UNIVERSITY OF CALGARY

Distributed Database and Knowledge Base Modeling

for Concurrent Design

by

Fengdong Zhang

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA
DECEMBER, 2000

©Fengdong Zhang 2000

Bell muiee Shitigersee

uisitions and Acquisitions et -
Bibliographic Services services bibliographiques
Ottawa ON, K1A ONA Otiwa ON K1A 0N
Canada Canada
Your fle Votre réidrence
Our fle Notre réideance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or ¢lectronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-65016-2

Canadi

ABSTRACT

This research focuses on the development of a distributed database and knowledge
base modeling approach and .an Internet-based concurrent design system. Geographically
distributed databases and knowledge bases, representing product development life-cycle
activities, are integrated through the Internet. The consistency of the distributed databases
is maintained using the distributed data dependency relation maintenance mechanism
developed in this research. A distributed knowledge-based inference mechanism is
introduced to create product life-cycle databases automatically. Based upon the
distributed database and knowledge base modeling approach, a concurrent design system
has been developed for modeling concurrent design alternatives. The optimal alternative
is identified using either the exhaustive method or the Genetic Programming method. The
optimal values of the design parameters are identified using the Particle Swarm
Optimization method. The system has been implemented using VisualWorks. Example
applications have been developed to illustrate the effectiveness of the concurrent design

system.

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my profound gratitude to my
supervisor Dr. D. Xue for his guidance, encouragement and continuous support during
my course of study and research in the Department of Mechanical and Manufacturing
Engineering. Thanks also go to my examining committee members, Dr. D. H. Norrie and
Dr. M. Ulieru, for their critical review of this thesis.

I would also like to thank the Faculty of Graduate Studies and the Department of
Mechanical and Manufacturing Engineering for their generous financial support during
my study at University of Calgary.

Thanks are extended to the supporting staff of the Department of Mechanical and
Manufacturing Engineering, especially Nareeza Khan, Nick Vogt, Lynn Banach, Khee
Teck Wong, and Dan Forre, for their help and support during the course of my graduate

studies.

I am also grateful to my friends for what they have done in different ways to help

and encourage me to complete my M.Sc. program.

Last but not least, my wife Dongmei Wang and my son Kan Zhang deserve my deep
appreciation for giving me unconditional support at all times.

iv

TABLE OF CONTENTS

APPROVAL PAGEocociviinincnniseiesinecsssossessssssessssassssressssssssessssssassssnssssranssssmnasassesssesnases ii
ABSTRAGCTooooeeeeeccrerecstncssstssssssssssssssssssssesssesssssssssssssasssessesassasessnsssssessrssasssssssssssssnsssns iii
ACKNOWLEDGEMENTS ... iiiirieeiescnneacaesseccssstssstsiesessessssssssassssasssssssasasssssassassas iv
TABLE OF CONTENTS ... ceicoetcrtmreinicsacesessassesssstesssosssssissascsssssassssasssssansesssnessnnssasensess v
CHAPTER 1: INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Statements 4
1.3 Research Objectives. 6
1.4 Overview of This Research 7
1.5 Organization of This Thesis 8
CHAPTER 2: RESEARCH BACKGROUND 11
2.1 Literature Review 11
2.1.1 Product MOdEliNg........ccocierereiiisorccssioiescssssnmscsssressesssrassssssssensssssnasnsssssasssssasans 1l
2.1.2 Product Development Techniquesccoeiernieinneiniveniinnnniiiannnneesccnesanncnane 14
2.1.3 Computer-Based Systems for Product Development.............c.ccovcveicnnnnnnnnen. 15
2.1.4 Integration of Distributed Product Databases and Knowledge Bases.............. 17
2.1.5 Applications of Multi-Agent Systems in Product Development...................... 18
2.1.6 Internet-Based Product Developmentcoviiiimicnnineessnisssnneesssecsssanancans 20

2.2 Related Techniques 22
2.2.1 Feature-Based Modelingcccceeemeeiecrcrveniscrenscnsessisrossesssseresensensassassssnassenes 23
2.2.2 Concurrent ENGINEETINGccecevveriiirnirsinenrimissenieiisseisseissenssssssnssssssassessesssane 24
2.2.3 Object-Oriented Programming and Smalltalk...............coievevniccccccnecnnicnnne 26
2.2.4 Distributed Systems and the Internetcuvveiicniiveninesnssneesscscsscssssnenie 27

2.2.5 Global OptimizZation............c.cecrueerveesseessecsranns creessesunseesssssnsernasssasressrases 29
2.3 A Feature-Based Database and Knowledge Base Representation Scheme...... 30

2.3.1 Database Representationcocceeerieiercernssensnecsensessecssnsssessnsmesssnsssessesssansas 30
2.3.1.1 Class Features and Instance Features................. eeeesesssseesssnressssnasssrssassses 30
2.3.1.2 Maintenance of Data Dependency Relations....................cuueeeeeueennn. ceeere 32

2.3.2 Knowledge Base Representation............occieeinenieessssnennnessnsiasssnseesessessesnesens 33
2.3.2.]1 RUlIE-BASES........ocevererreereensrasseceersnsssiesissssesssasssasssmsssrssnssssesssnssasssmssessesanse 33
2.3.2.2 Reasoning With Rule-BasSesc....eouuvervvvveeeeerervnsseverernneesnessessenns 34

CHAPTER 3: DISTRIBUTED PRODUCT DATABASE AND KNOWLEDGE

BASE MODELING 36
3.1 Introduction 36
3.2 Distributed Product Database and Knowledge Base Modeling Architecture..37

3.2.1 Product Development Life-Cycle Activity Modeling.........ccccoeeeeeeerrcucnerccnecs 37
3.2.2 The Client-Server Communication Architectureccceecireeieerrcenrsensvenenes 38
3.2.3 Architecture of the Distributed Database and Knowledge Base
Modeling SYSIEM........ceerrierrirruncsrerrsssnersreneesseressisnissnesnsessnssresssnsssssnsssssassstsssssssssssssas 40
3.2.4 Node Definitions and Node Connections..............ceeuicruiiiisniciienssessnniseniesenns 43
3.2.4.1 Definition of Internet NOAEsueeeeirsereecerencneeecerensarnrecreenssenens 43
3.2.4.2 Connection of INternet NOAES...............eeeeevseeveeneeneiosisseserercsssssressreesssanes 45
3.3 Distributed Feature-Based Database Modeling 46
3.3.1 Virtual FEALUIESccveeceerreeecrrerrerareesesscssacsemertessssnsresesasasassssssesssesssssnsassansssass 46
3.3.1.1 Virtual Class FEQIUIEScvvrvesrrersresseissranosseesessnisssesanssssansesssessassssanee 46
3.3.1.2 Virtual InStance FeQIUTEs...........ueuoeeveenecsreionaisesecserencssencravennesssessaessasens 47
3.3.1.3 Generation of Instance Features from Virtual Class Features................. 49
3.3.2 Modeling Database Relations...........ccoovenmmncnisniinsnsesensnnenninnsnisnsssssssssasscsacs 51
3.3.2.1 Modeling Database Relations at Class Feature Levei.............................. 52
3.3.2.2 Modeling Database Relations at Instance Feature Level......................... 53

3.3.3 Maintenance of Dependency Relations among Distributed Data 53
3.3.3.1 An Algorithm for Maintaining Distributed Data Dependency Relations.. 55

3.3.3.2 An Example of Attribute Propagation Process......................ccuueeeueeune.... 57

3.4 Distributed Knowledge Base Modeling 58
3.4.1 Virtual Rule-Basescceceeeeereveerenernnees . ISP |
3.4.2 Selection of Virtual Rule-Basesc.cooevivincimrrncnsinncsssiossissnserssasessossssees 61
3.4.3 Reasoning with Distributed Rule-Bases.........ccoovenmiveeneincnninceeeccenee. 63
3.5 Summary 65

CHAPTER 4: CONCURRENT DESIGN BASED UPON DISTRIBUTED

DATABASE AND KNOWLEDGE BASE MODELING 67
4.1 Introduction 67
4.2 Modeling of Product Realization Process Alternatives 69

4.2.1 The Relations among Internet NOdes..........ccooveinmiciriiirieemiieiecccenreeeeeneereeen 69
4.2.1.1 Logical Relations among Internet Nodes.....................c..coueeurereeenesesaneannns 70
4.2.1.2 Creation of Internet Node Relationsuuueeeeeeeeereesacrncsennennnn. 71

4.2.2 Representation of Product Realization Process Alternatives................c.......... 72
4.2.2.1 Product Realization Process Alternatives....................uuuuueeeereeneennecneenennnns 72
4.2.2.2 Display of Product Realization Process Alternativescc......... 73

4.3 Identification of the Optimal Product Realization Process Alternative...........75

4.3.1 The Exhaustive Methodcccceueeeniiiiieriinisnrrnnrencteeirrineeeseneteseesensssnssensassnnan 76
4.3.1.1 The Algorithm for Generating All Alternatives....................c...eeeeueeercenne... 76
4.3.1.2 An Example of Generating All Alternatives................uuueveeerienecerscecannonns 76

4.3.2 The Genetic Programming (GP) Method............covemviienreereierneireenicccrnensnneees 78
4.3.2.1 Introduction to Genetic Programming Method.......................ccouuueeeneeeee.. 78
4.3.2.2 Genetic Programming for Alternative Optimization.................ccccoeeeeeeeneen 82

4.4 Identification of Optimal Design Parameter Values 9
4.4.1 Introduction to Particle Swarm Optimization (PSO)cccovuveremremueeemennnnennenns 90

vii

4.4.2 PSO in Design Parameter OptimiZation..........ccccovereescsnscrsensnsecssensnencinccsieses 92

4.4.2.1 Formulation of Parameter Optimization Problems................................... 93
4.4.2.2 Issues of Parameter Optimization with PSO....................c...uueeeceeennee. 94
4.4.2.3 The Parameter Optimization INterfaceeeeeerreceneeeecsevencasansecas 95

4.5 Summary cereecs 96
CHAPTER 5: SYSTEM IMPLEMENTATION AND APPLICATION EXAMPLES
98

5.1 System Implementation 98
5.1.1 System INErfACES ..cccoerueeruireviiniersrinssicrinnretresssersiesssensssnnesessssasossasasscssassanasssnss 98
5.1.2 New Classes Developed for System Implementationccceeceeenncnccsraianees 101
5.1.3 Message Handlingcc.cooenuiiiiiuenicennemeenniinieineessessnsancssssnisnssssnssssessesnssecens 103
5.2 Application Examples 104
5.2.1 The Concurrent Design Problem...........coiiiiiinninncnneasissicenenens 105
5.2.2 Generation of Instance Features............cccoeeemirrietenniniinisccsecinneenssssiscsosnse 107
5.2.3 Rule-Based Reasoning with Virtual Rule-Bases............ocoomeiimnnneannicincccnanees 107
5.2.4 Propagation of Changed Attribute Valuesccoccoviniisniniiinsinnienienniiennnn 110
5.2.5 The Optimization of Design Parameter Values Using PSO........................... 111

5.2.6 The Optimization of Product Realization Process Alternatives Using GP 114

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 120
6.1 Conclusions, 120
6.1.1 Distributed Database and Knowledge Base Modeling..........cccccceriiiiniaanncnee. 120
6.1.2 Internet-Based Concurrent DESigncoveurrerrrerarerinenreesneccrisssssssentssnnnessnnens 122

6.2 Future Work 124
REFERENCES.........oeeercrtinsscsissenisissssssiesssesssssssnssssssessssssasssessassasssssssssesatsssassssosnes 127

viit

CHAPTER 1

INTRODUCTION

In this chapter, a brief background introduction for this thesis is provided. The
problems remaining in distributed database and knowledge base modeling for product
development are summarized. Based on these problems, the objectives of this research

are outlined. The organization structure of the thesis is given at the end of this chapter.

1.1 Introduction

Development of a product is carried out through a sequence of processes including
marketing, design, process planning, manufacturing, etc. With the advances of computer
technologies and information technologies in the new century, global competition is
becoming the main characteristic of the marketplace. In responding to the increasingly
dynamic market requirements on product development time, cost, and environmental
concerns, etc., many methodologies and computer-aided systems have been developed

and used to improve the overall performance of products.

Among product development activities, design is the major process that affects the
performance of other down-stream life-cycle phases. An effective design should be
identified based on customer requirements, with consideration of the down-stream
performance of the design. Methodologies for improving product life-cycle performance
include Design for Manufacturing (DFM) [Helander and Nagamachi 1992}, Design for
Assembly (DFA) [Magrab 1997], and Design for Environment (DFE) [Magrab 1997].
Design for Manufacturing (DFM) is an approach that incorporates manufacturing process
information into the design process. The basic objective of this approach is to reduce
manufacturing costs and lead-time by considering manufacturability aspects of the
product at the design stage. In Design for Manufacturing, information flows between the
process models of design and manufacturing. Similarly, Design for Assembly (DFA) and
Design for Environment (DFE) emphasize the assembly performance and environmental
impact of the product design respectively [Magrab 1997].

2

To evaluate down-stream product life-cycle performance and use evaluation
measures to improve design, the concept of concurrent engineering was proposed
[Parsaei and Sullivan 1993]. Many studies in concurrent engineering focus on
incorporating all relevant down-stream life-cycle aspects into the design stage. In these
studies, the activities in down-stream product development phases, such as production
process planning, manufacturing, service, and recycling, are handled concurrently with
the design process. However, the process of concurrent design is very complex, since it
involves dynamic information flows among all related product development processes.
Therefore, the concurrent design methods and tools that can be used effectively to
improve product development life-cycle performance must be investigated.

To improve product development efficiency and apply the methodologies mentioned
above, many computer-based systems have been developed [Singh 1995]. Computer-
Aided Design (CAD) systems help designers produce modifiable product designs easily
and perform design-related analysis efficiently. The efficiency and productivity of the
design process are greatly improved using CAD systems. Computer-Aided Process
Planning (CAPP) and Computer-Aided Manufacturing (CAM) are used to assist process
planning and manufacturing activities respectively. Among these computer-aided
systems, Computer-Aided Design (CAD) is widely used for product modeling by 2D and
3D geometry as well as in animation. CAD databases can be regarded as product
geometric models and can be used to generate down-stream product development data

such as manufacturing processes and assembly processes.

Product design is a complex process that involves considerable knowledge and
decision-making. Techniques in Artificial Intelligence (AI), such as expert system, fuzzy
logic, neural networks, genetic algorithm, etc., have been applied to computer systems to
improve product development capabilities and efficiency.

Of all the issues related to computer-aided product development, the modeling of
product databases and knowledge bases is one of the most important. Feature-based
product modeling is one of the approaches used in computer-aided systems [Gardan and
Minich 1993, Xue and Dong 1993]. The concept of feature was originally used for

3

representing geometric primitives, such as blocks and holes, for modeling product
geometry [Shah and Mantyla 1995]. In Xue’s previous work, the concept of feature was
extended to model other product life-cycle primitives, including design primitives and
- manufacturing primitives, for improving product life-cycle modeling efficiency [Xue and
Dong 1993, Xue et al. 1999]. Unlike CAD systems in which mainly geometric
information of a product is modeled, the feature-based product lifecycle modeling
approach can build product descriptions in a more natural way. It uses not only the
geometric primitives, but also non-geometric properties and the relations among these

properties.

Object-oriented databases model products more efficiently than relational databases
because of the properties of inheritance, encapsulation, etc. Thus, a product family can
easily be modeled by a class and its sub-classes.

In most presently developed computer-based product development systems, the
databases and knowledge bases are modeled at the same location. In a concurrent design
system, all down-stream aspects of product development, such as marketing, design,
manufacturing, and service, must be considered concurrently; however these activities,
usually take place in different geographical locations. It is very difficult to implement
concurrent design without the assistance of an effective computer system that can handle

distributed databases and knowledge bases.

Current distributed modeling and computing techniques focus on integrating the
objects developed on different platforms (such as UNIX, MS Windows) using different
computer languages (such as C, C++, Java) into the same environment. Typical
distributed. object modeling methods include Distributed Component Object Model
(DCOM) [Grimes 1997], Common Object Request Broker Architecture (CORBA) [Otte
et al. 1996], and Remote Method Invocation (RMI) [McCarty and Cassady-Dorion 1999].
These methods provide interoperability between applications on different machines in

heterogeneous distributed environments.

The recent development of multi-agent systems provides another approach for
associating separated databases and knowledge bases and their related modeling systems

4

[Norrie 1999]. Multi-agent systems are software societies that handle all related tasks

through communication, negotiation, collaboration and other activities among relevant

agents. In order for a multi-agent system to be successful, the agents must be highly

intelligent.

1.2 Problem Statements

Despite considerable progress in computer-aided systems for assisting product

design and manufacturing, problems still remain in modeling distributed databases and

knowledge bases for concurrent engineering design. These problems are summarized as

follows.

I).

2).

Problems in distributed database modeling

In distributed object modeling approaches including DCOM, CORBA, and RMI,
association of the objects at different locations is predefined by compiled computer
programs. However in the product development process using concurrent design
methodology, product realization process alternatives are generated and evaluated
dynamically in order to identify the best solution. The distributed databases must be

associated in a dynamic manner.

Distributed object models are primarily used for representing objects, which are
described by data and functions to access these data. Collaboration of these objects is
limited to only the data and functions. Since the computer-based product development
process involves more sophisticated descriptions such as composing elements,
qualitative relations, dependency relations, and constraints, modeling of these
descriptions is also needed. These descriptions are usually associated with distributed
databases.

Problems in distributed knowledge base modeling

Multi-agent systems aim at decomposing a problem into many sub-problems and
using the knowledge of different agents to solve the different types of sub-problems.
The collaboration of agents is usually conducted through brokers called mediators. In

3).

5

a multi-agent system, an agent is associated with certain knowledge for solving
problems of a certain type. In the product development process, since different
knowledge bases, including design knowledge bases and manufacturing knowledge
bases, are required to access the same database, a more flexible mechanism is

required to dynamically select and combine knowledge bases at different locations.

In existing distributed systems, databases and knowledge bases are not well
integrated. Databases are usually modeled as objects or relational databases.
Knowledge bases are usually described by IF-THEN rules. The feature-based product
modeling system provides a new approach for integrating the databases and
knowledge bases. It introduces features that are described by both qualitative
descriptions for symbolic reasoning and quantitative descriptions for numerical
calculation [Xue and Dong 1993, Xue et al. 1999]. In existing knowledge-based
concurrent design systems, rule-based reasoning is conducted only at one location. To
incorporate distributed databases and knowledge bases for concurrent design, a
distributed inference mechanism must be developed.

Problems in concurrent design with distributed databases and knowledge bases

Concurrent design has been recognized as a method that can lead to lower production
costs, less lead-time, and better life-cycle performance. It has been widely accepted
as an engineering philosophy. Many computer-based tools have been employed for
modeling concurrent design [Reidsema and Szczerbicki 1997]. Most of these tools,
however, can handle only centralized databases and knowledge bases. A concurrent
design tool that employs distributed product databases and knowledge bases will

increase the advantages of a concurrent design system.

There is still little information on how a concurrent design candidate can be modeled,
evaluated, and modified dynamically in terms of using a distributed database and
knowledge base modeling system.

1.3 Research Objectives

In order to address the problems stated in Section 1.2, the objectives of this research

are summarized as follows:

1).

2).

To develop a distributed database and knowledge base modeling system with the
functions required for concurrent engineering design. These functions are:

The distributed database and knowledge base modeling system is open and dynamic.
The product modeling databases and knowledge bases, representing product
development activities, are associated by the Internet. Each database model can be
included in or excluded from the system by connecting the model to the system and
disconnecting it from the system. This function provides choices of available

databases for concurrent design.

Product descriptions at different locations are kept consistent all the time by a relation
maintenance mechanism. This mechanism is the engine that propagates any data
changes to all related data, no matter where these data are located. It is critical to the
success of the system in concurrent design, since any value changes in design
databases will lead to changes in all down-stream product development modeling
databases.

Distributed knowledge bases should be integrated and used to access the same
databases. By means of such integration, knowledge at remote locations can be used
to assist local product modeling processes. To accommodate rule-based reasoning
into the distributed concurrent design system, a distributed inference mechanism must

be developed to conduct product development activities concurrently.

A concurrent design system must be developed, based on the distributed database and
knowledge base modeling approach. This system should have the following
functions:

Alternative product realization processes can be modeled effectively so that the

" concurrent design system can generate and evaluate the alternatives.

7

e The optimal product realization process is reached through optimization conducted at
two different Jevels. Parameter optimization is employed to identify the optimal
parameter values for an alternative product realization process. Based on the results
of parameter optimization, alternative optimization is carried out for identifying the
optimal product realization process. Through these processes, all relevant product

development activities interact dynamically to reach the goal of concurrent design.

1.4 Overview of This Research

This research is composed of two parts: development of the distributed database and
knowledge base modeling system, and application of this system in concurrent design.
The distributed database and knowledge base modeling system can be used to model and
integrate product development life-cycle activities that are geographically distributed.
The concurrent design system is used to identify the optimal product realization process

alternative based on the distributed database and knowledge base modeling approach.

In the distributed database and knowledge base modeling system, different product
development activities are modeled in different computers at different locations. All the
computers are connected to the Internet. Each computer is represented as an Internet
node. The communications among these nodes are conducted through messages over the

Internet.

Distributed database modeling is the core part of the distributed database and
knowledge base modeling system. The product databases, i.e., the product life-cycle
aspect models, are built using primitives called features. Features are described at two
different levels, class level and instance level. Features preserved in remote nodes are
called virtual features. Virtual class features can be used to generate true instance features
at the local node. Virtual instance features are actual product modeling databases
preserved in different remote nodes. These product data can be accessed from the local
node. The relations among virtual instance features and true instance features can also be
defined to establish relations of the related databases. The relations can be modeled at
both class feature level and instance feature level. Through these relations, data changes

in one node can be propagated to other related nodes automatically by a relation
dependency maintenance mechanism. This function is critical to implementing

concurrent design methods.

In knowledge base modeling, knowledge is represented by rules which are organized
into separated rule-bases. The rule-bases preserved in remote accessible nodes are called
virtual rule-bases. Virtual rule-bases can be selected for reasoning at the local node
together with true rule-bases. To assist in product development, each instance feature can
be associated with a number of rule-bases including virtual rule-bases. The product
databases can be generated and modified through rule-based reasoning. Since the product
databases are distributed at different locations, a distributed inference mechanism is

developed to automatically activate inference processes in remote nodes.

Based on the distributed database and knowledge base modeling approach, a
concurrent design system was developed. In this system, a product realization process
alternative is modeled by a collection of Internet node names that represent different
product development activities such as design, manufacturing, and assembly. If the
number of alternatives is small, the alternatives can be generated using an exhaustive
method. When the number of alternatives is large, the optimal alternative can be
identified through a two-level optimization process, parameter optimization and
alternative optimization. Parameter optimization is conducted to obtain optimal values of
parameters for the alternatives. Particle Swarm Optimization (PSO) [Kennedy and
Eberhart 1995], a global optimization method, is used for parameter optimization. Based
on the results of parameter optimization, alternative optimization is conducted at the
second level to identify the optimal alternative. The Genetic Programming method (GP)
[Koza 1992, Angeline 1994] is used for alternative optimization.

1.5 Organization of This Thesis

There are seven chapters in this thesis. Chapter 2 starts with a detailed literature
review that provides the research background of this work. This review covers topics

related to the work presented in this thesis, including design-for-X techniques,

9

concurrent design methods considering all relevant life-cycle aspects, product modeling
approaches, distributed systems for concurrent engineering design, and Internet-based
applications in concurrent design. The existing techniques that were used in this research,
including feature-based modeling, object-oriented programming, distributed systems, the
Internet, and engineering optimization, are then briefly introduced. Since this research is
based on a previously developed system — a feature-based intelligent design system [Xue
et al. 1999], the structure and key functions of this system are described in this chapter.

Chapter 3 gives a detailed description of the distributed database and knowledge
base modeling system. First, the architecture used for integrating geographically
distributed databases and knowledge bases through the Internet is introduced. Then
details of distributed database modeling and distributed knowledge base modeling are
described. As one of the core functions needed for concurrent design, distributed database
modeling is emphasized in this chapter.

Starting from the basic definitions of virtual features, including virtual class features
and virtual instance features, the modeling techniques of virtual features and data
relations involving virtual features are presented in detail. A mechanism for maintaining
data dependency relation is then discussed by introducing an automated data propagation

algorithm and an example.

For knowledge base modeling, the virtual rule-base concept is introduced.
Techniques for using virtual rule-bases are described. A distributed reasoning algorithm

is then discussed.

Chapter 4 presents a concurrent design system. This system is based on the
distributed database and knowledge base modeling approach described in Chapter 3. The
concurrent design system provides the functions of modeling product realization process
alternatives and generating the optimal concurrent design solution. Two levels of
optimizations are employed in this system. First, the design parameter values are
optimized by Particle Swarm Optimization (PSO). Then the product realization process
alternatives are optimized using Genetic Programming method (GP). These methods are
described in detail in this chapter.

10

Chapter 5 discusses the issues in the implementation of the distributed database and
knowledge base modeling approach and the concurrent design system. These issues
include data structures, class definitions and message handling.

Chapter 6 presents examples to illustrate the application of the distributed database
and knowledge base modeling approach and the concurrent design system.

Chapter 7 summarizes this thesis and gives conclusions. Possible future research
directions are also discussed in this chapter.

11

CHAPTER 2

RESEARCH BACKGROUND

This chapter presents a general review on subjects relevant to the research introduced
in this thesis. Subjects include product modeling and development, computer-based
systems for product development, and distributed modeling techniques for product
development. As the basis of this research, the previously developed feature-based
intelligent design system [Xue et al. 1999] is introduced. Techniques used in this research
are also briefly described.

2.1 Literature Review

Product development is a complex process that involves human intelligence and
available techniques. To improve the efficiency of product development and the
performance of product life-cycles, many product modeling techniques and computer
systems have been developed. Recent advances in computing technology and the Internet
provide new approaches for developing and implementing more robust computer-based
systems to assist product development. Such systems can play an important role in
satisfying the requirements of the global market today.

2.1.1 Product Modeling

In computer-based product development, the techniques of product modeling are
important in improving the effectiveness of product development systems. CAD systems
have been widely used for modeling product geometry [Singh 1995]. Three types of
geometric models are usually used for representing a product. They are the wireframe
model, the surface model, and the solid model. The wireframe model builds a product
using its boundary lines and curves [Lee 1985]. This model is simple but ambiguous in
geometry interpretation. The surface model describes a geometric model using boundary
surfaces, such as plane surfaces, surfaces of revolution, etc. [Mortenson 1985). The
surface model visualizes products better than the wireframe model. The solid model

12

provides more information of product geometry including topological relations among
geometric elements. Primitives such as spheres, cylinders, cones, blocks, etc. are used to
build a solid model [Tan et al. 1987]. The solid model takes much more computer
memory than the other two models, but is the most suitable for product geometric
modeling with a computer-based system. _

The solid model has been used by conventional CAD systems for modeling product
geometric information. However, modeling of product geometry is only one aspect of
product modeling. It should be possible to model more information, such as generic
relations among related products, non-geometric information, etc. For such purposes, the
feature model has drawn the attentions of researchers [Shah and Rogers 1988, Xue and
Dong 1993, Gardan and Minch 1993, Shah and Mantyla 1995]. A feature is a description
necessary for modeling one aspect of a product. The feature model catches not only
geometry information, but also non-geometry information of products. More details about
feature-based modeling are introduced in Sections 2.2 and 2.3 of this chapter. Features of
a product can be classified into different categories. Examples are material features,
manufacturing features, technological features, and geometric features [Shah and Rogers
1988, Vickers and Swanson 1988, Shah 1989]. In feature-based product modeling
research area, feature recognition is an approach for extracting the geometry from the
CAD database for planning production processes [Henderson 1984]. Design-by-features
is another approach for modeling a product using manufacturing features at the very
beginning [Shah and Rogers 1988]. An international product modeling standard, STEP,
has been developed to integrate the different product life-cycle models, using a universal
computer language [Gu and Chan 1995].

Research on functional modeling has also been reported [Nagamatsu et al. 1999].
This research showed that the functional model has the potential capability of providing
dynamic functional performance of products. It is suggested that the functional model be
composed of block diagrams for explaining the functions, and mathematical models for
simulations. This method is still in the early developing phase.

Product database modeling is one of the important issues in product modeling,

13

especially for computer-based modeling systems [Waldron et al. 1992, Shah and Mantyla
1995].

Conventionally, relational data models are widely used because they are easy to learn
and easy to use. However, engineering product data are complex in terms of relations
among the element entities. The relational data model has difficulty in modeling such

relations [Seilonen 1995].

Object-oriented data modeling is a data modeling methodology proposed as an
alternative to the relational modeling technique [Hughes 1991]. The object-oriented data
modeling technique leads to more maintainable and understandable models that
correspond more closely to real world entities [Lee and Sen 1994]. The application of the
object-oriented database modeling in product development has been proven effective
[Xue and Dong 1993, Yadav 1999]. The object-oriented database modeling technique is
often combined with feature-based product modeling technique to improve the
effectiveness of product modeling [Xue and Dong 1993, Yadav 1999].

In some cases, knowledge-based techniques are introduced to help manage the
databases. Stonebraker proposed an active database management system called active
DBMS [Stonebraker 1992]. Active DBMSs are databases that automatically carry out
triggered actions when certain situations arise. The active behaviors are specified by

production rules integrated in the system.

In the work of Bassiliades and Vlahavas [1997], a rule integration scheme in an
object-oriented database management system (OODBMS) was presented. An active
knowledge base system called DEVICE resulted from this work. Domazet and San
[1997] described a system that integrates an expert system with a passive object-oriented
management system to create active behavior in a single workspace environment. This
system is regarded as an active database server. Roller and Eck [1999] presented an
approach to a shared knowledge base for product development called the Active
Semantic Network (ASN). The ASN is an intelligent knowledge base that adapts
conventional database functions to the particular requirements of modern cooperative

product design.

14

2.1.2 Product Development Tec hniques

Product development involves activities such as marketing, design, manufacturing,
and service. Among these activities, design is the primary process that affects the
performance of the product in all down-stream life-cycle aspects. Eighty percent of
manufacturing decisions result directly from the design stage [Vliet et al. 1999]. In order
to improve the competitiveness of products, a number of product development techniques

that concurrently consider down-stream aspects of the product development process have
been developed.

Design for Manufacturing (sometimes called Design for Manufacturability)
[Helander and Nagamachi 1992, Magrab 1997, Vliet, et al. 1999] is widely accepted as
an approach for creating product designs that eases the manufacturing task and reduces
manufacturing costs. Conventionally, designers must be provided with up-to-date
knowledge of manufacturing processes, tools and fixtures in order to improve the
efficiency of the product realization process. Since manufacturing processes are complex,
designers often have difficulty in fully considering all the requirements of
manufacturability. That is Where the DFM systems are placed. To emphasize different
aspects of product development such as assembly, service, and environment at the design
stage, techniques of Design for Assembly (DFA), Design for Serviceability (DFS), and
Design for Environment (DFE) have also been developed [Magrab 1997].

Sharing many similarities with Design for “X” in terms of the concepts and
objectives, concurrent design (or concurrent engineering) has been recognized as an
approach to improve the quality and efficiency of product development. Concurrent
design refers to the simultaneous design of a product and all its related processes in a
manufacturing system, #5 Well as related processes in later phases of the product’s life-
cycle [Parsaei and Sullivan 1993]. This means that all information flows should be multi-
directional among the design processes and all related processes. Since 1980s, the
benefits provided by concurrent design philosophy have been recognized and many
industrial applications have been developed [Pennell et al. 1989].

15

There are two approaches to implementing the concurrent design practice: the team-
based approach and the computer-based approach {Parsaei and Sullivan 1993]. The team-
based approach is human-oriented. The members of the team are from all related
functional areas. They can therefore contribute to the design of products and processes by
identifying potential problems early and avoiding a series of costly reworks [Pennell et al.
1989].

Though it is easy to implement, this approach has apparent shortcomings: the
difficulty and cost of managing the team, and team members’ limited knowledge. So a
team-based approach also needs the assistance of computer systems to enhance the
team’s performance. The computer-based approach is effective in integrating all related
process models of product development into the same environment. With the increasing
ability of handling large amount of information at high speed, computer-based systems

are playing increasingly more important roles in implementing concurrent design.

2.1.3 Computer-Based Systems for Product Development

Among computer-based systems in product development, Computer-Aided Design
(CAD) is one of the most widely used tools currently available to the industries.
Conventional CAD systems are mainly used for geometric modeling and related
computation and analysis [Singh 1995]. Even though it has been very successful in
assisting designers to produce drawings and grabhics in a fast and accurate way, CAD
systems still have difficulties in handling non-geometric information about products.
Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM)
are systems to automate process planning and other manufacturing activities [Singh
1995].

With the development of Artificial Intelligence (AI) techniques, knowledge-based
systems have been used to improve the efficiency of product development and the
performance of the product life-cycle [Court 1998, Judson et al. 1999]. Expert system is
one of the techniques often used in product development. To improve the performance of
conventional CAD systems, research has been conducted to introduce knowledge-based

16

systems to the CAD systems [Yoshikawa 1988, Anderson and Crawford 1988, Penoyer et
al. 2000]. Penoyer et al. believe that future CAD systems should be open to integrating
knowledge-based systems for all aspects of the product life-cycle {Penoyer et al. 2000].
Knowledge-based systems are also used in other computer-based systems to assist in
manufacturing, assembly, etc. {Kroll et al. 1989, Colton 1993].

Recently, more research on integrating knowledge in product development has been
done. Court [1998] identified important issues to be considered in order for knowledge or
information to be successfully integrated into future product development. These issues
include the media in which information and knowledge are provided, the manner in
which information and knowledge are presented, and the location and administration of
knowledge and information. Xue et al. [1999] presented a method for integrating
knowledge bases with feature-based product databases for intelligent concurrent design.
In Xue’s previous research, an integrated and intelligent system was developed for
modeling the databases and knowledge bases used at different product development
phases [Xue and Dong 1993, Xue and Dong 1994, Xue et al. 1996, Xue 1997, Xue and
Dong 1997, Xue et al. 1999]. In this research, product life-cycle aspects are modeled by
aspect primitives called features, including design features such as mechanisms and
components, manufacturing features such as holes and slots, and so on [Xue and Dong
1993]. A rule-based system was developed to generate product life-cycle aspect models
automatically through rule-based reasoning [Xue and Dong 1994]). An optimization
model was introduced to identify optimal design considering both functional performance
and production cost [Xue et al. 1996]. The optimization model was improved based on
genetic algorithm and simulated annealing to identify the optimal product realization
process alternative and its parameter values [Xue 1997]. A design feature coding system
and a manufacturing feature coding system were developed to organize large feature
libraries and identify appropriate features during the product development process [Xue
and Dong 1997]. Judson et al. [1999] discussed challenging issues of introducing
knowledge-based engineering into an interconnected product development process. Even
though a Design Structure Matrix (DSM) model was proposed to map the knowledge that

17

might be involved at the system interaction level for several components, more dynamic
methods are still needed for such knowledge-based applications.

2.1.4 Integration of Distributed Product Databases and Knowledge Bases

In most of the presently developed computer-based product development systems,
the product databases and knowledge bases are modeled at the same location. However
product development activities, such as marketing, design, manufacturing, and service,
usually take place at different locations. To take advantage of globally available product
development resources, integration of these separated product modeling databases and
knowledge bases becomes necessary in product development.

The research of distributed database modeling often focuses on integrating the
objects developed on different platforms (such as MS Windows, UNIX, and Macintosh)
using different computer languages (such as C++, Java, and Visual BASIC) into the same
environment. In order to manage distributed databases, integration of distributed database

management systems has been studied [Ozsu et al. 1994].

Research in this area also includes works on methodologies of collaboration and
coordination of distributed product information management systems and frameworks
that help designers make decisions. The SHARE project developed by Cutkosky et al.
[1993] allows designers to gather, organize, and communicate design information over
computer networks to establish shared understanding of the design. Groupware
techniques are used in the SHARE project. Sriram and Logcher [1993] developed a
computer-based design system that provides a shared workspace where multiple
designers work in separate engineering disciplines. A global control system is used to
solve problems of coordination and communication. A system proposed by Bliznakov et
al. [1995] allows a designer to indicate the status of the tasks assigned so that other
designers can follow over the computer network. This system incorporates a hybrid
model for design information representation. Adamides [1995] presented a distributed
active-resource coordination framework for a class of flexible manufacturing systems.

Cooperative behavior is achieved by resolving conflicts and by maximizing the use of the

18

system’s resources. This framework relies on a timed Petri net representation of the
production responsibilities of each active resource in the system. Pahng et al. [1998]
proposed a framework for modeling and evaluating product design problems in a
computer network-oriented design environment. Design problems are decomposed into
modules (such as a cost module) that represent different aspects of the problems. The
modules can be distributed. A module can provide services to other modules through

standard communication protocol.

Research of distributed knowledge base modeling has been conducted for developing
multi-agent systems to solve problems through collaboration of different agents with
different types of knowledge [Huhns and Singh 1998].

Some commonly used methods that provide interoperability between applications on
different machines in heterogeneous distributed environment have become industrial
standards. Typical distributed object modeling methods include Distributed Component
Object Model (DCOM) [Grimes 1997], Common Object Request Broker Architecture
(CORBA) [Otte et al. 1996}, and Remote Method Invocation (RMI) [McCarty and
Cassady-Dorion 1999]. These different distributed object modeling methods have been
compared [McCarty and Cassady-Dorion 1999].

2.1.5 Applications of Multi-Agent Systems in Product Development

Multi-agent systems are another approach that can be used for product devélopment
in both centralized and distributed product development environments. Multi-Agent
Systems, also called Intelligent Agent Systems, are software systems that are composed
of program modules with intelligence and autonomy. These modules, regarded as agents,
may collaborate dynamically to achieve the objectives of the systems [Norrie 1999].

Many applications have been developed using the multi-agent system approach for
solving engineering problems [Shen and Norrie 1999]. Reidsema and Szczerbicki [1997]
considered the complexity of implementing concurrent design that involves different life-
cycle aspects of product development. They suggested that multi-agent distributed

systems should be used as the core concept in developing a concurrent engineering

19

design system. Complicated concurrent design problems can be decomposed into
subtasks that are distributed among different agents with the abilities to solve these
problems. Coordination and cooperation among agents help achieve the goals of
concurrent design, such as minimizing lead time, reducing manufacturing costs, and

ensuring longer product life span.

An experimental multi-agent environment for engineering design was introduced by
Shen and Barthes [1995] using techniques of distributed artificial intelligence. In this
system, various design activities are modeled by a population of asynchronous cognitive
agents. The agents communicate through a local network or the Internet. All agents in the
system are autonomous and independent. Users of the system are regarded as human

agents who are integrated into the design environment.

Danesh and Jin {1999] introduced an agent-based decision network framework for
concurrent design and manufacturing. The design process is modeled using a decision-
based approach. There are two major models in this framework: the decision-based
design process model and the condition-based negotiation model. These models are
introduced to help team members consider other members’ decisions when making their
own. Coherent design decisions among designers can therefore be achieved by explicitly
representing and capturing individual design decisions and negotiation processes. Each
designer is associated with an agent that is facilitated with the two models. This

framework was found to be effective in integrating design and manufacturing processes.

Also for collaborative product development, the mechanism of agent-based
workflow management was proposed to facilitate the team working in a collaborative
product development framework [Huang et al. 2000]. In this framework, a web-based
decision support system is used by team members who are geographically distributed.
Agents are representatives of their human users. Each agent is assumed to be responsible
for one work activity of the project. A limitation of the framework is that only static
dependency relations, such as predefined predecessors and successors between agents,
can be used in this system. Agent-based applications for product development also

include information integration and collaborative service support in all aspects of a

20

product life-cycle [Gadh and Sonthi 1998, Tso et al. 1999].

2.1.6 Internet-Based Product De velopment

Recent advances in Internet technology provide new approaches for integrating the
separated databases and knowledge bases into the same environment [Alles and
Vergottini 1997, Huhns and Singh 1998). Intensive research has been carried out on
Internet-based or web-based product development. Name and Engelstein [1998] provide
a brief overview of tools that could possibly be used to bring concurrent engineering to
fruition. These tools include Email, Web sites, VRML (Virtual Reality Modeling
Language), FTP (File Transfer Protocol), Multimedia, and Groupware.

Mendel [1999] predicted that the product data management software business would
be reshaped by the Internet technology. Roy et al. [1997] reported a prototype framework
of web-based collaborative product development. In this framework, all designers
involved can collaborate through shared web pages and VRML models. Product
modeling databases and the VRML-based geometric models are associated with shared
web pages. Designers can access these data through hyperlinks. Adapalli and Addepalli
[1997] described different ways of integrating manufacturing process simulations by
means of the world wide web. Techniques used in this research include HTTP/CGI, java
sockets, etc. It was concluded that performing manufacturing process simulations over
the web is possible, even though some problems, such as the immaturity of related

techniques, remain to be solved.

Methods for transmitting and viewing CAD data and engineering information
through the Internet must be studied in order to develop web-based applications for
product development. With this concern in mind, Kim et al. [1998] discussed the
possibility of storing STEP data using the Virtual Reality Modeling Language (VRML)
so that the product can be viewed in interactive 3D on a number of platforms using the
Internet and World Wide Web. Formalisms for storing STEP data in an object-oriented
database schema and converting STEP data to VRML are described. The prototype
system, called CyberView, can provide support for members of distributed concurrent

21

engineering teams to share and exchange 3D information. For the purpose of developing
a web-based DFX (Design for X) shell that is intended to be used to develop DFX tools,
Huang et al. [1999] studied the technique of web-based product and process data
modeling. A method called bills-of-materials is used for outlining product structures. A
bill-of-materials is a list of the items or materials needed to produce a parent item. This
method cannot model relationships between components and parts of the products
effectively.

To support product modeling and collaborative design activities, Lee et al. [1999]
presented an approach for web-enabled feature-based modeling in a distributed design
environment. In this approach, there is a neutral feature model in the server. This model
provides a generic naming scheme for naming consistency, so that the relationship

between geometric entities of the server and clients can be maintained.

In product development, the life-cycle support of products can be enhanced by the
Enterprise-Web portal in terms of information and resources sharing and management,
according to Rezayat [2000a]. Rezayat also discussed problems that the web-based
technology, especially XML (eXtensible Markup Language), is used for defining
interfaces supporting knowledge capturing, storing, and sharing through out the product
development life-cycle [Rezayat 2000b].

Another interesting prototype system called WebCAD has been developed to allow
designers to define the geometry of parts [Kim et al. 1999]. The basic objective of this
project is to provide manufacturing services, especially machining processes, through this
tool over the Internet. In other words, this is a design interface that produces a high
probability of success in respect to manufacturability of the design.

Based on the similar ideas, Higgins and Langrana [1999] developed a web-based
user-friendly virtual design and fabrication system using the knowledge-based approach.
Web technology is also used for communication and sharing information among
designers during product development [Ahn et al. 1999, Roy and Kodkani 2000, Chen
and Jan 2000, Domazet et al. 2000). Product development techniques such as design for
manufacturing (DFM) can be enhanced by web technology [Park and Baik 1999, Jiang

22

and Fukuda 1999]. Product data exchange is also a field for applications of Internet
technologies [Zhang et al. 2000].

Concurrent product development is a subject involving a wide range of concepts,
methods, and technologies. The advantages of concurrent design have been recognized,
but implementations of concurrent design systems need to be further explored. Feature-
based product modeling method promises to be effective in product development
systems. Multi-agent systems can reasonably be regarded as powerful tools for
developing future complex product development systems.

However, the difficulties in developing “intelligence” have limited the applications
of multi-agent systems in actual product development system implementations. Most of
the Internet and web-based systems for product development focus on browsing product
geometric descriptions from remote product databases and exchanging information
among designers. The real advantage of the Internet technology is the properties of an
open network and real time communications. Therefore Internet-based product
development systems can go one step further in integrating distributed, especially
geographically distributed, product development activities in all aspects of product life-

cycle.

2.2 Related Techniques

In this research, feature-based modeling was used as the approach of modeling
product and related processes. The feature-based distributed modeling system was
implemented using an object-oriented programming technique. VisualWorks version of
Smalltalk, an object-oriented programming language, was used in this research.
Distributed modeling was the basic objective of this research. To improve the quality of
product development, engineering optimization methods including Genetic Programming
(GP) and Particle Swarm Optimization (PSO) were used in identifying the optimal

product realization process. These techniques are briefly introduced in this section.

2.2.1 Feature-Based Modeling

Conventional solid modeling is efficient for defining the geometry of a product.
However there are two major deficiencies, according to Shah and Rogers {1988]:

e Product definition is incomplete: Product tolerance, surface finish, surface
treatment, and other descriptions apart from geometry, cannot be represented

and stored.

® Product definition is at a lower level: The product data are basically for
displaying the image of the product. Higher level properties such as functions

cannot be defined.

In order to use the product model to develop applications for manufacturability
evaluation and process planning, feature-based modeling was introduced. Based on Shah
and Rogers [1988], a feature is a set of information related to a description of a part or a
product. The description may be used for design purposes, marketing requirements,
manufacturing process development, assembly, inspection, and even administrative
purposes. By using feature-based modeling, the product models can be built using
features stored in the libraries.

There are different classifications of features. Based on the information sets related
to the product engineering, there are form features, material features, precision features,
and technological features, etc. [Shah and Rogers 1988). Features can also be classified
into design features, manufacturing features, assembly features, etc. according to the life-
cycle functions of the features [Xue and Dong 1993].

Feature-based modeling provides a means for building product databases at multiple
abstraction levels. According to Chung et al. [1990], feature-based modeling is efficient

in the following ways:

e Human intent can be expressed easily by manipulating both high and low
level features directly.

24

e Feature databases allow the reasoning system to perform product development
tasks such as manufacturability evaluation, function analysis, and design
optimization.

e Feature databases can contain knowledge to facilitate more applications such
as CNC programming.

Some applications of the feature-based approach in product development were

introduced in Section 2.1.1. A more detailed explanation of feature-based modeling
concept will be given in Section 2.3.

2.2.2 Concurrent Engineering

Conventionally, product development follows a sequential development cycle, as
illustrated in Figure 2.1 (a). The cycle begins with a need based on market analysis or
research and development results. Then the product is developed step by step through
design, process planning, manufacturing, assembly, and shipping. In this approach,
design concemns are mainly focused on the functionality and performance of the product.
Very few requirements of down-stream life-cycle phases are considered, since there is no
dialogue established between design and down-stream processes. However most down-
stream performance of a product is determined at the design stage. For example about 70-
80% of manufacturing productivity can be determined at the design phase [Suh 1990].

In a global competitive economy environment, a product with high quality, low cost,
and less environmental impact can be achieved with a new product development
philosophy called Concurrent Engineering (CE) [Kusiak 1993, Prasad 1996].

In developing product using a concurrent engineering or concurrent design approach,
all related processes such as marketing, design, process planning, manufacturing,
assembly, and recycling are considered concurrently, as illustrated in Figure 2.1 (b). The
design activities in concurrent engineering have been widely extended [Hyeon et al.
1993] to the related processes. In other words, down-stream requirementsb should be
considered as early as possible, along with the structural and functional requirements of

25

the products. To implement this approach, organization-wide, even global-wide
information integration is required.

l . Users
Market analysis - Process T .
R&D — Design —> planning —»{ Manufacturing

T

Aseriesof |q |
engineering |@-
change orders

(a) Sequential Product Development

l Users
Market analysi - T -
l: &an D ysts Concurrent Design Manufacturing
Manufacturing Environment
rocess concern

Material
handling

(b) Concurrent Product Development

Assembly

Figure 2.1 Sequential and Concurrent Product Development [Hyeon et al. 1993]

Currently there are two basic approaches to implementing concurrent engineering
practice: the team-based collaboration approach and the computer-based development
approach. The former approach emphasizes information flows among designers and
individuals from all related areas. The multifunctional team is critical for effective
implementation of the concurrent development of products. The information flowing
among team members can be assisted by computer systems. The computer-based
approach enables design selection, justification, and optimization with respect to all
aspects of a product’s life-cycle. Therefore this approach emphasizes direct cooperation
and coordination among design and all related down-stream processes that are

26

represented as models to be handled by computers. Knowledge-based approaches are
often employed in a computer-based concurrent engineering environment [Court 1998].
With the rapid progress of Internet techniques, more attention has been paid to
developing Internet-based distributed systems for concurrent engineering [Roy et al.
1997].

2.2.3 Object-Oriented Programming and Smalltalk

Programming languages are traditionally composed of two parts — the data, and
operations on the data. For a procedural programming language like C, functions and data
structures are the basic elements. Object-oriented programming groups operations and
data into modular units called objects, and lets you combine objects into structured
networks to form a complete program. In an object-oriented programming language, the

objects and object interactions are the basic elements.

The four basic characteristics of object-oriented programming are Abstraction,
Encapsulation, Polymorphism, and Inheritance. Abstraction refers to the essential
characteristic of an object that distinguishes it from other objects. Encapsulation keeps
the implementation of an object out of its interface. In other words, details of
implementation are hidden from other parts of the programs. Encapsulation not only
protects an implementation from unintended actions but also increases the modularity of
the program. Polymorphism refers to the ability of different objects to respond, each in its
own way, to identical messages. The main benefit of polymorphism is that it simplifies
programming interfaces. Instead of creating a new name for each new function to be
added to a program, the same names can be used by many objects. Inheritance is the
feature that an object can be defined based on an existing object and the characteristics of
the existing object are passed on to the new object automatically. Inheritance clarifies the
logic relations of objects. This property also brings benefits such as reusing code and
delivering generic functionality.

Object-oriented programming techniques are implemented using the concepts of

class and instance. Classes are generic abstractions of physical objects with similar

27

characteristics. An instance is an object with specific attributes. An instance is created
using a class as the template. Inheritance is implemented by class-subclass relation
definitions.

Available object-oriented programming languages include Smalltalk, C++, Java, etc.
Smalltalk, as a pure object-oriented programming language, was developed in the late
1970s [Goldberg and Robson 1983, Hopkins and Horan 1995]. The Smalltalk system has
two aspects: the programming language and the programming environment. Smalltalk
was one of the first systems to use graphical interfaces to help the user navigate the
development system. In the Smalitalk environment, everything is an object. All the
functions of the system including file handling, compiling, debugging, window
managing, etc. are defined using classes and their instances. In the latest versions of
Smalltalk, a large number of classes have been provided for developing applications.

New classes can be defined as subclasses of the existing classes.

There are several dialects of Smalltalk such as VisualWorks, SmalltalkAgents,
VisualAge, etc. VisualWorks has been relatively widely used. The syntax of Smalltalk is
descriptive and the rules of the syntax are simple. This feature helps shorten the time of
developing Smalltalk applications. It has been proven that Smalltalk is effective for
developing research-oriented application prototype systems [Xue et al. 1992].

2.2.4 Distributed Systems and the Internet

A distributed system is a collection of independent computers associated through
both hardwares and softwares. Generally, a distributed system means a close coordination
among components at different sites [Wu 1999]. Distributed systems are usually
composed of distributed hardwares, distributed data, and distributed controls. A
distributed system includes nodes that perform some aspects of computations. A node
may be a personal computer, or a mainframe computer. The nodes of a distributed system
are usually geographically distributed. The node you currently use is regarded as the local
node and all others are remote nodes. The power of a distributed system derives from the

cooperation of the individual nodes that perform different functions.

28

The nodes in distributed systems are connected by computer networks. The advance
of the Internet has been a force driving distributed systems forward in recent years
[McCarty and Cassady-Dorion 1999].

The Internet is considered a global computer network that connects groups of sub-
networks. These networks contain many different types of computers. A protocol must be
used to ensure that the different types of computers can work together. A protocol is a set
of rules that specify how computers cooperate in exchanging messages [Hahn and Stout
1994]. TCP/IP (Transmission Control Protocol/Internet Protocol) is the most popular
networking standard. TCP/IP is used to organize computers and other communication
devices into a network. IP transmits the data from place to place, while TCP formats the

data and manages the flow.

In the network, each computer must have an address in order to be located by other
computers. There are two formats: standard address and IP address. For example: the
standard address m70.enme.ucalgary.ca is equivalent to the [P address 136.159.105.70.
The IP address is the real address used in identifying the computer. The standard address
can be translated into the IP address by the Domain Name Service (DNS).

In order for TCP to locate a specific process of an application in a computer, port
numbers are used to specify this process. Port numbers are 16-bit numbers such as 3456.
Some port numbers, called well-known port numbers, are reserved for standard
applications such as mailing services. The remaining ports are dynamically allocated
ports for implementing sockets. The combination of an IP address and a port number can
identify the required program.

Standard Internet technologies, including WWW (World Wide Web), E-mail, and
VRML (Virtual Reality Modeling Language), have been studied for the purpose of
assisting product development. However the real power of the Internet is the feature of an
open network and real time global connections. Internet makes it possible for globally
scattered computers to work together dynamically.

29

2.2.5 Global Optimization

Optimization is an approach used to identify the optimal solution for a problem based
on predetermined objectives. An optimization problem is made up of three basic
ingredients:

e An objective function which we want to minimize or maximize. For example, in a

design problem, we might want to maximize the product life span or minimize the

cost.

e A set of variables that affect the value of the objective function. In mechanical
design problems, the speed of a rotating part and the distance between the centers
of two shafts are typical variables.

e A set of constraints that allow the variables to take on certain values but exclude
others. For engineering problems, the length of a part cannot be negative, so this
variable should be constrained to be positive (or between two positive numbers).

The optimization problem is then to find values of the variables that minimize or
maximize the objective function, while satisfying the constraints. Since many engineering
problems have local optimums, traditional approaches such as the hill-climbing method
may miss the global optimum [Arora et al. 1995]. Global optimization is the task of
finding the absolutely best set of conditions within the constraints to achieve the
objective. There are two basic categories of global optimization approaches: deterministic
and stochastic [Pardalos et al. 1999].

Deterministic approaches exploit analytical properties of the given problem to
generate a deterministic sequence of conditions that converge to the global optimal
solution. Stochastic approaches minimize a function over a random set of variable values.
These approaches can be used for problems when no clearly known structure can be
exploited. In the past decade, some stochastic approaches such as Simulated Annealing,
Genetic Algorithms, and Particle Swarm Optimization have been studied and effectively
applied to a wide range of industry applications [Arora et al. 1995, Shi et al. 1997,
Pardalos et al. 1999].

30

2.3 A Feature-Based Database and Knowledge Base Representation Scheme

The research on integrating databases and knowledge bases was started by Xue at the
University of Tokyo during the development of the Integrated Data Description
Language (IDDL) [Xue et al. 1992]. Xue had used IDDL to implement the previous
version of the feature-based concurrent design system at the University of Victoria [Xue
and Dong 1993, Xue and Dong 1994]. A complete new feature modeling environment
was developed by Xue et al at the University of Calgary [Xue et al. 1999)]. The feature-
based database and knowledge base representation scheme introduced by Xue at the
University of Calgary was employed in the research discussed in this thesis.

2.3.1 Database Representation

2.3.1.1 Class Features and Instance Features

Product life-cycle aspect models are built using primitives called features. Features
are described at two different levels, the class level and the instance level, corresponding
to generic product libraries and specific product data respectively, as shown in Figure 2.2.
Instance features are generated using the class features as their templates. This

mechanism was implemented using an object-oriented programming approach.

A class feature is defined by element-features, attributes, qualitative relations
among features, and quantitative relations among attributes. Element-features are
described by variables and their feature types, representing the features used to compose
the feature being defined. For instance, the ThreadHole class feature shown in Figure 2.2
consists of two element features, a hole and an internal thread, represented by two
variables ?H and ?IT. The class feature itself is described by a built-in variable ?self in
the class feature definition. Attributes in class features are defined by attribute names and
default attribute values. For instance, diameter, d, and length, |, are two attributes of the
class feature Hole shown in Figure 2.2. Qualitative relations among features are
represented by predicates. A predicate takes the form of (p, xy,Xz, ..., X»), where p is the
predicate relation and xy,X2, ..., X, are terms of this predicate represented by symbols (e.g.,
h1), strings (e.g., “Hello”), integers (e.g., 5), floats (e.g., 2.5), variables (e.g., 7H), and

31

attributes (e.g., d{h1]). The predicate (process, ?H, ?IT) in class feature ThreadHole is a
qualitative relation among features. Quantitative relations among attributes are described
by functions. Each function uses a number of input attribute values to calculate an output
attribute value. For instance, the function, I[?H] := I[?IT] + 5, in class feature ThreadHole
is a quantitative relation of two attributes.

Class Features
[Class Feature: ThreadHole Class Feature: Hole Class Feature: Internal Thread
Element-features: Attributes: Attributes:
H: Hole, 7IT: InternalThread d[7self], I[?self] d[2self], Ifself], 1
Feature-relations: - h{?self], d2[?self] :
(on, 2T, 7H), Attribute-relations:
Attribute-relations: d2(7self] := --
d[?self] + 2*h([?sclf]

I[?H] := I[NT] + 5.
d[?H] = d[7IT], 4’“ 1

aar e .

Instance Feature?\i
Instance Feature: hl (Hole)

Instance Feature: thl (ThreadHole) Attributes:

Element-features: i
7H: hi, AT:itl d[h1]=20, I[h1])=45
Feature-relations: | ~ | ——
(on, itl, hl),

Attribute-relations: Instance Feature: itl (InternalThread)
Ithl) :=I[itl] + 5, Attributes:
dfhil) := Ell[itl]. \ d[it1]=20, I(it1]1=40, h(it1]=2, d2(it1]=24

Auribute-relations:
d2(it1] :=d[it1} + 2*h(itl]

Figure 2.2 Class Features and Instance Features

Class features are organized in a hierarchical data structure. A class is defined as a
sub-class of an existing super-class. All descriptions of a super-class are inherited by its
sub-classes automatically. When an instance feature is generated using a class feature as
the template, all the descriptions in that class feature and its super-class features should
be added to the database automatically. In an instance feature, all the element-feature
variables are instantiated by actual instance features with the required feature types. In

32

Figure 2.2, three instance features, representing a thread-hole of a product, are generated
from three class features.

2.3.1.2 Maintenance of Data Dependency Relations

The quantitative relations among attributes in the generated instance features form a
network called artribute relation network. An example of attribute relation network is
shown in Figure 2.3. An attribute relation network is composed of two types of nodes:
attribute nodes and function nodes. Each attribute node is associated with an attribute
value. Each function node is linked with one or several input attribute nodes and one
output attribute node. When an attribute value is changed, the functions that use this
attribute as the input node are then activated to update this change to the output attribute
nodes. This attribute propagation process is carried out continuously until no attribute
value change is required. Since the attribute relation network can be used for keeping the

consistency of the database, the mechanism to update attribute changes using the attribute

f1: 1{s1] = 1.5 *d[sl]

f2: l[etl] =1fsl] -6

f3: 1[it1] = l{etl] + 10

f4: 1(h1] =1[it1] + 5

f5: d[et1] = d[s1]

f6: d2fetl] =d[etl] - 2 * h[etl]
f7: d[it1] = d2[ett]

1[it1 1fetl] f8: d2(it1] = d[it1] + 2*h[it1]
ke tl E"‘" f9: d[h1] =d[it1]
Ifh1 Ifs1] >

(a) A Thread Joint (b) Attribute Relations

I[s1] P fetl] P ifitl] @ ith1]

d[etl] f6 d2[etl] 7 d[it1]]

@ A

(c) An Attribute Relation Network

d2[itl)
le—>l
dlitl}, d[h1] hfirl)
d2{etl] hfetl)
d[s1], dlet]]
le—>

Figure 2.3 Maintenance of Data Dependency Relations

33

relation network is called the data dependency relation maintenance mechanism.

Propagation of attribute value changes using the attribute relation network is
formulated into the following steps.

Step 1: Create a list called ATTRIBUTE-CHANGE and add all the changed attributes
to this list. '

Step 2: If the ATTRIBUTE-CHANGE list is empty, attribute change propagation
should be stopped.

Step3: Remove one attribute from the ATTRIBUTE-CHANGE list. Identify the
functions that use this attribute as an input attribute, and calculate the output
attribute values using these functions. If the value of an output attribute is
changed and this attribute is not on the ATTRIBUTE-CHANGE list, add this
attribute to the list. Go to Step 2.

This attribute relation network is effective for modeling the relations defined in the
databases for product development.

2.3.2 Knowledge Base Represe ntation

The knowledge base is represented by rules. Since a product development process
involves a large number of rules, these rules are organized in separated rule-bases.
During the product development process, only partial rule-bases are considered to

improve the inference efficiency. All rule-bases are preserved in the rule-base library.

2.3.2.1 Rule-Bases

A rule-base is defined by a rule-base name and a collection of rules, as shown in
Figure 2.4. Each rule description is composed of a rule name and the rule itself. A rule
takes the form of IF-THEN data structure, representing a piece of cause-result
knowledge. Both the IF part and the THEN part of a rule are represented by a number of
patterns linked with logical-and (&). A pattern is described by a predicate using the form
of (p, X1, Xz, ..., X»), Where p is the relation and x,, Xz, ..., X, are terms. Terms are

represented by symbols, numbers, variables, and attributes, as introduced in Section

34

2.3.1. The condition part and the result part of a rule are used for matching, creating,
deleting, and modifying the data in the product databases, including features, attributes,
qualitative relations among features (facts), and quantitative relations among attributes
(functions). In the rule-base shown in Figure 2.4, the built-in predicates, featureType,
assertFeature, and =, are used for matching the class types of instance features, creating
instance features, and adding functions, respectively.

Rule-base: FeatureManufacturingProcess

Rule: DrillingProcess
IF (featureType, 7X, Hole)
THEN (assertFeature, 7Y, Drilling) & (=, d[?Y], d[?X]) & (=, I{?Y], I[?X]).

Rule: ThreadingProcess
IF (featureType, 7X, InternalThread)
‘THEN (assertFeature, 7Y, IntemalThreading) & (=, d[?Y], d[?X]) & (=, I[?Y], I[?X]).

Figure 2.4 A Rule-Base

2.3.2.2 Reasoning with Rule-Bases

In a feature-based database and knowledge base modeling system, the databases are
described by features and the knowledge bases are described by rule-bases. Since usually
a large number of features and rule-bases are used for modeling the development of a
product, a mechanism to select only partial database and knowledge base has to be
developed to improve the computation efficiency. In the feature-based database modeling
system, since an instance feature is composed of element features, attributes, qualitative
relations among features, and quantitative relations among attributes, an instance feature
can be selected as such a partial database considered in knowledge-based inference. The
partial knowledge base considered in inference is the rule-bases selected from the rule-
base library for the selected instance feature. Therefore, each instance feature is

associated with a number of selected rule-bases. This idea is illustrated in Figure 2.5.

The product modeling using knowledge-based reasoning approach starts with
selecting an instance feature as the active instance feature. For this active instance, a
number of rule-bases are selected from the rule-base library. All the rules in the selected

35

rule-bases are registered in the active instance feature. The inference is carried out first

by matching the condition parts of all the registered rules with the active instance feature
database. If multiple rules are matched, the best rule is selected and the result part of this
rule is executed. In this research, the first matched rule is considered the best rule to be

fired. This matching/execution process is carried out continuously until no rule can be

matched.
Database Knowledge Base
Rule-base: ThreadHoleDesign
Rule: rt IF...THEN...
Selected Rule-Bases:

Rule-base: ThreadHoleDesign
Rule: rl [F...THEN...
Rule: r2 [F...THEN...

Rule-base: DrillingProcess
Rule: rl IF... THEN...
Rule: r2 IF...THEN...

L~1 Rule: 2 IF..THEN...

Rule-base: DrillingProcess
Rule: rl1 IF...THEN...

L~ Rule: r2 IF...THEN...

Rule-base: ThreadingProcess
Rule: rl IF..THEN...
Rule: 2 IF...THEN...

......

Figure 2.5 Selection of Partial Knowledge Base and Database for Reasoning

36

CHAPTER 3

DISTRIBUTED PRODUCT DATABASE AND KNOWLEDGE BASE
MODELING

This chapter introduces the distributed feature-based product database and
knowledge base modeling system. Following the introduction of Section 3.1, the
architecture of the distributed database and knowledge base modeling system is presented
in Section 3.2. Section 3.3 provides a detailed discussion on distributed database
modeling. First, the concepts of virtual features including virtual class features and virtual
instance features are introduced. Then, the methods for associating the distributed
databases by defining relations among true features and virtual features are described. For
automatic data dependency relation maintenance, an algorithm for propagating data
changes to related data preserved in accessible remote nodes is given. Section 3.4
discusses issues in distributed knowledge base modeling for product development. These
issues include modeling of virtual rule-bases and the distributed knowledge-based

inference.

3.1 Introduction

Conventional product development follows sequential procedures from marketing,
design, manufacturing, and assembly to shipping and service. The life-cycle performance
of the product designed using this approach is not optimal because of insufficient
information exchanges among these life-cycle development activities during the design
process. Concurrent design approach considers relevant product development processes
concurrently. Since there are mutual information flows between design and related down-
stream development processes, the product design using concurrent engineering
methodology improves life-cycle performance of the product. The different product
development activities are usually geographically distributed. With the increasingly
competitive global market, incorporation of the geographically separated product

development resources is required to improve the overall performance of the products.

37

The Internet technique provides a unique tool for integrating distributed computer
systems. It allows people and computer systems to communicate dynamically in a global
computing environment. The low cost of connecting to an Internet service also makes it
advantageous to use the Internet as the medium for connecting product development
activities. In this research, the distributed product development activities are associated

using the Internet.

3.2 Distributed Product Database and Knowledge Base Modeling Architecture

To develop the distributed product database and knowledge base modeling system,
two issues have to be addressed: modeling of product development activities, and the

association of these activities.

3.2.1 Product Development Life -Cycle Activity Modeling

The product modeling technique is important to the effectiveness of computer-based
product development systems. To incorporate concurrent design methodology, modeling
of product development activities at different development phases such as design,
manufacturing, recycling, etc. is required. These activity descriptions are used for
modeling both geometric and non-geometric properties of products. In this research,
feature-based modeling technique is employed [Shah and Rogers 1988, Xue et al. 1999,
Yadav 1999). The feature-based modeling approach was introduced in Chapter 2.

In this research, modeling of activities of the product development life-cycle is
emphasized. Typical activities include marketing, design, manufacturing, service, and
recycling [Singh 1995]. The features employed for modeling the product development
processes are described at two levels: class level and instance level. Class features
represent generic product development libraries. Instance features are actual databases of
specific product development activities. Instance features are created using class features
as their templates. Figure 3.1 illustrates the class features and instance features for
modeling shaft-manufacturing process.

38

Class Feature: ShaftProcess Class Feature: TurningProcess
Element-features: Attributes:
TTurningProcess: TurningProcess cost{ ?self]
?GrindingProcess: GrindingProcess | | Class Feature: GrindingProcess
Attributes: Attributes:
cost[self], cost[7self]
Attribute-relations: | N 1 ...
cost[2self] := cost{?TumingProcess]+
cost[?GrindingProcess]
Instance Feature: shaftProcess| Instance Feature: turningProcess|
Element-features: Attributes:
TTumingProcess: turningProcess| cost[turningProcess1]=20
7GrindingProcess: grindingProcessl | o V|
Autributes:
cost[shaftProcessli],
Atutribute-relations: Instance Feature: grindingProcess]
cost[shaftProcess!] := cost{turningProcess 1]+ Auributes:
cost[grindingProcessl1] cost[grindingProcess1]=30,

== Class Feature — Instance Feature Relation = Feature — Element Feature Relation

Figure 3.1 Modeling of a Shaft Manufacturing Process

Since the product development life-cycle activities are described using features
preserved at different locations, modeling of the relations among these activities must be
incorporated into the developed system. Details about the relation modeling are
introduced in Section 3.3.

3.2.2 The Client-Server Communication Architecture

The integration of distributed product development models is accomplished through
the Internet. The integrated system is an Internet-based computer network system. One
common architecture for a computer network has at least three basic components
[McCarty and Cassady-Dorion 1999]: a client, a server, and the network itself, as shown
in Figure 3.2.

Usually there are many clients in a computer network. The network associates the
clients with the server. The clients are usually operated by users to request information
from the server. A server holds resources needed to satisfy the client requests. Clients’

39

requests flow through the network to the server, and the server’s responses flow across
the network to the clients. In this research, the Internet is the medium for connecting the

Client < Network >| Server

Figure 3.2 Three Basic Components of a Computer Network

clients and the servers.

In product development with concurrent design methodology, information flows in
multiple ways among the different development processes at different locations. This
requires the computer, used for modeling product development activities in certain
phases, to be both a client and a server. In such cases, client and server become roles in a
logical sense rather than physical devices. Therefore, not only can a server have many

clients; a client can also connect to many servers.

The computers connected to the Internet can be called Internet nodes. In this research
project, communication among the Internet nodes is implemented using socket-based
client-server architecture [Hahn and Stout 1994]. Sockets are computer programs that let
you send and receive messages among networked computers. As a data exchange tool,
sockets are simple to use and operate efficiently. The concurrent design methodology
requires that information flow in and out of the Internet nodes. Therefore, each node can
be a client or a server depending on the direction of information flow during product
modeling processes. So all the Internet nodes run both client side and server side socket

programs, in terms of sending and receiving messages.

In the example shown in Figure 3.3, all computers at different locations are
connected to the Internet. Each node can run both a Smalltalk server socket and a client
socket. A node, (e.g., the node B), can be both a server and a client. While the server
socket of node B is running, the other nodes A, C, and D are then the clients of node B,

so they can request information from node B. The node B can also request information

40

from other nodes. On such occasions, all other nodes A, C, and D are servers of node B,
and node B is a client.

Node: A Node: B
Smalltalk Server Socket Smalltalk Server Socket
Smalltalk Client Socket Smalltalk Client Socket
Internet
Node: C T Node: D T
Smalltalk Server Socket Smalltalk Server Socket
Smalltalk Client Socket Smalltalk Client Socket

Figure 3.3 Logical Clients and Servers
3.2.3 Architecture of the Distributed Database and Knowledge Base Modeling System

The architecture of the distributed database and knowledge base modeling system is
shown in Figure 3.4. In this architecture, different databases and knowledge bases used
during different product development phases, including marketing, design,
manufacturing, etc., are modeled at different locations represented as nodes, such as
Marketing1, Marketing2, Design1, and so on. Since the databases and knowledge bases
are linked by the Internet, these nodes are also called Internet nodes. During the product
development process, the database and knowledge base accessibility relations among
these nodes are first defined for collaboration in concurrent design. When node A is
defined to be able to access node B, all the data and knowledge in node B can be used in
node A automatically. Since the distributed database and knowledge base modeling
method associates different product development activities at different locations into an
integrated environment, this approach can evaluate down-stream product development

aspects curing the early design stage, thus improving product development efficiency and

41

quality.

Manufacturingl

«fi=ip- DB/KB Accessibility s Internet Connection

Figure 3.4 Architecture of the Distributed Database and
Knowledge Base Modeling System

In the example shown in Figure 3.4, the Marketing1 node and the Design1 node are
defined to be mutually accessible. When certain requirements for products are identified
from customers at the Markerting! node, these requirements are then used as the
guidelines for creating and improving product designs at the Design1 node. The designs
are then evaluated at the Marketing1 node to see whether the customer requirements have
been satisfied. If a design created at Designi node doesn’t satisfy the customer
requirements at Marketing1 node, the accessibility relation between Marketing! node and
Design1 node is removed. A new accessibility relation between Marketingl node and
Design2 node can then be established to generate another candidate at Design2 node to
satisfy the customer requirements at Marketing1 node. The design node Design1 is linked
with two manufacturing nodes Manufacturingt and Manufacturing2 for evaluating the

manufacturability of the design and using the evaluation measures to improve the design.

Each node in the Internet is specified by its address and port number. A node address
can be described either by an Internet Protocol (IP) address, such as 136.159.105.72, or
by a standard address, such as m72.enme.ucalgary.ca. A port number is a 16-bit digit,

42

such as 9876. Examples of Internet node definitions are shown in Figure 3.5.

Node: Manufacturing]
Address: lowcostmfg.com

Node: Marketingl Node: Designl Port: 9876
Address: self a—p Address: smartdesign.com
Port: 9876 Port: 9876

{Node: Manufacturing2
Address: qualitymfg.com

Node: Marketing2 Node: Design2 | — | Por: 9876
:ddms: self Address: quickdesign.com
ort: 9878 :
| Por: 9877 Node: Manufacturing3
Address: greenmfg.com
Port: 9878

44— Accessibility Relation
Figure 3.5 Definitions of Internet Nodes

When a node A is defined to be able to access node B, all the data and knowledge
preserved in node B can be used by node A automatically. The data and knowledge in
" node B are considered as virtual data and knowledge in node A. This idea is illustrated in
Figure 3.6. The database and knowledge base accessibility relation between two nodes is
implemented using client-server communication architecture. In this architecture, a node
to access other nodes is a client that sends messages to the accessible nodes for obtaining
the information of available data and knowledge preserved in these accessible nodes, and
a node to be accessed by other nodes is a server that responses messages from the client

nodes for providing available data and knowledge to these client nodes.

i\focssiblc @ g ‘lj_u,_l

Node: Designl (Server) Node: Manufacturing1 (Client)

[C] TrueDBKB {1 Virual DB/KB
Figure 3.6 An Accessibility Relation between Two Nodes

Distributed database and knowledge base modeling architecture is employed to link
the feature-based product development life-cycle activities into an integrated

environment to improve the product development efficiency. Details regarding the

43

feature-based distributed database modeling and knowledge base modeling will be given
in Sections 3.3 and 3.4.

3.2.4 Node Definitions and Node Connections

The Internet serves as the tool for connecting the Internet nodes involved in this
distributed product database and knowledge base modeling system. For socket-based
client—server communication, both Internet addresses (Standard addresses or IP
addresses) and port numbers are required to identify the target programs running on
different computers. Before communication can be conducted among Internet nodes, the
corresponding addresses and port numbers of these Internet nodes have to be defined
first. In this distributed database and knowledge base modeling system, two browsers, the
Intemet Node Definition Browser and the Node Connection Browser, are used to

handle node definitions and connections.

3.2.4.1 Definition of Internet Nodes

The Internet nodes are defined by their Internet addresses and port numbers. The
Intemet Node Definition Browser is used for defining the Internet nodes involved in
the product development processes. Hardcopy and views of this browser are shown in
Figure 3.7 and 3.8. There are three views in this browser: A, B, and C. A is the category
list view, B is the node name list view, and C is the text view. The categories of the
nodes are listed in the category list view. The nodes are grouped in the categories. When
one of the categories is selected, the nodes in that category are shown in the node name
list view. When a node name in the node name list view is selected, the node
descriptions, including node name, address, and port number are shown in the text view.
The text view is a text editor for editing the node information, including the node name,
address, and port number.

The menus of these views are also shown in the Figure 3.8. The commands of these

menus are mainly used for editing, adding, and deleting node definitions.

Feature
ThreeDFeatures
DoorDesign
[MechanicalApplication
Power-Sieving-System
ConcurentDesign
j|MotionTransfer

FlatSieve

Address: m70.enme.ucalgary.ca
Port: 3486,

MT

Figure 3.7 A Snapshot of the Internet Node Definition Browser

Internet Node Definition Browser
Mechanical Application Designl
Design2
Add
A Remove B
Designl JCut
Copy
Address: m70.enme.ucalgary.ca Paste
Port: 6789 Accept
C ...

Figure 3.8 Configuration of the Internet Node Definition Browser

The typical procedure for defining an Internet node is:

a. Create a new category by selecting Add command of the category list view

menu, or select an existing category.

45

b. Under this selected category, edit the descriptions of a node, including node
name, address, and port number, following the required format in the text view.
Select Accept menu item to save the edited descriptions. The node name will
appear in the node name list view.

3.2.4.2 Connection of Internet Nodes

Connecting and disconnecting a node are accomplished through the Node
Connection Browser. This browser, as shown in Figure 3.9 and 3.10, allows the user to
connect the local node to remote nodes by highlighting a node name and clicking
Connect in the menu. If the connection is successful, the letter “C”, representing

Connected, appears after the node name in the node name list view. Before a node can be

R

Fe | BeltDrive .
§lThreeDFeatures BeltDriveMfgA (C)

1|DaarDesign BeltDriveMigB
‘{|IMechanicalApplication CylinderSieve
Power-Sieving—-System CylinderSieveMIgA
ConcurentDesign CylinderSieveMfgB
‘f[MotionTransfer FlatSieve (C)
FlatSieveMfgA
windows-Daors-Design FlatSieveiMfgB
’ GearPair
GearPairMfgA
GearPairMfgB
; Requirement (C)

Figure 3.9 A Snapshot of the Node Connection Browser

Node Connection Browser

A

Mechanical Application 3::::; Connect
Disconnect
: Start as server
End as server

Figure 3.10 Configuration of the Node Connection Browser

46

connected to a server node, the server program in that server node must be executed. A
server process can be started by clicking on Start as server in the menu. There are two
views in this browser: A — the category list view, and B - the node name list view.
These views are identical to the ones in the Intemet Node Definition Browser. When a
category in the category list view is selected, node names in that category are listed in the
node name list view. Those nodes that have been already defined in the system are ready

to be connected.

3.3 Distributed Feature-Bas ed Database Modeling

In the distributed feature-based database modeling approach, the class features and
instance features at accessible remote nodes are considered as virtual class features and
virtual instance features at the local node. Virtual class features can be used for
generating instance features at the local node. Virtual instance features are considered as
part of the database at the local node and can be accessed from the local node. By
defining the dependency relations among the data distributed at different locations, the
consistency of the product development databases can then be maintained using these

relations.

3.3.1 Virtual Features

In this research, databases for modeling product development activities are described
by features. These features are modeled in different Internet nodes at different locations.
When node A is defined to be able to access node B, the features preserved in node B are
considered as virtual features in node A. Virtual features are of two types: virtual class
features and virtual instance features.

3.3.1.1 Virtual Class Features

Virtual class features are class features preserved in accessible remote nodes. They
represent generic libraries of different product development life-cycle aspect databases.
During the product development processes, the instance features, representing the actual

product databases, are generated, using corresponding class features as their templates. If

47

the required class features cannot be found at the local node, virtual class features at
accessible remote nodes can be used for generating the true instance feature at the local
node. This characteristic can improve the efficiency of product development by sharing

library resources among all accessible Internet nodes.

A virtual class feature is defined by the node name and the class feature name in the
form of:
<node name>%«<class feature name>

The concept of virtual class features is illustrated in Figure 3.11. The class feature
Shaft in node A is described as A%Shaft in node B. The three class features in node A
are considered as virtual class features in node B.

Node: A Node: B

Class Features: Class Features: Virtual Class Features:
Shaft Accessible DrillingProcess A%Shaft
Hole l@———| ThreadingProcess A%Hole
InternalThread TurningProcess A%InternaiThread

Figure 3.11 Virtual Class Features

Virtual class features in remote nodes can be displayed in the Class Feature
Browser, by executing the Display Virtual Class Features in the menu of feature list
view as shown in Figure 3.12. The Class Feature Browser is a previously developed
browser, but more functions, such as displaying virtual class features, are added. Detailed
descriptions about this browser are given in [Yadav 1999].

3.3.1.2 Virtual Instance Features
Virtual instance features are instance features preserved in the accessible remote
nodes. They are part of the databases for modeling specific product development
activities. Similar to virtual class features, a virtual instance feature is named in the
following format:
<node name>%<instance feature name>

48

Class Feature Browser

Catc’gory Feature Element Element
-~ List List Aspect Name
View View List List
View View
—
______ Text View
Display Virtual Class Features

Figure 3.12 The Views in the Class Feature Browser

For example, an instance feature pulleyl preserved in node A is described as
A%pulley1 in node B (Figure 3.13). The virtual instance features at remote nodes
accessible from the local node are considered as part of the database at the local node. By
associating remote databases with the local database for modeling a product, the different
product development processes can be integrated into the same environment. Such

integration is necessary for implementing concurrent design using distributed databases.

Node: A Node: B

Instance Features: Instance Features: Virtual Instance Features:
beltDrivel Accessible gearPairl A%beltDrivel
pulleyl «————— | gearl A%pulleyl
pulley2 gear2 A%pulley2

Figure 3.13 Virtual Instance Features

In Figure 3.13, node A has instance features for modeling a pulley-belt drive
mechanism and node B has instance features for modeling a gear pair mechanism. At
node B, if a motion transfer mechanism consisting of both a gear pair and a pulley-belt
drive needs to be modeled, then the true instance features gearPairt, gear1, gear, etc.

49

and the virtual instance features A%beltDrive1, A%pulleyl, A%pulley2, etc. are
associated by defining their relations among the databases preserved in these two nodes.

All virtual instance features in the accessible remote nodes, including their attributes,
attribute relations, feature relations, etc., can be displayed in the instance Feature
Browser. The configuration of this previously developed browser, as shown in Figure
3.14, remains unchanged. The menus in this browser are modified to accommodate more
commands such as Display Virtual Instance Features that is used to view the instance
features preserved in all accessible remote nodes. The attributes of the virtual instance
features are described in the format of

<attribute name>[<virtual instance feature name>}

For example, the attribute length of instance feature shaft1 in a remote node called
ShaftDesign is described at the local node by:

length[ShaftDesign%shaft1]

Instance Feature Browser
Category Feature Element Element
List List Aspect Name
View View List List
View View

Text View

Figure 3.14 The Views in the Instance Feature Browser

3.3.1.3 Generation of Instance Features from Virtual Class Features
In this distributed database and knowledge base modeling system, a virtual class
feature can be used to generate a true instance feature at the local node. The instance

features generated from the virtual class features are treated in the same manner as those

50

generated from the true class features. In other words, they are truly part of the database
in the modeling processes.

A local true instance feature is an object that contains data and operations that are
necessary for modeling the products or the product development activities. In this
feature-based modeling system, the class features are translated into Smalltalk classes, so
the instance features are actually instances of Smalltalk classes. Therefore, the
operations, such as instance methods defined in class features, can be inherited by the
instance features.

For generating a true instance feature using a virtual class feature preserved in a
remote node, a special class feature, called VirtualClassFeature, is predefined in the
system. An instance feature of this class feature is actually an empty instance with the
same structure as a regular true instance feature. This instance feature is then filled with
descriptions from the corresponding class feature and its super-class features in the
remote node. The descriptions are obtained by sending a message from the local node to
the remote node. Then the descriptions in that class, including those inherited
descriptions from super-classes, are copied to the empty instance feature at the local
node. In this way, all the descriptions defined in the virtual class feature and its super-
class features are inherited into this generated true instance feature automatically. During
the product development process, when an instance feature requires the information from
its virtual class feature, a message is sent from the local node (client) to the remote node

(server) using the client-server communication architecture.

Figure 3.15 illustrates the process of generating a true instance feature using a virtual
class feature. The class feature Gear in node Design1 is used to generate a true instance
feature gear1 in node Design2. First, the built-in class feature VirtualClassFeature is
selected to generate an empty instance feature geari which has the same structure as
those regular instance features. In other words, gear1 has all built-in aspects such as
Element-features, Attributes, Attribute-relations, Feature-relations, etc., but there
are no elements or descriptions in these aspects at this moment. When
VirntualClassFeature is used to generate an instance feature, the class feature name

51

Node: Designl Node: Design2
Class Features: Gear Class Features: VirtualClassFeature
vee Instantiation vee Instantiatio
Instance Features: : InstanceFeatures:
ro==e==- A g -
gmpgearl: Gear ' earl: VirtualClassFeature
) Element-features ¢ J\ Element-features
i Attributes Auributes
E;\mbute-reh}uons Copy elements Attribute-relations
; eature-relations E l/ Feature-relations
O '
g A

H i Temporary Instance Feature

Figure 3.15 Generation of a True Instance Feature from a Virtual Class Feature

Gear and the node name Design1 are requested from the user and recorded as instance
variable values of the newly generated instance feature. A message is then sent to the
remote node Designi to ask that node to generate a temporary instance feature
tmpgear1 from class feature Gear. After tmpgear1 is generated, the elements and
descriptions in all the aspects are copied back to the empty instance feature geari in
node Design2. Since tmpgear1 inherits all descriptions from class feature Gear and its
supér-class features, the instance feature gear1, a copy of tmpgear1, in node Design2
inherits all descriptions from virtual class feature Design1%Gear and its super-class
features. The temporary instance feature tmpgear1 is then removed from node Design1.
Except for the entering of the node name and the class feature name, this process of

generating a true instance feature from a virtual class feature is conducted automatically.

3.3.2 Modeling Database Relati ons

One of the objectives of this research is to associate the different databases at
different locations into an integrated environment. The distributed computers, which
contain databases for modeling different product components or different product
development activities, are connected together through the Internet. The generic relations
of the databases, i.e., the relations among the true instance features and the virtual

52

instance features, also need to be defined so that these distributed databases are integrated
effectively.

In this research, the relation between a virtual instance feature and a true instance
feature is modeled by defining the virtual instance feature as an element feature of the
true instance feature. The relation can be created at two different levels: class feature

level and instance feature level, respectively.

3.3.2.1 Modeling Database Relations at Class Feature Level

Creation of a relation between a virtual feature and a true feature at class feature
level is conducted by introducing a virtual element-feature. A virtual element feature in a
class feature is defined by an clement-feature variable and its class type called
VirtualinstanceFeature, as shown in Figure 3.16. VirtuallnstanceFeature is a built-in
class feature used specially for modeling relations among true features and virtual

features.
Class Feature: Hole Instance Feature: hl
Element-features: Element-features:
7TProcess: VirtuallnstanceFeature A".Proces'b s: mfgdrillingl
Attributes: Instantiati tributes:
d[7self], I[2self] | dmil=20,1h11=40
Feature-relations: Feature-relations: o
(process, ?self, 7Process) (pr_oc&ss. hi ._mfg%dnllmgl)
Attribute-relations: AIMbule-rc}aflons:
d[7Process] := d[?self] d[mfg%drilling1] :=d[h1]
1[7Process] := I[?self] I[mfg%drillingl] :=1[h1]

d: diameter I: length

Figure 3.16 Relations among True and Virtual Instance Features Defined at
Class Feature Level
In the example shown in Figure 3.16, the virtual instance feature is associated with
an element feature variable ?Process which represents a manufacturing process feature.
The diameter attribute, d, and the length attribute, I, of this virtual feature are calculated
using the attributes of the true feature. When the class feature Hole is used to generate the
instance feature h1, the user is asked to enter the virtual instance feature name, including
the node name (e.g., mfg) and the instance feature name (e.g., drilling1). All the variables

53

related to the virtual element feature in the class feature definition should be replaced by
the actually created virtual instance feature name as shown in Figure 3.16. When the
attribute values at the current node are changed, the relevant attribute values at the remote
nodes should also be updated using these relations. Details regarding the maintenance of
the data dependency relations in the distributed database modeling system will be
discussed in Section 3.3.3.

3.3.2.2 Modeling Database Relations at Instance Feature Level

Modeling of relations among true and virtual instance features at instance feature
level is conducted by adding an element-feature, representing a virtual instance feature, to
the current instance feature. In the example shown in Figure 3.17, an instance feature h1
with two attributes is first created. The virtual instance feature, mfg%.drilling1, is then
added to the instance feature h1 as an element-feature. Subsequently, feature relations
and attribute relations are added. So the relations between true instance feature h1 and
virtual instance feature mfg%drilling1 are established.

Instance Feature: hl Creation of Instance Feature: hl
Attributes: Relations Element-features:
d[hi]=20, I[h1}=40 among True and 7Process: mfg%kdrillingl
Virnual Instance | Attributes:
Features d(h1]=20, I[h1]=40

Feature-relations:
(process, hl, mfgdrillingl)
Attribute-relations:
d[mfg%drillingl] := d[hl]
I[mfg%drillingl] := 1[h1}

d: diameter 1: length

Figure 3.17 Relations among True and Virtual Instance Features Defined at
Instance Feature Level

3.3.3 Maintenance of Dependency Relations among Distributed Data

In the product development process using concurrent design methodology, the
databases at different locations are used to model the different development life-cycle

aspects of the same product. The product development life-cycle covers marketing,

54

design, manufacturing, maintenance, and so on. The product design, modeled by a
feature-based database in this research, should be dynamically evaluated by the
performance of this design in down-stream life-cycle phases. In other words, any change
of the data in one product lifecycle aspect should be propagated to other aspects
automatically according to the data relations defined in the databases.

In the example shown in Figure 3.18, a relation has been defined between instance
feature shaft! and virtual instance feature ShaftMfg%shaftProcess1. During
concurrent design process, if the value of length attribute [[shaft1] in node ShaftDesign
is modified, the attribute relation

I[ShaftMfg%shaftProcess1] := I[shaft1]

defined in ShaftDesign will lead to the change of the attribute [[shaftProcess1]’s value
in node ShaftMfg. The value of attribute cost[shaftProcess1] is automatically modified
based upon the updated value of I[shaftProcess1]. The value of cost[shaftProcess1] is
then propagated back to node ShaftDesign using attribute relation

mfgCost[ShaftDesign%shaft1] := cost[shaftProcess1]

to update mfgCost[shaft1]. The value of mfgCost[shaft1] can be used as one of the
measures to evaluate the manufacturability of the shaft design.

Node: ShaftDesign Node: ShaftMfg
Instance Feature: shaftl Instance Feature: shaftProcess!
Element-features: Element-features:
7Process: ShaftMfg%shaftProcessl TTumingProcess: tumningProcess!
Attributes: Auributes:

d[shaft1]=30, I[shaft1]=400, mfgCost{shaft1]}=20 d[shaftProcess1}=30
Attribute-relations: $ I[shaftProcess1]=400

d{ShafiMfg%shaftProcesst] := d[shaftl} = cost{shaftProcess1]=
I[ShaftMfg%shaftProcess1) := I[shaftl} == % | Attribute-relations:
...... d[tumingProcess1] := d[shaftProcess1]
\ l{turningProcess1] ;= IshaftProcess1)
N cost[shaftProcess]] := cost{turningProcess1)
d: diameter I: length MmfgCost[ShaftDesign%shaft1] := costfshaftProcessl]

Figure 3.18 Attribute Propagation Process

55

In this research, a mechanism to maintain the dependency relations of distributed
attributes has been developed.

3.3.3.1 An Algorithm for Maintaining Distributed Data Dependency Relations

Maintenance of the attribute dependency relations within one Internet node is carried
out using the algorithm introduced in Section 2.3. When the attribute values of virtual
instance features are changed, the attribute dependency relation maintenance mechanisms
in these remote Intermet nodes are then activated to propagate the change using the
attribute relations defined in these nodes. This process is carried out continuously until all
the relevant attributes in these nodes are updated. The propagation of the attribute value
changes is started from a selected Internet node. The algorithm for calculating attribute
change propagation at one Internet node to keep the consistency of the distributed
database is formulated in the following steps.

Step 1: Identify all the attributes, including true attributes and virtual attributes, whose
values have been changed at the current node. Use the attribute dependency
relation maintenance mechanism introduced in Section 2.3 to update the change

of attribute values uvsing the attribute relations defined at the current node.

Step 2: Obtain all the attributes of the virtual instance features whose values have been
changed in Step 1. When such attributes can be found, jump to Step 3. When no
such attributes exist, if the current node is the one selected for starting the
calculation of the attribute change propagation, the calculation should be
terminated. If the calculation is initiated from another node, return a nil value to
this node to resume calculation at this remote node and terminate calculation at
the local node.

Step 3: Group all the changed virtual attributes according to their nodes. When no
changed virtual attribute is in the node from which the execution is initiated,
return a nil value to this node to resume the calculation at this node. For each

remote node, take the following steps:

56

(a) If the execution of the current attribute dependency relation maintenance
mechanism is initiated from that node, the collection of the changed virtual
attributes should be sent back to this node as the return value to resume the
execution of the attribute dependency relation maintenance mechanism at
that node.

(b) If the node is not the one from which the execution is initiated, send a
message to the node to inform the changed attributes and activate the
calculation using the attribute dependency relation maintenance mechanism
at this remote node. Suspend execution of the attribute dependency relation
maintenance mechanism at the local node to wait for the execution result

from the remote node.
Step 4: Go to Step 1.

The attribute change propagation calculation is started from one node. Since each
node is associated with an attribute dependency relation maintenance mechanism,
execution of these mechanisms at these nodes can be conducted simultaneously.
Therefore, the distributed attribute dependency relation maintenance mechanism has the
nature of concurrent parallel computing. When no contradictory relations exists in the
distributed attribute relation network, the consistency of the distributed attribute relations

can be maintained.

In this algorithm, a node reacts firstly to the message received first. When a large
number of nodes and large amount of information are involved in the product
development process, a more robust coordination mechanism is required to handle the
messages and coordinate the actions among the distributed Internet nodes. An intelligent
agent can be used for this task. The coordination and cooperation of the distributed
Internet nodes should be improved in future studies.

57

3.3.3.2 An Example of Attribute P ropagation Process

This algorithm to maintain the consistency of the distributed database is illustrated
using an example shown in Figure 3.19. In this example, the attribute at in node A is
changed at the very beginning. The calculation is conducted through the following steps:

(O A True Auribute () A Virtual Auribute

Figure 3.19 Maintenance of the Distributed Database

1. Atnode A, since al is the attribute whose value has been changed, function f1 is then
activated to update the change to the attribute a2. Because a2 is a virtual attribute
preserved in node B, a message is then sent to node B to activate the calculation at

node B. The node A changes to the mode to wait for the execution result from node B.

2. Atnode B, since a2 is the attribute whose value has been changed, functions f2 and f3
are then activated to update the change to attributes a3 and a4. Because a3 and a4 are
virtual attributes preserved in node C and node D respectively, messages are then sent
to node C and node D to activate the calculation at these two nodes. The node B
changes to the mode to wait for the execution results from node C and node D. A

message is also sent to node A with a nil value.

3. At node A, a message nil is received from node B and the execution at node A is

terminated.

4. At node G, since a3 is the attribute whose value has been changed, function 4 is then
activated to update the change to attribute a5. Because no virtual attribute is changed,
a message with return value nil is sent to node B and the calculation at node C is
terminated.

58

5. Atnode D, since a4 is the attribute whose value has been changed, functions 5 and 6
are then activated to update the change to attributes a6 and a7. Because a7 is a virtual
attribute preserved in node B from which the execution is initiated, a message with
return value of a7 is sent back to node B and the calculation at node D is terminated.

6. At node B, a message with return value nil is received from node C and a message
with return value of a7 is received from node D. Since a7 is the attribute whose value
has been changed, function f7 is then activated to update the change to attribute a8.
Because a8 is a virtual attribute preserved in node A, a message is then sent to node A
to activate the calculation at node A. The node B changes to the mode to wait for the

execution result from node A. -

7. Atnode A, since a8 is the attribute whose value has been changed, function f8 is then
activated to update the change to attribute a9. Because no virtual attribute is changed,
a message with return value nil is sent back to node B and the calculation at node A is

terminated.

8. At node B, a message nil is received from node A and the execution at node B is

terminated.

3.4 Distributed Knowledge B ase Modeling

To improve the efficiency of the product modeling process, a rule-based inference
mechanism is employed to help designers to modify the product databases. In the feature-
based database and knowledge base modeling system, each instance feature is associated
with a number of rule-bases as introduced in Section 2.3 to improve the inference
efficiency by considering only partial database and knowledge base. In this research, this
idea is extended to the distributed database and knowledge base modeling.

In one node, if a rule-base is selected for the active instance feature, the name of this
selected rule-base is then registered in the active instance feature. During the reasoning

process, all rules in the selected rule-bases are used in inference. A previously developed

59

Rule-base Browser is used to define rule-bases [Yadav 1999]. This browser remains
unchanged except for adding a command in the menu for displaying virtual rule-bases.

Like product database modeling, product knowledge bases are modeled at different
locations. To use knowledge preserved in remote nodes for product development, the
concept of virtual rule-bases, i.e., the rule-bases defined in accessible remote nodes, is
introduced. A mechanism of distributed inference is also developed to handle the
distributed databases. .

3.4.1 Virtual Rule-Bases

When a node A is defined to be able to access another node B, all the rule-bases
defined in node B are then accessible from node A. The rule-bases defined in accessible
remote nodes are called virtual rule-bases. A virtual rule-base is described in the
following format:

<node name>%<rule-base name>
For example, a rule-base GearDesignRules in node B is described in node A by:
B%GearDesignRules

During the product development process, virtual rule-bases can also be selected for
reasoning together with the selected true rule-bases at the local node. This idea is
illustrated in Figure 3.20.

Node: Designl Node: Manufacturingl
‘eatures . Instance Features Rule-B

Sg:cmt:dcekflle-Bases Rule-Bases Scl:ctedceRule-Bascs wle-mases
: a2 dil 1 a2 |
<é\ E Accessible @E [d2] ;L_—} EL——Ji
[a3] [r |m1||m2|

2 || 44 fpq [] [m3 m3 | [ma
(m3][m |

] VimalDB/KB [] TrueDB/KB

Figure 3.20 Virtual Rule-Bases

60

Generally the virtual rule-bases are those preserved in the remote nodes and can be
selected to access the data in this active instance feature at the local node through
knowledge-based inference. When a virtual rule-base is selected, all the rules in this rule-
base are then copied to and registered in the active instance feature of the local node.

During the process of product development through knowledge-based reasoning,
both the true rule-bases and the virtual rule-bases selected for the active instance features
are used as the knowledge to access the data represented by active instance features at the
local node.

In the example shown in Figure 3.20, the node Design1 is accessible from the node
Manufacturing1. The rule-bases, d1, d2, d3, and d4 at node Design1 are virtual rule-bases
at node Manufacturing1. In node Manufacturing1, the virtual rule-base, d3, and true rule-

base m3, are selected to join the reasoning at the local node.

The virtual rule-base modeling mechanism allows engineers to improve the
efficiency of product development through sharing distributed knowledge bases. The
characteristics of this distributed knowledge base modeling approach are summarized
into the following two aspects.

(1) By using virtual rule-bases at the local node, the standard knowledge at a remote
node can be “borrowed” to the local node. This mechanism allows the different
knowledge bases to be modeled at different places. During the process of
product development, when certain types of knowledge are required, the system
then identifies the locations of the required knowledge and introduces the
required knowledge for the product currently under development at the local
node. This mechanism can also solve the problems of knowledge representation
redundancy due to the fact that the same knowledge is described in many places.
The introduced knowledge at the local node is dynamic in nature, i.e., when the
accessibility relations among the nodes are changed, the virtual rule-bases at the
local node are then removed.

61

(2) By using virtual rule-bases, all the knowledge used in different product

development phases can be integrated into the same environment. The rule-base
used by a down-steam phase of product development can be integrated into the
current phase by selecting this virtual rule-base. This approach can result in
better design databases in terms of the performance of the design in down-steam
development life-cycle. When the knowledge in different knowledge bases is in
conflict, the conflict can be resolved either by changing the introduced
knowledge bases at different locations, or by modifying the accessibility
relations among the Internet nodes to change the product development

alternatives.

3.4.2 Selection of Virtual Rule-B ases

The selection of rule-bases, including true rule-bases and virtual rule-bases, is

conducted using the Rule-Base Selection Browser shown in Figure 3.21 and 3.22.

Rule-base selection is a process of selecting relevant reasoning rules for the active

1ICylinderSieveDesign
jiCylinderSieveiing
: DoorDesignRules

| VImaISeed.edeeBes "

Figure 3.21 A Snapshot of the Rule-Base Selection Browser

62

instance features. Therefore this browser contains information from both Instance
Feature Browser and Rule-Base Browser. In this browser, the Instance Feature
Category List View and the Instance Feature List View are used to display instance
feature categories and instance features, while Rule-Base Category List View and
Rule-Base List View are used to display rule-base categories and rule-bases. The
Selected Rule-Base List View is used to display the selected rule-bases for the instance
feature highlighted in the Instance Feature List View. Two commands, Select and
Remove, are implemented in the Rule-Base List View and Selected Rule-Base List
View respectively. The command Select is used to add the rule-base highlighted in the
Rule-Base List View to the active instance feature. The command Remove is used to
delete a rule-base highlighted in the Selected Rule-Base List View from the current

active instance feature.

Rule-Base Selection Browser
Instance Feature Category Instance Feature Selected Rule-Base
List View List View List View |
Remove
Rule-Base Category Rule-l?asc
List View List View I—I
Select

Figure 3.22 Configuration of the Rule-Base Selection Browser

For selecting virtual rule-bases, a special category for the rule-bases, namely
VirtualRuleBases, is defined in the Rule-Base Category List View. When the
VirtualRuleBases category is highlighted for rule-base selection, the system will ask for

63

the Internet node name and the rule-base name. After that information is correctly
supplied, the virtual rule-base is selected and its name is displayed in the Selected Rule-
Base List View.

The virtual rule-bases selected are treated the same as those true rule-bases selected
from the local knowledge base library. In this research project, the selection of relevant
rule-bases for product development is conducted manually. Agent-assisted rule-base
selection should be studied in the future to improve the efficiency of knowledge

selection.

3.4.3 Reasoning with Distributed Rule-Bases

In feature-based product modeling system, development of a product can be
conducted through rule-based reasoning. Since the different product aspects are modeled
in different Internet nodes, rule-based reasoning is also conducted in these different

places.

In each Internet node, only partial databases and knowledge bases are selected for
knowledge-based reasoning to improve product development efficiency. The selected
databases are represented by the active instance features, including attributes, qualitative
relations among instance features, and quantitative relations among attributes in
distributed accessible nodes. The selected knowledge bases are represented by both the
selected true rule-bases and the selected virtual rule-bases. These rule-bases are registered

with the active instance features of the accessible nodes.

In the rule-based inference, the condition parts of all the rules in both true rule-bases
and virtual rule-bases are matched with the selected partial database. Among all the rules
whose condition parts have been satisfied, the best rule is selected according to the
conflict resolution strategy, and the result part of the best rule is then executed. In this
research, the first matched rule is considered as the best rule in rule-based reasoning.
Matching of the condition parts and execution of the result parts for a rule in a virtual
rule-base are conducted in the same manner as those of true rule-bases introduced in

Section 2.3.2.

64

Since the rule-based reasoning at one node can result in the changes of the virtual

data at the remote nodes, the executions of the rule-based reasoning mechanisms at these

remote nodes is then required to update the changes. Since the rule-based reasoning in the
different nodes can be conducted simultaneously, the distributed knowledge-based

reasoning mechanism has the nature of concurrent parallel computing.

The algorithm for executing the rule-based inference mechanism at one Internet node

during distributed knowledge-based reasoning is formulated in the following steps.

Step 1:

Step 2:

Step 3:

Use all the rules in the selected the true rule-bases and virtual rule-bases to
access the database represented by active instance features through matching
the condition parts and executing the result parts of these rules.

Obtain all the virtual data that have been changed in Step 1. When such data
can be found, jump to Step 3. When no such data exist, if the current node is the
one selected for starting the rule-based reasoning, the inference should be
terminated. If the reasoning is initiated from another node, return a nil vaiue to
this node to resume inference at this remote node and terminate inference at the
local node.

Group all the changed virtual data according to their nodes. When no changed
virtual data is in the node from which the inference is initiated, return a nil value
to this node to resume inference at this node. For each remote node, do the

following steps:

(a) If the execution of the current rule-based reasoning is initiated from that
node, send the collection of the changed virtual data back to this node as the
return value to resume the execution of the rule-based inference at that
node.

(b) If the node is not the one from which the execution of the rule-based
inference is initiated, send a message to the node to inform the changed data

and activate the rule-based reasoning at this remote node. Suspend

65

execution of the rule-based inference at the local node to wait for the

inference result from the remote node.

Step4: If the data preserved at the current node are changed, due to the inference
conducted at remote nodes, go to Step 1. Otherwise, terminate the execution of

the rule-based reasoning.

This distributed knowledge-based inference algorithm is very similar to the one
introduced in Section 3.3.3 for maintaining the dependency relations among the
distributed attributes. Since knowledge-based reasoning can result in the change of the
attribute values, propagation of the attribute change is then required. The attribute change
propagation can further change the product database, thus resulting in change of the

conditions for rule matching, and the rule-based reasoning is then required again.

3.5 Summary

This chapter presents a detailed discussion on issues in modeling a feature-based
distributed database and knowledge base for concurrent design of engineering products.
To associate geographically distributed product development activities, modeled by
feature-based databases and knowledge bases, the Internet is employed as the media for
connecting the computers used for modeling these databases and knowledge bases.
Information flows among different product development activities that are modeled by
Internet nodes are realized through the socket-based client—server communication

architecture.

To use the remote databases and knowledge bases at a local site, the concepts of
virtual features and virtual rule-bases are introduced. The virtual databases and
knowledge bases are physically located at remote locations but accessible from the local
location. A virtual class feature can be used to generate a true instance feature at the local
node. Virtual instance features are considered as part of the databases required for
modeling product development processes. Virtual rule-bases can be selected for
reasoning together with the true rule-bases selected at local node. The relations among

virtual instance features and true instance features are also modeled.

66

To implement concurrent design, mechanisms for distributed data dependency
relation maintenance and distributed inference are developed. The mechanism for
distributed data dependency relation maintenance serves as the engine to propagate data
changes among the Internet nodes defined. This mechanism can give feedback from the
down-stream development processes if the design data are modified. The mechanism for
distributed inference helps designers to generate and modify geographically distributed
product development databases to improve product development efficiency.

67

CHAPTER 4

CONCURRENT DESIGN BASED UPON DISTRIBUTED DATABASE
AND KNOWLEDGE BASE MODELING

This chapter introduces the development of a product concurrent design system
based on the distributed database and knowledge base modeling approach described in
chapter 3. Following an introduction, Section 4.2 discusses the methods of modeling
product realization processes for concurrent design, including modeling of relations
among Internet nodes and representation of product realization process alternatives.
Section 4.3 introduces methods for identifying the optimal solution from all feasible
product realization process alternatives. Two methods are introduced: the exhaustive
method and the Genetic Programming (GP) method. The optimal parameter values for
each alternative are identified using a global optimization method called Particle Swarm
Optimization (PSO). Section 4.4 introduces this method.

4.1 Introduction

Concurrent design is a methodology in which the related down-stream product
development processes are considered concurrently at the design stage [Hyeon et al.
1993]. To apply concurrent design method in product development using computer-based
systems, the design model and related down-stream development process models must be
integrated to ensure mutual information flows. When the databases used for modeling the
product development processes are geographically distributed at different locations, the
distributed database and knowledge base modeling system introduced in Chapter 3
provides an effective technique for integrating the distributed product development
models.

When the distributed databases are integrated, product concurrent design can then be
achieved by evaluating the design candidates using the down-stream product
development process models. The distributed database and knowledge base modeling
approach introduced in Chapter 3 provides a framework for modeling the different

68

product development processes and their relations. Based on this approach, the design
parameters can be optimized in terms of the product performance in down-stream
development life-cycle phases. The product concurrent design can be conducted by
adjusting the design parameter values and evaluating the design using the feedback from
the related down-stream product development models. To improve the efficiency of
product development, a global optimization method is employed to automate the

concurrent design process in this research.

In today’s global product development environment, alternative processes can be
employed for product development at one lifecycle phase such as design and
manufacturing. For example, there may be two or three Internet nodes that can handle
gear manufacturing independently. By selecting different Internet nodes, different
product realization processes can be obtained. Selection of relevant Internet nodes,
representing different product development life-cycle models, for identifying the optimal
alternative for product development, is one of the issues of the concurrent design to be
discussed in this research. If the number of involved Internet nodes is small, the best
concurrent design solution can be determined by comparing all feasible alternatives. If
the number of involved Internet nodes is large, the optimal concurrent design solution
should be identified using the optimization method.

Figure 4.1 shows the architecture of the concurrent design system developed in this
research. The concurrent design module was developed based upon the distributed
database and knowledge base modeling approach introduced in Chapter 3. This module is
accessed by the Concurrent Design Browser and the Design Solution Browser. The
distributed database and the knowledge base modeling system is composed of the Internet
communication module and distributed database and knowledge base modeling module.

The following sections will discuss the methods for modeling product realization
process alternatives and identifying the optimal product realization process alternative.
The optimization method for identifying the optimal parameter values will also be
introduced.

Concurrent
Design . Concurrent Desi
Design gn
Browser Solution Module
Browser
...... . \
o
Browser |Fcature PR AN
Browser 1 Distributed DBKB
r=" -~4.. Modeling Module
gule- Rule-Base A~
ase Selection ,"
Browser Browser y/ ‘D.
Internet Node R S Internet
Deﬁnmo!Node 7~ TN Communication
i Browser Connection ',' Module
\ Browser r //

DBKB: Database and Knowledge Base
Figure 4.1 Architecture of the Concurrent Design System

4.2 Modeling of Product Realization Process Alternatives

A product realization process alternative is a route of product evolution from design
to down-stream development processes. During concurrent design, the down-stream
product development processes are considered concurrently to improve the performance
of the design in down-stream life-cycle phases. This section discusses issues in modeling

product realization processes.

4.2.1 The Relations among Inte rnet Nodes

The product development activities, such as design and manufacturing, are modeled
by features in this research. In the Internet-based concurrent design system, the activities
for different product development stages are modeled using the features distributed at
different Internet nodes. So the selection of proper databases and knowledge bases for
product development can be regarded as the selection of suitable Internet nodes that are

involved in the concurrent design. Therefore, an Internet node can be used to represent

70

the development activity in a certain phase of the product development life-cycle. For
example, an Internet node may represent design activity and another node may represent

manufacturing activity, and so on.

4.2.1.1 Logical Relations among Internet Nodes

In this research, the logical relations among Internet nodes that represent the
development activities at different stages of the product development life-cycle are
defined as node—sub-nodes relations. These relations follow the sequence of activities in
the product development life-cycle. For example, a manufacturing node is a sub-node of
a design node, since the manufacturing activity usually takes place after design activity.

The relation among the sub-nodes of an Internet node is either an AND relation or an
OR relation. The AND relation means that all these sub-nodes, representing sub-
processes, are required for modeling the development activity at certain stage of the
product development life-cycle. When an OR relation is defined, only one of the sub-
nodes is needed for modeling the required product development activity.

In Figure 4.2 (a), Gear Design represents a design node and Gear MfgA and Gear
MfgB represent two manufacturing nodes. Gear MfgA and Gear MfgB, the sub-nodes of
Gear Design, have an OR relation, which means that either Gear MfgA or Gear MfgB
is required for modeling the manufacturing process of the gear. Figure 4.2 (b) shows two
sub-nodes with an AND relation. Each of the two nodes handles part of the
manufacturing processes: the Gear Casting node handles the casting process and the

Gear Gear
MfgA Casting
e |
Gear C—= —=—
Design
i = Gear
' MfgB ' Mchg
Mfg: Manufacturing i__-l_——[Mchg: Machining —|

(a) Two Sub-Nodes with an OR Relation (b) Two Sub-Nodes with an AND Relation

Figure 4.2 Internet Node Relations

!

Gear Mchg node handles the machining processes. The gear can be produced using the
data and knowledge in both Gear Casting node and Gear Mchg node.

] c[::ylinderSied'nProcessI]_

{1 =714202

Figure 4.3 A Snapshot of the Concurrent Design Browser

4.2.1.2 Creation of Internet Node Relations

To create Internet node relations for identifying the product realization process
alternatives, an interface called Concurrent Design Browser has been developed. A
snapshot of the Concurrent Design Browser is shown in Figure 4.3. The configuration
of the browser is shown in Figure 4.4.

All the Internet nodes are grouped into different categories. The categories are
defined in the category list view. When a category is selected, all Internet node names
defined in that category are listed in the node name list view. A new node can be added to
a selected category. In the aspect list view, five built-in aspects: superNode, subNodes,
andNodes, orNodes, and evaluationFunction, are listed for a selected node. The
clement list view shows the elements: node names or an evaluation function for the
highlighted Internet node. These elements are edited with the use of the text view. For the
example shown in Figure 4.5, the node D2 is defined by

Node: D2

superNode: F
subNodes: M3, M4
andNodes: D1
orNodes:

evaluationFunction: <anEvaluationFunction>

72

After the relations of the involved nodes are defined, the product realization process

alternatives can be generated by executing the menu items of the Concurrent Design

Browser.
Concurrent Design Browser
Category Node Name Aspect List Element List
List View List View View View
I oe |
I_J Remove Copy r—'
All Alternatives
R
Add Optimal Alternative g:stte emove
Remove Start Accent
Rename Continue coep — Text View
Terminate

Figure 4.4 Configuration of the Concurrent Design Browser

4.2.2 Representation of Product Realization Process Altemnatives

After all the relations of the involved Internet nodes are defined using the
Concurrent Design Browser, the product realization process alternatives can then be

identified.

4.2.2.1 Product Realization Process Alternatives

A product realization process alternative is described by a list of Internet nodes that

contain the required databases and knowledge bases for modeling the product

73

development activities at different stages of the product development life-cycle. For
example, Figure 4.5 shows the feasible product realization processes represented by an
AND/OR graph with seven Internet nodes. Two product realization process alternatives
can be generated from this AND/OR graph. The generated product realization process
alternatives are displayed in the Design Solution Browser that will be introduced in
Section 4.2.2.2.

M1 Alternatives:
D1
M2 1. (F.D1,D2,M1,M3,M4)
F) 2
M3 2. (F,.D1,D2M2M3 M4)
D2
M4

F: Function D: Design M: Manufacturing
Figure 4.5 An AND/OR Graph for Modeling Product Realization Process Alternatives

4.2.2.2 Display of Product Realization Process Alternatives

The product realization process alternatives generated by the system are displayed in
the Design Solution Browser. These alternatives are then evaluated and compared with
each other to identify the solution that satisfies the design requirements. The Design
Solution Browser is shown in Figure 4.6 and 4.7.

There are five views in the Design Solution Browser as shown in Figure 4.7. The
category list view lists the categories defined in the Design Solution Browser. The
product realization process alternatives are listed in the alternative list view. The data list
view displays all the instance feature names preserved in the nodes involved in the
product realization process alternative selected in the alternative list view. This view lets
users know all the instance features used for modeling the development activities in this
product realization process. In the evaluation function list view, evaluation functions for
the selected product realization process alternative are listed. An evaluation function in

74

[

MechanicalAppiicatidifii Requirement,GearPair,FlatSieve,GearPill BeltDrive % pulley1 §
CaigaryOQilProject Requirement,GearPair,CylinderSieve, Gl BeltDrive%shaft2 |
) B Reguirement,BeitDrive,FiatSieve,BeltD BeitDrive%shaft1

' ' ') BeitDrive%beltD

Reqdrement.BeltDrh:e.Flleve.BettD Il BeitDrive%puley? B
Requirement,BeitDrive,CylinderSieve, BSIENS e "
Requirement,GearPair,FlatSieve,GearP§

;
® oyt Solstion: 7

cBelDriveMfgA%beltDriveProcess 1]+ clFlatSieveMigAZflatSieveMechProcess 1]
- 994.776

Figure 4.6 A Snapshot of the Design Solution Browser

Design Solution Browser
Category List Alternative List Data List —
View View vl -
J View Instance Features
Add
Remove ; i i i
P ter Optimization Evaluation Function List View
L
'-l
Copy
Text View Paste ?J‘:ll:;ect
—_— Cut
Update
Accept pda

Figure 4.7 Configuration of the Design Solution Browser

this list can be selected to evaluate the highlighted product realization process alternative
in the alternative list view. The text view (text editor) is used to edit the evaluation

functions. The edited function is saved using the Accept command of the text view

menu.

75

An evaluation function is defined using the attributes of instance features preserved in
different Internet nodes. It is used to evaluate the selected product realization process

alternative. An evaluation function can be described by F(X), where X is a vector of
attributes:

X=x,%,.X X, . (4-1
where x; is the i-th attribute and » is the total number of attributes used to define this
function. For the example shown in Figure 4.5, if the total manufacturing cost is used to
evaluate the product realization process alternative (F,D1,D2,M2,M3,M4), the
evaluation function takes the following format:

F(cost[M2%m2Process], costfM3%m3Process], cost{M4%md4Process]) =
cost{M2%m2Process]+cost{M3%m3Process]+ cost{ M4%m4Process]

Where cost is an attribute name, m2Process, m3Process, and m4Process are instance
features for modeling the manufacturing processes in nodes M2, M3 and M4
respectively.

The command Update in the menu of the evaluation function list view brings the
updated value of the evaluation function to the text view. Since the attributes used in the
evaluation function are distributed at different Internet nodes, messages are sent to these
nodes to get the current values of these attributes. The result of the evaluation function is
then calculated and displayed.

4.3 Identification of the Optimal Product Realization Process Alternative

The two methods used for identifying the optimal concurrent design solution
alternative are (1) the exhaustive method and (2) the Genetic Programming method.
When the number of the involved Internet nodes is small, the exhaustive method is used
first to generate all possible alternatives. Then the alternatives are evaluated and
compared to find the best one. When the number of the involved Intemet nodes is large,
the Genetic Programming method is used to identify the optimal alternative.

76

4.3.1 The Exhaustive Method

In the exhaustive method, a list of all product realization process alternatives is first
generated automatically. Then the designers can evaluate and compare these alternatives
to find the best one.

4.3.1.1 The Algorithm for Generating All Alternatives
After the relations among the involved Internet nodes are defined using the
Concurrent Design Browser, all possible alternatives can be generated using the
following algorithm:
Step 1: Create an empty collection called alternative collection and an empty list called
the node list. Select the root node as the element of the node list. Put the node

list into the alternative collection.

Step2: Pick up a node list, which has unexpanded nodes, from the alternative
collection. From this list, pick up a node that is neither a leaf node nor an
expanded node. Identify all the sub-nodes of this node.

Step 3: For those sub-nodes with an AND relation, add these nodes into the list. When
an OR relation is detected, for each sub-node, a copy of the current list is
created and this sub-node is added to the copy. Put these new node lists into the

alternative collection and remove the original list.

Step4: Check whether all the nodes in all the lists are expanded. If no unexpanded
node can be found, the expanding process stops. Otherwise, go to Step 2.

4.3.1.2 An Example of Generating All Alternatives

Suppose that the relations of the involved Internet nodes are defined as shown in
Figure 4.8 (a). The product realization process alternatives are generated in the following

process:

1. The root node A is put into the node list 1. The node list 1 is put into the alternative

collection.

77

The node A in node list 1 is picked up for expansion. Since the two sub-nodes of node
A, B and C, have an AND relation, these sub-nodes are added to the original node list.

Node B in node list 1 is picked up for expansion. Since the two sub-nodes of node B,
D and E, have an OR relation, two copies of the original node list 1 are created. The

A

(a) Product Realization Processes Represented by an AND/OR Graph

LA
; 1. AB,C,D,F
.4 B.C 2. A,B,C,D,GK,L
11 3. A,B,C.D,H
_Jl 4. A,B,CEFI
.AB,C,D 5s. A,B,C.EF]J
;X'Ega 6. A,B,C.E,G LKL
- 7. A.B,C.E.G,J.K,L
Ii 8. A,B,CEHI
- 9. A,B,CEMH,]J
1.A,B,C,D,F
2.A.B,C,D,G
3.A,B,C,D,H
4.A,.B,C.E
.[l (c) Created 9 Alternatives

[Alternative Collection
A Expanded Node A Picked Node

(b) Alternative Generation Process

Figure 4.8 Generation of All Alternatives

78

node D and E are added to the two new lists respectively. The original node list 1 is
then removed from the alternative collection. Now there are two node lists, node list 1

and 2, in the alternative collection.

4. The node C in node list 1 is picked up for expansion. Node C has three sub-nodes, F,
G, and H. Since these sub-nodes have an OR relation, three copies of the original
node list 1 are created and the three nodes are added into the three copies
respectively. The original node list 1 is replaced with the three new lists.

5. Repeat this process until all nodes in all lists are expanded. Nine alternatives in total

are generated, as shown in Figure 4.8 (c).

This process is illustrated in Figure 4.8 (b). In the implemented concurrent design
system, the process of generating all possible product realization process alternatives is
started by executing the command All Altemnatives in the menu of node name list view of
Concurrent Design Browser. The generated alternatives are displayed in the Design
Solution Browser.

When the number of product realization process alternatives is not large, the
designers can evaluate each of them using the defined evaluation function. Then the best

alternative can be selected from these alternatives.

4.3.2 The Genetic Programming (GP) Method

If the number of the involved Intemnet nodes is large, it is impossible for a designer to
evaluate all the product realization process alternatives manually. For this reason, Genetic
Programming [Koza 1992] is used as an optimization method to identify the optimal

alternative.

4.3.2.1 Introduction to Genetic P rogramming Method
Genetic Programming is an extension of the Genetic Algorithm [Goldberg 1989,
Angeline 1994]. As an evolutionary method for search and optimization, Genetic

Programming has features suitable for handling more complex problems than the Genetic

79

Algorithm. The main difference between the two methods is the representation of

solutions.

In the Genetic Algorithm, the solution is represented as a string of numbers called
chromosomes. A population of such strings evolves generation by generation. These
strings are usually fixed-length binary strings and remain in the same length during
evolution. One of the limitations of this representation method is that the solutions of
some problems are difficult to be coded into fixed-length strings.

In Genetic Programming, the problem solutions are represented by structures such as
trees. These structures are manipulated during the evolution process. When a tree is used,
the number of branches and the length of each branch change dynamically during the
evolution process. Therefore, such solution representation is considered as a dynamic

representation.

Though different in problem solution representations, Genetic Programming and
Genetic Algorithm share the same principles of evolution through natural selection.

Generally there are four steps to solving problems using genetic programming:

Step 1: Generate initial population members randomly. In this research, the members
are described as trees. In the population, each individual member, representing a
solution to the problem, has a valid structure according to the predefined syntax.

Step 2: Evaluate each individual member based on the ﬁtness predefined according to
the problem to be solved. The fitness functions will be introduced at the end of
this section.

Step 3: Create a new population using the following operations:

Reproduction: The individuals with better fitness have more chances to be
duplicated to the next generation. The individuals to be duplicated are
probabilistically selected, based on the fitness of each member, from the
population. The number of duplications to be produced depends on how fit the

member is.

80

Crossover: Crossover is also called sexual recombination. Two parental
individual members are selected from the population. On each parent, a
crossover point is selected randomly. The sub-tree rooted at the selected
crossover point can be identified on each parent. Then the sub-tree is removed
from its parent and replaced with the sub-tree from the other parent. By
switching the two sub-trees, two new offspring are produced for the next
generation. After the crossover operation, the syntax defined for the individuals

must be maintained.

Mutation: A single individual is randomly selected from the population for
mutation. The mutation point is chosen randomly. The sub-tree rooted at that
point is replaced with a new sub-tree. The new sub-tree is randomly generated.

Step4: After the predetermined maximum generations are created or a criterion is
satisfied, the best individual encountered in the evolution process is selected as

the solution.

The reproduction operation is simply the duplication of the original individual
probabilistically selected from the population based on fitness. An example illustrating
the reproduction process is given in Figure 4.12 of Section 4.3.2.2.

The crossover and mutation operations described above are illustrated in Figure 4.9.
For the crossover operation, a crossover point on each parent is randomly selected. On
the first parent, node C is selected, and on the second parent, node H is selected. Then the
sub-tree rooted at C of the first parent (inside the doted boundary) is replaced with the
sub-tree rooted at H from the second parent (inside the doted boundary). The same
operation is conducted on the second parent. As a result, two children are produced, as
shown in Figure 4.9 (a). For the mutation operation, the node H of the original individual
is randomly chosen as the mutation point. Then the sub-tree rooted at H of the original
individual is deleted and a new sub-tree grows from the mutation point. The mutated
individual is shown in Figure 4.9 (b).

81

(a) Crossover Operation (b) Mutation Operation
Figure 4.9 Crossover and Mutation Operations in Genetic Programming

In the evolution process, each individual member of a population is evaluated based
upon its fitness. The individual member has more chance to survive if it has a better
fitness evaluation measure for solving the problem. Usually a fitness function is used to
calculate the fitness of individual members. Several formats of fitness functions can be
used. If the original function used to evaluate the problem solutions is called raw fitness
function r(x), then we have the following fitness function formats: |

Standardized Fitness s(x):

s(x) = {r(x) for Min F(x) problems. @-2)

r.[r(x) for Max F(x) problems. r, is a positive constant.

82

Adjusted Fitness a(x):
— 1 -
S0 Rl prapres *-3)
Normalized Fitness n(x):
n(x) = =25 @-4)
Eao

where m is the number of individuals in the population. The normalized fitness reflects
the fitness proportion of an individual member in the population. Therefore it can be used
as the reference for selecting the corresponding member to take part in evolution

operations such as reproduction.

4.3.2.2 Genetic Programming for Alternative Optimization

As described in Section 4.2, product realization process alternatives are described by
tree structures. The number of branches and the length of each branch of the alternative
trees are different. The method used for alternative optimization should be able to handle
the tree structure effectively. The Genetic Programming method is selected in this
research because of its advantage in dynamic representation of problem solutions.
However, the problem of concurrent design with distributed databases has its own
characteristics that require some of the evolution procedures to be modified. Therefore
the concept of Genetic Programming plays a more important role in implementing the

optimization of product realization process alternatives.

The procedures and related issues using the Genetic Programming method for

optimizing product realization process alternatives are discussed in this section.
1. Search Space Representation

Different Internet nodes represent different product development activities. With all
possible choices of Internet nodes that are relevant to a given concurrent design problem,
alternative combinations of these nodes produce different product realization routes, in
other words, different product realization process alternatives. These alternatives
compose the search space to be explored for identifying the optimal one. Based on the

83

definitions of Internet node relations and product realization process alternatives in this
research, the search space can be represented using an AND/OR graph. Usually the root
node of the tree represents the database for modeling design requirements. The AND/OR
graph shown in Figure 4.10 defines twelve product realization process alternatives.

Figure 4.10 The AND/OR Graph Representing a Search Space

2. Generation of Initial Population

The members of the initial population should be randomly generated from the

predefined search space. A random alternative is created through the following steps:
Step 1: Identify the root node. Put the root node into an empty list.

Step 2: Pick up a node from the list. This node should be neither a leaf node nor an
expanded node. Identify its sub-nodes.

Step 3: If these sub-nodes have an AND relation, put all of them into the list. If these
sub-nodes have an OR relation, select one of the nodes randomly and put it into
the list.

Step 4: Check whether all the nodes in the list are expanded. If no unexpanded node

can be found, terminate this process. Otherwise, go to Step 2.

This process is repeated until the required number of individuals is reached. These
procedures are similar to the procedures of the exhaustive method for generating all

possible alternatives.

84

Based on the AND/OR graph shown in Figure 4.10, the creation process of a random
alternative is illustrated in Figure 4.11.

Picked All Selected
Step| Nodesin List Relation
Node | Sub-Nodes Sub-Nodes
1 |A A B.C AND B,C
2 |ABC B D.E OR D’
3 |ABCD C F.G,H OR G
4 |AB,CD,G D | I
S |AB,CDG,|I G M\N AND M\N
6 |ABCDGIMN
(b) The Generated
Alternative:
(a) The Process of Creating a Random Alternative (A,B,C,.D,G,IM,N)

Figure 4.11 Creation of a Random Alternative

3. Reproduction

The number of times that each individual should be duplicated in the next generation
is determined by a probability that is proportional to the individual’s fitness. In this
research, the normalized fitness n(x), representing the fitness proportion of the selected
individual, is used to calculate this number:

N, =int[m-n(x)], i=1,2,..m 4-5)
where m is the number of individual members in the population. The function int[]

converts the real number to its closest integer.

The reproduction operation is illustrated in Figure 4.12. The fitness of each
individual is calculated using Equations (4-4) based on the cost value. The number of
copies of an individual to be reproduced in the next generation is calculated using
Equation (4-5). In this example, two copies of Individual_3 are produced in the next
generation, since its fitness is high. Individual_2 died after reproduction because of its
very low fitness. The average cost of the population is improved after reproduction.

85

No. iggmt‘ilzzszom Cost Fitness Copies g:g::giz;&mr Cost
1 |[Individual_1| 300 0.18 1 |[ndivida 1] | 300
2 Individual_2 600 0.09 0 Individual_3 100
3 Individual_3 100 0.54 2 Individual_3 100
4 Individual_4 280 0.19 1 Individual_4 280

Average Cost 320 195

(ABCEGKMN) (AB.CDHLO)
(ABCEGIMN) (ABCEFIL)

Figure 4.12 Reproduction of Alternatives

4. Crossover

Crossover is the primary operation for producing new individuals. For concurrent
design problems considered in this research, the alternatives, represented by individual
members of a population, must follow a predefined syntax. The syntax for the product
realization process alternatives refers to the relations defined among the Internet nodes.
Specifically, the children produced as the result of crossover operations have to be valid
product realization process alternatives. In other words, the syntax of the individuals
should be maintained intact after the crossover operations. Therefore the crossover point,
the location at which the crossover operation is conducted, must satisfy the following

conditions:
(a) The node at the selected location should not be a root node or a leaf node.
(b) The node at the selected location must have OR relation sub-nodes.

(c) The node at the selected location can be found in the other alternative selected

for crossover.

Based on the above discussions, crossover operations can be performed when the

two selected individuals (alternatives) contain the same Internet node, no matter where

86

the node is located in each alternative. The procedure for crossover operations is as

follows:

@

@

3

The number of the crossover operations, N, is calculated by:
N, = int[0.5(m-1)P./] 4-6)
where P.; is a random number between O and 1. '

The two parent individuals, i.e., alternatives, are chosen randomly from the
current population. If the two selected alternatives are marked as A, and A;
respectively, the selection of location on each individual for crossover operation

is conducted through the following procedure.

First, if the location of root node (the first node in the node list) is defined as 1,
the location of crossover point on alternative A, is calculated using the following

equation:
L. =int[(n-1)P.> + 1] @-7

where n is the number of nodes in alternative A; and P.; is a random number
between O and 1. If the node at location L. does not meet the requirements for
crossover, the location is moved one step forward or backward to a new
location. The direction of movement is determined randomly. If the node at the
new location still cannot satisfy the requirements, the location is continuously
moved in the determined direction until a location that meets the conditions for
crossover is found. If the location has reached the top (or bottom) of the node
list and no valid location is found, then it is relocated to the bottom (or top) of
the node list to continue this process.

For each of the parent alternatives A, and A,, identify the nodes on the sub-tree
rooted at the selected node. Together with the selected node, these nodes are
deleted from their original node list and replaced with the nodes in the sub-tree
from the other alternative. Actually, the branch on one altemmative tree is

87

replaced with a branch from the other tree. Then the two child alternatives are
produced.

The process of crossover is illustrated in Figure 4.13. The two selected alternatives
are marked as Ap, and Ap, respectively. For alternative Ap,; if the initial location for
crossover is calculated as 4 using Equation (4-7), the node at this location is D. Since
node D has only one sub-node (refer to Figure 4.10) and it cannot be found in alternative
Ap>, the location of node D is not valid as a crossover point. Then the location is moved
one step forward or backward to a new location of the node list of Ap;_ In this case the
next position can be either 3 or 5. The direction of this movement is determined
randomly. Supposing the backward direction is selected, the next location is then 3. The
node at this location is C, and node C meets all the conditions of a crossover point. So

crossover points are determined on both alternatives Ap, and Ap; .

ﬂarems: \ ﬁildren: \

Ap:: (A.B,C,D,H,LO) Ac: (AB.C,D,GIMN)
Ap>: (AB,CEG.KMN) Ac:: (A,B,CEHK,0)

Crossover

Figure 4.13 Crossover Operation to Alternatives

The nodes on the sub-tree rooted at C on alternative Ap; are identified as (C,H,0).
These nodes are deleted from the node list of Ap, and replaced with the nodes, identified
as (C,G,M,N), on the sub-tree rooted at C of alternative Ap, The same operation is

88

conducted for alternative Ap> Then the two child altematives Ac; and Ac; are produced as

shown in Figure 4.13.

5. Mutation

Mutation is another operation for producing new individuals. Each newly produced

individual must be correct in the syntax defined for representing the product realization

process alternatives. Theoretically, a mutation operation can be conducted at any location

on an alternative. To ensure that the sub-tree rooted at the selected node is replaced with

a different sub-tree in mutation operation, the selected node must be an OR node. The

mutation operation in this research is conducted by the following procedure:

D

(2)
3)

C)

Calculate the number of mutation operations N, using:

Ny = Intfm-Pp,} (4 -8)
where P, is a predetermined probability value between O and 1.

Pick up an individual randomly from the current population.

Select the location for mutation randomly using the following equation:

L, =int[(n-1)-P. +1] 4-9)
where P, is a random number between O and 1, and » is the number of nodes in
the selected alternative. If the node at location L,, is not an OR node, the
location is moved one step forward or backward to a new location on the node
list. The direction is determined randomly. If the node at the new location is still
not an OR node, the location is continuously moved until a valid location for
mutation operation is found. The location is valid as a mutation point if the
node at this location is an OR node. If the location has reached the top (or the
bottom) of the node list of the selected alternative and no valid location is found,
then it is relocated to the bottom (or the top) of the node list to continue this

process.

Identify all the nodes on the sub-tree rooted at the selected node and delete all
these nodes from the node list of the selected alternative.

89

(5) Select a node randomly from the nodes that have an OR relation with the node at
the selected location. A new sub-tree grows with the new node as its root node.
The method introduced in Generation of Initial Population for creating a random
alternative is used here to produce a random sub-tree. Then the nodes on this
new sub-tree are put into the node list of the selected alternative. Now this
selected alternative has been mutated.

This process of mutation operation is illustrated in Figure 4.14. If the location of the
mutation point of the original alternative is calculated as 7 using Equation (4-9), the
corresponding node at this location is M. From Figure 4.10, we can see that M is not an
OR node; therefore, this location is not a valid mutation point. To find a valid location,
the currently selected location is moved one step forward or backward on the node list of
the alternative. The direction of movement is determined randomly. If the direction is
determined to be backward in this case, the next location is 6. The node at location 6 is |,
which is not an OR node either. So the location is continuously moved backward along
the node list to location 5. This location is valid since the corresponding node G is an OR
node. The nodes on the sub-tree rooted at G, identified as (G,M,N), are removed from the
node list. From the two OR nodes of node G (refer to Figure 4.10), node F is randomly

ﬂhe Original Altemativex ﬁ'he Mutated Alternative:\

(A,B,C.D,G,IM,N) (ABCDFLL)

Moutation

—>

Figure 4.14 Mutation Operation to the Selected Alternative

90

selected as the new node to replace node G. Using node F as the root node, the new sub-
tree (F,L) is generated through the method introduced in Generation of Initial Population.
Then the nodes on this newly generated sub-tree are put into the node list. The mutated
alternative is shown in Figure 4.14.

6. Solution

For each generation, the best individual (alternative) in the current population is
compared with the best individual produced in the previous generations. The better one is
selected as the best-so-far alternative. After the predefined number of generations is
reached, the evolution process is terminated and the best-so-far individual (alternative) is

the solution.

For each aiternative produced in the evolution process, parameter optimization is
conducted for identifying the optimal parameter values of this alternative. The fitness of
the alternative should be calculated with the identified optimal parameter values.

4.4 Identification of Optimal Design Parameter Values

The identification of the optimal product realization process alternative is conducted
on the basis that the design parameter values have been optimized in terms of the
performance of the design in down-stream product development phases. In other words,
for a product realization process alternative, the design parameter optimization must be
conducted first, so that the alternative can be evaluated or compared with other
alternatives. In this research a population-based optimization method, Particle Swarm
Optimization (PSO) [Kennedy and Eberhart 1995, Shi and Eberhart 1998], is adopted for
design parameter optimization.

4.4.1 Introduction to Particle Sw arm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based optimization method
proposed by James Kennedy and Russell Eberhart [Kennedy and Eberhart 1995]. This
method simulates social behavior of organisms, such as bird-flocking and fish-schooling.

91

The idea is that when a bird in a flock tries to find food, it uses not only its own
knowledge and experience but also its neighbors’ (other birds’) experiences.

In PSO, particles fly around in the search space towards the destination (the best
position). During flying, each particle adjusts its flying direction and speed according to

both its own flying experience and its companions’ flying experiences.
If the position of i-th particle is represented as
Xi = (xi, xi2, oo Xid)s i=1,2,...,N “4-10)

where N is the number of particles in the space and d is the dimension of the space. The

best previous position of X; is recorded and represented as
P; = (pi1, p2, ---» Pid)» i=1,2,..,.N @4-11)

X, and P, are used to represent the best particle (the one with best position) and the
best previous position of the best particle respectively. Then we have:

X = (xg1, Xg2, .., Xgd) 4-12)
Pg = (Pgt, Pg2, -1 Pgd) 4-13)
During flying, the position change (i.e. velocity) for X; is represented as

Vi=(in viz, ... Vid) “4-14)
The next position of X; is then:

Xi'=Xi+V; 4-15)
The velocity V; is calculated by:

Vi=wVp +ciPy(Pi-X;) + C2Pr2(Py - X;) 4 -16)

where V, is the previous velocity and w is a weighting number. A greater w value results
in strong global search ability and a smaller w value leads to a more local search.
Coefficients c¢; and c, are positive constants. P,; and P,, are two random numbers
between 0 and 1. The Equation (4-16) shows that the new velocity of a particle is

determined according to its previous velocity, the distance of its current position from its

92

own best position, and the distance of its current position from the group’s best

experience (position). Then the particle flies to a new position calculated by Equation (4-

15).

PSO is conducted through the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Generate N particles with random positions and velocities in the search space.

Evaluate each particle with a pre-defined fitness function that is related to the
problem to be solved so X, and P, can be identified.

Calculate velocity for each particle using Equation (4-16) and the new positions
of the particles are determined using Equation (4-15).

Repeat Step 2 and Step 3 until pre-determined termination criteria, the
maximum position number or the minimum variation of the objective function

value, is reached.

According to Shi and Eberhart [1998] and Kennedy and Eberhart {1995], PSO has

the following advantages:

1.

The concept of PSO is simple and the paradigms of PSO can be implemented in a

few lines of computer codes.

The methodology of PSO contains evolutionary concepts but needs no coding of
problem solutions as does Genetic Algorithm.

PSO is computationally inexpensive in terms of both memory requirements and

speed because it requires only primitive mathematical operators.

4.4.2 PSO in Design Parameter Optimization

Since this research is concerned with integrating the distributed databases and

knowledge bases of different product development processes for concurrent design, the

data dependency relation maintenance mechanism is used to propagate data changes in

the optimization process.

93

4.4.2.1 Formulation of Parameter Optimization Problems

Usually an optimization problem can be formulated by an objective function and a
collection of constraints. The parameter optimization problems is formulated as:

Min F(X)

subjectto : h,(X)<0, i=1,2,..n,

g,(X)=0, j=12..n @-17)

4
where F(X) is the objective function and X represents the design parameters that are
usually the attributes of instance features preserved at different Internet nodes. A;(X)and
gi(X) are two types of constraint functions that define the conditions and requirements to

the problem to be solved. The numbers of the two types of constraints, h(X) and g(X),

are noted as n; and n, respectively.

The objective function F(X) is used to evaluate the performance of the design in
down-stream product development processes. It is used directly as the fitness of the

particle that is under evaluation. The objective function F(X) can be described by an

equation or by a piece of computer program.

This constrained optimization problem is converted into a non-constrained
optimization problem by adding a penalty factor to the objective function. Then a pseudo-

objective function in the following form is created:

B(X)=F(X)+W e p(X) (4-18)
where p(X) is the penalty function and W is a multiplier constant that determines

the magnitude of the penalty. The penalty function takes the following form in this

research:

p(2)=§:[g.-(f)]z+iﬁx,-(i)+|hj(f)|]’ 4-19)
j=1

i=l
With Equations (4-18) and (4-19), violations of constraints will result in a penalty to
the original objective function. In other words, if constraints are violated, the fitness of
the particle in current position will be low.

4.4.2.2 Issues of Parameter Optimization with PSO

Since the parameter optimization problems involve distributed databases that are
represented by instance features, the functions that handle distributed databases, such as
informing the changes of virtual attribute values, obtaining virtual attribute values, and
propagating data changes automatically, should be accommodated into the optimization
process. During optimization, whenever new values are assigned to the design
parameters, the calculation for data dependency relation maintenance should be
conducted in order to determine the effects of these values on the performance of the
design in down-stream product deveiopment phases. Since the distributed computing
involves communications among related Internet nodes, parameter optimization with
geographically distributed databases requires much longer time compared with an
optimization with centralized databases.

When PSO is used in design parameter optimization, the basic procedures are the

same as those introduced in Section 4.4.1. However the following issues must be

addressed:
1. Representation of Design Parameters

Design parameters are represented by attributes of instance features preserved at
different locations. In PSO, a group of design parameters is represented as a particle. The
different sets of values of the design parameters are represented as the different positions
of the particles flying in the search space. Therefore the objective of the problem is to
find the best position, i.e., the destination, of the particles.

2. Evaluation of Particles (Positions)

Parameter optimization is conducted, not only to identify the optimal design
parameter values, but also to bring the product databases of tlie selected alternative to an
optimal state in terms of concurrent design. To be consistent with the alternative
optimization, the evaluation function defined in alternative optimization is used as the
original objective function in design parameter optimization.

3. Propagation of Design Parameter Values

95

Each position of a particle in PSO represents one set of values of the design
parameters. When a particle moves to a new position, a new set of values of the
parameters is obtained. In order to evaluate these values, the corresponding attributes, no
matter where théy are located, are updated with the new values by sending messages to
the Internet nodes where these attributes are preserved. Then the attribute relation
maintenance mechanism is activated automatically to propagate the changes of these
attribute values to all related databases. To evaluate the performance of this set of values
of the design parameters, fitness is then calculated. If the value of a virtual attribute is
required to calculate fitness, a message is sent and the required value is returned through

the Internet communication module.

In design parameter optimization using PSO, the values of the constants used in
calculation of particle velocity are selected as: w = 0.8, ¢; = ¢, = 2 according to Shi and
Eberhart [1998].

4.4.2.3 The Parameter Optimization Interface

An interface for defining design parameters, constraints and the objective functions
has been developed. This interface is named as Parameter Optimization Window. The
number of particles and the maximum number of positions are also defined in this
window. A snapshot of the Parameter Optimization Window is shown in Figure 4.15.
The configuration of the window is given in Figure 4.16.

The alternative text view is a read-only text view used to display the selected
alternative. The three list views are the places for defining design parameters, constraints
and objective functions respectively. Commands Add and Remove are implemented for
each of the list views. The two text views in the bottom of the window are used to input
the number of particles and the maximum number of positions. All the information
displayed in the window can be cleared by clicking on the Clear button. After entering
all the required information, the optimization process can be started by clicking on the
Start button.

96

Alternative: Requirement,BeitDrive,FlatSieve,BeltDriveMfgA FlatSieveMfgA

] Parameters Constraints Objective Function

{|cBenDrive%puiley2]

Number of Particles: Max Pozitions:

Figure 4.15 A Snapshot of the Parameter Optimization Window

Parameter Optimization Window
Alternative: (Alternative Text View - Read Only)

Parameters Constraints Objective Function
(Parameter List View) (Constraint List View) (Function List View)
Number of Particles: Max Positions:

N Lo} [soe)
— X/
Text Views Buttons

Figure 4.16 Configuration of the Parameter Optimization Window

4.5 Summary

The distributed database and knowledge base modeling system has provided an
effective technique for the implementation of concurrent product design with distributed

97

information resources. Since many resources are available through Internet connections,
more alternatives for product realization have brought more chances to reduce product

development costs and lead-time.

To identify the optimal alternative for product development with concurrent design
technology, two levels of optimization are employed in this research. At the alternative
level, two methods are introduced. The exhaustive method is used when the number of
alternatives is small. The optimal alternative is selected by comparing all feasible
alternatives. When the number of alternatives is large, Genetic Programming method is
used to identify the optimal alternative more efficiently. The GP method has the
advantage of dynamic representation of the solutions, and therefore is suitable for
optimization of the product realization process alternatives. Based on the definition of the
product realization process alternatives, techniques used for generating random
alternatives, selecting locations for crossover and mutation operations, and search space

representation are introduced.

The alternative optimization is conducted based on the results of design parameter
optimization. The challenge of design parameter optimization in this research is that the
design parameters and the related databases are distributed at different locations. To
improve the efficiency of parameter optimization, Particle Swarm Optimization is
employed because of the simplicity and quality of the algorithm. The issues of using PSO
with distributed design parameters and related databases are addressed. These issues
include problem formulation, particle evaluation, and the access of remote data during

optimization.

The interfaces developed for accessing the concurrent design system are also

introduced in this chapter.

98

CHAPTER §

SYSTEM IMPLEMENTATION AND APPLICATION EXAMPLES

This chapter discusses issues in implementing the Internet-based concurrent design
system which has been developed based on the distributed database and knowledge base
modeling approach described in Chapter 3. These issues include the system interfaces,
the data structures, message handling, etc. The system has been implemented using
VisualWorks 2.5, which provides a robust Smalltalk application development
environment. Application examples are also given in this chapter to illustrate the
effectiveness of the introduced methods in distributed database and knowledge base

modeling and the concurrent design system.

5.1 System Implementation

5.1.1 System Interfaces

The architecture of the Internet-based concurrent design system has been illustrated
in Figure 4.1. Based on this architecture, eight browsers have been developed as the
interfaces for this concurrent design system. The functions of each browser and the

relations among the eight browsers are shown in Figure 5.1.

The eight browsers of the concurrent design system are managed by a launcher
called CDS Launcher as shown in Figure 5.2. CDS stands for Concurrent Design
System. All the browsers developed in this system can be activated through this launcher.
As shown in Figure 5.3, the browsers are organized into different groups and a drop-
down menu is implemented to create the browsers of each group. These browsers can be

created by simply clicking on the corresponding menu items.

As described in Section 4.1, the Internet-based concurrent design system is
composed of three modules: the concurrent design module, the distributed database and
knowledge base modeling module, and the Internet communication module. The Internet
communication module is accessed by the Intemet Node Definition Browser and the

99

Node Connection Browser. This module handles the functions related to Internet
connections and communications. The Internet node names, addresses, and port numbers
defined in the Intemet Node Definition Browser are necessary information required for
data transferring during product development processes. The functions related to data
transferring, such as node connections and message handling, are realized through the

Concurrent Design Browser Provide generated altematives

— define relations among
Internet nodes
— generate design alternatives

Design Solution Browser

— display altematives

- conduct parameter optimization

Class Feature Browser

— define class features

feature library !

f Support distributed
! attribute c_:omputing !
[}

Rule-Base Browser

Instance Feature Browser

— define rule-bases — generate instance features

— propagate data changes
— conduct rule-based inference

Provide Interet communication

Provide Internet communication

[]
Provide selected E
rule-bases ! Provide Intemet

communication

Provide Internet communication

| Provide node
1 identification
3 information

Internet Node Definition Browser
— define Intermnet nodes

......

Node Connection Browser

— connect Internet nodes

Figure 5.1 The Concurrent Design System Represented by Eight Browsers

100

Node Connection Browser. This module provides services to both the concurrent
design module and the distributed database and knowledge base modeling module.

Figure 5.2 A Snapshot of the CDS Launcher

CDS Launcher

File Feature Knowledge Geometry Node Design Help
1 | —'*

Concurrent Design Browser
Design Solution Browser

Internet Node Definition Browser
Node Connection Browser

Rule-Base Browser
v Rule-Base Selection Browser

Class Feature Browser
Instance Feature Browser

Figure 5.3 Partial Drop-Down Menus of the CDS Launcher

The distributed database and knowledge base modeling module handles the functions
such as creating databases and knowledge bases for product development, defining
relations among the true data and the virtual data, propagating attribute value changes,
and conducting rule-based inference for automating' product modeling. This module is
accessed by the Class Feature Browser, the Instance Feature Browser, the Rule-
Base Browser, and the Rule-Base Selection Browser. The Class Feature Browser
and the Rule-Base Browser are used for building the database and knowledge base
libraries for product development. Through the Instance Feature Browser and the

101

Rule-Base Selection Browser, the information defined in the libraries is used to
produce the product development databases. Functions related to product database
modeling, such as generating instance features, propagating changed attribute values,
selecting virtual rule-bases, and conducting distributed inference, have been implemented
as functions of the Instance Feature Browser and the Rule-Base Selection Browser.

The concurrent design module provides the functions for conducting product
concurrent design, such as modeling product realization process alternatives and
identifying. the optimal design parameter values and the optimal product realization
process. This module is accessed by the Concurrent Design Browser and the Design
Solution Browser. The relations among the involved Internet nodes, defined in the
Concurrent Design Browser, provide the guidance for automatic generation of valid
product realization process alternatives. The Concurrent Design Browser also handles
the optimization of product realization process alternatives. The generated alternatives
are displayed in the Design Solution Browser. Parameter optimization is conducted
using the Design Solution Browser. The concurrent design module is supported by both
the distributed database and knowledge base modeling module and the Internet

communication module.

5.1.2 New Classes Developed for System Implementation

The concurrent design system has been implemented using VisualWorks [Hopkins
and Horan 1995]. VisualWorks provides a large library of classes that can be used for
application development. For implementing the concurrent design system, many new
classes have been developed in this research. Table 5.1 shows the major newly developed

classes.

In addition to the new classes, a number of global variables are defined in the system
to preserve the knowledge and data. The names of these variables and the data they
represent are listed in Table 5.2. Figure 5.4 shows an example of the typical data structure
used in the implemented system. Together with the address and the node name, the port
number ‘8236’ for node BeltDrive is stored in a node definition object. This object is an

Table 5.1 Major Classes Developed for System Implementation

Modules Class Names
_ ConcurrentDesignBowser InternetNodeRelation
Concurrent Design DesignSolutionBrowser Alternative
Module EvaluationFunction DesignSolution
Particle
ClassFeatureBrowser FeatureClass
Distributed Database and | 1,2 ceFeatureBrowser FeatureInstance
Knowledge Base
Modeling Module* RuleBrowser RuleBase
RuleBaseSelectionBrowser SelectedRuleBase
Internet Communication | NodeDefinitionBrowser NodeDefinition
Module NodeConnectionBrowser FeatureSocket

* Most classes in this module were developed in [Yadav 1999], however a
large number of new methods have been developed in this research.

Table 5.2 Major Global Variables Used in the Implemented System

Global Variable Names Data Remarks
. Internet node definition descriptions such
NodesAspectiic as addresses and port numbers
ConnectedNodesDic All connected node names
. . Descriptions of node relations such as
NodeRelationDic AND relations and OR relations
. N Product realization process alternatives
DesignSolutionDic _generated in the system
FeatureCategoryDic Class features defined in the system *
FeatureInstanceDic Instance features generated in the system *
RulesAspectDic Rule-bases defined in the system *

* Implemented in [Yadav 1999]

102

instance of the class NodeDefinition. This object is then put into the node dictionary
with the node name #BeltDrive as the key. This node dictionary is then stored in the
category dictionary with the category name #ABC-Food-industry as the key. Finally,
the category dictionary is stored into the Smalltalk system dictionary with the global

103

variable name #NodesAspectDic as the key. When the port number is requested, the
system looks for the key #NodesAspectDic in the system dictionary first and then goes
all the way down to the node definition object and gets the requested port number.

Smalitalk
System Dictionary

......

o Category Dictionary
#NodesAspectDic | @]

(]

(s

Node Dictionary

#ABC-Food-Industry

oooooo

o Node Definition
""" Object

e/alg/a

......

Figure 5.4 A Typical Data Structure Used in System Implementation

5.1.3 Message Handling

In this concurrent design system, information flows from one Internet node to
another. The information is described by messages. In order to realize effective
communications among involved Internet nodes, the messages are converted to the

predicate format:
predicateName(element1i,element2,...,elementN)

Usually the name of a predicate states the objective of this message and the elements
of the predicate are the data to be transferred or the information required for executing
this message. For example, the message updateAttributeValue(gear1,2,30) asks the
receiver node to change the attribute Z of instance feature gear1 to the new value of 30.

Table 5.3 is a list of major predicate messages developed in this system.

104

A class called Predicate is used to convert a string message to a standard predicate
message and to extract information from the predicate messages.

Table 5.3 Partial Predicate Messages used in the System

Message Names Purpose of Messages
Ask a server node for all class

feature names.

getAliClassFeatureNames()

Return all the class feature names to
sendAllClassFeatureNames(namel,name2, ...) .
a client node.

Ask a seﬁer node for all instance

getAlllnstanceFeatureNames()
feature names.

Retumn all the instance feature names

sendAllInstanceFeatureNames(name!l,name2,...) .
to a client node.

Ask a server node for all element
getInstanceFeatureElementNames(featureName, names. The corresponding instance

aspectName) feature name and aspect name are

specified as the predicate elements.

Request the receiver node to update

an attribute’s value. The

updateAttributeValue(featureName,attributeName, L
corresponding instance feature name,

newValue
) attribute name, and the new value are

specified as the predicate elements.

......

5.2 Application Examples

In order to illustrate the effectiveness of the distributed database and knowledge base
modeling approach and the concurrent design system, application examples in designing

a sieving system are given in this section.

105

Separation of particle materials based on their geometric dimensions is often
required in food processing, agricultural engineering, mining and other industries. Such a
function can be realized by a mechanical sieving system. A sieving system is usually
composed of a power transfer device and a sieving device. When the sieve is in motion,
particles with smaller size than the size of the sieve holes can pass through the sieve, and

thus are separated from larger particles.
The two design requirements in this example are:
e The capacity of the sieving system is 1000 kg/hour.

e The input rotational speed of the system is 1000 rpm.

5.2.1 The Concurrent Design Problem

The sieving system design problem is composed of two tasks: (1) the design of a
power transfer mechanism, and (2) the design of a sieving mechanism. Two alternative
power transfer mechanisms, a belt drive mechanism and a gear pair mechanism, and two
alternative sieving mechanisms, a flat sieve mechanism and a cylinder sieve mechanism,

are considered in this example. These mechanisms are modeled at different Internet

nodes as shown in Figure 5.5.

The objective of this design is to find the design alternative that has a minimum
manufacturing cost, while satisfying the design requirements. To realize this objective,
the manufacturing aspects for the design models shown in Figure 5.5 must be considered
during the design process. This is a typical concurrent design problem. In order to
consider manufacturing aspects, the relevant manufacturing processes related to the
alternative mechanisms are also modeled by different Internet nodes. In this example, two
feasible manufacturing nodes, either BeltDriveMfgA or BeltDriveMfgB as shown in
Figure 5.6, can be accessed by the design node BeltDrive. These two nodes have an OR
relation and are modeled as two sub-nodes of BeltDrive. The design requirements are
modeled in an Internet node called Requirement. To formulate this concurrent design
problem, the AND/OR graph with all the involved Internet nodes is formed as shown in

106

Figure 5.6. The node R1 and node R2 in this graph are not real Internet nodes. They are
used to model AND/OR relations of the product realization processes. In this research,
this type of nodes is called a pseudo node.

Node: FlatSieve
Node: BeltDrive

P Accessible

Figure 5.5 Possible Design Alternatives

BeltDriveMfgA |
BeltDrive
, i BeltDriveMfgB
R1
GearPairMfgA
GearPair
GearPairMfgB |
Requirement
FlatSieveMf;
FlatSieve abieveMigA
=5 FlatSieveMfgB
— CylinderSieveMfgA
CylinderSieve - .
CylinderSieveMfgB

i l Pseudo node
Figure 5.6 The AND/OR Graph Formed with the Involved Internet Nodes

107

5.2.2 Generation of Instance Features

To implement this example, an IP address and a port number are assigned to each of
the involved Internet node. In each Internet node, all required instance features are
generated using the corresponding class features. For example, at node BeltDrive, the
instance feature beltDrive1 is generated using the class feature BeltDrive that is
developed for modeling the belt-drive mechanisms. All the element-features of
beltDrive1, including pulley1, pulley2, shaft1 and shaft2, are generated using the class
features, Pulley and Shaft, preserved at the local node.

If a required class feature is not available at the local node, a virtual class feature at
a remote node can be used to generate the required instance features. For example, at
node CylinderSieve, instance features gear1 is required, but there is no corresponding
class feature defined at the local node. Therefore, a virtual class feature Gear is required
to generate the required instance feature. In this case the class feature Gear defined at
node GearPair can be used. After the accessible relation between GearPair and
CylinderSieve is established, the virtual class feature GearPair’Gear, which is the
class feature Gear preserved at node GearPair, can be used for generating the instance
features gear1 at node CylinderSieve. Partial instance features generated for this
example are shown in Figure 5.7 (b).

5.2.3 Rule-Based Reasoning with Virtual Rule-Bases

After all required instance features are generated, attribute values of the generated
instance features can be modified manually or through rule-based reasoning. During the
database modeling process, if sufficient knowledge bases have been developed, rule-
based reasoning can be used to generate or modify the product databases represented by
instance features. One of the advantages of the distributed knowledge base modeling
approach developed in this research is that the rule-bases preserved in remote nodes can
be used for rule-based reasoning at the local node. For example, to design the gear gear1
in node CylinderSieve, two rule bases, GearMaterial and GearProcess, defined in
node GearPair for modeling the gears, can be used at node CylinderSieve. These two

BeltDrive

= BelDriveMfgA |

| Requirement

FlatSieve

[——{ FlaSieveMfgA |

(a) One Product Realization Process Alternative

Internet Nodes Instance Features Attributes
Requirement customerRequirementl capacity, cost, inN, ...
beltDrivel c, inN, outN, distance, ...
pulleyl d,n,z,c, mat, ...
BeltDrive pulley?2 d,n,z c, mat, ...
shaftl d,L,n, c, mat, ...
shaft2 d, |, n,c, mat,..
flatSieveMech1 inN, f, capacity, c, ...
flatSievel lLwid,ec,..
pinl dlc,..
. pin6 dlc,..
FlatSieve rod1 d.L1c,
rod3 d,lfc,..
wheell d,w,n,c, ...
beltDriveProcess 1 c, ...
pulley1Process1 dmzc,..
P1TurningProcess1 atc,..
. p1TurningProcess2 atc,..
BeltDriveMfgA shaftl Processl dlec,..
sl TurningProcessi atc,..
s1GrindingProcess! atc,..
flatSieveMechProcess1 C, ...
flatSieveProcess1 Lwd,c,..
fsPunchingProcess1 atd,ec,..
fsWeldingProcess! Le,..
pin1Process1 dlc,..
. | plTurningProcess1 atc, ...
FlatSieveMfgA rod1Process 1 dlc,..
r1DrillingProcess| dlc,..
rIMillingProcess1 ate,..
wheelProcessl d w,c,..
w1TurningProcess1 aLc,..

inN: input rotational speed, outN: output rotational speed, d:
z: tooth number, I: length, w: width, f: frequency, c: cost, a: area, t: thickness, mat: material.

(b) Partial Instance Features and Attributes at Different Internet Nodes

Figure 5.7 Partial Instance Features Generated at Different Internet Nodes

diameter, n: rotational speed,

108

example rule-bases are shown in Figure 5.8 (a). At node CylinderSieve, the virtual rule

109

bases GearPair%sGearMaterial and GearPair%GearProcess are used for reasoning
with local instance feature gear1. The explanation of the rules is given in Figure 5.8 (b).
One of the results of rule-based reasoning in this case is that the value of attribute
mat{gear1] is modified.

RuleBase: GearMaterial

Rule: MaterialA
IF(gear, 7x) & (<=, m{?x], 2) & (<=, w[?x], 25) THEN (assignAttribute, mat[?x], #AISI1045)

Rule: MaterialB
IF(gear, 7x) & (>=, m{?x], 2.5) & (<=, m[?x], 5) & (>=, w[?x], 25) &(<=, w[?x], 50) THEN
(assignAttribute, mat[?x], #AISI2340)

Rule: MaterialC
IF(gear, ?x) & (>=, m{?x], 6) & (>=, w[?x], 25) THEN (assignAttribute, mat(?x], #AISI4140)

RuleBase: GearProcess

Rule: GearTypeAndMaterial
IF(gear, ?7x) & (gearProcess, ?y) & (elementFeature, ?x, ?y)THEN (assignAttribute, gearType([?y],
gearType[?x]) & (assignAttribute, mat{?y], mat[7x])

(a) Two Example Rule-Bases

RuleBase: GearMaterial

Rule: MaterialA
IF there is a gear, and its module number is less than or equal to 2, and its width is less than or

equal to 25 THEN set the material of the gear equal to AISI1045.

Rule: MaterialB

IF there is a gear, and its module number is greater than or equal to 2.5, and less than or equal to 5,
and its width is greater than or equal to 25, and less than or equal to 50 THEN set the material of
the gear equal to AISI2340.

Rule: MaterialC
IF there is a gear, and its module number is greater than or equal to 6, and its width is greater than
or equal to 25 THEN set the material of the gear equal to AISI14140.

RuleBase: GearProcess

Rule: GearTypeAndMaterial
IF there is a gear, and this gear has a manufacturing process THEN set the type and material used
in the manufacturing process equal 1o the type and material of the gear.

(b) Rules Explained in Plain English
Figure 5.8 Two Example Rule-Bases for Gear Modeling

110

5.2.4 Propagation of Changed A ttribute Values

When a product realization process alternative, such as (Requirement,BeltDrive,
FlatSieve,BeltDriveMfgA,FlatSieveMfgA), has been identified, the Internet node
accessibility relations a.moﬁg the involved nodes can be established. For instance, when
the accessibility between node BeltDrive and node FlatSieve is defined, the class and
instance features in one node are then virtual class and instance features in another node.
The relations among true attributes and virtual attributes are then defined to link the
product databases at different Internet nodes. During the design process, the attribute
values need to be modified and adjusted. The changes of the attribute values in one node
can be propagated to all related attributes including the virtual attributes.

Figure 5.9 shows a partial propagation process started from attribute d[pulley2] in
node BeltDrive. As a result of this propagation process, the values of attribute

Node: BeltDriveMfgA
Node: BeltDrive 200

200 >
F4 }—»-dpulley2Process!]

F7: c[p2TurningProcess!] := 0.4 * d[pulley2Processl1]

F8: c[p2TumingProcess2] := 0.8 * d[pulley2Process1]

F9: c[pulley2Process1] := c[p2TumingProcess]]+
c[p2TumingProcess2]}

Node: FlatSieve

F1: n[pulley2] := n[pulleyl] ®d[pulleyl] / d[pulley2]
F2: n[shaft2] := n[pulley2]

F3: n[FlatSieve%wheel 1] := n[shaft2])

F4: d[BeltDriveMfgA%pulley2Processl] ;= d[pulley2]

f: frequency (Hz), n: rotational speed (rpm),
d: diameter (mm), c: cost ($)

[T—3 Virtual Attribute < Atribute Value - F5: f[rod3] :=n{wheel1]
[Attribute Name 3 Function F6: fflatSievel] := flrod3]

Figure 5.9 Distributed Attribute Relation Network for Modeling the Power Sieving
System (F7 and F8 are simplified for modifying the network graph)

111

fiflatSieve1] in node FlatSieve and the attribute cfpulley2Process1] in node
BeltDriveMfgA are updated automatically. Through such automatic attribute change
propagation, designers can know the outcomes of the original attribute change as soon as
the propagation process finishes. Therefore, the modification to the original attribute
value can be evaluated. In the example shown in Figure 5.9, the manufacturing cost of
pulley?2 is updated automatically if the diameter of pulley2 is changed. So the diameter
change of pulley2 can be evaluated by comparing the updated manufacturing cost of
pulley2 with the previous cost.

5.2.5 The Optimization of Desi gn Parameter Values Using PSO

The identification of the optimal design parameter values for each alternative is
conducted using Particle Swarm Optimization (PSO), as described in Chapter 4. In the
example given in this section, the alternative (Requirement,BeitDrive,FlatSieve,
BeltDriveMfgA,FlatSieveMfgA), as shown in Figure 5.7 (a), is selected to conduct the
parameter optimization.

1. Problem Formulation

The objective of parameter optimization in this example is to determine the values of
the selected design parameters so that the sieving system has the minimum manufacturing
cost while satisfying the design requirement on system capacity. In this example, three
attributes are sclected as the design parameters. These attributes are
d[BeltDrive%pulley2], [FlatSieve%flatSieve1], and w[FlatSieve%flatSieve1]. They
represent the diameter of pulley2, the length of flatSieve1 and the width of flatSieve1
respectively. The value of attribute n[BeltDrive%pulley1], representing the input
rotational speed of the sieving system, is set at 1000 (rpm), based on the design
requirements. Then this optimization problem can be formulated as follows:

Min F(X) = cost[Requirement%customerRequirementi]
X = (d[BeltDrive%pulley?], l[FlatSieve%flatSievel], w[FlatSieve%flatSievel] }
Subject to: I[FlatSieve%flatSievel]-1500 <0

w/FlatSieve%flatSievel | -1000 <0

112

400-w[FlatSieve%flatSievel] <0
w(FlatSieve%flatSievel] *3/2- l[FlatSieve%flatSievel | <O
1000-capacity[Requirement%customerRequirementl] <0

In this example, the value of F(X) is the total manufacturing cost of the belt drive

mechanism and the flat sieve mechanism:

cost{customerRequirementl]=c[BeltDriveMfgA%beltDriveProcessl1] +

c[FlatSieveMfgA%flatSieveMechProcessl]

The cost of each mechanism is the sum of manufacturing costs of all components of
the mechanism:

c[beltDriveProcessl]=c[pulleyl Process1] +c[pulley2Process1]+...

c[flatSieveMechProcessl]=c[flatSieveProcessl]+c[pinlProcessl] +...

The manufacturing cost of each component is calculated by the cost functions
defined in the form of attribute relations of the instance feature representing this
component. For instance, the flat sieve is manufactured through two manufacturing
processes: the punching process and the welding process. Then the following relations
have been defined in node FlatSieveMfgA:

F1: a[fsPunchingProcessl] := l[flatSieveProcessl] *w[flatSieveProcessl]

F2: l[fsWeldingProcess1] := (l{flatSieveProcessl]+w[flatSieveProcessl |) *2

F3: ¢[fsPunchingProcessl] := a[fsPunchingProcessl1] *t[fsPunchingProcess1] *

(d[fsPunchingProcess1]/2)*(d[fsPunchingProcessl1]/2)*3.14*0.00004

Fa4: c[fsWeldingProcessl] := l[fsWeldingProcess1] *0.025

FS: c[flatSieveProcess1] := c[fsPunchingProcessl] +c[fsWeldingProcess!]

When the length and width of the flat sieve are determined, the punching area
a[fsPunchingProcessl] and the welding length I[fsWeldingProcessl] are calculated first
by relation F1 and F2. Then the cost of the punching process c[fsPunchingProcessl] and
the cost of the welding process c[fsWeldingProcessl] are calculated by relation F3 and
F4 respectively. The total manufacturing cost of the flat sieve c[flatSieveProcessl] is
then obtained by relation F5. The costs of other components are calculated in the same

way.

113

2. Design Parameter Optimization

The optimal values of these design parameters are identified by the Particle Swarm
Optimization (PSO) algorithm described in Chapter 4. In this example, the dimension of
the search space is 3 since three attributes are selected as the design parameters.
Therefore, the position of a particle in the search space is represented by the values of the
three attributes. The initial positions of particles are randomly assigned. Then the
particles fly in the search space towards a target that is the best position of the particles.
The flying directions of the particles in the search space are adjusted according to the
fitness values of the particles. The fitness values are calculated using Equation (4-4),
based, in this example, on the manufacturing cost. The position that the particles land on
is the target position, representing the optimal set of values of the design parameters in
this concurrent design problem. The sieving system with these attribute values has the
minimum manufacturing cost. Since this is an optimization process with distributed
parameters, the number of particles affects the optimization efficiency significantly. The
greater number of particles defined, the lower the efficiency is. The number of particles
chosen in this example is 3. After 200 iterations, the optimal parameter values are

obtained as:

X* = (164.785, 990.789, 443.888)
cost[Requirement%ocustomerRequirementl] = 994.776

capacity[Requirement%customerRequirementl] = 1000.61

With this set of values, the sieving system has a minimum manufacturing cost and

the design requirements are satisfied.

The convergence process is shown in Figure 5.10. The particle fitness is the sum of
the original objective function value and the penalty factor defined by Equation (4-19), if
constraints are violated. Tests have showed that satisfactory convergence has been

achieved.

114

o 2000
BAB00 -~ N -ttt
éwoo e T N N !
21400 20 e 1
81200 4 - N
S 1000 -

800 L T 1 T
10 40 70 100 130 160 190
iterations

T T

Figure 5.10 The Convergence Process of PSO

5.2.6 The Optimization of Prod uct Realization Process Alternatives Using GP

As shown in Figure 5.6, there are total 12 alternatives for producing the sieving
system. The optimal alternative can be identified using either the exhaustive method or
the GP method, depending on the number of alternatives. These two methods were
introduced in Chapter 4. In this section, the GP method is used to identify the optimal

alternative for producing the sieving system.

In this example, manufacturing cost is used as the function to evaluate all
alternatives. The costs are calculated in the same procedures described in Section 5.2.5.
Therefore the objective is to find a solution alternative that has the minimum
manufacturing cost. Based on the graph shown in Figure 5.6, the optimal alternative is
identified using the Genetic Programming method, through the following procedures.

1. Generation of the Initial Population

In this example, the number of individuals, representing product realization process
alternatives, in the population is 4. The initial population with randomly generated
individuals is shown in Figure 5.11. After para:heter optimization for each alternative, as
described in Section 5.2.5, the manufacturing costs to be used for evaluating the
alternatives are obtained. Based on these costs, the fitness of each individual can be

115

calculated using Equation (4-4). The number of Individuals m is 4, and the adjusted
fitness a(x) can be calculated using:

a(x) = 1+ cost G-
The cost and calculated fitness for each alternative are shown in Figure 5.11.
No. Individuals Cost Fitness Copy

GearPair _|—— GearPairMigB |
: _ _ 488053 0.121 0O
(1) | Requirement . CylinderSieveMfgA |

CylinderSieve

CylinderSieveMfgB |

BeltDrive |—— BeltDriveMfgA |
2 i .
(2) | Requirement - CylinderSieveMizA I2877.26 0204 1

ylinderSieve
CylmderSnevergB
BeltDrive |—— BeliDriveMfgB |
(3) | Requirement 118841 0495 2
FlatSieve |—— FlaiSieveMfgB |

GearPair |—— GearPairMfgA |

4 -

@ | Requirement CylinderSieveMrgA | 20083 0180 1
CylinderSieve

CylinderSieveMfgB |

Average cost: 3051.76

Figure 5.11 The Initial Population

2. Reproduction

The first evolution operation is reproduction. The number of each individual to be
copied to the next generation is determined by Equation (4-5). For the initial population,
the number that each individual should be duplicated is calculated and shown in Figure
5.11. After reproduction, the individuals in the population are shown in Figure 5.12.
Alternative (1) of the initial population died because of its high cost.

No. Individuals Cost Fitness
BeltDrive |——{ BeltDriveMfgA | 287726
1 i 0.149
() | Reguirement CylinderSieveMfgA |
CylinderSieve
Cylmdch:evergB
BeltDrive |——— BeltDriveMfgB |
(2) | Requirement 118841 0.360
FlatSieve }——1 FlatSieveMfgB |
BeltDrive |—— BeltDriveMfgB |
(3) | Requirement 118841 0.360
FlatSieve ~|——{ FlatSieveMfgB |

GearPair

F——{ GearPairMigA |

(4) | Requirement
CylinderSieve

CylinderSieveMfgA | 326085 0.131
CylinderSieveMfgB |

Average cost: 2128.73

Figure 5.12 The Population after Reproduction

3. Crossover

116

The number of crossover operation is calculated using Equation (4-6). If the random

number P, is 0.672, then the number of crossover is calculated to be 1.

The selection of the two individuals for crossover is calculated using the following

equation:

Alternative No. =int[(m-1)P+1]

5-2)

where P, is a random number between 0 and 1. If the two random numbers are 0.748 and

0.061, the alternative numbers are calculated as 3 and 1 respectively. So alternative (3)

and alternative (1) are selected for crossover.

117

For alternative (3), the location for crossover is determined by Equation (4-7). In the
implemented system, the alternative is described by a list of node names. For example
alternative (3) is described as

(Requirement,BelitDrive,FlatSieve,BeitDriveM{gB,FlatSieveMfgB)

For this alternative, the number of nodes is S. Based on Equation (4-7), if the
random number is 0.812, then the location number is calculated to be 4. The node at
location 4 is BeltDriveMfgB. Since BeltDriveMfgB is a leaf node, the location of
BeltDriveMfgB is not eligible for crossover. To find a new location, the original location,
4 in this case, is moved step by step forward or backward depending on a random number
0 or 1. The random number here is 1, so the location is moved forward one step and the
new location is 5. The node at this location FlatSieveMfgB is still a leaf node. Since the
location reached the bottom, the next location is 1 where the node Requirement is
located. The root node is not eligible for crossover. So the location is moved to 2. The
node at location 2 is BeltDrive and it satisfies the conditions for crossover. So the
crossover location in both alternatives are determined to be the locations of node
BeltDrive in their node lists. Starting from this node, the sub-trees in both alternatives are
cut off and switched. In this example, the sub-tree (BeltDrive,BeltDriveMfgB) of
alternative (3) and the sub-tree (BeltDrive,BeltDriveMfgA) of alternative (1) are
switched. After this operation two new individuals are generated and the new population

after the crossover operation is shown in Figure 5.13.
4. Mutation

The number of mutation to be conducted in the current population is determined by
Equation (4-8). The mutation probability number is determined as 0.25 in this case.
Because the population has 4 individuals, one mutation operation is to be conducted. The
alternative selection is conducted the same way as the alternative selection for crossover
operations. The random number is 0.976; therefore, alternative (4) is selected. The
mutation point on this alternative is selected the same way as the location selection for
crossover operations. The selected location is valid as long as the node at the location is
an OR node. In other words there are optional choices of nodes to be selected to replace

118

the node at the selected location on the alternative. In this way, node CylinderSieve is
selected.

No. Indivi Cost Fitness
BeltDrive |—— BeltDriveMfgB | :
t 29120 0.150
(1) [Requirement CylinderSieveMIfgA |
CylinderSieve
CylinderSieveMfgB |

BeltDrive |—— BeltDriveMfgB |
(2) | Regquirement 1188.41 0.366
FlatSieve }———1 FlatSieveMfgB |

BeltDrive ——— BeltDriveMfgA |
(3) | Requirement 124244 0.350
FlatSieve |—— FlatSieveMfgB |

GearPair [——] GearPairtMfgA |

4 -
) [Requirement CylinderSieveMfgA | 326085 0.134
CylinderSieve
CylinderSieveMfgB |

Average cost: 2150.92

Figure 5.13 The Population after Crossover

To conduct mutation, the sub-tree rooted at the node CylinderSieve in individual (4)
shown in Figure 5.13 is cut off and replaced by a new node. This new node is rahdbmly
selected from the OR nodes of the selected node. In this case there is only one choice,
ie.,, node FlatSieve. Starting from this new node, a new sub-tree,
(FlatSieve,FlatSieveMfgA), grows so that a new individual is generated. After the
mutation operation, the second generation of the population is produced, as shown in

Figure 5.14.

Comparing the average cost of all alternatives in the second generation with the
average cost in the first generation, the quality of the population has been improved in

terms of the manufacturing cost. The above evolution process is continued until the

119

predetermined generation number is reached. Then the best alternative recorded in the
evolution process is the solution. In this example, the alternative (Requirement,
BeltDrive,FlatSieve,BeltDriveMfgA ,FlatSieveMfgA) is identified to be the optimal
alternative for realizing the sieving system, in terms of the minimum manufacturing cost.
The manufacturing cost for this alternative is 944.776.

No. Individuals Cost Fitness

BeltDrive |—— BeltDriveMfgB | 0120
; 29120 0.127

() | Requircment o CylinderSieveMfgA |
Inder>ieve
Y CylinderSiever&l
BeltDrive |[—— BeltDriveMfgB |

(2) | Requirement 118841 0.312
FlaiSieve }—— FlatSieveMfgB |
BeltDrive |~——— BeliDriveMfgA |

(3) | Requirement 124244 0.298
FlatSieve |——] FlatSieveMfgB |
GearPair [—— GearPairtMfgA |

4) | Requirement 1409.010 0.263
FlatSieve |—— FlatSieveMfgA |

Average cost: 1687.965

Figure 5.14 The Population after Mutation: The Second Generation

The concurrent design process in this exampleshows that the distributed database and
knowledge base modeling system is effective for product development with concurrent
design methodology. The identification of optimal alternative and design parameter
values can be easily realized using the concurrent design system developed in this

research.

120

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, conclusions drawn from this research are summarized, and related
future work is outlined. |

6.1 Conclusions

Concurrent design is a design methodology by which the down-stream product
development life-cycle aspects are considered concurrently at the design stage. With the
rapid development of Internet technology, information resources geographically
distributed at different locations are now available for product development at a local
location. More alternative processes are available for producing a product, because of a
wider choice of information resources from different locations. This research was
devoted to the development of a feature-based distributed database and knowledge base
modeling approach and an Internet-based concurrent design system. The conclusions

drawn from this research are summarized in the following sections.

6.1.1 Distributed Database and Knowledge Base Modeling

(1) The feature-based product development life-cycle databases and knowledge bases
distributed at different locations can be integrated dynamically through the Internet.

Conventional product development approaches such as Design for “X” and
concurrent design were developed based on centralized computing techniques
[Kusiak 1993]. In this research, physically distributed product development life-
cycle databases and knowledge bases are integrated through the Internet. These
databases and knowledge bases are used for modeling product development life-
cycle activities. The distributed product development activities are modeled at
different Internet nodes. An Internet node can be added to or removed from the
distributed database and knowledge base modeling system by connecting and

(2)

(3)

(4)

121

disconnecting the node to the system. This function can be used to access the
globally available information resources for product development.

Distributed product development life-cycle databases, modeled by both true and

virtual instance features, can be associated by defining relations among these data.

Traditionally, distributed database management systems are required to manage
databases distributed at different locations [Bray 1982]. In this research, the
distributed databases are associated directly by defining relations among the true and
virtual features. Though the Internet provides the physical connections, the defined
relations among the distributed features and attributes integrate the distributed
databases into the same environment. The data relations can be modified
conveniently during the product development process to identify the optimal design,
considering the down-stream product development life-cycle aspects.

Product development database libraries at remote nodes can be used to generate

product modeling databases at the local node to improve product development
efficiency.

Instance features distributed at different locations are generated using corresponding
class features as their templates. If the required class feature is not defined at the
local location, a virtual class feature can be used to generate true instance features
directly at the local site. This function provides support to product data library

sharing; therefore, the efficiency of product development is improved.

Consistency of distributed product databases can be maintained using the distributed

data dependency relation maintenance mechanism.

The consistency of the distributed product databases is maintained using the
distributed data dependency relation network. To propagate the data changes to
related data including virtual data, a distributed data dependency relation
maintenance mechanism has been developed in this research. During the product
development process, modifications to product development data are necessary.
When part of the data are modified, all the related data at the local site and the

(3)

(6)

122

remote sites are updated automatically. During product development, when the
design data are changed, manufacturing process descriptions are updated using the
relations between design and manufacturing descriptions. The updated
manufacturing aspects can be used to evaluate the design. This function is very
effective in modeling product databases and product development life-cycle aspects

for concurrent design.

Knowledge bases preserved at remote locations can be used for knowledge-based

inference at the local location.

The knowledge bases distributed at different locations can also be integrated through
the Internet. Virtual rule-bases, the rule-bases preserved at remote nodes, can be used
for rule-based reasoning at the local node. Virtual rule-bases are also visible at the
local node. The selection of virtual rule-bases for reasoning at the local node is
accomplished through Internet communications. A virtual rule-base can be selected
and removed at the local node using a specially developed browser. This mechanism

is effective when no sufficient knowledge bases are provided at the local site.

The efficiency of product development with distributed databases and knowledge

bases can be improved by using the distributed rule-based inference mechanism.

The process of product modeling using distributed databases can be automated by
rule-based inference. Since rule-based reasoning may result in data change in remote
nodes, a distributed inference mechanism has been developed in this research. When
the data in a remote node are changed as a result of local rule-based reasoning, the
rule-based reasoning in that node is automatically activated. This function is
effective for creating distributed product descriptions.

6.1.2 Internet-Based Concurrent Design

(1)

The Internet-based concurrent design system developed in this research can model

alternative product realization processes.

(2)

(3)

123

Based on the distributed database and knowledge base modeling approach, an
Internet-based concurrent design system has been developed for product concurrent
design using the distributed product development life-cycle databases. Modeling of
product realization process alternatives is essential for conducting product concurrent
design using a computer-based concurrent design system. In this research, the
different product development life-cycle aspects are modeled at different Internet
nodes. The product realization process alternatives are modeled by AND/OR graphs
in which the nodes are used to represent different product development activities
distributed at different locations. This product realization process alternative
modeling approach is effective for generating and evaluating the alternatives to
identify the optimal one.

The optimal design parameter values, considering the manufacturability of the

design, can be identified using a global optimization method.

For a generated product realization process alternative, the optimal design parameter
values can be identified using the Particle Swarm Optimization (PSO) method
employed in the implemented system. In PSO method, different positions of the
particles flying in the search space represent different sets of values of the design
parameters. For each set of new values, automatic data change propagation is
conducted to update the related data values. Then the updated results can be used to
evaluate the current position of the particle. For a concurrent design problem, the
design parameter values can be continuously evaluated using the manufacturability
measures during the optimization process. The design parameter values identified by
PSO are optimal in terms of the manufacturability of the products. In this research,
PSO is efficient and reliable in optimizing the design parameters distributed at

different locations.

The optimal product realization process alternative can be identified by two different
methods: the exhaustive method and the Genetic Programming (GP) method.

Among the feasible product realization process alternatives, the optimal alternative
can be identified by two different methods: the exhaustive method and the Genetic

124

Programming method. If the number of alternatives is small, the exhaustive method
can be used to generate all feasible alternatives. These alternatives can then be
evaluated and compared to identify the optimal one. An algorithm has been
developed for generating all feasible alternatives. If the number of alternatives is
large, the Genetic Programming method can be used to identify the optimal
alternative. Modifications to the GP algorithm have been made for solving
concurrent design problems. The modified GP method is effective in alternative

optimization.
6.2 Future Work

The distributed database and knowledge base modeling approach and the Internet-
based concurrent design system developed in this research are effective for engineering
product design with distributed resources. However, this work can be further improved in

the following aspects:
(1) Improvement using multi-agent systems

In this research project, the selection of relevant databases and knowledge bases for
product development is conducted manually by users. The algorithms introduced for
the attribute value change propagation and the distributed inference may be not
efficient when a complex project is involved. With the advances of multi-agent
systems [Norrie 1999, Shen and Norrie 1999, Shen et al. 1999, Shen et al. 2000,
Ulieru et al. 2000], overall system performance can be improved if the functions,
such as Internet communications, data dependency relation maintenance, distributed
inference, rule-base selections, and alternative optimization, are handled by agents,
especially when large amount of information and operations are involved in the

design process.

Product concurrent design with distributed databases and knowledge bases is a
complex process involving a wide range of technical and social knowledge. Different
types of autonomous agents with different knowledge can be used to handle different

@

3

4)

&)

125

aspects of the product development life-cycle. Through coordination and cooperation
among the involved agents, the goals of product concurrent design can be achieved.

Product geometric representation

This research focuses on modeling functional design aspects of the products.
However the representation of product 2D and 3D geometry is another important
aspect in product development. The existing system can be enhanced if a product
geometry modeling module is developed. Transformation of the feature-based
product geometry data into a format understandable by commercially available CAD
software should be a subject for further research.

System interfaces

The interfaces developed in this research are Smalltalk browsers. The input and
output information is handled using text views. To improve the interface
environment, graphical windows with functions for defining and displaying the
Internet node, the product databases and knowledge bases, as well as product
realization process alternatives can be introduced. Using web browsers to access the

concurrent design system can also improve the interface environment.
Incorporation of web techniques

The concurrent design system developed in this research has the potential to be
incorporated into a web-based product development environment. In this
environment, the system can be easily accessed through computers connected to

Internet; therefore, accessibility to the concurrent design system can be improved.
Improvement in alternative optimization

In this research, the Genetic Programming method has been employed for identifying
the optimal product realization process alternative. In the optimization process, the
alternatives are dynamically generated by the GP method. For each new alternative,
parameter optimization must be conducted to bring the alternative to an optimal
state, so that this alternative may be compared with others. Therefore the alternative

- 126

optimization is conducted generation by generation with user interference. New
approaches should be studied to improve efficiency by combining the two
optimization processes without human interference.

127

REFERENCES

Adamides, E. D., 1995, Coordination of Distributed Production Resources for
Responsibility-Based Manufacturing. Journal of Intelligent Manufacturing, Vol. 6, No. 6,
Pp- 415-427.

Adapalli, S. and Addepalli, K., 1997, World Wide Web Integration of Manufacturing
Process Simulations. Concurrency: Practice and Experience, Vol. 9, No. 11, pp. 1341-
1350.

Ahn, S.—-H., Roundy, S., Wright, P. K., and Liou, S.-Y., 1999, ‘Design Consultant’: A
Network-Based Concurrent Design Environment. MED 10, American Society of
Mechanical Engineers, Manufacturing Engineering Division, ASME, November, pp.
563-569.

Alles, D. and Vergottini, G., 1997, Taking a Look at Internet-Based Design in the Year
2001. Electronic Design, January, pp. 42-50.

Anderson, D. C. and Crawford, R. H., 1988, Knowledge Management for Preliminary
Computer-Aided Mechanical Design. Organization of Engineering Knowledge for
Product Modeling in Computer Integrated Manufacturing, (ed.), T. Sata, Elsevier, pp.
15-38.

Angeline, P. J., 1994, Genetic Programming: A Current Snapshot. Proceedings of the
Third Annual Conference on Evolutionary Programming, (eds.), A. Sebald and L. Fogel,
World Scientific, River Edge, NJ, pp. 224-232.

Arora, J. S., Elwakeil, O. A., and Chahande, A. L., 1995, Global Optimization Methods
for Engineering Applications: A Review. Structural Optimization, Vol. 9, pp. 137-159.

Bassiliades, N. and Vlahavas, I, 1997, Processing Production Rules in DEVICE, An
Active Knowledge Base System. Data & Knowledge Engineering, Vol. 4, pp. 117-155.

128

Bliznakov, P. L, Shah, J. J., Jeon, D. K., and Urban, S. D., 1995, Design Information
System Infrastructure to Support Collaborative Design in a Large Organization.
Proceedings of the 1995 ASME Design Engineering Technical Conferences, Boston, Vol.
1; ppo 1‘8.

Bray, O. H., 1982, Distributed database management systems, Lexington Books,
Lexington, Mass.

Chen, Y.-M. and Jan, Y.-D., 2000, Enabling Aliied Concurrent Engineering through
Distributed Engineering Information Management. Robotics and Computer-Integrated
Manufacturing, Vol. 16, No. 1, pp. 9-27.

Chung, J. C. H,, Patel, D. R,, and Cook, P. L., 1990, Feature-Based Modeling for
Mechanical Design. Computer & Graphics, Vol. 14, No. 2, pp. 189-199.

Colton, J. S., 1993, An Intelligent Design for Manufacture System. Concurrent
Engineering: Automation, Tools, and Techniques, (ed.), A. Kusiak, John Wiley & Sons,
Inc.

Court, A. W., 1998, Issues for Integrating Knowledge in New Product Development:
Reflections from an Empirical Study. Knowledge-Based Systems, Vol. 11, pp. 391-398.

Cutkosky, T. G., Tenenbaum, M. R., and Glicksman, J., 1993, SHARE: A Methodology
and Environment for Collaborative Product Development. Proceedings of IEEE
Infrastructure for Collaborative Enterprise, IEEE, Morgantown, pp. 33-41.

Danesh, M. R. and Jin, Y., 1999, AND: An Agent-Based Decision Network for
Concurrent Design and Manufacturing. Proceedings of the 1999 ASME Design
Engineering Technical Conferences, Las Vegas, Nevada.

Domazet, D. S., Kong, H. P. H,, Yan, M. C,, Calvin, C. F. Y., and Goh, A., 2000,
Infrastructure for Inter-Organization Collaborative Product Development. Proceedings of

the Hawaii International Conference on System Sciences, January, pp. 159.

129

Domazet, D. S. and San, L. S., 1997, Active Database Servers for Concurrent
Engineering Environments. Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications, Melbourne, Australia.

Dong, Z. (ed.), 1994, Artificial Intelligence in Optimal Design and Manufacturing, PTR
Prentice Hall.

Gardan, Y. and Minich, C., 1993, Feature-Based Models for CAD/CAM and Their
Limits. Computers in Industry, Vol. 23, pp. 3-13.

Gadh, R. and Sonthi, R., 1998, Geometric Shape Abstractions for Internet-Based Virtual
Prototyping. Computer-Aided Design, Vol. 30, No. 6, pp. 473-486.

Goldberg, A. and Robson, D., 1983, Smalltalk-80: The Language and Its Implementation,
Addison-Wesley.

Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA.

Grimes, R., 1997, Professional DCOM Programming, Wrox Press.

Gu, P. and Chan, K., 1995, Product Modeling Using STEP. Computer-Aided Design,
Vol. 27, No. 3, pp. 163-179. '

Hahn, H. and Stout, R., 1994, The Internet: Complete Reference, McGraw-Hill.

Helander, M. and Nagamachi, M., 1992, Design for Manufacturability, A Systems
Approach to Concurrent Engineering and Ergonomics, Taylor & Francis Ltd.

Henderson, M. R., 1984, Extraction of Feature Information from Three Dimensional
CAD Data. Ph.D. Dissertation, Purdue University.

Higgins, K. B. and Langrana, N. A., 1999, Web-Based, User-Friendly Design and Virtual
Fabrication for Layered Manufacturing. Proceedings of the 1999 ASME Design
Engineering Technical Conferences, Las Vegas, Nevada.

130

Hopkins, T. and Horan, B., 1995, Smalltalk: An Introduction to Application Development
Using VisualWorks, Prentice Hall. '

Huang, G. Q., Huang, J., and Mak, K. L., 2000, Agent-Based Work-Flow Management in
Collaborative Product Development on the Internet. Computer-Aided Design, Vol. 32,
pp- 133-144.

Huang, G. Q., Lee, S. W,, and Mak, K. L., 1999, Web-Based Product and Process Data
Modeling in Concurmrent “Design for X”. Robotics and Computer-Integrated
Manufacturing, Vol. 15, pp. 53-63.

Hughes, J. G., 1991, Object-Oriented Databases, Prentice-Hall.
Huhns, M. N. and Singh, M. P., 1998, Readings in Agents, Morgan Kaufmann Publishers.

Hyeon, H. J., Hamid, R. P., and Sullivan, W. G., 1993, Principles of Concurrent
Engineering. Concurrent Engineering, (eds.), H. R. Parsaei and W. G. Sullivan, Chapman
& Hall.

Jiang, P.-Y. and Fukuda, S., 1999, Internet Service and Maintenance for RP-Oriented
Tele-Manufacturing. Concurrent Engineering: Research and Applications, Vol. 7, No. 3,
pp- 179-189.

Judson, J., Dong, Q., and Mascoli, G., 1999, Introducing Knowledge-Based Engineering
into an Interconnected Product Development Process. Proceedings of the 1999 ASME
Design Engineering Technical Conferences, Las Vegas, Nevada.

Kennedy, J. and Eberhart, R., 1995, Particle Swarm Optimization. Proceedings of IEEE
International Conference on Neural Networks, Perth, Australia.

Kim, C-Y., Kim, N., Kim, Y., Kang, S-H., and O’Grady, P., 1998, Distributed
Concurrent Engineering: Internet-Based Interactive 3-D Dynamic Browsing and Markup
of STEP Data. Concurrent Engineering: Research and Applications, Vol. 6, No. 1, pp.
53-70.

131

Kim, J. H., Wang, F.-C., Sequin, C. H., and Wright, P. K., 1999, Design for Machining
over the Internet. Proceedings of the 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada.

Koza, J. R., 1992, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press. :

Kroll, E., Lenz, E., and Wolberg, J. R., 1989, Knowledge-Based Synthesis in Design-for
Assembly. Concurrent Product and Process Design, (eds.), N. H. Chao and S. C.-Y. Lu,
The American Society of Mechanical Engineers.

Kusiak, A. (ed.), 1993, Concurrent Engineering: Automation, Tools, and Techniques,
John Wiley & Sons.

Lee, E. T. Y., 1985, Some Remarks Concerning B-Splines. CAGD Journal, Vol. 2, pp.
145-149.

Lee, J. Y., Kim, H., and Han, S.-B., 1999, Web-Enabled Feature-Based Modeling in a
Distributed Design Environment. Proceedings of the 1999 ASME Design Engineering
Technical Conferences, Las Vegas, Nevada.

Lee, K. H. and Sen, S., 1994, ICOSS: A Two-Layer Object-Based Intelligent Cell
Control Architecture. Computer Integrated Manufacturing Systems, Vol. 7, No. 2, pp.
100-112.

Magrab, E. B., 1997, Integrated Product and Process Design and Development — the
Product Realization Process, CRC Press LLC.

Mendel, A., 1999, PDM and the Internet. Mechanical Engineering, September.
McCarty, B. and Cassady-Dorion, L., 1999, Java Distributed Objects, SAMS.
Mortenson, M. E., 1985, Geometric Modeling, John Wiley, New York.

Nagamatsu, M., Sumida, S., and Nagamatsu, A., 1999, A New Approach on Modeling
for Product Development. JSME International Journal, Series C, Vol. 42, No. 1, pp. 234-

132

239.

Name, E. V. and Eagelstein, G., 1998, The Wired Engineer: Emerging Technologies and
the Designer. ANTEC ’98, pp. 3052-3055.

Norrie, D. H., 1999, Multi-Agent Systems, Lecture Notes, The University of Calgary.

Otte, R., Patrick, P., and Roy, M., 1996, Understanding CORBA: The Common 'Object
Request Broker Architecture, Addison-Wesley.

Ozsu, M. T., Dayal, U., and Valduriez, P., 1994, Distributed Object Management,
Morgan Kaufmann Publishers, San Mateo, California.

Pahng, F., Senin, N., and Wallace, D., 1998, Distribution Modeling and Evaluation of
Product Design Problems. Computer-Aided Design, Vol. 30, No. 6, pp. 411-423.

Pardalos, P. M., Romeijin, H. E., and Tuy, H., 1999, Recent Developments and Trends in
Global Optimization. Research Report 99-15, Department of Industrial & System
Engineering, University of Florida.

Park, H. G. and Baik, J. M., 1999, Enhancing Manufacturing Product Development
through Leamning Agent System over Internet. Computer and Industry Engineering, Vol.
37, No. 1, pp. 117-120.

Parsaei, H. R. and Sullivan, W. G., 1993, Concurrent Engineering, Chapman & Hall.

Pennel, J. P. and Winner, R. L, and Slusarczuk, M. M. G., 1989, Concurrent Engineering:
An Overview for Autotestcon. AUTOTESTCON Proceedings '89: The System Readiness
Technology Conference, Philadelphia, PA, pp. 88-99.

Penoyer, J. A., Bumett, G., Fawcett, D. J., and Liou, S.-Y., 2000, Knowledge Based
Product Life Cycle Systems: Principles of Integration of KBE and C3P. Computer-Aided
Design, Vol. 32, pp. 311-319.

Prasad, B., 1996, Concurrent Engineering Fundamentals: Volume I, Prentice Hall.

133

Reidsema, C. and Szczerbicki, E., 1997, Multi-Agent Systems for Concurrent
Engineering. Systems Analysis Modelling Simulation, Vol. 28, pp. 257-279.

Rezayat, M., 2000a, The Enterprise-Web Portal for Life-Cycle Support. Computer-Aided
Design, Vol. 32, pp. 85-96.

Rezayat, M., 2000b, Knowledge-Based Product Development Using XML and KCs.
Computer-Aided Design, Vol. 32, pp. 299-309.

Roller, D. and Eck, O., 1999, Knowledge-Based Techniques for Product Databases.
International Journal of Vehicle Design, Vol. 21, No. 2/3, pp. 243-265.

Roy, U. and Kodkani, S. S., 2000, Collaborative Product Conceptualization Tool Using
Web Technology. Computers in Industry, Vol. 42, No. 2, pp. 195-209.

Roy, U., Bharadwaj, B., Kodkani, S. S., and Cargian, M., 1997, Product Development in
a Collaborative Design Environment. Concurrent Engineering Research and
Applications, Vol. 5, No. 4, pp. 347-365.

Seilonen, 1., 1995, Data Modeling Issues in Product Management. VIT Symposium 160:
Product Models in Design and Production Planning, (ed.), H. Johinen, Technical
Research Centre of Finland, pp. 83-104.

Shah, J. J., 1989, Feature Transformations Between Application Specific Feature Spaces.
Computer-Aided Engineering Journal, Vol. 5, No. 6, pp. 247-255.

Shah, J. J. and Mantyla, M., 1995, Parametric and Feature-Based CAD/CAM, John
Wiley & Sons.

Shah, J. J. and Rogers, M. T., 1988, Functional Requirements and Conceptual Design of
the Feature-Based Modeling System. Computer-Aided Engineering Journal, Vol. 5, No.
l, pp- 9‘15.

Shen, W. and Barthes, J. P., 1995, DIDE: A Multi-Agent Environment for Engineering
Design. Proceedings of the First International Conference on Multi-Agent Systems, San
Francisco, pp. 344-351.

134

Shen, W. and Norrie, D. H., 1999, Agent-Based Systems for Intelligent Manufacturing: A
State-of-the-Art Survey. Knowledge and Information Systems: An International Journal,
Vol. 1, No. 2, pp. 129-156.

Shen, W., Norrie, D. H., and Barthes, J. P., 2000, Multi-Agent Systems for Concurrent
Intelligent Design and Manufacturing, Taylor & Francis, London, UK.

Shen, W., Norrie, D. H., and Kremer, R., 1999, Developing Intelligent Manufacturing
Systems Using Collaborative Agents. IMS 99, Leuven, Belgium.

Shi, Y. H., Eberthart, R. C., and Chen, Y. B., 1997, Design of Evolutionary Fuzzy Expert
System. Proceedings of 1997 Artificial Neural Networks in Engineering Conference, St.
Louis.

Shi, Y. H. and Eberthart, R. C.,, 1998, Parameter Selection in Particle Swarm
Optimization. The 7* Annual Conference on Evolutionary Programming, San Diego.

Singh, N., 1995, Systems Approach to Computer-Integrated Design and Manufacturing,
John Wiley & Sons.

Sriram, D. and Logcher, R., 1993, The MIT DICE Project. IEEE Computer, Vol. 26, No.
1, pp. 64-65.

Stonebraker, M., 1992, The Integration of Rule Systems and Database Systems. /JEEE
Transactions on Knowledge and Data Engineering, Vol. 4, No. 5, pp. 415-423.

Suh, N. P., 1990, The Principle of Design, Oxford University Press, New York.

Tan, S. T.,, Yuen, M. M. F,, and Hui, K. C., 1987, Modeling Solids with Sweep
Primitives. Computers in Mechanical Engineering (CIME) Magazine, September, pp. 60
-73.

Tso, S. K,, Lay, H. C. W,, Ho, J. K. L., and Zhang, W. J., 1999, A Framework for
Developing Agent-Based Collaborative Service-Support System in a Manufacturing
Information Network. Engineering Application of Artificial Intelligence, Vol. 12, pp. 43-
57.

135

Ulieru, M., Norrie, D. H., Kremer, R., and Shen, W., 2000, A Multi-Resolution
Collaborative Architecture for Web-Centric Global Manufacturing. Information Science
(an Elsevier Journal) — Special Issue on Computational Intelligence for Manufacturing
Applications.

Vickers, D. L. and Swanson, K. A., 1988, A Form Feature-Centered Architecture for

Product Definition Exchange. AUTOFACT ’88 Conference Proceedings, pp. (2-25) - (2-
3.

Vliet, J. W, Luttervelt, C. A., and Kals, H. J. J., 1999, State-of-the-Art Report on Design

for Manufacturing. Proceedings of the 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada.

Waldron, M. B., Brown, D., and Yoshikawa, H. (eds.), 1992, Intelligent Computer Aided
Design, North-Holland, Amsterdam.

Wu, J., 1999, Distributed System Design, CRC Press.

Xue, D., 1997, A Multilevel Optimization Approach Considering Product Realization
Process Alternatives and Parameters for Improving Manufacturability. Jowrnal of
Manufacturing Systems, Vol. 16, No. 5, pp. 337-351.

Xue, D. and Dong, Z., 1993, Feature Modeling Incorporating Tolerance and Production
Process for Concurrent Design. Concurrent Engineering: Research and Applications,
Vol. 1, pp. 107-116.

Xue, D. and Dong, Z., 1994, Developing a Quantitative Intelligent System for
Implementing Concurrent Engineering Design. Journal of Intelligent Manufacturing,
Vol. §, pp. 251-267.

Xue, D. and Dong, Z., 1997, Coding and Clustering of Design and Manufacturing
Features for Concurrent Design. Computers in Industry, Vol. 34, pp. 139-153.

136

Xue, D., Rousseau, J. H., and Dong, Z., 1996, Joint Optimization of Performance- and
Costs in Integrated Concurrent Design: Tolerance Synthesis Part. Engineering Design
and Automation, Vol. 2, No. 1, pp. 73-89.

Xue, D., Takeda, H., Kiriyama, T., Tomiyama, T., and Yoshikawa, H., 1992, An
Intelligent Integrated Interactive CAD — A Preliminary Report. Intelligent Computer
Aided Design, (eds.), M. B. Waldron, D. Brown, and H. Yoshikawa, North-Holland,
Amsterdam, pp. 163-192.

Xue, D, Yadav, D., and Norrie, D. H., 1999, Knowledge Base and Database
Representation for Intelligent Concurrent Design. Computer-Aided Design, Vol. 31, pp.
131-145.

Yadav, S., 1999, Development of a Feature-Based Intelligent Design System, A Master’s
Thesis, Department of Mechanical and Manufacturing Engineering, The University of

Calgary.

Yoshikawa, H., 1988, Intelligent CAD. Organization of Engineering Knowledge for
Product Modeling in Computer Integrated Manufacturing, (eds.), T. Sata, Elsevier, pp. 1-
14.

Zhang, Y., Zhang, C, and Wang, H. P., 2000, Internet Based STEP Data Exchange
Framework for Virtual Enterprises. Computers in Industry, Vol. 41, No. 1, pp. 51-63.

