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Abstract. Privacy protection appears as a fundamental concern when
personal data is collected, stored, and published. Several anonymization
methods have been proposed to protect individuals’ privacy before data
publishing. Each anonymization method has at least one parameter to
adjust the level of privacy protection. Choosing a desirable level of pri-
vacy protection is a crucial decision because it affects the volume and
usability of collected data differently. In this paper, we demonstrate how
to use game theory to model different and conflicting needs of parties in-
volved in making such decision. We describe a general approach to solve
such games and elaborate the procedure using k-anonymity as a sample
anonymization method. Our model provides a generic framework to find
stable values for privacy parameters within each anonymization method,
to recognize the characteristics of each anonymization method, and to
compare different anonymization methods to distinguish the settings that
make one method more appealing than the others.
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1 Introduction

The rapid growth of the Web and information technologies in recent years has
resulted in massive data collection about individuals who use these technolo-
gies as part of their daily lives. Data collectors generally have two options to
avoid privacy lawsuits: privacy policy declaration or privacy protection via data
anonymization mechanisms. In the former approach, before collecting data, a
data collector announces a privacy policy and data providers have to agree to
the policy before providing their information. In the latter approach, a data
collector collects private information from individuals by promising to protect
their privacy. Then the data collector uses a data anonymization technique to
transform original data before making it available to users of the data. On the
one hand, a privacy policy declaration approach (such as P3P [1] and EPAL [2])
mainly limits the recipients and purposes of data usage. However, data privacy is
often poorly protected against malicious recipients (or not protected at all). On
the other hand, most anonymization methods [3–7] remove identifiers and apply
some data perturbation, generalization, and/or suppression techniques on data
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records. Due to a trade-off between privacy and utility [8–11] in data anonymiza-
tion, the danger of privacy breaches is never completely removed. Therefore, even
after data anonymization, the data collector is constantly faced with the risk of
a privacy lawsuit filed against him.

To avoid the shortcomings of the classic approaches, in this work we adopt an
intermediary approach: the data providers’ consent to some level of privacy pro-
tection are sought before collecting their personal information. data anonymiza-
tion methods are then used to provide the promised level of privacy. We believe
that this approach is more ethically responsible and by requesting data providers’
permission for privacy protection levels a market differentiator is achieved by the
the data collector. With this approach, data providers are brought into the cycle
of data anonymization and a new criterion is introduced to privacy/utility trade-
offs. We use a game theoretic approach to model and analyze this balancing act.

We consider three parties: a data user who wants to perform data analysis on
a dataset and is willing to pay for it; a data collector who collects and provides
privacy protected data to the data user; and data providers who can choose to
participate in data collection if they see it as worthwhile. We assume that each
data provider is willing to contribute his/her data at a specific level of privacy
protection if they are given sufficient incentive by the data collector. The incen-
tive can be in the form of services that data providers receive or even direct pay-
ment. Data users are willing to pay higher prices for larger volumes of data with
less changes to the original dataset (caused by the anonymization procedure).
The data collector has costs including the cost of storage and infrastructure to
run his business. Moreover, the data collector has to pay some incentive to the
data providers to collect their data. These costs have to be justifiable by the
amount of payment he receives from the data user.

In our model, the goal of the three parties is to maximize their “profit” (payoff).
The collective outcomes of these maximizing efforts produce stable states in
our trade-off system. These states are known as equilibria in game theoretic
terminology [12].

Our game-based approach to deduce stable levels of privacy is general and can
be used for different anonymization methods. We explain how to solve the game
for any arbitrary anonymization method and demonstrate the procedure using
k-anonymity [3, 4] as an arch type.

We consider the following interactions in the process of private data collection:
A data user makes an offer to a data collector for a dataset. Since the data
user knows he cannot access the original database (with no privacy protection),
based on his most preferable balance between data quality and quantity, he asks
for a privacy protection level that facilitates such balance. If the data collector
accepts the offer, he announces some incentive to collect data at a specific privacy
protection level. The combination of privacy protection level and incentive affects
the number of data providers who opt-in. Once the database is collected, the data
collector anonymizes it with the agreed level of privacy and provides the privacy
protected database to the data user.



Privacy Consensus in Anonymization Systems Via Game Theory 3

The underlying ordering of parties’ actions is captured using a sequential form
game between rational players with perfect information [12]. The data providers
are considered players in the game who play after the data user and data collec-
tor. These players do not necessarily know the data collector and third-party’s
payoffs and strategies. We model the behavior of data providers as a group be-
havior. That is, although we do allow each data provider to have his/her own
model of the world and accept different combinations of privacy-incentive, we
assume that in steady states of the game the behavior pattern of the group is
predictable by a regression model (assumed to be common knowledge of the
game). The regression model explains the effects of increasing privacy protec-
tion and incentive on the number of data providers who are willing to share
their private information. This allows the analysis of the game to focus on the
data user and the data collector’s strategies, taking into account the expected
behavior of data providers. We define the sequential game between the parties,
and construct payoff functions for the data user and the data collector.

We find the game’s subgame perfect equilibria using backward induction [12].
In the end, the result of game analysis comes down to maximizing the data
user’s payoff function with respect to the privacy parameter and price per record.
Notice that the stable values of the privacy parameter and the price found in
this way do not necessarily result in maximum profit to both the data user and
the data collector at the same time (i.e., a Nash equilibrium is not necessarily
Pareto optimal). They are the outcome of the game if both the data user and the
data collector try to maximize their benefits. Therefore, the equilibria provide a
means to predict the expected level of privacy that is provided in each situation.

Every equilibrium of the game is a combination of the data user and the data
collector’s strategies. An equilibrium strategy of the data user is a combination
of values for the privacy parameter and the price he chooses to offer. An equi-
librium strategy of the data collector is the amount of incentive he chooses in
response to an offer from the data user (in case of an acceptance). We explain the
steps involved in finding such equilibria (independent of a specific anonymization
method) and demonstrate the details of the process for k-anonymity. Using k-
anonymity as an example, we show how our game model provides a better under-
standing of an anonymization method. For instance, our synthesized simulations
on k-anonymity show that for datasets with more quasi-identifier attributes or
more identical records, higher privacy would be provided. These correlations are
justifiable by our estimation of imprecision.

We have also shown how players’ strategies change as the privacy protec-
tion/storage cost increases. When this cost increases, the data user must offer
a higher price per record. This eventually leads to a higher incentive to data
providers. The incentive convinces several privacy concerned data providers to
provide personal information even with a lower privacy protection level. There-
fore, higher cost of data maintenance and privacy protection indirectly leads to
lower level of privacy protection. Finally, the results visualize how data provider’s
privacy awareness can encourage data collectors to improve their promised pri-
vacy protection level. If the data providers’ decisions are mainly derived by the
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privacy protection level, the data user maximizes his profit by asking for higher
levels of privacy protection. On the contrary, when the role of the incentive
becomes more prominent in data providers’ decisions, the most profitable data
user strategy is offering a higher price per record and asking for a lower privacy
protection.
Contributions: We introduce a hybrid approach where an anonymization mech-
anism is used at a consensual protection level. In this approach the data collector
provides the agreed upon privacy protection via an anonymization technique but
is not liable for any further privacy breaches due to an adversary’s background
knowledge. This is the first work to use game theory to analyze trade-offs in a
private data collection system by considering preferences of data providers. The
model provides a framework to examine privacy trade-offs based on precision of
the dataset, privacy protection level, and data providers behavior. Paying spe-
cific attention to the reaction of the data providers to different privacy protection
levels is one of the novelties of this work.

We provide a high-level step by step approach to find stable levels of privacy
protection for arbitrary data anonymization methods. The generic framework
can be used as a benchmarking platform to compare data anonymization meth-
ods from various perspectives. As a demonstration, the concrete analysis of the
game is described in the case of k-anonymity as the data anonymization tech-
nique. We used the Mondrian algorithm [13] for k-anonymity and discuss the
nature of imprecisions that can potentially occur in the results of a general
SELECT query. We then provide two detailed precision estimates for a specific
SELECT query. The estimates are used in the data user’s payoff function. These
results are new and are of independent interest. We chose the Mondrian algo-
rithm because its low time complexity and high quality results make it more
likely to be used in practice.
Paper organization: We start by describing how this work relates to relevant
literature and how it is distinct from previous work (Sect. 2). We then review
some basic definitions in game theory in Sect. 3. The description of our game
model is provided in Sect. 4 where we define the players, rules of the game
and utility functions. A step-by-step approach to find the game’s subgame per-
fect equilibria in provided in Setc. 5. We demonstrate how the model can be
used through an example in Sect. 6. In our example we use k-anonymity as the
anonymization method and by solving the game we show the effects of each pa-
rameter on the stable value of k. Finally, Sect. 7 provides the conclusion and
suggests future directions and improvements to this work.

2 Related Work

The issue of protecting individual’s privacy while collecting personal informa-
tion has motivated several interesting research projects in literature. One of the
most classic approaches to the problem is known as data anonymization. Data
anonymization methods such as k-anonymity [3,4], l-diversity [5], t-closeness [6],
and differential privacy [7] are built upon a simple philosophy; If a privacy pro-
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tection mechanism is applied to the dataset no individual could be re-identified
and providing such a privacy protected dataset to other parties does not raise
privacy issues. However, since none of the methods can fully remove the risk to
privacy, data sanitization alone cannot address all privacy issues.

We recognize anonymization techniques as necessary means to protect individ-
uals’ privacy but we also believe that data providers have the right to be informed
about the amount of potential risks to their privacy before being asked for their
personal information. The privacy parameter such as k in k-anonymity is a suit-
able indicator of privacy risks. Consequently, we use anonymization methods
with a consensual privacy protection level.

Data anonymization methods provide data privacy at the cost of losing some
information. Several methods have been proposed to evaluate the trade-off of
privacy/utility either through the anonymization process or after it has been
done. When data usage is unspecified, similarity between the original data and
the privacy protected data is considered as information loss. For example, in
k-anonymity, average size of equivalence classes [14] and discernibility [15] are
two generic metrics which take equivalence class size into account to measure
utility of a sanitized dataset. However, most scholars have noticed that more
reliable utility measures must be defined in the context of data application such
as data mining and queries. Various measures of utility such as information-
gain-privacy-loss ratio [8], clustering and partitioning based measure [9], and
risk-return trade-off [11] have been proposed to determine the next generaliza-
tion step within anonymization algorithms. Sramka et al. [16] developed a data
mining framework that considers the trade-off between the privacy and utility
measure not in the process of anonymization but after the anonymization has
been done using a mining utility. Machanavajjhala et al. [17] defines an accuracy
metric for differential privacy in the context of social recommendation systems
and analyzes the tradeoff between accuracy and privacy. Our approach differs
from these classic trade-off measures since it considers the effects of the an-
nounced level of privacy protection on data providers’ decision and hence the
volume of collected information.

In this work we use game theory to investigate steady levels of privacy pro-
tection by adopting a broader view of affecting parameters. Game theory has
been successfully applied to analyze privacy issues from legal [18] and economic
perspectives [19–22]. In an effort to measure value of private information, Klein-
berg et al. [20] describe three scenarios modeled as coalition games [12] and use
core and shapely values to find a “fair” reward allocation method in exchange
for private information. The underlying assumption in the scenarios is that any
amount of reward compensates for the loss of privacy protection. We believe
this assumption over-simplifies the nature of privacy concerns and is not com-
patible with our perception of privacy. In another interesting study, Calzolari
and Pavan [21] use game theory to explore the optimum flow of customers’ pri-
vate information between two interested firms. The perspective of this work is
possibly closest to ours but the model is substantially different from our work
since privacy protection is defined as revealing detailed customers’ information
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(microdata) to another party with some probability. Game theory has also been
used as a means to address more technical aspects of privacy such as attacks
on private location data [23] and implementation of dynamic privacy [22]. Our
work builds up on a commonly accepted definition of privacy among computer
and social science scholars and adopts a game theoretical approach to find stable
privacy levels. The novelty of our research lies on bringing the economic perspec-
tive to data anonymization issues and utilizing game theory for the first time to
address privacy/utility trade-offs in a more realistic setting.

3 Preliminaries and Assumptions

The focus of this work is to propose a generic game-theoretic framework to find
acceptable level(s) of privacy protection for any arbitrary data anonymization
mechanism. Our game model provides a means to analyze different character-
istics of an anonymization method such as the expected amount of privacy,
precision, database size, and each party’s profit.

In our model, the data providers are fully informed about having their personal
information collected. We assume no inappropriate behavior. In other words,
the data collector is trustworthy in the sense that he fulfills his promises. Ev-
ery instance of the game is modeled according to a chosen data anonymization
method such as k-anonymity [3,4], l-diversity [5], t-closeness [6], and differential
privacy [7]. A common factor between these methods is a privacy parameter such
as k in k-anonymity, l in l-diversity, and 1/ε in differential privacy that indicates
the level of privacy protection guaranteed by the corresponding privacy mech-
anism. To provide a generic game model and explain the solution, we use the
letter δ to denote the privacy parameter. For any chosen data anonymization
method, larger values for δ lead to higher privacy protection and lower data
utility. The exact meaning of δ has to be interpreted according to the privacy
definition chosen for the game. In this section we provide a brief overview of the
game theoretic definitions used in the rest of the paper.

3.1 Game theory

Game theory is a mathematical approach to study interdependencies between
individual’s decisions in strategic situations (games). A game is explained by a
set of players (decision makers), their strategies (available moves), and payoffs
to each player for every possible strategy combination of all players (strategy
profile). A strategy profile is a Nash equilibrium if none of the players can do
better by changing their strategy assuming that other players adhere to theirs.
Nash equilibrium is commonly used to predict stable outcomes of games and since
it represents a steady state of a game [12], we use the term “stable” through the
rest of the paper to denote the strategies found in the equilibrium.

Noncooperative games are usually modeled in either the normal form or the
extensive form. While normal form games capture situations where each player
makes a decision without knowing other players’ moves, extensive form is used
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to model those games with a pre-specified order for players’ turn to move cap-
tured by a tree. In this tree each node is a point of choice for a player and the
branches correspond to possible actions. Every possible sequence of actions from
the root to the leaves is called a terminal history and a path from the root to an
intermediate node is simply referred to as a history [12]. Preferences of players
over each terminal history are defined by payoff functions and a player’s strategy
explains his decision at any point in the game that he has to move.

Since the sequential structure of extensive form games is not considered in
the concept of Nash equilibrium, the notion of “subgame-perfect Nash equilib-
rium” [12] is normally used to determine the robust steady states of such games.
Every sub-tree of the original game tree represents a subgame. A strategy profile
is a subgame perfect equilibrium if it induces a Nash equilibrium in every sub-
game [12]. The principle of Backward induction is a common method to deduce
subgame-perfect equilibria of extensive form games. Backward induction simply
states that when a player has to move, he first deduces the consequences of every
available action (how the subsequent player rationally reacts to his decision) and
chooses the action that results in the most preferred terminal history.

The challenge of setting the right value for parameter δ within an arbitrary
anonymization method can be viewed as multiple optimization problems to be
solved by different decision makers and there exists some ordering on their turn
to decide. As a result we model the problem using an extensive form game with
perfect information ( when a player chooses an action, he knows all the decisions
made by other players who has moved before him). The next section describes
the ingredients and rules of the game.

4 Game Description

The value of parameter δ must be chosen by considering its effects on quantity of
records and utility of the anonymized dataset. As δ increases more generalization,
perturbation, and/or suppression is applied to the records and hence the private
database has lower utility to a data user. However, higher values of δ guarantee
higher level of privacy protection and convince more data providers to share
their personal information.

We can analyze the challenge of setting the value of δ from different view-
points; data users who are interested in using the database for data analysis
purposes, a data collector who gathers personal information and provides the
private database to the data user, and data providers who provide their per-
sonal information to the data collector. A data user prefers to have a larger
volume of data with less changes due to data anonymization. He offers values
for δ and for price p (per data record). Based on the received offer, the data
collector announces the value of δ and the amount of incentive he is willing to
pay each data provider in exchange for their personal information. Finally, data
providers decide whether they want to share their personal information (with
the specified privacy protection level and incentive) or not. As the value of δ and
incentive increase more data providers are willing to share their information.
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Our game is modeled with a single data user. This choice for modelling does
not hinder us from capturing multiple data users and data reuse. Our modelling
strategy for data reuse is explained in Sect. 4.4. The interactions and mutual
effects of each party’s decision are illustrated in Fig. 1(a). Based on the dynamics,
we define an extensive game model to analyze behaviors of the data user and
the data collector. The following sections explain the details of our model.

4.1 Players

Players of the game are the following three parties:
Data providers- Data providers are those individuals who decide whether

to provide their personal information at a specific privacy level δ and use the
service offered by the data collector or to reject the offer. For example the service
could be a discount on some online purchase activity or a software application
offered for free. Since privacy preferences of each data provider is affected by
several demographic and socioeconomic factors [24–26], it is practically infea-
sible to determine how much utility is gained by each data provider for each
combination of δ and incentive. In an alternative approach, we rely on the as-
sumption that data providers’ behavior is captured by a model based on some
observation rather than a game theoretic analysis. Notice that this assumption
does not cancel the effect of data providers’ privacy decisions on the stable levels
of privacy protection, and hence the game is different from a model with no data
providers. Our assumed model is a regression model which captures how the
number of data providers increases as the values of δ and incentive increase. Al-
though this specific model has not been developed yet, similar studies have been
conducted to explore the effects of other parameters (such as knowledge of pri-
vacy risks, trust, age, income level, etc.) on public’s privacy behavior [24,26,27].
A regression model that explains the effects of δ (for each data anonymization
method) and incentive seem to be a natural extension to those studies. The
assumed model generally considers data providers who are interested in both
privacy and incentive and is defined as:

N = n(δ, I) = β0 + β1 h1(δ) + β2 h2(I) (1)

where N represents total number of individuals who accept the offer as a function
of δ and incentive I (in terms of a monetary value). h1 and h2 are functions of δ
and I. Parameters β0, β1, and β2 are the intercept and marginal effects of h1(δ)
and h2(I) on individual’s decision to participate in the data collection procedure.
The functions h1 and h2 can be any non-decreasing functions of δ and I.

Notice that we do not assume complete information for data providers (i.e.,
data providers might not know the available actions and preferences of other
players). Moreover, the regression model does not assume accurate knowledge
about privacy risks for data providers and as this knowledge increases, we expect
to have larger β1 to reflect a higher level of privacy concerns.

We can look at the regression model as the summary of data providers, reaction
to each sequence of actions taken by the data user and data collector. With this
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perspective, our assumption trims the game tree by removing the data providers
from the analysis of the game.

Data collector- In our game, a data collector is the entity who initiates
some personal data collection procedure to provide it to some data users. We
assume that the data collector knows data providers’ behavior model. The data
collector receives some offers from the data users, and based on their needs and
the expected cardinality of the collected dataset announces a privacy protection
level and some incentive (monetary value) to collect data from individuals. Once
a data collector collects a dataset of personal information, he protects privacy
of the data providers at the consented level δ and provides the private dataset
to the data user.

The data collector generally prefers to receive more money from the data user
and spend less money on the amount of incentive he pays the data providers.
Consequently, cardinality of the dataset (number of data providers) affects the
payoff to the data collector. A detailed formulation of data collector’s payoff is
provided in Sect. 4.3.

Data user- A data user is defined as an entity interested in accessing personal
information for some data analysis purposes. We assume that a data user is aware
of data providers’ behavioral model and data collector’s available actions and
preferences.

A data user prefers a dataset with higher quality (more accurate query results)
and higher cardinality (results with higher statistical significance). Privacy pa-
rameter δ affects these requirements in positive and negative ways. Therefore a
data user chooses a value δ that balances the needs and initiates the game by
offering some value for parameter δ and some price, p, for each data record. We
give the detailed analysis for games with a single data user. The approach to
model multiple data users and data reuse is explained in Sect. 4.4. Description
of data user’s payoff is provided in Sect. 4.3.

Data User Data 
Collector

Data 
Providers

, price Incentive



Opt-in/
Opt-out

Dataset 
Cardinality

UDCUDU

Payoff to the 
Data User

Payoff to the 
Data Collector

(a)

Reject

Ofi=<di, pi>

0,0

Ii

UDU,UDC

Data User

Data Collector

(b)

Fig. 1. (a) The dynamics of setting a stable level for privacy protection. (b) Trimmed
game tree.
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4.2 Game Rules

The game starts with an offer from the data user to the data collector. For each
instance of the game we assume that the schema of the original relation and
regression model of public’s privacy behavior are known to both the data user
and the data collector. The data user moves first by proposing an offer. In the
offer, the required value for privacy parameter δ and price per each record are
specified. Therefore, we can denote an offer by Of = 〈δ, p〉.

Once the data collector receives the offer he can either reject or accept it. In
case of a rejection, the game terminates with payoff zero to both the data user
and the data collector. If the data collector decides to accept then he needs to
announce an incentive in exchange for collecting personal information. Here, we
assume that I represents monetary value of the incentive and its domain is R≥0.

The terminal histories of this game are either of the form (Of, I) or (Of,Reject).
At any terminal history, the number of data providers who will opt-in is deter-
mined by plugging the values of δ and I in Eq(1). Consequently, preferences of
the data user and the data collector over all terminal histories are determined
based on the payoff function defined over cardinality of dataset and values of δ,
p, and I. Figure 1(b) illustrates the game tree. In this image we use the triangles
to show ranges of possible offers and incentives.

4.3 Payoffs

Payoff to the Data Collector: The data collector receives some money, p,
from the data user for each data record. The total number of data records in the
table is the same as the number of data providers who participate in the data
collection procedure and is defined by N in Eq(1). Consequently, the income of
the data collector is:

incomeDC = p N (2)

However, data collection procedure, data anonymization, and storing the database
are costly and we denote all these costs by C. Moreover, the data collector has
to pay some incentive, I, to data providers. As a result, the expenses to the data
collector can be defined as:

expenditureDC = I N + C (3)

For simplicity of analysis we have assumed C to be a fixed cost. This assumption
can be dropped easily by defining cost as a function of the size of the dataset and
privacy level δ without any significant modification to our analysis. The payoff
to the data collector is therefore defined as:

UDC = incomeDC − expenditureDC = (p− I) N − C (4)

According to Eq(1) N is a function of δ and I (i.e., N = n(δ, I)). Therefore, the
payoff to the data collector is a function of δ, I, and p (i.e., UDC = udc(δ, I, p)).
Payoff to the data user: The data user wants to run some data analysis on
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the privacy protected dataset T ∗. As the cardinality of this dataset increases, the
dataset will have higher value to the data user. Let a denote the economic value
of each record to the data user, i.e., a represents the net revenue of a data record
if the data user gets the record for free. If the number of data records collected
from individuals is N we can initially define the data user’s income as a ∗ N .
However, after anonymization data utility drops due to imprecisions introduced
to results of the queries. We use parameter 0 ≤ Precision ≤ 1 as a coefficient of
the data user’s income to show how the value of the dataset decreases as data
become less precise. The income of the data user is:

incomeDU = a N Precision (5)

To estimate the precision of query results on a private dataset, various param-
eters must be considered. These parameters include the semantics of the query,
the privacy definition and privacy protection algorithm used, database schema,
level of privacy protection δ, number of data records N , etc.. For each instance
of the game, all of these parameters except for δ and N are fixed (and assumed
to be a common knowledge of the game). Therefore, Precision = prec(δ,N) is
defined as a function of two variables δ and N . The main characteristic of the
Precision function is that for any fixed number of data records N , Precision
is a decreasing function of δ. However, as mentioned in Eq(1) N is also an in-
creasing function of δ and therefore ∂ prec

∂ δ is not always greater than or equal
to zero.

If the data user pays price p per record, his expenditure is p N and therefore
his payoff can be defined as:

UDU = a N Precision− p N (6)

Note that N is calculated via Eq(1).

4.4 Modelling Data Reuse

If a second data user asks for an existing dataset that has already been gathered
for some privacy protection level δ′, depending on the precision requirement of
the secondary data user, two situations can happen:

(a) The new data user chooses to offer with a privacy protection level δ′ ≥ δ:
In this case the dataset can be provided to the new data user without the
need for a new consent from data providers. A simple game can represent
this situation. In the equilibrium, the data user asks for privacy level δ′ = δ
(the data set size is fixed and higher privacy just causes lower data utility
and lower payoff) with a minimum price that covers the extra cost C ′ of
providing a collected dataset to a new data user.

(b) The new data user chooses to offer with a privacy protection level δ′ < δ:
Since a lower privacy protection is requested, it is the data collector’s respon-
sibility to ask the data providers again for a data reuse with lower privacy.
This case becomes a new instance of the game where cost, C ′ is probably
lower and the data provider’s behavior model has different coefficients.
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Knowing these two cases, a new data user can find the equilibria of the game
in each case and after comparing his expected payoffs, choose the case that
provides him with a higher overall benefit. A more comprehensive approach,
must capture the competition between the data users. This model is in our plan
for future extension to this work.

5 General Approach to Find Subgame Perfect Equilibria

In this section we explain the steps involved in the process of finding the game’s
subgame perfect equilibria using backward induction [12]. In the next section,
we show the details of this process for k-anonymity as an example.

5.1 Equilibrium Strategies of Data Collector

According to the principle of backward induction, the first step to find subgame
perfect equilibria is to find the optimal actions of the data collector in each
subgame of length 1. Every subgame following the history of the form (Of) is
a subgame of length 1, where Of is an offer made by the data user. At these
subgames, the data collector has to move based on the Of = 〈δ, p〉 received from
the data user.

The data collector can estimate the expected cardinality of the dataset for
each δ and I using Eq(1). If we plug this equation into the UDC formula from
Eq(4), the data collector’s payoff after accepting Of = 〈δ, p〉 will be:

UDC = (p− I)(β0 + β1h1(δ) + β2h2(I)) − C (7)

For each received offer Of = 〈δ, p〉, the values of δ and p are fixed. The data
collector needs to find the optimum I (denoted by Î) for which the function
UDC attains its maximum value. To find Î we must find the argument of the
maximum:

Î = arg max
I
UDC = arg max

I
(p− I)(β0 + β1h1(δ) + β2h2(I))− C (8)

Subject to the constraint that Î ≥ 0.
If the maximum UDC , ÛDC , is greater than zero the data collector accepts the

offer. If ÛDC = 0 then the data collector will be indifferent between accepting
and rejecting the offer and in the case where ÛDC < 0 the data collector rejects.
Therefore, the data collector’s best response, BRDC , to an offer Of = 〈δ, p〉 is
as follows:

BRDC(δ, p) =

{
Reject if (p− Î)(β0 + β1h1(δ) + β2h2(Î))− C ≤ 0

Accept with Î if (p− Î)(β0 + β1h1(δ) + β2h2(Î))− C ≥ 0
(9)

Notice that the optimum incentive Î must only be calculated when the data
collector accepts the offer. This means Î ≤ p, otherwise ÛDC < 0. Since UDC is
continuous in the closed and bounded interval [0, p] (the domain of I), according
to the Extreme value theorem [28], UDC reaches its maximum at least once and
therefore Î is guaranteed to exist.
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5.2 Equilibrium Strategies of Data User

The next step to find the subgame perfect equilibria is to find the most profitable
action of the data user (i.e., the most profitable offer) considering the anticipated
reaction of the data collector to each combination of δ and p (See Sect. 5.1).
Based on Eq(8), when the data collector accepts an offer Of = 〈δ, p〉, he chooses
the optimum incentive Î. Depending on the exact function definitions used in
Eq(8), if Î is unique for every combination of δ and p, then Î can be defined as
a function of δ and p (i.e., Î = î(δ, p)). Otherwise, Eq(8) defines a “relation”
between 〈δ, p〉 and Î. In the latter case, for each combination of 〈δ, p〉 we have
different incentives Î1, Î2, ..., Îj that maximize UDC and therefore, the data

user must examine all Î1, Î2, ..., Îj for each potential offer Of = 〈δ, p〉. The

incentive Îi that leads to the highest payoff to the data user is in the equilibria of
the game. Here, without loss of generality we consider the case where Î = î(δ, p)
is a function (single output for each input) of 〈δ, p〉 and the latter case becomes
a simple extension of this case.

By analyzing data collector’s best responses, we know that if the data collector
accepts the offer he starts collecting personal information at privacy level δ with
incentive Î = î(δ, p). In this case, the number of data records in the collected
dataset is expected to be N = β0 + β1h1(δ) + β2h2(Î). However, if the data
collector rejects the offer then no dataset will be provided to the data user, i.e.,
N = 0. As a result, the anticipated number of records N can be determined as:

N = n(δ, Î) =

β0 + β1h1(δ) + β2h2(Î) if ÛDC ≥ 0

0 Otherwise
(10)

Eq (10) defines N as a function of Î and δ. As we discussed earlier Î can be
explained as a function of δ and p (i.e., Î = î(δ, p)). Plugging the function
definition of Î in Eq(10), N becomes a function of δ and p as well (N = n2(δ, p)).
Recall that Precision is a function of δ and N (Precision = prec(δ,N)). If we
plug in the definition of N = n2(δ, p) into the definition of the Precision function
we have Precision = prec2(δ, p) defined as a function of δ and p as well. After
substituting N and Precision with n2(δ, p) and prec2(δ, p), the UDU function
from Eq(6) becomes a function of two variables δ and p. The most profitable
strategy for the data user is to choose values of δ and p that maximize his payoff:

〈δ̂, p̂〉 = arg max
δ,p

UDU = arg max
δ,p

(a prec2(δ, p)− p) (n2(δ, p)) (11)

By definition, the lower bounds on p and δ are zero, i.e., p ≥ 0 and δ ≥ 0.
Moreover, since Precision ≤ 1 then (a∗ prec2(δ, p)) ≤ a. We can easily see that
choosing a value p > a leads to a negative payoff to the data user and he can
always do better by choosing p = 0 (which leads to payoff zero). Therefore, the
upper bound for p is a. However, parameter δ is not necessarily bounded from
above. Consequently, we cannot use the Extreme value theorem to guarantee an
equilibrium.
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If UDU has an absolute maximum subject to the bounds defined on δ and p,
the game has subgame perfect equilibria of the forms ((δ̂, p̂), reject) or ((δ̂, p̂), Î).
The first type of equilibria happens in the games where the data collector cannot
find any profitable amount of incentive (regardless of δ and p chosen by the data
user) and the negotiation is unsuccessful. The second type of equilibria happens
in games where there are at least one combination of δ and p of which the data
collector can make profit.

The two types of equilibria provide a means to determine whether an anonymiza-
tion technique is practical or impractical given other problem settings. If the cost
of implementing an anonymization technique is too high and the public’s trust
in the method is not high enough, the game might become an instance of un-
successful negotiations and we have a case of impractical anonymization.

6 Sample Game Formulation for k-Anonymity

To demonstrate the details of the steps explained in Sect. 5, we use k-anonymity
definition for privacy and provide a Precision estimate for it. The game solution
is described and a simulation of the results are provided at the end of this section.

6.1 k-Anonymity Overview

A dataset to be released contains some sensitive attributes, identifying attributes,
and quasi-identifying attributes. Even after removing the identifying attributes,
the values of quasi-identifying attributes can be used to uniquely identify at least
a single individual in the dataset via linking attacks. Every subset of tuples in
dataset that share the same values for quasi-identifiers (and are indistinguishable
from each other) is often referred to as an equivalence class. A released dataset
is said to satisfy k-anonymity, if for each existing combination of quasi-identifier
attribute values in the dataset, there are at least k − 1 other records in the
database that contain such a combination.

There are several methods to achieve k-anonymity. The basic techniques use
hierarchical generalizations and cell suppressions. In all of these methods, the
released anonymized dataset has all the identifying attributes suppressed and
contains unmodified sensitive attributes. Our work is built on Mondrian algo-
rithm [13] for k-anonymity. This greedy algorithm implements multidimensional
recoding which allows finer-grained search and thus often leads to a better data
quality. In Mondrian algorithm there is no cell suppression and the generaliza-
tions are not restricted by predefined generalization hierarchies. Instead, records
are recursively partitioned into d−dimensional rectangular boxes (equivalence
classes), where d is the number of quasi-identifiers. To partition each box, a
quasi-identifier attribute (a dimension) is selected based on a quality metric and
the median value along this attribute is used as a binary cut to split the box
into two smaller boxes. Once partitioning is done, records in each partition are
generalized so that they all share the same quasi-identifier value, to form an
equivalence class. A copy of this algorithm is provided in Fig. 3(b).
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6.2 Data Providers’ Privacy Model

Based on Sect. 4.1, we assume a regression model to explain data providers’
reaction (at an aggregate level) to each combination of privacy protection levels
and incentives. This model is explained in Eq(1). In k-anonymity, privacy pa-
rameter is k. Here, we consider the identity function for the incentive (because
of its simplicity) and logarithmic function for parameter k. In other words :

h1(k) = log2(k) and h2(I) = I (12)

Consequently, the regression model becomes:

N = n(k, I) = β0 + β1log2(k) + β2I (13)

To understand our choice of log function for h1, notice that when k-anonymity
is used, it is assumed that the probability of re-identifying an individual is 1

k . As
k increases this probability decreases. For example, when k is 1, the probability
of re-identification is 1 and the guaranteed privacy is 0. When k becomes 2, the
probability of re-identification becomes 1

2 and the amount of uncertainty about
the identity of the individual increases from 0 (log1) to 1 (log2). However, this
increase in uncertainty about the identity of individuals (privacy) is not the same
as k changes from 99 to 100 because the probability changes from 1

99 to 1
100 . For

this reason we use entropy (logk) of this uniform probability distribution (p = 1
k )

as the indicator for privacy protection.

6.3 Precision Estimate

To determine the payoff to the data user (see Eq(6)) we need a metric to calculate
Precision. A reasonable estimate on the amount of imprecision caused by data
anonymization depends on the data application. Here, we briefly discuss the
nature of imprecisions that can be introduced to the results of any SELECT query
executed against an anonymized dataset. We then provide a precision estimate
for a specific SELECT query type and consider this query as the data analysis
purpose. A common SELECT query is of the following form:
SELECT select list FROM table names

[WHERE clause group1 ]
[GROUP BY clause group2 ]
[HAVING clause group3 ]
The result set of such query can potentially have two types of imprecisions

if it is executed on the anonymized dataset T ∗: value imprecision and quantity
imprecision. A value imprecision happens when the returned value of an attribute
in the select list or the output of an aggregate function is different if the query
is executed on T ∗ instead of T (the original dataset). For example, if values of
the attribute age are generalized to age ranges in T ∗ and the query asks for
the values of age or AVG(age) then some value imprecision is introduced in the
result set.
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The WHERE, GROUP BY, and HAVING clauses generally help restrict the number
of records included in the result set or simply organize the results. If the con-
ditions specified in clause group1 or clause group3 are not aligned with the
partitioning criteria in T ∗, or clause group2 contains attributes that are gen-
eralized in T ∗, then the number of records returned in the result set or in each
group of the result set may be incorrect when the query is executed on T ∗. We
refer to this type of imprecision as quantity imprecision.

Estimates on these two types of imprecisions must consider the anonymization
algorithm. Here, we only demonstrate the calculations for a specific SELECT query
with potential quantity imprecision problem and use Mondrian algorithm for k-
anonymization. Quantifying the amount of value and quantity imprecision for
other types of queries is still an open question and on our agenda for future
work. Suppose that a SELECT query of the following form is used by the data
user:
Qi ≡ SELECT sensitiveAtt FROM T∗ WHERE q = vi
In this query sensitiveAtt represents the value of sensitive attribute, T ∗ is

the anonymized dataset, q is one of the quasi-identifiers, and vi is the ith possible
value for attribute q. For example, a query Q20 can be the following:
Q20 ≡ SELECT disease FROM T∗ WHERE age = 20

Let |Qi(T )| denote cardinality of the result set of running query Qi on dataset
T . When Qi is run against T ∗, the result set Qi(T

∗) contains two groups of
records: a subset of them satisfy the condition q = vi and the rest of them are
just included in the result because they are partitioned into the same equivalence
class as the points with q = vi. The latter introduce some quantity imprecision
in the result. LeFevre et al. [29] introduce an imprecision metric to find the best
cuts while running the Mondrian algorithm [13] on experimental datasets. After
normalizing this metric, we define Precision as:

Precision(Qi, T
∗, T ) =

|Qi(T )|
|Qi(T ∗)|

(14)

Without loss of generality, we can assume |Qi(T ∗)| > 0 for the following reason:
When data is partitioned into equivalence classes, the summary statistics of the
equivalence classes (in our example, range of the attribute values) may refine
attribute domains. For instance, If value vi for attribute q does not match with
the summary statistics of any of the equivalence classes then vi is not in the
refined domain of the attribute q. To measure precision, we only consider queries
that seek for information within the refined domain of attribute q. For these
queries we can still have |Qi(T )| = 0 but we are guaranteed to have |Qi(T ∗)| > 0.

Part of the contribution of this paper is to give an estimate for Precision
based on the value of k. This estimate is calculated for Mondrian algorithm [13]
and is based on the estimates on the size of each equivalence class and the depth
of the recursive calls in an execution of the algorithm.

Precision: To calculate Precision we first need to estimate |Qi(T )| and
|Qi(T ∗)|. Let Pri denote the portion of the records in the dataset that have
value vi for quasi-identifier q. Then the expected value of |Qi(T )| is:

|Qi(T )| = Pri N (15)
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In Theorem 1 we use some facts about Mondrian algorithm [13] to estimate
the depth of the recursive calls during anonymization. This estimate is then used
in Theorem 2 to estimate |Qi(T ∗)|.

According to Lefevre et al.’s [13] second theorem, the maximum number of
records in each equivalence class is 2d(k − 1) + m, where m denotes the maxi-
mum number of records with identical values for all quasi-identifiers. Moreover,
in a k-anonymous dataset the minimum number of records in each class is k.
Since the distribution of equivalence class sizes are not known a priori, with
a simplifying assumption of uniform distribution, we can estimate the average
number of records in each equivalence class, ecAVG, as:

ecAVG =
2d(k − 1) +m+ k

2
(16)

Theorem 1. If the average size of each equivalence class is determined by Eq(16),
then the depth of the recursive calls, l, in Mondrian algorithm [13] can be esti-
mated as:

l = log2(
2N

2d(k − 1) +m+ k
) (17)

Proof. The Mondrian algorithm starts with the original dataset as a single equiv-
alence class and finds the best cut along one of the dimensions to cut the equiv-
alence class into two equivalence classes. Since the split value is the median,
if this value is not duplicated, splitting a partition with size ec produces two
partitions of almost the same size (ec/2). If this is not the case, one partition
will have the size ec/2 + ε and the other one will have the size ec/2− ε. In either
case, the average size of these two new partitions is still ec/2. The algorithm
then recursively cuts each of the two produced classes into smaller ones. It stops
when there is no more possible cuts for any of the equivalence classes. For this
estimate, we assume that the algorithm stops at the point where the size of each
class reaches ecAVG from Eq(16).

At level 0, with no recursive call, the size of the class is N (the original dataset).
Let Sizel denote the size of each class after l recursive calls. The size of each
class after l+1 recursive calls would be Sizel/2. Solving this recursive definition,
we have:

Sizel =
N

2l
(18)

Since we assume that the algorithm stops when Sizel reaches ecAVG, we have:

Sizel = ecAVG ⇒
N
2l

= 2d(k−1)+m+k
2 ⇒

l = log2( 2N
2d(k−1)+m+k )

(19)

Theorem 2. If N denotes the number of records in a dataset T , the cardinality
of the result set of query Qi on T ∗ can be estimated as:

|Qi(T ∗)| = (1− 1

2d
)l N (20)

where d is the number of quasi-identifiers and l is the depth of recursive calls
estimated in Theorem 1.
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Proof. If the depth of the recursive calls is zero then the whole dataset is returned
as the result of the query Qi. Therefore |Qi(T ∗)|0 = N . Let |Qi(T ∗)|x denote the
cardinality of the result set when the depth of the recursive calls is x. If the
algorithm goes one level deeper, then each of the overlapping classes from the
previous stage are either cut by the median value along dimension q or other
dimensions. For this estimate, we assume that all dimensions are chosen with
equal probability. Therefore, the algorithm chooses dimension q with probability
1/d and other dimensions with probability (1− 1/d).

When the depth of the recursive calls is x the size of the result set is |Qi(T ∗)|x.
Assume that these records are scattered in s equivalence classes and denote the
size of each class ej as |ej |. We have:

|Qi(T ∗)|x =

j=s∑
j=1

|ej | (21)

For each of the classes ej at the depth x, the expected size of the overlapping
classes after splitting ej at depth x+ 1 can be estimated as:

|ej |x+1 =
1

d
(
|ej |
2

) + (1− 1

d
)|ej | = (1− 1

2d
)|ej | (22)

The summation over all overlapping classes at the depth x+1, gives us |Qi(T ∗)|x+1:

|Qi(T ∗)|x+1 =
∑j=s
j=1 |ej |x+1

=
∑j=s
j=1 (1− 1

2d )|ej |

= (1− 1
2d )|Qi(T ∗)|x

(23)

By solving the recursive formula we get |Qi(T ∗)|l = (1− 1
2d )l N .

Consequently, Precision is can be defined as:

Precision =
pri N

(1− 1
2d )l N

=
pri

(1− 1
2d )l

(24)

We can also use Theorem 2 to define pri based on the parameters. In real in-
stances of the problem pri is independent of any specific algorithm and esti-
mates; it is a property of the dataset. However, since we have made some sim-
plifying assumptions for other estimates the assumptions should also be applied
to pri to produce a meaningful estimate. Theorem 2 provides an estimate on
|Qi(T ∗)|. When k = 1, there are no irrelevant records in the result set. There-
fore, |Qi(T ∗k=1)| provides an estimate on the number of records that satisfy the
condition q = vi. We have:

pri =
|Qi(T ∗k=1)|

N
= (1− 1

2d
)log2

2N
m+1 (25)

Now we can refine Equation(24) as:

Precision =
(1− 1

2d )log2
2N

m+1

(1− 1
2d )l

(26)
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6.4 Subgame Perfect Equilibria

As explained in Sect. 5.1, the first step to find the game’s subgame perfect
equilibria is to determine the optimum incentive Î from Eq(8) considering N =
n(k, I) (seeEq(13)) as the model of data provider’s behavior. if the data collector
accepts the offer Of = 〈k, p〉 with incentive I, his payoff will be:

UDC = (p− I)(β0 + β1log2(k) + β2I) − C (27)

Calculating the derivative of UDC with respect to I and setting it to zero
reveals the maximizing I:

dUDC
dI

= −(β0 +β1log2(k) +β2I) +β2(p− I) = 0 ⇒ Î =
β2p− β1log2(k)− β0

2β2
(28)

Î is the local maximum since the second derivative of the function is negative.
The restriction here is I ≥ 0. If Î < 0, the maximizing I will be zero and the
expected cardinality will be β0 + β1log2(k). The lower bound on I leads us to
consider two separate cases:

Case 1: β2p ≥ β1log2(k) + β0- In this case the value of I which maximizes

UDC is Î = β2p−β1log2(k)−β0

2β2
and the maximum payoff to the data collector (in

case of an acceptance) will be:

Û1
DC = (p− β2p−β1log2(k)−β0

2β2
)(β0 + β1log2(k) + β2

β2p−β1log2(k)−β0

2β2
)− C

= β2

4 (p+ β1log2(k)+β0

β2
)2 − C

(29)

The superscript in the UDC function is just to denote that the acceptance hap-
pened in Case 1.

The data collector will accept the offer Of = 〈k, p〉 if Û1
DC ≥ 0. In other words,

the data collector accepts if:

p+
β1log2(k)

β2
≥

√
4C

β2
− β0
β2

(30)

If the data collector accepts then I = Î and cardinality of dataset would be:

N = β0 + β1 log2(k) + β2 Î =
1

2
(β0 + β1 log2(k) + β2 p) (31)

Case 2: β2p < β1log2(k) + β0- As mentioned earlier, the optimum incentive
in this case would be I = 0. With this incentive the payoff to the data collector
is:

Û2
DC = p(β0 + β1log2(k))− C (32)

The superscript in the UDC function is just to denote that the acceptance hap-
pened in Case 2.
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Consequently, the data collector will accept this offer if Û2
DC ≥ 0. More pre-

cisely, in case 2 the data collector accepts the offer and announces zero incentive
if the following condition holds:

p(β0 + β1log2(k)) ≥ C (33)

If the data collector accepts then I = 0 and the cardinality of dataset would be:

N = β0 + β1 log2(k) + β2 0 = β0 + β1 log2(k) (34)

Based on the two cases, the optimum value of incentive Î can be described as
a function of k and p as follows:

Î = î(k, p) =


β2p−β1log2(k)−β0

2β2
if β2p ≥ β1log2(k) + β0

0 Otherwise

(35)

Plugging this definition into Eq(10), we can define the cardinality of the private
dataset as a piecewise function of k and p:

N =



β0+β1log2(k)+β2p
2 if β2p ≥ β1log2(k) + β0 ∧ p+ β1log2(k)

β2
≥
√

4C
β2
− β0

β2

β0 + β1log2(k) if β2p < β1log2(k) + β0 ∧ p(β0 + β1log2(k)) ≥ C

0 Otherwise
(36)

If the new definition of N is plugged into the Precision function (see Eq(26))
precision becomes a function of k and p. As a result, UDU from Eq(6) can
be rewritten as a function of k and p. The best strategy for the data user is
to compute k̂ and p̂ according to Eq(11). The maximizing values for k and
p represent the optimum offer and completes the process of finding subgame
perfect equilibria.

6.5 Simulation Results

If the players of the game are rational and have the required information, the
equilibria of the game would always conform to what Sect. 6.4 suggests because
we used an analytical method to find the game’s equilibria. A common exper-
iment on data anonymization is to test a hypothesis on an existing dataset.
However, in our proposed method, a dataset does not exist before the game is
complete and the specifications of the collected dataset depends on the parame-
ters chosen in the game. Therefore, running experiments on real databases does
not provide meaningful results for this work. Alternatively, we choose to simulate
the game and visualize the results by testing multiple parameter settings using
MATLAB R2008a. In every setting, the effect of one of the parameters a, C,d,
m, and β is examined on the stable value of k (while the values of the rest of the
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Fig. 2. Changes to the stable k due to an increase in: (a) the number of quasi-identifiers
d; (b) the maximum number of data providers who have identical values for their quasi-
identifiers m; (c) the cost of data sanitization, storage, and provision C; (d) in the
number of privacy unconcerned data providers β0; (e) the effect of privacy protection
level on data providers’ decision β1; (f) the effect of incentive on data providers’ decision
β2.

parameters are fixed to β0 = 7000, β1 = 2000, β2 = 20, a = $10, C = $20, 000,
m = 5, and d = 4. ). The results are shown in Fig. 2(a), 2(b), 2(c), 2(d), 2(e),
and 2(f).

In our implementation, the values for a and C are randomly selected as an
estimate of reasonable values commonly used in real instances of the problem.
We assumed a population size of 55,000 potential data providers and except for
diagrams in Figures 2(d), 2(e), and 2(f) the values selected for parameters β0, β1,
and β2 are chosen to reflect Westin’s privacy indexes [30] over this population.
Based on the maximum values of k (k = 100) and p (p = a), β1 and β2 are
chosen such that the effect of maximum privacy is almost the same as maximum
incentive on data providers’ decision to opt-in. Moreover, the value of β0 is chosen
such that 17% of the data providers fall in the privacy unconcerned category [30].

Figure 2(a) shows how stable values of k increase as the number of quasi-
identifiers increase. To understand the reason of such significant impact, we have
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Fig. 3. Changes to the stable k due to an increase in:?? the number of quasi-identifiers
d; ?? the maximum number of data providers who have identical values for their quasi-
identifiers m; ?? the cost of data sanitization, storage, and provision C; ?? in the
number of privacy unconcerned data providers �0; ?? the e↵ect of privacy protection
level on data providers’ decision �1; ?? the e↵ect of privacy protection level on data
providers’ decision �1.
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Anonymize(partition)
if (no allowable multidimensional cut for partition)

return � : partition ! summary
else

dim  choose dimension()
fs  frequency set(partition, dim)
splitV al  find median(fs)
lhs  {t 2 partition : t.dim  splitV al}
rhs  {t 2 partition : t.dim > splitV al}
return Anonymize(rhs) [ Anonymize(lhs)

Fig. 5. Mondrian Algorithm

for di↵erent values of d. According to this figure, with more quasi-identifiers the
Precision curve decreases at a higher rate for small values of k. Therefore, as
the number of quasi-identifiers increase, the data user cannot expect high qual-

(b)

Fig. 3. (a) Precision curves for different number of quasi-identifiers d. The value of m
is fixed by 5. (b) Mondrian Algorithm.

provided another diagram in Fig. 3(a) which illustrates the precision curves for
different values of d. According to this figure, with more quasi-identifiers the
Precision curve decreases at a higher rate for small values of k. Therefore, as
the number of quasi-identifiers increase, the data user cannot expect high quality
dataset even with small values of k and he tries to increase his profit by increasing
the size of the dataset (offering larger values for k).

In Fig. 2(b) we can see the effects of m (maximum number of data providers
with identical quasi-identifier values) on the stable values of k. We have chosen
the values of m from {1, ..., 30} since we believe that in practice this number
cannot be very large otherwise the term quasi-identifier would not make sense.
As the value of m increases the stable value of k increases. To understand this
counter-intuitive result, notice that as m increases less generalization will be
needed to group the tuples in equivalence classes of size k. Therefore, compared to
the cases with smaller m, the same precision can be achieved with higher values
of k. Larger values of k attract more data providers without largely affecting the
precision of query results. Consequently, the data user can make more profit by
asking for larger values of k.

The effects of different anonymization, and maintenance cost (C) on the stable
values of k are illustrated in Fig. 2(c). Based on the settings chosen for other
parameters, after a certain point the cost becomes too high for condition of the
Eq(33) to be satisfied and case 1 (from Sect. 6.4) happens. In this case, the data
collector is receiving a payment high enough to announce non-zero incentives.
This incentive convinces several privacy concerned data providers to participate
even with a low privacy protection level. As a result, the data user simply asks
for no privacy protection since he is confident that enough data providers will
participate to receive the incentive. Finally, after a certain value for C, the game
reaches a point (demonstrated by a shaded rectangle) where no combination of
〈k, p〉 can be found that is acceptable by the data collector and UDU ≥ 0. This
situation represents an instance of impractical anonymization.

Figures 2(d), 2(e), and 2(f) represent the effects of data providers’ privacy
attitude on the stable k. According to Fig. 2(d) as the number of privacy un-
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concerned group (data providers who provide their personal information without
any privacy or incentive) increase, the data user can receive larger volume of data
without asking for sanitized dataset. By increasing the value of β1 we model a
privacy aware population. As can be seen in Fig. 2(e), when privacy has more
significant impact on data providers’ decisions, data will be anonymized with
larger values of k. In Fig. 2(f) we showed how the value of β2 impacts the sta-
ble values of k. Based on this diagram, if β2 is less than a certain level then it
mostly affects the price of information and not the level of privacy protection.
However if the weight of incentive on data providers’ privacy decisions becomes
heavier than a certain point, case 1 (refer to Sect. 6.4) happens and the data
user can maximize his benefit by just increasing the price and asking for no pri-
vacy. These diagrams show how public’s privacy awareness can force the firms
to protect privacy of data providers.

7 Conclusions and Future Work

In this paper we modeled the process of private data collection as a sequential
game to achieve consensus on the level of privacy protection based on the problem
specifications. We explained the general approach to solve the game and as an
example provided the details of game analysis when k-anonymity is used as
an anonymization method. Players of the game are a data user who requires
a private dataset for some data analysis, a data collector who collects private
information and provides an anonymized version of the dataset to the data user,
and a group of data providers. We use the method of backward induction to
explore the game’s subgame perfect equilibria. Equilibria of the game suggest
stable values of the privacy parameter that are unlikely to be changed when
other parties move according to their equilibria strategies.

The ultimate piece of the game solution is a function of privacy parameter
δ and price per record, which must be maximized. The maximizing values of
the variables reveal the equilibria of our model. The game’s subgame perfect
equilibria provides a solution to the problem of setting a reasonable value for
privacy parameter. Moreover, it can reveal valuable information about the char-
acteristics of the anonymization method used. For example, in this paper we
showed how the stable values of k (in k-anonymity) are related to number of
quasi-identifiers, maximum number of identical tuples (in their quasi-identifier
values), cost of data anoymization and storage, and coefficients of publics’ pri-
vacy behavior model. Our results illustrate the significant impact of the number
of quasi-identifiers on the decision about the value of k. We also show that
even without government regulations a privacy-aware group of data providers
can instigate improvements on privacy protection levels. Therefore, solving pri-
vacy/utility trade-offs without considering the opinion of data providers is an
over-simplification of the problem. We also recognize the situations (based on
data providers’ privacy behaviour and anonymization cost) where k-anonymity
becomes an impractical anonymization method to use. Our game analysis for
k-anonymity is highly influenced by our choice in the query type and anonymiza-
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tion algorithm. This fact reveals the underlying dependencies of stable values of
k on the data usage query and anonymization algorithm and implies that no
single value of k can be prescribed for all general problems.

Applicability of the results are subject to some limitations caused by our sim-
plifying assumptions. The most influential assumptions are the data user and
data collector’s accurate information about public’s privacy behavior and hav-
ing fixed cost, C, for privacy protection and data maintenance. Dropping the
first assumption will have a significant impact on the approach of solving the
game. However, defining C as a function of cardinality and δ will only cause
some modifications to the final curves but the process remains unaltered.

We are currently working on using the game model to analyze other anonymiza-
tion methods such as l-diversity [5] and differential privacy [7] and for each
method, distinguish the settings which make it the most profitable option to the
players of the game. We are also planning on improving the model by dropping
the assumption about the amount of information that is available to the data
collector and data user (such as other players’ payoff function and the public’s
privacy behavior model).
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