CENTRE for **GAMBLING RESEARCH** at **UBC**

Neuroscience of Gambling Addiction

Dr Luke Clark

28th March 2015 Alberta Gambling Research Institute, Banff

a place of mind The university of British Columbia

Department of Psychology

Overview

- Endogenous opioid function in pathological gamblers: understanding the mechanism of naltrexone action?
- Gambling-related cognitive distortions and the effects in insula damage: the gambler's fallacy and the near-miss effect

The Centre for Gambling Research at UBC is supported by the British Columbia Lottery Corporation and the Province of BC government.

Gambling in British Columbia

- Past year gambling involvement: 72.5%
- Most popular forms of gambling: lottery (44%), charity raffle (16%), casino incl. slot machines (11%), private games (11%), sports betting (3%)
- Prevalence of problem gambling (PGSI 3+): 3.3% (0.7% for PGSI 8+)
- Forms most associated with PG: casino incl. slot machines (42%), private games (39%), stocks & shares (27%), bingo (14%), internet gambling (13%)
- Estimated % of total revenue from PGs: 26%

PHO report 'Lowering the Stakes' 2012, BC Prevalence Survey 2014

Neurochemistry of Gambling Disorder

- Neuroscience models of addiction emphasize pathophysiology in the dopamine system (Volkow, Wise): reduced D2 receptors, reduced DA release
- A number of small PET studies in PG have indicated no change in D2 receptors (Clark et al 2012); possibly increased DA release (Boileau et al 2014)

Dopamine

D2 in Overall Striatum

3.5 3 2.5 2 1.5 1 0 Controls Gamblers

Clark et al (2012 NeuroImage) See also: Linnet et al 2011 Joutsa et al 2012 Boileau et al 2013

Neurochemistry of Gambling Disorder

- Neuroscience models of addiction emphasize pathophysiology in the dopamine system (Volkow, Wise): reduced D2 receptors, reduced DA release
- A number of small PET studies in PG have indicated no change in D2 receptors (Clark et al 2012); possibly increased DA release (Boileau et al 2014)
- Dopamine medications have shown limited efficacy; most promising tx in the opioid antagonist naltrexone

Pharmacotherapy for PG

	Dose (mg per day)	Number of participants	Response rate for drug	Response rate for placebo
Naltrexone	50-150	122	61.8%	34.2%
Nalmefene	20-100	414	51.8%	46%
Fluvoxamine	50-250	47	72%	48%
Paroxetine	10-60	121	62.9%	39.7%
Sertraline	50-150	60	68%	66%
Bupropion	75-375	39	35.7%	47.1%
Olanzapine	2.5-15	63	66.7%	71.4%

Hodgins et al (2011 Lancet)

Neurochemistry of Gambling Disorder

- Neuroscience models of addiction emphasize pathophysiology in the dopamine system (Volkow, Wise): reduced D2 receptors, reduced DA release
- A number of small PET studies in PG have indicated no change in D2 receptors (Clark et al 2012); possibly increased DA release (Boileau et al 2014)
- Dopamine medications have shown limited efficacy; most promising tx in the opioid antagonist naltrexone
- Gambling (pachinko) associated with elevated β–endorphin (Shinohara et al 1999)
- No data on integrity of the opioid system in Gambling Disorder

Opioid Binding in Substance Use Disorders

3 receptors: mu, delta & kappa Carfentanil is a mu selective PET tracer Carf binding is increased in SUD, and +ively correlated with craving & impulsivity

Methods: Carfentanil PET imaging of mu-opioid receptors and opioid release

BASELINE

POST-AMPH

Amphetamine (0.5 mg/kg) releases endogenous opioids, displaces ligand from receptors \rightarrow *lower* binding (Colasanti et al 2012, Mick et al 2014)

HV PG Age 34.3 (7.7) 34.4 (8.7) PGSI* 0.2 (0.6) 18.0 (5.2) AUDIT* 6.9 (3.9) 3.6 (2.5) 8.7 (7.9) 0.6 (1.8) **BDI* Smokers** n=3n=2

14 male PG attending UK

National Problem Gambling

Clinic compared against 15

male HV; scanned on two

occasions

Hypothesis 1: Baseline Opioid Receptors

Baseline Mu-Opioid Receptor Binding

H1: not supported

Hypothesis 2: Opioid Release in PG

Marked opioid release in healthy group (8/10 ROIs) Blunted opioid release by Amph in PGs

Hypothesis 3: Subjective Responses to Amphetamine

Blunted euphoria and alertness following Amph in PGs (no effect on anxiety & restlessness)

Opioid study: conclusions

- No difference in baseline MOR in pathological gamblers
- In healthy volunteers, amphetamine reduced MOR binding across 8 of 10 ROIs → quantitative measure of opioid release
- Evidence of blunted opioid release to a standard amphetamine challenge in pathological gamblers, across multiple brain regions
- Pathological gamblers also show attenuated euphoria to amphetamine (c.f. Boileau et al 2014)
- If pathological gamblers have *reduced* opioid release, why would NTX an opioid *blocker* be an effective treatment?
- Does the opioid challenge need to be behaviourally relevant? (i.e. gambling induced opioid release)

Cognitive approach to gambling

Gamblers' excessive play is driven by cognition distortions that creates an inappropriate expectancy of winning

Two important types

- The gambler's fallacy (random sequences)
- The illusion of control (confusion of skill and chance)

Problem gamblers may be more susceptible to these cognitive distortions than the general population

"	Farg	et G	irou	p"
				-

	vmPFC	Insula	Amygdala	HC	Lesion Con
Ν	17	8	6	16	13
Age	52.1 (16.8)	53.3 (16.8)	49.7 (9.9)	60.1 (9.8)	51.9 (19.5)
Education	14.2 (2.5)	13.8 (4.7)	14.2 (3.1)	14.7 (2.3)	14.4 (2.7)
Side (B:L:R)	13:2:3	0:4:4	1:5:0		2:7:4
Real gambling	8:5:1	6:2:0	5:1:0	6:10:0	4:3:1
SOGS	0.8 (1.6)	0.0 (0.0)	0.2 (0.4)	0.8 (1.4)	0.4 (0.7)
GRCS	48.4 (31.1)	36.6 (14.2)	33.0 (9.6)	44.8 (16.1)	34.6 (15.6)

Clark, Studer, Bruss, Tranel, Bechara 2014 PNAS

 Motivational response to *near-misses* (minus full-misses) abolished in insula group

- GF: less likely to choose RED after a run of REDs
- Effect abolished in group with insula damage

Clark et al (2014 PNAS), task design see Studer et al (2015 J Behav Dec Making)

Why the Insula?

- Key reception zone for bodily input and arousal - *interoception*
- Gambling associated with increased physiological arousal (HR, cortisol)
- Skin conductance responses to wins and near-misses
- Insula overactivity in pathological gambling? Target for bodily treatments (e.g. mindfulness / biofeedback)

Conclusions

- Neuroscience studies inform our understanding of treatments for problem gambling: <u>both</u> pharmacological <u>and</u> psychological.
- Data from PET imaging are highlighting increasing disparity between neurochemistry in problem gamblers vs drug addictions: are the effects in drug addiction drug-induced, or is the addictions model of PG an over-simplification?
- Decision-making and outcome processing involve a brain network; neglected role for the insula in gambling distortions.

Acknowledgements

<u>CGR</u> Stephanie Chu Spencer Murch Juliette Tobias-Webb

<u>Cambridge</u> Mike Aitken Eve Limbrick-Oldfield Steve Sharman Yin Wu Sophie Miller Bettina Studer London Henrietta Bowden-Jones Anne Lingford-Hughes Liese Mick Paul Stokes David Nutt

<u>USC / Iowa</u> Antoine Bechara

www.cgr.psych.ubc.ca Twitter @LukeClark01 @CGR_UBC

<u>Funding</u> Medical Research Council G1002226 / G1100554