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Abstract 
 
   Grid technology is developed to share data across many organizations in different geographical 
locations.  Data replication is a good technique that helps to move data because it caches data 
closer to users. The idea of replication is to store copies in different locations so it can be easily 
recovered if one copy at one location is lost. Moreover, if data can be kept closer to user via 
replication, data access performance can be improved dramatically. When different sites hold 
replicas, there are significant benefits realized when selecting the best replica. Network 
performance plays a major role in selecting a replica. However, current research shows that other 
factors such as disk I/O also plays an important role in file transfer. In this paper, we describe a 
new optimization technique that considers both disk throughput and network latencies when 
selecting the best replica. Previous history of data transfer can help in predicting the best site that 
can hold replica. The k-nearest neighbor rule is one such predictive technique. In this technique, 
when a new request arrives for best replica, it looks at all previous data to find a subset of previous 
file requests that are similar to it and uses them to predict the best site that can hold replica. In this 
work, we implement and test the k-nearest algorithm for various file access patterns and compare 
results with the traditional replica catalog based model. The results demonstrate that our model 
outperforms the traditional model for sequential and unitary random file access requests. 
 
1. Introduction 
  
   The research community has recently recognized that advances in network bandwidth, processor 
speed and storage technologies make truly global sharing of distributed resources feasible. Grid 
computing evolves from the concept of integrating a collection of distributed computing resources 
to offer performance which are unattainable by any single machine. Grid computing allows 
coordinated resource sharing and problem solving collaboration in dynamic, multi- institutional and 
other potentially large-scale settings [6]. In a large amount of scientific disciplines such as global 
climate change, high energy physics and computational genomics, large data collections are 
emerging as important community resources. These large data stores must be able to be shared with 
researchers around the world. High performance Grid architecture allows us to identify the 
requirements and components common in different system and hence apply different technologies 
in a coordinated fashion to a range of data intensive petabyte scale application designed in Grid 
environment. As Grid technology is developed to share data across many organizations in different 
geographical locations, data replication proves to be a good technique that helps to move data by 
caching it closer to users [20]. The general idea of replication is to store copies of data in different 
locations so that data can be easily recovered if one copy at one location is lost. Moreover, if data 
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can be kept closer to user via replication, data access performance can be improved dramatically. 
Replication is a solution to many grid-based applications such as Climate data analysis and the Grid 
Physics Network [24] which requires responsive navigation and manipulation of large-scale 
datasets. 
  
   If multiple replicas exist, a replica management service is required. Replica management service 
discovers the available replicas and selects the best replica that matches the user's quality of service 
requirements. The replica selection problem can be divided into two sub-problems: 1) discovering 
the physical location(s) of a file given a logical file name, and 2) selecting the best replica from a 
set based on some selection criteria.  
  
   Since different sites hold replicas of a particular file, there is a significant benefit in selecting the 
best replica among them. Network performance plays a major role when selecting a replica. A slow 
network limits the efficiency of data transfer regardless of client and server implementation. One 
optimization technique to get the best replica from different physical locations is by examining the 
available bandwidth between the requesting computing element and various storage elements that 
hold replicas. The best site will be the one that has the minimum transfer time to transport the 
replica to requested site. Although, network bandwidth plays a major role in selecting the best 
replica, other source such as disk I/O plays an important role as well. Vazkhudai et al. [29, 30] 
show that disk I/O can account up  for 30% of the transfer time in Grid environment. It is also 
noteworthy that disk capacity is increasing at the rate of two magnitudes per decade but the disk 
throughput is not increasing correspondingly. It has been shown that the ratio between disk 
capacity and disk throughput is increasing only at a single magnitude rate [17]. On the other hand, 
network bandwidth will increase three times per year. As the network latency drops significantly 
per year, disk I\O will play a major role in the file transfer cost between different sites. Therefore, 
in this work, to measure Grid file transfer time, we extend the optimization technique by 
considering disk throughput with network bandwidth when selecting the best replica.  The 
optimization function then returns the physical file name that will optimize the current network 
bandwidth between the requesting site and storage elements while considering the disk throughput 
of the storage elements.   
  
   In Grid environment, a replica catalog allows users to register files using a logical filename(s) or 
collection(s). It also provides mappings from logical names of files to the storage system location 
of one or more replicas of these objects. Generally the replica location service is centralized. 
Therefore, the requesting site must wait while all requests in the replica location queue are 
processed. This may cause substantial delays if there are a lot of pending requests. Further, as many 
sites hold the replica, the requesting site must find the best one by probing the network link and 
current state of disk storage. We can save this time, if we use the previous history of file transfers.  
Previous history sometimes provides some useful information such as the access frequency of a 
file, the access pattern between different file requests. If the requested file or its nearby file has 
been accessed recently, say from storage site x, we know that it will be accessed from site x again 
with a significant probability. Therefore, rather than getting information from  the replica location 
service every time, the computing element can directly request the file from the previous requested 
storage site. To select the best replica locally, we use a simple technique called the K-Nearest 
Neighbor (KNN) rules [1]. KNN is extremely simple to implement and it is a good choice as no 
residual classifier needs to be built ahead of time. The traditional k-nearest classifier finds the k 
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nearest neighbors based on some distance metric by finding the distance of the target data point 
from the training dataset and then identifying the class from those nearest neighbors by some 
voting mechanism. The general strategy for KNN is to classify a new point as the majority of the k-
nearest points have been classified.  
 
  The reminder of the paper is organized as follows. We give a brief introduction of Grid 
Computing and Globus Toolkit in Section 2. We present the related work in Section 3. The k-
nearest rule and architecture of k-nearest replica selection are discussed in Section 4. The 
simulation setup is described in Section 5. An evaluation and comparison of our technique with the 
tradition replica catalog model is presented in Section 6. In Section 7, we propose a possible 
implementation of our algorithm in Globus Toolkit version 3. Finally in Section 8, we conclude and 
give directions for future work.  
 
2. Grid Computing and Globus  Toolkit 
 
   Over the last few years, "the Grid" in the context of resource sharing in distributed environments 
has gained a lot of attentions from the academic, government and commercial researchers. The term 
"Grid" refers to systems and applications that integrate and manage resources and services 
distributed across multiple control domains [11]. The Grid can accommodate very diverse resource 
types including storage devices, software, databases, objects, CPU power, files and others across 
many organizations in different geographical locations. Besides Grid computing aims to provide 
control of resource sharing and problem-solving collaboration with flexibility and security. The 
flexibility allows dynamic membership of a Grid in which Grid components can join and leave at 
will. Grid computing provides services with very large scale datasets and resource sharing in a 
global scale with heterogeneous systems. 
 
   The Globus Toolkit [12, 13] is a community based, open-architecture, open-source set of services 
and software libraries that provide the basic building blocks of grid-based applications and 
infrastructures. The toolkit addresses issues of security, information discovery, resource 
management, data management etc. The Globus [23] is generally recognized as the de facto 
standard in Grid computing. The major components of the toolkit include (1) The Grid Security 
Infrastructure (GSI), (2) Resource Management Services, (3) Information Services and (4) Data 
Transfer Protocol, e.g., GridFTP. 
 
   Grid Security Infrastructure (GSI) [14] is the portion of the Globus Toolkit that provides the 
fundamental security services needed to support Grids. The public-key-based GSI provides single 
sign-on authentication and communication protection. The single-sign-on authentication makes it 
possible to authenticate a user just only once and thus create a proxy credential that a program can 
use to authenticate with any remote service on the user's beha lf. GSI handles the mapping of the 
proxy certificate to the diverse local credentials and authentication/authorization mechanisms that 
apply at each site. GSI uses X.509 certificates [28], a widely used for PKI certificates as the basis 
of user authentication. GSI defines and X.509 proxy certificate to leverage X.509 for support of 
single sign-on and delegation. An X.509 certificate, in conjunction with an associated private key 
forms a unique credential set that a Grid entity uses to authenticate itself to other Grid entities. Each 
GSI certificate is issued by a trusted party known as a Certification Authority (CA). The CA is 
generally run by a large organization or commercial company. 
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   Globus Toolkit's Meta Computing Directory Service (MDS) [9] provides a framework for 
discovering and accessing information about the structure and state of Grid resources.  A resource 
obtains the information about other resources through GRIP (Grid Resource Information Protocol). 
GRIP supports both discovery and enquiry. Discovery is supported by searching where as enquiry 
corresponds to a direct lookup of information. For example, a service provider may provide various 
resources to other Grid entities. A broker (or user) can make a search on provider to obtain a set of 
results that roughly match a given criteria. After getting the search result, the broker can query the 
provider about the resource description and status. Besides, it can also make a subscription request 
to the provider such that resource update information will be delivered to it in a periodic fashion. A 
resource uses Grid Resource Registration Protocol (GRRP) to notify other entities that it is a part of 
Grid. GRRP is a soft-state [26] protocol. Soft-state is information that times out and must be 
periodically refreshed. Thus, using a soft state protocol is advantageous in that stale information 
does not need to be removed explicitly since it would time out eventually. Besides, it is resilient to 
failure because a single lost message does not cost irretrievable harm. 
 
   Grid Resource Allocation and Management (GRAM) [10] protocol provides reliable, secure 
remote creation and submission of a computational request to a remote computational resource and 
subsequent monitoring and control of resulting computation.  The GRAM API provides functions 
for submitting and canceling a job or computational request. When a job is submitted a job handle 
is returned to the user. The user can use this handle later for monitoring and querying the status of 
the job. There are three major components in GRAM: gatekeeper, job manager and GRAM 
Reporter. The gatekeeper performs the authentication between remote user and resource and 
determines a local user name for the remote user. GSI mechanisms are used for authentication and 
credent ial delegation purpose. The gatekeeper then starts the job manager which actually handles 
the request. The job manager is responsible for starting the job on the resources and monitoring 
those while executing. The GRAM Reporter is responsible to publish the information about the 
scheduler and state into MDS. The state includes various information such as total number of 
nodes, currently active nodes, queue wait time and so on. A two-phase commit protocol is used for 
reliable invocation based on techniques used in the Condor system [12]. 
 
   GridFTP is a data transfer protocol which is an extended version of FTP to provide secure, 
reliable and effective data transport of Grid data [2].  GridFTP supports GSI and Kereberos 
authentication with user controlled setting of various levels of data integrity and confidentiality. It 
also makes a third party to initiate, monitor and control file transfer between two other sites. It 
supports parallel data transfer through FTP command extensions and data channel extension.  
Moreover GridFTP can initiate stripped data transfer as well as it supports partial file transfer 
between two sites. 
 
3. Related Work  
  
   Recently there has been a rise of interest in studying and modeling Grid environments. GridSim 
[4] is a Java-based discrete event simulator that supports modeling and simulation of heterogeneous 
Grid resources, users and application models. Nimord-G [5] is a resource broker that performs 
scheduling of parameter sweep task-farming applications on geographically distributed models. It 
supports deadline and budget based scheduling driven by market-based economic models. GridSim 



 5 

simulates a Nirmod-G like Grid resource broker. It evaluates the performance of deadline and 
budget constrained cost and minimization scheduling algorithms. Though GridSim supports 
scheduling of jobs, it does not model anything related to data replication such as automated replica 
creation and/or selection.  
   
   Kavitha et al. [19] proposed a strategy for creating replicas automatically in a generic 
decentralized peer-to-peer network. The goal of their model is to maintain replica availability with 
some probabilistic measure.  Their decentralized model has some advantages: there is no point of 
failure and it does not rely on a central monitoring scheme.  The disadvantages are: nodes take 
decisions on partial information and sometimes it may lead to unnecessary replication.  
  
   Foster and Ranganathan [20] discuss various replication strategies. All these replication strategies 
are tested on hierarchical Grid architecture. The replication algorithms proposed are based on the 
assumption that popular files of one site will be popular at another site.  The client site will count 
the number of hops for each site that hold replicas. According to the model,  the best replica will be 
one that is the least number of hops from the requesting client. Though this is a simple heuristic, it 
does not consider current network bandwidth. Further, they assume that during file transfer 
between two sites, the link is busy and unable to transfer any other file through that link until the 
transfer ends.  We do not constrain our model in this way so we  select the best site by optimizing 
current network bandwidth and disk throughput Therefore, our model simulates the real Grid file 
transfer as well as allows other sites to transfer files through the same link at the same time but with  
reduced performance. Our replication algorithm is used by Grid sites when they need data locally 
and are based on both network attributes and data popularity while considering spatial and temporal 
locality.  
 
   Chervenak et al. [7] characterize the requirements for a Replica Location Service (RLS) and 
describe a data Grid architectural framework, Giggle (GIGa-scale Global Location Engine), within 
which a wide range of RLSs can be defined. An RLS is composed of the Local Replica Catalog 
(RLC) and the Replica Location Index (RLI). The LRC maps logical identifiers to physical 
locations and vice versa. It periodically sends out information to other RLSs about its contents 
(mapping) via a soft-state propagation method. Collectively, the LRCs provide a complete and 
locally consistent record of global replicas. The RLI contains a set of pointers from logical 
identifier to LRC. The RLS uses the RLIs to find LRCs that contain requested replicas. RLI may 
cover a subset of LRCs or cover the entire set of LRCs. 
 
  Allcock et al. [2] developed a replica management service using the building blocks of Globus 
Toolkit described above.  The Replica Management infrastructure includes Replica Catalog and 
Replica Management Services for managing multiple copies of shared data sets. The Replica 
Catalog allows users to register files with a logical filename(s) or logical collection(s). It also 
maintains a mapping between the logical filename to one or more physical locations. It allows users 
and applications to query the catalog to find all existing copies of a particular file or collection of 
files. The replica catalog was implemented as a Lightweight Directory Access Protocol (LDAP) 
[18] directory. The management service however does not implement the full replica management 
functionality and does not enforce any replication semantics. It also does not provide any replica 
optimization or any other capabilities that we fo resee for the immediate future based on our reading 
of the literature 
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   In this paper, we introduce a higher level service that provides full dynamic replication 
functionality and it can use basic replica management services implemented in Globus to 
automatically create new replicas. The server can select the best one among replicas based on 
network and storage system performance. 
 
4. K-Nearest Rule in Replica Selection 
 
   We define the replica selection problem in this way: find the best replica that will minimize the 
transfer time. This problem may be considered as a classification problem. Classification is the 
process of finding a set of models or functions that describe and distinguish data classes or concepts 
for purpose of predicting the class of objects whose class labels are unknown. Consider each 
training sample has n attributes: A1, A2,….., An-1, C, where C is the class attribute. Now if a new 
data sample whose attribute values for A1, A2,….., An-1 are known, while the class attribute is 
unknown, the classification model predicts the class label of the new data sample using the known 
values of attribute values A1, A2,………., An-1.  When a new sample arrives, K-Nearest classifier 
finds the k neighbors nearest to the new sample in the training space based on suitable similarity or 
closeness metric. A common similarity function is based on Euclidian distance between two data 
samples. For example, by considering attributes other than class labels and if P=<p1,p2, ……, pn-1> 
and Q=<q1,q2, ……, qn-1> are two data samples, the Euclidian similarity function is d(P,Q)= 

∑
−

=
−

1

1

2)(
n

i
ii qp . After finding the k-nearest samples based on the distance metric, the popularity 

class label of those k sample data points can be assigned to the new sample as its class. If there is 
more than one popular class label, one of them can be selected randomly.  
 
   In our simulated Grid environment, each computing site maintains a history of transfer when a 
file has been requested and transported to that client. The history inc ludes the timestamp when the 
file transfer ends, the file index of the logical file and the storage site from which the file has been 
transferred. Each tuple in the history now includes three attributes with the storage site as the class 
label. After sufficient number of file transfers, each client builds a history that can be used as 
training space for a new tuple. At this point, when a new file request arrives, rather than finding the 
information from the replica catalog it finds the best site from the previous history of file transfer. 
The client determines the popularity of the class label, i.e., storage site for k sample data points 
based on the distance metric with respect to two attributes: timestamp and file index. We use a 
weighted distance metric d(P,Q)= ∑

−

=
−

1

1

2)(
n

i
iii qpw , where wi  represents the weight assigned  

each attribute. As timestamp are recorded to the milliseconds, we set w1 to a fractional value and w2 
to unit value. File requests contain temporal locality, therefore, file index in distance measure will 
definitely improve the classification rate. For example, let us consider two sample points P1=<p11, 
p12, S1> P2=<p21, p22, S2> and a new sample point P3=<p31, p32, ?> whose class label is unknown.  
Suppose p21> p11,  that is P2 tuple has a recent transfer log than P1, and P3 has the same file index 
as P1, i.e., p32= p12  but differs from P2 by one index number, i.e., p32= p22+1.  Now as the file 
contains temporal locality, we can say that if a logical file with index p22 is stored at site S2, the 
other file nearby its index say p22+1 is also stored at site S2. Moreover, recent history shows that S2 
is the best site to find a replica by considering current network and disk information. Therefore, the 
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recent history and temporal locality votes for site S2 rather than S1 although S1 is the site from 
which the requesting file was transferred previously. 
 
   The execution of a computing element is illustrated in Figure 1. The flow shows that if a 
computing element has sufficient history, it finds the best site using the k-nearest rule, otherwise it 
contacts the replica catalog to find all file replicas. Initially, each computing element gets 
information from the replica catalog and picks the best one that optimizes the transfer time 
considering current network and disk state. When each site has enough transfer history, it requests 
the best site by using the KNN rule. If the site found by the k-nearest rule has been deleted by this 
time because of insufficient disk space or another file’s popularity exceeds than the requesting one, 
the computing element contacts the replica catalog to find other available replicas for that file. It 
will pick the best one to optimize the transfer time. 

.
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Get the  next
logical filename

from job
description

Do I have
enough history

of log ?

Yes

Find the best site
by using K-

nerarest Rule
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Transfer the file
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save this transfer
information in log
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Increase the
log count

Increase the
log count

No

No

 
 

Figure 1: Execution Flows of a Computing Element. 
 
5. Simulation  
 
   To evaluate our approach we use a simulation package called OptorSim [22], written in Java.  
OptorSim is a Data Grid simulator designed to allow experiments and evaluations of various 
replication optimization strategies in a Grid environment. 
 
 
 
 
5.1 Architecture  
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  The simulator is designed assuming that Grid consists of a number of sites, each consisting of zero 
or more computing elements and zero or more storage elements. The computing elements provide 
computational resource and the storage elements serve as data storage resources for submitted jobs. 
Sites without storage or computing elements act as routers. A resource broker acts as a meta-
scheduler that controls job scheduling to different computing elements. A job in OptorSim must 
access a set of files which may be located at different storage sites. To get the physical locations of 
a logical file, each computing element consults with the replica management service. After getting 
information from the replica catalog, the replica management service returns the locations of the 
physical files for the requested logical file to the computing element. 
 
   In OptorSim, the optimization technique used to get the best replica from different physical 
locations is by examining the available bandwidth between the requesting computing element and 
various storage elements that hold replicas. The optimization technique does not consider the disk 
state when finding the best replica. The best replica will be the one that has the minimum transfer 
time with respect to current network state. We extend the optimization technique by considering 
disk throughput along with network bandwidth to find the best replica because file transfer time 
includes both network time and disk I/O time. 
 

5.2 Grid Internals 
 

OptorSimMain StorageElement
Replica

Mangager
ResourceBroker

Computing
Element

Job pfn1:PFN pfn1:PFN

initStorageElements()
:Distribute Master

Files
rm.RegistryEntry(lfn, pfn):
Register master files in

Replica Catalog

rb.start()
Start the Resource

Broker

getAccessCosts(
LFN[],CE[]....)

accessCost[]

schedulJob() : Schdule
the job in best CE

startJob()

getBestFile(LFN_1, LFN_2,....)

bestPFN1, bestPFN2,....

read()

read()

jobCompletion

rm.replicateFile(lfn,source, dest):
 copy and replicate file to local SE and
register information in replica catalog

rm.replicateFile(lfn,source, dest):
 copy and replicate file to local SE and
register information in replica catalog

 
 

Figure 2: Typical interaction occurring in the Optorsim 
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Figure 2 depicts a typical interaction between various components in OptorSim. OptorSimMain is 
the entry point of the simulator.  

• 1tt = : OptorSimMain initializes the storage elements and distributes the master files 
among different storage sites as specified in the configuration file.  

• 2tt = :  Storage elements register those master files in the replica catalog.  
• 3tt = : OptorSimMain starts the resource broker. 
• 4tt = : The resource broker calls getAccessCosts([LFN1..LFNN], CE[], …) to get the 

minimum access costs for all candidate CEs with respect to physical locations of the 
data. The information is used to determine the best CE for job execution. 

• 5tt = : The resource broker schedules the job to the best client. 
• 6tt = : The job starts. 

• 7tt = : The job calls getBestFile([LFN1, LFN2], …) to determine the best physical 
locations of logical files considering current network and disk state. 

• 118 ...ttt = : While reading the files from other storage sites, the CE makes a replica of 
each file to its own storage and registers this information into replica catalog. 

 
Resource Broker Replica Optimiser Replica Catalog DiskClientNetworkClient Computng Element

getAccessCost(LFN[],
CE[], protocol)

rm.lisreplicas(LFN1)

rm.lisreplicas(LFN2)

PFN_1[]

PFN_2[]

getNetworkCosts( soruceSite of PFN_1[],  destSite,
PFN_1_size)

getNetworkCosts( soruceSite of PFN_2[],  destSite,
PFN_2_size)

networkcost[]

networkcost[]

getDiskCosts(sourceSite of PFN_1[], PFN_1_size)

getDiskCosts(sourceSite of PFN_2[], PFN_2_size)

diskCost[]

diskCost[]

accessCost[]

scheduleJob()

 
  

Figure 3: Internal behavior of the Replica Manager 



 10 

Figure 3 shows the sequence of events that happen when the resource broker calls the function 
getAccessCosts(). 

• 1,4tt = : Replica Manager’s listreplica() method is called to find the physical locations of the 
logical files. A number of physical filenames (PFN) will be found for a logical filename 
(LFN) 

• 2,4tt = : Network cost is estimated for each site that holds a PFN corresponding to LFN. 

• 3,4tt = : The disk cost will be estimated for getting PFN from storage site. 

• 4,4tt = : The access cost for each CE are calculated based on the values returned by 
getNetworkCosts() and getDiskCosts(). 

 
5.3 Grid Configuration 
  
   The study of our optimization algorithm and K-Nearest replica selection algorithm was carried 
out using a model of the EU Data Grid Testbed 1 [3] sites and their associated network geometry. 
Site 8 is considered as CERN (European Organization for Nuclear Research ). A master file 
contains the original copy of some data samples and can not be deleted. 
 
   Each circle in Figure 2 represents a Testbed site and a star represents a router. Each link between 
two sites shows the available network bandwidth. The network bandwidth is expressed in Mbits/sec 
(M) or Gbits/sec (G). The storage space and the disk throughput are also shown in braces. For 
example, Figure 2 shows that Site 0 has 80 GigaByte (GB) storage capacity with a disk throughp ut 
260 M (Megabits/sec). 
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Figure 4: The EU Data Grid Testbed 1 sites and the approximate network and disk geometry. 
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 5.4 Simulation Input 
 

   Our program gets input from three configuration files. One file describes the network topology, 
i.e., the link between different sites, the available network bandwidth between sites, the size of disk 
storage of each site and the disk throughput of the disk storage. The second configuration file 
contains information about simulated jobs and the name of logical files which the job needs to 
access while executing. It also contains the index of each logical file and the schedule table for each 
computing element, i.e., which jobs each computing element will run. The third configuration file 
initializes different parameters for running the simulation. These parameters may include 
information such as total number of jobs to be run, file processing time, delay between each job 
submission, maximum queue size in each computing element, file access pattern, the optimization 
algorithm used and so on. 

 

As mentioned above, a job will typically request a set of logical filename for data access. The 
order in which the files are requested is determined by access pattern. In this simulation we 
experimented with four access patterns: sequential (files are accessed in the order that has been 
stated in the job configuration file), random (files are accessed using flat random distribution), 
unitary random (file requests are one element away from previous file request but the direction will 
be random), Gaussian random walk (files are accessed using a Gaussian distribution). Those file 
access patterns are shown in Figure 5. 
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                                                 Figure 5: Various File Access Patterns 
6. Simulation Results 
 
   Our simulations are run for 200 jobs of various types. Each job requests file of different sizes. We 
experimented with different file transfers starting from 10 MB (Mega Bytes) up to 1 GB (1 Giga 
Bytes). The jobs are submitted with a fixed probability such that some jobs are more popular than 
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others. Each job is submitted at 25 milliseconds interval. Time taken for completing a job is 
equivalent to the waiting time in the queue in the computing element and the execution time at 
computing element. Time for probing network bandwidth and disk state is considered 10 
milliseconds. Our scheduling algorithm takes into account both locality of files requested by jobs 
and computing element loads. The calculation of the file accessing cost is implemented by the 
getAccessCosts() method described in the previous section. For each computing element that is 
candidate for scheduling, the resource broker calls the getAccessCosts() method with a list of files 
required for the job. The function consults with the replica catalog to find all the replicas of each 
file, then calculates the time to access each replica from the give computing element by examining 
the current network and disk state. By summing the times to access cost to access the best replica of 
each file, getAccessCosts() returns the estimated file access time the job would have if scheduled to 
the computing element. The scheduling algorithm schedules a job to the computing element that 
has the minimum access cost. We use a simple replication approach called LRU (Least Recently 
Used) for replica creation. In this technique, each computing element stores a replica of the file that 
it has requested into its local storage element. If the storage element has sufficient space the file 
will be stored there. Otherwise the storage element makes space for the newest file by deleting the 
least recently used file(s). Initially each site builds a history of 50 initial file transfers. We choose 
50 as an arbitrary value to see how it effects on the performance of our algorithm. In the KNN 
approach each computing element finds the best one by the k-nearest rule rather than requesting the 
replica catalog. For the sequential access pattern, there is a linear dependence of file access 
patterns. So, it will be more intuitive to use a small value of k for sequential access pattern because 
large value of k will cause other non nearby neighbors to vote and decreases the performance of the 
algorithm. The remaining access patterns contain randomness so we should use a value that is 
neither very large nor small. Therefore, we choose the value of k=2 for sequential access pattern 
and k=5 for other access patterns. We also vary the value of k for some initial run in our simulation 
and we get the highest accuracy when we take k=2 for sequential pattern and k=5 for other access 
patterns. Recall that each site will be running a varying number of jobs such that some site may run 
only a few jobs that result in only a few file transfers. In our experiment, every site except Site 13 
and Site 15 are loaded with jobs which request more than 50 transfers. Therefore, we will not 
include Site 13 and Site 15 in our analysis. 
 
   Figure 6 documents the performance of our KNN algorithm and the traditional replica catalog 
model with respect to total job times. In this case all master files are in CERN (Site 8). For the 
sequential and Unitary Random access pattern, our enhanced algorithm outperforms the traditional 
model. As the file will be accessed in the order specified in the job configuration file for sequential 
requests, i.e. file access patterns are sequential, the KNN rule will find a recent transfer history of 
neighbor(s) of a requested file. The same argument can be made for Unitary Random access pattern 
because new file requests will be one element away from previous request but the direction will be 
random.  However, we do not see much improvement in the Uniform and Gaussian Random file 
access pattern. This is because for those patterns files are accessed without any relation of previous 
requests and the same file can be requested multiple times leaving some files unaccessed. 
Therefore, though from previous history, KNN votes for a site x that can hold a replica of the newly 
requested file y: site x may never transfer y from CERN (Site 8) so it does not hold any replica for 
that file. However, this will not happen for sequential file access patterns because a job will request 
files one after another and the site that runs that job creates replicas of all files needed to run the 
job.  
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Figure 6: Comparison of Total Job Times for K-Nearest Rule and Traditional Model 
 
Sequential Site Match Mismatch Random Site Match Mismatch 

Site 0 314 3 Site 0 281 36 
Site 3 100 6 Site 3 93 13 
Site 7 1508 3 Site 7 1471 40 
Site 11 133 0 Site 11 132 1 
Site 12 50 6 Site 12 47 9 
Site 14 6 2 Site 14 7 1 
Site 16 191 2 Site 16 186 7 

 Site 17 238 0  Site 17 234 4 
Unitary Site Match Mismatch Gaussian Site Match Mismatch 

Site 0 286 31 Site 0 275 42 
Site 3 96 10 Site 3 93 13 
Site 7 1461 50 Site 7 1462 49 
Site 11 131 2 Site 11 132 1 
Site 12 50 6 Site 12 47 9 
Site 14 6 2 Site 14 6 2 
Site 16 168 25 Site 16 182 11 

 Site 17 231 7  Site 17 226 12 
 

Table 1: Classification and Misclassification Rate for Different File Access Pattern 
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   Table 1 presents the classification accuracy of the KNN rule for various file access patterns when 
all files are distributed in the CERN. If the KNN rule returns the same site as returned by the 
traditional replica model, the file transfer is classified as matched; otherwise it is classified as 
mismatched. We see that for sequential access pattern the accuracy is highest whereas for the 
Gaussian Random access pattern the accuracy is the lowest. This result also complies with Figure 
6. There is a strong correlation between accuracy and job throughput as one would expect 
intuitively. 
 
  Table 1 and Figure 6 contain some discrepancies. For example, we see that for Site 16, KNN 
misclassifies 11 and 25 file transfers in Gaussian access pattern and Unitary Random access 
pattern, respectively. However, Figure 6 shows a better throughput in Unitary Random access 
pattern than Gaussian access pattern. This is because in the Gaussian access pattern, KNN makes a 
misclassification for a large file transfer, e.g., 1 GB whereas in Unitary access pattern it 
mismatches with the traditional model for only small file transfers e.g., 10 MB transfers. The 
misclassification for large file transfer costs more than a couple of small file transfer 
misclassifications. 
 

 
(a) (b) 

Figure 7: a) Mean job time when CERN holds master files b) Mean job time when different 
sites hold master files. 
 
   Figure 7 shows the comparison of mean job time between two methods, when master files are 
distributed randomly and when master files are distributed to the Site 8 (CERN). If CERN holds the 
master files alone, all other sites have to transfer files from CERN and it generates a huge amount 
of network traffic at CERN. Moreover, each site has to transport file from CERN’s storage element, 
therefore, the disk storage at CERN will be busy for disk I/O and it will increase the response time. 
However, if the master files are distributed to different sites, a site can transfer files from various  
locations rather than from a single location. As a result it reduces both network traffic and disk I/O 
time. Therefore, we get a better mean job time when master files are distributed randomly. 
However, in both cases, we see that our KNN algorithm has better mean job time compared to 
traditional model for various access patterns except Gaussian pattern. 
 
   Table 2 represents a comparison of accuracy of our KNN algorithm with respect to traditional 
model for different distribution methods of master files. The overall accuracy of our KNN 
algorithm is 97% when master files are distributed in random sites and we get 96% accuracy when 
distributed in CERN alone.  
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Sequential 
Master File 
Distribution Match Mismatch Random 

Master File 
Distribution Match Mismatch 

Random 2539 23 Random 2368 194 
 CERN 2540 22  CERN 2451 111 

Unitary 
Master File 
Distribution Match Mismatch Gaussian 

Master File 
Distribution Match Mismatch 

Random 2524 38 Random 2468 94 
 CERN 2429 133  CERN 2423 139 

 
Table 2: Comparison of Accuracy 

 
7. Possible Implementation in GT3 
 
   Globus Toolkit version 3 (GT3) is the implementation of the Open Grid Services Architecture 
(OGSA) [15], an initiative that is recasting Grid concepts within a service oriented framework 
based on Web Services. Web Service is a platform and implementation independent software 
component that can be discovered, combined, and recombined to provide a solution to the user’s 
problem. The Java and XML are the prominent technologies for Web Services. Web service has 
several advantages: service providers can publish detailed description of their functionalities 
through web services, services can be easily discovered through a standard mechanism, it supports 
different protocol bindings such as HTTP and SOAP and web service can be easily incorporated 
into or composed with other services. However, web service has disadvantages too: it is stateless 
and non-transient. Grid service, an extension of web service solves the problems of Web Services 
by a factory approach. Grid services also provide some necessary tools such as call back functions 
to effectively manage lifecycle and service data elements for describing its service. Besides, Grid 
services support notification policy to notify the changes to subscribed clients. OGSA defines a 
common and standard architecture for computational and storage resources, network programs and 
databases. It defines the Grid services which are the center of this architecture. Open Grid Service 
Infrastructure (OGSI) [15] is a formal and technical specifications of the concepts described in 
OGSA including Grid services. GT3 is a software tool that allows us to program in Grid based 
applications. 
 
   Figure 8 depicts a possible implementation of our algorithm in GT3. We propose Condor-G [16] 
as resource broker or meta-scheduler of our algorithm. A user will submit his request for running 
jobs to Condor-G scheduler. The request will include a list of jobs. Each job is described by a set of 
files that are required to run that job. The Condor-G scheduler creates a new GridManager daemon 
to submit and manage those jobs. The GridManager process will handle all jobs for a single user 
and terminate when all jobs will be finished. The GridManager process requires the functionality of 
the Replica Management Service, in particular the optimization functions in order to determine the 
best computing element on which to schedule a job. Replica Management Service (RMS) factory 
provides such service to GridManagger in our algorithm. RMS factory creates a RMS instance that 
will contact the Replica Catalog to find the physical locations of logical files required to run the 
job. It will then ask the Replica Selection Service to find the best site for hosting the current job by 
considering current network and disk state. Network Weather Service (NWS) [32] will be used to 
sense network bandwidth and IOSTAT [27] for disk state. 
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Figure 8: A possible implementation of our algorithm in GT3 
 

    Getting the result from RMS factory, the GridManager hosts the job to the best site through 
GlobusGateKeeper. Next, the Globus JobManager submits the job to the execution site’s local 
scheduling system. It is mentioned before that a set of files are required to run a job. The 
information about physical locations of logical files can be found from Replica Catalog. Therefore, 
each site will contact the RMS factory to find the physical locations of the files that are needed to 
run the job. If the files are in current site, the job will access files from local storage. Otherwise, it 
will find the best site hosting replica(s) by querying the Replica Selection Service in the same way 
as described above. Next, the file(s) will be transferred from the best site by GridFTP.  Each site 
creates a new replica of the file that it transfers from other site into local storage. Then each site 
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registers the new replica in Replica Catalog. Besides, each site updates its transfer log reflecting the 
current file transfer. The transfer log will be used as training space of our KNN algorithm when 
each site has a sufficient history of file transfers. Updates on job status are sent by the JobManager 
back to the GridManger, which then updates the Scheduler where the job status will be stored 
persistently. 
 
   A GSI proxy credential is used by the Condor-G agent to authenticate with remote resources on 
the user’s behalf. To reduce the user hassle in dealing with expired credentials, Condor-G could be 
enhanced with a system like MyProxy [25].  The information about Replica Management Service 
can be found from MDS. We have a plan to develop Replica Management Service and Replica 
Selection Service (RSS) as Grid Service.  We will use the Globus Toolkit’s Replica Catalog [2] 
component for indexing logical file to physical locations and vice versa. The GridManager or a 
computing site connects to the RMS factory by Grid Service Handle (GSH) and logical filename 
(s). The RMS and RSS grid service interface will be written in WSDL (Web Service Description 
Language) [8]. It can be also generated from a Java interface. For Grid service implementation, 
java classes will be used. These Java classes provide implementation of methods that are specified 
in the service interface. The deployment descriptor will be written in WSDD (Web Service 
Deployment Descriptor). WSDD tells the web server how it should publish the RMS and RSS 
service. 
 
8. Conclusion and Future Work 
 
   In this paper, we presented a model that utilizes a simple data-mining approach called the k-
nearest rule to select the best replica from a number of sites that hold replicas. To select the best 
replica we designed an optimization technique that considers network latency and disk state. We 
studied different file access patterns on the performance of the k-nearest model and compared our 
results with traditional algorithm. Our k-nearest rule shows a significant performance improvement 
for sequential and unitary random file access pattern.  
 
   As part of future work, we plan to design an adaptive k-nearest neighbor algorithm so that it can 
switch to traditional model when it encounters misclassification with traditional model for 
consecutive file transfers. Further, rather than using the fixed value of k, we can use an adaptive 
value of k that will change dynamically as the simulation runs  to improve performance 
dynamically. Moreover, before making a decision about the best site for large file transfers each 
site can verify the best one by varying the value of k. We also have a plan to implement our 
algorithm in WestGrid [31] middleware to see its performance in real Grid Environment. 
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