
UNIVERSI'I'Y OF CALGARY

Distributed Database and Knowledge Base Modeling

for Concurrent Design

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIEEJCE

DEPARTMENT OF MECHANICAL AND MANUF'ACTURING ENGINEERING

CALGARY, ALBERTA

DECEMBER, 2000

National Liiary I*I dcmada
Bibliotheque nationaIe
du Canada

uisitions and 3. A c q u i M i et
61 rographic Services senrices bibliiraphiques

The author has granted a non-
exclusive liceace allowing the
National L1hu-y of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'aufeur a accorde une licence non
exclusive pennettant B la
BibliothMue nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/iiIm, de
reproduction sur papia on sur format
electronique .

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent &re imprimes
ou autrement reproduits sans son
autorisation.

ABSTRACT

This research focuses on the development of a distributed database and knowledge

base modeling approach and an Internet-based concurrent design system. Geographically

distributed databases and knowledge bases, representing product development life-cycle

activities, are integrated through the Internet. The consistency of the distributed databases

is maintained using the distributed data dependency relation maintenance mechanism

developed in this research. A distributed knowledge-based inference mechanism is

introduced to create product life-cycle databases automatically. Based upon the

distributed database and knowledge base modeling approach, a concurrent design system

has been developed for modeling concurrent design alternatives. The optimal alternative

is identified using either the exhaustive method or the Genetic Programming method. The

optimal values of the design parameters are identified using the Particle Swann

Optimization method. The system has been implemented using VisualWorks. Example

applications have been developed to illustrate the effectiveness of the concurrent design

system.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my profound gratitude to my

supervisor h. D. Xue for his guidance, encouragement and continuous support during

my course of study and research in the Department of Mechanifal and Manufacturing

Engineering. Thanks also go to my examining committee members, Dr. D. H. Norrie and

Dr. M. Ulieru, for their critical review of this thesis.

I would also like to thank the Faculty of Graduate Studies and the Department of

Mechanical and Manufacturing Engineering for their generous financial support during

my study at University of Calgary.

Thanks are extended to the supporting staff of the Department of Mechanical and

Manufacturing Engineering, especially Nareeza Khan, Nick Vogt, Lynn Banach, Khee

Teck Wong, and Dan Forre, for their help and support during the course of my graduate

studies.

I am also grateful to my Mends for what they have done in different ways to help

and encourage me to complete my M.Sc. program.

Last but not least, my wife Dongmei Wang and my son Kan Zhang deserve my deep

appreciation for giving me unconditional support at a l l times.

TABLE OF CONTENTS

. . APPROVAL PAGE, u

.*. ABSTRACT*...*m

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

CHAFI'ER 1: I N T R O D U ~ O N w ~ m o m m m o m o o m o o o m m o m o m o m m m o o m m m m m o m m m m m m m o m m m m m m o m ~ m m m w m o m m m o m o m m o m m m m m m m m m m m m m m 1

1-1 Introduction mmoemommmmmoomommmmommmommommmmommmommmmo~mmmmmmmmmomommmommmmmmmmmmmmoommmmmmmommmmmmommmommomommomommmmmmm 1

1.2 Problem S t a t ~ e n t ~ ~ ~ ~ m m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ m ~ ~ ~ m ~ ~ m ~ ~ m ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ m ~ ~ m ~ ~ m ~ ~ m ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ m 4

13 R-ch O ~ j ~ c t i ~ ~ m m ~ ~ m m o e m o m m m m m m e o o m o m m m m o m o m m o m m m ~ ~ m ~ m m m m m m m m ~ m o m m m m m o m m o m m m m m m m m m m o m m 6

1.4 Overview of This Research mmmemmmomommmmmmmmommommmmmmoomommmmmmmmommommommmmmmmmmmmommmmmmmmmmmomommmmmommoomm 7

15 Organization of Tbb T b c s i s ~ m m m ~ o ~ ~ m m m ~ o ~ o m m o m o m o m m m m o m o m m m o e ~ m m m o m o m o m o m m ~ o m m m m o m 8

CaAPTER 2: RESEARCH BACKGROUND mmmmmmmommmmmmmm~mmommmmmmmmmmmmmmmmmmmommmmmoomommmmmmmmmo 11

2.1 Literature Review mmmmmomommmmmmommnmmmomommmmnooommomomommmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmeemmmmmommmmmmmmmmmo 11

2.1.1 Product Modeling 1 1

2.1.2 Product Development Techniques 14

2.1.3 Computer-Based Systems for Product Development 15

2.1.4 Integration of Distributed Product Databases and Knowledge Bases 17

2.1.5 Applications of Multi-Agent Systems in Product Development 18

2.1.6 Internet-Based Product Development 20

2m2 Related T ~ h n i q ~ ~ m ~ ~ m m ~ ~ ~ ~ m m m m ~ o ~ m m m o e o o e o m m m o m m m m m m m m m m m m m m m ~ o m m m m m m m m m m m m o m o o o o m m m m m m m m m m m m m 22

2.2.1 Feature-Based Modeling 23

2.2.2 Concumnt Engineering 2 4

2.2.3 Object-Oriented Programming and Smalltalk 26

2.2.4 Distributed Systems and the Internet 27

...... 2.2.5 Global Optimization 29

2.3 A FeatumBased Database and Knowledge Base Repraentation Scheme, JO

................................... 2.3.1 Database Representation 3 0

... 2.3.2.1 Chs Features and Ilcstance Features 3 0

................ 2.3.1.2 Maintenance of Data Dependency Relations ... 3 2

.................................... 2.3.2 Knowledge Base Representation 3 3

2.3.2.1 Rule-Bases .. 33

.. 2.3.2.2 Reasoning with Rule-Bases 3 4

3.1 Introduction mmeo~~~~~~~~~~~~~m~ommmoomoommoooommmooooemom~œmoomomœmm~mmmommo~~~oo~ommoooomm~~omomooomœmommmommomm 36

3.2 Dibutec l Product Database and Knowledge Base Modeling Architecturemo 37

3.2.1 Roduct Development Life-Cycle Activity Modehg 3 7

... 3.2.2 The Client-Semer Communication Architecture 3 8

3.2.3 Architecture of the Distributed Database and Knowledge Base

... Modehg S ystem 40

... 3.2.4 N d e De fuiitions and N d e Comec tions 43

.. 3.2.4.1 Defnition of Interner Nodes 4 3

... 3.2.4.2 Connection of Internet Nodes 4 5

3 3 Distribiited Fmture -Bd Database M d e l i n g a m . ~ ~ ~ a ~ m o ~ ~ ~ , m , m ~ ~ ~ ~ m ~ ~ o m ~ m m ~ ~ m a m m o m m ~ m o ~ m 46

.. 3.3.1 Virtual Features 46

..................................... 3.3.1.1 Virtual Class Features ... 4 6

................................. 3.3.1.2 Virtual Instance Features 4 7

3.3.1.3 Generution of Imtance Features fiom VirtuaZ Class Features 49
.. 3.3.2 Modeling Database Relations 5 1

.............................. 3.3.2.1 Mdeling Database Relations ut Cks Feature Level 52

3.3.2.2 Modeling Database Relations ut Insiance Feature Level 53

.................... 3.3.3 Maintenance of Dependency Relations among Distributed Data 53

3.3.3.1 An Algorithm for Maintaining Distributed Data Dependency Relations.. 55

.. 3.3.3.2 An Example of Attribute Propagation Process .. 5 7

3.4 Distributed Knowledge B ~ 9 e Modeling ~ ~ ~ o " ~ m " " m m m m o m m m " ~ m m m o m m m a o o m m m m m o m m m o m m o m o a o m " 58

............................... 3.4.1 Virtual Rule-Bases 5 9

...................................... 3 .4.2 Selection of Virtual Rule-B ases 61

... 3 .4.3 Reasoning with Distributed Rule-Bases 63

3.5 S~mmary ~~~~~momoommmoomomooooaoooo~oo~ooomommom~oomamoa~aommamaommmmooaoomoomamoomaammmmmaoommmmmoommmmmm 65

CHAPTER 4: CONCURRENT DESIGN BASED UPON DISTRIBUTED

DATABASE AND KNOWLEDGE BASE MODELINGmm....m..m..m..... 67

4.1 Iatroducti~m oommmomomoomomoooomoaoamaooomoooommmooooomaamoomoooomommo~~aoommoaomoommm~moomam~omoommommmoammmoomoommom 67

4.2 Modeling of Roduet Redhati011 Process A l t c ~ t i ~ e ~ m m a ~ m o o m o m o a m m a ~ m m m m m o m m m m m ~ o m m m o a m 69

... 4.2.1 The Relations among Internet Nodes 69

.. . 4.2. I 1 Logical Relations among Internet Nodes 70

... 4.2.1.2 Creation of Internet Node Relations 71

........................... 4.2.2 Representation of Product Realization Process Alternatives 72

... 4.2.2.1 Product Realization Process Alternatives 72

............................... 4.2.2.2 Display of Product Realization Process Alternatives 73

4.3 Identification of the Optimal Product Realization Process Alternative 75
.. 4.3.1 The Exhaustive Metbod 7 6

......................... 4.3. I . 1 The Algorithm for Generating All Alternatives ... 76

.. 4.3. I.2 An Euunple of Generating All Alternatives 76

... 4.3.2 The Genetic Programming (GP) Method 7 8

.. 4.3.2.1 Introduction to Genetic Programming Method. 78

................................. 4.3.2.2 Genetic Programming for Alternative Optimization 82

4.4 Identification of Optimal Design Parameter Values ~ a ~ ~ ~ m m ~ m a m ~ m m ~ ~ m o m o m a m m m o a m o m a 90

........................ 4.4.1 Introduction to ParticIe Swarm Optimization (PSO) .. 90

4.42 PSO in Design Parameter Optimization 9 2

.................................. 4.4.2.1 Formulation of Parameter Optimization Problems 93

4.4.2.2 Issues of Parameter O p t i m w o n with PSOW

......................... 4.4.2.3 Tlrr Parameter Optimization Inteflae 9 5

43 S- ~ ~ o m m ~ ~ m ~ o o o o m o o m o o o o m m ~ m m o o o o o o o m m m m m m ~ o m ~ m m m o o m ~ U o o m H o m m m o H m O ~ H m o o o o o O m o m o o m o o o m ~ o m %

CHAPTER 5: SYSTEM IMPLEMENTATION AND APPLICATION EXAMPLES

momoomooooemooom~oomooomoomemmo~mmmommoomooomoomooooo~~~oommmmommmmooomomoommooomooweoo~oomooooomwm~oomo~~~moomomomommomoooo~m~~ 98

5.1 System Implementation m ~ . ~ . . . ~ ~ . m ~ ~ a ..m..~~a~m.~~~l... ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ m ~ m m ~ ~ ~ ~ ~ m m a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ ~ ~ ~ m m ~ ~ m 98

5.1.1 System Interfaces 9 8

.................................. 5.1.2 New Classes Developed for System Implementation 101

... 5.1.3 Message Handling 103

5 3 Application ExPmpl~m~~moo~ommmoommooomom~mooooooo~oommooommoomo~omommommooomomwomooomoommmmeoomooommmo 104

.. 5.2.1 The Concurrent Design Problem 105

... 5.2.2 Generation of Instance Features 107

.................... 5.2.3 Rule-Based Reasoning with Virtual Rule-Bases 107

... 5.2.4 Propagation of Changed Attribute Values 110

5.2.5 The Optimization of Design Parameter Values Using PSO 111

.... 5.2.6 The Optimization of Roduct Realization Process Alternatives Using GP 114

CaAPTER 6: CONCLUSIONS AND FUTURE WORK mmoeemomm*ommooom*m*omoooomeomomoo*oeomo 120

6.1 C ~ ~ ~ d ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o m o o o m m o ~ o m m m o m o o o m m m o m m m ~ o m o ~ o o o o o o o o m o m o ~ m o ~ m ~ o o o o o o o e e o o m o m ~ o o e o o m m o o o o o o o m m o m o m o m ~ o m o o o 120

6.1.1 Distributed Database and Knowledge Base Modeling 120

... 6.1.2 Intemet-Based Concurrent Design 122

6.2 Fu- Work oommmommmomooeooommooommeomo~mmemmmmmoomoommooomoommomomoom~~o~oomomm~oemoo~ommmo~oooooooo 124

.. REFERENCES 127

viii

INTRODUCTION

In this chapter, a brief background introduction for this thesis is provided. The

problems remaining in distributed database and knowledge base modeling for droduct

development are summarized. Based on these problems, the objectives of this research

are outlined. The organization structure of the thesis is given at the end of this chapter.

1.1 Introduction

Development of a product is carried out through a sequence of processes including

marketing, design, process planning, manufacturing, etc. With the advances of computer

technologies and information technoIogies in the new century, global competition is

becoming the main characteristic of the marketplace. In responding to the increasingly

dynamic market requirements on product development time, cost, and environmental

concerns, etc., many methodologies and computer-aided systems have been developed

and used to improve the overall performance of products.

Among product development activities, design is the major process that affects the

performance of other down-stream life-cycle phases. An effective design should be

identified based on customer requirements, with consideration of the down-stream

perforxnance of the design. Methodologies for improving product Ue-cycle performance

include Design for Manufacturing (DFM) [Helander and Nagamachi 19921, Design for

Assembly @FA) Magrab 19971, and Design for Environment (DFE) wagrab 19971.

Design for Manufacturing (DFM) is an approach that incorporates manufacturing process

information into the design process. The basic objective of this approach is to reduce

manufacturing costs and lead-time by considering manufacturability aspects of the

product at the design stage. In Design for Manufacturing, information flows between the

process models of design and manufacturing. Similarly, Design for Assembly @FA) and

Design for Environment (DFE) emphasize the assembly performance and environmental

impact of the product design respectively Magrab 19971.

To evaluate down-stream product life-cycle performance and use evaluation

measures to improve design, the concept of concurrent engineering was proposed

[Parsaei and Sullivan 19931. Many studies in concurrent engineering focus on

incorporating all relevant down-stream Life-cycle aspects into the design stage. In these

studies, the activities in down-stream product development phases, such as production

process planning, manufacturing, service, and recycling, are handled concurrently with

the design process. However, the process of concurrent design is very complex, since it

involves dynamic information flows among all related product development processes.

Therefore, the concurrent design methods and tools that can be used effectively to

improve product development We-cycle performance must be investigated.

To improve product development efficiency and apply the methodologies mentioned

above, many computer-based systems have been developed [Singh 19951. Computer-

Aided Design (CAD) systems help designers produce modifiable product designs easily

and perform design-related analysis efficiently. The efficiency and productivity of the

design process are greatly improved using CAD systems. Computer-Aided Process

Planning (CAPP) and Computer-Aided Manufacturing (CAM) are used to assist process

planning and manufacturing activities respectively. Among these computer-aided

systems, Computer-Aided Design (CAD) is widely used for product modeling by 2D and

3D geometry as well as in animation. CAD databases can be regarded as product

geometric models and can be used to generate down-stream product development data

such as manufacturing processes and assembly processes.

Product design is a complex process that involves considerable knowledge and

decision-making. Techniques in Artificial Intelligence (AI), such as expert system, fuzzy

logic, neural networks, genetic algorithm, etc., have been applied to computer systems to

improve product development capabilities and efficiency.

Of all the issues related to computer-aided product development, the modeling of

product databases and knowledge bases is one of the most important. Feature-based

product modeling is one of the approaches used in computer-aided systems [Gardan and

Minich 1993, Xue and Dong 19931. The concept of feature was originally used for

representing geometric primitives, such as blocks and holes, for modeling product

geometry [Shah and Mantyla 19951. In Xue's previous work, the concept of feature was

extended to model other product life-cycle primitives, including design primitives and

manufacturing primitives, for improving product life-cycle modeling efficiency Due and

Dong 1993, Xue et al. 19991. Unlike CAD systems in which mainly geometric

information of a product is modeled, the feature-based product life-cycle modeling

approach can build product descriptions in a more natural way. It uses not only the

geometric primitives, but also non-geometric properties and the relations among these

properties.

Object-oriented databases model products more efficiently than relational databases

because of the properties of inheritance, encapsulation, etc. Thus, a product family can

easily be modeled by a class and its sub-classes.

In most presently developed computer-based product development systems, the

databases and knowledge bases are modeled at the same location. In a concurrent design

system, all down-stream aspects of product development, such as marketing, design,

manufacturing, and service, must be considered concurrently; however these activities,

usually take place in different geographical locations. It is very difficult to implement

concurrent design without the assistance of an effective computer system that can handle

distributed databases and bowledge bases.

Current distributed modeling and computing techniques focus on integrating the

objects developed on different platforms (such as UNIX, MS Windows) using different

computer languages (such as C, Ctt , Java) into the same environment. Typical

distributed. object modeling methods include Distributed Component Object Model

@COM) (Grimes 19971, Common Object Request Broker Architecture (CORBA) [Otte

et al. 1996 1, and Remote Method Invocation 0 WcCarty and Cassady-Dorion 19991.

These methods provide interoperability between applications on different machines in

heterogeneous distributed environments.

The recent development of multi-agent systems provides another approach for

associating separated databases and knowledge bases and their related modeling systems

[Norrie 19991. Multi-agent systems are software societies that handle all related tasks

through communication, negotiation, collaboration and other activities among relevant

agents. In order for a multi-agent system to be successful, the agents must be highly

intelligent.

1.2 Problem Statements

Despite considerable progress in computer-aided systems for assisting product

design and manufacturing, problems still remain in modeling distributed databases and

knowledge bases for concumnt engineering design. These problems are summarized as

follows.

1). Problems in distributed database modeling

In distributed object modeling approaches including DCOM, CORBA, and RMI,

association of the objects at different locations is predefined by compiled computer

programs. However in the product development process using concurrent design

methodology, product realization process alternatives are generated and evaluated

dynamically in order to identify the best solution. The distributed databases must be

associated in a dynamic manner.

Distributed object models are primarily used for representing objects, which are

described by data and fuactions to access these data. Collaboration of these objects is

limited to only the data and functions. Since the computer-based product development

process involves more sophisticated descriptions such as composing elements,

qualitative relations, dependency relations, and constraints, modeling of these

descriptions is also needed. These descriptions are usually associated with distributed

databases.

2). Problems in distributed knowledge base modeling

Multi-agent systems aim at decomposing a problem into many sub-problems and

using the knowledge of different agents to solve the different types of sub-problems.

The collaboration of agents is usually conducted through brokers called mediators. In

a multi-agent system, an agent is associated with certain knowledge for solving

problems of a certain type. In the product development process, since different

knowledge bases, including design knowledge bases and manufacturing knowledge

bases, are required to access the same database, a more flexible mechanism is

required to dynamically select and combine knowledge bases at different locations.

In existing distributed systems, databases and knowledge bases are not well

integrated. Databases are usually modeled as objects or relational databases.

Knowledge bases are usually described by IF-THEN rules. The feature-based product

modeling system provides a new approach for integrating the databases and

knowledge bases. It introduces features that are described by both qualitative

descriptions for symbolic reasoning and quantitative descriptions for numerical

calculation [Xue and Dong 1993, Xue et al. 19991. In existing knowledge-based

concurrent design systems, rule-based reasoning is conducted only at one location. To

incorporate distributed databases and knowledge bases for concurrent design, a

distributed inference mechanism must be developed.

3). Problems in concurrent design with distributed databases and knowledge bases

Concurrent design has been recognized as a method that can lead to lower production

costs, less lead-time, and better life-cycle performance. It has been widely accepted

as an engineering philosophy. Many computer-based tools have been employed for

modeling concurrent design [Reidsema and Szczerbicki 19971. Most of these tools,

however, can handle only centralized databases and knowledge bases. A concurrent

design tool that employs distributed product databases aud knowledge bases will

increase the advantages of a concurrent design system.

There is still little information on how a concurrent design candidate can be modeled,

evaluated, and modified dynamically in terms of using a distributed database and

knowledge base modeling system.

In order to address the problems stated in Section 1.2, the objectives of this research

are summarized as follows:

1). To develop a distributed database and knowledge base modeling system with the

functions required for concumnt engineering design. These functions are:

a The distributed database and knowledge base modeling system is open and dynamic.

The product modeling databases and knowledge bases, representing product

development activities, are associated by the Internet. Each database model can be

included in or excluded from the system by connecting the model to the system and

disconnecting it from the system. This function provides choices of available

databases for concurrent design.

Product descriptions at different locations are kept consistent all the time by a relation

maintenance mechanism. This mechanism is the engine that propagates any data

changes to all related data, no matter where these data are located. It is critical to the

success of the system in concurrent design, since any value changes in design

databases will lead to changes in all down-stream product development modeling

databases.

Distributed knowledge bases should be integrated and used to access the same

databases. By means of such integration, knowledge at remote locations can be used

to assist local product modeling processes. To accommodate rule-based reasoning

into the distributed concurrent design system, a distributed inference mechanism must

be developed to conduct product development activities concurrently.

2). A concumnt design system must be developed, based on the distributed database and

knowledge base modeling approach. This system should have the following

functions:

Alternative product realization processes can be modeled effectively so that the

concurrent design system can generate and evaluate the alternatives.

The optimal product realization process is reached through optimization conducted at

two different levels. Parameter optimization is employed to identify the optimal

parameter values for an alternative product realization process. Based on the results

of parameter optimization, alternative optimization is carried out for identifying the

optimal product realization process. Through these processes, all relevant product

development activities interact dynamically to reach the goal of concurrent design.

1.4 Overview of This Research

This research is composed of two parts: development of the distributed database and

knowledge base modeling system, and application of this system in concurrent design.

The distributed database and knowledge base modeling system can be used to model and

integrate product development Mecycle activities that are geographically distributed.

The concurrent design system is used to identify the optimal product realization process

alternative based on the distributed database and knowledge base modeling approach.

In the distributed database and knowledge base modeling system, different product

development activities are modeled in different computers at different locations. All the

computers are connected to the Internet. Each computer is represented as an Internet

node. The communications among these nodes are conducted through messages over the

Internet .

Distributed database modeling is the core part of the distributed database and

knowledge base modeling system. The product databases, i.e., the product life-cycle

aspect models, are built using primitives called features. Features are described at two

different levels, class level and instance level. Features preserved in remote nodes are

called virtual features. Virtual class feahues can be used to generate true instance features

at the local node. Virtual instance features are actual product modeling databases

preserved in different remote nodes. These product data can be accessed from the local

node. The relations among virtual instance features and true instance features can also be

defined to establish relations of the related databases. The relations can be modeled at

both class feahue level and instance feature level. Through these relations, data changes

in one node can be propagated to other related nodes automatically by a relation

dependency maintenance mechanism. This hct ion is critical to implementing

concurrent design methods.

h knowledge base modeling, knowledge is represented by rules which are organized

into separated rule-bases. The rule-bases preserved in remote accessible nodes are called

virtual rule-bases. Virtual rule-bases can be selected for reasoning at the local node

together with true rule-bases. To assist in p d u c t development, each instance feature can

be associated with a number of rule-bases including virtual rule-bases. The product

databases can be generated and modified through rule-based reasoning. Since the product

databases are distributed at different locations, a distributed inference mechanism is

developed to automatically activate inference processes in remote nodes.

Based on the distributed database and knowledge base modeling approach, a

concurrent design system was developed. In this system, a product realization process

alternative is modeled by a collection of Internet node names that represent different

product development activities such as design, manufacturing, and assembly. If the

number of alternatives is small, the alternatives can be generated using an exhaustive

method. When the number of alternatives is large, the optimal altemative can be

identitied through a two-level optimization process, parameter optimization and

alternative optimization. Parameter optimization is conducted to obtain optimal values of

parameters for the alternatives. Particle Swarm Optimization (PSO) [Kennedy and

Eberhart 19951, a global optimization method, is used for parameter optimization. Based

on the results of parameter optimization, alternative optimization is conducted at the

second level to identify the optimal alternative. The Genetic Programming method (GP)

[Koza 1992, Angeline 19941 is used for alternative optimization.

1.5 Organization of This Thesis

There are seven chapters in this thesis. Chapter 2 starts with a detailed literature

review that provides the research background of this work. This review covers topics

related to the work presented in this thesis, including design-forX techniques,

concurrent design methods considering alI relevant life-cycle aspects, product modeling

approaches, distributed systems for concurrent engineering design, and Internet-based

applications in concurrent design. The existing techniques that were used in this research,

including feature-based modeling, object-oriented programming, distributed systems, the

Internet, and engineering optimization, are then briefly introduced. Since this research is

based on a previously developed system - a featwe-based intelligent design system mue

et al. 19991, the structure and key functions of this system are described in this chapter.

Chapter 3 gives a detailed description of the distributed database and knowledge

base modeling system. First, the architecture used for integrating geographically

distributed databases and knowledge bases through the Internet is introduced. Then

details of distributed database modeling and distributed knowledge base modeling are

described. As one of the core functions needed for concurrent design, distributed database

modeling is emphasized in this chapter.

Starting from the basic definitions of virtual features, including virtual class features

and virtual instance features, the modeling techniques of virtual features and data

relations involving virtual features are presented in detail. A mechanism for maintaining

data dependency relation is then discussed by introducing an automated data propagation

algorithm and an example.

For knowledge base modeling, the virtual rule-base concept is introduced.

Techniques for using virtual rule-bases are described. A distributed reasoning algorithm

is then discussed.

Chapter 4 presents a concurrent design system. This system is based on the

distributed database and knowledge base modeling approach described in Chapter 3. The

concurrent design system provides the functions of modeling product realization process

alternatives and generating the optimal concurrent design solution. Two levels of

optimizations are employed in this system. First, the design parameter values are

optimized by Particle Swarm Optimization (PSO). Then the product realization process

alternatives are optimized using Genetic Programming method (GP). These methods are

described in detail in this chapter.

Chapter 5 discusses the issues in the impIementation of the disaibuted database and

knowledge base modeling approach and the concurrent design system. These issues

include data structures, class definitions and message handling.

Chapter 6 presents examples to illustrate the application of the distributed database

and knowledge base modeling approach and the concurrent design system.

Chapter 7 summarizes this thesis and gives conclusions. Possible future research

directions are also discussed in this chapter.

CHAPTER 2

RESEARCH BACKGROUND

This chapter presents a general review on subjects relevant to the research introduced

in this thesis. Subjects include product modeling and development, computer-based

systems for product development, and distributed modeling techniques for product

development. As the basis of this research, the previously developed feature-based

intelligent design system [Xue et al. 19991 is introduced. Techniques used in this research

are also briefly described.

2.1 Literature Review

Product development is a complex process that involves human intelligence and

available techniques. To improve the efficiency of product development and the

performance of product Life-cycles, many product modeling techniques and computer

systems have been developed. Recent advances in computing technology and the Internet

provide new approaches for developing and implementing more robust computer-based

systems to assist product development. Such systems can play an important role in

satisfying the requirements of the global market today.

2.1.1 Product Modeling

In computer-based product development, the techniques of product modeling are

important in improving the effectiveness of product development systems. CAD systems

have been widely used for modeling product geometry [Singh 19951. Three types of

geometric models are usually used for representing a product. They are the wireframe

model, the surface model, and the solid model. The wireframe model builds a product

using its boundary lines and curves [Lae 19851. This model is simple but ambiguous in

geometry interpretation. The surface model describes a geometric model using boundary

surfaces, such as plane surfaces, suffaces of revolution, etc. wortenson 19851. The

surface model visualizes products better than the wireframe model. The solid model

provides more i n f o d o n of product geometry including topological relations among

geometric elements. Primitives such as spheres, cylinders, cones, blocks, etc. are used to

build a solid model pan et al. 19871. The solid model takes much more computer

memory than the other two models, but is the most suitable for product geometric

modeling with a computer-based system.

The solid model has been used by conventional CAD systems for modeling product

geometric information. However, modeling of product geometry is only one aspect of

product modeling. It should be possible to model more information, such as generic

relations among related products, non-geometric information, etc. For such purposes, the

feature model has drawn the attentions of researchers [Shah and Rogers 1988, Xue and

Dong 1993, Gardan and Minch 1993, Shah and Mantyla 19951. A feature is a description

necessary for modeling one aspect of a product. The feature model catches not only

geometry information, but also non-geometry information of products. More details about

feature-based modeling are introduced in Sections 2.2 and 2.3 of this chapter. Features of

a product can be classified into different categories. Examples are material features,

manufacturing features, technological features, and geometric features [Shah and Rogers

1988, Vickers and Swanson 1988, Shah 19891. In feature-based product modeling

research area, feature recognition is an approach for extracting the geometry from the

CAD database for planning production processes [Henderson 19841. Design-by-features

is another approach for modeling a product using manufacturing features at the very

beginning [Shah and Rogers 19881. An international product modeling standard. STEP.

has been developed to integrate the different product life-cycle models, using a universal

computer language [Gu and Chan 19953.

Research on functional modeling has also been reported [Nagarnatsu et al. 19991.

This research showed that the functional model has the potential capability of providing

dynamic functional performance of products. It is suggested that the functional model be

composed of block diagrams for explaining the functions, and mathematical models for

simulations. This method is still in the early developing phase.

Product database modeling is one of the important issues in product modeling,

especially for computer-based modeling systems maldron et al. 1992. Shah and Mantyla

19951.

Conventionally, relational data models are widely used because they are easy to learn

and easy to use. However, engineering product data are complex in terms of relations

among the element entities. The relational data model has difficulty in modeling such

relations [Seilonen 19951.

Object-oriented data modeling is a data modeling methodology proposed as an

alternative to the relational modeling technique [Hughes 19911. The object-oriented data

modeling technique leads to more maintainable and understandable models that

correspond more closely to real world entities and Sen 19941. The application of the

objectoriented database modeling in product development has been proven effective

[Xue and Dong 1993, Yadav 19991. The object-oriented database modeling technique is

often combined with feature-based product modeling technique to improve the

effectiveness of product modeling [Xue and Dong 1993, Yadav 19991.

In some cases, knowledge-based techniques are introduced to help manage the

databases. Stonebraker proposed an active database management system called active

DBMS [Stonebraker 19921. Active DBMSs are databases that automatically carry out

triggered actions when certain situations arise. The active behaviors are specified by

production rules integrated in the system.

In the work of Bassiliades and Viahavas [f997], a rule integration scheme in an .

object-oriented database management system (OODBMS) was presented. An active

knowledge base system called DEVICE resulted from this work. Domazet and San

119971 described a system that integrates an expert system with a passive object-oriented

management system to create active behavior in a single workspace environment. This

system is regarded as an active database server. Roller and Eck [I9991 presented an

approach to a shared knowledge base for product development called the Active

Semantic Network (ASN). The ASN is an intelligent knowledge base that adapts

conventional database functions to the particular requirements of modern cooperative

product design.

2.1 -2 Product Develop-t Tee hniques

product &velopmept involves activities such as marketing, design, manufacturing,

and senrice. ~ m a n g aese activities, design is the primary process that affects the

pefio-ce of the p&~t in all down-stream life-cycle aspects. Eighty percent of

- u f a e g &isions result dinctly from the design stage m e t et al. 19991. In order

to improve the of products, a number of product development techniques

that conc-nw consiw down-stream aspects of the product development process have

been developed.

Design for ~ ~ ~ u f a ~ t l l r h g (son1etimes called Design for Manufechuability)

melander and Nagam& 1992, Magrab 1997, met, et al. 19991 is widely accepted as

an approach for crrathj product designs that eases the manufacturing task and reduces

-uf=nuing costs. Conventionally, designers must be provided with up-to-date

bowledge of manufacturing processes, tools and fixtures in order to improve the

efficiency of the product nalization process. Since manufacturing processes are complex,

designers often have difficulty in fully considering all the requirements of

manufmwability. hat is where the DFM systems are placed. To emphasize different

aspects of product developrIlent such as assembly, service, and environment at the design

stage, techniques of Design for Assembly @FA), Design for Serviceability (DFS), and

m s i p for Eneoment @FE) have also been developed (Magrab 19971.

Sharing many similarities with Design for "X' in terms of the concepts and

objectives, concurrent design (or concurrent engineering) has been recognized as an

approach to improve tpe quality and efficiency of product development. Concurrent

design refem to the s~ultaneous design of a product and al l its related processes in a

manufm*g system f i well as related processes in later phases of the product's life-

cycle Ipmaei and Sullivan 19931. This means that all information flows should be mufti-

directional among the design processes and all related processes. Since 1980s, the

benefiu provided by concurrent design philosophy have been recognized and many

indusaial applications heve been developed (Pemell et al. 19891.

There are two approaches to implementing the concurrent design practice: the team-

based approach and the computer-based approach parsaei and Sullivan 19931. The team-

based approach is human-oriented. The members of the team are from all related

fimctional areas. They can therefore contribute to the design of products and processes by

identifying potential problems early and avoiding a series of costly reworks [Pemell et al.

19891.

Though it is easy to implement, this approach has apparent shortcomings: the

difficulty and cost of managing the team, and team members' limited knowledge. So a

team-based approach also needs the assistance of computer systems to enhance the

team's performance. The computer-based approach is effective in integrating all related

process models of product development into the same environment. With the increasing

ability of handling large amount of information at high speed, computer-based systems

are playing increasingly more important roles in implementing concurrent design.

2.1 -3 Computer-Based S ys terns for Product Development

Among computer-based systems in product development, Computer-Aided Design

(CAD) is one of the most widely used tools currently available to the industries.

Conventional CAD systems are mainly used for geometric modeling and related

computation and analysis [Singh 19951. Even though it has been very successful in

assisting designers to produce drawings and graphics in a fast and accurate way. CAD

systems still have difficulties in handling non-geometric information about products.

Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM)

are systems to automate process planning and other manufacturing activities [Singh

19951.

With the development of Artificial Intelligence (Al) techniques, knowledge-based

systems have been used to improve the efficiency of product development and the

performance of the product life-cycle [Court 1998, Judson et al. 19991. Expert system is

one of the techniques often used in product development. To improve the performance of

conventional CAD systems, research has been conducted to introduce knowledge-based

systems to the CAD systems [Yoshikawa 1988, Anderson and Crawford 1988, Penoyer et

al. 20001. Penoyer et al. believe that future CAD systems should be open to integrating

knowledge-based systems for al l aspects of the product life-cycle [Penoyer et d. 20001.

Knowledge-based systems are also used in other computer-based systems to assist in

manufacturing, assembly, etc. iKn,ll et al. 1989, Colton 19931.

Recently, more research on integrating knowledge in product development has been

done. Court [I9981 identified important issues to be considered in order for knowledge or

information to be successfully integrated into hmue product development. These issues

include the media in which information and knowledge are provided, the manner in

which information and knowledge are presented, and the location and administration of

knowledge and information. Xue et al. [I9991 presented a method for integrating

knowledge bases with feature-based product databases for intelligent concurrent design.

In Xue's previous research, an integrated and intelligent system was developed for

modeling the databases and knowledge bases used at different product development

phases B u e and Dong 1993, Xue and Dong 1994, Xue et al. 1996, Xue 1997, Xue and

Dong 1997, Xue et al. 19991. In this research, product life-cycle aspects are modeled by

aspect primitives called features, inc1uding design features such as mechanisms and

components, manufacturing features such as holes and slots, and so on mue and Dong

19931. A rule-based system was developed to generate product life-cycle aspect models

automatically through rule-based reasoning [Xue and Dong 19941. An optimization

model was introduced to identify optimal design considering both functional performance

and production cost [Xue et al. 19961. The optimization model was improved based on

genetic algorithm and simulated annealing to identify the optimal product realization

process alternative and its parameter values mue 19971. A design feahue coding system

and a manufacturing feature coding system were developed to organize large feature

libraries and identify appropriate features during the product development process [Xue

and Dong 19971. Judson et al. [I9991 discussed challenging issues of introducing

knowledge-based engineering into an interconnected product development process. Even

though a Design Structure Matrix (DSM) model was proposed to map the knowledge that

might be involved at the system interaction level for several components, more dynamic

methods are still needed for such knowledge-based applications.

2.1.4 Integration of Distributed Product Databases and Knowledge Bases

In most of the presently developed computer-based product development systems,

the product databases and knowledge bases are modeled at the same location. However

product development activities, such as marketing, design, manufacturing, and service,

usually take place at different locations. To take advantage of globally available product

development resources, integration of these separated product modeling databases and

knowledge bases becomes necessary in product development.

The research of distributed database modeling often focuses on integrating the

objects developed on different platforms (such as MS Windows, UNIX, and Macintosh)

using different computer languages (such as C++, Java, and Visual BASIC) into the same

environment. In order to manage distributed databases, integration of distributed database

management systems has been studied [Ozsu et al. 19941.

Research in this area also includes works on methodologies of collaboration and

coordination of distributed product information management systems and frameworks

that help designers make decisions. The SHARE project developed by Cutkosky et al.

[I9931 allows designers to gather, organize, and communicate design information over

computer networks to establish shared understanding of the design. Groupware

techniques are used in the SHARE project. Sriram and Logcher [I9931 developed a

computer-based design system that provides a shared workspace where multiple

designers work in separate engineering disciplines. A global control system is used to

solve problems of coordination and communication. A system proposed by Bliznakov et

al. [I9951 allows a designer to indicate the status of the tasks assigned so that other

designers can follow over the computer network. This system incorporates a hybrid

model for design information representation. Adamides [I9951 presented a distributed

active-resource coordination framework for a class of flexible manufacturing systems.

Cooperative behavior is achieved by resolving conflicts and by maximizing the use of the

system's resources. This framework relies on a timed Petri net representation of the

production responsibilities of each active resource in the system. Pahng et al. [I9981

proposed a framework for modeling and evaluating product design problems in a

computer network-oriented design environment. Design problems are decomposed into

modules (such as a cost module) that represent different aspects of the problems. The

modules can be distributed. A module can provide services to other modules through

standard communication protocol.

Research of distributed knowledge base modeling has been conducted for developing

multi-agent systems to solve problems through collaboration of different agents with

different types of knowledge wuhns and Sin@ 19981.

Some commonly used methods that provide interoperability between applications on

different machines in heterogeneous distributed environment have become industrial

standards. Typical distributed object modeling methods include Distributed Component

Object Model @COM) [Grimes 19971, Common Object Request Broker Architecture

(CORBA) [Otte et al. 19963, and Remote Method Invocation (RMI) WcCarty and

Cassady-Dorion 19991. These different distributed object modeling methods have been

compared WcCarty and Cassady-Dorian 19991.

2.1.5 Applications of Multi-Age nt Systems in Product Development

Multi-agent systems are another approach that can be used for product development

in both centralized and distributed product development environments. Multi-Agent

Systems, also called Intelligent Agent Systems, are software systems that are composed

of program modules with intelligence and autonomy. These modules, regarded as agents,

may collaborate dynamically to achieve the objectives of the systems Worrie 19991.

Many applications have been developed using the multi-agent system approach for

solving engineering problems [S hen and Norrie 19991. Reidsema and Szczerbicki [19971

considered the complexity of implementing concurrent design that involves different life-

cycle aspects of product development. They suggested that multi-agent distributed

systems should be used as the core concept in developing a concurrent engineering

design system. Complicated concurrent design problems can be decomposed into

subtasks that are distributed among different agents with the abilities to solve these

problems. Coordination and cooperation among agents help achieve the goals of

concumnt design, such as minimiring lead time, reducing manufacturing costs, and

ensuring longer product life span.

An experimental multi-agent environment for engineering design was introduced by

Shen and Barthes [1995] using techniques of distributed iutificial intelligence. In this

system, various design activities are modeled by a population of asynchronous cognitive

agents. The agents communicate through a local network or the Internet. All agents in the

system are autonomous and independent. Users of the system are regarded as human

agents who are integrated into the design environment.

Danesh and Jin 119991 introduced an agent-based decision network framwork for

concurrent design and manufachlriag. The design process is modeled using a decision-

based approach. There are two major models in this h e w o r k : the decision-based

design process model and the condition-based negotiation model. These models are

introduced to help team members consider other members' decisions when making their

own. Coherent design decisions among designers can therefore be achieved by explicitly

representing and capturing individual design decisions and negotiation processes. Each

designer is associated with an agent that is facilitated with the two models. This

framework was found to be effective in integrating design and manufacturing processes.

Also for collaborative product development, the mechanism of agent-based

workflow management was proposed to facilitate the team working in a collaborative

product development framework [Huang et al. 20001. In this framework, a web-based

decision support system is used by team members who are geographically distributed.

Agents are representatives of their human users. Each agent is assumed to be responsible

for one work activity of the project. A limitation of the framework is that only static

dependency relations, such as predefined predecessors and successors between agents,

can be used in this system. Agent-based applications for product development also

include information integration and collaborative service support in all aspects of a

product life-cycle [Gadh and Sonthi 1998, Tso et aI. 19991.

2.1.6 Internet-Based Product De velopment

Recent advances in Internet technology provide new approaches for integrating the

separated databases and knowledge bases into the same environment [Alles and

Vergottini 1997, Huhns and Singh 19981. Intensive research has been carried out on

Internet-based or web-based product development. Name and Engelstein [I9981 provide

a brief overview of tools that could possibly be used to bring concurrent engineering to

fruition. These tools include E d , Web sites, VRML (Virtual Reality Modeling

Language), FP (File Transfer Protocol), Multimedia, and Groupware.

Mendel [19991 predicted that the product data management software business would

be reshaped by the Internet technology. Roy et al. [I9971 reported a prototype framework

of web-based collaborative product development. In this framework, all designers

involved can collaborate through shared web pages and VRML models. Product

modeling databases and the VRML-based geometric models are associated with shared

web pages. Designers can access these data through hyperlinks. Adapalli and Addepalli

[1997] described different ways of integrating manufacturing process simulations by

means of the world wide web. Techniques used in this research include HTTP/CGI, java

sockets, etc. It was concluded that performing manufacturing process simulations over

the web is possible, even though some problems, such as the immaturity of related

techniques, remain to be solved.

Methods for transmitting and viewing CAD data and engineering information

through the Internet must be studied in order to develop web-based applications for

product development. With this concern in mind, Kim et d. [I9981 discussed the

possibility of storing STEP data using the Virtual Reality Modeling Language (VRML)

so that the product can be viewed in interactive 3D on a number of platforms using the

Internet and World Wide Web. Formalisms for storing STEP data in an object-oriented

database schema and converting STEP data to VRML are described. The prototype

system, called CyberView, can provide support for members of distributed concurrent

engineering teams to share and exchange 3D information. For the purpose of developing

a web-based DFX (Design for X) shell that is intended to be used to develop DFX tools,

Huang et aI. [I9991 studied the technique of web-based product and process data

modeling. A method called bills-of-materials is used for outlining product structures. A

bill-of-materials is a list of the items or materials needed to produce a parent item. This

method cannot model relationships between components and parts of the products

effectively.

To support product modeling and collaborative design activities, Lee et aI. [I9991

presented an approach for web-enabled feature-based modeling in a distributed design

environment. In this approach, there is a neutral feahue model in the server. This model

provides a generic naming scheme for naming consistency, so that the relationship

between geometric entities of the server and clients can be maintained.

In product development, the life-cycle support of products can be enhanced by the

Enterprise-Web portal in terms of information and resources sharing and management,

according to Rezayat [2000a]. Rezayat also discussed problems that the web-based

technology, especially XML (extensible Markup Language), is used for defrning

interfaces supporting knowledge capturing, storing, and sharing through out the product

development life-cycle [Rezayat 2000bl.

Another interesting prototype system called WebCAD has been developed to allow

designers to define the geometry of parts [Kim et al. 19991. The basic objective of this

project is to provide manufachuing services, especially machining processes, through this

tool over the Internet. In other words, this is a design interface that produces a high

probability of success in respect to manufacturability of the design.

Based on the similar ideas, Higgins and Langrana [I9991 developed a web-based

user-friendly virtual design and fabrication system using the knowledge-based approach.

Web technology is also used for communication and sharing information among

designers during product development [Ahn et al. 1999, Roy and Kodkani 2000, Chen

and Jan 2000, Domazet et al. 20001. Product development techniques such as design for

manufacturing (DFM) can be enhanced by web technology park and Baik 1999, Jiang

and Fukuda 19991. Product data exchange is also a field for applications of Internet

technologies (Zhang et al. 2000].

Concurrent product development is a subject involving a wide range of concepts,

methods, and technologit%. The advantages of concumnt design have been recognized,

but implementations of concumnt design systems need to be further explored. Feature-

based product modeling method promises to be effective in product development

systems. Multi-agent systems can reasonably be regarded as powerful tools for

developing future complex product development systems.

However, the difficulties in developing 'cintelligence" have limited the applications

of multi-agent systems in achd product development system implementations. Most of

the Internet and web-based systems for product development focus on browsing product

geometric descriptions from remote product databases and exchanging idomation

among designers. The real advantage of the Internet technology is the properties of an

open network and real time communications. Therefore Internet-based product

development systems can go one step further in integrating distributed, especially

geographically distributed, product development activities in all aspects of product life-

cycle.

23 Related Techniques

In this research, feature-based modeling was used as the approach of modeling

product and related processes. The feature-based distributed modeling system was

implemented using an object-oriented programming technique. Visualworks version of

Smalltalk, an object-oriented programming language, was used in this research.

Distributed modeling was the basic objective of this research. To improve the quality of

product development, engineering optimization methods including Genetic Programming

(GP) and Particle Swarm Optimization @SO) were used in idenwing the optimal

product realization process. These techniques are briefly introduced in this section.

2.2.1 Feature-Based Modeling

Conventional solid modeiing is efficient for defining the geometry of a product.

However there are two major deficiencies, according to Shah and Rogers [19881:

Roduct definition is incomplete: Product tolerance, surface finish, surface

treatment, and other descriptions apart from geometry, cannot be repksented

and stored.

a Product definition is at a lower level: The product data are basically for

displaying the image of the product. Higher level properties such as functions

cannot be defined.

In order to use the product model to develop applications for manufacturability

evaluation and process planning, feature-based modeling was introduced Based on Shah

and Rogers [1988], a feature is a set of information related to a description of a part or a

product. The description may be used for design purposes, marketing requirements,

manufacturing process development, assembly, inspection, and even administrative

purposes. By using feature-based modeling, the product models can be built using

features stored in the libraries.

There are different classifications of features. Based on the information sets related

to the product engineering, there are form features, material features, precision features,

and technological features, etc. [Shah and Rogers 19881. Features can also be classified

into design features, manufacturing features, assembly features, etc. according to the Life-

cycle functions of the features [Xue and Dong 19931.

Feature-based modeling provides a means for building product databases at multiple

abstraction levels. According to Chung et al. [1990], feature-based modeling is efficient

in the following ways:

Human intent can be expressed easily by manipulating both high and low

level features directly.

a Feature databases allow the reasoning system to perform product development

tasks such as manufacturability evaluation, function analysis, and design

optimization.

Feature databases can contain knowledge to facilitate more applications such

as CNC programming.

Some applications of the feature-based approach in produa development were

introduced in Section 2.1.1. A more detailed explanation of feature-based modeling

concept will be given in Section 2.3.

2.2.2 Concurrent Engineering

Conventionally, product development follows a sequential development cycle, as

illustrated in Figure 2.1 (a). The cycle begins with a need based on market analysis or

research and development results. Then the product is developed step by step through

design, process planning, manufacturing, assembly, and shipping. Io this approach,

design concerns are mainly focused on the functionality and performance of the product.

Very few requirements of down-stream life-cycle phases are considered, since there is no

dialogue established between design and down-stream processes. However most down-

stream performance of a product is determined at the design stage. For example about 70-

8046 of manufacturing productivity can be determined at the design phase [Suh 19901.

In a global competitive economy environment, a product with high quality, low cost,

and less environmental impact can be achieved with a new product development

philosophy called Concurrent Engineering (CE) [Kusiak 1993, Prasad 19961.

In developing product using a concurrent engineering or concurrent design approach,

al l related processes such as marketing, design, process planning, manufacturing.

assembly, and recycling are considered concurrently, as illustrated in Figure 2.1 (b). The

design activities in concurrent engineering have been widely extended [Hyeon et al.

19931 to the related processes. In other words, down-stream requirements should be

considered as early as possible, along with the structural and fimctional requirements of

the products. To implement this approach, organization-wide, even global-wide

inforxnation integration is required.

(a) Sequential Roduct Development

users -

Users I
Market analysis

R & D Manufacturing

Market analysis
R & D

(b) Concwrent Product Development

Figure 2.1 Sequential and Concumnt Product Development [Hyeon et al. 19931

Cumntly there are two basic approaches to implementing concurrent engineering

practice: the team-based collaboration approach and the computer-based development

approach. The former approach emphasizes information flows among designers and

individuals from all related areas. The multifunctional team is critical for effective

implementation of the concurrent development of products. The information flowing

among team members can be assisted by computer systems. The computer-based

approach enables design selection, justification, and optimization with respect to al l

aspects of a product's life-cycle. Therefore this approach emphasizes direct cooperation

and coordination among design and all related down-stream processes that are

I

Pmcess
planning + Manufacturing

A series o f
engineering

change orders

4
I

represented as models to be handled by computers. Knowledge-based approaches are

often employed in a computer-based concurrent engineering environment [Court 19981.

With the rapid progress of Internet techniques, more attention has been paid to

developing Internet-based distributed systems for concurrent engineering Boy et al.

19971.

22.3 Object-Oriented Programming and Smalltalk

Rogramming languages are traditionally composed of two parts - the data, and

operations on the data. For a procedural programming language like C. functions and data

structures are the basic elements. Object-oriented programmiag groups operations and

data into modular units called objects, and lets you combine objects into structured

networks to form a complete program. In an object-oriented programming language, the

objects and object interactions are the basic elements.

The four basic characteristics of object-oriented programming are Abstraction,

Encapsulation, Polymorphism, and Inheritance. Abstraction refers to the essential

characteristic of an object that distinguishes it from other objects. Encapsulation keeps

the implementation of an object out of its interface. In other words, details of

implementation are hidden from other parts of the programs. Encapsulation not only

protects an implementation from unintended actions but also increases the modularity of

the program. Polymorphism refers to the ability of different objects to respond, each in its

own way, to identical messages. The main benefit of polymorphism is that it simplifies

programming interfaces. Iustead of creating a new name for each new function to be

added to a program, the same names can be used by many objects. Inheritance is the

feature that an object can be defined based on an existing object and the characteristics of

the existing object are passed on to the new object automatically. Inheritance clarifies the

logic relations of objects. This property also brings benefits such as reusing code and

delivering generic h c tionality .
Objectaiented programming techniques are implemented using the concepts of

class and instance. Classes are generic abstractions of physical objects with similar

characteristics. An instance is an object with specific attributes. An instance is created

using a class as the template. Inheritance is implemented by class-subclass relation

definitions.

Available object-oriented programming languages include Smalltalk, C++, Java, etc.

Smalltalk, as a pure object-oriented programming language, was developed in the late

1970s [Goldberg and Robson 1983, Hopkins and Horan 19951. The S d t a l l c system has

two aspects: the programming language aad the programming environment. Smalltalk

was one of the first systems to use graphical interfaces to help the user navigate the

development system. In the Smalltalk environment, everything is an object. All the

fuoctions of the system including file handling, compiling, debugging, window

managing, etc. are defmed using classes and their instances. In the latest versions of

Smalltalk, a large number of classes have been provided for developing applications.

New classes can be defined as subclasses of the existing classes.

There are several dialects of Smalltalk such as VisualWorks, SmalltallcAgents,

VisualAge, etc. VisualWorks has been relatively widely used. The syntax of Smalltalk is

descriptive and the rules of the syntax are simple. This feature helps shorten the time of

developing Smdtalk applications. It has been proven that Smalltalk is effective for

developing research-oriented application prototype systems [Xue et al. 19921.

2.2.4 Distributed Systems and t he Internet

A distributed system is a collection of independent computers associated through

both hardwares and softwares. Generally, a distributed system means a close coordination

among components at different sites wu 19991. Distributed systems are usually

composed of distributed hardwares, distributed data, and distributed controls. A

distributed system includes nodes that perform some aspects of computations. A node

may be a personal computer, or a mainfhme computer. The nodes of a distributed system

are usually geographically distributed. The node you currently use is regarded as the local

node and all others are remote nodes. The power of a distributed system derives from the

cooperation of the individual nodes that perform different functions.

The nodes in distributed systems are connected by computer networks. The advance

of the Internet has been a force driving distributed systems forward in recent years

WcCarty and Cassady-Dorion 19991.

The Internet is considered a global computer network that connects groups of sub-

networks. These networks contain many diffemnt types of computers. A protocol must be

used to ensure that the different types of computers can work together. A protocol is a set

of rules that specify how computers cooperate in exchanging messages [Hab.. and Stout

19941. TCP/IP (Transmission Control Rotocol/Internet Protocol) is the most popular

networking standard. TCPm is used to organize computers and other communication

devices into a network. IF transmits the data from place to place, while TCP formats the

data and manages the flow.

In the network, each computer must have an address in order to be located by other

computers. There are two formats: standard address and IP address. For example: the

standard address m7O.enme.ucalgary.ca is equivalent to the IP address 136.159.105.70.

The P address is the real address used in idenafying the computer. The standard address

can be translated into the IP address by the Domain Name Service (DNS).

In order for TCP to locate a specific process of an application in a computer, port

numbers are used to specify this process. Port numbers are 16-bit numbers such as 3456.

Some port numbers, called well-known port numbers, are reserved for standard

applications such as mailing services. The remaining ports are dynamically allocated

ports for implementing sockets. The combination of an IP address and a port number can

identify the required program.

Standard Internet technologies, including WWW (World Wide Web), E-mail, and

VRML (Virtual Reality Modeling Language), have been studied for the purpose of

assisting product development. However the real power of the Internet is the feature of an

open nehuork and real time global connections. Internet makes it possible for globally

scattered computers to work together dynamically.

2.2.5 Global Opthizition

Optimization is an approach used to identify the optimal solution for a problem based

on predetermined objectives. An optimization problem is made up of three basic

ingredients:

An objective function which we want to minimize or maximize. For exampie, in a

design problem, we might want to maximize the product Life span or minimize the

cost.

A set of variables that affect the value of the objective function. In mechanical

design problems, the speed of a rotating part and the distance between the centers

of two shafts are typical variables.

A set of constraints that allow the variables to take on certain values but exclude

others. For engineering problems, the length of a part cannot be negative, so this

variable should be constrained to be positive (or between two positive numbers).

The optimization problem is then to find values of the variables that minimize or

maximize the objective function, while satisfuing the constraints. Since many engineering

problems have local optimums, traditional approaches such as the hillclimbing method

may miss the global optimum [Arora et 4. 19951. Global optimization is the task of

finding the absolutely best set of conditions within the constraints to achieve the

objective. There are two basic categories of global optimization approaches: deterministic

and stochastic pardalos et al. 19991.

Deterministic approaches exploit analytical properties of the given problem to

generate a deterministic sequence of conditions that converge to the global optimal

solution. Stochastic approaches minimize a function over a random set of variable values.

These approaches can be used for problems when no clearly known structure can be

exploited. In the past decade, some stochastic approaches such as Simulated Annealing,

Genetic Algorithms, and Particle Swarm Optimization have been studied and effectively

applied to a wide range of industry applications [Arora et al. 1995, Shi et al. 1997,

Pardalos et al. 19991.

2.3 A Feature-Based Database and Knowledge Base Representation Scheme

The research on integrating databases and knowledge bases was started by Xue at the

University of T o e 0 during the development of the Integrated Data Description

Language (IDDL) p u e et al. 19921. Xue had used IDDL to implement the previous

version of the feature-based concurrent design system at the University of Victoria Bue

and Dong 1993, Xue and Dong 19941. A complete new feature modeling environment

was developed by Xue et a1 at the University of Calgary mue et al. 19991. The feature-

based database and knowledge base representation scheme introduced by Xue at the

University of Calgary was employed in the research discussed in this thesis.

2.3.1 Database Representation

2.3.1.1 Class Features and Instance Features

Product Lifecycle aspect models are built using primitives called features. Features

are described at two different levels, the class level and the instance level, corresponding

to generic product libraries and specific product data respectively, as shown in Figure 2.2.

Instance features are generated using the class features as their templates. This

mechanism was implemented using an object-oriented programming approach.

A class feature is defmed by element-features, attributes, qualitative relations

among features, and quantitative relations among attributes. Element-features are

described by variables and their feature types, representing the features used to compose

the feahue being defmed. For instance, the ThreadHole class feature shown in Figure 2.2

consists of two element features, a hole and an internal thread, represented by two

variables ?H and ?IT. The class feature itself is described by a built-in variable ?self in

the class feature def~t ion . Attributes in class features are defined by attribute names and

default attribute values. For instance, diameter, d, and length, 1, are two attributes of the

class feature Hole shown in Figure 2.2. Qualitative relations among features are

=presented by predicates. A predicate takes the form of (p, x , , ~ x,,), where p is the

predicate relation and xl .Q, ..., are terms of this predicate represented by symbols (e.g.,

hl), strings (e.g., 'Hello'), integers (e.g., S), floats (e.g., 2.5), variables (e.g., ?H), and

attriiutes (e.g., d[hl D. The predicate (process. ?H. ?IT) in class feature ThreadHole is a

qualitative relation among features. Quantitative relations among attributes are described

by functions. Each function uses a number of input attribute values to calculate an output

attribute value. For instance, the function, I[?H] := l[?lI + 5, in class feature ThreadHole

is a quantitative ~ l a t i o n of two attributes.

c l a ! s F ~ : Fe;rarre
... ...

Class Feature: ThmdHole Class Feat=: Hole Class Feature: IntanalThrrad
Element-features: Attributes: Attributes:

?H: Hole. 1Tr: In- d(?selfl. I[?sclfJ t,
Fcatwt-nlations: .- .-. h[?sclfl, d2[?sclfl
(on* ?IT. ?HI* ..- -- Attributerelations:

Attribute-relations: -------.-- 3 PJ

I[?H] := I[?X'q + 5.
d[?H] = d[?TT].-
*.. -.- -

\
1

lnstance Features \ I
w

Instance Feature: th 1 CThmadHolt) Instance Ftaturr: hl (Hole)
Ami butes: Element-features:

?H: hl. ?IT: it1 d@11]=20. I[hl]=45
... .*- Feature-relations:

(on, itl. hf).
Amiute-relations: Instance Feature: it1 (IntanalThrcad)

I[hl] := I[itl] + 5. Attributes:
d[hl] := d[itl], d[itl]=20,l[itl]=40. h[itl]=2, d2[itl]=24
... .-. Attribute-relations:

d2[itl] := Nit11 + 2%[itl]
.- *a. -

Figure 2.2 Class Features and Instance Features

Class features are organized in a hierarchical data structure. A class is defined as a

sub-class of an existing super-class. AU descriptions of a super-class are inherited by its

sub-classes automatically. When an instance feature is generated using a class feature as

the template, all the descriptions in that class feature and its superclass features should

be added to the database automatically. In an instance f e e , al l the element-feature

variables are instantiated by actual instance features with the required feature types. In

Figure 2.2, three instance features, representing a thread-hole of a product, are generated

fiom three class features.

2.3.1.2 Maintenance of Data Dependency Relations

The quantitative relations among attributes in the generated instance features form a

network called amibute relation network. An example of attribute relation network is

shown in Figure 2.3. An attribute relation network is composed of two types of nodes:

attribute nodes and function nodes. Each attribute node is associated with an attribute

value. Each firnction node is linked with one or several input attribute nodes and one

output attribute node. When an attribute value is changed, the functions that use this

attribute as the input node are then activated to update this change to the output attribute

nodes. This attribute propagation process is carried out continuously until no attribute

value change is required. Since the attribute relation network can be used for keeping the

consistency of the database, the mechanism to update attribute changes using the attribute

fl: l[sl] = 1.5 *d[slJ
f2: l[etl] = l(sl] - 6
f3: l[itlJ = l[etl] + 10
f4: l[hl] = l[itl] + 5
f5: d[etl] = d[sl]
f6: d2[etl] = d[etl] - 2 * h[etl]
t7: d[itl] = d2[etl]
f8: &[it1 J = d[itl] + 2*h[itl]
ts: d[h 1) = d[it l]

(a) A Thread Joint (b) Attribute Relations

(c) An Attribute Relation Network

Figure 2.3 Maintenance of Data Dependency Relations

relation network is called the &ta depend- relation maintenance mechanism.

Propagation of attribute value changes using the attribute relation network is

formulated into the following steps.

Step 1: Create a list called A'ITRIBUTE-CHANGE and add all the changed attributes

to this list.

Step 2: If the A'ITRIBUTE-CHANGE list is empty, attribute change propagation

should be stopped.

Step 3: Remove one attribute from the ATTRIBUTE-CHANGE List. Identify the

functions that use this attribute as an input attribute, and calculate the output

attribute values using these functions. If the value of an output attribute is

changed and this attribute is not on the ATTRIBUTE-CHANGE list, add this

attribute to the list. Go to Step 2.

This attribute relation network is effective for modeling the relations defied in the

databases for product development.

2.3.2 Knowledge Base Represe ntation

The knowledge base is represented by rules. Since a product development process

involves a large number of rules, these rules are organized in separated rule-bases.

During the product development process, ody partial rule-bases are considered to

improve the inference efficiency. All rule-bases are preserved in the rule-base library.

2.3.2.1 Rule-Bases

A rule-base is defined by a rule-base name and a collection of rules, as shown in

Figure 2.4. Each rule description is composed of a rule name and the rule itself. A rule

takes the form of IF-THEN data structure, representing a piece of cause-result

knowledge. Both the IF part and the THW part of a rule are represented by a number of

patterns linked with logical-and (&). A pattern is described by a predicate using the form

of (p, XI. *, ..., IC,,), where p is the relation and x,, x2, ..., Xn are terms. Terms are

represented by symbols, numbers, variables, and attributes, as introduced in Section

2.3.1. The condition part and the result part of a rule are used for matching, creating,

deleting, and modifying the data in the product databases, including features, attributes,

qualitative relations among featms (facts), and quantitative relations among attributes

(functions). In the rule-base shown in Figure 2.4, the built-in predicates, featureTyp8,

assertfeature, and =, arr used for matching the class types of instance features, creating

instance features, and adding hctions, respectively.

Rulebase: FeaturcManufacturingProcess

Rule: Dn'llingProcess
IF (featurtType, ?X, Hole)
THEN (assertFcature, ?Y, Drilling) & (=, d[W. d[W) & (=, I[?YJ, I[?W).

Rule: ThfcadingProccss
IF (feahlnType, ?X, IntcrnalThtcad)
THEN (~ c a f u r c . ?Y, IntcrnaIThrcading) & (=, d [w , d [? w) & (=, I[?m. I[?X]).

..* ...

Figure 2.4 A Rule-Base

2.3.2.2 Reasoning with Rule-Bases

In a feature-based database and knowledge base modeling system, the databases are

described by features and the knowledge bases are described by rule-bases. Since usually

a large number of features and rule-bases are used for modeling the development of a

product, a mechanism to select only partial database and knowledge base has to be

developed to improve the computation efficiency. In the feature-based database modeling

system, since an instance feature is composed of element features, attributes, qualitative

relations among features, and quantitative relations among attributes, an instance feature

can be selected as such a partial database considered in knowledge-based inference. The

partial knowledge base considered in inference is the rule-bases selected from the rule-

base library for the selected instance feature. Therefore, each instance feature is

associated with a nwnber of selected rule-bases. This idea is illustrated in Figure 2.5.

The product modeling using knowledge-based reasoning approach starts with

selecting an instance feahue as the active instance feature. For this active instance, a

number of rule-bases are selected from the rule-base library. All the rules in the selected

rule-bases are registered in the active instance feature. The inference is carried out first

by matching the condition parts of all the registered rules with the active instance feature

database. If multiple rules are matched, the best rule is selected and the result part of this

rule is executed. In this research, the first matched rule is considered the best rule to be

fired. This matchingbexecution process is carried out continuously until no rule can be

matched,

Database Knowledge Base

Instance Features:
thl : ThrcadHole
hl: Hole
itl: IntemalThmd
......

Selected Rule-Bases:

Rule: rl IF... THEN ...
Rule: R IF... THEN ...
......

Rule: rl IF.. .THEN...
Rule: d IF ... THEN ...
......

... .. Rute: rl IF. THEN

... Rule: R IF... THEN

...
Rule: rl IF...-...
Rule: d IF.-. THEN
...... I

Rule-base: ThrcadingRocess
... Rule: rl IF... THEN

Rule: R IF... THEN... 1
Figure 2.5 Selection of Partial Knowledge Base and Database for Reasoning

DISTRIBUTED PRODUCT DATABASE AND KNOWLEDGE BASE

MODELING

This chapter introduces the distributed feature-based product database and

knowledge base modeling system. Following the introduction of Section 3.1, the

architecture of the distributed database and knowledge base modeling system is presented

in Section 3.2. Section 3.3 provides a detailed discussion on distributed database

modeling. Fit, the concepts of virtual features including virtual class features and virtual

instance features are introduced. Then, the methods for associating the distributed

databases by defining relations among true features and virtual features are described. For

automatic data dependency relation maintenance, an algorithm for propagating data

changes to related data preserved in accessible remote nodes is given. Section 3.4

discusses issues in distributed knowledge base modeling for product development. These

issues include modeling of v h a l rule-bases and the distributed knowledge-based

inference.

3.1 Introduction

Conventional product development follows sequential procedures from marketing,

design, manufacturhg, and assembly to shipping and service. The life-cycle performance

of the product designed using this approach is not optimal because of insufficient

information exchanges among these Me-cycle development activities during the design

process. Concurrent design approach considers relevant product development processes

concurrently. Since there are mutual information flows between design and related down-

stream development processes, the product design using concurrent engineering

methodology improves life-cycle performance of the product. The different product

development activities are usually geographically distributed. With the increasingly

competitive global market, incorporation of the geographically separated product

development resources is required to improve the overall performance of the products.

The Internet technique provides a unique tool for integrating distributed computer

systems. It allows people and computer systems to communicate dynamically in a global

computing environment. The low cost of connecting to an Internet service also makes it

advantageous to use the Internet as the medium for comecting product development

activities. In this research, the distributed product development activities are associated

using the Internet.

3.2 Distributed Product Database and Knowledge Base Modeling Architecture

To develop the distributed product database and knowledge base modeling system,

two issues have to be addressed: modeling of product development activities, and the

association of these activities.

3.2.1 Product Development Life -Cycle Activity Modeling

The product modeling technique is important to the effectiveness of computer-based

product development systems. To incorporate concurrent design methodology, modeling

of product development activities at different development phases such as design,

manufacturing, recycling, etc. is required. These activity descriptions are used for

modeling both geometric and non-geometric properties of products. In this research,

feature-based modeling technique is employed [Shah and Rogers 1988, Xue et al. 1999.

Yadav 19991. The feature-based modeling approach was introduced in Chapter 2.

In this research, modeling of activities of the product development life-cycle is

emphasized. Typical activities include marketing, design, manufacturing, service, and

recycling [Singh 19951. The features employed for modeling the product development

processes are described at two levels: class level and instance level. Class featwes

represent generic product development libraries. Instance features are actual databases of

specific product development activities. Instance features are created using class features

as their templates. Figure 3.1 illustrates the class features and instance features for

modeling shaft-manufactwing process.

Class Feature: ShaARocess Class Featwe: TurningProccss
Etcmcnt-feanrrc~: Attributes:

T'umingRocess: TurningProccss cost[?selfl
?GribdingRocess: GrindingRoccss Class Feature: GrindingPmccss

Attnitcs: Attributes:
cost[?selfl, cost[?selfJ

Amibutc-relations:
cost[?sclfl := c o s t [? T ~ ~] +
cost[?GrindingRoccss]
......

Instance Feature: shaftRocess l lnstancc Feature: auningRoccss 1
Element- features: Attn'butes:

?TumhgProcess: furningPmccss 1 cost[nuningRoccss 1]=2CJ
?GrindingProccss: grindingProccss 1

Attributes:
...... cost[shaFtProctss 11.

Amibutc-relations:

cost[grindingProccss 11 cos~@ndingProcess 1]=30,

Class Feature - Instance Feature Relation Feature - Element Feature Relation

Figure 3.1 Modeling of a Shaft Manufacturing Process

Since the product development life-cycle activities are described using features

preserved at different locations, modeling of the relations among these activities must be

incorporated into the developed system. Details about the relation modeling are

introduced in Section 3.3.

3.2.2 The Client-Server Commu nication Architecture

The integration of distributed product development models is accomplished through

the Internet. The integrated system is an Internet-based computer network system. One

common architecture for a computer network has at least three basic components

w a r t y and Cassady-Dorion 19991: a client, a server, and the network itself, as shown

in Figure 3.2.

Usually there are many clients in a computer network. The network associates the

clients with the server. The clients are usually operated by users to request information

from the server. A server holds resources needed to satisfy the client requests. Clients'

requests flow through the network to the server, and the server's responses flow across

the network to the clients. In this research, the Internet is the medium for connecting the

clients and the servers.

Figure 3.2 Three Basic Components of a Computer Network

In product development with concurrent design methodology, information flows in

multiple ways among the different development processes at different locations. This

requires the computer, used for modeling product development activities in certain

phases, to be both a client and a server. In such cases, client and server become roles in a

logical sense rather than physical devices. Therefore, not only can a server have many

clients; a client can also comect to many servers.

Server Client

The computers C O M ~ C ~ ~ to the Internet can be called Internet nodes. In this research

project, commUILication among the Internet nodes is impiemented using socket-based

client-server architecture mahn and Stout 19941. Sockets are computer programs that let

you send and receive messages among networked computers. As a data exchange tool,

sockets are simple to use and operate efficiently. The concurrent design methodology

requires that infonnation flow in and out of the Internet nodes. Therefore, each node can

Network

be a client or a server depending on the direction of information flow during product

modeling processes. So all the Internet nodes run both client side and server side socket

programs, in terms of sending and receiving messages.

In the example shown in Figure 3.3, all computers at different locations are

connected to the Internet. Each node can run both a Smalltalk server socket and a client

socket. A node, (e.g., the node B), can be both a server and a client. While the server

socket of node B is running, the other nodes A, C, and D are then the clients of node B,

so they can request infonnation from node B. The node B can also request information

from other nodes. On such occasions, all other nodes A, C, and D are servers of node B,

and node B is a client.

I Internet I

Node: A Node: B

Smalltalk Server Socket

Small talk Client Socket

Figure 3.3 Logical Clients and Servers

a

Smalltallc Server Socket

Smalltafk Client Socket

I I

Node: C Node: D

3.2.3 Architecture of the Distributed Database and Knowledge Base Modeling System

I 1

Small talk Server Socket

Smalltalk Client Socket

The architecture of the distributed database and knowledge base modeling system is

shown in Figure 3.4. In this architecture, different databases and knowledge bases used

during different product development phases, including marketing, design,

manufacturing, etc., are modeled at different locations represented as nodes, such as

Marketing1 , Marketing2, Design1 , and so on. Since the databases and knowledge bases

are linked by the Internet, these nodes are also called Internet nodes. During the product

development process, the database and knowledge base accessibility relations among

these nodes are first defined for collaboration in concurrent design. When node A is

defmed to be able to access node B, al l the data and knowledge in node B can be used in

node A automatically. Since the distributed database and knowledge base modeling

method associates different product development activities at different locations into an

integrated environment, this approach can evaluate down-stream product development

aspects during the early design stage, thus improving product development efficiency and

Smalltalk Server Socket

Smalltalk Client Socket

b

-

quality.

Manufacturing I

DB/KB Accessibility Internet Connection

Figure 3.4 Architecture of the Distributed Database and

Knowledge Base Modeling System

In the example shown in Figure 3.4, the Marketingl node and the Designl node are

defined to be mutually accessible. When certain requirements for products are identified

fiom customers at the Markertingl node, these requirements are then used as the

guidelines for creating and improving product designs at the Designl node. The designs

are then evaluated at the Marketingl node to see whether the customer requirements have

been satisfied. If a design created at Designl node doesn't satisfy the customer

requirements at Marketingl node, the accessibility relation between Marketingl node and

Designl node is removed. A new accessibility relation between Marketingl node and

Design2 node can then be established to generate another candidate at Design2 node to

satisfy the customer requirements at Marketingl node. The design node Designl is linked

with two manufacturing nodes Manufacturing1 and Manufacturing2 for evaluating the

manufacturability of the design aud using the evaluation measures to improve the design.

Each node in the Internet is specified by its address and port number. A node address

can be described either by an Internet Protocol (IP) address, such as 1 36.1 59.1 05.72, or

by a standard address, such as m72.enme.ucalgaly.ca. A port number is a 16-bit digit,

such as 9876. Examples of Internet node definitions are shown in Figure 3.5.

Address: lowcosunfg.com
Port: 9876 I

~aaress: wr - ~aarrss: smartaesrgn.com
Port 9876 Port 9876

Node: Manufacturing2
Address: aualit~mfn.com

Node: Marketing2 Node: Design2
Address: self H-. Address:
Port: 9878 Port: 98', , f \ I~ode: Manufacturing3

Address: grcenmfg.com 1 Port: 9878
-

I - Accessibility Relation

Figure 3.5 Definitions of Internet Nodes

When a node A is defmed to be able to access node 8, all the data and knowledge

preserved in node 6 can be used by node A automatically. The data and knowledge in

node B are considered as virtual data and knowledge in node A. This idea is iilustrated in

Figure 3.6. The database and knowledge base accessibility relation between two nodes is

implemented using client-server commWLication architecture. In this architecture, a node

to access other nodes is a client that sends messages to the accessible nodes for obtaining

the information of available data and knowledge preserved in these accessible nodes, and

a node to be accessed by other nodes is a server that responses messages from the client

nodes for providing available data and knowledge to these client nodes.

Node: Design1 (Server) Node: Manufa~turing 1 (Client)

n TnrDBKB Virtual DBlKB

Figure 3.6 An Accessibility Relation between Two Nodes

Distributed database and knowledge base modeling architecture is employed to link

the feature-based product development life-cycle activities into an integrated

environment to improve the product development efficiency. Details regarding the

feature-based distributed database modeling and knowledge base modeling will be given

in Sections 3.3 and 3.4.

3.2.4 Node Definitions and Node Connections

The Internet serves as the tool for connecting the Internet nodes involved in this

distributed product database and knowledge base modeling system. For socket-based

client-server communication, both Intemet addresses (Standard addresses or IP

addresses) and port numbers are required to identify the target programs running on

different computers. Before communication can be conducted among Internet nodes, the

corresponding addresses and port numbers of these Internet nodes have to be defined

first. In this distributed database and knowledge base modeling system, two browsers, the

Internet Node Definition Browser and the Node Connection Browser, are used to

handle node definitions and connections.

3.2.4.1 Definition of Internet Nodes

The Internet nodes are defined by their Internet addresses and port numbers. The

Internet Node Definition Browser is used for defining the Intemet nodes involved in

the product development processes. Hardcopy and views of this browser are shown in

Figure 3.7 and 3.8. There are three views in this browser: A, B, and C. A is the category

list view, B is the node name list view, and C is the text view. The categories of the

nodes are Listed in the category list view. The nodes are grouped in the categories. When

one of the categories is selected, the nodes in that category are shown in the node name

list view. When a node name in the node name list view is selected, the node

descriptions, including node name, address, and port number are shown in the text view.

The text view is a text editor for editing the node information, including the node name,

address, and port number.

The menus of these views are also shown in the Figure 3.8. The commands of these

menus are mainly used for editing, adding, and deleting node definitions.

IoorDesign
itleehanicaBppliWon
3ower-Sieuing-System
2onarrentDesign

Address: m70.enrne.ucalgary.ca
Port: 3486,

Figure 3.7 A Snapshot of the Internet Node Defmition Browser

Figure 3.8 Configuration of the Internet Node Definition Browser

Internet Node Defmition Browser

The typical procedure for defining an Internet node is:

Mechanical Application

Remove
A

a. Create a new category by selecting Add command of the category list view

menu, or select an existing category.

Design 1

Design2

B ~R.moveI

Design I

Address: m70.enme.ucalgary.ca
Port: 6789 Accept

C

b. Under this selected category, edit the descriptions of a node, including node

name, address, and port number, following the required format in the text view.

Select Accept menu item to save the edited descriptions. The node name will

appear in the node name list view.

3.2.4.2 Connectiun of litternet Nodes

Connecting and discomecting a node are accomplished through the Node

Connection Browser. This browser, as shown in Figure 3.9 and 3.10, allows the user to

connect the local node to remote nodes by highlighting a node name and clicking

Connect in the menu. If the connection is successful, the letter "C", representing

Connected, appears after the node name in the node name list view. Before a node can be

Figure 3.9 A Snapshot of the Node Co~ect ion Browser

Figure 3.10 Configuration of the Node Connection Browser

Node Connection Browser

Mechanical Application

0
A

Design 1
Design2

Disconnect
Start as server

B

connected to a server node, the server program in that server node must be executed. A

server process can be started by clicking on Stalt as server in the menu. There are two

views in this browser: A - the category list view, and B - the node name list view.

These views are identical to the ones in the Internet Node Definition Browser. When a

category in the category list view is selected, node names in that category are listed in the

node name list view. Those nodes that have been already defined in the system are ready

to be connected.

3.3 Diibuted Feature-Based Database Modeling

In the distributed feature-based database modeling approach, the class features and

instance features at accessible remote nodes are considered as virtual clacs features and

virtual instance features at the local node. Virtual class features can be used for

generating instance features at the local node. Vinual instance features are considered as

part of the database at the local node and can be accessed from the local node. By

def'ining the dependency relations among the data distributed at different locations, the

consistency of the product development databases can then be maintained using these

relations.

3.3.1 Virtual Features

In this research, databases for modeling product development activities are described

by features. These features are modeled in different Internet nodes at different locations.

When node A is defined to be able to access node B, the features preserved in node B are

considered as virtual features in node A. Virtual features are of two types: virtual class

features and virtual instance features.

3.3.1.1 Virtual Class Features

Vimal class features are class features preserved in accessible remote nodes. They

represent generic libraries of different product development life-cycle aspect databases.

During the product development processes, the instance features, representing the actual

product databases, are generated, using corresponding class features as their templates. If

the required class features cannot be found at the local node, virtual class features at

accessible remote nodes can be used for generating the true instance feature at the local

node. This characteristic can improve the efficiency of product development by sharing

library resources among all accessible Internet nodes.

A virtual class feature is defined by the node name and the class feature name in the

form of:

<node name>%cclass feature name>

The concept of virtual class feahms is illustrated in Figure 3.1 1. The class feature

Shaft in node A is described as A%Shaft in node B. The three class features in node A

are considered as virtual class features in node 8.

Node: A Node: B

Class Features: Virtual Class Features:

Figure 3.1 1 Virtual Class Features

Virtual class features in =mote nodes can be displayed in the Class Feature

Browser, by executing the Display Virtual Class Features in the menu of feature list

view as shown in Figure 3.12. The Class Feature Browser is a previously developed

browser, but more functions, such as displaying virtual class features. are added. Detailed

descriptions about this browser are given in [Yadav 19991.

3.3. I .2 Virtual Instance Features

Virtual instance features are instance features preserved in the accessible remote

nodes. They are part of the databases for modeling specific product development

activities. Similar to virtual class features, a virtual instance feature is named in the

following format:

enode name>%<instance feature name>

Figure 3.12 The Views in the Class Feature Browser

Class Feature Browser

For example, an instance feature pulley1 preserved in node A is described as

A%pulleyl in node B (Figure 3.13). The virtual instance features at remote nodes

accessible from the local node are considered as part of the database at the local node. By

Element
Name
List
View

associating remote databases with the local database for modeling a product, the different

Element
Aspect

List
View

Category
List

View

product development processes can be integrated into the same environment. Such

Feature
List

View

I
I

integration is necessary for implementing concurrent design using distributed databases.

... ..*
Display Virtual Class Features

... **.

Node: A

Text View

Instance Features:
beltDrive 1
pulley1
paeyz

Accessible I-
Node: B

Instance Features: Virtual Instmct Features:
gearpair 1 A%bcltDrive 1
gear1 A%pulley 1
g-2 A%pulley2
..

Figure 3.1 3 Virtual Instance Features

In Figure 3.13, node A has instance features for modeling a pulley-belt drive

mechanism and node B bas instance features for modeling a gear pair mechanism. At

node 9, if a motion transfer mechanism consisting of both a gear pair and a pulley-belt

drive needs to be modeled, then the true instance features gearpair1 , gear1 , gear2, etc.

and the virtuat instance features A%beltDrive 1 , A%pulleyl, A%pulley2, etc. are

associated by defining their relations among the databases preserved in these two nodes.

All virtual instance features in the accessible remote nodes, including their attributes,

attribute relations, feature relations, etc., can be displayed in the Instance Feature

Browser. The configuration of this previously developed browser, as shown in Figure

3.14, remains unchanged. The menus in this browser are modified to accommodate more

commands such as Display Virtual Instance Features that is used to view the instance

features preserved in all accessible remote nodes. The attributes of the virtual instance

features are described in the format of

cattribute narne>[cvirtual instance feature name>]

For example, the attribute length of instance feature shaft1 in a remote node called

ShaftDesign is described at the local node by:

Figure 3.14 The Views in the Instance Feature Browser

Instance Feature Browser

3.3.1.3 Generation of Instance Features from Virtual Chss Features

In this distributed database and knowledge base modeling system, a virtual class

feature can be used to generate a true instance feature at the local node. The instance

features generated from the vimal class features are treated in the same manner as those

Element
Name
List

View

Element
Aspect

List
View

Category
List

View

Feature
List

View

I
I

I
... ...
Display Virtual Instance Features

... ...

Text View

generated fkom the true class features. In other words, they are truly part of the database

in the modeling processes.

A local true instance feature is an object that contains data and operations that are

necessary for modeling the products or the product development activities. In this

feature-based modeling system, the class features are translated into Smalltalk classes, so

the instance features are actually instances of Smalltalk classes. Therefore, the

operations, such as instance methods defined in class features, can be inherited by the

instance features.

For generating a true instance feature using a virtual class feature preserved in a

remote node, a special class feature, called VirtualClassFeature, is predefined in the

system. An instance feature of this class feature is actually an empty instance with the

same structure as a regular true instance feature. This instance feature is then filled with

descriptions fiom the corresponding class feature and its super-class features in the

remote node. The descriptions are obtained by sending a message from the local node to

the remote node. Then the descriptions in that class, including those inherited

descriptions fiom super-classes, are copied to the empty instance feature at the local

node. In this way, all the descriptions defined in the virtual class feature and its super-

class features are inherited into this generated true instance feature automatically. During

the product development process, when an instance feature requires the information fiom

its virtual class feature, a message is sent fkom the local node (client) to the remote node

(server) using the client-server communication architecture.

Figure 3.15 illustrates the process of generating a true instance feature using a virtual

class feature. The class feature Gear in node Design1 is used to generate a true instance

feature gearl in node Design2. First, the built-in class feature VirtualClassFeature is

selected to generate an empty instance featwe gearl which has the same structure as

those regular instance features. In other words, gearl has al l built-in aspects such as

Element-features, Attributes, Attribute-relations, Feature-relations, etc., but there

are no elements or descriptions in these aspects at this moment. When

VirtualClassFeature is used to generate an instance feature, the class feature name

Node: Design1 Node: Design2

r--------
I : Temporary Instance Feature
L----,,--'

Class Features: Gear

... '~~mtiat ion
Instance Features:
r---,,----,,---
pnpgear 1 : Gear I

1

Element-fatures

Figure 3.15 Generation of a True Instance Feature from a V h a l Class Feature

Class Features: ViCIassFeature

...
InstanceFeanues:

gear1 : VinualClassFeature
Element-features

Gear and the node name Designl are requested from the user and recorded as instance

variable values of the newly generated instance feature. A message is then sent to the

remote node Designl to ask that node to generate a temporary instance feature

Attributes
Attribute-relations
Feature-relations
-.. *..

: Attributes a -

tmpgearl from class feature Gear. After tmpgearl is generated, the elements and

Attribute-relations

descriptions in all the aspects are copied back to the empty instance feahm gearl in

Copy elements

node Design2 Since tmpgearl inherits all descriptions fiom class feature Gear and its

; Feature-relations ;
I I I

I
:--,,,,,,,----------I

super-class features, the instance feature gearl, a copy of tmpgearl , in node Design2

inherits all descriptions fiom virtual class feature Designl %Gear and its super-class

features. The temporary instance feature tmpgearl is then removed fiom node Design1 .
Except for the entering of the node name and the class feature name, this process of

generating a true instance feature from a virtual class feature is conducted automatically.

3.3.2 Modeling Database Relations

One of the objectives of this research is to associate the different databases at

different locations into an integrated environment. The distributed computers, which

contain databases for modeling different product components or different product

development activities, are connected together through the Internet. The generic relations

of the databases, i.e., the relations among the true instance features and the virtual

instance features, also need to be defined so that these distributed databases are integrated

effectively.

In this research, the relation between a virtual instance feature and a true instance

feature is modeled by deflaing the virtual instance feature as an element feature of the

true instance feature. The relation can be created at two different levels: class -feature

level and instance feature level, respectively.

3.3.2.1 Modeling Database Relations at Class Feature Level

Creation of a relation between a virtual feature and a true feature at class feature

level is conducted by introducing a virtual element-feature. A virtual element feature in a

class feature is defined by an element-feature variable and its class type called

VirtuallnstanceFeature, as shown in Figure 3.1 6. VirtuallnstanceFeature is a built-in

class feature used specially for modeling relations among true features and virtual

features.

d: diameter 1: length

Figure 3.16 Relations among True and Virtual Instance Features Defmed at
Class Feature Level

Instance Featurt: h 1
Element-features:

?Process: mfgMrillingl
Attributes:

dF1]=20, I[h 1]=40
Feature-relations:
(process, h 1 , mfgllbdrilling 1)

Attribute-relations:
d[mfg9bdrillingl J := d[h 1]
l[mf,drillingl] := l[hl]

Class Feature: Hole
Element-features:
?Process: VirmallnsranceFeature

Attributes:
d[?selfl, I[?selfj

Feature-relations:
(process. ?self. ?Recess)

Attribute-relations:
d[?Process] := d[?selfJ
I[-] := I[?sclfl

In the example shown in Figure 3.16, the virtual instance feature is associated with

an element feature variable ?Process which represents a manufacturing process feature.

The diameter attribute, d, and the length attribute, I, of this virtual feature are calculated

using the attributes of the true featwe. When the class f e a m Hole is used to generate the

instance feature hl, the user is asked to enter the virtual instance feature name, including

the node name (e.g., mfg) and the instance feature name (e.g., drillingl). All the variables

Instantiation
*

related to the virtual element feature in the class feature definition should be replaced by

the actually created virtual instance feature name as shown-in Figure 3.16. When the

attribute values at the current node are changed, the relevant attribute values at the remote

nodes should also be updated using these relations. Details regarding the maintenance of

the data dependency relations in the distributed database modeling system will be

discussed in Section 3.3 -3.

3.3.2.2 Modeling Database Relations at Instance Feature Levet

Modeling of relations among true and virtual instance features at instance feature

level is conducted by adding an element-feahlre, representing a virtual instance feature, to

the current instance feature. In the example shown in Figure 3.17, an instance feature h l

with two attributes is first created. The virtual instance feature, mfg%drillingl, is then

added to the instance feature hl as an element-feature. Subsequently, feature relations

and attribute relations are added. So the relations between true instance feature h l and

virtual instance feature rnfg%drillingl are established.

d: diameter 1: length

Figure 3.17 Relations among True and Virtual Instance Features Defined at
Instance Feature Level

Instance Feature: h l
Element-features:
?Roccss: mfedri l l ing 1

Attributes:
d[hl]=20,l[hlJ40

Feature-relations:
(process. h I , rnffidrilling 1)

Attribute-relations:
d[mfg%drillingl] := dD 1]
I[rnfg%drillingl] := l[h 1)

Instana Feature: hl
Attributes:

d[h l]=20,l[h 1 1 4 0

3.3.3 Maintenance of Dependency Relations among Distributed Data

Creation of
Relations

among True and
Virtual Instance

Features

In the product development process using concurrent design methodology, the

databases at different locations are used to model the different development life-cycle

aspects of the same product. The product development life-cycle covers marketing,

design, manufacturing, maintenance, and so on. The product design, modeled by a

feature-based database in this research, should be dynamically evaluated by the

performance of this design in down-stream life-cycle phases. In other words, any change

of the data in one product lifecycle aspect should be propagated to other aspects

automatically according to the data relations defined in the databases.

In the example shown in Figure 3.18, a relation has been defined between instance

feature shaftl and virtual instance feature ShaftMfg%shaftProcessl. During

concumnt design process, if the value of length attribute l[shaftl] in node ShaftDesign

is modified, the attribute relation

defined in ShaftDesign will lead to the change of the attribute l[shaftProcessl]'s value

in node ShaftMfg. The value of attribute cost[shaftProcessl] is automatically modified

based upon the updated value of i[shaftProcessl]. The value of cost[shaftProcessl] is

then propagated back to node ShaftDesign using attribute relation

to update mfgCost[shaftl]. The value of mfgCost[shaftl] can be used as one of the

measures to evaluate the manuf'turability of the shaft design.

Node: ShaftDesign Node: ShaftMfg

Instance Feature: shaft1 Instance Feature: shaftProctss l
Element- featurts: Element-features:
?Process: ShaftMfg4bshaftProccss 1 ?TurningProcess: turningProcess 1

Attributes: Anributes:
d[shaftl]=30, I [s h a f t l] ~ . mfgCost[shaAl]=20 d[shaftProcess 1]=30

Attribu te-relations: L l[shaftProccssl]=400
d[ShaftMfgSbshafPmcss 1] := d[shaftl] -at c p cost[shpftRoarsl]=20
l [S h a f t M f p s h ~ s I] := ~[shaftl] % * * Attribute-relations:
... ... d[tumingProcess 1] := d[shaftProcess 11

C I[huningPmcess 1] := l[shaftRocessl]
\ cost[shaftRocearl] := sat[tumingRocrrsl]

d: diameter 1: length ~ m f ~ o s t [~ h a f t ~ e s i ~ n % s h a f t 11 := eost[sbaftRDcesfl]

Figure 3.18 Attribute Propagation Process

55

In this research, a mechanism to maintain the dependency relations of distributed

attributes has been developed.

3.3.3.1 An Algorithm for Maintaining Distrr'buted Data Dependency Relations

Maintenance of the attn'bute dependency relations within one Internet node is carried

out using the algorithm introduced in Section 2.3. When the attribute values of virtual

instance feahlres are changed, the attribute dependency relation maintenance mechanisms

in these remote Internet nodes are then activated to propagate the change using the

attribute relations defined in these nodes. This process is carried out cootinuously until all

the relevant attributes in these nodes are updated. The propagation of the attribute value

changes is started from a selected Internet node. The algorithm for calculating attribute

change propagation at one Internet node to keep the consistency of the distributed

database is formulated in the following steps.

Step 1: Identify all the attributes, including true attributes and virtual attributes, whose

values have been changed at the current node. Use the attribute dependency

relation maintenance mechanism introduced in Section 2.3 to update the change

of attribute values using the attribute relations defined at the current node.

Step 2: Obtain all the attributes of the virtual instance features whose values have been

changed in Step 1. When such attributes can be found, jump to Step 3. When no

such attributes exist, if the current node is the one selected for starting the

calculation of the attribute change propagation, the calculation should be

terminated. If the calculation is initiated from another node, return a nil value to

this node to resume calculation at this remote node and terminate calculation at

the local node.

Step 3: Group all the changed virtual attributes according to their nodes. When no

changed virtual attribute is in the node from which the execution is initiated,

return a nil value to this node to resunle the calculation at this node. For each

remote node, take the following steps:

(a) If the execution of the current attribute dependency relation maintenance

mechanism is initiated from that node, the collection of the changed virtual

attributes should be sent back to this node as the return value to resume the

execution of the attribute dependency relation maintenance mechanism at

that node.

(b) If the node is not the one from which the execution is initiated, send a

message to the node to inform the changed attributes and activate the

calculation using the attribute dependency relation maintenance mechanism

at this remote node. Suspend execution of the attribute dependency relation

maintenance mechanism at the local node to wait for the execution result

from the remote node.

Step 4: Go to Step 1.

The attribute change propagation calculation is started from one node. Since each

node is associated with an attribute dependency reiation maintenance mechanism,

execution of these mechanisms at these nodes can be conducted simultaneously.

Therefore, the distributed attribute dependency relation maintenance mechanism has the

nature of concurrent parallel computing. When no contradictory relations exists in the

distributed attribute relation network, the consistency of the distributed attribute relations

can be maintained.

In this algorithm, a node reacts firstly to the message received first. When a large

number of nodes and large amount of Monnation are involved in the product

development process, a more robust coordination mechanism is required to handle the

messages and coordinate the actions among the distributed Internet nodes. An intelligent

agent can be used for this task. The coordination and cooperation of the distributed

Internet nodes should be improved in future studies.

3.3.3.2 An -Ie of Amibute Propagation Process

This algorithm to maintain the consistency of the distributed database is illustrated

using an example shown in Figure 3.19. In this example, the attribute a1 in node A is

changed at the very beginning. The calculation is conducted through the following steps:

Node: A Node: B Node: C

0 A True Amibute 0 A Virtual Attribute

Figure 3.19 Maintenance of the Distributed Database

1. At node A, since a1 is the attribute whose value has been changed, function fl is then

activated to update the change to the attribute a2. Because a2 is a virtual attribute

preserved in node 8, a message is then sent to node 8 to activate the calculation at

node B. The node A changes to the mode to wait for the execution result from node B.

2. At node 8, since a2 is the attribute whose value has been changed, functions f2 and 13

are then activated to update the change to attributes a3 and a4. Because a3 and a4 are

virtual attributes preserved in node C and node D respectively, messages are then sent

to node C and node D to activate the calculation at these two nodes. The node B

changes to the mode to wait for the execution results from node C and node D. A

message is also sent to node A with a nil value.

3. At node A, a message nil is received from node B and the execution at node A is

terminated.

4. At node C, since a3 is the attribute whose value has been changed, function f4 is then

activated to update the change to attribute a5. Because no virtual attribute is changed,

a message with return value nil is sent to node B and the calculation at node C is

terminated.

5. At node D, since a4 is the attribute whose value has been changed, hctions f5 and 16

are then activated to update the change to attributes a6 and a7. Because a7 is a virtual

attribute preserved in node B from which the execution is initiated, a message with

return value of a7 is sent back to node B and the calculation at node D is tenninated.

6. At node 6, a message with return value nil is received from node C and a message

with return value of a7 is received fiom node D. Since a7 is the attribute whose value

has been changed, function f7 is then activated to update the change to attribute a8.

Because a8 is a virtual attribute preserved in node A, a message is then sent to node A

to activate the calculation at node A. The node B changes to the mode to wait for the

execution result fiom node A.

7. At node A, since a8 is the attribute whose value has been changed, function 18 is then

activated to update the change to attribute a9. Because no virtual attribute is changed,

a message with return value nil is sent back to node B and the calculation at node A is

terminated.

8. At node B, a message nil is received fiom node A and the execution at node B is

tenninated.

3.4 Distributed Knowledge B ase Modeling

To improve the efficiency of the product modeling process, a ~ule-based inference

mechanism is employed to help designers to modify the product databases. Ia the feature-

based database and knowledge base modeling system, each instance feature is associated

with a number of rule-bases as introduced in Section 2.3 to improve the inference

efficiency by considering only partial database and knowledge base. In this research, this

idea is extended to the distributed database and knowledge base modeling.

In one node, if a rule-base is selected for the active instance feature, the name of this

selected rule-base is then registered in the active instance feature. During the reasoning

process, all rules in the selected rule-bases are used in inference. A previously developed

Rule-base Browser is used to define rule-bases [Yadav 19993. This browser remains

unchanged except for adding a command in the menu for displaying virtual rule-bases.

Like product database modeling, product knowledge bases are modeled at different

locations. To use knowledge preserved in remote nodes for product development, the

concept of virtual rule-bases, i.e., the rule-bases defined in accessible remote nodes, is

introduced. A mechanism of distributed inference is also developed to handle the

distributed databases.

3.4.1 Virtual Rule-Bases

When a node A is defined to be able to access mother node B, al l the rule-bases

defined in node B are then accessible from node A. The rule-bases defined in accessible

remote nodes are called virtual rule-bases. A virtual rule-base is described in the

following format:

enode name>%<rule-base name>

For example, a rule-base GearDesignRules in node 6 is described in node A by:

huing the product development process, virtual rule-bases can also be selected for

reasoning together with the selected true rule-bases at the local node. This idea is

illustrated in Figure 3.20.

Node: Design 1
I

I Instance Features Rule-Bases
I Selected Rule-Bases

Acccssiblc
I

Node: Mmufacnuing 1
I i

Cnstance Features Rule-Bases
Selected Rule-Bases

d

Vimd 0 TrueDBn<B

Figure 3.20 Virtual Rule-Bases

Generally the virtual rule-bases are those preserved in the remote nodes and can be

selected to access the data in this active instance feature at the local node through

knowledge-based inference. When a virtual rule-base is selected, al l the rules in this rule-

base are then copied to and registered in the active instance feature of the local node.

During the process of product development through knowledge-based reasoning,

both the true rule-bases and the virtual rule-bases selected for the active instance features

are used as the knowledge to access the data represented by active instance features at the

local node.

In the example shown in Figure 3.20, the node Designl is accessible from the node

Manufacturing1 . The rule-bases, dl. d2, d3, and d4 at node Design1 are virtual rule-bases

at node Manufacturingl. In node Manufacturing1 , the virtual rule-base, d3, and true rule-

base m3, are selected to join the reasoning at the local node.

The virtual rule-base modeling mechanism allows engineers to improve the

effciency of product development through sharing distributed knowledge bases. The

characteristics of this distributed knowledge base modeling approach are summarized

into the following two aspects.

(1) By using virtual rule-bases at the local node, the standard knowledge at a remote

node can be "borrowed" to the local node. This mechanism allows the different

knowledge bases to be modeled at different places. During the process of

product development, when certain types of knowledge are required, the system

then identifies the locations of the required knowledge and introduces the

required knowledge for the product currently under development at the local

node. This mechanism can also solve the problems of knowledge representation

redundancy due to the fact that the same knowledge is described in many places.

The introduced knowledge at the local node is dynamic in nature, i.e., when the

accessibility relations among the nodes are changed, the virtual rule-bases at the

local node are then removed.

(2) By using virtual rule-bases, al l the knowledge used in different product

development phases can be integrated into the same environment. The rule-base

used by a down-steam phase of product development can be integrated into the

cumnt phase by selecting this virtual rule-base. This approach can result in

better design databases in terms of the performance of the design in down-steam

development life-cycle. When the knowledge in different knowledge bases is in

conflict, the contlict can be resolved either by changing the introduced

knowledge bases at different locations, or by modifying the accessibility

relations among the Internet nodes to change the product development

alternatives.

3.4.2 Selection of Virtual Rule-B ases

The selection of rule-bases, including true rule-bases and virtual rule-bases, is

conducted using the RuleBase Selection Browser shown in Figure 3.2 1 and 3.22.

Rule-base selection is a process of selecting relevant reasoning rules for the active

Figure 3.21 A Snapshot of the Rule-Base Selection Browser

instance features. Therefore this browser contains information fiom both Instance
Feature 8rowser and Rule-Base Browser. In this browser, the lnstance Feature

Category List View and the Instance Feature List View are used to display instance

feature categories and instance features, while Rule-Base Category iist View and

Rule-Base List View are used to display rule-base categories and rule-bases. The

Selected Rule-Base List View is used to display the selected rule-bases for the instance

feature highlighted in the Instance Feature List View. Two commands, Select and

Remove, are implemented in the Rule-Base List View and Selected Rule-Base List

View respectively. The command Select is used to add the rule-base highlighted in the

Rule-Base List View to the active instance feature. The command Remove is used to

delete a rule-base highlighted in the Selected Rule-Base List View from the current

active instance feature.

Instance Feature Category Instance Feature Selected Rule-Base

Rule-Base Category

1 I I

Figure 3.22 Configuration of the Rule-Base Selection Browser

For selecting virtual rule-bases, a special category for the rule-bases, namely

VirtualRuleBases, is defined in the Rule-Base Category List View. When the

VirtualRuleBases category is highlighted for rule-base selection, the system will ask for

the Internet node name and the rule-base name. After that information is correctly

supplied, the virtual rule-base is selected and its name is displayed in the Selected Rule-

Base List View,

The virtual rule-bases selected are treated the same as those true rule-bases selected

from the local knowledge base library. In this research project, the selection of relevant

rule-bases for product development is conducted manually. Agent-assisted rule-base

selection should be studied in the future to improve the efficiency of knowledge

selection.

3.4.3 Reasoning with Distribute d Rule-Bases

In feature-based product modeling system, development of a product can be

conducted through rule-based reasoning. Since the different product aspects are modeled

in different Internet nodes, rule-based reasoning is also conducted in these different

places.

In each Internet node, only partial databases and knowledge bases are selected for

knowledge-based reasoning to improve product development efficiency. The selected

databases are represented by the active instance features, including attributes, qualitative

relations among instance features, and quantitative relations among attributes in

distributed accessible nodes. The selected knowledge bases are represented by both the

selected true rule-bases and the selected virtual rule-bases. These rule-bases are registered

with the active instance features of the accessible nodes.

In the rule-based inference, the condition parts of all the rules in both true rule-bases

and virtual rule-bases are matched with the selected partial database. Among all the rules

whose condition parts have been satisfied, the best rule is selected according to the

conflict resolution strategy, and the result part of the best rule is then executed. In this

research, the first matched rule is considered as the best rule in rule-based reasoning.

Matching of the condition parts and execution of the result parts for a rule in a virtual

rule-base are conducted in the same manner as those of true rule-bases introduced in

Section 2.3.2.

Since the rule-based reasoning at one node can result in the changes of the virtual

data at the remote nodes, the executions of the rule-based reasoning mechanisms at these

remote nodes is then required to update the changes. Since the rule-based reasoning in the

different nodes can be conducted simultaneously, the distributed knowledge-based

reasoning mechanism has the nature of concurrent parallel computing.

The algorithm for executing the rule-based inference mechanism at one Internet node

during distributed knowledge-based reasoning is formulated in the following steps.

Step 1: Use al l the rules in the selected the true rule-bases and virtual rule-bases to

access the database represented by active instance features through matching

the condition parts and executing the result parts of these rules.

Step 2: Obtain al l the virtual data that have been changed in Step 1. When such data

can be found, jump to Step 3. When no such data exist, if the current node is the

one selected for starting the rule-based reasoning, the inference should be

terminated. If the reasoning is initiated from another node, return a nil vdue to

this node to resume inference at this remote node and terminate inference at the

local node.

Step 3: Group all the changed virtual data according to their nodes. When no changed

virtual data is in the node from which the inference is initiated, retwn a nil value

to this node to resume inference at this node. For each remote node, do the

following steps:

(a) If the execution of the current rule-based reasoning is initiated from that

node, send the collection of the changed virtual data back to this node as the

return value to resume the execution of the rule-based inference at that

node.

(b) If the node is not the one from which the execution of the rule-based

inference is initiated, send a message to the node to inform the changed data

and activate the rule-based reasoning at this remote node. Suspend

execution of the rule-based inference at the local node to wait for the

inference result from the remote node.

Step4: If the data preserved at the current node are changed, due to the inference

conducted at remote nodes, go to Step 1. Otherwise, terminate the execution of

the rule-based reasoning.

This distributed knowledge-based inference algorithm is very similar to the one

introduced in Section 3.3.3 for maintaining the dependency relations among the

distributed attributes. Since knowledge-based reasoning can result in the change of the

attribute values, propagation of the attribute change is then required. The attribute change

propagation can further change the product database, thus resulting in change of the

conditions for rule matching, and the rule-based reasoning is then required again.

This chapter presents a detailed discussion on issues in modeling a feature-based

distributed database and knowledge base for concurrent design of engineering products.

To associate geographically distributed product development activities, modeled by

feature-based databases and knowledge bases, the Internet is employed as the media for

connecting the computers used for modeling these databases and knowledge bases.

Information flows among different product development activities that are modeled by

Internet nodes are realized through the socket-based client-server communication

architecture.

To use the remote databases and knowledge bases at a local site, the concepts of

virtual features and virtual rule-bases are introduced. The virtual databases and

knowledge bases are physically located at remote locations but accessible from the local

location. A virtual class feature can be used to generate a true instance feature at the local

node. Virtual instance features are considered as part of the databases required for

modeling product development processes. Virmal rule-bases can be selected for

reasoning together with the true rule-bases selected at local node. The relations among

virtual instance features and true instance features are also modeled.

To implement concurrent design, mechanisms for distributed data dependency

relation maintenance and distributed inference are developed. The mechanism for

distributed data dependency relation maiatenance serves as the engine to propagate data

changes among the Internet nodes defined. This mechanism can give feedback from the

down-stream development processes if the design data are modified. The mechanism for

distributed inference helps designers to generate and modify geographically distributed

product development databases to improve product development efficiency.

CONCURRENT DESIGN BASED UPON DISTRIBUTED DATABASE

AND KNOWLEDGE BASE MODELING

This chapter introduces the development of a product concurrent design system

based on the distributed database and knowledge base modeling approach described in

chapter 3. Following an introduction, Section 4.2 discusses the methods of modeling

product realization processes for concurrent design, including modeling of relations

among Internet nodes and representation of product realization process alternatives.

Section 4.3 introduces methods for identifying the optimal solution from all feasible

product rralization process alternatives. Two methods are introduced: the exhaustive

method and the Genetic Programming (GP) method. The optimal parameter values for

each alternative are identified using a global optimization method called Particle Swarm

Optimization (PSO). Section 4.4 introduces this method.

4.1 Introduction

Concurrent design is a methodology in which the related down-stream product

development processes are considered concurrently at the design stage [Hyeon et al.

19931. To apply concurrent design method in product development using computer-based

systems, the design model and related down-stream development process models must be

integrated to ensure mutual information flows. When the databases used for modeling the

product development processes are geographically distributed at different locations, the

distributed database and knowledge base modeling system introduced in Chapter 3

provides an effective technique for integrating the distributed product development

models.

When the distributed databases are integrated, product concurrent design can then be

achieved by evaluating the design candidates using the down-stream product

development process models. The distributed database and knowledge base modeling

approach introduced in Chapter 3 provides a framework for modeling the different

product development processes and their relations. Based on this approach, the design

parameters can be optimized in terms of the product performance in down-stream

development life-cycle phases. The product concmnt design can be conducted by

adjusting the design parameter values and evaluating the design using the feedback from

the related down-stream product development models. To improve the efficiency of

product development, a global optimization method is employed to automate the

concurrent design process in this research.

In today's global product development environment, alternative processes can be

employed for product development at one We-cycle phase such as design and

manufacturing. For example, there may be two or three Internet nodes that can handle

gear manufacturing independently. By selecting different Iutemet nodes, different

product realization processes can be obtained. Selection of relevant Internet nodes,

representing different product development life-cycle models, for identifying the optimal

altemative for product development, is one of the issues of the concurrent design to be

discussed in this research. If the number of involved Internet nodes is small, the best

concurrent design solution can be determined by comparing all feasible alternatives. If

the number of involved Internet nodes is large, the optimal concurrent design solution

should be identified using the optimization method.

Figure 4.1 shows the architecture of the concurrent design system developed in this

research. The concurrent design module was developed based upon the distributed

database and knowledge base modeling approach introduced in Chapter 3. This module is

accessed by the Concurrent Design Browser and the Design Solution Browser. The

distributed database and the knowledge base modeling system is composed of the Internet

communication module and distributed database and knowledge base modeling module.

The following sections will discuss the methods for modeling product realization

process alternatives and identifying the optimal product realization process alternative.

The optimization method for identifying the optimal parameter values will also be

introduced.

Concurrent Design

Browser Distributed DBKB

Browser Selection
Browser

(1 r-------v>f Definitio Internet
Communication

Browser connection Module
Browser

-- -

DBKB: Database and Knowledge Base

Figure 4.1 Architecture of the Concurrent Design System

4.2 Modeling of Product Realhation Process Aiternatives

A product realization process alternative is a route of product evolution from design

to down-stream development processes. During concurrent design, the down-stream

product development processes are considered concurrently to improve the performance

of the design in down-stream life-cycle phases. This section discusses issues in modeling

product realization processes.

4.2.1 The Relations among Inte rnet Nodes

The product development activities, such as design and manufacturing, are modeled

by features in this research. In the Internet-based concumnt design system, the activities

for different product development stages are modeled using the features distributed at

different Internet nodes. So the selection of proper databases and knowledge bases for

product development can be regarded as the selection of suitable Intemet nodes that are

involved in the concurrent design. Therefore, an Internet node can be used to represent

the development activity in a certain phase of the product development lifecycle. For

example, an Internet node may represent design activity and another node may represent

manufacturing activity, and so on.

4.2.1.1 Logical Rehtions among Internet Nodes

In this research, the logical relations among Internet nodes that represent the

development activities at different stages of the product development life-cycle are

defined as node-sub-nodes relations. These relations follow the sequence of activities in

the product development Mecycle. For example, a manufacturing node is a sub-node of

a design node, since the manufacturing activity usually takes place after design activity.

The reiation among the sub-nodes of an Internet node is either an AND relation or an

OR relation. The AND relation means that all these sub-nodes, representing sub-

processes, are nquired for modeling the development activity at certain stage of the

product development lifecycle. When an OR relation is defined, only one of the sub-

nodes is needed for modeling the required product development activity.

In Figure 4.2 (a), Gear Design represents a design node and Gear MfgA and Gear

MfgB represent two manufacturing nodes. Gear MfgA and Gear MfgB, the sub-nodes of

Gear Design, have an OR relation, which means that either Gear MfgA or Gear MfgB

is required for modeling the manufacturing process of the gear. Figure 4.2 @) shows two

sub-nodes with an AND relation. Each of the two nodes handles part of the

manufacturing processes: the Gear Casting node handles the casting process and the

(a) Two Sub-Nodes with an OR Relation (b) Two Sub-Nodes with an AND Relation

Figure 4.2 Internet Node Relations

Gear Mchg node handles the machining processes. The gear can be produced using the

data and knowledge in both Gear Casting node and Gear Mchg node.

Figure 4.3 A Snapshot of the Concurrent Design Browser

4.2.1.2 Creation of Internet N d e Relations

To create Internet node relations for identifying the product realization process

alternatives, an interface called Concurrent Design Browser has been developed. A

snapshot of the Concurrent Design Browser is shown in Figure 4.3. The configuration

of the browser is shown in Figure 4.4.

All the Internet nodes are grouped into different categories. The categories are

defmed in the category list view. When a category is selected, all Internet node names

defmed in that category are listed in the node name list view. A new node can be added to

a selected category. In the aspect list view, five built-in aspects: superlrlode, S U ~ N O ~ ~ S ,

andNodes, oflodes, and evaluationFunction, are listed for a selected node. The

element list view shows the elements: node names or an evaluation function for the

highlighted Internet node. These elements are edited with the use of the text view. For the

example shown in Figure 4.5, the node 02 is defmed by

Node: 02

superNode: F

subNodes: M3, M4

andNodes: Dl

orl30des:

evaluationFunction: <anEvaluationFunction>

After the relations of the involved nodes are defined, the product realization process

alternatives can be generated by executing the menu items of the Concurrent Design

Browser.

Figure 4.4 Configuration of the Concurrent Design Browser

Concurrent Design Browser

4.2.2 Representation of Product Realization Process Alternatives

After all the relations of the involved Internet nodes are defined using the

Concurrent Design Browser, the product realization process alternatives can then be

identified.

Category
List View

4.2.2. I Product Realization Proce ss Altentatives

A product realization process alternative is described by a list of Internet nodes that

contain the required databases and knowledge bases for modeling the product

I ,

Add
Remove
All Alternatives COPY

Add Remove

Rename Accept
Continue Text View
Terminate

Node Name
List View

Aspect List
View

Element List
View

development activities at different stages of the product development life-cycle. For

example, Figure 4.5 shows the feasible product realization processes represented by an

AND/OR graph with seven Internet nodes. Two product realization process alternatives

can be generated fkom this AND/OR graph. The generated product realization process

altematives are displayed in the Design Solution Browser that will be introduced in

Section 4.2.2.2.

Alternatives:

F: Function D: Design M: Manufacturing

Figure 4 5 An AND/OR Graph for Modeling Roduct Reahation Process Alternatives

4.2.2.2 Display of Product Realit ation Process Alternatives

The product realization process alternatives generated by the system are displayed in

the Design Solution Browser. These alternatives are then evaluated and compared with

each other to identify the solution that satisfies the design requirements. The Design

Solution Browser is shown in Figure 4.6 and 4.7.

There are five views in the Design Solution Browser as shown in Figure 4.7. The

category list view lists the categories defined in the Design Solution Browser. The

product realization process altematives arr Listed in the alternative list view. The data list

view displays all the instance feature names preserved in the nodes involved in the

product realization process alternative selected in the alternative list view. This view lets

users know all the instance features used for modeling the development activities in this

product realization process. In the evaluation fimction list view, evaluation functions for

the selected product realization process alternative are listed. An evaluation function in

Figure 4.6 A Snapshot of the Design Solution Browser

Figure 4.7 Configuration of the Design Solution Browser

r

Design Solution Browser

Category List Alternative List Data List

View

Remove Evaluation Function List View
Parameter Optimization

I
r'

this list can be selected to evaluate the highlighted product realization process alternative

in the alternative list view. The text view (text editor) is used to edit the evaluation

functions. The edited function is saved using the Accept command of the text view

menu.

Text View Select
Unselec t
Update

An evaluation function is defined using the attributes of instance features preserved in

different Internet nodes. It is used to evaluate the selected product realization process

altemative. An evaluation function can be described by F(%), wherez is a vector of

attributes:
-
X = x i 9 + ,..., xi ?..., xm . (4-1)

where xi is the i-th attribute and n is the total number of attributes used to define this

function. For the example shown in Figwe 4.5, if the total manufacturing cost is used to

evaluate the product realization process altemative (F, D 1 , D2, M2,M3, M4), the

evaluation function takes the following format:

Where cost is an attribute name, m2Process, m3Process, and m4Process are instance

features for modeling the manufacturing processes in nodes M2, M 3 and M4

respectively.

The command Update in the menu of the evaluation function list view brings the

updated value of the evaluation function to the text view. Since the attributes used in the

evaluation function are distributed at different Internet nodes, messages are sent to these

nodes to get the current values of these attributes. The resuIt of the evaluation function is

then calculated and displayed.

4 3 IdenW~cation of the Optimal Product Realization Process Alternative

The two methods used for identifying the optimal concurrent design silution

alternative are (1) the exhaustive method and (2) the Genetic Programming method.

When the number of the involved Internet nodes is small, the exhaustive method is used

first to generate all possible alternatives. Then the alternatives are evaluated and

compared to find the best one. When the number of the involved Internet nodes is large,

the Genetic Programming method is used to identify the optimal alternative.

4.3.1 The Exhaustive Method

In the exhaustive method, a list of all product realization process alternatives is first

generated automatically. Then the designers can evaluate and compare these alternatives

to find the best one.

4.3.1.1 The Algorithm for Genera ting AN Altematives

After the relations among the involved Internet nodes are defined using the

Concurrent Design Browser, alI possible alternatives can be generated using the

following algorithm:

Step 1: Create an empty collection called alternative collection and an empty list called

the node list. Select the root node as the element of the node list. Put the node

list into the alternative collection.

Step 2: Pick up a node list, which has unexpanded nodes, from the alternative

collection. From this list, pick up a node that is neither a leaf node nor an

expanded node. Identify dl the sub-nodes of this node.

Step 3: For those sub-nodes with an AND relation, add these nodes into the list. When

an OR relation is detected, for each sub-node, a copy of the current list is

created and this sub-node is added to the copy. Put these new node lists into the

alternative collection and remove the original list.

Step 4: Check whether al l the nodes in al l the lists are expanded. If no unexpanded

node can be found, the expanding process stops. Otherwise, go to Step 2.

4.3.1.2 An Euunple of Generating AN Altematives

Suppose that the relations of the involved Internet nodes are defined as shown in

Figure 4.8 (a). The product realization process alternatives are generated in the following

process:

1. The root node A is put into the node List 1. The node list 1 is put into the alternative

collection.

2. The node A in node list 1 is picked up for expansion. Since the two sub-nodes of node

A, B and C, have an AND relation, these sub-nodes are added to the original node List.

3. Node B in node list 1 is picked up for expansion. Since the two sub-nodes of node B,

D and E, have an OR relation, two copies of the original node list 1 are created. The

(a) Product Realization Processes Represented by an AND/OR Graph

1-1 Alternative Collection

A Expanded Node A Picked Node -

(c) Created 9 Alternatives

(b) Alternative Generation Process

Figure 4.8 Generation of All Alternatives

node 0 and E are added to the two new lists respectively. The original node list 1 is

then removed from the alternative collection* Now there are two node lists, node list 1

and 2, in the alternative collection.

4. The node C in node list 1 is picked up for expansion. Node C has three sub-nodes, F.

G, and H. Since these sub-nodes have an OR relation, three copies of the original

node list 1 are created and the three nodes are added into the three copies

respectively. The original node list 1 is replaced with the three new lists.

5. Repeat this process until al l nodes in all lists are expanded. Nine alternatives in total

are generated, as shown in Figure 4.8 (c).

This process is illustrated in Figure 4.8 (b). In the implemented concurrent design

system, the process of generating all possible product realization process alternatives is

started by executing the command All Alternatives in the menu of node name list view of

Concurrent Design Browser. The generated alternatives are displayed in the Design

Solution Browser.

When the number of product realization process alternatives is not large, the

designers can evaluate each of them using the defmed evaluation function. Then the best

alternative can be selected from these alternatives.

4.3.2 The Genetic Programming (GP) Method

If the number of the involved Internet nodes is large, it is impossible for a designer to

evaluate all the product realization process alternatives manually. For this reason, Genetic

Programming [Koza 19921 is used as an optimization method to identify the optimal

alternative.

4.3.2.1 Introduction to Genetic P rogramming Method

Genetic Programming is an extension of the Genetic Algorithm [Goldberg 1989,

Angeline 19941. As an evolutionary method for search and optimization, Genetic

Programming has features suitable for handling more complex problems than the Genetic

Algorithm. The main difference between the two methods is the representation of

solutions.

In the Genetic Algorithm, the solution is represented as a string of numbers called

chromosomes. A population of such strings evolves generation by generation. These

strings are usually fixed-length binary strings and remain in the same length -during

evolution. One of the limitations of this representation method is that the solutions of

some problems are difficult to be coded into fixed-length strings.

In Genetic Programming, the problem solutions are represented by structures such as

trees. These structures are manipulated during the evolution process. When a tree is used,

the number of branches and the length of each branch change dynamically during the

evolution process. Therefore, such solution representation is considered as a dynamic

representation.

Though different in problem solution representations, Genetic Programming and

Genetic Algorithm share the s a m principles of evolution through natural selection.

Generally there are four steps to solving problems using genetic programming:

Step 1: Generate initial population members randomly. In this research, the members

are described as trees. In the population, each individual member, representing a

solution to the problem, has a valid structure according to the predefmed syntax.

Step 2: Evaluate each individual member based on the fitness predefined according to

the problem to be solved. The fitness functions will be introduced at the end of

this section.

Step 3: Create a new population using the following operations:

Reproduction: The individuals with better fitness have more chances to be

duplicated to the next generation. The individuals to be duplicated are

probabilistically selected, based on the fitness of each member, from the

population. The number of duplications to be produced depends on how £it the

member is.

Crossover: Crossover is also called sexual recombination. Two parental

individual members are selected from the population. On each parent, a

crossover point is selected randomly. The sub-tree rooted at the selected

crossover point can be identified on each parent. Then the sub-tree is removed

from its parent and replaced with the sub-tree from the other parent. By

switching the two sub-trees, two new offspring are produced for the next

generation. After the crossover operation, the syntax defined for the individuals

must be maintained.

Mutation: A single individual is randomly selected from the population for

mutation. The mutation point is chosen randomly. The sub-tree rooted at that

point is replaced with a new sub-tree. The new sub-tree is randomly generated.

Step 4: After the predetermined maximum generations are created or a criterion is

satisfied, the best individual encountered in the evolution process is selected as

the solution.

The reproduction operation is simply the duplication of the original individual

probabilistically selected from the population based on fitness. An example illustrating

the reproduction process is given in Figure 4.12 of Section 4.3.2.2.

The crossover and mutation operations described above are illustrated in Figure 4.9.

For the crossover operation, a crossover point on each parent is randomly selected. On

the first parent, node C is selected, and on the second parent, node H is selected. Then the

sub-tree rooted at C of the first parent (inside the doted boundary) is replaced with the

sub-tree rooted at H from the second parent (inside the doted boundary). The same

operation is conducted on the second parent. As a result, two children are produced, as

shown in Figure 4.9 (a). For the mutation operation, the node H of the original individual

is randomly chosen as the mutation point. Then the sub-tree rooted at H of the original

individual is deleted and a new sub-tree grows from the mutation point. The mutated

individual is shown in Figure 4.9 @).

(a) Crossover Operation

Figure 4.9 Crossover and Mutation Operations

(b) Mutation Operation

in Genetic Programming

In the evolution process, each individual member of a population is evaluated based

upon its fitness. The individual member has more chance to survive if it has a better

fitness evaluation measure for solving the problem. Usually a fitness function is used to

calculate the fitness of individual members. Several formats of fitness functions can be

used. If the original fuaction used to evaluate the problem solutions'is called raw fitness

function Hx), then we have the following fitness function formats:

Standardized Fitness s(x):

for Min F(x) problems.
S (X) =

for Max F(x) problems. r, is a positive constant.
(4 - 2)

Adjusted Fitness a(x):

Normalized Fitness n(x):

where m is the number of individuals in the population. The normalized fitness reflects

the fitness proportion of an individual member in the population. Therefore it can be used

as the reference for selecting the corresponding member to take part in evolution

operations such as reproduction.

4.3.2.2 Genetic Programming for Alternative Optimization

As described in Section 4.2, product realization process alternatives are described by

tree structures. The number of branches and the length of each branch of the alternative

trees are different. The method used for alternative optimization should be able to handle

the tree structure effectively. The Genetic Programming method is selected in this

research because of its advantage in dynamic representation of problem solutions.

However, the problem of concurrent design with distributed databases has its own

characteristics that require some of the evolution procedures to be modified. Therefore

the concept of Genetic P r o g r d g plays a more important role in implementing the

optimization of product realization process alternatives.

The procedures and related issues using the Genetic Programming method for

optimizing product realization process alternatives are discussed in this section.

1. Search Space Representation

Different Internet nodes represent different product development activities. With all

possible choices of Internet nodes that are relevant to a given concurrent design problem.

alternative combinations of these nodes produce different product realization routes, in

other words, different product realization process alternatives. These alternatives

compose the search space to be explored for identifying the optimal one. Based on the

definitions of Internet node relations and product realization process alternatives in this

research, the search space can be represented using an AND/OR graph. Usually the root

node of the tree represents the database for modeling design requirements. The AND/OR

graph shown in Figure 4.10 defines twelve product realization process alternatives.

Figure 4.10 The AND/OR Graph Representing a Search Space

2. Generation of Initial Population

The members of the initial population should be randomly generated from the

predefmed search space. A random alternative is created through the following steps:

Step 1: Idenm the root node. Put the root node into an empty list.

Step 2: Pick up a node from the list. This node should be neither a leaf node nor an

expanded node. Identify its sub-nodes.

Step 3: If these sub-nodes have an AND relation, put all of them into the list. If these

sub-nodes have an OR relation, select one of the nodes randomly and put it into

the list.

Step 4: Check whether all the nodes in the list are expanded. If no unexpanded node

can be found, terminate this process. Otherwise, go to Step 2.

This process is repeated until the required number of individuals is reached. These

procedures are similar to the procedures of the exhaustive method for generating all

possible alternatives.

Based on the AND/OR graph shown in Figure 4.10, the creation process of a random

alternative is illustrated in Figure 4.1 1.

(a) The Process of Creating a Random Alternative

Step

1

2

3

4

5

6
(b) The Generated

Alternative:
(A,B,C,D,G,IM,N)

Figure 4.1 1 Creation of a Random Alternative

NodesinList

A

A,B,C

0 , C . D

A,B,CD,G

&&c,DsG,I

&B,C,D,G,INN

3. Reproduction

The number of times that each individual should be duplicated in the next generation

is determined by a probability that is proportional to the individual's fitness. In this

research, the normalized fitness n(x), representing the fitness proportion of the selected

individual, is used to calculate this number:

N i = int [m - n i (x)] , i = 1, 2, ..., m (4 - 5)

Picircd

Node

A

B

C

D

G

where m is the number of individual members in the population. The function int[]

converts the real number to its closest integer.

All

Sub-Nodes

B,C

D,E

EG,H

I

M f i

Relation

AND

OR

OR

AND

The reproduction operation is illustrated in Figure 4.12. The fitness of each

individual is calculated using Equations (4-4) based on the cost value. The number of

copies of an individual to be reproduced in the next generation is calculated using

Equation (4-5). In this example, two copies of Individual-3 are produced in the next

generation, since its fitness is high. Individual-2 died after reproduction because of its

very low fitness. The average cost of the population is improved after reproduction.

Selected

Sub-Nodes

B,C

D-

G

I

M 8

Figure 4.12 Reproduction of Alternatives

4. Crossover

1

2

3

4

Crossover is the primary operation for producing new individuals. For concurrent

design problems considered in this research, the alternatives, represented by individual

members of a population, must follow a predefined syntax. The syntax for the product

realization process alternatives refers to the relations defined among the Internet nodes.

Specifically, the children produced as the result of crossover operations have to be valid

product realization process alternatives. In other words, the syntax of the individuals

should be maintained intact after the crossover operations. Therefore the crossover point,

the location at which the crossover operation is conducted, must satisfy the following

con& tions :

(a) The node at the selected location should not be a root node or a leaf node.

Average Cost

Population Before
Rcprod~~tion

pzzG-1
-1
p zzq
p iz iT l

Cost

300

100

1100

280

Copies

1

0

2

1

(b) The node at the selected location must have OR relation sub-nodes.

Population After
RcpmduEtion

pi iGiq

pizGE-1
1-1

(c) The node at the selected location can be found in the other alternative selected

for crossover.

(Ag,CEG,KM.N) (A.B.CD.HJ.0)

-1 (A,B,C,E,G,J,Mm IA.B,C.E.FJ,L)

320

cm

300

a0

1100

280

Based on the above discussions, crossover operations can be performed when the

two selected individuals (alternatives) contain the same Internet node, no matter where

195

Fitness

0.18

0.09

0.54

0.19

the node is located in each alternative. The procedure for crossover operations is as

follows:

(1) The number of the crossover operations, N,, is calculated by:

Nc = int[O.S(m-l)Pcl J

where Pcl is a random number between 0 and 1.

(2) The two parent individuals, i-e., alternatives, are chosen randomly fiom the

cumnt population. If the two selected alternatives are marked as Al and A2

respectively, the selection of location on each individual for crossover operation

is conducted through the following procedure.

First, if the location of root node (the fust node in the node list) is defined as 1,

the location of crossover point on alternative A, is calculated using the following

equation:

where n is the number of nodes in alternative Al and Pd is a random number

between 0 and 1. If the node at location L, does not meet the requirements for

crossover, the location is moved one step forward or backward to a new

location. The direction of movement is determined randomly. If the node at the

new location still cannot satisfy the requirements, the location is continuously

moved in the determined direction until a location that meets the conditions for

crossover is found. If the location has reached the top (or bottom) of the node

list and no valid location is found, then it is relocated to the bottom (or top) of

the node list to continue this process.

(3) For each of the parent alternatives Al and Az identify the nodes on the sub-tree

rooted at the selected node. Together with the selected node, these nodes are

deleted fiom their original node List and replaced with the nodes in the sub-tree

from the other alternative. Actually, the branch on one alternative tree is

replaced with a branch from the other tree. Then the two child alternatives are

produced.

The process of crossover is illustrated in Figure 4.13. The two selected alternatives

are marked as Apl and Apl respectively. For alternative Apl, if the initial location for

crossover is calculated as 4 using Equation (4-7), the node at this location is D. Since

node D has only one sub-node (refer to Figure 4.10) and it cannot be found in alternative

Apr, the location of node D is not valid as a crossover point. Then the location is moved

one step forward or backward to a new location of the node List of Apl. h this case the

next position can be either 3 or 5. The direction of this movement is determined

randomly. Supposing the backward direction is selected, the next location is then 3. The

node at this location is C, and node C meets al l the conditions of a crossover point. So

crossover points are determined on both alternatives Apl and Ap2.

Figure 4.13 Crossover Operation to Alternatives

The nodes on the sub-tree rooted at C on alternative Apl are identified as (C, H,O).

These nodes are deleted from the node list of Apl and replaced with the nodes, identified

as (C,G,M,N), on the sub-tree rooted at C of altemative Apz. The same operation is

conducted for alternative Then the two child alternatives Acl and Ac2 are produced as

shown in Figure 4.13.

5. Mutation

Mutation is another operation for producing new individuals. Each newly produced

individual must be correct in the syntax defmed for representing the product realization

process alternatives. Theoretically, a mutation operation can be conducted at any location

on an alternative. To ensure that the sub-tree rooted at the selected node is replaced with

a different sub-tree in mutation operation, the selected node must be an OR node. The

mutation operation in this research is conducted by the following procedure:

(1) Calculate the number of mutation operations Nm usiug:

where Pn, is a predetermined probability value between 0 and 1.

(2) Pick up an individual randomly from the current population.

(3) Select the location for mutation randomly using the following equation:

Lm = int[(n - 1) - P, + 11 (4 - 9)

where P, is a random number between 0 and 1, and n is the number of nodes in

the selected alternative. If the node at location L, is not an OR node, the

location is moved one step forward or backward to a new location on the node

list. The direction is determined randomly. If the node at the new location is still

not an OR node, the location is continuously moved until a valid location for

mutation operation is found. The location is valid as a mutation point if the

node at this location is an OR node. If the location has reached the top (or the

bottom) of the node list of the selected alternative and no valid location is found,

then it is relocated to the bottom (or the top) of the node list to continue this

process.

(4) Identify all the nodes on the sub-tree rooted at the selected node and delete all

these nodes from the node list of the selected alternative.

(5) Select a node randomly from the nodes that have an OR relation with the node at

the selected location. A new sub-tree grows with the new node as its root node.

The method introduced in Generation of Initial Population for creating a random

alternative is used here to produce a random sub-tree. Then the nodes on this

new sub-tree are put into the node list of the selected alternative. Now this

selected alternative has been mutated.

This process of mutation operation is illustrated in Figure 4.14. If the location of the

mutation point of the original alternative is calculated as 7 using Equation (4-9), the

corresponding node at this location is M. From Figure 4.10, we can see that M is not an

OR node; therefore, this location is not a valid mutation point. To find a valid location,

the currently selected location is moved one step forward or backward on the node List of

the alternative. The direction of movement is detennined randomly. If the direction is

determined to be backward in this case, the next location is 6. The node at location 6 is I,

which is not an OR node either. So the location is continuously moved backward along

the node list to location 5. This location is valid since the corresponding node G is an OR

node. The nodes on the sub-tree rooted at G, identified as (G,M,N), are removed from the

node list. From the two OR nodes of node G (refer to Figure 4. lo), node F is randomly

The Original Alternative:

(A.B,CD,G,mf*N)

Mutation

fThc Mutated Alternative: 'l

Figure 4.14 Mutation Operation to the Selected Alternative

selected as the new node to replace nade 0. Using node F as the root node, the new sub-

tree (F,L) is generated through the method introduced in Generation of Initial Population.

Then the nodes on this newly generated sub-tree are put into the node list. The mutated

alternative is shown in Figure 4.14.

6. Solution

For each generation, the best individual (alternative) in the current population is

compared with the best individual produced in the previous generations. The better one is

selected as the best-so-far alternative. After the predefined number of generations is

reached, the evolution process is terminated and the best-so-far individual (alternative) is

the solution,

For each alternative produced in the evolution process, parameter optimization is

conducted for identifying the optimal parameter values of this alternative. The fitness of

the alternative should be calculated with the identified optimal parameter values.

4.4 Identification of Optimal Design Parameter Values

The identification of the optimal product realization process alternative is conducted

on the basis that the design parameter values have been optimized in terms of the

performance of the design in down-stream product development phases. In other words,

for a product realization process alternative, the design parameter optimization must be

conducted first, so that the alternative can be evaluated or compared with other

alternatives. In this research a population-based optimization method, Particle Swarm

Optimization (PSO) [Kennedy and Eberhart 1995, Shi and Eberhart 19981, is adopted for

design pa,zameter optimization.

4.4.1 Introduction to Particle S w arm Optimization (PSO)

Particle Swam Optimization (PSO) is a population-based optimization method

proposed by James K e ~ e d y and Russell Eberhart [G ~ e d y and Eberhart 19951. This

method simulates social behavior of organisms, such as bird-flocking and fish-schooling.

The idea is that when a bird in a flock tries to find food, it uses not only its own

knowledge and experience but also its neighbors' (other birds') experiences.

In PSO, particles fly around in the search space towards the destination (the best

position). During flying, each particle adjusts its flying direction and speed according to

both its own flying experience and its companions' flying experiences.

If the position of i-th particle is represented as

Xi = (xi,, Xi& ...r xid), i = 1, 2, ..., AT (4 - 10)

where N is the number of particles in the space and d is the dimension of the space. The

best previous position of Xi is recorded and represented as

pi = (~ i i , pi21 *--s pid), i = 1' 2, ...,N (4- 11)

X, and P, are used to represent the best particle (the one with best position) and the

best previous position of the best particle respectively. Then we have:

xg= (~'1, xg2, **-, xgd) (4 - 12)

Pg = &ID P a - = * B pgd) (4 - 13)

During flying, the position change (i.e. velocity) for Xi is represented as

v- = (vil Vi2, . . . , vid) (4 - 14)

The next position of Xi is then:

XiJ = X i + Vi (4 - 15)

The velocity Vi is calculated by:

&= w q + crPr1(P i - X i) +c2Pa(Pg-Xi) (4 -16)

where Kp is the previous velocity and w is a weighting number. A greater w value results

in strong global search ability and a smaller w value leads to a more local search.

Coefficients cl and c2 are positive constants. Prl and Pr2 are two random numbers

between 0 and 1. The Equation (4-16) shows that the new velocity of a particle is

determined according to its previous velocity, the distance of its current position from its

own best position, and the distance of its cumnt position from the group's best

experience (position). Then the particle flies to a new position calculated by Equation (4-

15).

PSO is conducted through the following steps:

Step 1 : Generate N particles with random positions and velocities in the search space.

Step 2: Evaluate each particle with a predefined fitness function that is related to the

problem to be solved so X' and P, can be identified.

Step 3: Calculate velocity for each particle using Equation (4-16) and the new positions

of the particles are determined using Equation (4-1 5).

Step 4: Repeat Step 2 and Step 3 until pre-determined termination criteria, the

maximum position number or the minimum variation of the objective function

value, is reached.

According to Shi and Eberhart 119981 and Kemedy and Eberhart 119951, PSO has

the following advantages:

1. The concept of PSO is simple and the paradigms of P SO can be implemented in a

few lines of computer codes.

2. The methodology of PSO contains evolutionary concepts but needs no coding of
.

problem solutions as does Genetic Algorithm.

3. PSO is computationally inexpensive in terms of both memory requirements and

speed because it requires only primitive mathematical operators.

4.4.2 PSO in Design Parameter Optimization

Since this research is concerned with integrating the distributed databases and

knowledge bases of different product development processes for concurrent design, the

data dependency relation maintenance mechanism is used to propagate data changes in

the optimization process.

4.4.2.1 Fomlrlation of Parameter Optimization Problems

Usually an optimization problem can be formulated by an objective function and a

collection of constraints. The parameter optimization problems is formulated as:

Min F(%)

subjectto : h i (g) S O , i = l , 2 , . . . , n h

g j (g) = ~ , j = 1 . 2 , "S
where F (2) is the objective function and 2 represents the design parameters that are

usually the attributes of instance features preserved at different Internet nodes. hi(%) and

g,< a) are two types of constraint functions that define the conditions and requirements to

the problem to be solved. The numbers of the two types of constraints, hi(2) and g,{ 2) .
are noted as nh and n, respectively.

The objective function F()3) is used to evaluate the performance of the design in

down-stream product development processes. It is used directly as the fitness of the

particle that is under evaluation. The objective function F()3) can be described by an

equation or by a piece of computer program.

This constrained optimization problem is converted into a nonconstrained

optimization problem by adding a penalty factor to the objective fuaction. Then a pseudo-

objective function in the following form is created:

where p(d) is the penalty function and W is a multiplier constant that determines

the magnitude of the penalty. The penalty hction takes the following form in this

research:

With Equations (4-18) and (4-19), violations of constraints will result in a penalty to

the original objective function. In other words, if constraints are violated, the fitness of

the particle in current position will be low.

4.4.2-2 Issues of Parameter Optim ization with PSO

Since the parameter optimization problems involve distributed databases that are

represented by instance features, the functiom that haadle distributed databases, such as

informing the changes of virtual attribute values, obtaining virtual attribute values, and

propagating data changes automatically, should be accommodated into the o p e a t i o n

process. During optimization, whenever new values are assigned to the design

parameters, the calculation for data dependency relation maintenance should be

conducted in order to determine the effects of these values on the performance of the

design in down-stream product development phases. Since the distributed computing

involves communications among related Internet nodes, parameter optimization with

geographically distributed databases requires much longer time compared with an

optimization with centralized databases.

When PSO is used in design parameter ~ptimization, the basic procedures are the

same as those introduced in Section 4.4.1. However the following issues must be

addressed:

1. Representation of Design Parameters

Design parameters are represented by attributes of instance features preserved at

different locations. In PSO, a group of design parametem is represented as a panicle. The

different sets of values of the design parameters are =presented as the different positions

of the particles flying in the search space. Therefore the objective of the problem is to

fmd the best position, i.e., the destination, of the particles.

2. Evaluation of Particles (Positions)

Parameter optimization is conducted, not only to identify the optimal design

parameter values, but also to bring the product databases of the selected alternative to an

optimal state in terms of concurrent design. To be consistent with the alternative

optimization, the evaluation function defined in altemstive optimization is used as the

original objective function in design parameter optimization.

3. Ropagation of Design Parameter Values

Each position of a particle in PSO represents one set of values of the design

parameters. When a particle moves to a new position, a new set of values of the

parameters is obtained. In order to evaluate these values, the corresponding attributes, no

matter where th& are located, are updated with the new values by sending messages to

the Internet nodes where these attributes are preserved. Then the attribute relation

maintenance mechanism is activated automatically to propagate the changes of these

attribute values to al l related databases. To evaluate the performance of this set of values

of the design parameters, fitness is then calculated. If the value of a virtual attribute is

required to calculate fitness, a message is sent and the required value is returned through

the Internet communication module.

In design parameter optimization using PSO, the values of the constants used in

calculation of particle velocity rn selected as: w = 0.8, c, = ct = 2 according to Shi and

Eberhart 119981.

4.4.2.3 The Parameter Optimization Inteeace

An interface for defining design parameters, constraints and the objective functions

has been developed. This interface is named as Parameter Optimization Window. The

number of particles and the maximum number of positions are also defined in this

window. A snapshot of the Parameter Optimization Window is shown in Figure 4.15.

The configuration of the window is given in Figure 4.16.

The alternative text view is a read-only text view used to display the selected

alternative. The three list views are the places for defining design parameters, constraints

and objective functions respectively. Commands Add and Remove are implemented for

each of the list views. The two text views in the bottom of the window are used to input

the number of particles and the maximum number of positions. AU the information

displayed in the window can be cleared by clicking on the Clear button. After entering

all the required information, the optimization process can be started by clicking on the

Start button.

Atternathe: ReqdrrmenfBeltDrh/e,fl&ieve,BeItDW&flatSIW~

Pmmctrn Con-nts Oblectke Function

Figure 4.15 A Snapshot of the Parameter Optimization Window

I Parameter Optimization Window I
Alternative: (Alternative Text View - Read Only)

Parameters Constraints Objective Function

I Number of Particles: Max Positions:

(Parameter List View)

1 /
Text Views

\ 1
Buttons

(Constraint List View)

Figure 4.16 Configuration of the Parameter Optimization Window

(Function List View)

The distributed database and knowledge base modeling system has provided an

effective technique for the implementation of concurrent product design with distributed

information resources. Since many resources are available through Internet connections,

more altematives for product realization have brought more chances to reduce product

development costs and lead-time.

To identify the optimal alternative for product development with concurrent design

technology, two levels of optimization are employed in this research. At the alternative

level, two methods are introduced. The exhaustive method is used when the number of

altematives is small. The optimal alternative is selected by comparing al l feasible

alternatives. When the number of altematives is large, Genetic Programming method is

used to identify the optimal alternative more efficiently. The GP method has the

advantage of dynamic representation of the solutions, and therefore is suitable for

optimization of the product realization process altematives. Based on the defdtion of the

product realization process alternatives, techniques used for generating random

altematives, selecting locations for crossover and mutation operations, and search space

representation are introduced.

The alternative optimization is conducted based on the results of design parameter

optimization. The challenge of design parameter optimization in this research is that the

design parameters and the related databases are distributed at different locations. To

improve the efficiency of parameter optimization, Particle Swarm Optimization is

employed because of the simplicity and quality of the algorithm. The issues of using PSO

with distributed design parameters and related databases are addressed. These issues

include problem formulation, particle evaluation, and the access of remote data during

optimization.

The interfaces developed for accessing the concurrent design system are also

introduced in this chapter.

CHAPTERS

SYSTEM IMPLEMENTATION AND APPLICATION EXAMPLES

This chapter discusses issues in implementing the Internet-based concurrent design

system which has been developed based on the distributed database and knowledge base

modeling approach described in Chapter 3. These issues include the system interfaces,

the data structures, message handling, etc. The system has been implemented using

VisualWorks 2.5, which provides a robust Smalltalk application development

environment. Application examples are also given in this chapter to illustrate the

effectiveness of the introduced methods in distributed database and knowledge base

modeling and the concurrent design system.

5.1 System Implementation

5.1.1 System Interfaces

The architecture of the Internet-based concurrent design system has been illustrated

in Figure 4.1. Based on this architecture, eight browsers have been developed as the

interfaces for this concumnt design system. The functions of each browser and the

relations among the eight browsers are shown in Figure 5.1.

The eight browsers of the concurrent design system are managed by a launcher

called CDS Launcher as shown in Figure 5.2. CDS stands for Concurrent Design

System. All the browsers developed in this system can be activated through this launcher.

As shown in Figure 5.3, the browsers are organized into different groups and a drop-

down menu is implemented to create the browsers of each group. These browsers can be

created by simply clicking on the corresponding menu items.

As described in Section 4.1, the Internet-based concurrent design system is

composed of three modules: .the concumnt design module, the distributed database and

knowledge base modeling module, and the Internet communication module. The Internet

communication module is accessed by the Internet Node Definition Browser and the

Node Connection Browser. This module handles the functions related to Internet

connections and communications. The Internet node names, addresses, and port numbers

defined in the Internet Node Definition Browser are necessary information required for

data transferring during product development processes. The functions related to data

transferring, such as node comections and message handling, are realized through the

Provide generated altrmatives

- define relations among
Internet nodes

- generate design alternatives M g n Mution Browser

Ciass Feature Browser
Provide class - define class features

- define mle-bases - generate instance features
- propagate data changes

- select rule-bases

- define Internet nodes - connect Internet nodes

Figure 5.1 The Concurrent Design System Represented by Eight Browsers

Node Connection Browser. This module provides services to both the concurrent

design module and the distributed database and knowledge base modeling module.

Figure 5.2 A Snapshot of the CDS Launcher

CDS Launcher

File Feature Knowledge Geometry Node Design Help *
v

Concurrent Design Browser
Design Solution Browser

, Internet I Node Definition Browser

Node Connection Browser

Figure 5.3 Partial Drop-Down Menus of the CDS Launcher

The distributed database and knowledge base modeling module handles the functions

such as creating databases and knowledge bases for product development. defhing

relations among the hue data and the virtual data, propagating attribute value changes,

and conducting rule-based inference for automating product modeling. This module is

accessed by the Class Feature Browser, the Instance Feature Browser, the Rule-

Base Browser, and the Rule-Base Selection Browser. The Class Feature Browser

and the Rule-Base Browser are used for building the database and knowledge base

libraries for product development. Through the Instance Feature Browser and the

Rule-Base Selection Browser, the information defined in the libraries is used to

produce the product development databases. Functions related to product database

modeling, such as generating instance features, propagating changed attribute values,

selecting virtual rule-bases, and conducting distributed inference, have been implemented

as hc t ions of the Instance Feature Browser and the Rule-Base Selection Browser.

The concurrent design module provides the functions for conducting product

concurrent design, such as modeling product realization process alternatives and

identifying. the optimal design parameter values and the optimal product realization

process. This module is accessed by the Concurrent Design Browser and the Design

Solution Browser. The relations among the involved Internet nodes, defined in the

Concurrent Design Browser, provide the guidance for automatic generation of valid

product realization process alternatives. The Concurrent Design Browser also handles

the optimization of product realization process alternatives. The generated alternatives

are displayed in the Design Solution Browser. Parameter optimization is conducted

using the Design Solution Browser. The concurrent design module is supported by both

the distributed database and knowledge base modeling module and the Internet

communication module.

5.1.2 New Classes Developed for System Implementation

The concurrent design system has been implemented using VisualWorks [Hopkins

and Horan 19951. VisualWorks provides a large library of classes that can be used for

application development. For implementing the concurrent design system, many new

classes have been developed in this research. Table 5.1 shows the major newly developed

classes.

In addition to the new classes, a number of global variables are defined in the system

to preserve the knowledge and data. The names of these variables and the data they

represent are listed in Table 5.2. Figure 5.4 shows an example of the typical data structure

used in the implemented system. Together with the address and the node name, the port

number '8236' for node BeltDrive is stored in a node definition object. This object is an

Table 5.1 Major Classes Developed for System Implementation

* Most classes in this module were developed in [Yadav 19991, however a
large number of new methods have been developed in this research.

Modules

c o n m n t Mp
Module

Distributed Database and
Knowledge Base

Modeling Module*

bternet C o d c a t i o n
Module

Table 5.2 Major Global Variables Used in the Implemented System
. . . - - - - - - . - -

Class Names
ConcurrentDesignBowser InternetNodeRelation
DesignSolutionBrowser Alternative
EvaluationFunction - DesignSolution
Particle
ClassFeatureBrowser Featureclass
hstanceFeatweBromer FeatureInstance
RuleB ro w ser RuleBase
RuleBaseSelectionB rowser SelectedRuleBase
NodeDefinitionBrowser NodeDefinition
Nod&omectionBrowser FeahueSocket

* Implemented in wadav 19991

Global Variable Names

NodesAspectDic

ConnectedNodesDic

NodeRelationDic

DesignSolutionDic

Featurecategory Dic

FeatureInstanceDic

RulesAspec tDic

instance of the class NodeDefinition. This object is then put into the node dictionary

with the node name (YBeltDrive as the key. This node dictionary is then stored in the

category dictionary with the category name MBC-Food-Industry as the key. Finally,

Data

Internet node defmition descriptions such
as addresses and port numbers

All connected node names

Descriptions of node relations such as
AND relations and OR relations
Product realization process alternatives
generated in the system

Class features defined in the system

Instance features generated in the system

Rule-bases defined in the system

the category dictionary is stored into the Smalltalk system dictionary with the global

Remarks

$:

rt

*

variable name #NodesAspectDic as the key. When the port number is requested, the

system looks for the key tNodesAspectDic in the system dictionary first and then goes

all the way down to the node definition object and gets the requested port number.

Smalltrrlk
System Dictionary

Figure 5.4 A Typical Data Structure Used in System Implementation

5.1.3 Message Handling

......
#NodesAspectDic
......
......

In this concurrent design system, information flows from one Internet node to

another. The information is described by messages. In order to realize effective

communications among involved Internet nodes, the messages are converted to the

predicate format:

-

II_
-
8 -
fl

Category ~diollnry
w/L

Usually the name of a predicate states the objective of this message and the elements

of the predicate are the data to be transferred or the information required for executing

this message. For example, the message updateAttributeValue(gearl,z,30) asks the

receiver node to change the attribute z of instance feature gear1 to the new value of 30.

Table 5.3 is a list of major predicate messages developed in this system.

......
#ABC-Food-hd~~t~y
......
......

NodcDicPionuy

- a NodeDehition - Objece
0 #Belthive d i -

...... 8
......

......

A class called Predicate is used to convert a string message to a standard predicate

message and to extract information from the predicate messages.

Table 5.3 Partial Predicate Messages used in the System

5.2 Application Examples

Message Names

getAUClassFeatureNames0

sendAUClassFeatureNames(-I,~me2, . .)

getAllInstanceFeatureNames~

sendAlUnstanceFeatureNarnes(nume1, mme2,. . .)

ptInstanceFe~EIementNames~eamreNall~e,

aspectNme)

updateAttributeVdue(featureName, attributeName,

new Value)

... ...
-

In order to illustrate the effectiveness of the distributed database and knowledge base

modeling approach and the concurrent design system, application examples in designing

a sieving system are given in this section.

~ ~ M - = t W ? .

Ask a server node for all class

feature names.

Return all the class feature names to

a client node.

Ask a server node for all instance

feature names.

Return all the instance feature names

to a client node.

Ask a server node for all element

The compnding insmce

feature name and aspect name are

specified as the predicate elements.

Request the receiver node to update

an attribute's value. The

corresponding instance featwe name,

attribute name, and the new value are

specified as the predicate elements.

... ...

Separation of particle materials based on their geometric dimensions is often

required in food processing, agricultural engineering, mining and other industries. Such a

function can be realized by a mechanical sieving system. A sieving system is usually

composed of a power transfer device and a sieving device. When the sieve is in motion,

particles with smaller size than the size of the sieve holes can pass through the sieve, and

thus are separated from larger panicles.

The two design requirements in this example are:

The capacity of the sieving system is 1OOO kghour.

The input rotational speed of the system is 1000 rpm.

5.2.1 The Concurrent Design Problem

The sieving system design problem is composed of two tasks: (1) the design of a

power transfer mechanism, and (2) the design of a sieving mechanism. Two alternative

power transfer mechanisms, a belt drive mechanism aud a gear pair mechanism, and two

alternative sieving mechanisms, a flat sieve mechanism and a cylinder sieve mechanism,

are considered in this example. These mechanisms are modeled at different htemet

nodes as shown in Figure 5.5.

The objective of this design is to fmd the design alternative that has a minimum

manufacturing cost, while satisfying the design requirements. To realize this objective,

the manufacturing aspects for the design models shown in Figure 5.5 must be considered

during the design process. This is a typical concurrent design problem. In order to

consider manufacturing aspects, the relevant manufachuing processes related to the

alternative mechanisms are also modeled by different Internet nodes. In this example, two

feasible manufacturing nodes, either BeltDriveMfgA or BeltDriveMfgB as shown in

Figon 5.6, can be accessed by the design node BeltDrive. These two nodes have an OR

relation and are modeled as two sub-nodes of BeltDrive. The design requirements are

modeled in an Internet node called Requirement. To formulate this concumnt design

problem, the AND/OR graph with all the involved Internet nodes is formed as shown in

Figure 5.6. The node R1 and node R2 in this graph are not real Internet nodes. They are

used to model AND/OR relations of the product realization processes. In this research,

this type of nodes is called a pseudo node.

Node: Flatsieve
r-------------..,-c.---.--*

t

Node: BeltDrive pin1 pin2 b I
6

Node: CyllnderSieve
Node: Gearpair

Accessible

Figure 5.5 Possible Design Alternatives

BeltDriveMfgA
BeltDrive

BeItDriveMfgB

GearPauMfgA
Gearpair

GearPairMfgB
(Requirement

Flats ieveMfgA
Flatsieve

FlatSieveMfgB

CylinderSieveMfgA
Cylindersieve

C ylinderSieveMfgB

1-1 Pseudo n ~ c

Figure 5.6 The AND/OR Graph Formed with the Involved Internet Nodes

5.2.2 Generation of Instance Features

To implement this example, an IP address and a port number are assigned to each of

the involved Internet node. In each Internet node, all required instance features are

generated using the corresponding class features. For example, at node BeltDrive, the

instance feature beltODrive1 is generated using the class feature BeltDrive that is

developed for modeling the beltdrive mechanisms. All the element-features of

beltDrive1 , including pulley1 , pulley;? shaft1 and shaft2, are generated using the class

features, Pulley and Shaft, preserved at the local node.

If a required class feahlre is not available at the local node, a virtual class feahlre at

a remote node can be used to generate the required instance features. For example, at

node CylinderSieve, instance features gearl is required. but there is no corresponding

class feature defiwd at the local node. Therefore. a virtual class feature Gear is required

to generate the required instance feature. In this case the class feature Gear defined at

node GearPair can be used. After the accessible relation between GearPair and

CylinderSieve is established, the virtual class feature GearPaiPhGear, which is the

class feature Gear preserved at node GearPair, can be used for generating the instance

feahlres gearl at node CylinderSieve. Partial instance feahlres generated for this

example are shown in Figure 5.7 (b).

5.2.3 Rule-Based Reasoning wi t h Virtual Rule-Bases

After all required instance features are generated, amibute values of the generated

instance featms can be modified manually or through rule-based reasoning. During the

database modeling process, if sufficient knowledge bases have been developed, rule-

based reasoning can be used to generate or modify the product databases represented by

instance features. One of the advantages of the distributed knowledge base modeling

approach developed in this research is that the rule-bases preserved in remote nodes can

be used for rule-based reasoning at the local node. For example, to design the gear gearl

in node CylinderSieve, two rule bases, GearMaterial and GearProcess, defined in

node GearPair for modeling the gears, can be used at node CylinderSieve. These two

BelthiveMf&i I
1 Requirement

FlarSieveMfgA I
(a) One Product Realization Process Alternative

inN: input rotational speed, outN: output rotational speed, d: diameter, n: rotational speed,
z: moth number, I: length, w: width, f: fizquency, c: cost, a: area, t: thickness, mat: material.

(b) Partial Instance Features and Attributes at Different Internet Nodes

Figure 5.7 Partial Instance Features Generated at Different Internet Nodes

example rule-bases are shown in Figure 5.8 (a). At node Cylindersieve, the virtual rule

Attributes
capacity, cost, inN, ...
c, in& outN, distance. ...
d, n. z, c. mat, ...
d, n, z, c, mat, ...
d, I, n, c, mat, ...
d, I, n, c, mat. ...
inN, f, capacity, c, ...
I,w,f.d,c
d* I, c, ...
d, 1. c, ...
d, I, f, c, ...
d, I. f. c, ...
d, w. n, c, ...
. .-
c. ...
d, m, t, c, .--
a, b C, ..-
a, t, c, ...
d, I, c, ...
4 t, c, ...
a, t, C, ...
...
c, ...
I, w, d. c. ...
8, t, d, c, ...
I, c, ...
d, 1. c. ...
% C c*
d, 1, c, ...
d, I, c, ...
a. t, C, ...
d, w, c, ...

t, C.

. . .

Internet Nod#
Requirement

BeltDrive

Flatsieve

BeltDriveMfgA

-.

FlatSieveMfgA

L

rmtaaa Features
customerRequirernent 1
bcltDrive1
pulley1
pulley2
shafil
shaft2
flatSieveMech 1
flatsieve I
pin 1
pin6
rod1
rod3
wheel 1
-..
beltDriveProcess 1
pulley 1 Process 1
p lTuningF%ocess 1

_plTurninp;R.ocess2
shaft 1 Process 1
s 1Tumingfrocess 1
s 1 GrindingProcess 1
..* ...
flats ieveMec hProcess 1
flatSievePmcess l
fsPunchingRocess 1
fsWeldingProcess 1
pin 1 Process 1
p 1TurningProcess 1
rodlProcess 1
r 1 DrillingPmcess 1
r 1MillinRprocess 1
wheelProcess 1
w 1TunringFbcess 1
..- ...

bases G earPair%GearMate ria! and Gea rPaiPhGearP rocess are used for reasoning

with local instance feature gear1 . The explanation of the rules is given in Figure 5.8 (b).

One of the results of de-based reasoning in this case is that the value of attribute

matrgearl] is modified.

(a) Two Example Rule-Bases

I
Rule: MaterialA

/ IF(gm, ?x) & (o, m[?x], 2) & (<=, w[?x]. 25) THEN (assignAttribute, mst[?x], #AISI1045)

RuleBase: GearMaterial

Rule: MaterialA
IF there is a gear, and its module number is less than or equal to 2, and its width is less than or
equal to 25 THEN set the material of the gear equal to AISIf045.

Rule: MaterialB
IF there is a gear, and its module number is greater than or equal to 2.5, and less than or equal to 5,
and its width is greater than or equal to 25, and less than or equal to 50 THEN set the material of
the gear equal to AISI2340.

Rule: MaterialC
IF there is a gear, and its module number is greater than or equal to 6, and its width is greater than
or equal to 25 THEN set the material of the gear equal to AISiI 4140.
...

RuleBase: GearRaccss

Rule: GcarTypeAndMaterial
IF there is a gear, and this gear has a manufacturing process THEN set the type and material used
in the manufacmrilLg process equal to the type and material of the gear.
-..

'

(b) Rules Explained in Plain English

Figure 5.8 Two Exainple Rule-Bases for Gear Modeling

Rule: Materia
IF(gear, ?x) & (>c, m(?x], 25) & (=, m[?x], 5) & (>=, w[?x], 25) a(<=, w[?x], 50) THEN
(assignAttribute, mat[?x], #AISI2340)

Rule: MaterialC
IF(gear, ?x) & (>=, m[?x], 6) & (>=, w[?x], 25) THEN (assignAttribute, mat[?x], #AISI4140)
. . .
RuleBase: Gearprocess

Rule: GearTypeAndMaterial
IF(gear, ?x) & (gearProcess, ?y) & (elementFeatutt, ?x, ?y)THEN (assignAttribute, gearType[?y],
gearType[?x]) & (assignAttribute, mat[?y] , mat[?x])
.-.. f

5.2.4 Ropagation of Changed Attribute Values

When a product realization process alternative, such as (Requirement,BeltDrive,

FlatSieve, Belt DriveMfgA, Flats ieveMfgA), has been identified, the Internet node

accessibility relations among the involved nodes can be established. For instance, when

the accessibility bemeen node BeltDrive and node FlatSieve is defined, the class and

instance features in one node are then virtual class and instance features in another node.

The relations among true attributes and virtual attributes are then defined to link the

product databases at different Internet nodes. During the design process, the attribute

values need to be modified and adjusted. The changes of the attribute values in one node

can be propagated to all related attributes including the virtual attributes.

Figure 5.9 shows a partial propagation process started from attribute d[pulley2] in

node BeltDrive. As a result of this propagation process, the values of attribute

Node: BeltDriveMfnA

t Virtual Attribute 0 Attribute Value ' I F5: flrod3) := n[wheel 1]
0 Attribute Namc 0 Function F6: f[flatSicvel] := n[rod3] I
Figure 5.9 Distributed Attribute Relation Network for Modeling the Power Sieving

System (F7 and F8 are simplified for m e b g the network graph)

qflatsievel] in node flatsieve and the attribute cIpulley2Processl] in node

BeltDriveMfgA are updated automatically. Through such automatic attribute change

propagation, designers can know the outcomes of the original attribute change as soon as

the propagation process finishes. Therefore, the modification to the original attribute

value can be evaluated. In the example shown in Figure 5 9 , the manufacturing cost of

pulley;! is updated automatically if the diameter of pulley2 is changed. So the diameter

change of pulley2 can be evaluated by comparing the updated manufacturing cost of

pulley;! with the previous cost.

5.2.5 The Optimization of Design Parameter Values Using PSO

The identification of the optimal design parameter values for each alternative is

conducted using Particle Swarm Optimization (PSO), as described in Chapter 4. I . the

example given in this section, the alternative (Requirement, BeltD rive, Flatsieve.

BeltDriveMfgA.FlatSieveMf@), as shown in Figure 5.7 (a), is selected to conduct the

parameter optimization.

1. Problem Formulation

The objective of parameter optimization in this example is to determine the values of

the selected design parameters so that the sieving system has the minimum manufacturing

cost while satisfjmg the design requirement on system capacity. In this example, three

attributes are sl:Iected as the design parameters. These attributes are

d[BeltDrive%pulley2], I[FlatSieve%flatSievel], and w[FlatSieve%flatSievel]. They

represent the diameter of pulley2, the length of flatsieve1 and the width of flatsieve1

respectively. The value of attribute n[BeltDrive%pulleyl], representing the input

rotational speed of the sieving system, is set at 1000 (rpm), based on the design

requirements. Then this optimization problem can be formulated as follows:

b ' b F(X) = cost[Requirement%customerRequirement~]

X = (dlBeltDrive%pulley2 J , l[FhtSieve%flatSievel], w[FlatSieve%flatSieve~

Subject to: l[FlatSiore%flntSieveI]-I5~-~

~[FlarSieve %flatSievel]-I 000 s9

In this example, the value of F(X) is the total manufacturing cost of the belt drive

mechanism and the flat sieve mechanism:

cost[customerRequirementl] =c[BeitDriveMfgA %beltDtiveProcess I] +
c[FlatSieveMfgA%$latSieveMechProcessl]

The cost of each mechanism is the sum of manufacturing costs of all components of

the mechanism:

c[bertDriveProcessl]=c[pulfqI Prucessl] + c [1 2 P r o c e s s] + . .
clflatSieveMechProcessI] =cCflatSieveProcessl]+c[pin 1 Processl] +. . .
The manufacturing cost of each component is calculated by the cost functions

defined in the form of attribute relations of the instance feature representing this

component. For instance, the flat sieve is manufactured through two manufacturing

processes: the punching process and the welding process. Then the following relations

have been defined in node FlatSieveMfgA:

F 1 : aLfsPunchingProcess I] : = l[flntSieveProcessl] *wLflatSieveProcessl]

F2: iffs WeYeldingProcessl] : = (I[flatSieveProcess1] + w flatSieveProcessl]) *2

F3: c ffsPunchingProcessI] : = aLfsPunchingProcessI] XtIfsPunchingProcess *
(dLfPunchingProcess1 Jn) *(dffsPunchingProcessl]) 3 4 * O . O 0 4

F4: ccfs WeldingProcessl] : = lus WeldingProcessl] W.025

F5: c@atSieveProcess I] : = c~~PunchngProcessl]+c ffs WeidingProcessl]

When the length and width of the flat sieve are determined, the punching area

aCfsPunchingProcessI] and the welding length ILfsWeidingProcessI] are calculated first

by relation F1 and F2. Then the cost of the punching process ~LfsPunchingProcessl] and

the cost of the welding process cffsWeIdingProcessl] are calculated by relation F3 and

F4 respectively. The total manufacturing cost of the flat sieve ~CflatSieveProcessl] is

then obtained by relation F5. The costs of other components are calculated in the same

way.

2. Design Parameter O p m
. .

on

The optimal values of these design parameters are identified by the Particle Swarm

Optimization (PSO) algorithm d e s c n i in Chapter 4. In this example, the dimension of

the search space is 3 since t h e attributes are selected as the design parameters.

Therefore, the position of a particle in the search space is represented by the values of the

three attributes. The initial positions of particles are randomly assigned. Then the

particles fly in the search space towards a target that is the best position of the particles.

The flying directions of the particles in the search space are adjusted according to the

fitness values of the particles. The fitness values are calculated using Equation (4-4).

based, in this example, on the manufacturing cost. The position that the particles land on

is the target position, representing the optimal set of values of the design parameters in

this concurrent design problem. The sieving system with these attribute values has the

minimum manufacturing cost. Since this is an optimization process with distributed

parameters, the number of particles affects the optimization efficiency significantly. The

greater number of particles defined, the lower the efficiency is. The number of particles

chosen in this example is 3. After 200 iterations, the optimal parameter values are

obtained as:

X* = /164.785, 990-789.443.888)

cost[Requirement%customerRequirementl] = 994.776

capacity[Requirement%ocustornerRequirementI] = 1000.61

With this set of values, the sieving system has a minimum manufacturing cost and

the design requirements are satisfied.

The convergence process is shown in Figure 5.10. The particle fitness is the sum of

the original objective function value and the penalty factor defined by Equation (4-19). if

constraints are violated. Tests have showed that satisfactory convergence has been

achieved.

800
10 40 70 100 130 160 190

Iterations

Figure 5.10 The Convergence Process of PSO

5.2.6 The Optimization of Product Realization Process Alternatives Using GP

As shown in Figure 5.6, there are total 12 alternatives for producing the sieving

system. The optimal alternative can be identified using either the exhaustive method or

the GP method, depending on the number of alternatives. These two methods were

introduced in Chapter 4. In this section, the GP method is used to identify the optimal

alternative for producing the sieving system.

In this example, manufacturing cost is used as the function to evaluate al l

alternatives. The cosr are calculated in the same procedures described in Section 5.2.5.

Therefore the objective is to fmd a solution alternative that has the minimum

manufacturing cost. Based on the graph shown in Figure 5.6, the optimal alternative is

identified using the Genetic Rograrnming method, through the following procedures.

1. Generation of the Initial Population

In this example, the number of individuals, presenting product realization process

alternatives, in the population is 4. The initial population with randomly generated

individuals is shown in Figure 5.11. After parameter optimization for each alternative, as

described in Section 5.2.5, the manufacturing costs to be used for evaluating the

alternatives are obtained. Based on these costs, the fitness of each individual can be

calculated using Equation (4-4). The number of Individuals m is 4, and the adjusted

fitness a(x) can be calculated using:

a(x) = 1
1 + cost (5 - 1)

The cost and calculated fitness for each alternative are shown in Figure 5.11.

No. Individuals Cost Fitness Copy

GearPairMfgB I
(1) I Requirement 488053 0.121 0

CylinderSieveMfgA

CylinderSieveMfgB

BeltDriveMfgA 1
(2) 1 Requirement 287726 0.204 1 C ylinderSieveMfgA I

CylinderSieveMfgB I
BeltDriveMfM I

(3) 1 Requirement 1188.41 0.495 2

FlatSieveMfgB I
CiearPairMfgA I

4 I Requirement
Cyl inderSieveMfgA

3260.85 0.180 1

CylinderSieveMfgB

Average cost: 305 1.76

Figure 5.1 1 The Initial Population

2. Reproduction

The first evolution operation is reproduction. The number of each individual to be

copied to the next generation is determined by Equation (45). For the initial population,

the number that each individual should be duplicated is calculated and shown in Figure

5.1 1. After reproduction, the individuals in the population are shown in Figure 5.12.

Alternative (1) of the initial population died because of its high cost.

For altemative (3), the location for crossover is determined by Equation (4-7). In the

implemented system, the alternative is described by a list of node names. For example

alternative (3) is described as

For this alternative, the number of nodes is 5. Based on Equation (4-7); if the

random number is 0.812, then the location number is calculated to be 4. The node at

location 4 is BeltDriveMfgB. Since BeltDriveMfgB is a leaf node, the location of

BeltDriveMfgB is not eligible for crossover. To find a new location, the original Location,

4 in this case, is moved step by step forward or backward depending on a random number

0 or 1. The random number here is 1, so the location is moved forward one step and the

new location is 5. The node at this location FlatSieveMfgB is still a leaf node. Since the

location reached the bottom, the next location is 1 where the node Requirement is

located. The root node is not eligible for crossover. So the location is moved to 2. The

node at location 2 is BeltDrive and it satisfies the conditions for crossover. So the -

crossover location in both alternatives are determined to be the locations of node

BeltDrive in their node lists. Starting h m this node, the sub-trees in both alternatives are

cut off and switched. In this example, the sub-tree (BeltDrive,BeltDriveMfgB) of

alternative (3) and the sub-tne (Belt Drive, BeltDriveMfg A) of altemative (1) are

switched. After this operation two new individuals are generated and the new population

after the crossover operation is shown in Figure 5.13.

4. Mutation

The number of mutation to be conducted in the current population is determined by

Equation (4-8). The mutation probability number is determined as 0.25 in this case.

Because the population has 4 individuals, one mutation operation is to be conducted. The

alternative selection is conducted the same way as the altemative selection for crossover

operations. The random number is 0.976; therefore, alternative (4) is selected. The

mutation point on this alternative is selected the same way as the location selection for

crossover operations. The selected location is valid as long as the node at the location is

an OR node. In other words there are optional choices of nodes to be selected to replace

the node at the selected location on the alternative. In this way, node Cylindersieve is

selected,

No. Mviduals Cost Fitness

BelthiveMfgB 1
(1) I Requirement 2912.0 0.150

Cy IinderSieveMfgA

CylinderSieveMfgB

I BeltDriveMfgB 1
(2) I Requirement 1 188.4 1 0.366

FIF~ -1 RatSieveMfgB I

BeltDcive \-iTGma@r]
(3) 1 Requirement 1242.44 0.350

FlatSieveMfgB I
GearPairMfgA I

(4) 1 Requirement ~ ~ l i n d e r ~ i e v e ~ f ~ ~ J 3260.85 0.134

CyfinderSieveMfgB 1
Average cost: 2 150.92

Figure 5.13 The Population after Crossover

To conduct mutation, the sub-tree rooted at the node Cylindersieve in individual (4)

shown in Figure 5.13 is cut off and replaced by a new node. This new node is randomly

selected from the OR nodes of the selected node. In this case there is only one choice,

i.e., node Flatsieve. Starting from this new node, a new sub-tree,

(F tatsieve, Flat SieveMfgA), grows so that a new individual is generated. After the

mutation operation, the second generation of the population is produced, as shown in

Figure 5.14.

Comparing the average cost of al l alternatives in the second generation with the

average cost in the first generation, the quality of the population has been improved in

terms of the manufacturing cost. The above evolution process is continued until the

predetermined generation number is reached. Then the best alternative recorded in the

evolution process is the solution. In this example, the alternative (Requirement,

BeltDrive,FlatSieve,BettDriveMfgA,FlatSieveMfgA) is identified to be the optimal

alternative for realizing the sieving system, in terms of the minimum manufacturing cost.

The manufacturing cost for this altemative is 944.776.

No. Individuals Cost Fitness

BeltDrive 1-1 BeltDriveMfgB 1
(1) I Requirement 2912.0 0.127

Cy 1 inderS ieveM fgA
Cylindersieve

Cylinders ieveMf@

Bellhive] [BeItDriveMfgB I
(2) 1 Requirement 1188.41 0.312

Belchive -1 BeltDriveMfgA I
(3) 1 Requirement 1242.44 0.298

Flatsieve I FlatSieveMfgB I
Gearpair 1 I GearPairMfgA I

(4) 1 Requirement 1409.010 0.263

Hatsieve 1-1 FlatSieveMfgA I
Average cost: 1687.965

Figure 5.14 The Population after Mutation: The Second Generation

The concurrent design process in this exampleshows that the distributed database and

knowledge base modeling system is effective for product development with concurrent

design methodology. The identification of optimal alternative and design parameter

values can be easily realized using the concurrent design system developed in this

research.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, conclusions drawn fiom this research are summarized, and related

future work is outlined.

Concurrent design is a design methodology by which the down-stream product

development life-cycle aspects are considered concurrently at the design stage. With the

rapid developwent of Internet technology, idomation resources geographically

distributed at different locations are now available for product development at a local

location. More alternative processes are available for producing a product, because of a

wider choice of iafonnation resources fiom different locations. This research was

devoted to the development of a feature-based distributed database and knowledge base

modeling approach and an Internet-based concurrent design system. The conclusions

drawn from this research are summarized in the following sections.

6.1.1 Distributed Database and Knowledge Base Modeling

(I) The feature-based product deveZupment we-cycle &tabases and knowledge bases

distributed at d i e e n t locations can be integrated dynamically through the Internet.

Conventional product development approaches such as Design for "X" and

concurrent design were developed based on centralized computing techniques

[Kusiak 19931. In this research, physically distributed product development life-

cycle databases and knowledge bases are integrated through the Internet. These

databases and knowledge bases are used for modeling product development life-

cycle activities. The distributed product development activities are modeled at

different Internet nodes. An Internet node can be added to or removed from the

distributed database and knowledge base modeling system by connecting and

disconnecting the node to the system. This function can be used to access the

globally available infonnation resources for product development.

(2) Distributed product development life-cycle &tabases, modeled by both true and

virtual instance features, can be associated by defining rehtions among these data.

Traditionally, distributed database management systems are required to -age

databases distributed at different locations [Bray 19821. In this research, the

distributed databases are associated directly by defining relations among the true and

virtual features. Though the Internet provides the physical connections, the defined

relations among the distributed features and attributes integrate the distributed

databases into the same environment. The data relations can be modified

conveniently during the product development process to identify the optimal design,

considering the down-stream product development Life-cycle aspects.

(3) Product development database libraries at remote nodes can be used to generate

product modeling dotabares at the local node to improve product development

mciency .

Instance features distributed at different locations are generated using corresponding

class features as their templates. If the required class feature is not defined at the

local location, a virtual class feature can be used to generate true instance feahues

directly at the local site. This function provides support to product data library

sharing; therefore, the efficiency of product development is improved.

(4) Consistency of distributed product databases can be maintained using the distntnbuted

data dependency relation maintenance mechanism.

The consistency of the distributed product databases is maintained using the

distributed data dependency relation network. To propagate the data changes to

related data including virtual data, a distributed data dependency relation

maintenance mechanism has been developed in this research. During the product

development process, modifications to product development data are! necessary.

When part of the data are modified, al l the related data at the local site and the

remote sites are updated automatically. During product development, when the

design data are changed, manufacturing process descriptions are updated using the

relations between design and manufacturing descriptions. The updated

manufactwing aspects can be used to evaluate the design. This function is very

effective in madeling product databases and product development life-cycle aspects

for concurrent design.

(5) Knowledge bases preserved at remote locations can be used for knowledge-based

inference at the local location.

The knowledge bases distributed at different locations can also be integrated through

the Internet. Virtual rule-bases, the rule-bases preserved at remote nodes, can be used

for rule-based reasoning at the local node. Virtual rule-bases are also visible at the

local node. The selection of virtual rule-bases for reasoning at the local node is

accomplished through Internet communications. A virtual rule-base can be selected

and removed at the local node using a specially developed browser. This mechanism

is effective when no sufficient knowledge bases are provided at the local site.

(6) The Mciency of product development with distributed databases and knowledge

bases can be improved by using the distributed rule-based inference mechanism.

The process of product modeling using distributed databases can be automated by

rule-based inference. Since rule-based reasoning may result in data change in remote

nodes, a distributed inference mechanism has been developed in this research. When

the data in a remote node are changed as a result of local rule-based reasoning, the

rule-based reasoning in that node is automatically activated. This function is

effective for creating distributed product descriptions.

6.1.2 Internet-Based Concurren t Design

(I) The Internet-based concurrent design system developed in this research can model

alternative product realizution processes.

Based on the distributed database and knowledge base modeling approach, an

Internet-based concurrent design system has been developed for product concurrent

design using the distributed product development life-cycle databases. Modeling of

product realization process alternatives is essential for conducting product concurrent

design using a computer-based concurrent design system. In this research, the

different product development Me-cycle aspects are modeled at meren t Internet

nodes. The product realization process alternatives are modeled by AND/OR graphs

in which the nodes are used to represent different product development activities

distributed at different locations. This product realization process alternative

modeling approach is effective for generating and evaluating the alternatives to

identify the optimal one.

(2) The optimal design parameter vufues, consktering the manufacturubiliity of the

design, can be identified using a global optimization method.

For a generated product realization process alternative, the optimal design parameter

values can be identified using the Particle Swarm Optimization (PSO) method

employed in the implemented system. In PSO method, different positions of the

particles flying in the search space represent different sets of values of the design

parameters. For each set of new values, automatic data change propagation is

conducted to update the related data values. Then the updated results can be used to

evaluate the current position of the particle. For a concurrent design problem, the

design parameter values can be continuously evaluated using the manufacturability

measures during the optimization process. The design parameter values identified by

PSO are optimal in terms of the manufacturability of the products. In this research,

PSO is efficient and reliable in optimizing the design parameters distributed at

different locations.

(3) The optimal product realization process alternative can be identijTed by two different

methods: the exhaustive method nnd the Genetic Programming (GP) method.

Among the feasible product realization process alternatives, the optimal alternative

can be identified by two different methods: the exhaustive method and the Genetic

Programming method If the number of alternatives is small, the exhaustive method

can be used to generate aLl feasible alternatives. These alternatives can then be

evaluated and compared to identify the optimal one. An algorithm has been

developed for generating al l feasible alternatives. If the number of aItematives is

large, the Genetic Programming method can be used to identify the optimal

alternative. Modifications to the GP algorithm have been made for solving

concurrent design problems. The madified GP method is effective in alternative

optimization.

6.2 Future Work

The distributed database and knowledge base modeling approach and the Internet-

based concurrent design system developed in this research are effective for engineering

product design with distributed resources. However, this work can be further improved in

the following aspects:

(I) Improvement using multi-agent systems

In this research project, the selection of relevant databases and knowledge bases for

product development is conducted manually by users. The algorithms introduced for

the attribute value change propagation and the distributed inference may be not

efficient when a complex project is involved. With the advances of multi-agent

systems Dome 1999, Shen and Norrie 1999, Shen et al. 1999, Shen et al. 2000,

Ulieru et al. 20001, overall system performance can be improved if the functions,

such as Internet communications, data dependency relation maintenance, distributed

inference, rule-base selections, and alternative optimization, are handled by agents,

especially when large amount of onn nation and operations are involved in the

design process.

Product concurrent design with distributed databases and knowledge bases is a

complex process involving a wide range of technical and social knowledge. Different

types of autonomous agents with different knowledge can be used to handle different

aspects of the product development life-cycle. Through coordination and cooperation

among the involved agents, the goals of product concurrent design can be achieved.

(2) Rbduct geometric representation

This research focuses on modeling functional design aspects of the products.

However the representation of product 2D and 3D geometry is another important

aspect in product development The existing system can be enhanced if a product

geometry modeling module is developed. Transformation of the feature-based

product geometry data into a format understandable by commercially available CAD

software should be a subject for further research.

(3) System interfaces

The interfaces developed in this research are Smalltalk browsers. The input and

output information is handled using text views. To improve the interface

environment, graphical windows with functions for defining and displaying the

Internet node, the product databases and knowledge bases, as well as product

realization process alternatives can be introduced. Using web browsers to access the

concurrent design system can also improve the interface environment.

(4) Incorporation of web techniques

The concurrent design system developed in this research has the potential to be

incorporated into a web-based product development environment. In this

environment, the system can be easily accessed through computers connected to

Internet; therefore, accessibility to the concurrent design system can be improved.

(5) Improvement in altemative optimization

In this research, the Genetic Programming method has been employed for identifying

the optimal product realization process altemative. In the optimization process, the

alternatives are dynamically generated by the GP method. For each new alternative,

parameter optimization must be conducted to bring the altemative to an optimal

state, so that this alternative may be compared with others. Therefore the alternative

optiznization is conducted generation by generation with user interference. New

approaches should be studied to improve efficiency by combining the two

optimization processes without human interference.

Adamides, E, D., 1995, Coordination of Distributed Production Resources for

Responsibility-Based Manufacturing. Journal of Iktelligent Monrrfoctun'ng, Vol. 6, No. 6,

pp. 415-427.

AdapaUi, S. and Addepalli, K., 1997, World Wide Web Integration of Manufacturing

Process Simulations. Concurrency: Practice and werience, Vol. 9, No. 11, pp. 1341-

1350.

Ahn, S.-H., Roundy, S., Wright, P. K, and Liou, S.-Y., 1999, 'Design Consultant': A

Network-Based Concurrent Design Environment. MED 10, American Society of

Mechanical Engineers, Manufacturing Engineering Division, ASME, November, pp.

563-569.

Alles, D. and Vergottini, G., 1997, Taking a Look at Internet-Based Design in the Year

200 1. Electronic Design, January, pp. 42-50.

Anderson, D. C. and Crawford, R. H., 1988, Knowledge Management for Preliminary

Computer-Aided Mechanical Design. Organization of Engineering Knowledge for

Product Modeling in Computer Integrated Manujiacturing, (ed.), T. Sata, Elsevier, pp.

15-38.

Angeline, P. J., 1994, Genetic Programming: A Current Snapshot. Proceedings of the

Third Annual Conference on Evolutionary Programming, (eds.), A. Sebald and L. Fogel,

World Scientific, a v e r Edge, NJ, pp. 224-232.

Arora, J. S., Elwakeil, 0. A*, and Chahande, A. I., 1995, ~Lobal Optimization Methods

for Engineering Applications: A Review. Structural Optimization, Vol. 9, pp. 137- 159.

Bassiliades, N. and Vtahavas, I., 1997, Recessing Production Rules in DEVICE, An

Active Knowledge Base System. Data & Knowledge Engineering, Vol. 4, pp. 117-155.

Bliznakov, P. L, Shah, J. J., Jeon, D. K, and Urban, S. D., 1995, Design Information

System Mastructure to Support Collaborative Design in a Large Organization.

Proceedings of the 1995 ASME Design Engineering Technical Conferences, Boston, Vol.

1, pp. 1-8.

Bray, 0. H., 1982, Dishibured databasc management system, Lexington Books,

Lexington, Mass.

Ckn, Y.-M. and Jan, Y.-D., 2000, Enabling Aliied Concurrent Engineering through

Distributed Engineering Information Management. Robotics and Computer-Integrated

Manufacturing, Vol. 16, NO. 1, pp. 9-27.

Chung, I. C. H., Patel, D. R., and Cook, P. L., 1990, Feature-Based Modeling for

Mechanical Design. Computer & Graphics, Vol. 14, No. 2, pp. 189-199.

Colton, J. S., 1993, An Intelligent Design for Manufacture System. Concurrent

Engineering: Automation, Tools, and Techniques, (ed.). A. Kusiak, John Wiley & Sons,

Inc.

Court, A. W., 1998, Issues for Integrating Knowledge in New Product Development:

Reflections from an Empirical Study. Knowledge-Bmd System, Vol. 11, pp. 391-398.

Cutkoslcy, T. G., Tenenbaum, M. R., and Glicksman, J., 1993, SHARE: A Methodology

and Environment for Collaborative Product Development. Proceedings of IEEE

Infratructure for Collaborative Enterprise, IEEE, Morgantown, pp. 3341.

Danesh, M. R. and Jin, Y., 1999, AND: An Agent-Based Decision Network for

Concurrent Design and Manufacturing. Proceedings of the 1999 ASME Design

Engineering Technical Conferences, Las Vegas, Nevada.

Domazet, D. S., Kong, H. P. H., Yan, M. C., Calvin, C. F. Y., and Goh, A., 2000,

Infrastructure for Inter-Organization Collaborative Product Development. Proceedings of

the Hawaii Intemational Conference on System Sciences, January, pp. 159.

129

Domazet, D. S. and San, L. S., 1997, Active Database Servers for Concurrent

Engineering Environments. Proceedings of the Fijth International Conference on

Database Systems for Advanced Applications, Melbourne, Australia.

Dong, 2. (ed.), 1994, ArtijTcial Intelligence in Optimal Design and Mm~achtring, ITR

Prentice Hall.

Gardan, Y. and Minich, C., 1993, Feature-Based Models for CADICAM and Their

Limits. Computers in Industry, Vol. 23, pp. 3- 13.

Gadh, R and Sonthi, R., 1998, Geometric Shape Abstractions for Internet-Based Virtual

Prototyping. Computer-Aided Design, Vol. 30, No. 6, pp. 473-486.

Goldberg, A. and Robson, D., 1983, Smalltalk-80: The Language and its impIementation,

Addison-Wesley.

Goldberg, D. E., 1989, Genetic Algorithm in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, MA.

Grimes, R., 1 997, Professional DCOM Programming, Wrox Press.

Gu, P. and Chan, K., 1995, Product Modeling Using STEP. Computer-Aided Design,

Vol. 27, No. 3, pp. 163-179.

Hahn, H. and Stout, R., 1994, The Internet: Complete Reference, McGraw-Hill.

Helander, M. and Nagamachi, M., 1992, Design for Manufacturability. A System

Approach to Concurrent Engineering and Ergonomics, Taylor & Francis Ltd.

Henderson, M. R., 1984, Extraction of Feature Information Born Three Dimensional

CAD Data. Ph.D. Dissertation, Purdue University.

Higgins, K. B. and Langrana, N. A., 1999, Web-Based, User-Friendly Design and Virtual

Fabrication for Layered Manufacturing. Proceedings of the 1999 ASME Design

Engineering Technical Conferences, Las Vegas, Nevada.

Hopkins, T. and Horan, B., 1995, Smalltalk: An Introduction to Application Devrlopment

Using VbualWbrks, Rentice Hall.

Huang, G. Q., Huang. J., and Mak, K. L., 2000, Agent-Based Work-Flow Management in

Collaborative Product Development on the Internet. Computer-Aided Design, Vol. 32,

pp. 133-144.

Huang, G. Q., Lee, S. W., and Mak, K. L., 1999, Web-Based Product and Process Data

Modeling in Concurrent "Design for X'. Robotics Md Computer-Integrated

Mcutufocturing, Vol. 15, pp. 53-63.

Hughes, J. G., 199 1, Object-Oriented Databases, Prentice-Hall.

Huhns, M. N. and Singh, M. P., 1998, Readings in Agents. Morgan Kaufmann Publishers.

Hyeon, H. J., Hamid, R. P., and Sullivan, W. G., 1993, Principles of Concurrent

Engineering. Concurrent Engineering, (eds.), H. R. Parsaei and W. G. Sullivan, Chapman

& Hall.

Jiang, P.-Y. and Fukuda, S., 1999, Internet Service and Maintenance for RP-Oriented

Tele-Manufacturing. Concurrent Engineering: Research and Applications, Vol. 7, No. 3,

pp. 179- 189.

Judson. J., Dong, Q., and Mascoli. G.. 1999, Introducing Knowledge-Based Engineering

into an Interco~ected Product Development Process. Proceedings of the 1999 ASME

Design Engineering Technical Conferences, Las Vegas, Nevada

Kennedy, J. and Eberhart, R., 1995, Particle Swarm Optimization. Proceedings of IEEE

International Conference on Neural Networks, Perth, Australia

Kim, C.-Y., Kim. N., Kim, Y., Kang, S.-H., and O'Grady, P., 1998, Distributed

Concurrent Engineering: Internet-Based Interactive 3-D Dynamic Browsing and Markup

of STEP Data. Concurrent Engineering: Research and Applications. Vol. 6, No. 1, pp.

53-70.

Kim, J. H., Wang, F.X., Sequin, C. H., and Wright, P. Kt 1999, Design for Machining

over the Internet. Proceedings of the 1999 ASME Design Engineering Technical

Conferences, Las Vegas, Nevada.

Koza J. R., 1992, Genetic Programming: On the Programming of Computers by Means

of Natural Selection, MlT Press.

Kroll, E., Lenz, E.. and Wolberg, J. R., 1989, Knowledge-Based Synthesis in Design-for

Assembly. Concurrent Product and Process Design. (eds.), N. H. Chao and S. C.-Y. Lu.

The American Society of Mechanical Engineers.

Kusiak, A. (ed.), 1993, Concurrent Engineering: Automation, Tools, and Techniques,

John Wiley & Sons.

Lee, E. T. Y., 1985, Some Remarks Concerning B-Splines. CAGD Journal, Vol. 2, pp.

145- 149.

Lee, J. Y., Kim, H., and Han, S.-B., 1999, Web-Enabled Feature-Based Modeling in a

Distributed Design Environment. Proceedings of the 1999 ASME Design Engineering

Technical Conferences, Las Vegas, Nevada.

Lee, K. H. and Sen, S., 1994, ICOSS: A Two-Layer Object-Based Intelligent Cell

Control Architecture. Computer Integrated Manufacturing Systems, Vol. 7, No. 2, pp.

100-1 12.

Magrab. E. B., 1997, Integrated Product and Process Design and Development - the

Product Realization Process, CRC Press LLC.

Mendel, A., 1999, PDM and the Internet. Mechanical Engineering, September.

McCarty, B. and Cassady-Dorion. L., 1999, Java Distributed Objects, SSAM.

Mortenson, M. E., 1985, Geometric Modeling, John Wiley, New York.

Nagamatsu. M., Sumida, S., and Nagamatsu, A., 1999, A New Approach on Modeling

for Product Development. JSME international Journal, Series C, Vol. 42, No. 1, pp. 234-

Name, E. V. and Eagelstein, G., 1998, The Wired Engineer: Emerging Technologies and

the Designer. ANTEC '98, pp. 3052-3055.

Nome, D. H., 1999, Multi-Agent Systems, Lecture Notes, The University of Calgary.

Otte, R., Patrick, P., and Roy, M., 1996, Understanding CORBA: The Common Object

Request Broker Architecture, Addison-Wesley .

Ozsu, M. T., Dayal, U., and Vdduriez, P., 1994, Distributed Object Management,

Morgan Kaufinann Publishers, San Mateo, California

Pahng, F., Senin, N., and WalIace, D., 1998, Distribution Modeling and Evaluation of

Product Design Problems. Computer-Aided Design, Vol. 30, No. 6, pp. 4 1 1-423.

Pardaios, P. M., Romeijin, H. E., and Tuy, H., 1999, Recent Developments and Trends in

Global Optimization. Research Report 99-15, Department of Industrial & System

Engineering, University of Florida.

Park, H. G. and Baik, J. M., 1999, Enhancing Manufacturing Product Development

through Learning Agent System over Internet. Computer and Industry Engineering, Vol.

37, NO. 1, pp. 1 17-120.

Parsaei, H. R. and Sullivan, W. G., 1993, Concurrent Engineering, Chapman & Hall.

Pennel, J. P. and Winner, R. I., and Slusarcntk, M. M. G., 1989, Concurrent Engineering:

An Overview for Autotestcon. AUTOTESTCON Proceedings '89: The System Readiness

Technology Conference, Philadelphia, PA, pp. 88-99.

Penoyer, J. A., Burnett, G., Fawcett, D. J., and Liou, S.-Y., 2000, Knowledge Based

Product Life Cycle systems: Principles of Integration of KBE and C3P. Computer-Aided

Design, Vol. 32, pp. 3 1 1-3 19.

Rasad, B., 1996, Concurrent Engineering Fundamentals: Volume I, Prentice Hall.

Reidsema, C. and Szczerbicki, E., 1997, Multi-Agent Systems for Concurrent

Engineering. System Analysis Modcllng Simulation, Vol. 28, pp. 257-279.

Rezayat, M., 2000% The Enterprise-Web Portal for Life-Cycle Support. Computer-Aided

Design, Vol.32, pp. 85-96.

Rezayat, M., 2000b. KnowledgeBased Roduct Development Using XML and KCs.

Computer-Aided Design, Vol. 32, pp. 299-309.

Roller, D. and Eck, 0.. 1999, Knowledge-Based Techniques for Product Databases.

International Journal of Vehicle Design, Vol. 2 1, No. 2/3, pp. 243-265.

Roy, U. and Kodkani, S. S., 200, Collaborative Product Conceptualization Tool Using

Web Technology. Computers in Industry, Vol. 42, No. 2, pp. 195-209.

Roy, U., Bharadwaj, B., Kodkani, S. S., and Cargian, M., 1997, Product Development in

a Collaborative Design Environment. Concurrent Engineering Research and

Applications, Vol. 5, No. 4, pp. 347-365.

Seilonen, I., 1995, Data Modeling Issues in Roduct Management. VIT Symposium 160.-

Product Models in Design and Production Planning, (ed.), H. Johinen, Technical

Research Centre of Finland, pp. 83- 104.

Shah, J. J., 1989, Feature Transformations Between Application Specific Feature Spaces.

Computer-Aided Engineering Journal, Vol. 5, No. 6, pp. 247-255.

Shah, J. J. and Maatyla, M., 1995, Parametric Md Feature-Based CAD/CAM, John

Wiley & Sons.

Shah, J. J. and Rogers, M. T., 1988, Functional Requirements and Conceptual Design of

the Feature-Based Modeling System. Computer-Aided Engineering Joumal, Vol. 5, NO.

1, pp. 9-15.

Shen, W. and Barthes, J. P., 1995, DIDE: A Multi-Agent Environment for Engineering

Design. Proceedings of the First International Conference on Multi-Agent System, San

Francisco, pp. 344-35 1.

Shen, W. and Norrie, D. H., 1999, Agent-Based Systems for Intelligent Manufacturing: A

State-of-the-Art Survey. hhowledge and Information Systems= An International Joumal,

Vol. 1, No. 2, pp. 129-156.

Shen, W., Norrie, D. H., and Barthes, J. P., 2000, Multi-Agent Systems for Concurrent

Intelligent Design and Manufacturing, Taylor & Francis, Lmndon, UK.

Shen, W., Norrie, D. H., and Krerner, R., 1999, Developing Intelligent Manufacturing

Systems Using Collaborative Agents. ZMS 99, Leuven, Belgium.

Shi, Y. H., Eberthart, R. C., and Chen, Y. B., 1997, Design of Evolutionary Fuzzy Expert

System. Proceedings of 1997 Artrflcial Neural Networks in Engineering Conference, St.

Louis.

Shi, Y. H. and Eberthart, R. C., 1998, Parameter Selection in Particle Swam

Optimization. The P Annual Conference on Evolutionary Programing, San Diego.

Singh, N., 1995, Systems Approach to Computer-Integrated Design and Manufacturing,

John Wiley & Sons.

Sriram, D. and Logcher, R., 1993, The MlT DICE Project. IEEE Computer, Vol. 26, No.

1, pp. 64-65.

Stonebraker, M., 1992, The Integration of Rule Systems and Database Systems. ZEEE

Transactions on Knowledge and Data Engineering, Vol. 4, No. 5, pp. 415423.

Suh, N. P., 1990, The Principle of Design, Oxford University Press, New York.

Tan, S. T., Yuen, M. M. F., and Hui, K. C., 1987, Modeling Solids with Sweep

Rimitives. Computers in Mechanical Engineering (CZME) Magazine, September, pp. 60

-73.

Tso, S. K, Lau, H. C. W., Ho, J. K. L., and Zhang, W. J., 1999, A Framework for

Developing Agent-Based Collaborative Service-Support System in a Manufacturing

Information Network. Engineering Application of Artificial Intelligence, Vol. 12, pp. 43-

57.

Ulieru, M,, Nome. D. H., Kremer, R., and Shen, W., 2000, A Multi-Resolution

Collaborative Architecture for Web-Centric Global Manufacturing. Infonnation Science

(an Elsevier Journal) - Special Issue on Computational Intelligence for Manufacturing

Applications.

Vickers, D. L. and Swanson, K. A,, 1988, A Form Feature-Centered Architecture for

Roduct Definition Exchange. AUTOFACT '88 Conference Proceedings, pp. (2-25) - (2-

37).

Vliet, J. W., Luttervelt, C. A., and Kals, H. J. J., 1999, State-of-the-Art Report on Design

for Manufacturing. Proceedings of the 1999 ASME Design Engineering Technical

Conferences, Las Vegas, Nevada.

Waldron, M. B., Brown, D., and Yoshikawa, H. (eds.), 1992, Intelligent Computer Aided

Design, North-Holland, Amsterdam.

Wu, J., 1999, Distributed System Design, CRC Press.

Xue, D., 1997, A Multilevel Optimization Approach Considering Roduct Realization

Process Alternatives and Parameters for Improving Manufacturability. Journal of

Manufacturing Systems, Vol. 16, No. 5, pp. 337-35 1.

Xue, D. and Dong, 2.. 1993, Feature Modeling Incorporating Tolerance and Production

Process for Concurrent Design. Concurrent Engineering: Research and Applications,

Vol. 1, pp. 107-1 16.

Xue. D. and Dong, 2.. 1994, Developing a Quantitative Intelligent System for

Implementing Concurrent Engineering Design. Journal of Intelligent Manu$acturing,

Vol. 5, pp. 25 1-267.

Xue, D. and Dong, Z., 1997, Coding and Clustering of Design and Manufacturing

Features for Concumnt Design. Computers in Indwny, Vol. 34, pp. 139- 153.

Xue, D., Rousseau, J. H., and Dong, 2, 1996, Joint Optimization of Performance-and

Costs in Integrated Concumnt Design: Tolerance Synthesis Part. Engineering Design

and Automation, Vol. 2, No. 1, pp. 73-89.

Xue, D., Takeda, H., Kiriyam, T., Tomiyama, T., and Yoshikawa, H., 1992, An

Intelligent Integrated Interactive CAD - A Preliminary Report. Intelligent Cdmputer

Aided Design, (eds.). M. B. Waldron, D. Brown, and H. Yoshikawa, North-Holland,

Amsterdam, pp. 163-192.

Xue, D., Yadav, D., and Nome, D. H., 1999, Knowledge Base and Database

Representation for Intelligent Concumnt Design. Computer-Aided Design, Vol. 3 1 , pp.

13 1-145.

Yadav, S., 1999, Development of a Feature-Based Intelligent Design System, A Master's

Thesis, Department of Mechanical and Manufacturing Engineering, The University of

cQi3ary-

Yoshhwa, H., 1988, Intelligent CAD. Organization of Engineering Knowledge for

Product Modeling in Computer Integrated Manufacturing, (eds.), T . Sata, Elsevier, pp. 1-

14.

Zhang, Y., Zhang, C, and Wang, H. P., 2000, Internet Based STEP Data Exchange

Framework for Virtual Enterprises. Computers in Zndusny, Vol. 41, No. 1, pp. 5 1-63.

