
K-nearest Neighbor Rule:
A Replica Selection Approach in Grid Environment

Mohammad Rashedur Rahman

Department of Computer Science
University of Calgary

2500 University Drive, N.W
Calgary, Alberta, Canada T2N 1N4

{rahmanm}@cpsc.ucalgary.ca

Abstract

 Grid technology is developed to share data across many organizations in different geographical
locations. Data replication is a good technique that helps to move data because it caches data
closer to users. The idea of replication is to store copies in different locations so it can be easily
recovered if one copy at one location is lost. Moreover, if data can be kept closer to user via
replication, data access performance can be improved dramatically. When different sites hold
replicas, there are significant benefits realized when selecting the best replica. Network
performance plays a major role in selecting a replica. However, current research shows that other
factors such as disk I/O also plays an important role in file transfer. In this paper, we describe a
new optimization technique that considers both disk throughput and network latencies when
selecting the best replica. Previous history of data transfer can help in predicting the best site that
can hold replica. The k-nearest neighbor rule is one such predictive technique. In this technique,
when a new request arrives for best replica, it looks at all previous data to find a subset of previous
file requests that are similar to it and uses them to predict the best site that can hold replica. In this
work, we implement and test the k-nearest algorithm for various file access patterns and compare
results with the traditional replica catalog based model. The results demonstrate that our model
outperforms the traditional model for sequential and unitary random file access requests.

1. Introduction

 The research community has recently recognized that advances in network bandwidth, processor
speed and storage technologies make truly global sharing of distributed resources feasible. Grid
computing evolves from the concept of integrating a collection of distributed computing resources
to offer performance which are unattainable by any single machine. Grid computing allows
coordinated resource sharing and problem solving collaboration in dynamic, multi- institutional and
other potentially large-scale settings [6]. In a large amount of scientific disciplines such as global
climate change, high energy physics and computational genomics, large data collections are
emerging as important community resources. These large data stores must be able to be shared with
researchers around the world. High performance Grid architecture allows us to identify the
requirements and components common in different system and hence apply different technologies
in a coordinated fashion to a range of data intensive petabyte scale application designed in Grid
environment. As Grid technology is developed to share data across many organizations in different
geographical locations, data replication proves to be a good technique that helps to move data by
caching it closer to users [20]. The general idea of replication is to store copies of data in different
locations so that data can be easily recovered if one copy at one location is lost. Moreover, if data

 2

can be kept closer to user via replication, data access performance can be improved dramatically.
Replication is a solution to many grid-based applications such as Climate data analysis and the Grid
Physics Network [24] which requires responsive navigation and manipulation of large-scale
datasets.

 If multiple replicas exist, a replica management service is required. Replica management service
discovers the available replicas and selects the best replica that matches the user's quality of service
requirements. The replica selection problem can be divided into two sub-problems: 1) discovering
the physical location(s) of a file given a logical file name, and 2) selecting the best replica from a
set based on some selection criteria.

 Since different sites hold replicas of a particular file, there is a significant benefit in selecting the
best replica among them. Network performance plays a major role when selecting a replica. A slow
network limits the efficiency of data transfer regardless of client and server implementation. One
optimization technique to get the best replica from different physical locations is by examining the
available bandwidth between the requesting computing element and various storage elements that
hold replicas. The best site will be the one that has the minimum transfer time to transport the
replica to requested site. Although, network bandwidth plays a major role in selecting the best
replica, other source such as disk I/O plays an important role as well. Vazkhudai et al. [29, 30]
show that disk I/O can account up for 30% of the transfer time in Grid environment. It is also
noteworthy that disk capacity is increasing at the rate of two magnitudes per decade but the disk
throughput is not increasing correspondingly. It has been shown that the ratio between disk
capacity and disk throughput is increasing only at a single magnitude rate [17]. On the other hand,
network bandwidth will increase three times per year. As the network latency drops significantly
per year, disk I\O will play a major role in the file transfer cost between different sites. Therefore,
in this work, to measure Grid file transfer time, we extend the optimization technique by
considering disk throughput with network bandwidth when selecting the best replica. The
optimization function then returns the physical file name that will optimize the current network
bandwidth between the requesting site and storage elements while considering the disk throughput
of the storage elements.

 In Grid environment, a replica catalog allows users to register files using a logical filename(s) or
collection(s). It also provides mappings from logical names of files to the storage system location
of one or more replicas of these objects. Generally the replica location service is centralized.
Therefore, the requesting site must wait while all requests in the replica location queue are
processed. This may cause substantial delays if there are a lot of pending requests. Further, as many
sites hold the replica, the requesting site must find the best one by probing the network link and
current state of disk storage. We can save this time, if we use the previous history of file transfers.
Previous history sometimes provides some useful information such as the access frequency of a
file, the access pattern between different file requests. If the requested file or its nearby file has
been accessed recently, say from storage site x, we know that it will be accessed from site x again
with a significant probability. Therefore, rather than getting information from the replica location
service every time, the computing element can directly request the file from the previous requested
storage site. To select the best replica locally, we use a simple technique called the K-Nearest
Neighbor (KNN) rules [1]. KNN is extremely simple to implement and it is a good choice as no
residual classifier needs to be built ahead of time. The traditional k-nearest classifier finds the k

 3

nearest neighbors based on some distance metric by finding the distance of the target data point
from the training dataset and then identifying the class from those nearest neighbors by some
voting mechanism. The general strategy for KNN is to classify a new point as the majority of the k-
nearest points have been classified.

 The reminder of the paper is organized as follows. We give a brief introduction of Grid
Computing and Globus Toolkit in Section 2. We present the related work in Section 3. The k-
nearest rule and architecture of k-nearest replica selection are discussed in Section 4. The
simulation setup is described in Section 5. An evaluation and comparison of our technique with the
tradition replica catalog model is presented in Section 6. In Section 7, we propose a possible
implementation of our algorithm in Globus Toolkit version 3. Finally in Section 8, we conclude and
give directions for future work.

2. Grid Computing and Globus Toolkit

 Over the last few years, "the Grid" in the context of resource sharing in distributed environments
has gained a lot of attentions from the academic, government and commercial researchers. The term
"Grid" refers to systems and applications that integrate and manage resources and services
distributed across multiple control domains [11]. The Grid can accommodate very diverse resource
types including storage devices, software, databases, objects, CPU power, files and others across
many organizations in different geographical locations. Besides Grid computing aims to provide
control of resource sharing and problem-solving collaboration with flexibility and security. The
flexibility allows dynamic membership of a Grid in which Grid components can join and leave at
will. Grid computing provides services with very large scale datasets and resource sharing in a
global scale with heterogeneous systems.

 The Globus Toolkit [12, 13] is a community based, open-architecture, open-source set of services
and software libraries that provide the basic building blocks of grid-based applications and
infrastructures. The toolkit addresses issues of security, information discovery, resource
management, data management etc. The Globus [23] is generally recognized as the de facto
standard in Grid computing. The major components of the toolkit include (1) The Grid Security
Infrastructure (GSI), (2) Resource Management Services, (3) Information Services and (4) Data
Transfer Protocol, e.g., GridFTP.

 Grid Security Infrastructure (GSI) [14] is the portion of the Globus Toolkit that provides the
fundamental security services needed to support Grids. The public-key-based GSI provides single
sign-on authentication and communication protection. The single-sign-on authentication makes it
possible to authenticate a user just only once and thus create a proxy credential that a program can
use to authenticate with any remote service on the user's beha lf. GSI handles the mapping of the
proxy certificate to the diverse local credentials and authentication/authorization mechanisms that
apply at each site. GSI uses X.509 certificates [28], a widely used for PKI certificates as the basis
of user authentication. GSI defines and X.509 proxy certificate to leverage X.509 for support of
single sign-on and delegation. An X.509 certificate, in conjunction with an associated private key
forms a unique credential set that a Grid entity uses to authenticate itself to other Grid entities. Each
GSI certificate is issued by a trusted party known as a Certification Authority (CA). The CA is
generally run by a large organization or commercial company.

 4

 Globus Toolkit's Meta Computing Directory Service (MDS) [9] provides a framework for
discovering and accessing information about the structure and state of Grid resources. A resource
obtains the information about other resources through GRIP (Grid Resource Information Protocol).
GRIP supports both discovery and enquiry. Discovery is supported by searching where as enquiry
corresponds to a direct lookup of information. For example, a service provider may provide various
resources to other Grid entities. A broker (or user) can make a search on provider to obtain a set of
results that roughly match a given criteria. After getting the search result, the broker can query the
provider about the resource description and status. Besides, it can also make a subscription request
to the provider such that resource update information will be delivered to it in a periodic fashion. A
resource uses Grid Resource Registration Protocol (GRRP) to notify other entities that it is a part of
Grid. GRRP is a soft-state [26] protocol. Soft-state is information that times out and must be
periodically refreshed. Thus, using a soft state protocol is advantageous in that stale information
does not need to be removed explicitly since it would time out eventually. Besides, it is resilient to
failure because a single lost message does not cost irretrievable harm.

 Grid Resource Allocation and Management (GRAM) [10] protocol provides reliable, secure
remote creation and submission of a computational request to a remote computational resource and
subsequent monitoring and control of resulting computation. The GRAM API provides functions
for submitting and canceling a job or computational request. When a job is submitted a job handle
is returned to the user. The user can use this handle later for monitoring and querying the status of
the job. There are three major components in GRAM: gatekeeper, job manager and GRAM
Reporter. The gatekeeper performs the authentication between remote user and resource and
determines a local user name for the remote user. GSI mechanisms are used for authentication and
credent ial delegation purpose. The gatekeeper then starts the job manager which actually handles
the request. The job manager is responsible for starting the job on the resources and monitoring
those while executing. The GRAM Reporter is responsible to publish the information about the
scheduler and state into MDS. The state includes various information such as total number of
nodes, currently active nodes, queue wait time and so on. A two-phase commit protocol is used for
reliable invocation based on techniques used in the Condor system [12].

 GridFTP is a data transfer protocol which is an extended version of FTP to provide secure,
reliable and effective data transport of Grid data [2]. GridFTP supports GSI and Kereberos
authentication with user controlled setting of various levels of data integrity and confidentiality. It
also makes a third party to initiate, monitor and control file transfer between two other sites. It
supports parallel data transfer through FTP command extensions and data channel extension.
Moreover GridFTP can initiate stripped data transfer as well as it supports partial file transfer
between two sites.

3. Related Work

 Recently there has been a rise of interest in studying and modeling Grid environments. GridSim
[4] is a Java-based discrete event simulator that supports modeling and simulation of heterogeneous
Grid resources, users and application models. Nimord-G [5] is a resource broker that performs
scheduling of parameter sweep task-farming applications on geographically distributed models. It
supports deadline and budget based scheduling driven by market-based economic models. GridSim

 5

simulates a Nirmod-G like Grid resource broker. It evaluates the performance of deadline and
budget constrained cost and minimization scheduling algorithms. Though GridSim supports
scheduling of jobs, it does not model anything related to data replication such as automated replica
creation and/or selection.

 Kavitha et al. [19] proposed a strategy for creating replicas automatically in a generic
decentralized peer-to-peer network. The goal of their model is to maintain replica availability with
some probabilistic measure. Their decentralized model has some advantages: there is no point of
failure and it does not rely on a central monitoring scheme. The disadvantages are: nodes take
decisions on partial information and sometimes it may lead to unnecessary replication.

 Foster and Ranganathan [20] discuss various replication strategies. All these replication strategies
are tested on hierarchical Grid architecture. The replication algorithms proposed are based on the
assumption that popular files of one site will be popular at another site. The client site will count
the number of hops for each site that hold replicas. According to the model, the best replica will be
one that is the least number of hops from the requesting client. Though this is a simple heuristic, it
does not consider current network bandwidth. Further, they assume that during file transfer
between two sites, the link is busy and unable to transfer any other file through that link until the
transfer ends. We do not constrain our model in this way so we select the best site by optimizing
current network bandwidth and disk throughput Therefore, our model simulates the real Grid file
transfer as well as allows other sites to transfer files through the same link at the same time but with
reduced performance. Our replication algorithm is used by Grid sites when they need data locally
and are based on both network attributes and data popularity while considering spatial and temporal
locality.

 Chervenak et al. [7] characterize the requirements for a Replica Location Service (RLS) and
describe a data Grid architectural framework, Giggle (GIGa-scale Global Location Engine), within
which a wide range of RLSs can be defined. An RLS is composed of the Local Replica Catalog
(RLC) and the Replica Location Index (RLI). The LRC maps logical identifiers to physical
locations and vice versa. It periodically sends out information to other RLSs about its contents
(mapping) via a soft-state propagation method. Collectively, the LRCs provide a complete and
locally consistent record of global replicas. The RLI contains a set of pointers from logical
identifier to LRC. The RLS uses the RLIs to find LRCs that contain requested replicas. RLI may
cover a subset of LRCs or cover the entire set of LRCs.

 Allcock et al. [2] developed a replica management service using the building blocks of Globus
Toolkit described above. The Replica Management infrastructure includes Replica Catalog and
Replica Management Services for managing multiple copies of shared data sets. The Replica
Catalog allows users to register files with a logical filename(s) or logical collection(s). It also
maintains a mapping between the logical filename to one or more physical locations. It allows users
and applications to query the catalog to find all existing copies of a particular file or collection of
files. The replica catalog was implemented as a Lightweight Directory Access Protocol (LDAP)
[18] directory. The management service however does not implement the full replica management
functionality and does not enforce any replication semantics. It also does not provide any replica
optimization or any other capabilities that we fo resee for the immediate future based on our reading
of the literature

 6

 In this paper, we introduce a higher level service that provides full dynamic replication
functionality and it can use basic replica management services implemented in Globus to
automatically create new replicas. The server can select the best one among replicas based on
network and storage system performance.

4. K-Nearest Rule in Replica Selection

 We define the replica selection problem in this way: find the best replica that will minimize the
transfer time. This problem may be considered as a classification problem. Classification is the
process of finding a set of models or functions that describe and distinguish data classes or concepts
for purpose of predicting the class of objects whose class labels are unknown. Consider each
training sample has n attributes: A1, A2,….., An-1, C, where C is the class attribute. Now if a new
data sample whose attribute values for A1, A2,….., An-1 are known, while the class attribute is
unknown, the classification model predicts the class label of the new data sample using the known
values of attribute values A1, A2,………., An-1. When a new sample arrives, K-Nearest classifier
finds the k neighbors nearest to the new sample in the training space based on suitable similarity or
closeness metric. A common similarity function is based on Euclidian distance between two data
samples. For example, by considering attributes other than class labels and if P=<p1,p2, ……, pn-1>
and Q=<q1,q2, ……, qn-1> are two data samples, the Euclidian similarity function is d(P,Q)=

∑
−

=
−

1

1

2)(
n

i
ii qp . After finding the k-nearest samples based on the distance metric, the popularity

class label of those k sample data points can be assigned to the new sample as its class. If there is
more than one popular class label, one of them can be selected randomly.

 In our simulated Grid environment, each computing site maintains a history of transfer when a
file has been requested and transported to that client. The history inc ludes the timestamp when the
file transfer ends, the file index of the logical file and the storage site from which the file has been
transferred. Each tuple in the history now includes three attributes with the storage site as the class
label. After sufficient number of file transfers, each client builds a history that can be used as
training space for a new tuple. At this point, when a new file request arrives, rather than finding the
information from the replica catalog it finds the best site from the previous history of file transfer.
The client determines the popularity of the class label, i.e., storage site for k sample data points
based on the distance metric with respect to two attributes: timestamp and file index. We use a
weighted distance metric d(P,Q)= ∑

−

=
−

1

1

2)(
n

i
iii qpw , where wi represents the weight assigned

each attribute. As timestamp are recorded to the milliseconds, we set w1 to a fractional value and w2
to unit value. File requests contain temporal locality, therefore, file index in distance measure will
definitely improve the classification rate. For example, let us consider two sample points P1=<p11,
p12, S1> P2=<p21, p22, S2> and a new sample point P3=<p31, p32, ?> whose class label is unknown.
Suppose p21> p11, that is P2 tuple has a recent transfer log than P1, and P3 has the same file index
as P1, i.e., p32= p12 but differs from P2 by one index number, i.e., p32= p22+1. Now as the file
contains temporal locality, we can say that if a logical file with index p22 is stored at site S2, the
other file nearby its index say p22+1 is also stored at site S2. Moreover, recent history shows that S2
is the best site to find a replica by considering current network and disk information. Therefore, the

 7

recent history and temporal locality votes for site S2 rather than S1 although S1 is the site from
which the requesting file was transferred previously.

 The execution of a computing element is illustrated in Figure 1. The flow shows that if a
computing element has sufficient history, it finds the best site using the k-nearest rule, otherwise it
contacts the replica catalog to find all file replicas. Initially, each computing element gets
information from the replica catalog and picks the best one that optimizes the transfer time
considering current network and disk state. When each site has enough transfer history, it requests
the best site by using the KNN rule. If the site found by the k-nearest rule has been deleted by this
time because of insufficient disk space or another file’s popularity exceeds than the requesting one,
the computing element contacts the replica catalog to find other available replicas for that file. It
will pick the best one to optimize the transfer time.

.

Get The Job From
Job Queue

Get the next
logical filename

from job
description

Do I have
enough history

of log ?

Yes

Find the best site
by using K-

nerarest Rule

Check if the
site still hold
the replica?

Yes
Transfer the file

form that site and
save this transfer
information in log

Contact Replica
Catalog

Find replicas of file

Choose the best
one

Transfer from the
best site and save

this transfer
information in log

Increase the
log count

Increase the
log count

No

No

Figure 1: Execution Flows of a Computing Element.

5. Simulation

 To evaluate our approach we use a simulation package called OptorSim [22], written in Java.
OptorSim is a Data Grid simulator designed to allow experiments and evaluations of various
replication optimization strategies in a Grid environment.

5.1 Architecture

 8

 The simulator is designed assuming that Grid consists of a number of sites, each consisting of zero
or more computing elements and zero or more storage elements. The computing elements provide
computational resource and the storage elements serve as data storage resources for submitted jobs.
Sites without storage or computing elements act as routers. A resource broker acts as a meta-
scheduler that controls job scheduling to different computing elements. A job in OptorSim must
access a set of files which may be located at different storage sites. To get the physical locations of
a logical file, each computing element consults with the replica management service. After getting
information from the replica catalog, the replica management service returns the locations of the
physical files for the requested logical file to the computing element.

 In OptorSim, the optimization technique used to get the best replica from different physical
locations is by examining the available bandwidth between the requesting computing element and
various storage elements that hold replicas. The optimization technique does not consider the disk
state when finding the best replica. The best replica will be the one that has the minimum transfer
time with respect to current network state. We extend the optimization technique by considering
disk throughput along with network bandwidth to find the best replica because file transfer time
includes both network time and disk I/O time.

5.2 Grid Internals

OptorSimMain StorageElement
Replica

Mangager
ResourceBroker

Computing
Element

Job pfn1:PFN pfn1:PFN

initStorageElements()
:Distribute Master

Files
rm.RegistryEntry(lfn, pfn):
Register master files in

Replica Catalog

rb.start()
Start the Resource

Broker

getAccessCosts(
LFN[],CE[]....)

accessCost[]

schedulJob() : Schdule
the job in best CE

startJob()

getBestFile(LFN_1, LFN_2,....)

bestPFN1, bestPFN2,....

read()

read()

jobCompletion

rm.replicateFile(lfn,source, dest):
 copy and replicate file to local SE and
register information in replica catalog

rm.replicateFile(lfn,source, dest):
 copy and replicate file to local SE and
register information in replica catalog

Figure 2: Typical interaction occurring in the Optorsim

 9

Figure 2 depicts a typical interaction between various components in OptorSim. OptorSimMain is
the entry point of the simulator.

• 1tt = : OptorSimMain initializes the storage elements and distributes the master files
among different storage sites as specified in the configuration file.

• 2tt = : Storage elements register those master files in the replica catalog.
• 3tt = : OptorSimMain starts the resource broker.
• 4tt = : The resource broker calls getAccessCosts([LFN1..LFNN], CE[], …) to get the

minimum access costs for all candidate CEs with respect to physical locations of the
data. The information is used to determine the best CE for job execution.

• 5tt = : The resource broker schedules the job to the best client.
• 6tt = : The job starts.

• 7tt = : The job calls getBestFile([LFN1, LFN2], …) to determine the best physical
locations of logical files considering current network and disk state.

• 118 ...ttt = : While reading the files from other storage sites, the CE makes a replica of
each file to its own storage and registers this information into replica catalog.

Resource Broker Replica Optimiser Replica Catalog DiskClientNetworkClient Computng Element

getAccessCost(LFN[],
CE[], protocol)

rm.lisreplicas(LFN1)

rm.lisreplicas(LFN2)

PFN_1[]

PFN_2[]

getNetworkCosts(soruceSite of PFN_1[], destSite,
PFN_1_size)

getNetworkCosts(soruceSite of PFN_2[], destSite,
PFN_2_size)

networkcost[]

networkcost[]

getDiskCosts(sourceSite of PFN_1[], PFN_1_size)

getDiskCosts(sourceSite of PFN_2[], PFN_2_size)

diskCost[]

diskCost[]

accessCost[]

scheduleJob()

Figure 3: Internal behavior of the Replica Manager

 10

Figure 3 shows the sequence of events that happen when the resource broker calls the function
getAccessCosts().

• 1,4tt = : Replica Manager’s listreplica() method is called to find the physical locations of the
logical files. A number of physical filenames (PFN) will be found for a logical filename
(LFN)

• 2,4tt = : Network cost is estimated for each site that holds a PFN corresponding to LFN.

• 3,4tt = : The disk cost will be estimated for getting PFN from storage site.

• 4,4tt = : The access cost for each CE are calculated based on the values returned by
getNetworkCosts() and getDiskCosts().

5.3 Grid Configuration

 The study of our optimization algorithm and K-Nearest replica selection algorithm was carried
out using a model of the EU Data Grid Testbed 1 [3] sites and their associated network geometry.
Site 8 is considered as CERN (European Organization for Nuclear Research). A master file
contains the original copy of some data samples and can not be deleted.

 Each circle in Figure 2 represents a Testbed site and a star represents a router. Each link between
two sites shows the available network bandwidth. The network bandwidth is expressed in Mbits/sec
(M) or Gbits/sec (G). The storage space and the disk throughput are also shown in braces. For
example, Figure 2 shows that Site 0 has 80 GigaByte (GB) storage capacity with a disk throughp ut
260 M (Megabits/sec).

Site 0

Site 16 Site 17

Site 3

Site 4

Site 5

Site 6

Site 7 Site 8

Site 11

Site 9

Site 12

Site 13

Site 14

Site 15

Site 2

Site 1

Site 10

2.5 G 2.5 G 10 G 155 M

2.5 G 622 M
155 M

2.5 G

10 G

10 G

2.5 G

10 G

155 M

1 G

10 G

10 G

10 G 45 M

155 M45 M

10 M

(80 GB, 260 M)
(50 GB, 250 M)

(70 GB, 240 M)

(50 GB, 300 M) (100 TB, 100 M)

(50 GB, 200 M)

(50 GB, 150 M)

(30 GB, 160 M)

(30 GB, 170 M)

(63 GB, 320 M)

(33 GB, 250 M)

Figure 4: The EU Data Grid Testbed 1 sites and the approximate network and disk geometry.

 11

 5.4 Simulation Input

 Our program gets input from three configuration files. One file describes the network topology,
i.e., the link between different sites, the available network bandwidth between sites, the size of disk
storage of each site and the disk throughput of the disk storage. The second configuration file
contains information about simulated jobs and the name of logical files which the job needs to
access while executing. It also contains the index of each logical file and the schedule table for each
computing element, i.e., which jobs each computing element will run. The third configuration file
initializes different parameters for running the simulation. These parameters may include
information such as total number of jobs to be run, file processing time, delay between each job
submission, maximum queue size in each computing element, file access pattern, the optimization
algorithm used and so on.

As mentioned above, a job will typically request a set of logical filename for data access. The
order in which the files are requested is determined by access pattern. In this simulation we
experimented with four access patterns: sequential (files are accessed in the order that has been
stated in the job configuration file), random (files are accessed using flat random distribution),
unitary random (file requests are one element away from previous file request but the direction will
be random), Gaussian random walk (files are accessed using a Gaussian distribution). Those file
access patterns are shown in Figure 5.

0
2

4
6
8

10
12

0 2 4 6 8 10 12
File Request

Fi
le

 ID

Sequential

0

2

4
6

8

10

12

0 2 4 6 8 10 12
File Request

Fi
le

 ID

Random

0

2

4

6

8

10

0 2 4 6 8 10 12
File Request

Fi
le

 ID

Unitary Random

0

2

4

6

8

10

0 2 4 6 8 10 12
File Request

Fi
le

 ID

Gaussian Random

 Figure 5: Various File Access Patterns
6. Simulation Results

 Our simulations are run for 200 jobs of various types. Each job requests file of different sizes. We
experimented with different file transfers starting from 10 MB (Mega Bytes) up to 1 GB (1 Giga
Bytes). The jobs are submitted with a fixed probability such that some jobs are more popular than

 12

others. Each job is submitted at 25 milliseconds interval. Time taken for completing a job is
equivalent to the waiting time in the queue in the computing element and the execution time at
computing element. Time for probing network bandwidth and disk state is considered 10
milliseconds. Our scheduling algorithm takes into account both locality of files requested by jobs
and computing element loads. The calculation of the file accessing cost is implemented by the
getAccessCosts() method described in the previous section. For each computing element that is
candidate for scheduling, the resource broker calls the getAccessCosts() method with a list of files
required for the job. The function consults with the replica catalog to find all the replicas of each
file, then calculates the time to access each replica from the give computing element by examining
the current network and disk state. By summing the times to access cost to access the best replica of
each file, getAccessCosts() returns the estimated file access time the job would have if scheduled to
the computing element. The scheduling algorithm schedules a job to the computing element that
has the minimum access cost. We use a simple replication approach called LRU (Least Recently
Used) for replica creation. In this technique, each computing element stores a replica of the file that
it has requested into its local storage element. If the storage element has sufficient space the file
will be stored there. Otherwise the storage element makes space for the newest file by deleting the
least recently used file(s). Initially each site builds a history of 50 initial file transfers. We choose
50 as an arbitrary value to see how it effects on the performance of our algorithm. In the KNN
approach each computing element finds the best one by the k-nearest rule rather than requesting the
replica catalog. For the sequential access pattern, there is a linear dependence of file access
patterns. So, it will be more intuitive to use a small value of k for sequential access pattern because
large value of k will cause other non nearby neighbors to vote and decreases the performance of the
algorithm. The remaining access patterns contain randomness so we should use a value that is
neither very large nor small. Therefore, we choose the value of k=2 for sequential access pattern
and k=5 for other access patterns. We also vary the value of k for some initial run in our simulation
and we get the highest accuracy when we take k=2 for sequential pattern and k=5 for other access
patterns. Recall that each site will be running a varying number of jobs such that some site may run
only a few jobs that result in only a few file transfers. In our experiment, every site except Site 13
and Site 15 are loaded with jobs which request more than 50 transfers. Therefore, we will not
include Site 13 and Site 15 in our analysis.

 Figure 6 documents the performance of our KNN algorithm and the traditional replica catalog
model with respect to total job times. In this case all master files are in CERN (Site 8). For the
sequential and Unitary Random access pattern, our enhanced algorithm outperforms the traditional
model. As the file will be accessed in the order specified in the job configuration file for sequential
requests, i.e. file access patterns are sequential, the KNN rule will find a recent transfer history of
neighbor(s) of a requested file. The same argument can be made for Unitary Random access pattern
because new file requests will be one element away from previous request but the direction will be
random. However, we do not see much improvement in the Uniform and Gaussian Random file
access pattern. This is because for those patterns files are accessed without any relation of previous
requests and the same file can be requested multiple times leaving some files unaccessed.
Therefore, though from previous history, KNN votes for a site x that can hold a replica of the newly
requested file y: site x may never transfer y from CERN (Site 8) so it does not hold any replica for
that file. However, this will not happen for sequential file access patterns because a job will request
files one after another and the site that runs that job creates replicas of all files needed to run the
job.

 13

Figure 6: Comparison of Total Job Times for K-Nearest Rule and Traditional Model

Sequential Site Match Mismatch Random Site Match Mismatch

Site 0 314 3 Site 0 281 36
Site 3 100 6 Site 3 93 13
Site 7 1508 3 Site 7 1471 40
Site 11 133 0 Site 11 132 1
Site 12 50 6 Site 12 47 9
Site 14 6 2 Site 14 7 1
Site 16 191 2 Site 16 186 7

 Site 17 238 0 Site 17 234 4
Unitary Site Match Mismatch Gaussian Site Match Mismatch

Site 0 286 31 Site 0 275 42
Site 3 96 10 Site 3 93 13
Site 7 1461 50 Site 7 1462 49
Site 11 131 2 Site 11 132 1
Site 12 50 6 Site 12 47 9
Site 14 6 2 Site 14 6 2
Site 16 168 25 Site 16 182 11

 Site 17 231 7 Site 17 226 12

Table 1: Classification and Misclassification Rate for Different File Access Pattern

Time Comparison for Sequential Access Pattern

0

200000
400000

600000
800000

1000000
1200000
1400000
1600000

1800000

Site
0

Site
3

Site
7

Site
11

Site
12

Site
14

Site
16

Site
17

T
im

e
in

 S
ec

o
n

d
s

 KNN

Traditional

Time Comparison for Random Access Pattern

0

100000

200000

300000

400000

500000

600000

700000

800000

Site 0 Site 3 Site 7 Site
11

Site
12

Site
14

Site
16

Site
17

T
im

e
in

 S
ec

o
n

d
s

 KNN

Traditional

Time Comparision for Unitary Access Pattern

0
100000
200000
300000
400000

500000
600000
700000
800000

Site
0

Site
3

Site
7

Site
11

Site
12

Site
14

Site
16

Site
17

T
im

e
in

 S
ec

o
n

d
s

KNN

Traditional

Time Comparison for Gaussian Access Pattern

0

200000

400000

600000

800000

1000000

1200000

1400000

Site
0

Site
3

Site
7

Site
1 1

Site
12

Site
14

Site
16

Site
17

T
im

e
in

 S
ec

o
n

d
s

KNN
Traditional

 14

 Table 1 presents the classification accuracy of the KNN rule for various file access patterns when
all files are distributed in the CERN. If the KNN rule returns the same site as returned by the
traditional replica model, the file transfer is classified as matched; otherwise it is classified as
mismatched. We see that for sequential access pattern the accuracy is highest whereas for the
Gaussian Random access pattern the accuracy is the lowest. This result also complies with Figure
6. There is a strong correlation between accuracy and job throughput as one would expect
intuitively.

 Table 1 and Figure 6 contain some discrepancies. For example, we see that for Site 16, KNN
misclassifies 11 and 25 file transfers in Gaussian access pattern and Unitary Random access
pattern, respectively. However, Figure 6 shows a better throughput in Unitary Random access
pattern than Gaussian access pattern. This is because in the Gaussian access pattern, KNN makes a
misclassification for a large file transfer, e.g., 1 GB whereas in Unitary access pattern it
mismatches with the traditional model for only small file transfers e.g., 10 MB transfers. The
misclassification for large file transfer costs more than a couple of small file transfer
misclassifications.

(a) (b)

Figure 7: a) Mean job time when CERN holds master files b) Mean job time when different
sites hold master files.

 Figure 7 shows the comparison of mean job time between two methods, when master files are
distributed randomly and when master files are distributed to the Site 8 (CERN). If CERN holds the
master files alone, all other sites have to transfer files from CERN and it generates a huge amount
of network traffic at CERN. Moreover, each site has to transport file from CERN’s storage element,
therefore, the disk storage at CERN will be busy for disk I/O and it will increase the response time.
However, if the master files are distributed to different sites, a site can transfer files from various
locations rather than from a single location. As a result it reduces both network traffic and disk I/O
time. Therefore, we get a better mean job time when master files are distributed randomly.
However, in both cases, we see that our KNN algorithm has better mean job time compared to
traditional model for various access patterns except Gaussian pattern.

 Table 2 represents a comparison of accuracy of our KNN algorithm with respect to traditional
model for different distribution methods of master files. The overall accuracy of our KNN
algorithm is 97% when master files are distributed in random sites and we get 96% accuracy when
distributed in CERN alone.

0

100000

200000

300000

400000

500000

600000

700000

Sequential Random Unitary Gaussian

T
im

e
in

 S
ec

on
ds

KNN

Traditional

0

50000

100000

150000

200000

250000

Sequential Random Unitary Gaussian

Ti
m

e
in

 S
ec

on
ds

KNN

Traditional

 15

Sequential
Master File
Distribution Match Mismatch Random

Master File
Distribution Match Mismatch

Random 2539 23 Random 2368 194
 CERN 2540 22 CERN 2451 111

Unitary
Master File
Distribution Match Mismatch Gaussian

Master File
Distribution Match Mismatch

Random 2524 38 Random 2468 94
 CERN 2429 133 CERN 2423 139

Table 2: Comparison of Accuracy

7. Possible Implementation in GT3

 Globus Toolkit version 3 (GT3) is the implementation of the Open Grid Services Architecture
(OGSA) [15], an initiative that is recasting Grid concepts within a service oriented framework
based on Web Services. Web Service is a platform and implementation independent software
component that can be discovered, combined, and recombined to provide a solution to the user’s
problem. The Java and XML are the prominent technologies for Web Services. Web service has
several advantages: service providers can publish detailed description of their functionalities
through web services, services can be easily discovered through a standard mechanism, it supports
different protocol bindings such as HTTP and SOAP and web service can be easily incorporated
into or composed with other services. However, web service has disadvantages too: it is stateless
and non-transient. Grid service, an extension of web service solves the problems of Web Services
by a factory approach. Grid services also provide some necessary tools such as call back functions
to effectively manage lifecycle and service data elements for describing its service. Besides, Grid
services support notification policy to notify the changes to subscribed clients. OGSA defines a
common and standard architecture for computational and storage resources, network programs and
databases. It defines the Grid services which are the center of this architecture. Open Grid Service
Infrastructure (OGSI) [15] is a formal and technical specifications of the concepts described in
OGSA including Grid services. GT3 is a software tool that allows us to program in Grid based
applications.

 Figure 8 depicts a possible implementation of our algorithm in GT3. We propose Condor-G [16]
as resource broker or meta-scheduler of our algorithm. A user will submit his request for running
jobs to Condor-G scheduler. The request will include a list of jobs. Each job is described by a set of
files that are required to run that job. The Condor-G scheduler creates a new GridManager daemon
to submit and manage those jobs. The GridManager process will handle all jobs for a single user
and terminate when all jobs will be finished. The GridManager process requires the functionality of
the Replica Management Service, in particular the optimization functions in order to determine the
best computing element on which to schedule a job. Replica Management Service (RMS) factory
provides such service to GridManagger in our algorithm. RMS factory creates a RMS instance that
will contact the Replica Catalog to find the physical locations of logical files required to run the
job. It will then ask the Replica Selection Service to find the best site for hosting the current job by
considering current network and disk state. Network Weather Service (NWS) [32] will be used to
sense network bandwidth and IOSTAT [27] for disk state.

 16

User

Condor-G
Scheduler

Condor-G
Grid Manager

Replica Management
Service (RMS) Factory

RMS Instance

Replica Catalog

 Replica Selection
(Optimiztion) Service

Network
Weather
Service
(NWS)

IOSTAT

S
to

ra
g

e
fo

r
S

it
e

A

S
to

ra
g

e
fo

r
S

it
e

B

Globus
GateKeeper

Globus
JobManager

Job X

Globus
GateKeeper

Globus
JobManager

Job Y

Fork

Job Queue

Site A Site B

Fork

Job Submission to Local
Scheduler (PBS, Condor etc.)

Job Submission to Local
Scheduler (PBS, Condor etc.)

Fork

GridFTP Transfer GridFTP Transfer

Figure 8: A possible implementation of our algorithm in GT3

 Getting the result from RMS factory, the GridManager hosts the job to the best site through
GlobusGateKeeper. Next, the Globus JobManager submits the job to the execution site’s local
scheduling system. It is mentioned before that a set of files are required to run a job. The
information about physical locations of logical files can be found from Replica Catalog. Therefore,
each site will contact the RMS factory to find the physical locations of the files that are needed to
run the job. If the files are in current site, the job will access files from local storage. Otherwise, it
will find the best site hosting replica(s) by querying the Replica Selection Service in the same way
as described above. Next, the file(s) will be transferred from the best site by GridFTP. Each site
creates a new replica of the file that it transfers from other site into local storage. Then each site

 17

registers the new replica in Replica Catalog. Besides, each site updates its transfer log reflecting the
current file transfer. The transfer log will be used as training space of our KNN algorithm when
each site has a sufficient history of file transfers. Updates on job status are sent by the JobManager
back to the GridManger, which then updates the Scheduler where the job status will be stored
persistently.

 A GSI proxy credential is used by the Condor-G agent to authenticate with remote resources on
the user’s behalf. To reduce the user hassle in dealing with expired credentials, Condor-G could be
enhanced with a system like MyProxy [25]. The information about Replica Management Service
can be found from MDS. We have a plan to develop Replica Management Service and Replica
Selection Service (RSS) as Grid Service. We will use the Globus Toolkit’s Replica Catalog [2]
component for indexing logical file to physical locations and vice versa. The GridManager or a
computing site connects to the RMS factory by Grid Service Handle (GSH) and logical filename
(s). The RMS and RSS grid service interface will be written in WSDL (Web Service Description
Language) [8]. It can be also generated from a Java interface. For Grid service implementation,
java classes will be used. These Java classes provide implementation of methods that are specified
in the service interface. The deployment descriptor will be written in WSDD (Web Service
Deployment Descriptor). WSDD tells the web server how it should publish the RMS and RSS
service.

8. Conclusion and Future Work

 In this paper, we presented a model that utilizes a simple data-mining approach called the k-
nearest rule to select the best replica from a number of sites that hold replicas. To select the best
replica we designed an optimization technique that considers network latency and disk state. We
studied different file access patterns on the performance of the k-nearest model and compared our
results with traditional algorithm. Our k-nearest rule shows a significant performance improvement
for sequential and unitary random file access pattern.

 As part of future work, we plan to design an adaptive k-nearest neighbor algorithm so that it can
switch to traditional model when it encounters misclassification with traditional model for
consecutive file transfers. Further, rather than using the fixed value of k, we can use an adaptive
value of k that will change dynamically as the simulation runs to improve performance
dynamically. Moreover, before making a decision about the best site for large file transfers each
site can verify the best one by varying the value of k. We also have a plan to implement our
algorithm in WestGrid [31] middleware to see its performance in real Grid Environment.

References:

[1] Aha, D., D. Kibler, and M. Albe. Instance based learning algorithms. Machine Learning, 6:37--66,
 1991.

[2] Allcock, B., J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
 D. Quesnel, S. Tuecke. Secure, Efficient Data Transport and Replica Management for High
 Performance Data-Intensive Computing .IEEE Mass Storage Conference, 2001

[3] Bell, Willam., D. G. Cameron, L.Capozza, A., P. Millar, K. Stockinger, and F. Zini. OptorSim - A Grid

 18

 Simulator for Studying Dynamic Data Replication Strategies. International Journal of High
 Performance Computing Applications, 17(4), 2003.

[4] Buyya, R., and M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of Distributed
 Resource Management and Scheduling for Grid Computing, The Journal of concurrency and
 Computation: Practice and Experience (CCPE), Volume 14, Issue 13-15, Wiley Press, Nov.-Dec.,
 2002.

[5] Buyya, R., D. Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource Management and
 Scheduling System in a Global Computational Grid , HPC Asia 2000, May 14-17, 2000, pp 283 289,
 Beijing, China.

[6] Chervenak, A., I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid: Towards and
 Architecture for the Distributed Management and Analysis of Large Scientific Data Sets. Journal of
 Network and Computer Applications, 23(3):187-200, 2000.

 [7] Chervenak, A., E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunst, M.
 Ripeanu, B, Schwartzkopf, H, Stockinger, K. Stockinger, B. Tierney. Giggle: A Framework for
 Constructing Sclable Replica Location Services. Proceedings of Supercomputing 2002 (SC2002),
 November 2002

 [8] Christensen, E. Web Services Description Language (WSDL) 1.1. W3C Note, 15 Mar. 2001

 [9] Czajkowski, K., S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services for Distributed
 Resource Sharing. Proceedings of the Tenth IEEE International Symposium on High-Performance
 Distributed Computing (HPDC-10), IEEE Press, August 2001

 [10] Czajkowski, K., I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. A Resource
 Management Architecture for Metacomputing Systems. Proc. IPPS/SPDP '98 Workshop on Job
 Scheduling Strategies for Parallel Processing, pg. 62-82, 1998

 [11] Foster, I., C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
 organization. International Journal of High Performance Computing Applications,15 (3), 2001.

 [12] Foster, I., C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl Journal of
 Supercomputer Applications , 11(2):115-128, 1997.

 [13] Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. In Foster, I. and
 Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann,
 1999, 259-278.

 [14] Foster, I., C. Kesselman, G.Tsudik, and S. Tuecke. A Security Architecture for Computational
 Grids. In ACM Conference on Computers and Security, 1998, 83-91.

 [15] Foster, I., C. Kesselman, J. Nick, S. Tuecke. Grid Services for Distributed System Integration.
 Computer, 35(6), 2002.

 [16] Frey, J., T. Tannenbaum, M. Livny, I. Foster, S. Tuecke. Condor-G: A Computation Management
 Agent for Multi-Institutional Grids. Proceedings of the Tenth International Symposium on High
 Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

 19

 [17] Gray, J. and P. Shenoy. Rules of Thumb in Data Engineering. International Conference on Data
 Engineering ICDE2000, 2000, San Diego: IEEE Press.

 [18] Howes T.A and M. Smith. A scalable, deployable directory service framework for the internet.
 Technical report, Center for Information Technology Integration, University of Michigan, 1995.

 [19] Kavitha, R., A. Iamnitchi, and I. Foster. Improving Data Availability through Dynamic Model
 Driven Replication in Large Peer-to-Peer Communities. Proceedings of Global and Peer-to-Peer
 Computing on Large Scale Distributed Systems Workshop, Berlin, Germany, May 2002.

 [20] Kavitha, R., and I. Foster, Design and Evaluation of Replication Strategies for a High performance
 Data Grid, in Computing and High Energy and Nuclear Physics 2001 (CHEP’01) Conference.

 [21] Livny, M. High-Throughput Resource Management. In Foster, I. and Kesselman, C. eds. The Grid:
 Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 311-337.

 [22] OptorSim, http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html

 [23] The Globus Project, http://www.globus.org

 [24] The GriPhyN Project, http://www.griphyn.org

 [25] Novotny, J., S. Tuecke, and V. Welch. An Online Credential Repository for the Grid:
 MyProxy, Proceedings of the Tenth International Symposium on High Performance Distributed
 Computing (HPDC-10), IEEE Press, August 2001

 [26] Raman, S. and S. McCanne, A Model, Analysis, and Protocol Framework for Soft State-based
 Communication. Computer Communication Review, 1999. 29(4).

 [27] SYSSTAT Utilities Homepage, http://perso.wanadoo.fr/sebastien.godard/,

 [28] Tuecke, S., Engert, D., Foster, I., Thompson, M., Pearlman, L. and Kesselman, C. Internet X.509
 Public Key Infrastructure Proxy Certificate Profile. IETF, Draft draft-ietf-pkix-proxy-01.txt, 2001.

 [29] Vazhkudai, S., J. Schopf. Using Disk Throughput Data in Predictions of End-to-End Grid Transfers.
 Proceedings of the 3rd International Workshop on Grid Computing (GRID 2002), Baltimore, MD,
 November 2002.

 [30] Vazhkudai, S., J. Schopf. Using Regression Techniques to Predict Large Data Transfers. The
 International Journal of High Performance Computing Applications (IJHPCA), special issue on Grid
 Computing: Infrastructure and Applications, August 2003.

 [31] The WestGrid Project, http://www.westgrid.ca

 [32] Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service.
 Cluster Computing, 1998.

