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Abstract 

As advances in technology provide faster aod cheaper digital hardwares, it is becoming 

more fa ible  to implement a receiver in the digital domain. One widely adopted 

architecture is the IF-sampling receiver which samples the intermediate-frequency signal 

and =overs the transmitted iaformation in the digital domain. By restricting the 

modulation to be linear, such as quadratme phase shift keying (QPSE;), this thesis 

proposes a new receiver architecture which employs the minimum sampling rate of 2 

samples per symbol and trivial digital processing to recover the inphase and quadrature 

symbols. In addition to the new receiver architecture, this thesis also presents the design 

of a zero intersymbol interference signalling pulse specifically for this new receiver. 

With the new pulse and the new receiver, the effect of sampling timing error on the 

system performance is investigated. Simulation results indicate that the bit error rate 

becomes irreducible when the timing error is greater than 15% of the symbol period. 

Two systems are proposed to combat the timing error problem. The first system is a 

direct sequence spread spectrum system using 11 chip Barker sequence. This system 

uses the autocorrelation of the Barker sequence to suppress the intersymbol interference. 

The second system takes a different approach in which the intersymbol intefierence is 

greatly avoided by simply increasing the sampling rate to 4 samples per symbol and 

making slight changes in the digital structure of the receiver. Simulation results are also 

obtained to show the performance of the two systems. 
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Chapter 1 Introduction 

In the early days of wireless communications, most commercial systems 

employed analog modulation techniques for the transmission of voice and video. There 

were two reasons behind this choice. U&e digital modulation which requires precise 

timing information in the receiver, analog modulation does not have this requirement and 

therefore the receiver architecture for analog modulation tended to be simpIer. 

Secondly, due to a higher availability of analog hardware over digital hardware, it was 

much easier to implement an analog communications system with off-the-shelf 

components. Therefore analog modulation was an affordable solution for wireless 

communications. In the last two decades, digital hardware technology has undergone 

signifkant changes. Devices like analog-to-digital (AD) converters and digital signal 

processing @SP) chips have been improved to offer bet?er performance while their size 

and cost have been reduced due mainly to advances in integrated circuit technology. For 

such reasons, digitd modulation has become a feasible solutioa for wireless 

commUnications. 

1.1 Advantages of Digital Communications . 

There are several benefits exclusively offered by digital communications. F i t l y  

a digital communications system provides a unified means for transmission of any kind 

of information. From an engineering point of view, information originates in either the 

analog (eg. voice) or the digital format (eg. computer data). Since infonnation in the 

digital format is already represented by binary digits, no conversion is necessary and the 

binary digits can be directly transmitted through the system. On the other hand, in order 

to transmit analog signals through a digital communications system, an analog-to-digital 

conversion is required in the transmitter. This conversion is achieved by sampling 



foUowed by quantization and encoding. Although the signal is distorted by the 

quantization noise, this kind of distortion can be made negligibly small. Once the digital 

representation of the signal is obtained, a digital commUILications system can be used to 

transmit the information and digital-to-analog conversion is performed on the receiver 

side to reconstruct the original analog signal. 

Furthermore, a digital communications system allows system engineers to 

increase the robustness of the system against natural and man-made disturbances. For 

example, channel coding is known to be effective in reducing the effect of noise while 

digital voice encryption protects the conversation against eavesdropping- Lastly a digital 

system can easily store information for later transmission. This feature makes time 

division multiple access (TDMA) possible. 

Overview of Receiver Architectures 

The architectures of most digital communications receivers can be categorized 

into three groups 1271 : superheterodyne, direct conversion, and IF-sampling receivers. 

The superheterodyne receiver is a traditional architecture being used for a Long 

time in analog system. The main idea is to downconvert the received radio fnquency 

(RF) signal into an intermediate fnquency (IF) signal through single or multiple stages 

of mixiag and filtering. This idea is extended into a digital system in which the RF 

signal is first downconverted into an IF signal which is then processed by quadrature 

downconverter to extract the inphase and quadrature signals. A great virtue of this 

approach is that the intermediate frrquency is fixed This allows optimization of circuit 

parameters to operate at the fixed IF. Also standardization can be imposed on the 

intermediate frequencies so that manufacturers can produce integrated chips (ICs) 



operating on those standard intermediate frecluencies in Iarge cpantities. However, due 

to the presence of the two analog branches in the quadrature downconverter, phase and 

gain imbalances [3][28] are introduced on the inphase and quadrature signals, thereby 

degrading the system performance. 

Unlike the superheterodyne architecture, a direct conversion receiver employs a 

single analog quadrature downconverter to downconvert the RF signal into baseband 

inphase and quadrature signals in one step. This approach results in lower chip count 

(that is less complexity) and lower cost . However, as mentioned in [l 11, this simplicity 

is deceptive. Some of the realization challenges are the requirement of high-gain low- 

noise mixer and high-dyaamic range baseband channel filters. Also the inphase and 

quadrature signals suffer gain and phase imbalances. 

The third architecture is commonly known as IF-sampling receiver. Similar to 

the superheterodyne architecture, the IF-sampling receiver downconverts the RF signal 

to a fixed IF. Thus the virtue of a fixed IF remains in the IF-sampiing receiver. After 

being downconverted, the IF signal is directly sampled and processed in the digital 

domain to extract the inphase and quadrature signals. Since the analog quadrature 

downconverter no longer exists in the receiver chain, both amplitude and phase 

imbalances are completely eliminated. In addition, the IF-sampling receiver requires 

only one sampler (instead of two in the other two architectures) and thereby reduces cost 

and power consumption. This architecture has been widely adopted in several projects 

and papers [4][7 [lo]. In fact, there are chips 130113 11 available using this architecture. 

The major difference between the conventional IF-sampling receiver and the one 

proposed in this thesis is that the receiver architecn~r in this thesis is specifically 

designed for linear digital modulation schemes, such as quadrature phase shift keying 

(QPSK) and quadrature amplitude modulation (QAM). By having this restriction, the 



receiver architectwe is shown to be much simpler than the generic structure which 

preserves the inphase and qpadrature signals regardless of the type of modulation used. 

1.3 Thesis Structure 

This thesis is mainly divided into three parts. The first part deals with the design 

of the newly proposed IF-sampling receiver. Two important concepts, namely FJ4 

downconversion and the sampling theorems, are covered in chapter 2. In chapter 3, the 

complete IF-sampling communicati011~ sysem including the transmitter, channel and 

receiver architectures is explained in detail. Also with the novel receiver architecture, a 

new requirement on the signalling pulse for zero intersymbo1 interference (IS) is found 

and the derivation is described in chapter 3. 

The second part of the thesis focuses on the performance of the novel IF- 

sampling receiver in the presence of timing error. An equivalent dismte-time model is 

derived in chapter 4 to provide a better understanding of the distortion. Computer 

simulation results are also presented in chapter 4 to show the severe degradation caused 

by the timing error. 

In the third part of the thesis, two solutions are proposed to combat the timing 

error. The fmt solution is a direct-sequence spread-spectrum system. The second 

solution takes a different approach in which the timing error distortion is signifkantly 

avoided by expIoiting the pulse shape of the new zero IS1 signding pulse. Detailed 

analysis and simulated performances of both solutions are presented in chapter 5. 

Finally a summary of the entire thesis and fuwe work is provided in chapter 6. 



Chapter 2 Two Important Concepts for IF-sarnpling 

Receivers 

This chapter presents a detailed review of two important concepts, namely Fs/4 

downconversion and the sampling theorems, for the design of IF-sampling receivers. 

These two concepts serve as the foundation on which any IF-sampling receiver is 

designed. As will be shown in this chapter, the Fs/4  downconversion requires a 

specific relationship between the intermediate frecluency and the sampling rate while the 

sampling theorems govern the minimum sampling rate of the IF-sampling receiver. 

2.1 FJ4 Downconversion 

In a superheterodyne receiver, the downconversion process is performed by 

mixing the intermediate frequency (IF) signal with cosine and sine carriers, followed by 

fdtering each channel using a Lowpass filter in order to remove the double frequency 

components. The filtered signals are then sampled by two samplers to obtain samples of 

the inphase and quadrature signals. This structure is commonly known as analog 

quadrature downconverter [3][8] and is shown in Figure 2.1.1. 

LPF inphase * samptes 
I 

signal IF i cos (2zfiFq 

Figure 2.1.1 Analog quadrature downconverter. 



A similar outcome can be achieved in the digital domain by sampling the IF signal with 

at least the Nyquist rate and then mixing it with digitally synthesized cosine and sine 

carriers. In this case, unlike the analog implementation, a large amount of simplification 

can be obtained when a technique known as Fs/4 downconversion m[9][10] is used. 

This technique exploits the fact that when the 2 camers, cos ( 2 l ~ f ~ t )  and sin (2zfIFt) , 

are sampled at the specific sampling rate of F, = 4 - f, and at the precise sampling 

times of t = n/ (4frF) where n = O7 1,2, . . . , the two sampled carriers are periodic 

sequences taking the values : +I, 0 and -1, that is, 

and 

where fw is the IF carrier frequency. 

These two sampling processes are also shown graphically in Figure 2.1.2 . 

sin (2nhFt) 

Figure 2-12 Graphical representation on the effect of sampling on the cosine and sine 

carriers with F, = 4 - fiF . 



In Figure 2.1.2, the dots represent the sampling points. The fkquencies of both cosine 

and sine carriers are Fs/4 . Also notice that at the sampling instants of time, whenever 

the cosine carrier is nonzero (either 1 or -I), the sine carrier must be zero. Similarly, 

when the sine carrier is nonzero (either 1 or -I), the cosine carrier must be zero. 

Therefore, when F, = 4 - fIF and when the sampler precisely samples at the correct 

instants of time, the sampled sine and cosine carriers are orthogonal. 

Assuming that the continuous-time IF signal takes the form, 

rlF ( I )  = I ( t )  cos ( 2 1 ~ f ~ t )  - Q ( t )  - sin (2xflFt) (2.1.3) 

where 1 ( t )  and Q ( t )  are the inphase and quadrature signals respectively, then when 

r~~ ( t )  is sampled by one sampler at a sampling rate of F, = 4 fiF and at the precise 

sampling times of t = n/ (4fil) , the sampled sequence consists of samples of I ( t )  

interleaved by samples of Q ( t )  with sign inversions introduced on some of the 

samples. Mathematically, the sampled IF signal can be represented as, 

where Id [n] = I n and ~ ~ [ n l  = ~ ( t  = -) 
4 f 1 ~  

The first sample of rIF [n] corresponds solely to a sample fiom 1 ( t )  while the second 

sample of rlF [n] corresponds solely to a sample fiom Q ( t )  . The third sample comes 

fiom I ( t )  and the fourth sample comes from Q ( t )  . So the orthogonality property 

ensures that when the IF signal is sampled by one sampler. each sample contains 

information about either the inphase or the quadrature signal, but not about both. 



Therefore, with F, = 4 - fiF or fiF = F/4, siunples of I ( t )  and Q ( t )  can be 

obtained by properly sorting the samples into corresponding YQ channels and correcting 

the sign inversions. The whole process is illustrated in Figure 2.1.3. 

Fig~re~2.13 Structure of recovering inphase and quadrature samples with F s / 4  

downconversion. Note that 61111 denotes the discrete-time delta function. 

So far F s / 4  downconversion has been shown to be an efficient technique to 

obtain the inphase and the quadrature samples out of an analog IF signal. The price for 

this simplification however [4][ll] is the timing misalignment between the inphase (I) 

and the quadrature (Q) signals. This timing misalignment problem was addressed by 

Saulnier et al. [4] who propose to use Hilbert transform to relax i t  However, in our 

design, this problem is solved using a different approach and the solutions are given in 

Chapter 3. 

In addition to the time domain, the architecture (given in Figure 2.1.3) can also 

be examined in the frequency domain as shown in Figure 2.14. Both the spectrum of an 

analog IF signal rIF ( t )  and its version rIF [n] are shown in Figure 2.1 .*a) and 2.1.4 

(b) respectively. 



Figure 2.1.4 (a) Spectnrm of rlF ( t )  . 

(b) Periodic spectrum of r, In] . 
(c) Periodic spectrum of the mixed signal. 

(d) Periodic spectrum of the decimated signal. 



Here it is assumed that the bandwidth of rw(t) is Small enough such that spectrum 

overlap is avoided in the samplhrg process. At the output of the sampler, the sampled 

sequence is multiplied by &COS(Y+ ;) to correct the sign inversion. Equivalently, this 

multiplication can also be viewed as mixing in which the spectrum of rrF [n] is 

f i  j: J.5 F -* convolved with s(!- 2) - c + T - 6(f+ $) - :' in the frequency domain. The 

spectrum of the mixed signal is shown in Figure 2.1.4(c). Finally the mixed signal is 

decimated by a factor of 2 and the output of the decimation contains samples of the 

inphase signal with a sampling rate of F / 2 .  In the fnqyency domain, the spectra of the 

mixed and decimated signals are related by 

( [+) 
where X, e and X, c are the discrete-time Fourier transforms of the decimated 

signal and mixed signal respectively and F; = :. As mentioned in 141, the double- 

frequency terms resulting from the mixing operation coincide with the sampling images 

and therefore, 

and their only difference is the period at which the spectrum must repeat. For the mixed 

signal, the sampling rate is F, and therefore its spectrum is required to repeat every F, . 

On the other hand, the sampling rate of the decimated signal is Fs/2  and therefore its 



spectrum must repeat every Fs/2 .  Urrlike analog downconversion, lowpass filtering is 

not required in Fs/4 downconversion to remove the double-hquency terms. Instead, a 

decimation-by-2 of the mixed signal removes the double-fieqtxency tenns and yields the 

red part of the spec- of the sampled inphase signals as shown in Figure 2.1.4(d). 

For the recovery of quadrature sarnpIes, since J ~ C O S ( F + ~ )  = -ah(?-$), the 

nll: K sign correction sequence J ~ C O S ( ~  + can be replaced by -&sin(? - -a). By making this 

modification on the architecture, a similar approach to the one shown in Figure 2.1.4 can 

be used to illustrate the recovery of quadrature samples in the frequency domain. 

So far the analog downconversion from RF to IF is assumed to be coherent 

However, fkom an implementation viewpoint, it is easier to build a noncoherent 

downconverter. The phase error d t i n g  from noncoherent downconversion can be 

characterized by 0 and the resulting IF signal is, 

FIF (t) = I(t) - cos (2zfIFt + 0) - Q ( t )  - sin (2zfIFt + 0) (2.1.7) 

By replacing r, ( t )  with Z, ( t )  in figure 2-13, the sampled sequence iIF [n] can be 

obtained as, 

= { I,(O] - cos0-QJO] - sin0 , 

-Zd[l] - sine-&[l] - C O S ~  , 

-1,[2] - cos 0 + Qd 121 - sin0 , 

Id[3] - sine+Q,[3] C O S ~  ,--- } 

where Id[n]  = I n 



By processing i&] using the structure shown in Figure 2.1.3, the two output 

sequences Id In] and [n] are found to be, 

Notice that id [n J no longer contains samples fram I ( t )  alone. Instead Id [n] contains 

contributions from both I ( t )  and Q ( t )  . Same result applies to Q~ [n] which also 

contains samples from both I ( t )  and Q ( t )  . This implies that the cosine and sine 

carriers are no longer orthogonal at the desired sampling times and this loss of 

orthogonality introduces crosstalk between the inphase and the quadrature samples. 

However, notice that if 

I, [2n] = Id [2n + 11 

and 

then Id [ R ]  and & In] can be represented in a matrix form as follows, 

Or equivalently, in complex numbers notation, 



Both equations 2-1-13 and 2.1.14 indicate that the crosstalk can be viewed as a rotation 

of the inphase and the quadrature samples in the complex plane provided that 

assumptions 2.1.1 1 and 2.1.12 are valid It will be shown in chapter 4 that these two 

assumptions are valid for a special family of signahg pulses. In this case, the crosstalk 

does indeed have the effect of rotation of the inphase and quadrature symbols. 

In addition to Fs/4  as the intermediate frequency, an addition of any integer 

multiple of F, to Fs/4 also yields an intermediate frrquency suitable for F,/4 

downconversion. This is mainly due to the fact that the spectrum of any discrete-time 

signal is periodic in frequency with period Fs. Thus the first group of suitable IF 

frequencies is, 

Fs 5Fs 9F, 
1st group of suitable IF = { 7 , - 4 ? - '$ 9 ---1 

Besides F s / 4 ,  it is found that 3Fs/4 is also a suitable IF. The only difference 

between the two IF frequencies : Fs/4 and 3Fs/4, is that the sign inversion on the Q 

channel takw place at different positions. Therefore with 3Fs/4 as the IF center 

frequency, the sampled sequence rlF [n] should be multiplied by &OS(?-~) to 

correct the sign inversion. The second group of suitable IF frequencies is, 

3Fs 7Fs llFs 
2nd group of suitable IF = { 7 , - -  

4 '  4 ? ---) 

By combining the la and 2nd groups of the suitable IF frequencies, it follows that any 



odd integer multiple of Fs/4 is appropriate for Fs/4 domconversion, that is 

F* suitable IF = (2n + 1) - 
4 

where n =0,1,2, ... (2.1.17) 

So Fs/4 downconversion restricts the choice of IF frequencies to ones that satisfy 

Equation 2.1.17. The suitable IF can be as high as desired, while the minimum IF is 

F / 4 .  

2.2 Sampling Theorems 

In order to achieve Fs/4  downconversion, the IF frequency must satisfy 

Equation 2.1.17. Since the suitable IF is given in terms of the sampling rate of the 

sampler, it is also required to specify the sampling rate. The objective of this section is 

to find the minimum sampling rate for demodulation of the received signal. 

2.2.1 Nyquist Sampling Theorem 

The most well-known criterion for choosing a sampling rate is the Nyquist 

Sampling Theorem [I, pp. 861 which can be stated as follows : Let x, ( t )  be a 

bandlimited signal with 

xc (f = 0 forlf l 2fh (2.2.1) 

where X, (f) is the continuous-time Fourier transform of x, ( t )  . Then x, ( t )  is 

uniquely determined by its samples x [n] = xc (n/F,) where F, is the sampling rate 

and, n = O , f l , e ,  ... if 

F, 2 2fh (2.2.2) 



In other words, any sampling rate greater than twice the highest frequency component 

guarantees that spectral overlap does not occur in the sampling process- Therefore no 

information is lost in the sampIing process. Since the Nyquist Sampling Theorem is 

valid for any badlimited signal, this theorem is also applicable to a bandpass IF signal. 

Let yc ( t )  be a bandpass IF signal with bandwidth of W Hz and an intermediate 

fresuency of fIF Hz, then 

where Yc (f) is the continuous-time Fourier transform of yc ( t )  - highest frequency 

component of y, ( t )  is at f = fiF+ W/2 Hz . Therefore, according to the Nyquist 

Sampling Theorem, the sampling rate must satisfy 

in order to avoid spectral overlap of y, ( t )  . The frequency domain representation of the 

sampling process is shown in Figure 2.2.1. 

Figure 2.2.1 (a) Spectrum of the originai bandpass signal. 

(b) Spectrum of the sampled bandpass signal with F, 2 2fW + W- 



From Equation 22.4, it is clear that the Nyquist sampling rate depends on both the 

intermediate frequency and the bandwidth, I, of the IF signal. The higher the 

intermediate frequency, the higher the required Nyquist sampling rate. The same 

argument applies for the bandwidth. As a result even if the information signal occupies 

a small bandwidth centered at a high intermediate frrsuency, the sampling rate must be 

significantly higher than the bandwidth for avoiding spectral overlap. 

2.2.2 Bandpass Sampling Theorem 

For the bandpass signal shown in Figure 2.2.l(a), there is an unoccupied 

W spectrum in the low frequency region fiom -4, + 10 fil- F. Thus it may be possible 

to use this unoccupied spectnrm to accommodate the spectral images resulting fiom the 

sampling process. This idea results in a more efficient sampling of the bandpass signal 

known as the bandpass sampling theorem [5, pp. 321-3373 [I l] , which is a special case 

of the Nyquist Sampling Theorem for the sampling of bandpass signal. 

The bandpass sampling theorem states that if a bandpass signal, xs ( t )  , has its 

fkequency content confined from f i  to fh , that is 

X,(f) = 0 for I f I > f h  Or If I <fi (2.2.5) 

where X, (f) is the continuous-time Fourier transform of x, ( t )  , f, is the highest 

(positive) frequency component and f, is the lowest (positive) frequency component, 

then the bandpass signal can be reproduced from its samples provided that the sampling 

rate F, satisfies the relationship 



2fh - S F s S -  2fi fh where a is integer valued and 2 5 n < - 
n n-1  (2.2.6) 

-fh+ 

In other words, the condition stated by Equation 2.2.6 ensures that spectral overlap does 

not occur in the sampling process. 

Several important points about the bandpass sampling theorem can be inferred 

from Equation 2.2.6 : 

(a) In Nyquist Sampling Theorem, as long as the continuous-time signal is 

bandlimited, there always exists a sampling rate for avoiding spectral overlap. 

However in bandpass sampling, it is possible that even if the continuous-rime 

signal is a bandpass signal, there may exist no sampling rate suitable for 

bandpass sampling. The condition for the existence of a suitable F, comes fkom 

the condition on the index n , 

Thus, a suitable sampling rate does not exist if 

On the contrary, if 

then there exists a set of sampling rates suitable for bandpass sampling. 



(b) Unlike the Ny@t Sampling Theorem in which only the lower limit of the 

sampling rate is restricted (that is the sampling rate can be as high as desired), 

both lower and upper limits of the sampling rate are restricted in the bandpass 

sampling theorem. The sampling rate cannot be too high or too low and only a 

certain range of samphg rates are suitable for bandpass sampling to avoid 

spectral overlap. An example is illustrated in Figure 2.2.2. Here f i  and fh are 

assumed to be Sfo and 7f0. The spectxum of this bandpass signal is shown in 

Figure 2.2.2a With these values of f i  and fh, the range of n is found to be 

2 S n 1 3.5, that is n can be 2 or 3. By substituting these values of f i ,  fh and n 

= 2 into Equation 2.2.6, it follows that the sampling rate Fs falls in the range, 

7f0 I F, S lOf, (2.2.10) 

On the other hand, with n = 3, 

4.66f0 I Fs b Sf, (2.2.1 1) 

Thus, in this example, the miaimwn sampling rate is 4.66f0 and the highest 

sampling rate is 10fo. There is a gap between these two sets of F, , that is F, 

cannot be in the range from 5f0 (exclusive) to 7f0 (exclusive). The aliasing 

effects for differeat sampling rates are shown in Figure 2.2.2 (b), (c) and (d). 

F i y ,  Fs is chosen to be 4f, which is lower than required In this case, the 

spectrum (shown in Figure 2.2.2a) is repeated periodically every 4f0. The 

a b e d  spectrum is shown in Figure 2.2.2b and a 100% spectral overlap occurs 

with this low sampling rate. Next F, is chosen to be 5f, which is a suitable 

sampling rate for bandpass sampling and the spectrum of the sampled signal is 

shown in Figure 



Figure 2.2.2 

(a) Spectrum of the continuous-time bandpass signal. 

(b) Spectrum of the sampled signal with F, = 4f0. A 100% spectral overlap occurs. 

(c) Spectrum of the sampled signal with F, = Sfo .  Spectral overlap is marginally 

avoided, 

(d) Spectrum of the sampled signal with F, = I 1 fo . Spectral overlap occurs. 



2.22~.  Spectral overlap is marginally avoided with this sampling rate. Finally 

F, is chosen to be i lf, which is greater than the highest sampling rate. The 

aliased spectrum is shown in Figure 2.22 d Again, since the sampling rate is not 

included in the bandpass sampling theorem, spectral overlap occurs. 

(c) The maximum and minimum sampling rates can be derived from Equation 2.2.6. 

In order to obtain the maximum sampling rate, F, is set to be the upper Limit ( 

26 i.e. F* = - ) and n is chosen to be the minimum ( i ~ .  n = 2 ). Therefore the 
n-I 

maximum sampling rate is found to be 

Fs* m a  = 26 

Notice that the maximum sampling rate for bandpass sampling is still lower than 

the Nyquist sampling rate which is 2fh. To obtain the minimum sampling rate, 

F, is set to be the lower limit ( i.e. f, = - 2fk ) and n is set to the maximum value. 
n 

fh Therefore if n is equal to with the assumption that - is an integer 
fh -fi fh -A 

greater than or qua1 to 2, then the minimum sampling rate is found to be 

Fs, ,in = 2 Cf, -fi) (2.2-13) 

Thus, for bandpass sampling, the minimum sampling rate is twice the bandwidth 

of the bandpass signal. This is analogous to the Nyquist Sampling Theorem 

which requires the minimum sampling rate to be twice the highest frequency 

component. 



In addition to the above three points7 there are other properties about the bandpass 

sampling theorem which can be found in [S, pp. 321-3371. The most important 

knowledge drawn from the bandpass sampling theorem is stated in Equation (22.13) 

which specifies the minimum sampling rate to be twice the signal bandwidth. If the 

bandpass IF signal y, ( t )  has a fkequency content confined within f ,  r , that is 

then the minimum sampling rate for avoiding spectral overlap is 

F$2W (2.2.15) 

f r ~ + f  
fh , or equivalently is an integer greater than or equal to 2. In provided that - 

fh -4 

other words, fIF must satisfy the following condition 

fiF = (lS+k) - W  where k = 0, 1,2, .-. (2.2. 16) 

So there exists a restriction on the intermediate frequency for achieving minimum 

sampling rate in bandpass sampling. 

2.2.3 Sampling Theorem for Linearly Modulated Signals 
with Zero Intersymbol Interference 

Both the Nyquist sampling theorem and the bandpass sampling theorem deal with 

general lowpass and bandpass signals. The objective of these two theorems is to 

determine the criterion of the sampling rate for avoiding spectral overlap in the sampling 

process. In other words, in the derivation of the two theorems, spectral overlap is treated 

as a destructive phenomenon to be avoided at all price. However, in the design of a 



digital communication receiver, a certain form of spectral overlap at some point of the 

receiver chain is desirabIe. One examqle is the downconversion of an IF ( or RF ) signal 

to baseband. It is found that the downconvened signal is a result of a 100% overlap of 

the positive and negative spectra of the IF signal. 

Another example, which is the main concern of this section, is the recovery of the 

information-bearing inphase (I) and quadrature (Q) symbols from their corresponding 

baseband signals without intersymbol interference. Here the digital modulation scheme 

is assumed to be linear, such as quadrature phase shift keying (QPSK) and quadrature 

amplitude modulation (QAM). Since both the I and Q symbols are discrete-time signals 

and the two baseband signals are continuous-time waveforms, the recovery process can 

be carried out by sampling the two analog baseband signals using proper sampling rates. 

Mathematically, the two Linearly modulated lowpass signals can be lumped into one 

complex-valued lowpass equivalent signal u ( t )  represented as 

where I, and Q, are the inphase and quadrature symbols respectively, Tp is the 

symbol period and g ( t )  is the signalling pulse being modulated by the complex 

symbols I,  + jQ, . Here the signalling pulse is assumed to be a Nyquist pulse which 

has a special property, 

g( t ) l t= .? ,  = 1 0 otherwise 

A signalling pulse which satisfies Equation 2.2.18 is referred to as a Nyquist pulse. 

Assuming that this complex-valued signal is sampled at a sampling rate of 1 complex 



sample per symbol, then the sampled sequence u, can be obtained as, 

- 
Un - ~ ( ' 1  I t r n ~ ,  wheren=O, f 1 , f 2 ,  ,,. (2.2.19) 

Substituting Equations 21-17 and 22-18 into 22-19 yields 

Therefore, in the time domain, it is clear that the inphase and quadrature symbols can be 

recovered with no IS1 by performing a complex-valued sampling of u( t )  with a 

sampling rate equal to the symbol rate. 

The frequency domain interpretation can be obtained by taking the Fourier 

transform on both sides of Equation 22.18 which yields 

= 1 for all f 

Equation (2.2-21) implies that in order to successfully recover the inphase and 

quadrature symbols with no ISI, the Fourier transform of the discrete-time signal 

g ( t  = nT,) must be 1 for all frequencies. One well-known family of pulses which 

satisfies this condition is the family of raised cosine pulses [ 2, pp. 546 1. The raised 

cosine pulse is specified as 



where B is the rolloff fitctor taking any value from 0 (inclusive) to 1 (inclusive). Except 

for the case where the roll-off factor is zero, all raised cosine pulses have a bandwidth 

greater than half of the symbol rate. In other words, the highest frequency component of 

the pulse is greater than half of the sampling rate and therefore spectral overlap occurs in 

the sampling process. This is shown in Figure 22.3. It is important to note that the 

spectral overlap does not introduce any loss in the information of the tranmtted 

symbols as long as Equation 2.221 is satisfkd, that is, as long as the spectral overlap 

causes the spectrum of the discrete pulse g ( t= nTp) to be flat. 

Figure 2.23 Spectrum of the discrete pulse g (t= nT,) with the sampling of l sample 

per symbol. 

Two important points are derived from the above discussion. Fit ly,  as shown in 

Figure 2.23, a certain form of spectral overlap is constructive in the recovery of the 

information symbols and should not be avoided Secondly, both inphase and quadrature 

symbols can be recovered by sampling the lowpass equivalent signal u ( t )  ( Equation 

2.2.17 ) with one complex sample per symbol, or equivalently 2 real samples per 
* 

symbol. Thus, with proper system design, the sampling rate can be as low as 2 real 

samples per symbol for the demodulation of a linearly modulated signal. Notice that this 

sampling rate is independent of the bandwidth of u ( t )  . 



2.3 Summary 

In summary, this chapter has provided an overview of a digital downconversion 

technique known as F/4 downconversion. In order to employ this technique, the 

system must be able to satisfy a special reIationship between the intermediate frequency 

and the sampling rate stated in Equation 2.1.17. As shown in Figure 2.1 -3, this technique 

allows the receiver to use a very simple digital structure to extract the inphase and 

quadrature samples from the continuous-time bandpass IF signal provided the sampling 

time is correct and the analog downconversion is coherent 

In addition to F / 4  downconversion, a review of three sampling theorems was 

also presented. Both the Nyquist sampling theorem and the bandpass sampling theorem 

specify the sampling rate for avoiding spectral overlap in the sampling process. Since 

the Nyquist sampling theorem is valid for any bandlimited signal (either lowpass or 

bandpass) whereas the bandpass sampling theorem is only valid for bandpass signal, the 

Nyquist sampling rate is more general and therefore requires a higher sampling rate. On 

the other hand, the third sampling theorem only deals with the demodulation of linearly 

modulated signals with no E L  Due to the constructive specaal overlap, a minimum 

sampling rate of 2 real samples per symbol can be employed for the recovery of the 

inphase and quadrature symbols. Such a sampling rate is adopted in the proposed IF- 

sampling receiver. 



Chapter 3 The Proposed IF-sampling Receiver 

This chapter presents the design of a bandpass digital communications system 

comprising a conventional transmitter, an additive bandpass white Gaussian noise 

channel and the proposed IF-sampling receiver. The compIete system block diagram is 

shown in Figure 3.1. In a high level description, the modulator maps a group of 

information bits into one of the predefined bandpass waveforms. The selected 

waveform s ( t )  is then transmitted through the additive bandpass white Gaussian noise 

channel and picked up by the receiver. The IF-sampling receiver produces two discrete- 

time sequences, namely the received inphase (I) symbols and the received quadrature (Q) 

symbols fiom the received signal. At the final stage, the detector processes the received 

I/Q symbols to generate an estimate of the transmitted information bits. All functions in 

Figure 3.1, except for the detector, are explained in detail in the following sections. In 

addition to the architecture of the system, the criterion for the signalling pulse achieving 

zero intersymbol interference (IS0 is also derived for the proposed IF-sampling 

receiver. Based on this criterion, one can obtain the minimum bandwidth for achieving 

zero IS1 and the corresponding pulse shape. 

3.1 The Transmitter 

This section explains the details of the transmitter in Figure 3.1. Basically the 

transmitter consists of a modulator which accepts the information bits as input, generates 

the corresponding data symbols and produces a continuous-time signal carrying the 

information of the symbols. The block diagram of the modulator is illustrated in Figure 

3.1.1 . In this project, the transmitter is restricted to implement only linear modulation 

scheme, such as QPSK and QAM. Other modulation schemes, such as continuous phase 

frequency shift keying (CPFSK), cannot be represented by the block diagram shown in 



Figure 3.1 Block diagram of the bandpass communication system model 



Figure 3.1.1 . Three operations are performed in the moddator : (1) symbol mapping, 

(2) pulse shaping and (3) frequency upconversion. 

Symbol 
Mapping 

Linear 

Scheme 

Pulse Shaping 

Convert from 1 sequenceto bxt 
impulse train 

up (0 

Convert fiom 
sequence to 
impulse train 

Frequency 

Figure R l m l  Detailed block diagram representation of the modulator. 

Each element in the discrete-time sequence of the information bits is either a I or a 0. 

The process of symbol mapping is performed by a bear digital modulation scheme in 

which a group of k consecutive information bits is mapped into an M-ary complex 

k symbol, where M = 2 . In tbis way, a single M-ary complex symbol is used to carry k 

information bits. In general, the real and imaginary parts of the complex symbols are 

known as the inphase symbols, I,,  and the quadrature symbols. Q,. If the rate of the 

information bits is Rb bitkc, then the symbol rate R, will be 



At the output of the digital modulation scheme, the two discreteame sequences, 

I, and Q, , are converted by the pulse shaping block into two continuous-time baseband 

signals namely the inphase signal I ( t )  and the qydrature signal Q (2) . This 

conversion process is similar to the reconstruction process of a bandlimited signal from 

its samples in the Nyquist sampling theorem [I, pp. 87.  The conversion process is 

performed in 2 steps : (1) conversion h m  a discrete-time sequence to an impulse train 

with a sampling rate of 1 sample per symbol and (2) filtering. To illustrate, given the 

two discrete-time sequences I, and Q, , one can obtain the two continuous-time signals 

uI ( t )  and up ( t )  b y  converting a sequence to an impulse train with a sampling rate of 

1 /T' , that is 

where 6 ( t )  I Dirac delta fimction 

Tp = symbol period = 1 / R, 

From the expressions given in Equations 3.1.2 and 3.1.3, the signals u I ( t )  and uQ ( t )  

00 

can also be viewed as modulation of an impulse train 6 ( t  -mT,) by two discrete-time 
m = - m  

sequences I, and Q, respectively. These two modulated impulse trains are then passed 

into the two pulse shaping Nters having the same impulse response denoted as g ( t )  . In 

practice, g ( t )  is known as the signalling pulse. The outputs of the two filters are given 

as the convolution of g ( t )  with uI ( t )  and uQ ( t )  , that is 



where @ denotes a convolution operation. 

The two signals, I ( t )  and Q ( t )  , are then used to amplitude-modulate (AM) the sine 

and cosine carriers respectively. Equivalently, in the frequency domain, the spectra of 

I ( t )  and Q ( t )  are kquency upshifted by the cosine and sine carriers respectively to a 

carrier frequency f, . By summing up these two AM signals, the linearly modulated 

bandpass signal, s ( t )  , is obtained as : 

- Q, - g(t-mTp) - sin (21rfct) 

The required transmission bandwidth for the communication system is dictated by 

the bandwidth of the bandpass signal s ( t )  which can also be represented by its complex- 

valued lowpass equivalent signal, v (?) , as 

where v ( t )  = ( I ,  +jQ,) - g ( t -mTp)  

By taking the continuous-time Fourier transform of s ( t )  , the frequency domain 



relationship between s ( t )  and v ( t )  is obtained as 

where S (n r continuousdme Fourier transform of s ( t )  

VV) = continuous-time Fourier transform of v ( t )  

and * represents a complex conjugate operation. 

Equation 3.1.8 clearly indicates that the bandpw bandwidth of s ( t )  is the same as the 

total lowpass bandwidth (including both positive and negative frequency spectra) of 

v ( t )  . Therefore the transmission bandwidth is the same as the total lowpass bandwidth 

of v ( t )  . The N1 derivation of the power density spectrum of v ( t )  is given by [ 2, pp. 

204 ] and the result is stated as follows. 

If the encoded symbols, I, and Qn , are uocorrelated and have zero mean, that is 

E U , }  = E { Q n }  = 0 for all a (3.1.10) 

where E { ) denotes the expectation operation. 

then the lowpass equivalent signal is a cyclostationary process with average power 

density spectrum given by 

2 1 * 
where ai = z -  E { ( I , + j Q n )  - ( I ,+ jQn)  ) 



Therefore the lowpass ecpivalent of the linearly modulated signal has the same specmil 

shape as the magnitude response of the signailing pulse g ( t )  . If the bandwidth of g ( t )  

is equal to W/2 Kz, that is 

[ G ~ I  = o for 1 f l z F  

then the bandwidth of the bandpass linearly modulated signal s ( t )  is equal to W Hz. 

3 -2 The Channel 

The second block in the system is a bandpass channel which is assumed to 

corrupt the transmitted bandpass signal s ( t )  by the addition of the bandpass white 

Gaussian noise n ( t )  . By summing the msmitted signal and the noise, the received 

signal r ( t )  is found to be, 

- Q, g ( t - mTp) - sin (2nfCt) 

The noise is assumed to be a wide-sense stationary stochastic Gaussian process with zero 

mean, 

E { n ( t ) }  = 0 for all time t (3.2.2) 

Furthermore the noise is also assumed to have a flat real-valued power density spectrum 



of 2 in a frequency region with bandwidth of W Hz and centered at the carrier 

frequency. Thus if the power density spectrum of n ( t )  is denoted as e, (n , then 

1 0  otherwise 

Due to this special property of the power density spectrum, this random process is 

commonly known as bandpass white noise. Figure 3.2.1 shows the sketch of the power 

density spectrum. 

Figure 3.2.1 Power density spectnun of the bandpass white noise. 

In general, any bandpass random process can be decomposed into two lowpass noise 

processes namely the inphase component x ( t )  and the quadrature component y ( t )  . So 

n ( t )  can also be written as 

n ( t )  = x ( t )  - cos (2~f,t) - y ( t )  - sin (2xf,t) (3 -2.4) 

where x ( t )  = inphase component of n ( t )  

y ( t )  o quadrature component of n ( t )  

Since n ( t )  is asstuned to be a Gaussian process, it follows that both x ( t )  and y ( t )  .are 

also zero-mean Gaussian random processes [2, pp. 1621. Thus 



E { x ( t ) )  = E { y ( t ) )  = O  foralltimet (3.2.5) 

Also due to the stationarity of the bandpass noise n ( t )  , the two components x ( t )  a d  

y ( t )  are d-valued individually and jointly widesense stationary processes [2, 

pp.1591. The autocorrelation fimctions of x ( t )  and y  ( t )  are exactly the same and 

given as, 

@,(T) = E { x ( t )  - ~ ( t - 7 ) )  = No- sin (RWT) 
lr ? 

It has been shown 12, pp. 1591 that the two processes, x ( t )  and y ( t )  , are also 

uncorrelated for all time shifts 7, therefore 

4,(7) = E { x ( t ) } - E { y ( t - T ) }  foralltimeshiftsr (3.2.8) 

Therefore, since x ( t )  and y ( t )  are Gaussian processes, they are statistically 

independent. Substituting Equation 3.2.5 into Equation 3.2.8 yields 

aq(?) = E { x ( t )  - y ( t - T ) )  = 0 fordltimeshiftsr (3.2.9) 

Therefore the cross-comlation function of x ( t )  and y ( t )  is always zero and x ( t )  and 

y ( t )  are orthogonal. The power density spectra (f) and a,,.,. ( f are obtained by 

taking the Fourier transform of 0,  (s )  and 0,  (t) . Hence . 
W 

No IfkT 
Q,tn = m,tn = 

0 otherwise 



Both the autocornlation hctions and the power density spectra are also sketched in 

Figure 31.2. 

No 

)f W -- W 
0 - 

2 2 

Figure 3.2.2 (a) Power density spectra of x ( t )  and y ( t )  . 

(b) Autocorrelation functions of x ( t )  and y ( t )  . 

3.3 The Proposed IF-sampling Receiver 

The architecture of the proposed IF-sampling receiver is based on the concepts of 

F / 4  downconversion and the sampling theorem for heady modulated signal. The 

receiver employs the minimum sampling rate of 2 samples per symbol and a simple 

digital structure (similar to Figure 2.13) to recover the transmitted information symbols 

from the sampled IF signal. The proposed receiver architecture is shown in Figure 3.3.1 . 

I quadrature 

Figure 3.3.1 Architecture of the IF-sampling receiver. 



The received radio hquency OZF) signaI,r ( t )  . is given as 

- Q, - g ( t  - mT') - sin (2nfCt) 

This RF signal is fint filtered by the ideal bandpass filter (BPF) which eliminates any 

signal and noise outside the transmission band The filtered signal is then mixed with a 

local oscillator, 2 cos [2x (f, - f IF)  t - B] where f, is the RF carrier frequency and fIF 

is the intermediate frequency. It is assumed that a perfect estimate of the carrier 

frequency is available in the receiver. However there exists an unknown phase offset 

between the received signal and the local oscillator- This phase offset is characterized by 

the unknown constant 8 io the local oscillator output At the output of the mixer, the 

signal is filtered by an ideal lowpass filter (LPF) to remove the doubie-frequency 

component. In order to perfonn F,/4 downconversion, the intermediate frequency 

must satisfy the condition, 

Fs f, = (2n+1) -- 
4 

where n = 0,1,2,.., (3 -3.2) 

Since a low intermediate frrquency can ease the input bandwidth requirement of the 

sampler, the minimum intermediate fcequency F / 4  is used. Therefore the sampling 

rate (F,)  and the intermediate frequency (fW) are selected to be. 



The bandwidth of the ideal lowpass filter must be large enough to pass the IF 

signat without any distortion. Therefoze the frequency response of the ideal lowpass 

filter LPF (f) is given as 

(0 otherwise 

Depending on the bandwidth of the signalling pulse and the intermediate frequency 

being selected in the receiver, spectral overlap can happen at both the input and output of 

the sampler. Fistly, if the minimum intermediate frequency is employed, then the 

negative and positive spectra of the IF signal ( at the input of the sampler ) partially 

overlap with each other. This is illustrated in Figure 3.3.2 with the assumption of a 

100% excess bandwidth signalling pulse. 

Figure 3.3.2 (a) Spectrum of the RF signal with 100% excess bandwidth. 

0.5 (b) Spectrum of the IF signal for fiF = - . 
=P 



Figure 3.323 shows the hypothetical RF spectrum with a 100% excess bandwidth and 

Figure 3.3.2b shows the co~esponding IF spectrum at the output of the ideal lowpass 

Nter (LPF). There is an exceptional case in which the spectral overlap is marginally 

avoided. This special situation occurs when either the signalling pulse has a 0% excess 

bandwidth or a higher interndate fresuency is chosen from Equation 3.3.2 . It should 

be noted that if a higher intermediate fiecpency is used, then the ideal lowpass filter 

should be replaced by a bandpass filter. 

Secondly, spectral overlap can also occur in the sampling process (or 

equivalently at the output of the sampler) depending on the excess bandwidth of the 

signalling pulse. Unless the signalling pulse has a 0% excess bandwidth, spectral 

overlap always occurs when sampling. This spectral overlap is independent of the 

intermediate frequency. It is important to note that these two forms of spectral overlap 

are constructive in making both the IF-to-baseband downconversion and the 

demodulation of the waveform signal into irQ symbols to be performed in one step - 
the sampling process. 

Whether the two spectral overlaps occur or not, the downconverted IF signal can 

always be represented as 

- y ( t )  - sin (2zfFt+0) 

The IF signal is sampled by one sampler with a sampling rate of 2 samples per symbol. 



The sampler is assumed to have infinite resolution such that quantization error is 

ignored However, due to the imperfection in the synchronization circuit, there exits an 

offset (error) in the actual sampling timing. Thus the acmal sampling time is given as 

where td represents the sampling timing error. Note hat  td is always in the range from 

- 0.25 T, to 0.25 T, , that is 

A positive value of td corresponds to the sampling point off to the left ; whereas a 

negative value of td corresponds to the sampling point off to the right. By substituting 

Equations 3.3.4 and 3.3.7 into Equation 3.3.6, the sampled IF sequence rIF [n] is found 

It is important to emphasize that if both the timing error and the phase offset are zero and 

the signalling pulse satisfies certain conditions (which will be discussed in the next 

section), then rIF [n] contains interleaved inphase and quadrature symbols with sign 

inversions introduced on some of the symbols. Mathematically, this can be stated as 



where I, and Q, are the transmitted inphase and quadrature symbols. In other words, 

the proposed IF-sampling receiver can directly emact the V Q  symbols from the analog 

IF signal without the need for recovering the two baseband continuous-time UQ signals 

using decimation filters. 

As shown in Figure 3.3.1, the recovered inphase symbols a [n] can be obtained 

from the sampled IF sequence by multiplying r , ~  [n] with the sign correction sequence 

& C O S ( ~ + ; )  and decimating the multiplication output sequence by a factor of 2. Thus 

the received inphase symbol is 

Similarly the recovered Q symbols can also be obtained by mukiplying rIF [n] with the 

sign correction sequence &IS(? + i) , time shifting the multiplication output sequence 

to the left by one sample and decimating the shifted sequence by a fitctor of 2. Thus the 

recovered quadrature symbol, b [n] , is 



0 

+ ~;g(nT,+OST''-td-rnT& - cos [-?+el 
m=--ao (3.3-12) 

3.4 Signal Design for the Proposed IF-sampling Receiver 

From Equations 3.3.1 1 and 33-12, it is clear that both the recovered inphase 

symbols, a [n] , and the recovered quadrature symbols, b [n] , contain information 

about the transmined VQ symbols. In order to obtain a "clean" copy of the transmitted U 

Q symbols under ideal conditions, the signalling pulse must satisfy certain conditions. 

This section focuses on the design of a bandlimited signalling pulse which allows the 

receiver to achieve zero intersymbol interference. The design procedures are similar to 

that of Nyquist criterion 12, pp. 5431 and the generalized Nyquist criterion 1131 . 

In the design of the signalling pulse, all distortions introduced either by the 

channel or by the nonideal receiver implementation are assumed to be zero. In other 

words, the timing error of the sampler, the phase offset and the two noise components 

(inphase and quadrature) are assumed to be zero : 

td = 0 (3.4.1) 

8 = 0  (3.4.2) 

x ( t )  = y ( t )  = 0 for all t (3.4.3) 



By substituting these four assumptions into Equations 33.11 and 3.3.12, the recovered 

inphase and quadrature symbols can be simplified as 

and 

Notice that with both the timing emr and the phase offset assumed to be zero, the 

recovered inphase symbo1s.a In] , depend solely on the transmitted inphase symbols, 

I,, and contain no contribution from the transmitted quadrature symbols, Q,. The 

same observation applies to the recovered quadrature symbols, b [n] , which also depend 

only on the transmitted quadrature symbols, Q,, and contain no contribution from the 

transmitted inphase symbols, I,. I .  other words, no crosstalk is introduced between the 

inphase and quadrature channels if both timing error and phase offset are zero. In a 

practical communication system, it is very costly to make these two assumptions valid 

and therefore the effect of these two errors is discussed in chapter 4. 

Although the crosstalk is removed, the effect of intersymbol interference (ISI) 

can still be introduced by an improper design of the signalling pulse. This is because 

both Equations 3.4.4 and 3.4.5 involve summation of all the transmitted I and Q symbols 

respectively. The first criterion for a zero IS1 signalling pulse is derived from the I 

channel. Assume the krh transmitted I symbol. Ik, is recovered at n = k, and the 

recovered symbol is denoted as & , then Equation 3.3.4 can be written as, 



This equation is purposely separated into two terms to show the mathematical form 

the intersymbol interference. The first term, I, - g (0) , is the desired inphase 

scaled by g (0)  . The second term, wtiich is the summation of contriiution of all 

inphase symbols other than I,, represents the interference from other symbols within the 

inphase channel itself. Therefore the second term is denoted as the intersymbol 

interference term. In order to remove the IS1 on inphase channel and retrieve Ik , the 

signalling pulse g ( t )  must satisfy 

1 for n = 0 
g(t= nTp) = 

0 otherwise 

Equation 34.7 is the criterion on the signalling pulse g ( t )  for accomplishing zero IS1 

on the inphase channel. 

To derive the criterion on the quadrature channel, the same procedure is applied. 

Again assume that the kh quadrature symbol, Qk, is recovered at n = k and the 

recovered symbol is denoted as Q~ , then Equation 3.4.5 yields 

The same interpretation is made. The first term, Qk g (OST,) , is the desired 

quadrature symbol scaled by g (05Tp) . The second term, which is the summation of 



contribution of all quadrature symbols other than Q,, represents the intersymbol 

interference. Therefore, in order to remove the IS1 on the quadrature channel and 

retrieve Qk , the signaling pulse g ( t )  must satisfy 

1 for n=O 
g ( t  = OST,+nT,) = 

0 otherwise 

Equation 3.4.9 is the criterion on the signalling puke g (t) for obtaining zero IS1 on the 

quadrature channel- Note that Equations 3.4.7 and 3.4-9 impose different restrictions on 

the same signalling pulse. In order to avoid IS1 on both the inphase and quadrature 

channels, the signalling pulse must be able to simultaneously satisfy both equations. 

Therefore having zero IS1 on both inphase and quadrature symbols requires g (t) to be 

1 for n=0,1 
g [ n ]  = g ( t  = nOJTp) = (3 -4. LO) 

0 otherwise 

Equation 3.4.10 is the time-domain zero IS1 criterion for a coherent IF-sampling receiver 

with perfect sampling timing. Notice that Equation 3.4.10 takes the same form as the 

conventional Nyquist criterion except that the sampling rate on g (t) is 2 /Tp  and two 

nonzero samples are required. This is mainly due to the fxt that the inphase and 

quadrature symbols are obtained at meren t  times. Thus the timing misalignment 

problem is solved by imposing two conditions (Equations 3.4.7 and 3.4.9) instead of one 

on the signalling pulse. 

In addition to the time domain representation, a frequency domain representation 

of the zero IS1 criterion can also be obtained by taking the discrete-time Fourier 

transform (DTFT) of Equation 3.4.10 . In general, the DTFT of g [ n ]  is denoted as 

~ ( 2 ~ )  and the transform is defined a s  



Substituting g In] from Equation 3.4.10 into Equation 3.4.1 1 yields 

Applying the delationship between the normalized discrete-time fquency o and the 

f continuous-time frequency f : o = 2x-, and the relationship between F, and I, : 
F* 

2 F, = 7 , Equation 3 -4.12 reduces to 

In general, the discrete-time Fourier transform, is related to the continuous-time Fourier 

transform, G (f) by the sampling theorem as 

By combining equations 3.4.13 and 3.4.14, the restriction on G (f) for zero IS1 on both 

inphase and quadrature channels can be obtained as 

2 where F, = - HZ 
=P 



Equation 3.4.15 is the frequency domain representation of the zero IS1 criterion for a 

coherent IF-sampling receiver with perfect sampling timing- The criterion implies that 

in order to avoid IS1 on both inphase and quadrahue channels, the periodic replication of 

G (f) must have a magnitude response of 

and a phase response of 

Notice that, except at the points of phase discontinuity, the phase response is a linear 

function of frequency. Both the time domain and frequency domain zero IS1 criterion 

are shown in Figure 3.4.1. Analysis of equation 3.4.15 leads to the bandwidth 

requirement of the signalling pulse. Assume W is the total lowpass bandwidth of the 

2 2 2 
signalling pulse, then the study can be divided into 3 cases : W < - , W = - , W > - . 

=P =P TP 



Figure 3.4.1 (a) Time domain zero IS1 criterion. 

(b) Frequency domain zero IS1 criterion (magnitude response only). 

2 2 Since W is less than W C  - and the sampling rate is - , then spectral overlap 
*P TP 

is avoided. Therefore as shown in Figure 3.4.2, it is impossible to fa in the 

spectral gaps to satisfy Equation 3.4.15 . 



Figure 3.4.2 (a) Magnitude spectrum of g ( t )  . 
(b) Magnitude spectrum of the periodic replication of G (f) . 

2 2 When W is equal to - and the sampling rate is -, frequency aliasing is 
TP TP 

marginally avoided In this case, there exits only one solution of g ( t )  which can 

satisfy the zero IS1 criterion and the solution is 



?f T - jq 1 
rP - c o s y  - e for 1 f l < -  

G O  = TP 

0 otherwise 

The magnitude spcctrum is plotted in Figure 3.4.3. 

Frequency 

2 Figme 3.4.3 Magnitude spectnun of zero IS1 signalling pulse for W = - . 
=P 

The time domain zero IS1 pulse, g (2) can be obtained in two ways. The first 

approach is a direct application of the inverse continuous-time Fourier transform 

of G (f) to obtain g ( t )  . The second approach involves the reconstruction of a 



bandlimited continuous-time signal from its sarnp1e-s in the Nyquist sampling 

theorem. It is the second approach which is used in this thesis to obtain g ( t )  . 

In general, a continuous-time signal, g ( t )  , can be coastructed fkom a discrete- 

time signal, g [n] , in a process described as follows, 

g In] sequence to g (0  
impulse train 

Figure 3-4-4 Block diagram of reconstruction process 

By converting the sequences in g [n] to an impulse train with a sampling rate of 

F, , the modulated impulse train is found to be 

The impulse response of the ideal lowpass Nter is given as 

sin (ntF,) 
h ( t )  = sinc pulse = (3 -4.20) 

xtF, 

By convolving gs ( t )  with h ( t )  , the desired continuous-time signal is obtained 

as 



w sin [r ( t - dF,) F,] 
g ( t )  = C grn1 * 

k l - o o  
n ( t - n f F , )  F, 

C 1 for n=0,1 
Substituting g [n] = and the sampiing rate of f HZ into 

0 otherwise T~ 

Equation 3 -4.2 1 produces the desired zero IS1 signalling pulse, 

sin (2zr /Tp)  sin [2r ( t - 0.5Tp) IT,] 
g ( t )  = + 21tt/T, 2 ~ t  ( t  - OST,) /T, 

The pulse described by g ( r )  is very similar to a duobinary pulse except that it 

has a 100% excess bandwidth. This pulse is plotted in Figure 3.4.5 . Notice that 

g ( t )  can also be viewed as a sum of two sinc pulses with a time offset of 

time 

Figure 3.43 The minimum bandwidth zero IS1 signalling pulse. 



With W >  2 , the sampling rate is less than twice the highest frequency, As a 
*P 

result, hquency ;Iliasing must occur. Therefore it is possible to have numerous 

choices of g ( t )  to satisfy Equation 3.4.15 . However, since the aansmission 

bandwidth should be kept as low as possible, the solution in case 2 is always 

better and no funher study is p d  for this case. 

As a red l  for a coherent IF-sampling receiver with perfect sampling timing and a 

sampling rate of 2 samples per symbol, the minimum bandwidth for achieving zero 

intersymbol interference is 2/Tp Hz. Any signalling pulse with bandwidth less than 

2/Tp  Hz must generate E L  In other words, an IF-sampling receiver requires a 

signalling pulse with at least a 100% excess bandwidth. When the bandwidth of g ( t )  is 

greater than 2/Tp Hz , several choices of g (t) can satisfy the zero IS1 criterion stated 

in Equation 3.4.15 . 

This chapter has described the details of the IFsampling communications 

system. A linear modulation scheme is employed in the transmitter while the channel is 

assumed to be an additive bandpass white Gaussian noise channel. On the receiver side, 

the IF-sampling receiver is shown to be capable of extracting the inphase and quadratwe 

symbols through the sampling process. With the proposed receiver architecture, both the 

time and frequency domains of the zero IS1 criterion are derived Also both the 

minimum bandwidth and the actual signalling pulse for achieving zero IS1 are given in 

this chapter. 



Chapter 4 Performance of the Proposed IF-sampling 
Receiver 

In chapter 3, the proposed IF-samphg receiver was descn'kd. The receiver is 

general in the sense that any linear digital modulator and detector can be employed 

However, in order to evaluate the perfonnance of a commUILications system, a particular 

modulator and detector must be specified In this project, differential quadranue phase 

shift keying @QPSK) modulator and differential detector are adopted due to their 

simplicity and popularity. The whole system is simulated to obtain the bit error rate 

performance under the distortions of timing error, phase offset and noise. As will be 

shown in this chaptez, the timing exmr can severely degrade the system performance and 

cause irreducible bit error rate. Also, due to the presence of the asymmetric intersymbol 

interference, the phase offset becomes an important factor on the system performance. 

4.1 DQPSK Modulator and Differential DQPSK Detector 

In recent years, a large amount of attention has been paid over digital mobile 

communication systems employing differential quadrature phase shift keying (DQPSK) 

[14]-[18]. One of the advantages of DQPSK modulation is its high bandwidth efficiency 

ranging from 2 bit/secMi (for a 0% excess bandwidth signalling pulse) to 1 bit/sec/Hz 

(for a 100% excess bandwidth signalling pulse). The bandwidth efficiency is calculated 

using the bandpass bandwidth. In addition, a differential modulation scheme allows the 

use of noncoherent detectors which are of simpler implementation than coherent 

detectors. Due to these advantages, one particular form of DQPSK modulation, known 

IC 
as - - DQPSK, has been adopted by both the Noah American and the Japanese digital 

4 

cellular standards [1q. Consequently, DQPSK is also adopted throughout the thesis. 



A DQPSK modulator takes two infomation bits at a time and produces one 

complex-valued symbol, I, + jQ,. These two bits are encoded using the phase 

difference between two consecutive complex symbols. If the two information bits (also 

known as dim) are 00, 01, 1 1 or 10, then the phase changes relative to the previous 

symbol are 0°, 90°, 180' or 270' respectively. This encoding rule is shown graphicaily 

in Figure 4.1.1 . 

Figure 4.1.1 Signal constellation showing the relationship between the relative phase 

shift and the dibit. 

Notice that the assignment of the relative phase change follows Gray coding 16, pp.2011 

such that all adjacent phase shi f ts  only differ in one binary digit The advantage of Gray 

coding is that since errors are most likely to be made to neighboring points in the signal 

constellation, only one bit is decoded incorrectly. This minimizes the number of errors 

resulting fram the presence of distortion. In DQPSK modulation, an extra complex 

symbol is required at the beginning of the symbol sequence to provide a phase reference 

for the first dibit. This initial symbol is arbitrarily assumed to be 0.707 + jO.707. By 

having the initial phase to be 45' and the encoding rule as shown in Figure 4.1.1, there 

are in total 4 possible transmit signal points in the signal constellation (Figure 4.1.2). All 

four points reside on the unit circle and their phases are 4S0, 13S0, 225' or 3 15' . 



Figure 4.1.2 Constellation showing all four possible transmit signal points. 

On the receiver side, the bandpass RF signal is processed by the IF-sampling 

receiver and a corresponding sequence of received complex symbols is generated at the 

output of the IF-sampling receiver. These distorted complex symbols, a [n] +jb  [n] , 

are then decoded by the differential detector to recover the transmitted ioformation bits. 

The distorted inphase and quadrature symbols are denoted by a [n] and b [n] 

respectively. A differential (or noncohennt) detector, which employs delay and 

conjugate multiplication [2, pp. 2741, is adopted in this project. Several other types of 

differential detector can also be found in the literature [12], 1141. The block diagram of 

the differential detection is shown in Figure 4.1.3. 

Figure 4.13 Differential detection for DQPSK symbols. 



The received symbols are decoded according to the values of two decision variables 

whose derivations are based on the phase change between two consecutive complex 

symbols. This phase change is obtained by multiplying the present received complex 

symbol with the complex conjugate of the previous complex symbol. In Figure 4.1.3, 

.It 

there is a second multiplication of e 'z which rotates the multiplication produa by 45' in 

the counter-cIockwise direction. This rotation causes the four signal points in Figure 

4.1.1 to fall into the centers of the four quadrants. The decision variable for the most 

significant bit (MSB), UMsB, is obtained as 

where * denotes complex conjugate. The most signiricant bit is decoded as 0 if 

UMsB 2 0 ; otherwise it is a 1. On the other hand, the decision variable for the least 

significant bit (LSB), ULsB , is determined as  

Similarly, the least significant bit is decoded as 0 if Urn b 0 ; otherwise it is a 1. 

Notice that this differentid detection scheme involves only multiplication and addition in 

the calculation of the decision variables. No complex operation, such as trigonometric 

function, is required, 



4.2 The Effect of Bandpass White Noise on the Proposed 
IF-sampling Receiver 

This section studies the propagation of the bandpass white noise through the IF- 

sampling receiver. It is assumed that the bandpass white noise has the same bandwidth 

as the information-bearing signal. Any out-of-bmd noise is filtered out by the fiont-end 

bandpass filter shown in Figure 3.3.1. Similar to the information signal, the bandpass 

white noise is also processed by the IF-sampling receiver which in tum produces the two 

corresponding discrete-time random sequences : zi [n] and 2, [n] . The subscript 'i' 

represents the inphase channel whereas the subscript 'q' refers to the quadrature 

channeI. From the expressions of the received inphase and quadrature symbols derived 

in Equations 3.3.11 and 3.3.12, the inphase noise sequence zi [n] is found to be, 

and the quadrature noise sequence z, [n] is, 

Sever operties namely statistical means, autocorrelation functions, cross- 

correlation functions and probability density hctions of these two noise sequences are 

investigated in this section. Throughout the whole investigation, both td and 8 are 

treated as deterministic quantities. 



The investigation starts with the statistical means of the two random processes. 

By taking ensemble expectation on zi [n] and zq In] , the statistical means are 

determined to be, 

- E { y ( n T , - t d ) }  - sin ( -- yre] 
and 

Since both x ( t )  and y ( t )  have zero means (Equation 325). it follows that both zi [n] 

and z, [n] also have zero means for all time, that is 

By substituting the expression of zi [n] into Equation 4.2.6. the autocorrelation of 



zi [n] is expanded as, 

y(nT,-td) -y (nTp-kT,- td  sin 

Since the cross-correlation between the two noise processes x ( t )  and y ( t )  is zero for 

all time shifts, the middle two terms are equal to zero and Equation 4.2.8 can be 

simplified as 

2 eZizi [n  ; n - k] = 41, (?= kTp) - cos 

Also due to the fact that x ( t )  and y ( t )  have the same autoconelation function 

(Equations 3.2.6 and 3.2.7), the final expression for the autocorrelation of zi [n] is, 

Similarly the autocorrelation function of z, [n]  can be obtained by repeating the above 

procedure. Substituting the expression for zq [n] into Equation 4.2.7 yields, 



2 E{x(nTp+0.5Tp-t,) -x(nTp-kTp+0.5Tp-td) - sin (p)) 

+ E{x(nT' +0.5Tp-td) - y  (nTp-LIP +0.5Tp-td) - sin (p) cos (p) ] 
(4.2- 1 1) 

Applying the f~ that the cross-comlation between x ( t )  and y ( t )  is always zero and 

that these two processes have the same autocorrelation function, the final expression for 

the autocorreIati011 of zq In] is, 

Several observations can be made from Equations 42-10 and 4-2-12 . Fitly, 

both 4 In ]  and z, [n] have exactly the same autocorrelation function. Secondly, these 

two autocorrelation functions depend only on the difference of the two time indices. 

This suggests that both zi [n]  and z, [n] an wide-sense stationary random processes. 

In addition, the relationship between $, (s) and 9 zizi [k]  can be obtained through a 

sampling process described in Figure 4-2.1 . The same relationship applies between 

ow 0 and @,& F I  - 



. 
s = kTp where k = O , f l , S ? ,  ... 

Figure 4.2.1 Relationship between @= (7 )  and $ [ k] . The same relationship 
Ziri 

applies between en (T) and @ [k] . z4tP 

By applying the relationship shown in Figure 4.2.1 and the autocorrelation fhction and 

power density spectrum shown in Figure 3 2 3 ,  it can be shown that the two discrete-time 

noise processes, ti [n] and zq En] , can be either white or non-white processes 

depending on the excess bandwidth of the signalling pulse. The proof is presented in the 

following three cases. 

Case 1 : 0% excess bandwidth 

With the signalling pulse having 0% excess bandwidth, the total lowpass 

bandwidth ( W) is, 

Then the autocorrelation functions, $a (7 )  and @, (7) , become 

These two functions are also sketched in Figure 4.2.2. 



Figure 4.2.2 Autocorrelation hctions (7) and $, (?) for 0% excess bandwidth. 

By sampling this autocornlation hction with a sampling rate of l / T p ,  one can obtain 

@,.i r kl 4& L-kl as 

The sampling points are shown as dots in Figure 4.2.2. Since the discrete-time 

autocorrelation functions are tero except at k = 0, the two sequences, zi [n] and z, [n] , 

are white random processes. 

The same result can also be obtained in the freguency domain in which the power 

density spectra of x ( r )  and y ( t )  are given as, 

1 
No Ifk- 

~, tn  = ~ , t n  = Tp 
0 otherwise 

By periodically replicating a, (f) with a period of l / T p  and multiplying the spectrum 



by the sampling rate (i.e. 1 /Tp ) , one can obtain the power density spectra of zi in] 

andzq [nl as 

All of these four power density spectra are shown in Figure 4.2.3. 

Figure 4.2.3 (a) Power density spectra of x ( t )  and y ( t )  for 0% excess bandwidth. 

(b) Power density spectra of zi [n] and zq [n] for 0% excess bandwidth. 

It is clear that both zi [n] and z, [n] have flat a power density spectra and as a result 

they are white processes. 



With the signalling pulse having 0% (exclusive) to 100% (exchsive) excess 

bandwidth, the total lowpass bandwidth ( W) is in the range, 

In general, the autocorrelation functions, @, (r) and @, (7) are given as, 

A special case of 50% excess bandwidth ( W = 1.5/Tp ) is used as an example and the 

corresponding autocorrelation functions of $, (7 )  and (r) are shown in Figure 

4.2.4 . 

Figure 4.2.4 Autocornlation functions of += (7) and Qyy (T) for 5046 excess 

bandwidth. 

Mathematically, the autocorrelation furctions of zi [n] and zq [n] are 

Notice that both $ . [k] and 9 [k] are no longer equal to a discrete-time delta 
ziz, z ~ q  



function. This implies that the two noise sequences are no longer white. The same 

observation can be made in the frequency domain. Both a, (f) and @, (f) are 

Figure 4.2.5 (a) Power density spectra of x ( t )  and y ( t )  for 50% excess bandwidth. 

(b) Power density spectra of zi in] and z, [n] for 50% excess bandwidth. 

It is clear that the spectrum Qz,- 
I I 
(I2-) is no Longer flat and this d t  is consistent 

with the time domain investigation. In general, the two noise sequences zi [n] and 

z, [n] are not white processes for the signalling pulse having 0% (exclusive) to 100% 

(exclusive) excess bandwidth. 



Case 3 : 100% excess bandwidth 

With the signalling pulse having 100% excess bandwidth, the total lowpass 

bandwidth, W, is 

Then the autocornlation functions, (s) and $n ( r )  , become 

These two functions are sketched in Figure 4.2.6. 

Figure 4.2.6 Autocomlaaon functions qn (T) and @, (7)  for 100% excess 

bandwidth. 

Sampling this autocorrelation function with a sampling rate of l / T p  yields QZizi [k] and 

Since the autoconelation functions equal to a scaIed discrete-time delta function, both 

zi [n] and zp [n] are white random processes. 



In the fkquency domain, the power density spectra of x ( t )  and y ( t )  are given 

By periodically qlicating @, (f) with a period of l/T, and multiplying the spectnun 

by 1 IT,, the power density spectra of ti [n] and z, [n] are obtained as 

AU of these four power density spectra are shown in Figure 4.2.7. 

Figure 4.2.7 (a) Power density spectra of x ( t )  and y ( t )  for 1009 excess bandwidth. 

(b) Power density spectra of ti [n] and z, [n] for 100% excess bandwidth. 



Again both ti in] and zq In] have flat power density spectra and as a rrsult the noise 

sequences, zi [nl and zq in] , are white random processes. 

In summary, the two noise sequences, zi [n] and z, [n] are white wide-sense 

stationary process for both 0% and 100% excess bandwidth signalling pulse. For any 

excess bandwidth ranging from 0% (exclusive) to 100% (exclusive), the two noise 

sequences are no longer white. 

In addition to the autocomlation fwction, another important parameter of a 

random process is its total average power. For a continuous-time random process, the 

total average power is equal to the autocomlation function evaluated at zero time s h i f t  

Therefore, 

Total Average Power of x ( t )  = 9, (?= 0 )  = No - W (4.2.24) 

Similarly, 

Total Average Power of y ( t )  = 9yy (T= 0 )  = No W (4.2.27) 

For a disaete-time random process, the total average power is also equal to the 

autocorrelation function evahated at zero time shift. Therefore, 

Total Average Power of zi [n] = QZizi [k= O] = No - W (4.2.28) 

and 

Total Average Power of zq [n] = [k= o] = No - W (4.2-29) 
V q  

Notice that the two discrete-time noise sequences, zi [n] and z, [n ]  , have the same 

average power as the two continuous-time lowpass noise processes, x ( t )  and y ( t )  : As 



a nsult, as the bandpass noise propagates through the IF-sampling receiver, the noise is 

neither reduced nor enhanced in other words, all noise power propagates through the IF- 

sampling receiver without modification. 

The fowth investigated property is the cross-comlation bct ion between zi in] 

and z, [n] . The crosscorrelation firnction is defined as, 

By substituting the expressions for zi [n] and zp [n] into the definition, the cross- 

correlation is expanded as, 

Since QW (7)  = 0 for all r , the middle two terms are qual to zero. Also since x ( t )  

and y ( t )  have the same autocorrelation function, the first and the last terms cancel each 

other. Therefore the cross-correlation between zi (n] and zq [n] is always zero for any 

value of excess bandwidth and any time-shift. 



The last statistical quantity being studied is the probability density functions of 

zi [4 and zq [n] . Due to the fact that both zi [n] and zq [n] are linear combinations of 

two uncorreiated Gaussian processes, it follows that zi [n] and zq in] are also Gaussian 

processes 12, pp All . 

In summary, the two discrete-time noise sequences are uncornlated Gaussian 

processes with zero means. For the case of 0% and 100% excess bandwidths, these two 

processes are white. However, for any excess bandwidth ranging from 0% (exclusive) to 

100% (exclusive), these two processes are no longer white. 

4.3 The Equivalent Discrete-time Model 

In addition to the bandpass communications system model shown in Figure 3.1, 

an equivalent discrete-time model can also be derived for the system. This discrete-time 

model summarizes the overall effect of the whole communications system (transmitter, 

channel and receiver) on the transmitted information symbols. It clearly shows the 

effects of any linear distortion affecting the symbols. Due to this capability, the 

equivalent discrete-time model is a useful tool for providing insight into the source of 

performance degradation and the solution for performance improvement 

4.3.1 The Equivalent Discrete-time Model for Any 
Signalling Pulse 

The structure of the discrete-time model comes from the two expressions for the 

received inphase and quadrature symbols. These two expressions are given in Equations 

3.3.1 1 and 3.3.12. By manipulating these two equations and substituting the definitions 



of zi [n] and z, [n] , these two equations can be rewritten as, 

and 

where @ = -- T td + 9 and 0 denotes discrete-time convolution. 

By representing these two equations in a block diagram as shown in Figure 4.3.1, the 

equivalent discmte-time model is obtained. Notice that since the derivation of these two 

equations makes no assumption on the signalling pulse, this discrete-time model is valid 

for any signalling pulse employed in the IF-sampling communication system. As 

summarized in the diagram, there are three distortions being introduced on the symbols : 

1. Fitly, the transmined complex symbols I, + jQ, are rotated in a counter- 

clockwise direction by an amount @ which is defined above. The amount of rotation 

depends on both the phase offset, 0 ,  of the local oscillator and the sampling timing error, 

t Therefore even if the receiver complexity is increased to allow coherent 

downconversion, that is 0 = 0,  the signal conste11ation is still rotated clockwise by 

ztd/Tp.  The only two situations in which the rotation vanishes are when the phase 

offset exactly counteracts the sampling error, that is 0 = %td/Tp or when both 0 and 

td are equal to zero. Note that this rotation is the only distortion which gives rise to the 

crossover (or crosstalk) between the I and Q channels. Thus a zero rotation implies zero 

crosstalk. 



Figure 4.3.1 Equivalent discrete-time model for any signalling pulse. 



2. The second distortion is the asymmetric intersymbol interference (ISI) 

channel. Inside this channel, the rotated UQ symbois experience different form of 

intersymbol interference. The effect of these two intersymbol interferences can be 

characterized by the two discrete-time filters with impulse responses denoted as hi in] 

for the inphase channel and h, [n] for the quadrature channel. These two impulse 

responses are given as, 

hi 1 4  = g (q, - td) (4.3 -3) 

and 

hq [n] = g (nTp + 0.5T' - td) 

There are two different kinds of impairments combined to cause this asymmetric 

intersymbol interference. The first impairment is the sampling timing error which is 

responsible for causing the intersymbol interference. This is a typical distortion caused 

by the timing error and is common to any digital communications system. The second 

impairment, which is unique to the proposed IF-sampling receiver, is the timing 

misalignment mentioned earlier in chapter 2. Since the inphase and quadrature symbols 

are obtained at different times, different intersymbol interferences are introduced on the 

inphase and quadrature symbols. Therefore it is the timing misalignment which gives 

rise to the asymmetric nature of the intersymbol interference. 

3. The third distortion is the addition of two noise sequences on inphase and 

quadrature symbols. The statistical properties of these two noises were covered in the 

last section. Notice that unlike the intersymbol interference, the inphase channel noise, 

z i [ n ]  and the quadrature channel noise. zq [n] have the same statistical properties. 

Therefore the effects of wise on the inphase and quadrature channels are the same. 



4.3.2 The Equivalent Discrete-time Model for Truncated 
100% Excess Bandwidth Duobinary Pulse 

This section f m  on the effkct of the asymmetric intersymbol interference for 

the 100% excess bandwidth duobinary pulse. For simplicity, the term duobinary pulse is 

always referred to as the 100% excess bandwidth duobinary pulse. Similar to the raised 

cosine pulse, this duobinary pulse also has an infinite time duration in both positive and 

negative time axes. As a result, both filters in the asymmetric IS1 channel have infinite 

number of taps in both positive and negative time axes. In order to obtain a simpler and 

more meaningful discrete-time model, an approximation is made on the duration of the 

duobinary pulse. Since the amplitude of the duobinary pulse decreases with l/t2, 

where t is time and most of the energy is concentrated in the region from t = -0.5T' to 

t = T,, the duobinary pulse is approximated by its truncated version, g T ( t )  , which is 

defmed as 

0.25 $ sin (Zntf T') 
for -0.5TpdrLTp x t  (OST, - t )  

g T ( t )  = 

0 otherwise 

By substituting this truncated duobinary pulse into the two fdter impulse 

responses inside the asymmetric IS1 channel, one can obtain the equivalent discrete-time 

models for different timing errors. The result is presented for three cases : (1) td = 0 ,  



Case 1 : td = 0 - 

With td = 0 ,  the sampling points coincide exactly with the zeroaossings of the 

in£initely long duobinary pulse. Therefore the impulse response of the inphase channel 

IS1 mter becomes, 

h i [ n ] =  g(nTpWtd)  = g(nTp) = 6[n] (4.3 -6) 

whereas the impulse response of the quadrature channel IS1 filter is, 

hq[n]=g(nTp+05T'-td) =g(nTp+0.5Tp)  =6[n] (4.3.7) 

Since both IS1 fdters have the discretedme delta function as their impulse responses, no 

distortion is introduced by these two filters. As a result, the effect of intersymbol 

interference vanishes and the remaining two distortions are constellation rotation and 

addition of Gaussian noises. The corresponding equivalent dismte-time model is shown 

in Figure 4.3.2. Notice that the above argument does not assume the duobinary pulse to 

have finite duration and therefore the discrete-time model shown in Figure 4.3.2 is valid 

for both the original and the truncated duobinary pulse. Also note that this result is 

consistent with the previous result obtained in the signal design for the proposed IF- 

sampling receiver. 

Case 2 : 0 I td S 0.25 Tp 

With the timing error ( td )  being not equal to zero, the sampling points no longer 

coincide with the zero-crossings of the duobinary pulse. As a result, an infinitely long 

intersymbol interference is introduced on the inphase and quadratwe symbols. In 

addition, since the timing error ( td )  is greater than zero, the actual sampbg points occur 



Figure 4.3.2 Equivalent discrete-time model for both original and truncated 100% 

excess bandwidth duobinary pulse and td = 0 .  



to the left of the optimal sampling points. Here optimal sampling points are referred to 

as the sampling points with td = 0 .  By replacing the origind duobinary pulse with its 

truncated version, an approximation of the intersymbol intrrference is obtained and the 

result is presented as follows. 

Approximating g ( t )  with g, ( t )  in the inphase channel IS1 filter yields, 

hi I n ]  = gT (nTp - fd) (4.3.8) 

and substituting 0 S td S 0.25Tp into the equation of gT( t )  . the approximated impulse 

response of the inphase channel filter is found to be, 

hJn] = A - 6 [ n ]  + B - 6 [ n - 1 1  (4.3 -9) 

where A = gT(-td)  

= gT (T,-tJ 

By making the same approximation and substitution, the approximated impulse response 

of the quadrature channel filter is obtained as, 

hq[n]  i gT(nTp+0 .5Tp- td )  = C-6["] (4.3-10) 

where C = gT(O.STp-td) 

These two simplified impulse responses an incorporated into the asymmetric IS1 

channel and the result is shown in Figure 43.3. The values of the tap weights A ,  B and 

C are obtained by substituting different timing errors ranging From 0 to 0.25 T, into the 

truncated duobinary pulse specified in Equation 4.3.5 and the results are summarized in 

Table 4.3.1. 



Figure 4.33 Equivalent discrete-time model for truncated 100% excess bandwidth 

duobinary pulse and 0 I t S 0.25Tp . 



Table 43.1 Table of tap weights A ,  B and C for 0 I td 1 0.25Tp . 

Several observations can be made on the asymmetric IS1 channel. Firstly, with 

the truncated duobinary pulse, the Q channel filter is simplified to having only one direct 

path scaled by the tap weight C . Since C ranges from 1.0 to 1.27, the Q symbols (after 

rotation) are always amplified by a factor of C. More importantly, since the Q channel 

fdter does not have any second path, there is no intersymbol inwference in the Q 

channel. On the other hand, the I channel fdter is modelled as a two-path IS1 channel 

with tap weight A representing the gain of the dinct path and tapweight B for the gain 

of the delayed path with one symbol delay. Due to the existence of the delayed path, 

intersymbol interference, which is caused by one past symbol, is introduced in the I 

channel. The amount of IS1 is contded by the ratio of direct path gain to the delayed 

path gain. From Table 4.3.1, it is clear that as timing error increases from 0 to 0.25 1, , 

the direct path tap weight A decreases from 1 to 0.424 (a 58% drop) whereas the delayed 

path tap weight B increases from 0 to 0.424 (a 42% increase). Since both the drop in 

tap weight A and rise in tap weight B add up to enhance the ISI, an increase in timing 

error can significantly increase the amount of IS1 in the I channel. It will be shown in 



the next section that when the direct and delayed paths have the same gain, the system 

suffers severe performance degradation. The final comment on the I channel filter is 

regarding its z-transform transfer fuaction which is obtained as 

So Hi(z) has one pole at z = 0 and one zero at z = -B/A.  Except when 

td = 0.25Tb, A is always greater than B . This implies that when 0 S td < 0.25 Tp , both 

zero and pole of Hi ( z )  are inside the unit circIe- Therefore Hi (z) is a minimum phase 

system and its inverse system is always stabIe. When td = 0.25Tp, the zero is exactly 

on the unit circle and the inverse system of Hi (2) is marginally stable. 

Similar to case 2, when the timing error ( td )  is not equal to zero, the sampling 

points no longer coincide with the zero-crossings of the duobinary pulse and infimitely 

long intersymbol interference occurs. However in this case, the timing error ( t d )  is less 

than zero and therefore the actual sampling points occur to the right of the optimal 

sampling points. As will be shown below, this change in td makes a significant change 

in the characteristics of the asymmetric IS1 channel. 

Similar procedure is used to obtain the equivalent discrete-time model with the 

truncated duobinary pulse. By approximating g ( t )  with g, ( t )  in the I channel IS1 

filter, and substituting - O.25Tp S td S 0 into the equation of g T ( t )  , the approximated 

impulse response of the I channel filter is found to be, 



hi [n] = gT(nTp - td) = E - 6 [n] 

where E = gT(-td) 

Similarly, the approximated impulse response of the Q channel filter is obtained as, 

h,[n] =gr(nTp+0.5Tp-td) = F - 6 [ n + 1 ]  + G - 6 [ n ]  (4.3 - 13) 

where G = gr (0.51'-td) 

F = gT (-0.5 Tp- td) 

Notice that hq [n] is a noncausal filter with one element at n = - 1 .  However, due to 

propagation delay through the channel, time delay in a communications system is 

inevitable. Thus an extra delay of one sample is added to both the inphase and 

quadrature channel filters to make h, [n]  become causal. Afw the addition of this 

extra one sample delay, the two impulse responses become 

hi [n]  = E - 6 [ n - 1 1  

where E = gT(-td) 

and 

h,[n] = F - S [ n ]  + G - 6 [ n - 1 ]  

where G = gT(0.5Tp-td) 

and F = gZ(-0.5T'-td) . 

By incorporating these two simplified and delayed impulse responses into the 

asymmetric IS1 channel, the equivalent discrete-time model is obtained and shown in 

Figure 4.3.4. The values of the tap weights E ,  F and G are obtained and summarized 

in Table 4.3.2. 
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Table 4.3.2 Table of tap weights E, F and G for - 0.25Tp I td d 0 . 

Several observations can be made fiom the two simplified and delayed impulse 

responses. Fitly, unlike the I channel Nter in case 2, this I channel fiiter shown in 

Figure 4.3.4 has only one path scaled by tap weight E .  Since there is no second path in 

the fdter, intersymbol interference is not introduced on the rotated I symbols. Also since 

E ranges fiom 1.0 to 1-27 as td increases from 0 to 0.25 Tp , the rotated I symbols are 

always amplified by a factor E. On the other hand, the Q channel filter is modelled as a 

two-path IS1 channel with tap weight F in the direct path and tap weight G in the 

delayed path. Unlike the IS1 in case 2 which is caused by one postcursor, the IS1 in this 

case is produced by one precursor. Therefore the receiver should lock onto the delayed 

path symbols. The amount of IS1 is controlled by the ratio of the delayed path gain to 

direct path gain. As the ratio decreases, the effect of IS1 increases. From Table 4-32, it 

is clear that as t,  increases from 0 to 0.25Tp, the tap weight F increases fiom 0 to 0.424 

(a 4296 increase) whereas the tap weight G decreases fiom 1.0 to 0.424 (a 58% 

decrease). Since both the increase in F and decrease in G raise the effect of ISI, an 

increase in timing error can significantly increase the amount of IS1 in the system. A 



fmal comment on the Q channel filter is regarding the z-transform of its impulse 

response. Taking the z-transform of hq [n] (given in Figure 4.3.7) yields 

for [zl > 0 

Note that since F equals to zero when td is zero, the above equation is only valid for 

- 0.257'' 5 td < 0 . Thus Hq (2)  has one pole at z = 0 and one zero at z = G/F . For 

-0.25Tp < td < 0, G is always greater than F and therefore the zero is always outside 

the unit circle. For the situatioa when td = -0.2STp, the zero is exactly on the unit 

circle. Thus for - 0.2STp < td c 0 ,  h4 [n] is a maximum phase filter and its inverse 

system is an unstable system. When td = -0.25Tp, the inverse system is marpinally 

stable. 

4.4 Simulation of the IF-sampling system with 100% 
Excess Bandwidth Duobinary Pulse 

In addition to the analysis of the bandpass and discrete-time models of the IF- 

sampling system, another important concern is the system's ability to transmit the data 

reliably through the channel. Typically the reliability is measured by the probability of 

bit error. In this thesis, the probability of bit error is obtained by computer simulation of 

the equivalent discrete-time model shown in Figure 4.3.1. The simulation program is 

written in C and all function calls are ANSI (American National Standards Institute) 

compatible. Therefore any C compiler that supports the ANSI standard is capable of 

compiling and linking the simulation program. 

In the simulation program, the information bits are generated by a random 



number generator whose source code can be found in 119, pp. 2821. This C function, 

named as ' r d ' ,  generates a uniform random deviate between 0.0 and 1.0 (exclusive of 

the endpoint values) and bas a long period of approximateiy 2 x 1 0 ~ ~ .  This generator is 

recommended by 119. pp. 2861 if more than lo8 random numbers are generated in a 

single calculation. h the simulation, the maximum number of random number of 

unifom deviates is around 3x10' and therefore this generator has a sufficiently long 

period to provide the randomness of the random number. By using this random number 

generator, the information bits are obtained by the following rule : the bit is 0 if the 

uniform random deviate is fiom 0 (exclusive) to 0.5 (inclusive) ; and the bit is 1 if the 

uniform random deviate is from 0.5 (exclusive) to 1.0 (excIusive), As a result, the bits 

(either 1 or 0) are equiprobable. 

The signalling pulse being simulated is the duobinary pulse with a duration of 98 

symbols, that is, 

0.25q sin (Zxt/T,) 1 
.- for -49TpLtS49Tp 

nt (0.5 T, - t )  
g ( t )  = A (4.4.2) 

C 0 otherwise - 

With this long duration, nearly al l  intersymbol interferences introduced by the tail of the 

duobinary pulse are taken into account* Notice that an extra scaling factor is added in 

the definition of g (2) . As will be shown later, this scaling factor is used to make the 

signal-to-noise ratio independent of the symbol duration Tp . Since g ( t )  is a truncated 

duobinary pulse with a long duration, the Fourier transform of g ( t )  can be 

approximated as, 



L o otherwise 

By applying the Parseval's Theorem into the definition of energy of g ( t )  , 

the energy of g(t) is found to be, 

1 - 
Eg = jTp1 Tp cos 

- 
T 

Therefore with the definition of g(t) as stated in Equation 4-4-41, the energy of g ( t )  is 

equal to 1. 

As already discussed in section 4.2, the two noise sequences zi [n] and zq [n] 

are unconelated white Gaussian processes with zero means. The total average powers of 

the two noise sequences a, 

The system performance is plotted in a graph of the probability of bit error versus 

the signal-to-noise ratio (SNR ) which is defined as, 

SNR = Average power of transmitted bandpass signal 
Average power of in-band bandpass noise 



Referring to section 3.1, the transmitted bandpass signal s ( t )  is given as : 

i Z l c f , t  
s ( t )  = Re { v  ( 2 )  - e 1 

where v ( t )  = (I,+jQ,) -g(t-mT') 

It was shown that the lowpass equivalent signal v ( t )  is a cyclostationary process with 

an average power density spectrum given by 

Since the total average power of s ( t )  is the total area under a, and 

then 

Average power of s ( t )  = I gSS df 



The last integral evaluates the energy of g ( t )  which has already been shown to be 

unity. Also since the transmitted complex symbol. I, + jQ,, always resides on the unit 

circle, then 

~ ( l r , + j ~ ~ 1 ~ )  = ~ { i )  = 1 

Therefore the average power of s ( t )  is obtained as, 

1 Average power of s ( t )  = - (4.4.13) 
=P 

On the other hand, with the transmitted signal having 100% excess bandwidth, the 

average power of in-band bandpass noise is, 

2 4  Average power of in-band bandpass noise = 7 (4.4- 14) 

By substituting the results of the average signal power and average noise power into the 

defintion of signal-to-noise ratio, then the signal-to-noise ratio is found to be, 

SNR = 
1 1  (q,) 1 = -  
2N,/Tp 4N0 

Equivalently the signal-to-noise ratio expressed in decibel (dB) is, 

SNR, = 10 - log,, (4.4.16) 

Notice that the signal-to-noise ratio is independent of the symbol rate and therefore the 

symbol period is arbitrarily chosen to be 1 in the simulation, i.e. 

Tp = 1 (4.4.17) 



Simulation d t s  are obtained to show the degradation caused by the three distortions 

which are rotation of signal consteIlation, asymmetric IS1 channel and additive white 

Gaussian noise. 

F i t ly  the degradation caused by different timing e m  are shown in Figure 

4-4- 1. In the simulations, the phase shift @ is always set to 0. For timing error td equal 

to 0, the additive white Gaussian noise is the ody distortion degrading the system 

performance. When the timing error is not zero, the system suffers distortions from both 

timing error and noise. The bit error rate c w e  comsponding to td = 0 serves as a 

reference for the investigation. At low signal-to-noise ratios, eg. from 2 dB to 6 dB, all 

the bit error rate curves are close to each other. This is because at low SNRs, the effect 

of noise dominates the timing error. Therefore the system suffers similar degradation for 

different timing errors. As the SNR increases, i-e. the noise power decreases, the 

system performance mainly depends on the timing error, or equivalently the asymmetric 

intersymbol interference. It is clear that the larger the timing error, the more severe the 

system performance degrades. For example, at the probability of bit error of 

which is the targeting bit error rate for voice transmission [20], the system suffers a 

significant SNR loss of approximately 7 dB as td increases from 0 to 0.1 Tp . The bit 

error rate becomes imducible when td is greater than or equal to 0.15Tp. Therefore 

with t ,  greater than OJST,, the IF-sampling system becomes ineffective in transmitting 

data through the system. 

The imducible bit error curve for td = 0.15 Tp can also be analytically observed 

from the discrete-time model for truncated duobinary pulse shown in Figure 4.3.3. In 

this analysis, the noise sequences are assumed to be zero. As stated in Table 4.3.1, when 

td = 0.15 Tp , the tap weights A , B and C are given as 0.66,0.216 and 1.23 respectively. 



- timing error,td = OO.OOTp x timing error,td = OO.lOTp 
0 timing error,td = 0.15T' * timing enor,t, = 0-ZOT, 
+ timing error,td = OO.2ST, 

* *  -.----- *- - - * . - * . . * - . * . * * - . - . - -  ... .-... -... .... .... 1.- ., <. .:. -1.. 

Figure 4.4.1 Bit error rate c w e s  for different timing errors. For all cases, @ = 0 .  



Since there is one symbol mmory in the DQPSK modalation and another one symbol 

memory in the asymmetric IS1 channel, thee symbols are required to cover all possible 

cases. For example, if the three transmit complex symbols are, 

where the fmt element in the vector corresponds to the first symbol, then the output of 

the asymmetric IS1 channel is, 

Here it is assumed that no symbol is transmitted before the f m  symbol and thus there is 

no intersymbol interference on the first symbol. However, both the second and third 

symbols are corrupted by the asymmetric ISI. For the transmit symbols, the phase 

change from the second to the third symbol is 90' and therefore a dibit of '01' is 

transmitted in this case. On the other hand, at the output of the asymmetric IS1 channel, 

'54.6" '109.8" the second and third symbols are 1-07 k and 0.9252 . Therefore the detected 

phase transition is 55.2' and the detected dibit is '0 1 ' . No error is made in this example. 

However it is possible for the receiver to make an error even if the two noise 

sequences are zero. The occurrence of bit error mainly depends on the combination of 

the t h e  transmit complex symbols. One possible combination is 

Again substituting these three transmit symbols and the three tap weights corresponding 

to t, = 0.15Tp into the discrete-time model yields the output of the asymmetric IS1 

channel to be, 



Since the phase transition of the second and third transmit symbol is -900, the 

transmitted dibit is '10'. However, the phase transition of the second and third received 

symbol is -39.6' therefore forcing the detected dibit is '00'. As a result, one bit error is 

made in the detection. By stepping through all combinations of the three transmit 

compIex symbols, it is found that the detector malw an error in the following patterns. 

[Jl35O9 e-j45°, e - j 1 3 f l  Pattern 4 : 

[=-j13f, J45OY 2137 Pattern 5 : 

-j135" -j45" -j135 Pattern 6 : [e , e , e 1 
,-j4s0 2135: 8 4 5 3  Pattern 7 : [ , 

Note that in ail cases, only one bit error is made and therefore the probability of bit error 

is determined as, 

Pr (bit error) = Pr (bit error I wrong pattem) Pr (wrong pattern) 



From Figure 4.4.1. the simulated bit emr rate is about 0.05 which is close to the above 

result The discrepancy ktwcen the analytical result and the simulation result stems 

fkom two factors : (1) A truncated duobinary pulse with a short duration of lJT, is used 

in the analytical analysis whereas a much longer duration of 99Tp is used in the 

simulation ; (2) The two noise sequences are assumed to be zero in the analytical 

analysis whereas the noises are nonzero in the simulation. 

Due to the presence of the asymmetric intersymbol interference, the phase shift 9 

also plays an important role in the system performance. The simulation results are 

shown in Figure 4.4.2. Again the bit error rate curve corresponding to td = 0 serves as 

a reference. For td = 0.107'' and a bit error rate of lo-' , the system suffers a SNR loss 

of approximately 7 dB for @ = 0* but only 2 dB for $ = 45'. So the performance 

difference between the two phase shifts is 5 dB. As td increases to 0. lSTp , the bit error 

rate c w e  for @ = 0' becomes irreducible. On the contrary, the bit error rate curve for 

6 = 45' decreases monotonically with signal-to-noise ratio resulting in a 6 dB loss at a 

bit error rate of 10-' . When td fbrther increases to the worst case, which is 0.25 T, , the 

bit error rate curves for both @ = 0' and @ = 45' are approximately the same. 

The drastic difference between the two phase shifts can be explained by 

investigating the four constellations shown in Figure 4.4.3. These four diagrams are 

generated by transmitting 1 0  bits through the discrete-time model shown in Figure 

4.3.3. Without the noise, the top-left diagram shows the constellation of the UQ symbols 

at the output of the rotation. Since @ = oO, this constellation is exactly the same as that 

at the output of the DQPSK modulator. 



Figure 4.4.2 Bit error rate curves for different timing errors td and phase shifts $ . 



As shown in the diagram, there an only four possible points comsponding to the 

transmit phases of 45'. 139, -139, 45'. After these symbols are distorted by the 

asymmetric IS1 channel, the r d t i n g  constelIation no longer contains four points. 

Instead, as shown in the top-right diagram, the constellation contains four clusters each 

containing more than one point Notice that the two signal points inside any cluster are 

separated in horizontal direction only. This is because the intersymbo1 interference only 

occurs in the inphase channel (which corresponds to the horizontal axis) but not on the 

quadrature channel (the vertical axis). The irreducible bit error rate comes from the fact 

that some signal points in neighboring clusters are too close to each other. For example, 

the phases of the two signal points 'a' and 8' in the topright diagram only differ by 

39.7O. Since the phase difference is between 45' and 4S0, the differential detector 

decodes the dibits to be 00 which actually should be 01. As a result, a symbol error is 

made. 

On the other hand, when @ = 4s0, the constellations of both rotated and IS1 

corrupted symbols are shown in the bottom-left and bottom-right diagrams respectively. 

Although the IS1 compted constellation also has clusters of signal points, the signals in 

different clusters are separated far enough such that the differential detector can always 

decode the &'bits correctly. Therefore no symbol error is made with the absence of 

noise. In other words, with Q = 45O , the asymmetric IS1 channel alone cannot cause 

any symbol error and as a result the bit error rate always depends on the noise power. 
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Figure 4.43 

Topleft : Constellation of rotated symbols for 

Topright : Constellation of asymmetric IS1 channel output for @ = 0' and 

t ,  = 0.15T'. 
0 

Bottom-left : Constellation of rotated symbols for @ = 45 and td = 0 .  

Bottom-right : ConstelIation of asymmetric IS1 channel output for @ = 45' and 

t, = O.lST,. 





Chapter 5 Two Solutions and Their Performance 

In the last chapter, simuIation results showed a severe performance degradation 

due to timing error. Two solutions are proposed to combat this timing error problem. 

The first solution is a direct-sequence spread-spectrum IF-sampling system, By using 

the autoconeiation property of a pseudonoise sequence, the asymmetric intersymbol 

interference can be alleviated by the sprrading and the despreadhg processes. The 

second solution takes a different approach. It uses the 100% excess bandwidth 

duobinary pulse. By simply increasing the sampling rate to 4 samples per symbol and 

selecting the proper two samples, a considerable amount of intersymbol interference can 

be avoided. Simulation results are obtained for both systems to show their performance. 

Solution 1 : Direct-Sequence Spread-Spectrum 
IF-sampling System 

Pseudonoise (PN) sequences have been used extensively in many different areas 

[21]. Some of the examples are antijamming comrn~cations, multiple user random 

access communications with selective addressing capability, global positioning system 

(GPS) and accurate universal timing. In the area of point-to-point communications, the 

autocorrelation of the PN sequence is proven to be efficient in combating the 

intersymboi interference caused by the multipath channel. Since the timing error in the 

IF-sampling system also causes intersymbol interference, it is Likely that the 

autocorrelation of the PN sequence is also capable of alleviating the intersymbol 

interference caused by the timing error. This is the main reason why a direct-sequence 

spread-spectrum system is chosen as a solution. 



5.1.1 Autocoxrelation of Barker Sequence 

In the IEEE ban Standard for WmIess LAN 1221, the physical layer consists of 

a direct-sequence spread-spectnun (DSSS) system employing an 11 chip Barker 

sequence. Due to its adoption by the proposed IEEE wireless LAN standard, this 

particular PN sequence is also used in this project, Note that the structures of both 

transmitter and receiver proposed in this solution are also applicabIe to other PN 

sequences. The 1 1 chip Barker sequence is given as : 

where the left most chip is transmitted f m  The fint chip is aligned at the start of a 

transmitted symbol and the symbol duration is exactly 11 chips long. Barker sequences 

are known to exist for only few short sequence lengths [23, pp. 5641 124, pp. 2901. So 

far only sequence lengths of 1, 2, 3, 4, 5, 7, 11 and 13 are found and it has been 

hypothesized that no longer Barker sequences exist. However, despite its short sequence 

length, a Barker sequence exhibits a special autocomlation function which is' very useful 

in a DS-SS system. In general, an aperiodic autocomlation of a real-valued PN 

sequence is defined as [251, 

c,co = 

where N is the length of the PN sequence. It is found that 124. pp. 2901 any Barker 

sequence has the following aperiodic autoconelation : 



C,CQ = 1 0 o r f  1, otherwise 

This aperiodic autocornlation is usem in a situation in which the two consecutive 

symbols are different in polarity ( for example, the first symbol is a +I and the second 

symbol is a -1) and the locally generated PN sequence is not aligned with the received 

PN sequence. Although a rigorous proof is not given, this application is illustrated with 

an example in which the 11 chip Barker sequence is used and the two consecutive 

symbols are assumed to be +1 and -1. Thus, assuming there is no distortion in the 

channel, the received signal is : 

where p [n] is the 1 1  chip Barker sequence. By correlating the received signal r [n] 

with another locally generated Barker sequence, the cornlation output is 

where n can be interpreted as the time offset between the received Barker sequence and 

the local Barker sequence. The values of y [n] are tabulated in Table 5.1.1 . When 

n = 0 ,  the local Barker sequence is aligned with the first Barker sequence. Whenever 

n t 0 ,  the correlation output always has a magnitude of 1 even when the two 

consecutive symbols are different in sign. This property ensures that the correlation 

output due to a delayed Barker sequence (the delay is assumed to be an integer multiple 

of chip) is always kept as low as f 1 and this is useful in alleviating the effects of 

in ten ymbol interference. 



Table 5.1.1 Values of y [n] for different time offsets n. 

5.1.2 The DS-SS IF-sampling Transmitter 

In order to make use of the autocorrelation firnction of the Barker sequence, both 

the transmitter and the receiver in the IF-sampling system must be modified. Instead of 

passing the complex DQPSK symbols directly into the pulse-shaping filters, two 

additional blocks are added to preprocess these complex symbols. The combination of 

these blocks are commonly known as spreader 1261 and the transmitter structure is 

shown in Figure 5.1.1 . Identical processing is performed on the inphase and the 

quadrature symbols independently. Fintly the spreader raises the sampling rate by the 

length of the Barker sequence. This is achieved by inserting 10 zeros between 

successive symbols. This ensures that aIl eleven chips of the Barker sequence carry the 

information of one symbol only and thus no intersymbol interference is introduced by 



the spreader- 
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Figure 5.1.1 Transmitter in direct-sequence spread-spectrum IF-sampling system. 

M = 11 and p [n] is the 11 chip Barker sequence. 

Secondly the spreader imposes the Barker sequence onto the YQ symbols by filtering the 

zero-filled symbol sequences with p In] . The two output sequences of the spreader are : 

Due to the increase of the sampling rate by a factor of M, the transmission rate is also 

increased to the chip rate which is M times the symbol rate. The sprraded bandpass 

signal is given as, 



QD 

sS ( t )  = X, - gs ( t  - mT,) - cos (2nfct) 
m t - 0  

00 

- Y, -g , ( t -mTc)  - sin (21cfct) 
m r - 4  

where Tc is the chip period and g, ( t )  is the same 100% excess bandwidth duobinary 

pulse as in chapter 4 except that T, is replaced by  Tc . Thus, 
* 

0.25251: - sin (2zt /T,)  
g , ( t )  = 

7ct (0.5 Tc - t )  

Notice that by replacing Tp with T,, the lowpass bandwidth is increased from 2/Tp to 

2 / T c .  Therefore the transmission bandwidth must be increased M times to 

accommodate the spreaded signal. 

5.1.3 The Channel 

Similar to chapter 3, the channel is still assumed to compt the transmitted 

bandpass spreaded signal s, ( t )  by the additive bandpass white noise n, ( t)  . Thus the 

AU the statistical properties about the noise discussed in chapter 3 still apply and the 

bandwidth W is 2/Tc Hz. 



5.1.4 The DS-SS IF-sarnpIing Receiver 

Due to the spreading in the transmitter, a reverse process known as despreading 

is also required and is implemented in the digital portion of the meiver. In other words, 

the complete architectwe of the IF-sampIing receiver (as shown in Figure 3.3.1) can be 

re-used and the only modification is to replace the symbol period Tp with the chip 

period T,. Therefore the sampling rate of the sampler is raised by 11 times from 2 

samples per symbol to 2 samples per chip. Also the two output sequences of the DS-SS 

IF-sampling receiver are no longer the inphase and quadranut symbols. But instead 

these two sequences are the inphase and quadrature chips. The architecture of the DSSS 

IF-sampling receiver is shown in Figure 5.1.2 . The despreader takes the YQ chips, 

processes them with 2 identical LTI systems with impulse response p [- n + NJ and 

reduces the sampling rate by a factor of M- Hence, the sampling rate at the output of the 

despreader is brought back to the symbol rate. The despreaded sequences are then 

multiplied by two different gains &noted as GI and GQ and the outputs are the 

recovered inphase and quadrature symbols. By passing these IIQ symbols into the 

differential DQPSK detector, the receiver can produce an estimate of the iaformation bits. 

In order to understand how the spreading/despreading processes alleviate the 

asymmetric IS1 and determine the values of GI, Gp and Nd, it is required to obtain a 

discrete-time model for the DS-SS system as shown in Figure 5.1.3. Since both 

spreading and despreading processes are done in the digital section, the new discrete- 

time model would be the original discrete-time model with the addition of the spreader, 

despreader and the multiplication of GI and Gp on the I and Q channels. Also 7'' is 

replaced with T' in the original model. Nd is the timing parameter used to compensate 

the time shift due to the asymmetric IS1 chamei. 



Figure 5.1.2 Architecture of the IF-sampling receiver for DS-SS system. 



Figure 5.13 Discrete-time Model of the DS-SS IF-sampling system. 



Similar to the previous approach, the two fiIters inside the asymmetric IS1 

channel are approximated by the txuncated duobinary pulse with definition similar to 

Equation 43.5. 

gs ( r )  = 

The values of 

0.251: - sin (27W Tc) 
for -OSTcbtSTc 

rt (0.5Tc - t) 
gSvT(') = (S*I.H) 

C 0 otherwise 

GI . Gp and Nd depend on the timing error td and the results are 

presented in three cases : (1) td = 0, (2) 0 I td 5 0.25Tc and (3) - 0.25 T, I td -< 0 . In 

these three cases, both the two noise sequences and the phase shift are assumed to be 

zero, 

Case 1 : td = 0 

With the sampling error equal to zero, both the I and Q channel IS1 filters are 

simplified to the discrete-time delta functions : 

Then 

kt- 



In general, the recovered VQ symbIs obtained at the output of the multiplication of GI 

and Gp are found to be, 

By substituting a, In] into Equation 5-1.16 and setting the gains, GI and GQ , to 1 and 

N' to 0, the recovered I symbol becomes, 

Since p [n] has a duration from n = 0 to n = M, the product 

p [m - kMJ - p [m - nM would be zero if n # k . Therefore, the nonzero contribution 

o f p [ m - k w  - p [ m - n M J  comesfiomn = k.  Thus, 

Note that the synchronization is assumed to be perfect such that the received Barker 

sequence and the local Barker sequence are perfectly aligned. The receiver can always 

extract the autoconelation peak By following the same arguments, the Q symbols are 

recovered as, 

b,[nl = Q R s M  (5.1 2 0 )  



Therefore, when td = 0 .  the two gains GI and Gp should be set to 1 while Nd should 

be 0.  

Case 2 : 0 5 td S 0.25Tc 

For the case where td f 0, the V Q  symbols experience asymmetric intersymbol 

interference. In order to simplify the analysis, both the inphase and quadrature channel 

IS1 Nters are approximated by the truncated duobinary pulse. Thus. 

The values of A,, B, and C, are tabulated in Table 5-12. 

Table 5.13 Table of tap weights A,, B, and C, for 0 S td S 0.25 T, . 



At the output of the asymmetric IS1 channel, the two discrete-time sequences are, 

Due to the presence of a delayed path in the 1 channeI, there are two copies of the 

spreaded inphase symbols at the output of the IS1 channel. The main purpose of the 

despreader is to enhance one copy while suppressing the other one. This is achieved by 

the autocorrelation of  the Barker sequence. Since A, is always greater than or equal to 

B,, the first term in Equation 5.1.23 is intended to be enhanced while the second term is 

suppressed. 

By despreading a, [n] and multiplying the despreaded signal with GI,  the 

recovered inphase symbol is, 

In order to keep the A, component, the receiver should lock onto the first path and thus, 

Then 



The first term in Equation 5.127 is the same as Equation 5.1.18 except of the scaling 

factor GI - A,. Therefore the fim term is simplified as GI - A, - M - I,. The second term 

represents the autocornlation of the Barker sequence with a time offset of 1 chip. Due 

to the good autocomIation pmpexty of Barker sequence and Ik is always either +0-707 

or -0.707, the second term reduces to GI B, - (f 1) - 2'. Therefore the final expression 

for a, [n] is, 

as [n]  = G r * A s * M * I , + G r - B s ~  (fl) - I ,  (5.1.28) 

Since M is 11 and A, 1 B,, then the second term in Equation 5.1.28 is comparatively 

small and thus, 

aJn] = G I - A , - M - I ,  

For the Q channel, since there is only one path, the despreaded signal would consist of a 

single term only and the result is very similar to the previous case except for a scaling 

factor, Therefore, 

b,[n]  = G Q - C , - M - Q ,  (5.1.30) 

Notice that there is a gain imbalance between a, in] and 6 ,  [n] . The goal of GI and 

Gp is to correct the gain imbalance and so the following ~ e t ~ g  are chosen, 

GI = 1/A, (5- 1.3 1) 

Although the above analysis is based on the assumption of a zero phase shift, the values 

of Nd, GI and Gp are also applicable to a nonzero phase situation. 



The values of E, , F, and Gs are given in Table 5-13. 

Table 5.1 J Table of tap weights E, , Fs and G, for - 0.25Tc I td S 0 . 

Notice that an extra delay of 1 chip is added to both channels so that the quadrature 
channel IS1 Nter becomes causal. The output sequences of the asymmetric IS1 channel 

afe, 



Note that Gs 2 F, and thus the receiver should keep the second term in Equation 51-36 

and suppress the first term. In order to achieve this, the parameter Nd should be, 

Nd = -1 (5- 1.37) 

By despreading b, [n] and multiplying the despreaded signal by GQ, the quadrature 

symbols are recovered as, 

With n = k ,  the double summation in the first term is the autocorrelation of the Barker 

sequence with a time offset of 1 chip. Therefore the fint term reduces to 

GQ - F, - (+I) - Q, . On the other hand, the double summation in the second term is the 

autocorrelation of the Barker sequence with zero time offset and it can be simplified as 

GQ - G, - M - Q,. Thus the fmal expression for b, [n] is, 

bJn]  = Gp-F,- (kl) -Q,  + G Q - G , - M - Q ,  (5.1.39) 

Again, GsM is larger than Fs and thus the recovered quadrature symbols are 

approximated as, 

b , [n ]  = G p - G , - M - Q ,  



For the inphase channel, the recovered inphase symboIs are, 

as[n]  = G I - E , - M - I ,  (5.1 -41) 

Similar to the previous case, there is a gain imbalance between the inphase and 

quadrature symbols. By having the following settings of GI and Gp , 

GI = W E ,  (5.1 -42) 

GQ = l/Gs (5.1 -43) 

the receiver can correct the gain imbaance. Similarly, although the above analysis 

assumes zero phase shift, the design parameters Nd, GI and GQ are also applicable to 

the non-zero phase. 

Performance of the DS-SS IF-sampling system 

The performance of the DS-SS IF-sampling system is obtained using a simulation 

based on the discrete-he model shown in Figure 5-13. The signal-to-noise ratio is 

defined as in Equation 4.4.15, 

1 SNR = - 
4N0 

This is true since the SNR is independent of the data rate which is either the symbol rate 

or the chip rate. The simulation results are shown in Figure 5.1.4. Note that the phase 

shift, - (rrt,/T,) + 0 ,  is set to zero for al l  cases. By comparing the performance curves 

of the IF-sampling system and the DSSS IF-sampling system for td = 0 ,  it is clear that 

both systems give the same performance under the absence of intersymbol interference. 

When td# 0 ,  the system suffers distortion caused by the timing error and the 



performance degradation is clearly shown in the simulation. Again the bit error rate for 

td = 0 is used as a reference. At bit error rate of log3 the DS-SS system suffers about 

1 dB loss for t, = O.lOTc (as opposed to 7 dB in the IF-sampling system). As td 

increases to the worst case of 0.25Tc, the degradation is increased to a 7 dB loss. 

- timing error,td = 0.00 Tc x timing error,td = 0.10 1, 

0 timing enorytd = 0.15 T, * timing error,fd = 0.20Tc 
+ timing emrytd = 0.25 T' 

................... I:::::::::::::;::::: 

I::::::::::::::::::: ................... 
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Figure 5.1.4 Simulated performance of the DSJS IF-sampling system. Note that the 

phase shift, - (z td/Tc)  + 9. is zero for all cases. 



The performance degradation mainIy comes from thne sources : (I) the residual 

intersymboI interference, (2) the discard of signal power in the delayed path and (3) the 

gain imbalance betwen the two noise sequences. Since the autocorrelation of the 

Barker sequence is not exady zero for nonzero tim shift m l e  5.1.1), the interfering 

paths are suppressed but not completely removed Therefore a residual amount of IS1 

still exists at the output of the despreader and degrades the perfofmsulce. Another factor 

is the discard of signal power in the delayed path. Instead of using the signal power 

from the delayed path, the despreader simply suppresses or discards it to alleviate ISI. 

For example, at 5 = 0.25Tc, the signal power is split equally into the direct path and 

the delayed path. Since the delayed path is discarded, half of the signal power is lost. 

The third degrading factor is the gain imbalance between the two noise sequences. Refer 

to the discrete-time model shown in Figure 5.1.3, the two noise sequences, zi [n] and 

z, [n] are also multiplied by GI and GQ respectively. Unless the two gains are exactly 

the same, gain imbalance is introduced on these two noise sequences. Only when 

td = 0 ,  these two gains are exactly the same. 

Although the DS-SS system still suffers degradation from timing error, the 

system performance is improved for al l  td and more importantly, the system no Ionger 

suffers imducible bit error rate even when td = 0.25Tc. Thus the spreading and 

despreading processes are shown to be effective in alleviating the asymmetric IS1 caused 

by the timing error. 



5.2 Solution 2 : IF-sampling System with 4 Samples Per 
Symbol 

In the first solution, the spreadinghdespnading in the DSSS system was shown 

to be able to suppress the asymmetric intersymbol intedercnce. In this section, an 

alternative approach is proposed to avoid the asymmetric IS1 by simply doubling the 

sampling rate to 4 samples per symbol. 

The idea behind this approach is based on the special shape of the 100% excess 

bandwidth duobinary pulse. This is illustrated in Figure 5.2.1 in which three truncated 

duobinary pulses are plotted with a delay of one symbol period relative to each other. 

time 

Figure 5.2.1 Illustration of the safe region for 100% excess bandwidth duobinary pulse. 

Notice that by ignoring the tail of the duobinary pulse, there is a region which is free of 

IS1 and has a duration of OST, . This observation implies that even if the timing error is 



not zero, a considerable amount of IS1 can be avoided as long as the receiver can obtain 

the UQ symbols within this safe region. In order to achieve this god, the receiver has to 

sample the IF signal with 4 samples per symbol and selects the proper two samples out 

of four samples within one symbol period With this approach, the seIected two samples 

suffer only a s m d  amount of JSI introduced by the tails of the duobinary pulse. Also 

notice that this approach does not require modification to the transmitter and thus al l  the 

discussions in chapter 3 about the transmitter and the channeI still apply in this ssction. 

5.2.1 IF-sampling Receiver with 4 Samples Per Symbol 

In order to take advantage of the safe region, modifcations are required to the 

digital portion of the receiver. Depending on the timing error, the receiver has to change 

from one architecture into a slightly different one. 

Case 1 : 0 S td S 0.25 Tp 

The receiver architecture for 0 I td 5 0.25Tp is shown in Figure 5.2.2. 

~zm~(y +a) = { I .  -1. -1. 1. -4 

Figure 5.2.2 Architecture of the IF-sampling receiver with 4 samples per symbol and 

0 S t, 1 0.25Tp. 
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The downconverted IF signal rIF(t) is sampled with a new sampling rate of 4 samples 

Since the IF center frequency depends on the sarnpiing rate, the IF center frequency also 

takes a new value, 

With this new IF center frequency, the negative and positive spectra of the IF signal do 

not overlap unless the bandwidth is greater than 100% excess bandwidth. The 

donwconverted IF signal is given as, 

00 

rrF(t )  = I m - g ( t - m T p )  - c o s ( 2 1 ~ f ~ ~ t + e )  
M r --ao 

0 

- Q , - g ( t - m T , )  - s i n ( 2 ~ f [ ~ t + e )  
m+-oo 

+ x ( f )  - cos (2xfF t + 8) 

- y ( t )  sin (2xfIF t + 0) 

By substitudag the sampling time, 

t = n (0.25Tp) - td 

and the new value o f  flF into rrF ( t )  , the sampled IF signal rlF [n] is obtained as, 



By performing the operations described in Figure 5.2.2, both the inphase symbols a En] 

and the quadrature symbols b [n] are found to be, 



By representing these two equations with a diagram, a discrete-time model is obtained 

and shown in Figure 52.3. The observation of the safe region can also be made from 

these two equations. Recall that the truncated 100% excess bandwidth duobinary pulse 

is defined as, 

I 0 . 2 5 q  - sin (2xt/TP) 
for - O J T p S t S T p  xt (0.5Tp - t )  

gT( t )  = 
1 0 otherwise 

By approximating g ( t )  with gT ( t )  , it follows that 

- { gp(O.:Tp-td) forn=m 
g(nTp-mTp+O.STp-fd) - (5.2.9) 

otherwise 

and 

- gT(O.:TPotd) h n = m  
g(nTp-mTp+0.25Tp-td) - (5-2- 10) 

otherwise 

By substituting these two approximations into a [n] and b [n] , the received inphase 

and quadrature symbols can be simplified as, 

a [n] = A4 - (In - case - Q, sine) 

+ x (nTp + 0 5 T p  -td) - cosg 

b [n] = B4 (In - sin* + Q, cos@) 

+ x (n T, + 0.25 Tp - td) - sin@ 

+ y ( n  T. + 0.25 Tp - td) - cos@ 

where A, = gT (0.5 T, - td) and B4 = gT (0.25 Tp - td) 



Figure 5.2.3 Equivalent discrete-time model for IF-sampling system with 4 samples 

per symbol and 0 S td 1 0.25 T.. 



The values of A, and B, are Iisted in Table 5.2.1 for different timing errors. 

Table 5.2.1 Values of A, and B, for 0 5 td S 0.25Tp . 

As clearly shown in Equations 5.2.1 1 and 52-12, both received inphase and quadrature 

symbols consist only of the present VQ symbols and noise. Therefore, with the 

assumption of using a truncated 100% excess bandwidth duobinary pulse, intersymbol 

interference no longer exists in the system. Also notice that for any td ,  both A, and B, 

are always greater than or equal to 1.0 . Thus the YQ symbols are always amplified by 

A, and B,. However, when the gains on I channel (A4) and Q channel (B,)  are 

different, the system suffers fkom the gain imbalance. From Table 5.2.1, the gain 

imbalance is worst at the two end-points of td, that is, when td = 0 or when 

td = 0.25Tp. As td increases fkom 0, the gain imbalance decreases and eventually 

vanishes when td = 0.1251,. When td increases further, the gain imbalance becomes 

severe again and finally reaches the worst value at td = 0.251,. It will be shown later 

that the gain imbalance plays a significant role in determining the system performance. 

In addition to the signal, the statistics of the two new discrete-time noise 



sequences are a h  analyzed Fnw Equations 55.6 and 52.7, the two new noise 

sequences, zPi [n] and z', [n] . are defirted as 

z',[n] = ~ ( n ~ ~ + O . ~ T ~ - t ~ ) - c o s ~ - -  y (nTp+o3T"- t , ) - s in@ (52.13) 

and 

z', [n] = x (nTp + 0.25 Tp - td) - sin+ + y  (nTp + 0.25 T, - td) - cos 9 (52.14) 

The autocorrelation of z ' ~  [n ] is defined as, 

[n;n - k] = E {di [n] - zPi [n - k] } (5.2.15) 

Substituting the definition of f i  [n ]  into Equation 5-2-15 yields, 

2 
$z,iii [n;n - k] = E { x  (nTp + O X p  - td) - x (nTp - kTp + OSTp - td) - cos $ 

-x(nT, + 0.5Tp - td) y (nT' - kTp +0.5Tp - td) cos@ sin4 

-x (nTp - kTp + OST, - td) - y (nT, + 0.5Tp - td) - COS@ - sine 
2 +y(nTp  +OST'- td) -y (nTp-kTp +0.5Tp -td) - sin @ ) 

Since @&) = 0 for aIl time r ,  the middle two tenns are zero. Also 

$, (T) = Q, (7) for all time 'F . Therefore the autocorretation of z; [n] is simplified 

as 



In order to have the last equality of the above equation to be valid, the signal bandwidth 

is assumed to be 100% excess bandwidth. It is clear that the autocorreIation of z; [n]  

depends oaly on k and is nonzero only when k = 0 .  Thus z'Jn] is a wide-sense 

stationary white process. 

By r e p e a ~ g  the above argument, the autocorrelation of zPq [n] is obtained as, 

2NO 
@ *  ZA [n;n-kI = @  [k] =qrr(kTp) = - - 6 [ k ]  

= 2 ' q  
(5.2.18) 

=P 

So [n]  is also a wide-sense stationary white process. 

The cross-correlation of zJi [n] and 26 [n] is defined as, 

Substituting the definitions of zti [n]  and z', [n]  into the above equation yields, 

$iiz.q [ n n - k ]  = E {x(nT'+O.ST'-td) -x(nTp-kTp +0-25T;td) - cos@ - sin@ 

Again the middle two terms are zero because @,(?) = 0 for all r. Since 

+, (T) = $m ('t) for al l  r . the fim and the last terms cancel each other and therefore, 



$ .  z i~ 'P [ n n - k l  = $igp[kl = 0 for all k 

Finally since x ( t )  and y ( 2 )  are mcorrelated Gaussian processes and zVi [n] 

and i, [n] are linear combinations of x ( t )  and y ( t )  , therefore ii [n] and z', [n] are 

also Gaussian processes. In smnmary, both i, [n] and iq In] are discrete-time wide- 

sense stationary uucorrelated Gaussian processes. 

When the timing error td takes a negative value from 0 to -0.25Tp, the positions 

of the two proper samples are shifted to the beginning of a symbol period. This change 

is reflected in a slightly different receiver architecture shown in Figure 5.2.4. 

-+ bits 
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Figure 5.2.4 Architecture of the IF-sampling receiver with 4 samples per symbol and 

4.251, S td S 0. 
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channels. By having zero delay on the inphase channeI, the receiver can extract the fint 

sample and assign it as the received inphase symbol. On the other hand, by having an 

time advance on the padramre channel, the receiver extracts the second sample and 

assigns it as the received quadrature symbo1. The mathematical expressions for a [n] 

and b [n] are obtained by processing rIF(t) (Equation 5.23) as shown in Figure 5.2.4. 

It is found that 

and 

These two equations are represented by the discrete-time model shown in Figure 5.2.5. 

Again, by approximating g ( t )  with the truncated 100% excess bandwidth 

duobinary pulse. Equations 5.2.22 and 5.253 are simplified as, 



Figure 5.2.5 Equivalent discrete-time model for IF-sampling system with 4 samples 

per symbol and -0.25Tp 5 td S 0 .  



a [n] = C4 - (In COS* - Q, - sin*) 

+ x(nTp-td) - coso 

- y (nTp-td) - sin$ 

b [n] = 4 - (I' - sin$ + Q, - cos 9) 

+ x(nTp +0-25Tp - td) - sin@ 
+ y (n T, + 0.25 Tp - td) - cos $ 

where C4 = gT(--td) and D4 = gT(O-25Tp - td) 

The values of C, and D, are tabulated in Table 5.2.2. 

Table 5.23 Values of C, and 4 for -0.25Tp S td 9 0 .  

The two new discrete-time noise sequences namely ii [n] and 2, [n] are, 



and 

ip [n] = x (nT, + O Z T p  - td) - sin$ + y (nTp + 0.25Tp - td) - cosg 

The two autocorrelation functions for ii [n] and tq [n] are found to be, 

It is clear that both autocorrelation functions depend only on the time shift k and 

therefore the two noise sequences are wide-sense stationary. Also when the signal 

bandwidth is 100% excess bandwidth, the autocorrelation hctions are equal to a scaled 

discrete-time delta function and therefore the two noise sequences are also white. 

In addition to the autocorrelation functions, the cross-correlation function is 

determined as, 

#- - [ n n  - k] = $. - [k] = 0 *& ziZq 
for all k (52.30) 

Thus the two processes are uncomlated for all time shifts k .  Besides, since both noise 

processes are linear combination of two uncorreiated Gaussian processes, ii [n] and 

2, [n] are also Gaussian processes. Note that the statistics of the two noise sequences 

are exactly the same for both cases of t,. 



Performance of the IF-sampling system with 4 
Samples Per Symbol 

The performance of the IF-sampling with 4 samples per symbol is simulated 

using the discrete-time model shown in Figure 5.2.3. Here it is assumed that 

0 S td S 0.25Tp and @ = 0 .  Since modifcation is made only in the receiver, the 

definition of signal-to-noise ratio defined in Equation 4-4-15 still applies. 

1 SNR = - 
4N0 

Note that the same definition of SNR is used for aU three systems. 

The simulation results are shown in Figure 5.2.6. Two important points are 

observed from the simulation. Fit ly,  by using the bit error rate c w e  for the IF- 

sampling system with 2 samples per symbol and zem timing error as a reference, the 

simulation shows that the IF-sampling system with 4 samples per symbol can generate a 

better performance (from 2 dB to 16 dB) for some timing errors. In other words, instead 

of degrading the performance, a certain timing error can actually improve the 

performance in this second solution system. For example, at a bit error rate of , any 

timing error ranging fiom 0.1 Tp to 0.2Tp generates a better performance than the one 

corresponding to 2 samples per symbol, and the best improvement is about 1 dB. 

Secondly, the simulation results are consistent with the argument that the system 

performance is mainly controlled by the gain imbalance between the received UQ 

symbols. From Table 5.2.1, it is clear that the gain imbalance starts with the worst value 

at td = 0-  As increases to 0. 125Tp, the gain imbalance decreases and eventually 

drops to zero at td = 0.125 T, . However, as td fuaher increases to 0.25 Tp , the gain 



Figure 5.2.6 Simulated performance of the IF-sampling system with 4 samples per 

symbol. Note that @ = 0 . 



imbalance increases and eventually reaches the worst value at td = 0.25Tp. The same 

pattern is observed in the simulation d a .  The timing errors of 0 and 0.251, give the 

same and worst petformance. At the error rates of 1(r3 and lo4 , the performance 

degradations (compared with the 2 samples per symbol system and td = 0 )  are about 

0.8 dB and 2 dB respectively. As td becomes closer to 0.125 Tp , the performance is 

getting better. The best performance occun at td = 0.125T' and the improvements at 

error rates of and lo4 are about 1 dB and 0.2 dB respectively. 

However a little inconsistency is also shown in the bit error rate curves for 

t, = 0.1 Tp and td = 0.125Tp. These two timing errors generate an almost identical 

performance from 2 dB to 13 dB. Only when the SNR is greater than 13 dB, then 

t ,  = 0.125 T' gives a slightly better performance than r, = 0.1 T, . 

In order to combat the timing error problem, two solutions were proposed in this 

chapter. The fust solution is a DS-SS IF-sampling system with 1 1  chip Barker 

sequence. This system uses the autocorrelation of the Barker sequence to suppress the 

delayed path and thus alleviates the asymmetric intersymbol interference. In order for 

the system to operate properly, the three system parameters (GI, GQ and Nd) must be 

modified in real-time for the variation of td.  AS td increases from 0 to 0.25Tc, the 

system performance is gradually degraded from 1 dB loss to 7 dB loss at a bit error rate 

of . 



In the second solution, the special pulse shape of the 100% excess bandwidth 

duobinary pulse is used to avoid the intersymbol interference. h this system, the 

sampling rate is raised to 4 samples per symbol. The system performance also depends 

on the timing error but with a different etnd As t, increases from 0 to 0.125TP, the 

performance is gradually improved fkom 0.8 dB loss to 1 dB gain. As td increases 

further to 025Tp, the performance is downgraded from 1 dB gain back to 0.8 dB loss. 

Another unique characteristics of this system is that certain timing errors can actually 

improve the performance of the receiver and the best performance occurs at 

r, = 0.125Tp. Overall the second solution outperforms the fim solution in terms of 

performance and complexity. 



Chapter 6 Conclusion and Future Work 

In chapter 2, two important concepts have served as the foundations for the 

design of the proposed IF-sampling receiver. With the fmt concept, F / 4  

downconversion, the receiver can use a very simple digital structure to extract the 

inphase and quadrature samples from the continuous-tiw bandpass IF signal. In order 

to employ this technique, the receiver must satisfy one requirement : the IF center 

frequency must be an odd integer multiple of a quarter of the sampling rate. In other 

words, this technique specifies the IF center frequency and provides the idea for the 

architecture of the IF-sampling receiver. The second concept involves three sampling 

theorems which are (1) the Nyquist sampling theorem, (2) the bandpass sampling 

theorem and (3) the sampling theorem for linearly modulated signals with zero 

intersymbol interference. The objective of the fim two theorems is to avoid spectral 

overlap of the sampled signal. However, in the demodulation of a linearly modulated 

signal, a certain form of spectd overlap is desired and thus a lower sampling rate is 

allowed. It is found that the minimum sampling rate for the recovery of the inphase and 

quadrature symbols is 2 samples per symbol. This sampling rate is adopted in the 

proposed IF-sampling receiver. 

Based on the ideas from the two concepts, the architecture of the IF-sampling 

receiver is derived in chapter 3. The receiver samples the IF signal with 2 samples per 

symbol and extracts the inphase and quadratwe symbols using a simple structure. ln 

addition to the receiver, both the transmitter and the channel are also specifed The 

transmitter performs a typical linear modulation scheme while the channel is assumed to 

be an additive bandpass white Gaussian noise channel. No channel fading is considered 

in this thesis. With the proposed IF-sampling receiver, both the time and frequency 

domain criteria for zero intersymbol interference are derived. By using the frequency 

domain criterion, one can prove that the minimum bandwidth for achieving zero 



intersymbol interference is 2/Tp Hz. Any bandwidth less than 211, Hz must 

generate ISI. In addition to the minimum bandwidth, the actual signalling pulse for zero 

IS1 and minimum bandwidth is also derived and the result is a 100% excess bandwidth 

duobinary pulse. 

With the IF-sampling receiver, the effcct of the bandpass white Gaussian noise is 

studied Both the first and second order statistics are obtained for the two noise 

sequences at the output of the IF-sampling receiver. In addition to the study of noise, an 

equivalent discrete-time model is also derived for the IF-sampling communications 

system. This model is shown to be usefid for analyzing the effect of the complete 

system on the information symbols. Besides, the discrete-time model is also used as a 

simulation model to obtain the system performance. Simulation results show that the 

timing error can severely &grade the system performance and cause irreducible bit error 

rate. Also due to the presence of the asymmetric intersymbol interference, a phase shift 

can cause significant variation in the system performance. 

Two solutions are suggested to combat the severe degradation caused by the 

timing error. The fmt solution is a DSSS IF-sampling system with an 11 chip Barker 

sequence. By using the autoconelation of the Barker sequence, the system can suppress 

the delayed paths in the asymmetric IS1 channel. Inside this system, them are three 

parameters, GI,  G p  and Nd, depending on the timing error and thmfore the system 

must be able to modify these three parameters in real-time. Simulation results show that 

as td increases from 0 to 0.25Tp, the system performance is gradually degraded from 1 

dB loss (best performance) to 7 dB loss (worst performance) at emr rate of . 

A different approach is used in the second solution which takes advantage of the 

special pulse shape of the 100% excess bandwidth duobinary pulse. By sampling the 



coatinuousdme IF signal with 4 samples per symbol and selecting the proper two 

samples, the system can actually avoid a considerable amount of =I. One nnique 

characteristics of this system is that certain timing erron can actually produce 

performance improvement. As td increases from 0 to 0.125Tp, the perfonnance is 

improved &om 0.8 dB loss to 1 dB gain. As td increases ftuther to 0.25TP, the 

performance is degraded fmm 1 dB gain back to 0.8 dB loss. Therefore the best 

performance occurs at td = 0.125Tp whereas the worst performance is at both td = 0 

and td = 0.251'. It is also found that this performance trend is consistent with the gain 

imbalance introduced by the 100% excess bandwidth duobinary pulse. In terms of both 

system complexity and performance, the second solution outperforms the fmt solution. 

Several issues are not being considered in this project Firstly, the modulation 

scheme is restricted to be linear in this project. Therefore all three systems mentioned in 

this thesis cannot be used for nodinear moddatioa schemes, such as continuous phase 

frequency shift keying (CPFSK) or continuous phase modulation (CPM). Further 

research is required for the design of the IF-sampling receiver for nonlinear modulation 

schemes. Secondly, equalizer (either linear or nodhear) can also be used to alleviate 

the asymmetric intersymbol interference. However, due to the asymmetric nature of the 

intersymbol interference, a conventional equalizer structure may not be adequate. 

Further work needs to be done in this  am^ 
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