollutant data. Other types of
random field should be investigated.

Extension to higher dimensional (¥ > 3) random fields. According to
section 3.3.5, the focus of the extension of the tube method to k-dimensional
(k = 3) cases lies in the evaluation of the integral (3.79) involved in the tube
volume formula. Once the explicit expression of this integral for a higher
dimension random field can be found, the calculation of the corresponding

extreme value distribution is straightforward.

Extreme value distribution of non-differentiable random fields. The
present work in this thesis is dealing only with differentiable random fields.
Non-differentiable random fields are also needed to model real-world phenom-
ena such as Brownian motion (Adler, 1981). Unfortunately, this is not a simple
problem, since even the discretized format (3.2) of a non-differentiable random

field is difficult to obtain (Li and Der Kiureghian, 1993).
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e Extreme value distribution of 2D-responses to nonlinear structural
or mechanical models. The extreme value distributions of responses to
linear systems can easily be evaluated, since the responses can be expressed
directly and explicitly in terms of system parameters and corresponding input.
One example is the earthquake ground motion in the discretization method of
Ground Motion Model method (section 2.4.3). Responses to nonlinear system
cannot be expressed directly. Approximations of responses can be obtained as

illustrated by Farasyn (1997) for the 1D case.
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Appendix A
Simplification of 1 (8) , 12 (8)

Yo (B) , Y2 (B) are defined in equations (3.124) and (3.125) respectively, i.e.,

/ = Ym Jo(6 xn 'n drp Al
wo (B) /:m 0(8) fxn () (A1)
w®) = 5[, Ok () (A-2)

Introducing the expressions of Jy(6), J2(6) and f,, (T») (given in equations (3.26),

(3.27), and (3.9) respectively), we have,

arccos e sm ~10cos* ¢ 1 r2
-Th —2)dr, A3
e [ [T e B a3

By changing the order of integrations and inserting the expression of w,, equation
(3.24), we get,

2
(——)drn -sin™"! § cos* 9df (A.4)

Yo (8) = = e )/ /ml%‘wf

Using Leibnitz rule (Abramowitz and Stegun, 1972),

d (c) (@] 9 ab ad
- (/:) f(z,c)d:z) "'/a; [a—cf(z,c)] L+ i)y~ (A5)
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We obtain that,

5 1
_% - 2%—171-513'—‘[*(%) ./02 sin™" § cos" 0 p— gﬁ,nlh.(t)ln
-exp [(1 + tan®6) (s Ih‘(t)lz)J (A.6)
Making the substitution,
2
¥ e (A.7)
gives,
"
—w‘?ﬂ(ﬂ) T en¥ Ih'ﬂ(t)v"rl r(Z) P |h‘(t 2)/ - exp(—u)du (A8)
Note that,
/Om uF - exp(—u)du = I(3) (A.9)
This results in,
"
—d¢d0ﬂ( - (2m) % fll"(t)l'°Jr1 exp(_z Ih‘(t)l2 (A-10)

Similarly, we can obtain:

_d42(B) _ ﬂ"‘2

dB (gﬂ-) |ht (t)| pTRw) (A.11)

=T
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By integrations, we get,

%o (B) = / Ao (z)dx+ el (A.12)
%2 (6) = /ﬁd'ﬁfT(")dHcez (A-13)

in which cel and ce2 are constants. It is clear that we have to find the integration

areas first then evaluate cel and ce?2.

According to the definition of cumulative distribution function (2.1) , we have,

1 - P(maxZ(t) > ) =1~ P (8) = F(6) (A.14)

where F((3) is the cumulative distribution function.

Integrating both sides of the above equation with respect to 3 yields,

dP(B8) _dF(B) _
=8 ~ ag —PW) (A.15)
in which p(f) is the density function. Since,
F6) = [ ple)iz =1 P(g) (a.16)

This gives,

P(B)=1- /_ 'l p(z)dz = 1+ _'; [%(“’)J dz (A.17)
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Recall the relationship between P(8) and ¥ (83) , %2 (8) , equation (3.126),

P(B) = [ axvn(B) +azpa (B) dt

(A.18)

where a;, a, are the coefficients dependent on t. Integration with respect to 3 gives,

dP(B) _ dipo (B) dip2 (B)
TB—_/“‘ B tegg &

Insertion of the above equation into equation (A.17) results in,

P(ﬂ)=1+/i° [‘[rald—z’b‘;g-i-agd—’ﬁ;gdt dz

Assume,

/ a3dt =1
T

We have,

P(ﬁ)=/i [03+Aa1£2ﬂ+agi%ﬂdt dz

Then suppose,

a; +cel +ag-ce2 = a3

This gives,

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

P(B) = /r [al (/io de + cel) + ag (/ﬁ Mdz + ce2)] dt (A.24)

dz - dz
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Comparing the above equation with (A.18), we obtain,

%o (B) = / i d¢d° @) 4 + ce1 (A.25)
w2 () = / [; W2 (2) 1 o ced (A.26)

Recall that P (8) — 0 with 8 — oo, then according to equation (A.18), it can be
concluded that,

Yo (8) , %2 (B) — 0, withf — oo (A.27)

since 1 (8) is always lower than g (8) for the same 8. Then the constants in (A.25)

and (A.26) can easily be determined,

cel = —/:: iz/io—dafl:—)dar: (A.28)
ce2 = — /_: d'ﬁ;f) dz (A.29)

(A.25) and (A.26) can be rewritten as,
_ dijo ()
%o (B) = /ﬂm ———~2dz + cel (A.30)

Y (B) = —//: dipz (2 )dz + ce2 (A.31)

Combining the above equations with equations (A.10) and (A.11), we finally
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obtain,

_ 1 kE+1 3 A2
W@ = g (4 ) (a32)

1 k-1 B? A.33
w0 = ot (5 geer) A5




Appendix B

Verification of ¢; = (hfj, hi;,) — (h{5, hf;) = —1 for the

2D Homogeneous Case

The elements of the metric tensor matrix (3.28) are defined by:

mi; (t) = Ei(t) - E;(t)
oh(t) Oh(t)
o ot (B.1)

As discussed in section 3.4.4, m;; (t) are not functions of t for the homogeneous
case. This means,
dm;; (t)
. S A B.2
Gt 0 (B.2)

It results,

Omy(t) _ Oh(t) Oh(t)  Oh(t) Bh(t)

Bte  Otot, o 8t;  Ot;0t
= hyE;j+h;E;
=0 (B.3)
Then we have,
(B-4)

by-E; = —hje-E;
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Similarly, from
amkj (t) =0
ot;
we can obtain,
hic-E; = —hy;-Ey

For i = j, equation (B.4) results in,

bi-E; =0

According to equation (B.6) and equation (B.7), we have,

hi-E=0
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(B.5)

(B.6)

(B.7)

(B.8)

Let ¢ = 1, k = 2, the differentiation of equation (B.6) with respect to £, results

in,
Ohy,
hio = — .E
hio-h;2 oty
Similarly, equation (B.7) results in,
_ Ohy
hj;-hy = B, E,
Since,
Oh;2  Ohy
Oty Ot
This gives,

hjs-hi2 = hy;-ho

(B.9)

(B.10)

(B.11)

(B.12)



According to the definition of hf; (3.109), we have,
(b, b)) = Y- PT-P-hy

here T presents inversion.

While,
PT.P = (I-EM'ET—yy")T(I - EM'ET—yy7)
= I[-2EM™'ET—2yyT—EM'ETyyT

—yyTEM'ET + EM'ETEM'ET

+yyTyyT
Since,

ETy = yTE =0
ETE=M
yly =1

This gives,

PTP=I-EM'ET—yyT =P

So equation (B.13) can be rewritten in the form,

(bfi,hh) = Bl (I- EMT'ET—yyT) by

= fl{lﬁn - fl{rEM_lET-flgg - Eﬂy}’Tﬁzz
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(B.13)

(B.14)

(B.15)

(B.16)
(B.17)

(B.18)

(B.19)

(B.20)
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Recall that,
- M-LH =._|1\1l1_| M2 —Maz | h;; h;, (B.21)
—-my  mp hy; ha
Then we have,
hy; = ﬁ (maohy; — my2ha) (B.22)
hyp = ﬁ (maoh12 — mizhao) (B.23)
oy = ﬁ (mashay — marhyy) (B.24)
522 = ]ﬁ (mithg, — ma1hy2) (B.25)

This gives,

hl-EMET-hy,

1 E,
P (mazh], — mishl) (1, Eo) M . (m11has — mayhys)(B.26)
2
Introducing equation (B.7) and (B.8), we have,
hT,-EM~ET-hy, =0 (B.27)

Similarly, we can get,

~ ~ 1
hi,-yy -hy = W(mnhﬁy — mphgy) - (7'"-113'T1'122 —my” hm) (B.28)
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Since,

yIE; =0 (B.29)

Differentiation with respect to ¢; results in,

~y” -hy; = my (B-30)

Therefore we can rewrite (B.28) as,

(ma1mgs — mipma)? =1 (B.31)

ii?1'}’)”""?122 = [IV1I|2
Making substitution (B.27) and (B.31) into (B.20), we have,
(b}, hi) =hf by — 1 (B.32)
Following almost the same steps, we can obtain,
<h12, h'2*‘1> = b -hy (B.33)
Finally it can be concluded that,

(nf, b)) — (b, b)) =— (B.34)

for the 2D homogeneous case.



Appendix C
Formulas for ——(—l and —2—5% in k-D Case

Since h*(t) = (h{(t), h}(t), ..., hx(t))T are known functions, they should be inputted

in program, as well as their derivatives, M and o azh (t) (z=1,2,...,n; l,j

1,2,...,k).
In order to evaluate o, E, H, M, P, ¢, ¢, %o(B8), ¥2(8) at any specified time,

h(t) and gg(:;) should be expressed explicitly.

ay
According to:
h*(t)
h(t) = ——% C.1
(t) B (0)] (C.1)
the derivatives of |h*(t)| should be expressed first. We have,
dlh*(t)| _ “ 3h$ (t)
ot |h‘(t N Zh ot (©2)
02 |h*(t)] ( 6h‘(t)> ( ah‘-‘(t))
R ol S’ I, ht t 1
ared; |h*(t>| &) 2H0) 5,
Oht(t) 6h‘(t) azh'-‘(t))
hI(t : C.3
T (% RO Gg) 3
Differentiation of equation (C.1) with respect to ¢ or, ¢; and t;, results in,
Ohi(t) _ 1 Ohy(t) __hi(t) O[b(t) a4

ot |he(t)] A |hr(t)? ot

159



8%h;(t)

160

1 O%Ri(t) 1 Bhi(t)d|h*(t)]

ot,0t;

= be@®)] Bot; )P 0t o4

__ 1 oh®)olhi(t)] _ _hi(t) &% [hi(t)]
Ib=(t)]*  O; ot [h=(t)[*  oudt;
hi(t)  3[b*(t)| 8 |he(t)]
@) o B

(C.5)
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