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ABSTRACT 

Design and operation of pipelines for long-distance transportation of oil and gas 

are complex engineering tasks. Even small improvements in the design and 

operating conditions of a pipeline system can lead to substantial savings in capital 

and operating costs. This makes the optimization of design and operation of 

pipelines an important task. 

The pipeline optimization problem involves a large number of variables which may 

be continuous (e.g. suction pressure at a booster station and station location) or 

discrete (e.g. discharge head at a station and pipe diameter). The objective 

function can either be an expression for operating cost or energy consumption, 

which is inherently nonlinear primarily due to pipeline friction losses. The numerous 

constraints, such as lower and upper bounds for pressure limitations, add to the 

complexity of the problem. It is almost impossible to find the solution for this 

multivriabIe interconnected optimization problem through a trial-and-error 

approach or through a complete enumeration of feasible solutions. In contrast, a 

new algorithm for optimal design and operation of a pipeline network is developed. 

The approach is based on dynamic programming combined with integer 

programming. A 'fine-tuning' procedure is developed in order to increase the 

accuracy of results in an efficient way. 
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The model is demonstrated to be efficient for a realistic case in which only 1.50 x 

106 or less candidates out of as many as 5.37 x 1039 feasible solutions have to be 

searched to locate the global optimum of that particular design problem. The 

difference in the number of iterations becomes even more dramatic with the 

introduction of fine-tuning. Only 3.29 x 107 iterations are necessary in order to 

reach the optimum with an accuracy which could be obtained by complete 

enumeration requiring 2.22 x 1073 iterations. The results are checked for their 

validity with a sensitivity analysis. 

Once the system configuration is established, the operating conditions are 

controlled leading to the optimum with respect to either the lowest energy 

consumption or the least operating cost scenario. Efforts were directed to make 

the algorithm computationally efficient, requiring relatively short computer time. In 

addition to providing steady-state solutions, the approach can also be used for 

generating a set of optimal operating conditions in the transient (dynamic) mode 

of the pipeline by specifying appropriate changes at each time step. 
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CHAPTER 1 

INTRODUCTION 

Transportation of large amounts of fluids over long distances is a challenging 

problem. In this study, the problem of pipeline transportation of crude oil is 

investigated, and necessary modifications for the case of natural gas are 

introduced. When the location of the fluid is far away from the delivery point, it 

is not realistic to increase the pressure at the source location so that the fluid can 

be sent through the whole pipeline because it may not resist the high pressure. 

Instead, numerous booster stations with several pumps placed at each station 

have to be built along the pipeline which are connected through pipe segments of 

different sizes. 

Existence of many parameters and restrictions, and the high cost of equipment 

make the design and operation of pipeline transmission systems complex 

engineering tasks. The annual cost for a 1500 km oil pipeline can easily exceed 20 

million $ (Grelli and Gilmour, 1986). Considering such a high amount, even small 

improvements in the system - decreasing the cost by a few percent - can lead to 

substantial savings. Hence, optimization can play an important role by either 

minimizing the cost or decreasing the energy consumption of the system. 
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Optimization, which means to minimize or maximize an objective function subject 

to constraints, can be as simple as calculating a few feasible results and 

determining the optimum by choosing the lowest or highest value in the case of 

a minimization or maximization problem, respectively. Depending on the complexity 

of the problem - which can easily increase with nonlinearities in the equations and 

with the number and nature of constraints - and how close one wants to come to 

the global optimum, advanced mathematical skills may be necessary. 

In the approach developed in the present investigation, the multivariable 

interconnected optimization problem is decomposed into a sequence of sub-

problems that can be solved serially by use of the dynamic programming 

technique. Starting from the last stage which is characterized by delivery 

specifications, the sub-problems at each stage are solved resulting in an optimum 

over the stages considered. This procedure is continued until the first stage 

(source) is reached at which the solution represents the global optimum for the 

whole system. Integer programming is utilized to decrease the computation time 

needed for selecting the 'best' pump combination at a station. A 'fine tuning' 

procedure is introduced in order to increase the accuracy of the solution efficiently. 

The algorithm is capable of handling the following design parameters for fixed 

source and delivery conditions: number and location of booster stations, number 

and capacity of pumps (or compressors) at each station, suction and discharge 

pressure at each station, and the diameter of the pipeline segment. 
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In the following Chapter, optimization applied in the industry and the work available 

from literature are reviewed. Later a general pipeline system is introduced for which 

the optimization problem is defined and the developed solution procedure is 

described leading to minimum annual cost of the pipeline transmission system. The 

solution method to design an oil pipeline is modified to handle optimization of the 

operating conditions of the pipeline. Necessary modifications required for 

application of the solution procedure to pipeline transportation of natural gas are 

explained. A computer program based on the solution strategy is described. 

Results from several computer runs are compared to show the features of the 

program and to prove the success in reaching the global optimum of the system 

leading to immediate savings. The reliability of the results are checked with a 

sensitivity analysis and, finally, conclusions and recommendations are listed. 
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CHAPTER 2 

AVAILABLE WORK ON PIPELINE OPTIMIZATION 

An optimization technique is acceptable to the industry, only if it is 'safe', i.e. it is 

proven to bring financial profits over a relatively short period of time, whereas 

academic work is done to find new and improved methods which may or may not 

lead to immediate profit. Hence, academic work is usually not accepted and 

appreciated as being applicable for a real case. Since the research in the area of 

pipeline optimization is no exception, optimization procedures for pipeline systems 

which are applied in the industry and the theoretical work developed for pipeline 

optimization are considered separately. 

2.1. OPTIMIZATION IN INDUSTRY 

In general, pipeline optimization in the industry is based on the method of trial and 

error. Cost estimations are made for several different system configurations and 

the most economic solution is chosen to be the 'optimum case' (Tsal et al., 1986). 

It is obvious that the likelihood of being close to the global optimum is very small. 

For example, to reach the global optimum of a pipeline with 15 stations and three 

pumps at each station is almost impossible since the number of feasible solutions 
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out of which the optimal solution has to be chosen would lie in the range of iOu. 

At the same time, the trial-and-error approach is a very time consuming and 

laborious procedure. Considering that fuel cost is skyrocketing and that time is 

very valuable, more effective optimization procedures should be applied. 

2.2. LITERATURE REVIEW 

Although trial and error is the most common way of pipeline optimization, more 

effective methods have been developed. One of the first attempts was made by 

Wang and Larson (1968). They optimized an unbranched natural gas transmission 

pipeline by using dynamic programming. Since the system configuration was fixed, 

the only variable to be handled was the suction pressure at the pumping stations. 

Hence, their solution was only applicable to operating conditions of an already 

installed pipeline. 

Kally (1969) used dynamic programming to design a simple unbranched pipeline 

with fixed pipe segment lengths connecting single pumps at different elevations. 

Although only two pumps were considered in sample calculations, 15 minutes run 

time was necessary to decide whether to place a pump at the two predetermined, 

sites and which pipe diameter and pipe class to choose. 
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Cheeseman (1971) developed a program which he called 'an experience routine', 

since several rules of thumb were used which were adopted by experienced 

engineers and cost estimators. The optimization method was capable of finding 

local optima for different 'starting points', 'guiding' the engineer in order to come 

'near' the optimal solution. 

Edgar et al. (1978) applied a combination of general reduced gradient method and 

branch-and-bound technique to optimize a pipeUne system. Assuming all variables 

to be continuous, they were able to use a nonlinear optimization technique giving 

'odd' results, like pipe diameters which are unavailable commercially. Hence, the 

optimal solution was not likely to be a practical one. 

Gopal (1980)' combined dynamic programming and integer programming to 

optimize a pipeline system with fixed configuration and having only one 

independent variable. His major contribution has been in considering the limitations 

of the pump capacity by introducing discrete functions to the problem. 

Deb (1981) considered the optimum energy cost design of a pipeline by 

concentrating on the annual cost functions. Since the pipe diameter was 

considered as the only, variable, optimization was achieved by equating the 

derivative of cost with respect to pipe diameter to zero. 
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A survey of applications of optimization in oil and gas pipeline engineering was 

presented by Huang and Seireg (1985). They offered a good reference for optimal 

design, operation, expansion and control of pipeline systems, giving brief 

information about the research work without criticism, leading to the conclusion 

that active research was being done to improve the efficiency of optimization. They 

remarked correctly that 'significant benefit could be obtained from the use of 

optimization techniques in the design of pipeline systems', implying that industry 

does not pay much attention to newly developed methods of optimization. 

Grelli and Gilmour (1986) utilized dynamic programming to optimize the operating 

conditions of a straight pipeline transmission system. Since this project was done 

with and for a pipeline company, necessary data were available to make a case 

study. Their calculations showed that by optimizing the operating conditions the 

annual expenses can be decreased by up to 10%, leading to an annual savings 

of approximately 3 million $. 

Hathoot (1986) presented a procedure to be followed in designing a pipeline of 

optimum diameter. His solution method has been restricted by allowing only a 

pipeline with 'equally spaced, similar pumping units'. 

Tsai et al. (1986) proposed a method based on a 'modification of Bellman's 

Dynamic Programming', defined as 'dynamic programming with variable stages'. 

7 



This definition may be an underestimation of Bellman's Principle of Optimality since 

it is a general idea, rather than a fixed method, applicable to a wide range of well 

defined multistage problems. The success of dynamic programming is related to 

the efficient way of using the basic rules as long as 'the curse of dimensionality' 

can be controlled (In the proposed method discussed in this study, dynamic 

programming is used efficiently for several variables, in combination with additional 

methods, by keeping the dimensionality problem at a minimum). Tsai et al. (1986) 

described their solution method in detail but instead of solving the optimization 

problem they left their work as 'a base for development of a computer program'. 

Jha (1987) described steps to follow in order to design a pipeline, pointing out the 

potential problems. 

Kurak (1989) documented the actual savings achieved at the Texas Eastern 

Products Pipeline Co. by using an optimization program which can determine 

pump rates required to meet the pipeline product demand requirements and to 

estimate the arrival times for product deliveries. Once the complete modelling of 

the pipeline is fixed, the program is capable of selecting which pumps should run 

for various flowrates in order to minimize the operating cost. 

Examples, such as those shown by Grelli and Gilmour (1986), make it clear that 

optimization of pipeline systems can be very efficient. Most of the work available 
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in literature concentrates on optimizing the operating conditions of a pipeline 

system which is simpler than the design problem, since usually only a very limited 

number of variables is considered. In this work, a general program is developed 

which can handle the optimization of the design and of operating conditions of 

pipeline systems including straight and tree networks. 
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CHAPTER 3 

DEFINITION OF THE OPTIMIZATION PROBLEM 

3.1 DESCRIPTION OF A GENERAL PIPELINE NETWORK 

A pipeline network consists of one or more source(s) from which the fluid has to 

be sent to one or more delivery location(s). Booster stations are required to pump 

the fluid through the pipeline. Pipe segments connecting the stations may be of 

different length and diameter. There may be several pumps of different sizes - or 

compressors, in case of gas transportation - at a station. The pipeline may go 

through a hilly terrain where the elevation will affect the system hydraulics. The 

pipeline may be straight or a tree network. Throughout the pipeline, there may be 

side streams and intermediate feed streams changing the flowrate in the main line 

as is shown in Figure 3.1. The fuel sent through the pipeline may be natural gas 

or oil. In case of oil, different fluids can flow through the pipe. A pipeline can easily 

be 1 500 km long whence there may be variation in fuel cost at different locations. 

The fuel cost may also vary with time and the season of the year. 

Although pipeline design requires a larger investment, both designing and 

operating a pipeline involve high costs. Since optimization of both procedures can 

lead to substantial savings, the following two problems are considered for the 
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Figure 3.1 : Pipeline Configuration 
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pipeline: Optimal Design and Optimal Operating Conditions. Although their 

definitions are different, the procedure to find the most economic way of designing 

and operating a pipeline are very similar. First the method of optimal design of a 

pipeline has to be developed since this is the more complicated problem. Once 

this is accomplished, some modifications are required to redefine the problem for 

optimal operating conditions so that the new problem can be solved using the 

same optimization technique. 

For any kind of pipeline network, the following requirements remain the same fo'r 

the design problem. The number of booster stations necessary to pump the fluid 

to the delivery location(s) have to be determined along with their locations. At each 

station, the minimum number of pumps and their capacities have to be fixed. Also, 

the diameters of the pipe segments have to be obtained. Suction and discharge 

pressures at the stations have to be determined to know the operating pressure 

ranges. Design is made with respect to the worst possible scenario, e.g. 

calculations are made considering the peak load of the most viscous fluid. Once 

the pipeline is designed, the operating conditions have to be determined giving the 

suction and discharge pressures at the booster stations and the respective pump 

combinations. Preferably, this should be done in such a way that any change in 

the system can be taken into account in a convenient way and the solution 

procedure should lead to the result in a short time to enable optimization of the 

operating conditions as often as necessary. Both design and operating conditions 
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have to be determined seeking the most economic, i.e. optimum, solution. 

3.2. MATHEMATICAL FORMULATION OF THE DESIGN PROBLEM 

Optimal design of the pipeline network, like any optimization problem, can be 

formulated so as to find the extremum of an objective function subject to 

constraints. 

3.2.1. The Objective Function 

The design problem can be defined as minimizing the annual cost (Edgar and 

Himmelblau, 1988): 

Ctot = [ ( c, CO3 + c,) P, + c,,] + E[ Ccp  , f} 
I / 

(3.1) 

The first summation covers the booster stations, where / represents the counter 

on the stations. The cost to operate the pumps, c01, is corrected by the cost index, 

ci,, which takes into account the variation of cost with time and location. The sum 

of this expression and the capital cost of the station, c1, is a function of power 

production of the pumps and is multiplied by P1 which is the total power produced 
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at a station. The cost term for a station also includes a fixed cost cfj for keeping 

the station intact. This term is added to the cost function for each station of an 

existing pipeline, whether the station is used or by-passed, since there has to be 

a maintenance cost of a station even if there is no pumping. This procedure is 

different in the case of designing a pipeline: If results show that no pumping is 

necessary at a station, this station does not need to be built, and the maintenance 

cost of that particular station is excluded from the cost function. The second 

summation in Equation 3.1 is made over the pipe segments connecting the 

booster stations. Capital cost, c,1 of each pipe segment/is multiplied by the 

length and diameter of that segment. 

The power production P1 at a station can be determined by multiplying the work 

done at a station by the mass flow rate. 

Pj = W, m/ (3.2) 

An energy balance is written between two stations to find work produced at the 

former station. For incompressible fluid flow, the modified Bernoulli equation is 

written as Equation 3.3. In case of natural gas, the energy equation has to be 

integrated including density as a variable. 
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PS,I+1 - PS,, 

P (3.3) 

+ g( z,+-z,) + - ( vi4. i_vi2 ) + f2h, + 
P p 

Equation 3.3 represents the Bernoulli equation between Stations (i) and (i+1) 

which are shown in Figure 3.2. Work produced at a station can be related to the 

pressure and elevation difference between the stations. Velocity difference does 

not occur in further calculations since it would only be caused by variation in pipe 

diameter of a pipe segment which would make pigging impossible. The Bernoulli 

equation is modified by adding the pt, term which represents the pressure loss due 

to throttling. Suction pressure, ps,, represents the inlet pressure at Station (i). The 

summation of pressure produced by pumping, given by p,,,, and psi results in the 

discharge pressure at Station (I), Pd!• If the pressure level at the exit of Station (i) 

has to be less than the discharge pressure, throttling is necessary. Pressure 

decrease due to throttling is found from the difference between produced and 

required pressure at the exit of a station. When the fluid flows from Station (i) to 

Station (i+ 1), the pressure decreases by an amount pf, representing the frictional 

losses in the pipe. 
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STATION (i) 

I 

STATION (1+1) 

Figure 3.2 : Pressure Variation at the Booster Station (I) 
and in the Adjacent Pipe Segment 
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3.2.2. The Constraints 

A pipeline system has numerous constraints. The suction and discharge pressures 

at a station have to be bound by certain limits determined by the net positive 

suction head (NPSH) and the maximum allowable pressure in the equipment. 

irdn'1 ≤ PS,, ≤ 'max" , / = 1 (3.4) 

Pdmin,I :≤ Pd,! Pdm,i / = 1,n (3.5) 

Conditions at the source and delivery location(s) are fixed which leads to the fixed 

suction pressure at stations at the source and the end nodes of the network. 

Discharge, pressure at a station is the sum of suction pressure and pressure 

produced by pumping, p,,. 

Pd,! P,i + 0pf 

The output of the pumps is given by the following equation: 

17 
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(3.7) 

where x, takes the values 1 or 0 depending on whether pump y is on or off. 

Outputs of pumps which are actually operating (x=1) are added up. This sum is 

divided by the volumetric flowrate, q, to give the pressure production at a station. 

With p,, 1, a discrete function is introduced since it is a limitation of pumps that any 

arbitrary pressure cannot be produced. 

When selecting equipment, commercially available sizes and materials must be 

considered to keep the cost at a minimum. Hence, the pipe diameter can only be 

one out of a discrete number of choices. It is also limited by a maximum and 

minimum size. 

d≤d1≤d 

d1=y,*12", y,=1,2,3... 

(3.8) 

(3.9) 

Equation 3.9 represents the case when d can be 12", 24", 36" or any multiple of 

12 lying in the boundaries. 

Another important constraint is that the flow equation has to hold, which gives a 

correlation for the pressure decrease in the pipeline due to frictional losses. In this 
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study, the Miller's correlation (Explorer Pipeline Company, 1989), Equation 3.10, 

is used for oil flow. The terms q1, pfJ and I are modified with the addition of (') 

because they are given in British Units instead of SI units (only for this equation): 

I 4.06 1 d5 Pf,j'1112 Ia 

- 24 { SI'] 

1 [ (d3 S pj1 +4.35 1 = 0 
1 I 
II) 

where q' is in barrels/hour, p' is in psia and //is in miles. 

(3.10) 

An obvious constraint is that the total flow has to be equal to the sum of flow in the 

pipe segments and side streams. 

q0 = E ( q, + q,) 

The total length of the pipeline system is given by the following equation: 

'tot = E 11 
I 

(3.11) 

(3.12) 

where / is the counter on the pipe segments I. This pipe segment is limited by a 

minimum and a maximum value: 
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(3.13) 

The lower boundary results from the fact that if two stations are located very close 

to each other they may as well be combined into one to save installation costs. If 

two adjacent stations are located far away from each other, it may only be possible 

to pump the fluid over that large distance by increasing the pressure to a value 

above allowable pressure limits whence an upper limit for distance between 

stations is introduced. 

The maximum number of stations which may be installed in the pipeline system is 

predetermined. The final number of designed stations is bound by this upper limit. 

When calculations show that no work is required at a possible station, this station 

is simply skipped and the total number of booster stations is decreased by one. 

system (3.14) 

At nodes of the network where pipe segments join each other or the main stream, 

the pressure at the connection point has to be the same for the joining end of 

each segment. This constraint does not cause any complication in case of a 

straight pipeline where a maximum of two pipe segments can be connected. For 
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a tree network, however, it is very important to keep this constraint in mind. 

Optimizing pipe segments separately and then connecting these at a node can 

lead to different pressure values at one location, i.e. at the node, which makes the 

whole calculation unrealistic. Hence, no combination of results can be declared as 

optimal solution unless the following restriction holds: 

Pil = Pzi, Z = 1,mz11 (3.15) 

where z specifies the pipe segments which are connected at node II. The term Pz,ll 

can also represent the pressure of side streams and feeds at location ii. 

The optimization problem is defined for incompressible fluids. Some of the 

equations will change if natural gas has to be transported. The Bernoulli equation 

can no longer be used since the energy balance cannot be integrated assuming 

constant fluid density. Instead, a differential energy balance is written, taking 

variable density into account. Miller's correlation has also to be replaced since it 

is specific to oil flow. The Panhandle correlation can be used for natural gas flow 

(Younger, 1989). 

The optimization problem which is defined by the objective function and constraints 

results in the following variables at each station: suction (ps) and discharge 
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pressures (Pd)' pressure loss due to throttling (P) and friction (pr) . In the case of 

design, length of each pipe segment and elevation of a station are also variables 

due to variable station location. In addition, the number of pumps to be installed 

at "a station, their capacities and the pipe diameter have to be included as 

variables. For an already existing pipeline, the number of pumps, pipe diameter 

and station locations are fixed. In order to optimize the operating conditions of 

such a system the flowrate in each pipe segment, fuel cost variations and fluid 

specifications like viscosity and specific gravity have to be taken into account. 

3.2.3. Analysis of the Problem 

The optimization problem is given by a nonlinear objective function with numerous 

constraints. Several continuous and discrete variables exist. Although suction 

pressure at a station is a continuous variable, discharge pressure becomes a 

discrete variable since there are only a fixed number of possible pressure levels 

which the pumps can produce. Pipe diameter is a typical example for variables of 

discrete type because of restriction on their availability. 

The numerous variables make the system multivariable. Decisions on the variables 

have to be made at each station leading to a multistage decision process. Another 

important point is that the conditions at stations are interrelated. For example, the 

suction pressure at Station (i) can be varied to obtain optimal conditions at that 
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specific station. But this variation may also lead to changes at the next station, 

Station (i+1), disturbing the optimal conditions at that station. Hence, simply 

adding up minima obtained at separate stations is not likely to lead to the overall 

optimum of the system. The large number of feasiblesolutions to the system make 

it extremely difficult to find the optimum through complete enumeration of these 

solutions. Hence, an appropriate solution technique is necessary. 

23 



CHAPTER 4 

SOLUTION PROCEDURE 

4.1. METHOD OF SOLUTION: DYNAMIC PROGRAMMING 

The dynamic programming technique was developed by Bellman in the 1950's 

(Bellman, 1957). It is a powerful method to find the global optimum of a multistage 

decision process with many constraints and continuous as well as discrete 

variables. 

Dynamic programming is a mathematical technique which represents a multistage 

decision process by dividing it into subproblems which are usually easier to solve 

(Rao, 1984). Although these subproblems are interrelated, they are solved in such 

a way that the optimum of the system can simply be obtained by summing the 

solutions to the subproblems. The beauty of dynamic programming lies in its 

capability of decomposing a complex multistage problem into simpler subproblems 

of which the solutions sum to the global optimum. It is of lesser significance as to 

how the particular sub-optimization is carried out. It can be done simply by 

enumeration or it may require advanced optimization techniques. 

When dynamic programming is applied to a problem, it is important to build the 
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technique well into the solution procedure. An intelligent use of this technique is 

usually mentioned as 'modification' of dynamic programming although it does not 

improve the technique itself but only widens its range of application. The dynamic 

programming techniqye is known to have the 'curse of dimensionality' problem 

and is usually used for systems with only one variable. The solution method 

developed in this work is a good example showing that - with the support, of 

additional methods - dynamic programming can be utilized for solving a problem 

with several variables. 

Dynamic programming is especially powerful for systems with discrete variables. 

Nonlinear programming techniques can only deal with continuous variables, usually 

leading to solutions which cannot be reached in reality because of the existence 

of discrete variables. In such cases, the result has to be rounded up or down to 

the next feasible solution but this decreases the accuracy of the result. Another 

important aspect of dynamic programming is that the solution gives the global 

optimum whereas nonlinear programming techniques can only find local optima 

which may not be close to the global optimum. 

Analysis of the problem in Section 3.2.3 showed that a pipeline network can be 

represented as a multistage decision process which can be decomposed into sub-

stages. The problem has many feasible solutions leading to numerous local 

optima. For an objective function which is not 'well behaved', these optima may be 
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far from the value of the global optimum. For the pipeline which requires big 

investment this may mean a significant difference. Hence, it is of great importance 

to reach the global optimum rather than a local minima. On the other hand, one 

has to deal with discrete variables in a pipeline system. Considering the specific 

needs of the pipeline network problem, dynamic programming is found to be a 

suitable solution technique. To make the method of solution more effective, 

dynamic programming is combined with integer programming and 'fine tuning'. 

4.2. SOLUTION STRATEGY 

There is no standard mathematical formulation of the solution strategy; hence, it 

has to be developed for each separate problem. It is very important to define the 

problem and to decide what will be called 'stage', 'state', 'level' and 'decision'. 

Stage is a unit in the system at which decisions have to be made. Level is defined 

as a value which a variable can take. Each combination of the levels of separate 

variables forms a state. A decision is made by choosing one of the feasible states 

declaring values to the variables. In the case of a pipeline, a station is a stage 

where decisions have to be made concerning the combination of the suction 

pressure, station location and pipe diameter. 

Having clarified the main keywords, the optimal strategy can be summarized as 
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follows: Relatively 'best' decisions are accumulated for each stage of the system 

in such a way that the consideration of the vast number of inefficient alternatives 

is avoided. The combination of all decisions leading to the lowest value of the 

objective function is declared to be the optimal solution of the system. 

Although a standard mathematical formulation is not available for this procedure 

there are steps which have to be followed: 

- discretize and relate variables, 

- determine decision criteria and store 'best' decisions, and 

- reach the global optimum via Bellman's Principle of Optimality. 

4.2.1. Discretized Variables 

4.2.1.1. Discretization of Continuous Variables 

Several variables in the system, like pipe diameter and output of pumps, are 

discrete. In order to use dynamic programming, the continuous variables like 

suction pressure have also to be discretized. This is achieved by increasing in 

steps the variable from its lowest possible value to its maximum value. Each of 

these steps leads to one of the discrete values, feasible 'levels', which the variable 

can take. This procedure can be formulated through the following equations: 
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The pressure at station i, p1, is bound by lower and upper limits, 

Pmir,,j ≤ Pi ≤ Pmax,i , / = 1,n 

and can have any of the following values as a feasible solution: 

PI = Pmjn,i + UPI - 1) dp, 1p1 = 1 lPmax,j 

(3.4) 

(4.1) 

where jp is the integer counter increasing the value of p1 from its minimum to the 

maximum value. 

The same procedure can be repeated for the pipe segment I: 

/flflJ ≤ I ≤ 4maxi , I = l,m (3.13) 

= + (/I - 1) dl, jl = 1, I'maxj (4.2) 

where /1 increases from one to its maximum value in order to vary I in the 

boundaries given by Equation 3.13. 
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Discrete pipe segment length leads to discretization of station locations. In reality, 

the range in which the stations have to be located may already be discontinuous. 

The topography of the region and the distance from a town can eliminate 

immediately vast parts of the range in which the optimal station locations are 

sought. Instead of discretizing the length of the whole pipeline, a practical 

approach is applied: First, a station location is determined considering outside 

effects. Then, a search is made in the area around this location in order to 

determine the most convenient and economic station location thereby saving time 

by disregarding inconvenient areas. This method can also cover the whole area 

in which the pipeline is going to be built simply by increasing the search areas 

around the stations in such a way that the endpoint of a region is at the start point 

of another region. The region which is considered for a station can be discretized 

by adding multiples of a step size dsl to the initially suggested location SI: 

sI,31 = si, + xe,, dsl,, Xç,j ...1,O,1... (4.3) 

where slPOSS represents all possible locations considered during the search for the 

optimal solution. 

The values which the discrete variables can take are schematized in Figure 4.1. 
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Figure 4.1 : Discretized Station Location and Pressure 
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4.2.1.2. Relationship Between Variables 

Once all variables are expressed in a discrete manner, they should be examined 

for dependence on each other. This is a very important step since the successful 

use of dynamic programming is very sensitive to the dimension of the system 

because of the 'curse of dimensionality' problem. Pipe diameter is an independent 

variable and so is the location of a station. When the topography of a region is 

known, the elevation of a station can be written as a function of station location -or 

in a similar manner length of a pipe segment I. The capacities of the pumps at a 

station are independent variables and are handled in a way that they do not affect 

the system dimension directly: Pumps with different capacities are selected to be 

potential pumps for installation at a station. The required pumps for design are 

selected out of commercially available ones by considering their size and cost, 

eliminating the expensive and unnecessarily high capacity ones. 

Variables like flow rate, fuel cost and fluid specifications, i.e. viscosity and density, 

are considered as external effects because they do not relate to the optimization 

procedure directly. They cannot be changed to make a case optimum, they simply 

change because of conditions outside the pipeline system, e.g. cost of fuel cannot 

be controlled or the flowrate has to be changed depending on delivery 

requirements. These kinds of variables are handled by keeping them in a 
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convenient input file and updating their values after each modification on the 

system. 

An important group of variables is formed by the pressure terms. Pressure change 

due to friction loss is related to the independent variables pipe length and diameter 

through the flow equation (Equation 3.10). Discharge pressure at a station results 

from the combination of suction pressure and pressure produced by pumping. The 

difference between the actual and required pressure at the exit of a station gives 

the necessary throttling. Writing the Bernoulli equation with constant fluid velocity 

(Equation 4.4) and rearranging gives the throttling pressure as a function of the 

remaining pressures (Equation 4.5). 

=i1W1 
P 

P 
+ g ( z,-.1-z, )+ .E! +. P4 i 

P p 

p,p$,+ pp/ pf,p8/+pg(z,+1zJ) 

(4.4) 

(4.5) 

Having decreased the dimension of the system as much as possible by searching 

for relationships among variables, the next step is to determine a decision criteria 

upon which elimination can be made between feasible decisions. 
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4.2.2. 'Best' Decision 

4.2.2.1. Decision Criteria 

Discrete or discretized variables are a prerequisite for dynamic programming. The 

disadvantage of discretizing continuous variables is that not all feasible values of 

a variable can be considered while searching for the optimum. This problem can 

be minimized by choosing small step size in the solution procedure and correcting 

the results by 'fine-tuning' which decreases the inaccuracy caused by larger step 

size in an efficient way. The details of 'fine-tuning' will be considered later. 

Figure 4.2 shows how pump combinations can increase the suction pressure at 

a station to different levels of discharge pressure. To make it easier to understand 

how the decision criteria is determined, it is assumed that the location of two 

adjacent stations and their suction pressures in addition to all other variables 

except for pressure produced by pumping, p,,1, are known. Friction loss between 

these two stations can be calculated from the flow equation. Since Equation 3.10 

is nonlinear, it is solved by the Newton-Raphson method. Adding the frictional loss 

to the suction pressure at Station (1+1) gives the required pressure level to which 

the suction pressure at Station (i) has to be increased. 

Now, the question is which pump combination to choose at a station with 
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the known suction pressure (p) and a fixed pressure level at the exit of this 

station. Ideally, the discharge pressure, being the sum of suction pressure and the 

pressure produced by pumping, should simply give the required pressure level at 

the exit of a station. In reality, however, this is not possible, because the pumps 

cannot produce any arbitrary pressure. For a station with three pumps, the 

pressure produced by pumping can be formulated as: 

PkJ = 
P1 +x2 P2 +x3 P3 )/q , x,=O,1 (4.6) 

where .k is the index of the pump combination and x can take the value 1 or 0 

depending whether pump y is on or off, respectively. The pumps are numbered in 

the order of increasing capacity. 

For the case of maximum three pumps of different capacities at each station, eight 

pump combinations are possible. These combinations are listed in the order of 

increasing output, e.g. pump combination I represents no pumping, combination 

2 stands for operation of the pump with smallest capacity and combination 8 would 

mean that all three pumps are working. In Figure 4.2, pPj,j represents the result of 

no pumping. The second pump combination, p2,1, is obtained by turning on pump 

number 1. This choice increases the pressure almost to the required level. The 

pressure Pp3,i represents the pump combination with the second pump turned on. 
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This pump combination produces the first output which exceeds the requirements. 

Although the output of p 21 is closer to the required result, only the third 

combination is feasible since the required pressure level can be reached after 

throttling. A fourth combination could be to turn on both pumps. This is also a 

feasible solution because the required result can be achieved by increasing the 

amount of throttling. Feasible solutions can be accumulated in this manner. The 

aim of optimization is to minimize the cost and can be achieved by choosing the 

pump combination with the least power requirment causing a sufficiently high 

pressure increase. This pump combination being equal to or exceeding the 

required exit level is declared as the optimal decision for the given conditions. 

4.2.2.2. Elimination of Infeasible Combinations 

The procedure mentioned in Section 4.2.2.1. has to be repeated many times since 

the required pressure level at the exit of a station is not known. There will be 

numerous possible levels for each - assumed to be known - suction pressure. 

Considering all possible outputs would obviously be very time consuming. Implicit 

enumeration comes into play at this point, making complete enumeration of all 

possibilities unnecessary. 

Pump combinations are defined in the order of increasing output and possible exit 

levels are listed in the order of increasing pressure. For finding the least pump 
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combination sufficient to pump the fluid from the suction pressure to the lowest 

(first) exit level, the combinations are tried in the order of increasing output. The 

first combination producing the required pressure or excess pressure is declared 

to be the optimal case for the given conditions. When the procedure is repeated 

for a higher pressure level at the exit of the station, complete enumeration of 

possible combinations is not necessary. The pump combination leading to the 

optimal solution of the previous conditions is taken as the first possible 

combination instead of pump combination 1, because for the next exit level, which 

is higher than the first, the combinations which were eliminated for the previous 

level will again be infeasible. Hence, the pump combinations are tried in the order 

of increasing capacity starting from the solution to the previous exit pressure level. 

This procedure helps eliminates a vast number of possible but infeasible 

combinations. 

Another useful tool to decrease the number of calculations involves giving the 

number '0' to a pump combination if its output is not high enough to pump the 

fluid to the required pressure level. The pressure levels at the exit of a station are 

listed in the order of increasing value whence if a pump combination is not enough 

to reach an exit pressure level, it is also not sufficient to reach any remaining 

(higher) pressure level. Hence, as soon as a pump combination is called '0', no 

further calculations are done for the given conditions with higher exit pressure 

values. With this procedure, far less calculations have to be made compared to 
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complete enumeration of all possibilities. 

4.2.2.3. Choosing the 'Best' Decision for any State at a Station 

To highlight the concept of how to define the decision criteria, a simplified system 

with all variables fixed but pump combination was considered in the previous 

section. In reality, neither the station location nor the suction pressure is fixed at 

the stations. There are many 'states' at a station which are characterized by any 

of the possible station locations, suction pressures and pipe diameter of the 

adjacent pipe segment for that station. Any of the grid points shown in Figure 4.3 

can represent a state. All variables, other than the station location and the suction 

pressure, are assumed to be fixed to make a two dimensional representation 

possible. Without this assumption, a state would be defined in n-dimensional space 

where n is the number of variables. 

In the previous section, it was shown how the decision criteria is used to find the 

minimum cost of pumping from a station with fixed conditions to the adjacent 

station. The cost of pumping the fluid from Station (i) to the end of the pipeline 

would be the sum of the cost to pump to Station (i +1) and the cost of pumping 

from Station (i +1) to the delivery location. 

Olin = 01,1+1 + Cl+l,n 

38 

(4.7) 



STATION: 

STATE: 

(Sposs,i 'Ps,I,) 

dp1 

x 
4 

dsil 1 

Figure 4.3 Possible States at a Station 

(1+1) (n) 



To make the understanding easy, it is assumed that operating cost from Station 

(i+ 1) to Station (n) can be stored for each possible state at Station (i+ 1). The 

optimal route from a state at Station (i) to any state at Station (i +1) can be 

obtained by utilizing the procedure explained in Section 4.2.2.1. The cost resulting 

from this route is added to the stored value at Station (i +1) of the respective state. 

The same procedure is repeated for all feasible. states at Station (i+1) which can 

be reached from the state at Station (i). The most economic of these routes is 

declared as the optimal route to reach the delivery point (location n) from a given 

state at Station (i). As already explained, there are numerous states also at Station 

(i), all of which lead to different solutions. Since conditions at stations are 

interrelated, this procedure cannot simply be repeated for two adjacent stations 

separately in order to find the overall optimum. To find the global optimum of the 

problem, Bellman's Principle of Optimality has to be considered. 

4.2.3. Global Optimum 

4.2.3.1. Bellman's Principle of Optimality 

For a decision to be part of a global optimum, Bellman's Principle of Optimality has 

to hold which is stated as follows (Bellman, 1957): 

An optimal policy has the property that whatever the initial state and initial 

40 



decisions are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. 

In Bellman's definition, 'state' is used in its conventional meaning and not in the 

specific meaning defined in this study. Figure 4.4 shows how this principle works. 

Decision making occurs in the direction of information flow which is usually 

opposite to the material flow (Edgar et al., 1978). Stage n is the only stage which 

does not have any influence on a 'following' stage. The only 'remaining decisions' 

exist prior to this stage. Hence, if it is assumed that the input to this stage is 

known, no remaining decision is left and the decision at stage n can be made 

regardless of the rest of the system. This procedure has to be repeated for each 

possible input to stage n. The next stage at which a decision has to be made is 

(n-I). Any decision at this point will affect the n th stage. To by-pass this 

complication, the stages (n-i) and (n) are grouped together. The new group is 

now called stage n'. Similar to stage n, this stage has 'remaining decisions' only 

towards stage 1. Once the input to stage n', or (n-I), is assumed to be known, no 

'remaining' decision needs to be taken into account. Hence, it can be optimized 

on its own not interfering with any condition. One has to keep in mind that with this 

method any 'following' stage is eliminated but the input to a stage cannot be fixed.. 

As it has been mentioned for stage n, stage n' has also to be optimized with 
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respect to all possible inputs to it. This procedure is continued until the whole 

system is grouped to a single stage. This stage also has to be optimized with 

respect to all possible input values. Since the conditions at stage 1' are fixed there 

will be only one input available. Hence, only one optimal result exists which is the 

global optimum of the system. 

4.2.3.2. Global Optimum of the System 

Bellman's Principle of Optimality has to be applied to the pipeline system. Decision 

making starts at location n which corresponds to stage n in Figure 4.4. No 

optimization is required at this location since this represents the delivery point 

where all conditions are fixed. Next step is to group together the last two stations. 

This group forms stage n' with all possible inputs being synonymous with all 

possible states at a station. 

Figure 4.5 shows schematically the possible states in the form of grids. For the 

sake of simplicity, only station location and suction pressure have been shown as 

variables so that a state can be defined in a two dimensional space. Stage n' is 

optimized with respect to all possible inputs, i.e. all possible states at Station (n-i). 

Optimization of stage n' with respect to a state is done by computing the minimum 

cost to pump the fluid from that state at Station (n-i) to Station (n). This cost is 

added to the cost stored for pumping from Station (n) to the terminal location and 
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the sum is declared to be the optimum with respect to the given state. Although 

for Station (n) this last statement does not have any significance - since Station (n) 

stands for the termination of the pipeline - for all other stations it is a very important 

step. This procedure is repeated for all possible states at station (n-i). After the 

group is optimized, its size is increased by one station and it is optimized for all 

possible states of the most recently added station. When the whole system is 

gathered under one group, there is only one possible state since the conditions 

at the first station, i.e. the source, are fixed. Hence, the optimal solution with 

respect to this single input gives the global optimum of the system. 

When searching for the optimal solution of the system, which is chosen to be 

minimum annual cost, all states (combination of levels of different variables) that 

could be part of the final result are stored. Once the optimal annual cost is 

obtained, the states being part of the global optimum are listed for all stages. The 

optimum number of booster stations and their locations leading to minimum cost 

are determined in this manner. Number and capacity of the pumps at each station 

are also obtained along with the optimal pipe diameter. 

4.3. APPLICATION OF THE SOLUTION PROCEDURE TO TREE NETWORKS 

The solution procedure is described for the case of an unbranched pipeline. In 
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case of gathering of two or more lines, the same procedure has to be repeated 

separately for each of these lines. It has to be kept in mind that at the gathering 

node the resulting pressure may not be predetermined but it has to be the same 

for all gathering pipe segments. 

When a pipeline is optimized between a known delivery location and a gathering 

node, no 'one' fixed input exists, whence an optimal solution cannot be declared 

immediately. Each pipe segment has to be optimized with respect to any possible' 

input, e.g. any possible pressure at the gathering node. Once all segments are 

optimized, for each of the possible input or for each state, there will be as many 

solutions stored as there are pipe segments. Usually, these solutions are based 

on minimum cost. The sum of the optimal costs for all branches ending in the 

same state are added together. The actual' cost at each of these states is found 

by summing up the costs stored for each pipeline diverging from this node to 

delivery locations, or other nodes. Finally, the state with the lowest cost is declared 

to be the optimal solution at that stage. 

4.4. FINE-TUNING OF THE RESULTS 

During the solution procedure all variables, whether already discrete or continuous 

of nature, are formulated in a discrete form. Hence, the results can only take 
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discrete values. Annual cost could be a continuous function but because of 

discrete variables, the resulting cost cannot take any possible value and as a 

consequence the result may not be accurate. The accuracy of the solution is 

directly influenced by the step size used in discretizing the continuous variables. 

The accuracy of the result can be enhanced by decreasing the step size in 

discretization, but this would increase the number of possible levels for each 

variable. The system can be represented more realistically with this modification, 

leading to an improvement in the accuracy of the results. At the same time, the 

number of feasible solutions increases, which can increase the number of 

calculations required to find the optimum significantly. 

The accuracy of the results could be improved by increasing the original number 

of levels, x, of a variable by inserting x number of levels between adjacent levels. 

This would almost square the number of levels. But because of overlapping of 

some of the new created levels with the old ones, following formula applies rather 

than x: 

(x-1) x - (x-2) = x2 - 2x +2 (4.8) 

The drastic increase in number of levels causes also the number of calculations 

to increase significantly. Instead, the same improvement in accuracy is achieved 
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in a much faster way by introducing the method of 'fine tuning': First the 

approximate solution is found utilizing the original step size. The actual solution is 

expected to lie within the range of a step size bigger or smaller than the calculated 

value. The same is true for the actual values of the variables forming the optimal 

solution. The problem is solved again to 'fine-tune' the solution. For the second run 

of calculations the lower and upper limits of all variables are shrunk around the 

approximate solution, concentrating the feasible levels of variables, as well as the 

solution, in only two step sizes of the previous run. Inserting x number of levels 

between adjacent levels leads to almost doubling the original number. Following 

formula applies rather than 2 x, because of overlapping: 

(3-1)x-(3-2) =2x-1 (4.9) 

Since the fine-tuning is only made in the neighbourhood of the approximate result, 

far less calculations are required for achieving the same improvement in the 

accuracy of the solution. 

Care has to be taken, however, with highly nonlinear problems which are not 'well 

behaved'. If the initial step size is too large, the discretized system cannot 

represent the actual system accurately enough, because of which the declared 

optimum may only be a local minimum close to the global optimum. 
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The dynamic programming technique is known to have the dimensionality problem 

which becomes stronger with increasing number of variables. The increase in 

number of calculations can be partly compensated with the fine tuning procedure. 

This procedure can be repeated until the optimal result remains the same; but 

usually one or two runs should be sufficient for good accuracy. 

4.5. OPTIMIZATION OF OPERATING CONDITIONS 

Once the pipeline is designed, the location and number of the booster stations, 

capacity and number of the pumps as well as the pipe diameter are fixed. Hence, 

the number of variables decreases and fewer calculations have to be made to find 

the optimal operating condition of the system. The main concern becomes to 

decide which pumps to turn on and to determine the suction and discharge 

pressures at the booster stations. 

4.5.1. Dynamic Systems 

With the decreased number of calculations the solution algorithm becomes 

computationally efficient, requiring relatively short computation time. In addition to 

providing steady-state solutions, the approach presented here can also be utilized 

to generate a set of optimal operating conditions in the transient (dynamic) mode 
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of the pipeline network by feeding appropriate changes to the program at each 

time step. 

4.5.2. Different Fluids in Series 

Different oils can be present in the pipeline at the same time. If these fluids have 

similar densities, plug flow can be assumed. Since the calculations for the pipeline 

system can be repeated very frequently, the transient system is assumed to be at 

steady state for short time intervals, which leads to fairly accurate results, 

especially in the case of long pipelines. The solution procedure is very similar to 

the case with a single type of oil flowing. The only difference remains in the friction 

loss calculations. In each pipe segment, it is known from the input files which 

portion of the pipe is occupied by which fluid. For each of these portions, the 

friction loss is calculated separately. Friction losses caused by all fluids present in 

the pipe are added to give the friction loss in the whole pipe segment. 
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CHAPTER 5 

RESULTS OF THE DEVELOPED PROGRAM 

5.1. PROGRAM DESCRIPTION 

A computer program was developed based on the solution procedure stated in 

previous chapters. The algorithm is listed in Appendix A. Separate input files are 

formed for different kind of inputs, e.g. fluid specifications and capacities of pumps 

are stored separately so that variations in either of them can be fed to the program 

conveniently. The range of data as weel as a sample input file are given in 

Appendix B. The program developed for designing the pipeline network is used to 

optimize the operating conditions after some modification. The program written to 

optimize the design is discussed first, following which the modifications necessary 

to optimize the operating conditions of the system are described. 

The solution procedure is repeated for each branch of the network as explained 

in Section 4.3. The conditions at the exit of a branch are known whereas the 

entrance conditions are determined after consideration of all gathering branches. 

Hence, calculations have to start at the end of a pipe segment and continue until 

the entrance is reached. First, all feasible pipe diameters for such a segment are 

determined. The calculations to find the optimal operating cost of the segment are 
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repeated inside the loop on all possible diameters. The diameter leading to the 

most economic conditions is chosen as the optimal diameter for that specific 

branch. The diameter can also vary along a branch for which the loop on diameter 

has to be placed in the loop on specifications f a station. The following 

description of the program is for the case where only one diameter can be chosen 

for each branch of the pipeline. 

Calculations for all 'potential stations' are placed in a loop inside the loop on 

diameter. The term 'potential station' is used because some of the considered 

stations may not be needed simply because no boost on pressure is required in 

the regions in which these stations could be built. The region in which a station 

can be built is predetermined. The sum of regions may cover the whole area where 

the pipeline is planned to exist, or only convenient areas may be considered. Each 

region is divided into increments with each of the grid points representing a 

possible location of the booster station. The range of allowed pressure at a station 

is predetermined by upper limitations and the net positive suction head of the 

pumps. This range of pressure is represented by approximately 20 'pressure 

levels'. 

The main specification of a 'state' at any station is defined by the combination of 

one station location and one pressure level. The state can also include values for 

diameter, index for fuel cost etc. Cost of fluid transportation is optimized for each 
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feasible state at a station for the flow from that station to the end of the pipeline. 

Since the solution procedure is followed in the direction of information flow, which 

is opposite to the material flow, the states at the following station are already 

defined. The specifications of the states at the present station and the next station 

are known including the information on station locations. Hence, for each pair of 

states at the present and following stations, the length of the pipe connecting these 

two stations can be determined easily. This value is substituted into the flow 

equation, which could be any expression relating the friction loss to system 

conditions and is chosen to be Miller's correlation. Since this expression is 

nonlinear the friction loss is calculated via the Newton-Raphson method. The 

convergence problem is taken care of by introducing lower and upper limits on the 

step size. 

The 'best', i.e. most economic, conditions to send the fluid through the pipeline is 

determined for each possible state at a station. For doing so, first the possible 

'routes' to reach a state at the next station from the state at the present station are 

determined as explained in Section 4:2.2.1. The number of 'routes' represents the 

number of combinations of pumps which may be placed at a station. The route 

itself depends on the capacity of the individual pumps. The number of calculations 

are minimized as explained in Section 4.2.2.2 on 'Elimination of Infeasible 

Combinations'. In this manner, for each state to be reached at Station (1+ 1), a 

route is chosen originating from any state at Station (I). Cost of a route is added 

53 



to the cost stored at the exit of this route, leading to the cost of pumping the fluid 

from the state at station (i) to the exit of the pipe segment. 

Once all possible costs are calculated, the conditions leading to the lowest cost 

are declared as the optimal conditions for the specific state. Optimal conditions are 

stored for all states at a station. This procedure is 'repeated until the first station of 

a pipe segment is reached. If there is no gathering of branches, only one state 

exists at this station whence the optimal conditions of this single state represent 

the dptimal solution of the whole system. If, however, the first station of a pipe 

segment is at a node where several branches combine into one stream, the 

procedure described in Section 4.3 is followed. 

The conditions leading to the least cost form the optimal solution and are sent to 

the output file. This file lists specifications of the system including the overall cost. 

The input files consist of the worst conditions which are expected during the 

lifetime of the pipeline. If, for these conditions, some of the pumps or even stations 

are declared to be unnecessary, they do not need to be installed, or built, at all. 

The output file of the design problem can be used as the input file to the program 

for finding the optimal operating conditions for various changes in the designed 

system. 

Complete enumeration of all feasible solutions for a pipeline system with 5 possible 
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pipe diameters, 5 possible locations for each station, 10 possible suction pressures 

and 8 pump combinations at any station of 15 possible stations (end of pipeline 

excluded) would require 5x(5x10x8) 15 = 5.37x1039 calculations. With dynamic 

programming this number decreases to 5x(52x102x8)x15 = 1.50x106. The reason 

for squaring the number of levels for suction pressure and station location is that 

these parameters are unknown at Station (I) as well as Station (i+ 1). Since the 

described solution procedure involves a combination of dynamic programming and 

implicit enumeration even fewer iterations than 1.50x106 are required. Applying 

Equation 4.8 to the variables, the accuracy of the results obtained via complete 

enumeration could lead to 5x(17x82x50) 15 = 2.22x1073 calculations. The same 

accuracy can be achieved with 'fine-tuning'(Section 4.4). Oboe the number of 

levels for the variables are increased by the formula given in Equation 4.9 the fine-

tuned solution can be obtained, in less than 5x(92x192x15)x15 = 3.29x1 07 iterations. 

The drastic decrease in number of evaluations leads to approximately 1 minute of 

CPU time on the Honeywell Multics System. 

The location of the stations, diameter and length of pipe segments are fixed for an 

existing pipeline. The developed program for the case of design is modified by 

feeding these specifications instead of giving only a range and repeating the 

calculations for any possible value of these parameters. Obviously, the number of 

calculations decreases substantially by doing so. The program which already runs 

fast, speeds up even more allowing the results to be produced very frequently 
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(less than 20 seconds are required for the case under investigation). Hence, for 

a dynamic system the optimal operating conditions can be updated as often as 

necessary. 

5.2. DISCUSSION OF RESULTS 

The following procedure is adapted to design the pipeline system: First, an 

allowable range for each parameter is determined based on information obtained 

from the industry, in combination with data gathered from books and papers 

(references). Then, the pipeline is designed by letting the optimization program 

choose the 'best' value for all parameters out of the predetermined ranges. 

Once the system is designed, the operating conditions of the pipeline network are 

optimized with respect to changing conditions based on this 'case'. For a large 

pipeline with many parameters, it is very difficult to collect all necessary data from 

a single source to make a case study. Several pipeline companies were 

approached to gather the information of existing pipelines. The companies supplied 

different sets of data but a complete set of information about an existing pipeline 

was not available. Hence, a direct comparison of the operating conditions 

determined from the optimizing program with the operating conditions of an 

existing pipeline was not possible. 
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The effectiveness of the program is demonstrated by comparing the different 

annual costs resulting from different runs of the program obtained for variation in 

the number of variables and their values. Seven runs for different optimization 

cases of design and operating conditions are discussed to indicate the extent of 

savings which can be achieved with the developed program. Data for these 

discussed cases are given in Table 5.3. This discussion could easily be continued 

for many other cases since system modifications can be fed to the program in a 

convenient manner and little computational time is necessary to produce the 

output. At this point, however, the aim is to give a general impression of how 

effective the features of the developed program are. 

A sample output is shown in Table 5.1. It is produced for optimizing operating 

conditions with known flowrate, diameter and fluid specifications. At each station 

the suction and discharge pressures are listed. The pumping units A, B and C 

represent the pumps at each station where 1 or 0 indicate the pump being on or 

off, respectively. The cost of pumping is listed in the last row, where '0' represents 

that that specific station is by-passed. The optimized annual cost is listed in the last 

row. 

Table 5.2 lists the pressure variation at a station and in the adjacent pipe segment. 

The pressures are consistent with the schematized pressure profile shown in 

Figure 3.2. The output can also be represented in graphical form. Figure 5.1 shows 

the result of optimal design for the fluid specifications and maximum flowrate of the 
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Table 5.1 : Results of the Program 

flowrate (m3/h) diameter (in) viscosity (mPa s) specific gravity 

1589.004 24 0.664 0.735 

station 
number 

station 
location 
(km) 

suction 
pressure 
(MPa) 

pumping 
units 
A B C 

discharge 
pressure 
(MPa) 

pumping 
cost 
(M $) 

1 0 0.1 1 0 0 2.8 0.671 

2 100 0.4 11 0 7.2 1.342 

3 200 5.1 000 5.1 0 

4 300 3.4 0.00 3.4 0 

5 400 1.1 1 0 1 9.9 1.963 

6 500 8.0 000 8.0 0 

7 650 5.1 01 0 9.2 1.006 

8 700 8.0 000 8.0 0 

9 870 5.1 000 5.1 0 

10 920 3.4 000 3.4 0 

11 930 3.1 1 0 0 5.8 0.537 

12 1010 4.4 000 4.4 0 

13 1070 2.6 000 2.6 0 

14 1110 1.3 000 1.3 0 

15 1120 1.1 000 1.1 0 

16 1140 0.1 000 0.1 0 

annual cost = 22.086 M$ 

(*) : 1 M$ = 1x106 $ 
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Table 5.2: Pressure Variation at a Station and in the adjacent Pipe Segment 

pressure specification pressure (M Pa) 

suction 5.100 

pumping 4.054 

discharge 9.154 

throttling 0.143 

friction 1.011 
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Table 5.3: Data for Figures 5.1- 5.7 

Case 
number 

flowrate 
(M3 /h) 

pipe diameter 
(in) 

specific 
gravity 

viscosity 
(mPa s) 

1 1920 24 0.815 2.199 

2 1920 24 0.815 2.199 

3 1920 36 0.815 2.199 

4 1920 24 0.815 2.199 

5 1590 24 0.815 2.199 

6 1920 24 0.815 2.199 

7 1920 24 0.815 2.199 
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Figure5.1 : Pressure Profile Case 1, annual cost = 29.569 million $ 



first case. The change in pressure with location in the pipeline is shown for the 

optimized case. Out of the 15 possible stations only 8 are required for the specified 

maximum load. Filled squares represent the booster stations and are located at the 

levels of the suction pressures. A crossing line through such a square means that 

that particular station is not needed for the given design conditions, since it 

indicates that no boost in pressure is required. Empty squares indicate the level 

to which the pressure is increased at the station as a result of pumping. 

The pipeline design is optimized for variable diameter, suction, discharge and 

throttling pressures, number and capacity of pumps. The suction pressure at the 

first station and the outlet pressure at the terminal point are fixed at 1 atm.. Annual 

fuel cost is predicted to be 0.350 $/W. The annual operating cost of this case is 

calculated to be 29.569 million $. 

Figure 5.2 shows the result obtained for the optimization of the same system but 

with the addition of variable station location. When the location of any station is not 

fixed but is allowed to vary by ±6 km around each station, the necessary number 

of stations to pump the fluid through the 1,150 km long pipeline decreases from 

8 (Figure 5.1) to 5. With this improvement the annual cost is decreased to 29.194 

million $. 

Besides flexibility in station location, it is also very important to let the diameter 
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Figure 5.2: Pressure Profile Case 2, annual cost = 29.194 million $ 
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Figure 5.3: Pressure Profile Case 3, annual cost = 27.712 million $ 
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vary. The significance of variable diameter is shown in Figure 5.3. The optimal 

design calculations of the case in Figure 5.1 was repeated for variable pipe 

diameter. It was found that 36' pipe is more economical than 24" pipe although the 

capital cost of the pipe increases significantly with larger diameter. At the same 

time, the larger pipe diameter causes less frictional losses which decreases the 

pumping cost. To pump the same amount of fluid through a 36" pipe requires only 

a single station compared to 8 stations which are needed in case of 24" pipe. 

Decrease in pipeline cost and increase in pumping cost balance each other so that 

even with only one booster station the annual cost of the pipeline system 

decreases only by 1.86 million $. Although it seems that increasing the pipe 

diameter simply decreases the annual cost, this conclusion is likely not to hold for 

a slightly different case. Since the effect of variation in pipe diameter cannot be 

predicted a priori,it is of interest to keep the pipeline diameter as a variable. 

The results from a set of runs are presented in Figures 5.4 to 5.7 to compare 

cases of optimized operating conditions. Figure 5.4 shows the suction and 

discharge pressures at all stations for the case of 15 existing booster stations 

connected through a 24" pipe. The operating conditions are optimized for a fluid 

with 2.2 mPa s viscosity and 0.82 specific gravity flowing at the rate of 1920 M3 /h. 

Three pumps are placed at each station. The main concern in the optimization of 

operating conditions is to determine which pumps to turn on to send the fluid 

through the pipeline. In searching for the most economic case, it is made sure that 
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Figure 5.4: Pressure Profile Case 4, annual cost = 29.461 million $ 
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all restrictions, like pressure at the terminal location, are taken into account. A filled 

square with a crossing line through it represents stations which are by-passed. 

Although no pumping cost is necessary at these stations, a fix cost is required for 

maintaining the station. The annual cost of the described system is found to be 

29.461 million $. 

An important feature of the program is to be sensitive to changes in flowrate. In 

reality, the amount of pumping at a station is usually not varied once the pumps 

are installed. Even when the flowrate declines, pumps are not turned off producing 

unnecessarily high pressure. It is simply neglected that energy can be saved by 

shutting off some pumps which may not be required at lower flbwrates than the 

design case. Figure 5.5 represents the resultant pressure profile for optimized 

operating conditions for the same case used for Figure 5.4, but 1590 m3/h flowrate 

instead of 1920 m3/h. The operating conditions are modified by turning off pumps 

which are not required to pump the fluid through the pipeline. This results in 4.93 

million $ savings which is 16.7 % of the entire operating cost. 

A 1500 km pipeline network can sometimes spread over different countries or 

provinces/ states. It is very likely that the fuel cost would be different at different 

locations.. When the fuel cost is increased only in a specific geographical region 

the annual operating cost would increase but the system configuration and 

pressure profile would remain the same if the optimization procedure of operating 
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Figure 55: Pressure Profile Case 5, annual cost = 24.428 million $ 
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Figure 5.6: Pressure Profile Case 6, annual cost = 33.656 million $ 



conditions is not sensitive to variation in fuel cost. This situation is represented in 

Figure 5.6 with 50% increase in fuel cost at Stations 1 to 8. The pressure profile 

is the same as in Figure 5.4 and the only change is a 4.2 million $ increase in 

annual cost. The developed program is capable of modifying the operating 

conditions with respect to variation in fuel cost. For the mentioned increase in fuel 

cost, the results suggest that, the operation of pumps at three stations should be 

modified. Figure 5.7 shows the redefined strategy. Pumping capacity is increased 

at Stations 5 and 6 by turning on additional pumps. This appears to be 

unexpected, since these stations lie in the 'expensive' region. At the same time 2 

pumps are shut off at Station 7 and 1 pump is turned off at Station 8, which are 

also in the region of higher energy cost. The overall decrease in pumping at the 

first eight stations is compensated by turning on pumps at stations where no 

variation in fuel cost is felt. This modification leads to 0.25 million $ savings in 

annual cost. 

Pipeline networks are dynamic systems whence many changes occur in time, e.g. 

some pumps may be temporarily defective or a lighter fluid than specified in the 

design case may be transported. The illustrated examples show that substantial 

savings can be achieved by adjusting the operating conditions 'whenever a change 

occurs in or outside the system. 
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Figure 5.7: Pressure Profile Case 7, annual cost = 33.404 million $ 
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CHAPTER 6 

SENSITIVITY ANALYSIS 

The obtained optimal results can only be considered reliable after a sensitivity 

analysis with respect to the variables and boundary conditions. Because of the 

complex nature of the tackled problem, an analytical method cannof be applied for 

the sensitivity calculations. Instead, the sensitivity analysis has to be performed 

numerically. A base case is formed by running the program with known conditions 

and obtaining the optimal solution. The calculations are repeated with one of the 

variables or boundary conditions varied, e.g. increased or decreased by 10 

percent. The relative change in the optimal solution with variation in the input is 

used as an indication of the sensitivity of results to the various variables and 

boundary conditions. 

The nondimensionalised sensitivity of the annual cost, c, to a variable or a 

boundary condition, u, can be formulated as: 

S - (ECICbase)  

(tu/ub ) 
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where Au shows the change in the variable u. Ac represents the respective 

variation in annual cost. Thus, the dimensionless sensitivity coefficient, t Sul 

represents the sensitivity of the annual cost to the variable u. 

The number of variables affects the solution directly, because with an increased 

number of variables more solutions can be formed whence the possibility of finding 

a lower minimum than the previous one increases. This was shown in Section 5.2, 

by comparing the results of systems with fixed and variable station locations.. The 

effect of varying a parameter was also explained in the same section. For example, 

the program adjusts the operating conditions according to changes in the flowrate 

thereby eliminating unnecessary pump work. When the flowrate was changed from 

1920 M3 /h to 1590 M3 /h, the optimal cost decreased from 29.461 million $ to 

24.428 million $. When the 5 million $ saving is substituted into Equation 6.1, the 

result is: s, = 0.99. 

In optimization problems, the boundary conditions of the system may have a 

significant effect on the optimal solution. For example, although absolute 

boundaries exist for pressure limitations formed by NPSH and strength of the 

equipment, it is of interest to keep the pressure range small since it directly affects 

the number of calculations in the program. On the other hand, this range cannot 

be kept arbitrarily small since the objective function giving the annual cost of the 

pipeline network is not 'well behaved', If the pressure in the system is bound by 
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only a small range, the resulting optimal solution may not be very favourable. It is 

simply because, inside the absolute limits but outside the present limitations, lower 

minima may exist which are not considered as solutions. In order not to limit the 

efficiency of the program, appropriate boundary conditions have to be chosen. The 

success of a particular choice can be tested by applying sensitivity analysis to the 

results with respect to variation in boundary conditions. 

Boundaries on pressure, station location and pipe diameter are constraints for the 

described pipeline system. In Section 5.2, it was shown that increasing the range 

of pipe diameter can have a significant effect on the results. The increase in range 

can only be achieved by adding another commercially available diameter out of 

which the optimal diameter can be chosen. A sensitivity analysis on pipe diameter 

may not be useful since the boundaries on diameter cannot be increased arbitrarily 

by a percentage. Hence, importance has been given to variation in the limits on 

pressure and station location. 

Changes in annual cost with variations in pressure limitations are summarized in 

Tables 6.1-6.6. The input for all base cases are kept the same. The lower pressure 

limits for the case under consideration are in a narrow range of 0.1 - 0.4 MPa and 

the upper limits vary between 7 to 9 MPa. For the purpose, of measuring the 

sensitivity, the lower limits are varied by ± 10 %. Larger variations are not applied 

because the lower pressure boundaries are usually around 1 atm. The upper limit 
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at each station may be more flexible whence the upper boundaries are varied by 

±10 % to ±50 %. The program is run after each change in the input and the 

resulting optimized annual cost is listed in the second column of the tables. 

Variation in the new output with respect to the result of the base case is indicated 

in column 3 (Table 6.1) in the form of percent variation which is simply calculated 

from: 

l 
%variation - Cnew  - Cbase  100 Cb8go *  

(6.3) 

Once the optimal annual cost for maintaining and operating the pipeline is 

calculated, the program is run again to search for a lower minimum around the first 

'approximate' solution in, order to fine-tune the result. Results of fine-tuning are also 

listed along with the variation in cost with change in pressure limitations. As 

expected, the annual costs after fine-tuning are lower than the 'approximate' 

optimized annual costs. The fine-tuned results are used in calculations in order to 

obtain the sensitivity of cost to the pressure boundaries. The dimensionless 

sensitivity is found from Equation 6.1 and is calculated by dividing the percent 

variation in fine-tuned cost (Table 6.1, column 5) by the percent variation in lower 

or upper pressure limits (Table 6.1, column 1). The dimensionless sensitivity 

coefficient, s, in Table 6.1 varies between 0.0 and 0.057, which is quite 
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Table 6.1 : Effect of Variation in Lower Pressure Limitations 
on Annual Cost with dp = 1.0 MPà 

variation in 
lower 

pressure 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity' 
cóeff.: 
s 

(Equation 
6.1) (M$/y) 

variation 
from the 
base 

case (%) 

(M$/y) 
variation 
from the 
base 

case (%) 

30.254 0.0 29.415 0.0 0.0 o 
(base case) 

0.0 29.415 0.0 30.254. 0.0 -10 

-0.057  29.247  -0.57 30.086  -0.56 +10  
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insignificant relative to the sensitivity of cost to volumetric flowrate (s = 0.99). 

Hence, it can be concluded that the optimized annual cost is insensitive to 

changes at the lower pressure limits. For this particular case, the pressures which 

lead to the optimal solution do not lie at the lower boundaries, supporting the 

conclusion of insensitivity of cost to the lower pressure limitations. 

From Table 6. 1, it can be read that a + 10 % increase of the minimum pressures 

at all stations results in a lower annual cost by 0.57 %. Although this value may be 

considered negligible, an increase in lower limits cannot cause any decrease in the 

cost because the range out of which an optimal solution has to be chosen is 

shrunk. The slight decrease in cost is due to the discretized pressure. When the 

lower pressure limit is increased, discretization starts from a different pressure level 

than in the base case. The new discretized pressure levels may lead to a slight 

improvement in the solution. 

Table 6.2 shows the effect of varying the upper pressure limit at all booster 

stations. The same base case, as listed in Table 6. 1, is used for these calculations. 

The number of feasible solutions is increased (decreased) by expanding (shrinking) 

the allowable pressure range of the system; in this case by increasing (decreasing)' 

the upper limit. Surprisingly, widening the pressure range does not seem to 

improve the results. Similar to the results in Table 6.1, the fluctuation in cost can 

be explained in terms of the discretization of pressure. 
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Table 6.2: Effect of Variation in Upper Pressure Limitations 
on Annual Cost with dp = 1.0 MPa 

variation in 
upper 

pressure 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity 
coeff.: 
s 

(Equation - 

6.1) (M$/y) 
variation 
from the 
base 

case (%) 

(M$/y) 
variation 
from the 
base 

case (%) 

o 
(base case) 

30.254 0.0 29.415 0.0 0.0 

29.573 0.54 0.054 30.244 -0.03 -10 

0.0 29.415 0.0 30.422 0.56 +10 

30.244 -0.03 29.405 -0.03 0.0015 -20 

0.0 30.422 0.56 29.415 0.0 +20 

0.0128 29.603 0.64 -50 30.610 1:2 

29.573  0.54 0:0108 30.412 0.52 +50  
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The maximum allowable pressure level represents the upper pressure limit which 

is usually not one step size apart from the adjacent pressure level. When the range 

is expanded, the pressure level at the previous maximum is usually skipped. The 

results listed in Table 6.2 are produced with a pressure step size, dp, of 1 MPa 

which, after discretization over a range of 0.1 - 8 MPa, leads to nine pressure 

levels. A 10 % increase in the upper limit leads to 10 levels and the ninth level is 

shifted from 8 to 8.1 MPa. Although a change of 0.1 MPa does not seem to be 

very important, the optimal configuration may change significantly, especially 

because large step size leads to a discretization which cannot represent the actual 

range properly, and 'loss' of the previous maximum pressure level can affect the 

optimal solution unfavourably. An additional disadvantage of large step size is that 

the resulting optimum may be far off the global minimum. This is because the 

range in which the optimum is searched would not be well represented. 

In order to improve the accuracy of results, the pressure range at each station 

should be divided into a larger number of levels, i.e. the step size should be 

decreased. The results in Tables 6.3 and 6.4 were obtained with dp = 0.5 MPa, 

which implies doubling the number of possible pressure levels at each station. The 

base case in Tables 6.3 and 6.4 is the same as in Table 6.1. With 'finer' 

discretization, the optimal annual cost decreases from 30.254 million $ to 29.741 

million $. The accuracy of results for the modified cases in Tables 6.3 and 6.4 is 

also improved but there are still some undesirable results, such as a lower cost 
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Table 6.3: Effect of Variation in Lower Pressure Limitations 
on Annual Cost with dp = 0.5 MPa 

variation in 
lower 

pressure 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity 
coeff.: 
s 

(Equation 
6.1) (M$/y) 

variation 
from the 
base 

case (%) 

(M$/y) 
variation 
from the 
base 

case (%)   

o 
(base case) 

29.741 0.0 29.573 0.0 0.0 

29.583 0.03 -0.003 -10 29.751 0.03 

-0.117 29.563 

- 

-0.60 29.227 -1.17 +10  
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Table 6.4: Effect of Variation in Upper Pressure Limitations 
on Annual Cost with dp = 0.5 MPa 

variation in 
upper 

pressure 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity 
coeff.: 
s 

(Equation 
6.1) (M$/y) 

variation 
from the 
base 

case (%)   

(M$/y) 
variation 
from the 
base 

case (%) 

o 
(base case) 

29.741 0.0 29.573 0.0 0.0 

0.0 29.573 0.0 29.741 0.0 -10 

-0.06 29.395 -0.60 29.731 -0.03 +10 

0.0 29.573 0.0 29.741 0.0 -20 

29.731 0.53 0.0265 29.731 -0.03 +20 

0.01 29.425 -0.50 29.593 -0.50 -50 

0.0106 29.731 0.53 29.731 -0.03 +50 
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with shrunk pressure range. Hence, the step size dp could still be decreased some 

more. 

Results shown in Table 6.5 and 6.6 were obtained with a 0.2 MPa step size. When 

the maximum pressure is decreased by 20% the new maximum pressure lies at a 

level which did not exist in the base case. Results show that one of these 

maximum pressure levels is part of the configuration leading to a optimum which 

is slightly lower than the optimum result for the base case. The discrepancy in 

results due to discretization is much less in the case of 0.2 MPa step size than in 

the case of 1.0 MPa. The slight variation of 0.03% in some results can be ignored 

since discretization of continuous functions would always introduce inaccuracy. 

Such inaccuracies can only be minimized by using infinitesimal step size which 

obviously would increase the number of calculations tremendously. 

The results in Tables 6.5 and 6.6 are accurate enough that fine-tuning on them 

does not lead to a further improvement. The sensitivity coefficient varies between 

0 - 0.015 allowing the conclusion that the annual cost is not sensitive to the 

pressure boundaries. Hence, the results are reliable and one does not to be 

concerned whether a lower minimum is missed just because of the pressure 

limitations. This conclusion is also indicated by the results listed in Tables 6.1, 6.2 

and 6.3, 6.4 which are not accurate but may be useful to get a general idea about 

the system and its optimum without excessive computation time. A comparison of 
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Table 6.5: Effect of Variation in Lower Pressure Limitations 
on Annual Cost with dp = 0.2 MPa 

variation in 
lower 

pressur su 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity 
coeff.: 

(Equation 
6.1) (M$/y 

variation 
from the 
base 

case (%) 

(M$/y) 
variation 
from the 
base 

case (%)   

o 
(base case) 

29.247 0.0 29.247 0.0 0.0 

-0.007 29.227 -0.07 29.227 -0.07 -10 

-0.01  29217  -0.10 29.217 -0.10 +10  
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Table 6.6: Effect of Variation in Upper Pressure Limitations 
on Annual Cost with dp = 0.2 MPa 

variation in 
upper 

pressur su 
limits (%) 

optimized annual cost optimized annual cost 
after fine tuning 

sensitivity 
coeff.: 

(Equation 
6.1) (M$/y) 

variation 
from the 
base 

case (%)   

(M$/y) 

variation 
from the 
base 

case.  

o 
(base case) 

29.247 0.0 29.247 0.0 
- 

0.0 

0.0 29.247 0.0 -10 29.247 0.0 

0.0 29.247 0.0 29.247 0.0 +10 

-0.0015 29.237 -0.03 -20 29.237 -0.03 

29.237 -0.03 29.237 -0.03 -0.015 +20 

0.0014 29.267 0.07 -50 29.267 0.07 

0.0 29.247 0.0 +50  29.247 0.0 
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results listed in Tables 6.1-6.6 shows that accuracy of the solution is affected by 

the choice of step size. 

Besides the boundary on pressure, the limitations on station locations should also 

be examined carefully in order to check the reliability of the results. Unlike the 

pressure range, the range in which the 'best' location for a station is searched is 

treated not to be continuous since inconvenient locations on a hill or far from a 

town can be excluded immediately. Results for 1, 3 and 5 possible location(s) at 

which a station can be placed are listed in Table 6.7. Allowing only one location for 

a station represents the case of fixed station locations. A comparison of the first 

and second rows shows that the annual cost of the studied case can be 

decreased from 30.576 million $ to 29.717 million $ by making station locations 

variable. This is equivalent to 2.81 % savings in annual cost. Further savings can 

be achieved by increasing the number of locations at which a station can be built. 

With 5 possible station locations per station over a range of 12 km, the annual cost 

can be decreased by an additiOnal 1.71 %. The critical decision appears to be to 

keep the station location as a variable. Additional improvement can be achieved 

by increasing the range in which the optimal location has to be searched for. 

Results in Table 6.8 show how a variation in the location range affects the overall 

cost of designing the pipeline system. The number of possible locations for each 

station are kept at 5 and the range is varied by changing the step size between 
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Table 6.7: Effect of Limitations on Station Location on Annual Cost, 
step size fixed at 3 km 

# of 
possible 

locations for 
each station  

range for each 
station location 

(km) 

optimized 
annual cost 

(M$/y) 

relative 
improvement 
in cost (%) 

1 0 30.576 0.0 

2.81 29.717 3 6 

1.76  12  29.193  5  
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Table 6.8: Effect of Limitations on Station Locations on Annual Cost, 
number of possible locations for each station fixed at 5 

range for each station 
location 

optimized annual cost sensitivity 
coeff.: 
su 

(Equation 
6.1) (M$/y) variation 

from the 
base case 

(%) 

(km) 
variation 
from the 
base case 

(%) 

12.0 
(base case) 

0.0 29.194 0.0 0.0 

29.529 1.15 0.115 10.8 -10 

0.0 13.2 +10 29.194 0.0 

9.6 -20 29.549 1.22 0.061 

14.4 +20 29.194 0.0 0.0 

29.707 1.76 0.035 6.0 -50 

18.0 +50 29.194 0.0 0.0 
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the possible locations. Increasing the 3 km step size by 10, 20 or even 50 % does 

not yield any improvement. The strongest effect of shrinking the range is felt by 

decreasing the step size from 3 to 2.7 km. The sensitivity SLI in this case is 0.115, 

indicating that the cost is not very sensitive to the location boundaries. 

Sensitivity analysis on the boundary conditions is necessary in order to determine 

whether the limits have to be relaxed or not. Results can be considered reliable, 

only if they do not vary with modifications in boundary conditions. In this Chapter, 

it has been shown that the annual cost does not vary much with changing the 

boundaries given for the 'case study', which is called 'base case' in the tables. 

Hence, the results obtained for the studied case are found to be reliable. The 

sensitivity analysis should be repeated for each different system since the 

sensitivity is obtained numerically and can vary with different input. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

An efficient algorithm is developed for optimal pipeline design. Several design 

parameters, such as pipe diameter, number of booster stations and their locations, 

number and capacity of pumps at each station, pressure profile of the system 

including suction and discharge pressures at the stations can be optimized in less 

than one minute of computer time. 

Since the optimization procedure is built upon a main module with individual 

functions connected to it, the validity of the results can be assured by using 

sophisticated cost functions and choosing appropriate flow equations. The case 

study is based on a fairly generalized cost function since the aim of this study was 

to develop an optimization technique rather than doing accurate economic 

calculations. The cost function can easily be replaced with a more realistic 

expression to improve the applicability of the results. At the same time, separate 

cost functions can be provided to allow for variations in an interprovincial pipeline. 

Compared to complete enumeration of possible solutions, computation time is 
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decreased drastically, due to combined use of dynamic programming, integer 

programming and 'fine tuning'. The optimal solution to a pipeline system which 

would be achieved by complete enumeration with 2.22x1073 iterations can be 

obtained with less than 3.29x107 iterations in the optimization program. 

The algorithm is flexible such that it can also be used for optimizing the operating 

conditions of an existing pipeline. Although building a pipeline is obviously more 

costly than operating it, it can be significant to adjust the operating conditions 

according to changes inside and/or outside the system. 

Substantial savings are achieved in a very short computation time. A variation in 

each of the basic design parameters and operating conditions can lead to 10-20% 

savings of the annual cost. 

The described model is applicable to dynamic systems. Optimization of a pipeline 

can be achieved in less than 20 seconds on the Honeywell Multics System. This 

feature becomes significant when changes occur in the system. If, for example, 

some of the pumps become defective, cost of power changes, or flowrate is 

varied, new optimal operating conditions can be obtained almost immediately. 
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7.2. RECOMMENDATIONS 

The applicability of the algorithm can be increased by making the cost function of 

the pipeline more realistic. Improvements could be made by taking the present 

worth of expenses into account and considering the depreciation of equipment. 

Another improvement could be achieved by increasing the number of variables. 

Adjusting the wall thickness of the pipeline according to pressure variations could 

lead to additional savings but the 'curse of dimensionality' has to be kept in mind 

in doing so. Each additional variable increases the number of calculations required 

to reach the optimal annual cost. Hence, before deciding which parameters to add 

as variables, a sensitivity analysis should be made to ascertain their relative 

importance. 

Necessary modifications for gas flow have been explained. Applying these changes 

to the algorithm should not require much effort but would increase the range of its 

applicability significantly. 

The optimality of the solution is based on minimum cost. In reality, there may be 

cases where additional constraints can cause a solution with higher cost to be 

more favourable than the original optimum solution. Repeating the solution 

procedure for each change in and/or outside the system (including an increase 
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in the number of constraints) can be time consuming for a system with many 

variables. Instead, suboptimal solutions could be stored along with the global 

optimum so that the operating engineer could understand the behaviour of the 

system better and could decide to operate at suboptimal conditions, if necessary. 
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APPENDIX A: 

Algorithm 

Zmaximum number of stations 
approximate locations of stations 
minimum and maximum pressure limits at each station 
candidate pipe diameters 
station location step size 
pressure step size 
capacities of available pumps 
cost indices 
fluid specifications 
flowrate at each station 
topography 

(6)—s select diameter d 
— 3 

(5) b  1=1  
(4) 4  
(3)—*  select station location 'jdj for station (n-i) 1 

41  
(2)—  select suction pressure p1 at station (n-i) 

 - 

  select station location sl 1 for station (n-i+1)  

select suction pressure p1 at station (n-i+1)  

evaluate cost 11 (n-i,idj,j,idl,l) for least pump work j 

cost 1 (n-i,idj,j,idl,l) = costA 14+1 (n-i,idj,j,idl,l) + cost B 11 ,.(n-i,idl,l) 

I = 1+1 

idl = idl+1 y 

mincost(n-i,idj,j) = mini COStn-i,(n-i,idj,j,idl,l) } ] 
(1) 
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costB(n-i-1 ,idj,j) = mincost(n-i,idj,j) 

(2)4—I j = j+1 I   
()-1 idj = idj+1 
()-I i = 1+1 

Y4 i J<Jmax 
n.p 

y  idj <IdJmax 
n .  

y'-{ i<n-1 
n 

C0StDIm = min { mincost(1,1,1) } J 
(5)4-  Y'-I fine-tuning ? 
(6).—(im = im+1 !. y+—  im <imm  

n4 - 

optimal cost =min { cost0 im} 

/display results! 

IV 



APPENDIX B: 

DATA 

Although calculations have been repeated only in the ranges listed below, the 
algorithm can be used for broader ranges. 

candidate pipe diameters: 
pressure step size: 
flexibility around a station: 
elevation variation: 
flowrate: 
viscosity: 
specific gravity: 
capacity of available pumps: 
cost indices: 0.5 -

minimum pressure: 
maximum pressure: 
maximum number of stations: 

12 11 -  36" 
0.2- 1.0 MPa 
0-18 km 
0 - 1700 m 
1000 - 2000 M3 /h 
0.6 - 3.5 mPa s 
0.7 - 0.85 
2000 - 4500 hp 

1.8 
0.1 - 0.6 MPa 
0.1 - 9 MPa 
20 
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Sample Input File 

Each set of data (given in a line or a column) is stored in a separate file. 

three possible pipe diameters: 12", 24", 36" 
pressure step size: 0.2 MPa 
maximum three pumps at a station with 2000, 3000 and 4500 hp capacities. 
maximum number of stations: 15(+ terminal location). 
flat topography. 
oil transportation with 0.815 specific gravity and 2.2 mPa s viscosity. 
5 possible locations in a 12 km range for each station. 

station 
number 

approximate 
station 
location 
(km) 

flowrate 
(M3 /h) 

minimum 
pressure 
(MPa) 

maximum 
pressure 
(MPa) 

cost index 

1 0 1920 0.1 0.1 1.4 

2 100 1920 0.4 8.0 1.2 

3 200 1920 0.1 7.0 1.0 

4 300 1920 0.4 8.0 0.9 

5 400 1920 0.1 7.0 0.8 

6 450 1920 0.4 8.0 1.1 

7 500 1920 0.1 7.0 1.3 

8 650 1920 0.4 8.0 1.4 

9 700 1920 0.1 7.0 1.0 

10 850 1920 0.4 8.0 1.6 

11 900 1920 0.1 .7.0 0.9 

12 950 1920 0.4 8.0 1.3 

13 1000 1920 0.6 7.0 1.1 

14 1050 1920 0.3 8.0 0.8 

15 1100 1920 0.1 9.0 1.0 

16 1150 0 0.1 0.1 1.0 
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