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Abstract

As advances in technology provide faster and cheaper digital hardwares, it is becoming
more feasible to implement a receiver in the digital domain. One widely adopted
architecture is the IF-sampling receiver which samples the intermediate-frequency signal
and recovers the transmitted information in the digital domain. By restricting the
modulation to be linear, such as quadrature phase shift keying (QPSK), this thesis
proposes a new receiver architecture which employs the minimum sampling rate of 2
samples per symbol and trivial digital processing to recover the inphase and quadrature
symbols. In addition to the new receiver architecture, this thesis also presents the design
of a zero intersymbol interference signalling pulse specifically for this new receiver.
With the new pulse and the new receiver, the effect of sampling timing error on the
system performance is investigated. Simulation results indicate that the bit error rate
becomes irreducible when the timing error is greater than 15% of the symbol period.
Two systems are proposed to combat the timing error problem. The first system is a
direct sequence spread spectrum system using 11 chip Barker sequence. This system
uses the autocorrelation of the Barker sequence to suppress the intersymbol interference.
The second system takes a different approach in which the intersymbol interference is
greatly avoided by simply increasing the sampling rate to 4 samples per symbol and
making slight changes in the digital structure of the receiver. Simulation results are also

obtained to show the performance of the two systems.
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Chapter 1 Introduction

In the early days of wireless communications, most commercial systems
employed analog modulation techniques for the transmission of voice and video. There
were two reasons behind this choice. Unlike digital modulation which requires precise
timing information in the receiver, analog modulation does not have this requirement and
therefore the receiver architecture for analog modulation tended to be simpler.
Secondly, due to a higher availability of analog hardware over digital hardware, it was
much easier to implement an analog communications system with off-the-shelf
components. Therefore analog modulation was an affordable solution for wireless
communications. In the last two decades, digital hardware technology has undergone
significant changes. Devices like analog-to-digital (A/D) converters and digital signal
processing (DSP) chips have been improved to offer better performance while their size
and cost have been reduced due mainly to advances in integrated circuit technology. For
such reasons, digital modulation has become a feasible solution for wireless

communications.

1.1 Advantages of Digital Communications

There are several benefits exclusively offered by digital communications. Firstly
a digital communications system provides a unified means for transmission of any kind
of information. From an engineering point of view, information originates in either the
analog (eg. voice) or the digital format (eg. computer data). Since information in the
digital format is already represented by binary digits, no conversion is necessary and the
binary digits can be directly transmitted through the system. On the other hand, in order
to transmit analog signals through a digital communications system, an analog-to-digital

conversion is required in the transmitter. This conversion is achieved by sampling



followed by quantization and encoding. Although the signal is distorted by the
quantization noise, this kind of distortion can be made negligibly small. Once the digital
representation of the signal is obtained, a digital communications system can be used to
transmit the information and digital-to-analog conversion is performed on the receiver
side to reconstruct the original analog signal.

Furthermore, a digital communications system allows system engineers to
increase the robustness of the system against natural and man-made disturbances. For
example, channel coding is known to be effective in reducing the effect of noise while
digital voice encryption protects the conversation against eavesdropping. Lastly a digital
system can easily store information for later transmission. This feature makes time

division multiple access (TDMA) possible.

1.2 Overview of Receiver Architectures

The architectures of most digital communications receivers can be categorized
into three groups [27] : superheterodyne, direct conversion, and IF-sampling receivers.

The superheterodyne receiver is a traditional architecture being used for a long
time in analog system. The main idea is to downconvert the received radio frequency
(RF) signal into an intermediate frequency (IF) signal through singie or multiple stages
of mixing and filtering. This idea is extended into a digital system in which the RF
signal is first downconverted into an IF signal which is then processed by quadrature
downconverter to extract the inphase and quadrature signals. A great virtue of this
approach is that the intermediate frequency is fixed. This allows optimization of circuit
parameters to operate at the fixed IF. Also standardization can be imposed on the
intermediate frequencies so that manufacturers can produce integrated chips (ICs)



operating on those standard intermediate frequencies in large quantities. However, due
to the presence of the two analog branches in the quadrature downconverter, phase and
gain imbalances [3][28] are introduced on the inphase and quadrature signals, thereby
degrading the system performance.

Unlike the superheterodyne architecture, a direct conversion receiver employs a
single analog quadrature downconverter to downconvert the RF signal into baseband
inphase and quadrature signals in one step. This approach results in lower chip count
(that is less complexity) and lower cost . However, as mentioned in [11], this simplicity
is deceptive. Some of the realization challenges are the requirement of high-gain low-
noise mixer and high-dynamic range baseband channel filters. Also the inphase and

quadrature signals suffer gain and phase imbalances.

The third architecture is commonly known as IF-sampling receiver. Similar to
the superheterodyne architecture, the IF-sampling receiver downconverts the RF signal
to a fixed IF. Thus the virtue of a fixed IF remains in the IF-sampling receiver. After
being downconverted, the IF signal is directly sampled and processed in the digital
domain to extract the inphase and quadrature signals. Since the analog quadrature
downconverter no longer exists in the receiver chain, both amplitude and phase
imbalances are completely eliminated. In addition, the IF-sampling receiver requires
only one sampler (instead of two in the other two architectures) and thereby reduces cost
and power consumption. This architecture has been widely adopted in several projects
and papers [4][7][10]. In fact, there are chips [30]{31] available using this architecture.

The major difference between the conventional IF-sampling receiver and the one
proposed in this thesis is that the receiver architecture in this thesis is specifically
designed for linear digital modulation schemes, such as quadrature phase shift keying
(QPSK) and quadrature amplitude modulation (QAM). By having this restriction, the



receiver architecture is shown to be much simpler than the generic structure which
preserves the inphase and quadrature signals regardless of the type of modulation used.

1.3 Thesis Structure

This thesis is mainly divided into three parts. The first part deals with the design
of the newly proposed IF-sampling receiver. Two important concepts, namely F /4
downconversion and the sampling theorems, are covered in chapter 2. In chapter 3, the
complete IF-sampling communications system including the transmitter, channel and
receiver architectures is explained in detail. Also with the novel receiver architecture, a
new requirement on the signalling pulse for zero intersymbol interference (IS) is found
and the derivation is described in chapter 3.

The second part of the thesis focuses on the performance of the novel IF-
sampling receiver in the presence of timing error. An equivalent discrete-time model is
derived in chapter 4 to provide a better understanding of the distortion. Computer
simulation results are also presented in chapter 4 to show the severe degradation caused

by the timing error.

In the third part of the thesis, two solutions are proposed to combat the timing
error. The first solution is a direct-sequence spread-spectrum system. The second
solution takes a different approach in which the timing error distortion is significantly
avoided by exploiting the pulse shape of the new zero ISI signalling pulse. Detailed

analysis and simulated performances of both solutions are presented in chapter 5.

Finally a summary of the entire thesis and future work is provided in chapter 6.



Chapter 2 Two Important Concepts for IF-sampling
Receivers

This chapter presents a detailed review of two important concepts, namely F_/4
downconversion and the sampling theorems, for the design of IF-sampling receivers.
These two concepts serve as the foundation on which any IF-sampling receiver is
designed. As will be shown in this chapter, the F /4 downconversion requires a

specific relationship between the intermediate frequency and the sampling rate while the
sampling theorems govern the minimum sampling rate of the [F-sampling receiver.

2.1 F,/4 Downconversion

In a superheterodyne receiver, the downconversion process is performed by
mixing the intermediate frequency (IF) signal with cosine and sine carriers, followed by
filtering each channel using a lowpass filter in order to remove the double frequency
components. The filtered signals are then sampled by two sampiers to obtain samples of
the inphase and quadrature signals. This structure is commonly known as analog
quadrature downconverter [3][8] and is shown in Figure 2.1.1.

—’()P——' LPF —

IF | cos (2%fyp2)

signal
- quadrature
@ LPF samples
|
FS

inphase
samples

S

—sin (21tf,c2)

Figure 2.1.1 Analog quadrature downconverter.



A similar outcome can be achieved in the digital domain by sampling the IF signal with
at least the Nyquist rate and then mixing it with digitally synthesized cosine and sine
carriers. In this case, unlike the analog implementation, a large amount of simplification

can be obtained when a technique known as F_/4 downconversion [7][9][10] is used.
This technique exploits the fact that when the 2 carriers, cos (21tf,cf) and sin (2%ft) ,
are sampled at the specific sampling rate of F_ = 4-f;- and at the precise sampling
times of ¢ = n/ (4f;;) where n = 0, 1,2, ... , the two sampled carriers are periodic

sequences taking the values : +1, 0 and -1, that is,

cos (an,Ft)I = cos(n’-z‘) = {1,0,-1,0,...} @2.1.1)
l:m
and
sin (21tf,pt)[ o= sin(ng) = {0,1,0,-1,0,...} 2.1.2)
I=Z‘7:’;

where f, is the IF carrier frequency.

These two sampling processes are also shown graphically in Figure 2.1.2 .

cos (27fzt)

sin (27tf;gt)

Figure 2.1.2 Graphical representation on the effect of sampling on the cosine and sine

carrierswitth = 4-f”, .



In Figure 2.1.2, the dots represent the sampling points. The frequencies of both cosine

and sine carriers are F /4 . Also notice that at the sampling instants of time, whenever

the cosine carrier is nonzero (either 1 or -1), the sine carrier must be zero. Similarly,

when the sine carrier is nonzero (either 1 or -1), the cosine carrier must be zero.

Therefore, when F, = 4-f,- and when the sampler precisely samples at the correct

instants of time, the sampled sine and cosine carriers are orthogonal.

Assumning that the continuous-time IF signal takes the form,
rip(8) = I(1) - cos (2xf,ct) — Q (1) - sin (27f pt) (2.1.3)

where I(f) and Q(f) are the inphase and quadrature signals respectively, then when

r;¢ () is sampled by one sampler at a sampling rate of F, = 4-f; and at the precise
sampling times of ¢ = n/ (4f;;) , the sampled sequence consists of samples of I(r)

interleaved by samples of Q(f) with sign inversions introduced on some of the
samples. Mathematically, the sampled IF signal can be represented as,
"”:[n] = "":'(t) | n = {Id[O] , -Qd[ll ) -Id [2], Qd[3], ...} 2.14)

1= e

&ir

where I, [n] =1(:= ) and Q,[n] = Q(z:._"_..)

n
4fir 45
The first sample of r;z[n] corresponds solely to a sample from /(f) while the second

sample of r;-[n] corresponds solely to a sample from Q (#) . The third sample comes

from 7(f) and the fourth sample comes from Q(f). So the orthogonality property
ensures that when the IF signal is sampled by one sampler, each sample contains

information about either the inphase or the quadrature signal, but not about both.



Therefore, with F_ = 4-f,r or fio = F./4, samples of I(t) and Q(f) can be

obtained by properly sorting the samples into corresponding I/Q channels and correcting
the sign inversions. The whole process is illustrated in Figure 2.1.3.

Sign Inversion Correction Sorting
4 ™ (— V2 ) I,(n]
o (D) ——-
fo | Ae(E)
Sn+1] o2 0Q,[n]

K: {1,-1,-1,1, ) C 1)

Figure 2.1.3 Structure of recovering inphase and quadrature samples with F_/4

downconversion. Note that 8[n] denotes the discrete-time delta function.

So far F_/4 downconversion has been shown to be an efficient technique to

obtain the inphase and the quadrature samples out of an analog IF signal. The price for
this simplification however [4][11] is the timing misalignment between the inphase (I)
and the quadrature (Q) signals. This timing misalignment problem was addressed by
Saulnier et al. [4] who propose to use Hilbert transform to relax it. However, in our
design, this problem is solved using a different approach and the solutions are given in

Chapter 3.

In addition to the time domain, the architecture (given in Figure 2.1.3) can also
be examined in the frequency domain as shown in Figure 2.1.4. Both the spectrum of an

analog IF signal r;.(t) and its version r;r[n] are shown in Figure 2.1.4(a) and 2.1.4

(b) respectively.



Rir(N
(@)
l\ ' A > f
~-F s/ 4 0 F s/ 4
J2Rf/F,
(b) Rm(e )
(] ]
| |
[ ]
i |
—t + t — — +—> f
~5F/4 s -3F/4  _F/4 0 F /4 31~' /4 4 SF /4
.FS FS
,znf/p )
]
|
M M XX
M y ~—t > f
) -F /2 F / 2 (]
_F Fs
nnf/(r,/z)
]
|
M M XX
— > f
] F_
-—F /2 F/2

Figure 2.1.4 (2) Spectrum of r;(?) .
(b) Periodic spectrum of r[n] .

(c) Periodic spectrum of the mixed signal.
(d) Periodic spectrum of the decimated signal.
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Here it is assumed that the bandwidth of r,-(z) is small enough such that spectrum
overlap is avoided in the sampling process. At the output of the sampler, the sampled
sequence is multiplied by ./ioos(”—z’hE) to correct the sign inversion. Equivalently, this
multiplication can aiso be viewed as mixing in which the spectrum of r,.[n] is

X
I3

K .
convolved with {3-5(;-%) -e +-’£—i -8(f+ ;’) -e ¢ in the frequency domain. The periodic

spectrum of the mixed signal is shown in Figure 2.1.4(c). Finally the mixed signal is
decimated by a factor of 2 and the output of the decimation contains samples of the

inphase signal with a sampling rate of F /2. In the frequency domain, the spectra of the
mixed and decimated signals are related by

j21|:;.‘£, ! jznlé | = ?_.‘SF’
Xd e = E'Xm e 1+ 5 m| € : (2.1.5)

2xL, Jr2 Y8
where X d[e F‘] and Xm[e F’} are the discrete-time Fourier transforms of the decimated

signal and mixed signal respectively and F, = *. As mentioned in [4], the double-

F3
frequency terms resulting from the mixing operation coincide with the sampling images

and therefore,

j21:;.% ,21:%’
X, e =X|e 2.1.6)

and their only difference is the period at which the spectrum must repeat. For the mixed
signal, the sampling rate is F_ and therefore its spectrum is required to repeat every F .

On the other hand, the sampling rate of the decimated signal is F /2 and therefore its
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spectrumn must repeat every F_/2. Unlike analog downconversion, lowpass filtering is

not required in F_/4 downconversion to remove the double-frequency terms. Instead, a

decimation-by-2 of the mixed signal removes the double-frequency terms and yields the
real part of the spectrum of the sampled inphase signals as shown in Figure 2.1.4(d).

For the recovery of quadrature samples, since ./icos( . 2) = -f2sin ( ﬁ-’-‘) the

sign correction sequence ./icos(nzn :) can be replaced by -./ism(ﬂ‘ -’-‘) By making this

modification on the architecture, a similar approach to the one shown in Figure 2.1.4 can
be used to illustrate the recovery of quadrature samples in the frequency domain.

So far the analog downconversion from RF to IF is assumed to be coherent.
However, from an implementation viewpoint, it is easier to build a noncoherent
downconverter. The phase error resulting from noncoherent downconversion can be

characterized by 0 and the resulting IF signal is,
Fip (1) = I(2) - cos (2Rfpt +0) — Q(2) - sin (27fpt + 0) 2.1.7

By replacing r;(t) with 7,-(f) in Figure 2.1.3, the sampled sequence 7,.[n] can be

obtained as,

Felnl = ?”_-(t= 4-}‘;)
= { I,[0] -cos8-Q,[0] - sinB ,
-I,[1] - sin®-0,(1] - cosO ,
-1,[2] - cos®+Q,[2] - sinB ,
I,[3]-sin@+Q,[3] -cosO ,... }

(2.1.8)

where [ytnl = I(1= 22-) and 0,0n] = ofs= )
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By processing 7,-(n] using the structure shown in Figure 2.1.3, the two output

sequences 1;{n] and @;[n] are found to be,
I,(n] = I,[2n] - cos® ~ Q,[2n] - sin® (2.1.9)
Q,(n] = I,[2n+1] -sin@+Q [2n+1] - cos® (2.1.10)

Notice that 7d [7] no longer contains samples from /(z) alone. Instead Td [n] contains

contributions from both /(¢f) and Q (7). Same result applies to Qd [n] which also

contains samples from both I(#) and Q(#) . This implies that the cosine and sine
carriers are no longer orthogonal at the desired sampling times and this loss of
orthogonality introduces crosstalk between the inphase and the quadrature samples.

However, notice that if

L[2n] = [;[2n+1] 2.1.11)

and

Q,[2n] = Q,[2n+1] (2.1.12)

then I;{n] and Q,[n] can be represented in a matrix form as follows,

fym | _ [cosﬂ -sine], [, (2n] 2.1.13)
0, [n) sin@ cos@| |Q,[2n]

Or equivalently, in complex numbers notation,
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I,(n] +jO,In] = (I,[2n] +jQ,[2n]) - €° (2.1.14)

Both equations 2.1.13 and 2.1.14 indicate that the crosstalk can be viewed as a rotation
of the inphase and the quadrature samples in the complex plane provided that
assumptions 2.1.11 and 2.1.12 are valid. It will be shown in chapter 4 that these two
assumptions are valid for a special family of signalling pulses. In this case, the crosstalk
does indeed have the effect of rotation of the inphase and quadrature symbols.

In addition to F_/4 as the intermediate frequency, an addition of any integer

multiple of F_ to F /4 also yields an intermediate frequency suitable for F /4

downconversion. This is mainly due to the fact that the spectrum of any discrete-time
signal is periodic in frequency with period F,. Thus the first group of suitable IF

frequencies is,

SF_ 9F
Ist group of suitable IF = { —=, —=, —= (2.1.15)

4 b} 4 1] —4_’ "'}
Besides F_/4, it is found that 3F /4 is also a suitable IF. The only difference
between the two IF frequencies : F_/4 and 3F_/4, is that the sign inversion on the Q

channel takes place at different positions. Therefore with 3F /4 as the IF center

frequency, the sampled sequence r;-[n] should be muitiplied by ../icos("—z“ -g) to

correct the sign inversion. The second group of suitable IF frequencies is,

3F, 7F, 1IF
s s sy (2.1.16)

2nd group of suitable IF = {T’ e

By combining the st and 2nd groups of the suitable IF frequencies, it follows that any
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odd integer multiple of F /4 is appropriate for F_/4 downconversion, that is

F
suitable IF = (2rn+1) "f wheren=0,1,2,... 2.1.17)

So F /4 downconversion restricts the choice of IF frequencies to ones that satisfy

Equation 2.1.17. The suitable IF can be as high as desired, while the minimum IF is
F /4.

2.2 Sampling Theorems

In order to achieve F /4 downconversion, the IF frequency must satisfy

Equation 2.1.17. Since the suitable IF is given in terms of the sampling rate of the
sampler, it is also required to specify the sampling rate. The objective of this section is
to find the minimum sampling rate for demodulation of the received signal.

2.2.1 Nyquist Sampling Theorem

The most well-known criterion for choosing a sampling rate is the Nyquist
Sampling Theorem [1, pp. 86] which can be stated as follows : Let x_(r) be a
bandlimited signal with

X.(f) =0  forlf|2f, (2.2.1)

where X_(f) is the continuous-time Fourier transform of x_(f). Then x_(1) is
uniquely determined by its samples x[n] = x_(n/F.) where F_ is the sampling rate

and, n = 0,%1,%2, ... if
F,22f, (22.2)
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In other words, any sampling rate greater than twice the highest frequency component
guarantees that spectral overlap does not occur in the sampling process. Therefore no
information is lost in the sampling process. Since the Nyquist Sampling Theorem is
valid for any bandlimited signal, this theorem is also applicable to a bandpass IF signal.

Let y_(f) be a bandpass IF signal with bandwidth of W Hz and an intermediate

frequency of f,r Hz, then

for f>0 and lf'fn-'l 2

L4
2

(2:2.3)
W

Y.(f) =0
for f< 0 and |f+f”_.| >

where Y_(f) is the continuous-time Fourier transform of y_(¢) . The highest frequency
component of y_ () is at f = f;+W/2 Hz . Therefore, according to the Nyquist

Sampling Theorem, the sampling rate must satisfy
w
22 (1Y)

in order to avoid spectral overlap of y_(#) . The frequency domain representation of the

sampling process is shown in Figure 2.2.1.
A w

/ .

L]

0 fir

(a)

71

1 A ]
” I\: /I |\ /] '\ l /l
N1 > f
-fir= s; fir=F "f[p o Jir -f,p+F, ' fm"’F

Figure 2.2.1 (a) Spectrum of the original bandpass signal.
(b) Spectrum of the sampled bandpass signal with F_2 2f, .+ W.
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From Equation 2.2.4, it is clear that the Nyquist sampling rate depends on both the
intermediate frequency and the bandwidth, W, of the IF signal. The higher the
intermediate frequency, the higher the required Nyquist sampling rate. The same
argument applies for the bandwidth. As a result even if the information signal occupies
a small bandwidth centered at a high intermediate frequency, the sampling rate must be
significantly higher than the bandwidth for avoiding spectral overlap.

2.2.2 Bandpass Sampling Theorem
For the bandpass signal shown in Figure 2.2.1(a), there is an unoccupied
spectrum in the low frequency region from - f”_.+%v to f”,.«-g . Thus it may be possible

to use this unoccupied spectrum to accommodate the spectral images resulting from the
sampling process. This idea results in a more efficient sampling of the bandpass signal
known as the bandpass sampling theorem (S, pp. 321-337] [11] , which is a special case
of the Niyquist Sampling Theorem for the sampling of bandpass signal.

The bandpass sampling theorem states that if a bandpass signal, x_(¢) , has its
frequency content confined from f; to f, , that is
X.(f) =0  for|fl>f, or |fl<f (2.2.5)

where X_(f) is the continuous-time Fourier transform of x (f), f, is the highest

(positive) frequency component and f, is the lowest (positive) frequency component,
then the bandpass signal can be reproduced from its samples provided that the sampling

rate F_ satisfies the relationship
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where n is integer valued and 2<n < L

/!

<
<F, <

2f, )
ry (2.2.6)

2f;
n-1

In other words, the condition stated by Equation 2.2.6 ensures that spectral overlap does

not occur in the sampling process.

Several important points about the bandpass sampling theorem can be inferred
from Equation 2.2.6 :

(a) In Nyquist Sampling Theorem, as long as the continuous-time signal is
bandlimited, there always exists a sampling rate for avoiding spectral overlap.
However in bandpass sampling, it is possible that even if the continuous-time
signal is a bandpass signal, there may exist no sampling rate suitable for

bandpass sampling. The condition for the existence of a suitable F_ comes from

the condition on the index n,

2<n< f,fi 7 2.2.7
I

Thus, a suitable sampling rate does not exist if

5

7 - 7 < 2 or f,>2f (2.2.8)
On the contrary, if
f

ij—fl 22 or f, <2 (2.29)

then there exists a set of sampling rates suitable for bandpass sampling.
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(b) Unlike the Nyquist Sampling Theorem in which only the lower limit of the
sampling rate is restricted (that is the sampling rate can be as high as desired),
both lower and upper limits of the sampling rate are restricted in the bandpass
sampling theorem. The sampling rate cannot be too high or too low and only a
certain range of sampling rates are suitable for bandpass sampling to avoid

spectral overlap. An example is illustrated in Figure 2.2.2. Here f, and f, are
assumed to be 5f, and 7f,. The spectrum of this bandpass signal is shown in
Figure 2.2.2a. With these values of f; and f,, the range of n is found to be
2<n<35,thatis n can be 2 or 3. By substituting these values of f;, f, and n
=2 into Equation 2.2.6, it follows that the sampling rate F_ falls in the range,

1f,<F < 10f, (2.2.10)
On the other hand, with n =3,

4.66f,<F_<5f, (2.2.11)
Thus, in this example, the minimum sampling rate is 4.66f, and the highest
sampling rate is 10f,. There is a gap between these two sets of F_, thatis F_

cannot be in the range from 5f, (exclusive) to 7f, (exclusive). The aliasing
effects for different sampling rates are shown in Figure 2.2.2 (b), (¢) and (d).
Firstly, F, is chosen to be 4f which is lower than required. In this case, the
spectrum (shown in Figure 2.2.2a) is repeated periodically every 4f,. The
aliased spectrum is shown in Figure 2.2.2b and a 100% spectral overlap occurs
with this low sampling rate. Next F_ is chosen to be 5f, which is a suitable

sampling rate for bandpass sampling and the spectrum of the sampled signal is

shown in Figure
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AN A

-1, =51, ! 5f, 1f, .
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-11f, -9, -7f, -5f, -3f, f, | 3, S, 1, 9, llf

MM NAANA,

-12f, —10f,-8f,=1f, ~5f, -3f, -2f, ! 2,3, 5f, 7f,8f, 10f, 12f,

@

-T7f, -15f,  ~6f, —4f, | 4f, ¢6f, 15F, 17,

~18f, —16f0 -7, -5f, ° 5f, 1f,  16f, 18f,
Figure 2.2.2

(a) Spectrum of the continuous-time bandpass signal.

(b) Spectrum of the sampled signal with F_ = 4f . A 100% spectral overlap occurs.

(c) Spectrum of the sampled signal with F_ = 5f . Spectral overlap is marginally
avoided.

(d) Spectrum of the sampled signal with F_ = 11f,. Spectral overlap occurs.
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2.2.2c. Spectral overlap is marginally avoided with this sampling rate. Finally
F_ is chosen to be 11f, which is greater than the highest sampling rate. The

aliased spectrum is shown in Figure 2.2.2d. Again, since the sampling rate is not
included in the bandpass sampling theorem, spectral overlap occurs.

(¢) The maximum and minimum sampling rates can be derived from Equation 2.2.6.

In order to obtain the maximum sampling rate, F_ is set to be the upper limit (

ie F = if‘—l ) and n is chosen to be the minimum ( i.e. n = 2 ). Therefore the

maximum sampling rate is found to be

F, max = 21, (2.2.12)

Notice that the maximum sampling rate for bandpass sampling is still lower than
the Nyquist sampling rate which is 2f, . To obtain the minimum sampling rate,

. . . 2 . .
F_ is set to be the lower limit ( i.e. £, = % ) and n is set to the maximum value.

Therefore if n is equal to I/ with the assumption that i/ is an integer
fn=h Hi=h

greater than or equal to 2, then the minimum sampling rate is found to be
Fimin=20h—f) (2.2.13)

Thus, for bandpass sampling, the minimum sampling rate is twice the bandwidth
of the bandpass signal. This is analogous to the Nyquist Sampling Theorem
which requires the minimum sampling rate to be twice the highest frequency

component.
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In addition to the above three points, there are other properties about the bandpass
sampling theorem which can be found in [S, pp. 321-337]. The most important
knowledge drawn from the bandpass sampling theorem is stated in Equation (2.2.13)
which specifies the minimum sampling rate to be twice the signal bandwidth. If the

bandpass IF signal y_(t) has a frequency content confined within f,, + g-’ , that is

W
Y.(f) =0 for |f—f,F| > (2.2.19)
then the minimum sampling rate for avoiding spectral overlap is
F.22W (2.2.15)
W
. f, . firts .
provided that f—"—f , or equivalently —= is an integer greater than or equal to 2. In
R/l

other words, f, must satisfy the following condition

fir = (15+k) -W where Kk =0,1,2, ... (2.2.16)

So there exists a restriction on the intermediate frequency for achieving minimum

sampling rate in bandpass sampling.

2.2.3 Sampling Theorem for Linearly Modulated Signals
with Zero Intersymbol Interference

Both the Nyquist sampling theorem and the bandpass sampling theorem deal with
general lowpass and bandpass signals. The objective of these two theorems is to
determine the criterion of the sampling rate for avoiding spectral overlap in the sampling
process. In other words, in the derivation of the two theorems, spectral overlap is treated

as a destructive phenomenon to be avoided at all price. However, in the design of a



digital communication receiver, a certain form of spectral overlap at some point of the
receiver chain is desirable. One example is the downconversion of an IF ( or RF ) signal
to baseband. It is found that the downconverted signal is a result of a 100% overlap of
the positive and negative spectra of the IF signal.

Another example, which is the main concern of this section, is the recovery of the
information-bearing inphase (I) and quadrature (Q) symbols from their corresponding
baseband signals without intersymbol interference. Here the digital modulation scheme
is assumed to be linear, such as quadrature phase shift keying (QPSK) and quadrature
amplitude modulation (QAM). Since both the I and Q symbols are discrete-time signals
and the two baseband signals are continuous-time waveforms, the recovery process can
be carried out by sampling the two analog baseband signals using proper sampling rates.
Mathematically, the two linearly modulated lowpass signals can be lumped into one
complex-valued lowpass equivalent signal « (f) represented as

wu() = Yy (,+jQ,) -g (t-mT,) 2.2.17)

m= —oo

where I, and Q, are the inphase and quadrature symbols respectively, Tp is the

symbol period and g (z) is the signalling pulse being modulatéd by the complex
symbols I +jQ,, . Here the signalling pulse is assumed to be a Nyquist pulse which
has a special property,

1 forn=0

(0 ['="TP - { 0 otherwise (2.2.18)

A signalling pulse which satisfies Equation 2.2.18 is referred to as a Nyquist pulse.
Assuming that this complex-valued signal is sampled at a sampling rate of 1 complex



sample per symbol, then the sampled sequence u, can be obtained as,

u, = u(r)| where n=0, £ 1,42, ... (2.2.19)

t= nTP

Substituting Equations 2.2.17 and 2.2.18 into 2.2.19 yields

u, = Y, (I,+jQ,) -g(nT,-mT,) = I +jQ, (2.2.20)

m = —oo

Therefore, in the time domain, it is clear that the inphase and quadrature symbols can be
recovered with no ISI by performing a complex-valued sampling of u(f) with a

sampling rate equal to the symbol rate.

The frequency domain interpretation can be obtained by taking the Fourier
transform on both sides of Equation 2.2.18 which yields

() =1 forallf 2.2.21)

Equation (2.2.21) implies that in order to successfully recover the inphase and

quadrature symbols with no ISI, the Fourier transform of the discrete-time signal
g(t= nTp) must be 1 for all frequencies. One well-known family of pulses which
satisfies this condition is the family of raised cosine pulses [ 2, pp. 546 ]. The raised
cosine pulse is specified as
sin (/T ) cos(®"Pt/T)
4 (t = 2. £ 2
n/T, -4 (Bt/T,)

(2.2.22)
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where B is the roll-off factor taking any value from O (inclusive) to 1 (inclusive). Except
for the case where the roll-off factor is zero, all raised cosine pulses have a bandwidth
greater than half of the symbol rate. In other words, the highest frequency component of
the pulse is greater than half of the sampling rate and therefore spectral overlap occurs in
the sampling process. This is shown in Figure 2.2.3. It is important to note that the
spectral overlap does not introduce any loss in the information of the transmitted
symbols as long as Equation 2.2.21 is satisfied, that is, as long as the spectral overlap

causes the spectrum of the discrete pulse g (t= nTP) to be flat.

s X 1 X AN

I 1
—F = — 0 F _—
s Tp s Tp

I of

Figure 2.2.3 Spectrum of the discrete pulse g (= nT p) with the sampling of 1 sample

per symbol.

Two important points are derived from the above discussion. Firstly, as shown in
Figure 2.2.3, a certain form of spectral overlap is constructive in the recovery of the
information symbols and should not be avoided. Secondly, both inphase and quadrature
symbols can be recovered by sampling the lowpass equivalent signal u (f) ( Equation
2.2.17 ) with one complex sample per symbol, or equivalently 2 real samples per
symbol. Thus, with proper system design, the sampling rate can be as low as 2 real
samples per symbol for the demodulation of a linearly modulated signal. Notice that this
sampling rate is independent of the bandwidth of « () .



2.3 Summary

In summary, this chapter has provided an overview of a digital downconversion

technique known as F_/4 downconversion. In order to employ this technique, the

system must be able to satisfy a special relationship between the intermediate frequency
and the sampling rate stated in Equation 2.1.17. As shown in Figure 2.1.3, this technique
allows the receiver to use a very simple digital structure to extract the inphase and
quadrature samples from the continuous-time bandpass IF signal provided the sampling

time is correct and the analog downconversion is coherent.

In addition to F_/4 downconversion, a review of three sampling theorems was

also presented. Both the Nyquist sampling theorem and the bandpass sampling theorem
specify the sampling rate for avoiding spectral overlap in the sampling process. Since
the Nyquist sampling theorem is valid for any bandlimited signal (either lowpass or
bandpass) whereas the bandpass sampling theorem is only valid for bandpass signal, the
Nyquist sampling rate is more general and therefore requires a higher sampling rate. On
the other hand, the third sampling theorem only deals with the demodulation of linearly
modulated signals with no ISI. Due to the constructive spectral overlap, a minimum
sampling rate of 2 real samples per symbol can be employed for the recovery of the
inphase and quadrature symbols. Such a sampling rate is adopted in the proposed IF-

sampling receiver.
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Chapter 3 The Proposed IF-sampling Receiver

This chapter presents the design of a bandpass digital communications system
comprising a conventional transmitter, an additive bandpass white Gaussian noise
channel and the proposed IF-sampling receiver. The complete system block diagram is
shown in Figure 3.1. In a high level description, the modulator maps a group of
information bits into one of the predefined bandpass waveforms. The selected
waveform s (¢) is then transmitted through the additive bandpass white Gaussian noise
channel and picked up by the receiver. The IF-sampling receiver produces two discrete-
time sequences, namely the received inphase (I) symbols and the received quadrature (Q)
symbols from the received signal. At the final stage, the detector processes the received
I/Q symbols to generate an estimate of the transmitted information bits. All functions in
Figure 3.1, except for the detector, are explained in detail in the following sections. In
addition to the architecture of the system, the criterion for the signalling pulse achieving
zero intersymbol interference (ISI) is also derived for the proposed IF-sampling
receiver. Based on this criterion, one can obtain the minimum bandwidth for achieving

zero ISI and the corresponding pulse shape.

3.1 The Transmitter

This section explains the details of the transmitter in Figure 3.1. Basically the
transmitter consists of a modulator which accepts the information bits as input, generates
the corresponding data symbols and produces a continuous-time signal carrying the
information of the symbols. The block diagram of the modulator is illustrated in Figure
3.1.1 . In this project, the transmitter is restricted to implement only linear modulation
scheme, such as QPSK and QAM. Other modulation schemes, such as continuous phase
frequency shift keying (CPFSK), cannot be represented by the block diagram shown in
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28

Figure 3.1.1 . Three operations are performed in the modulator : (1) symbol mapping,

(2) pulse shaping and (3) frequency upconversion.

bits

Frequency
Upconversion

u, () \

e N

I(r)

o (€))

{

s (1)
cos (2nf. 1)

0 (1)

Symbol Pulse Shaping
Mapping f
I Convert from
213 sequence to
Linear impulse train
Digital
Moduliation
Scheme 0 Convert from
213 sequence to
impulse train

"5

-

J

\-sin (2£,)

J

Figure 3.1.1 Detailed block diagram representation of the modulator.

Each element in the discrete-time sequence of the information bits is either a I or a 0.

The process of symbol mapping is performed by a linear digital modulation scheme in

which a group of k consecutive information bits is mapped into an M-ary complex

symbol, where M = 2* . In this way, a single M-ary complex symbol is used to carry k&

information bits. In general, the real and imaginary parts of the complex symbols are

known as the inphase symbols, ,, and the quadrature symbols, O, . If the rate of the

information bits is R, bit/sec, then the symbol rate R, will be

R,
R =
5 log M

Y

R,
k

(B.1.1)
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At the output of the digital modulation scheme, the two discrete-time sequences,
I, and Q, , are converted by the pulse shaping block into two continuous-time baseband
signals namely the inphase signal 7(#) and the quadrature signal Q(#). This
conversion process is similar to the reconstruction process of a bandlimited signal from
its samples in the Nyquist sampling theorem [1, pp. 87]. The conversion process is

performed in 2 steps : (1) conversion from a discrete-time sequence to an impulse train
with a sampling rate of 1 sample per symbol and (2) filtering. To illustrate, given the

two discrete-time sequences /, and Q, , one can obtain the two continuous-time signals

u;(2) and ug (1) by converting a sequence to an impulse train with a sampling rate of

1/T,, thatis
u(ry = Y I,-8(-mT) (3.1.2)
up (9 = 2 Q- 8(t-mT,) (3.1.3)

m = —oo

where  (¢) = Dirac delta function

T, = symbol period = 1/R,

From the expressions given in Equations 3.1.2 and 3.1.3, the signals «,(f) and g (1)

can also be viewed as modulation of an impulse train Y, 8(¢-mT,) by two discrete-time

sequences I and Q_ respectively. These two modulated impulse trains are then passed
into the two pulse shaping filters having the same impulse response denoted as g (f) . In
practice, g (z) is known as the signalling pulse. The outputs of the two filters are given

as the convolution of g (#) with «,(r) and ug (?) ,thatis
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I(t) =, () ®g(p) = Z I, -g(t-mT) (3.1.4)
() =ug(1) ®g()) = 3 0, g(t-ml) (3.15)

m = =0

where ® denotes a convolution operation.

The two signals, I(¢#) and Q(r) , are then used to amplitude-modulate (AM) the sine
and cosine carriers respectively. Equivalently, in the frequency domain, the spectra of
I(?) and Q(¢) are frequency up-shifted by the cosine and sine carriers respectively to a
carrier frequency f, . By summing up these two AM signals, the linearly modulated

bandpass signal, s () , is obtained as :

s(n = Y I,,-g(t~mT) - cos (2nf 1)

- (3.1.6)
- Y 0, -g(t-mT) -sin (2nf,?)

The required transmission bandwidth for the communication system is dictated by
the bandwidth of the bandpass signal s (¢) which can also be represented by its complex-
valued lowpass equivalent signal, v (?) , as

jarf .t

s(t) = Re{v(?) -€ } (3.1.7)

where v()) = 3 (I,+jQ,) -g(t-mT)

m=—co

By taking the continuous-time Fourier transform of s(r), the frequency domain
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relationship between s (z) and v () is obtained as
SO = 5[VE-£) +V(-f-1)] (3.18)

where S (f) =continuous-time Fourier transform of s ()
V(f) = continuous-time Fourier transform of v (2)

and * represents a complex conjugate operation.

Equation 3.1.8 clearly indicates that the bandpass bandwidth of s (¢) is the same as the
total lowpass bandwidth (including both positive and negative frequency spectra) of

v (2) . Therefore the transmission bandwidth is the same as the total lowpass bandwidth

of v(z) . The full derivation of the power density spectrum of v(¢) is given by [ 2, pp.
204 ] and the result is stated as follows.

If the encoded symbols, I, and Q, , are uncorrelated and have zero mean, that is

0plml = E{I,-Q, ,} =0 for all m (3.1.9)

E{l} =E{Q,} =0 foralln (3.1.10)

where E{ } denotes the expectation operation.

then the lowpass equivalent signal is a cyclostationary process with average power

density spectrum given by
0'2
o N = T’-IG()‘)I2 (3.1.11)
P
2 1 . . *
where ©; = Q’E{(In +j0,) - (In+]Qn) } (3.1.12)
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Therefore the lowpass equivalent of the linearly modulated signal has the same spectral
shape as the magnitude response of the signalling pulse g (#) . If the bandwidth of g (7)
is equal to W/2 Hz, that is

IG(H| =0 for lfl>!?_Y Hz (3.1.13)

then the bandwidth of the bandpass linearly modulated signal s (¢) is equal to W Hz.

3.2 The Channel

The second block in the system is a bandpass channel which is assumed to
corrupt the transmitted bandpass signal s(z) by the addition of the bandpass white
Gaussian noise n (f) . By summing the transmitted signal and the noise, the received

signal r (¢) is found to be,

r(® = Y I, g(t-mT)) -cos(2nf,1)

> (3.2.1)
- Y 0O, g(t-mT,) -sin (2nf)

+ n(1)
The noise is assumed to be a wide-sense stationary stochastic Gaussian process with zero
mean,

E{n()} =0 for all time t (3.2.2)

Furthermore the noise is also assumed to have a flat real-valued power density spectrum
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of l-vz-" in a frequency region with bandwidth of W Hz and centered at the carrier

frequency. Thus if the power density spectrum of n (¢) is denoted as @__ (1) , then

N, 4 14
— f~flEzor|f+f.|S=

®,.(H =9 2 [F~Tel £ 7 orlf+fe| <3 (3.2.3)
0 otherwise

Due to this special property of the power density spectrum, this random process is
commonly known as bandpass white noise. Figure 3.2.1 shows the sketch of the power

density spectrum.
d)nn (f)
w I_YQ w
——————— 2 — e S Sem — —
-4 ] t > f
~f. 0 /.

Figure 3.2.1 Power density spectrum of the bandpass white noise.

In general, any bandpass random process can be decomposed into two lowpass noise
processes namely the inphase component x () and the quadrature component y () . So
n (¢) can also be written as
n(t) = x(¢) - cos (2rf t) — y (1) - sin (2®f 1) 3B.24)
where x (¢#) = inphase component of n (t)

y (¢) = quadrature component of 7 (t)

Since n (¢) is assumed to be a Gaussian process, it follows that both x (z) and y (¢) .are

also zero-mean Gaussian random processes [2, pp. 162]. Thus
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E{x()} =E{y()} =0 foralltimet (3.2.5)

Also due to the stationarity of the bandpass noise n (z) , the two components x (z) and

y(?) are real-valued individually and jointly wide-sense stationary processes [2,

pp-159]. The autocorrelation functions of x(¢) and y(z) are exactly the same and

given as,
0 (D = E{x() -x(1-} = N,- BEXD (32.6)
8y (D = E{y(1) -y(1-0} = Ny- LEXD (32.7)

It has been shown [2, pp. 159] that the two processes, x(f) and y(r), are also
uncorrelated for all time shifts T, therefore
¢zy(1:) = E{x(t)}-E{y(t-1)} for all time shifts T (3.2.8)

Therefore, since x(#) and y(#) are Gaussian processes, they are statistically
independent. Substituting Equation 3.2.5 into Equation 3.2.8 yields
¢xy (t) = E{x(t) -y(t-1)} = 0 forall time shiftst (3.2.9)

Therefore the cross-correlation function of x () and y(¢) is always zero and x(¢) and
y(2) are orthogonal. The power density spectra @_(f) and & _ () are obtained by

taking the Fourier transform of ¢, (1) and ¢,,(v) . Hence

N, Ifl<¥

. (N =@, = { ’ (32.10)

Q0 otherwise
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Both the autocorrelation functions and the power density spectra are also sketched in
Figure 3.2.2.

®_(f) = O, (f)

. N,W
SN

0 (T) =0, (D)
A

y~

v w 2 —"1 I~—2

2 0 2 v w9 9w W
(a) (b)

Figure 3.2.2 (a) Power density spectra of x (#) and y (?) .

(b) Autocorrelation functions of x () and y(?) .

3.3 The Proposed IF-sampling Receiver

The architecture of the proposed IF-sampling receiver is based on the concepts of

F_/4 downconversion and the sampling theorem for linearly modulated signal. The

receiver employs the minimum sampling rate of 2 samples per symbol and a simple
digital structure (similar to Figure 2.1.3) to recover the transmitted information symbols
from the sampled IF signal. The proposed receiver architecture is shown in Figure 3.3.1 .

r{n inphase
symbols

3'4,2 > a[n]
Ideal Ideal | 17 (") |

—>( %}—9 X quadrature
BPF | LPF bols

2cos (21 (£, ~f¢) £~ 6] ¢ =n(057) -1, —*5[""’1 Y2 > bl

ﬁcos(%‘k ’{) = {1,-1,-1,1,...}

Figure 3.3.1 Architecture of the IF-sampling receiver.
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The received radio frequency (RF) signal,r (z) , is given as

r@ = Y I.-g(t-mT)) - cos (2nf 1)

m = —~co

- Y 0O, g(t-mT,) - sin(2nf,1) (3.3.1)

+ x(t) - cos (21:f;t)
- y(2) -sin (2nf_1)

This RF signal is first filtered by the ideal bandpass filter (BPF) which eliminates any
signal and noise outside the transmission band. The filtered signal is then mixed with a
local oscillator, 2cos [2% (f_—f;z) t~0] where f_ is the RF carrier frequency and fj¢
is the intermediate frequency. It is assumed that a perfect estimate of the carrier
frequency is available in the receiver. However there exists an unknown phase offset
between the received signal and the local oscillator. This phase offset is characterized by
the unknown constant 8 in the local oscillator output. At the output of the mixer, the
signal is filtered by an ideal lowpass filter (LPF) to remove the double-frequency

component. In order to perform F /4 downconversion, the intermediate frequency

must satisfy the condition,

F
fir = 2n+1) I’ where n=0,1,2,... (3.3.2)

Since a low intermediate frequency can ease the input bandwidth requirement of the

sampler, the minimum intermediate frequency F_/4 is used. Therefore the sampling

rate (F,) and the intermediate frequency (f;) are selected to be,

F_ =

5

Hz (3.3.3)

Sl
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F. o5
<= T Hz (3.3.4)

fir

The bandwidth of the ideal lowpass filter must be large enough to pass the IF
signal without any distortion. Therefore the frequency response of the ideal lowpass

filter LPF (f) is given as

Lo ifl< 2+
LPF(f) = P (3.3.5

0 otherwise

Depending on the bandwidth of the signalling pulse and the intermediate frequency
being selected in the receiver, spectral overlap can happen at both the input and output of
the sampler. Firstly, if the minimum intermediate frequency is employed, then the
negative and positive spectra of the IF signal ( at the input of the sampler ) partially
overlap with each other. This is illustrated in Figure 3.3.2 with the assumption of a
100% excess bandwidth signalling pulse.

W= TP w TP

>~ T ed

3 | T T T s s
0 L T, 0 T, L
(a) (®)

Figure 3.3.2 (a) Spectrum of the RF signal with 100% excess bandwidth.

(b) Spectrum of the IF signal for f;r = %,2 .

P
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Figure 3.3.2a shows the hypothetical RF spectrum with a 100% excess bandwidth and
Figure 3.3.2b shows the corresponding IF spectrum at the output of the ideal lowpass
filter (LPF). There is an exceptional case in which the spectral overlap is marginally
avoided. This special situation occurs when either the signalling pulse has a 0% excess
bandwidth or a higher intermediate frequency is chosen from Equation 3.3.2 . It should
be noted that if a higher intermediate frequency is used, then the ideal lowpass filter
should be replaced by a bandpass filter.

Secondly, spectral overlap can also occur in the sampling process (or
equivalently at the output of the sampler) depending on the excess bandwidth of the
signalling pulse. Unless the signalling pulse has a 0% excess bandwidth, spectral
overlap always occurs when sampling. This spectral overlap is independent of the
intermediate frequency. It is important to note that these two forms of spectral overlap
are constructive in making both the IF-to-baseband downconversion and the
demodulation of the waveform signal into I/Q symbols to be performed in one step —
the sampling process.

Whether the two spectral overlaps occur or not, the downconverted IF signal can

always be represented as

re(® = Y, I,-g(t—mT,) - cos (2xf;p 1 +6)

m = —=oco

-y 0.8 (t—mT)) - sin (2Rf;pt+6) (3.3.6)

m = oo
+ x () - cos (2xf;pt+6)

— y () - sin (27tf;t+0)

The IF signal is sampled by one sampler with a sampling rate of 2 samples per symbol.
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The sampler is assumed to have infinite resolution such that quantization error is
ignored. However, due to the imperfection in the synchronization circuit, there exits an
offset (error) in the actual sampling timing. Thus the actual sampling time is given as

I,
t = n-z—-td (3.3.7)

where ¢, represents the sampling timing error. Note that 7, is always in the range from
—-0.25Tp to O.ZSTP , that is

-0.25T,<t,<0.25 Tp (3.3.8)
A positive value of t; corresponds to the sampling point off to the left ; whereas a
negative value of ¢, corresponds to the sampling point off to the right. By substituting

Equations 3.3.4 and 3.3.7 into Equation 3.3.6, the sampled IF sequence r,.[n] is found

to be
- T Tt
riplnl = Z Im'g(n—ze—td-mTp)-cos(%’t---z,—d-f»e)
P

m = —6s

nz,

- Z Q. g(nzz--td mT) (3’-‘-— e)

m=
T (44
_p X ’”‘ __é
+ x(n 2 —td) CcoS{ — —

)
N G .(m ney )

It is important to emphasize that if both the timing error and the phase offset are zero and

(3.3.9)

the signalling pulse satisfies certain conditions (which will be discussed in the next

section), then r;z[n] contains interleaved inphase and quadrature symbols with sign

inversions introduced on some of the symbols. Mathematically, this can be stated as



{Ia,"Qo"I[y Q[slz,'er"I3: Q3,-~-} (3.3.10)

where I, and Q, are the transmitted inphase and quadrature symbols. In other words,

the proposed IF-sampling receiver can directly extract the I/Q symbols from the analog
IF signal without the need for recovering the two baseband continuous-time I/Q signals

using decimation filters.

As shown in Figure 3.3.1, the recovered inphase symbols a[n] can be obtained

from the sampled IF sequence by multiplying r,-[n] with the sign correction sequence

Jicos('%ti»g) and decimating the multiplication output sequence by a factor of 2. Thus

the received inphase symbol is

= ((me, )

aln] = 2 Im-g(nTp-td—mTp) -cos\—-T—+9

m = ~co P J

= N 7R

- 2 Q,-g(nl,—t;—mT) -sm\—T-i-O

m=-o r J

(3.3.11)
nt,
+ x(”Tp"d) - Ccos —Tp+9

R ﬁtd
- y(nTp-td) - sin --I—,p-+9

Similarly the recovered Q symbols can also be obtained by multiplying r, [n] with the
sign correction sequence »ﬁoos(%t +§) , time shifting the multiplication output sequence
to the left by one sample and decimating the shifted sequence by a factor of 2. Thus the
recovered quadrature symbol, b [n] , is
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= Y I -g(nT,+05 T4
b(n]l = Y I, -g(nT,+05T, —1,-mT,) - sin -7.;4.9
m = =oo

L,
+ 2 Q, g (nT,+0.5T,~t,-mT) - cos(-—+e)
" (33.12)

+x(nTp+0.5T -t - sm(-—-+6

)
rt, J

+y(nTp+0-5T -t - cos[——+e

3.4 Signal Design for the Proposed IF-sampling Receiver

From Equations 3.3.11 and 3.3.12, it is clear that both the recovered inphase
symbols, a[n], and the recovered quadrature symbols, b [n] , contain information
about the transmitted I/Q symbols. In order to obtain a "clean” copy of the transmitted I/
Q symbols under ideal conditions, the signalling pulse must satisfy certain conditions.
This section focuses on the design of a bandlimited signalling pulse which allows the
receiver to achieve zero intersymbol interference. The design procedures are similar to

that of Nyquist criterion [2, pp. 543] and the generalized Nyquist criterion [13] .

In the design of the signalling pulse, all distortions introduced either by the
channel or by the nonideal receiver implementation are assumed to be zero. In other
words, the timing error of the sampler, the phase offset and the two noise components
(inphase and quadrature) are assumed to be zero :

t; =0 (3.4.1)

6=0 (342)
x() =y@® =0 forallt (3.4.3)
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By substituting these four assumptions into Equations 3.3.11 and 3.3.12, the recovered
inphase and quadrature symbols can be simplified as

aln] = Y 1,-8(nT,~mT) 3.44)
and
bin] = Y Q,,-&(nT,+05T,-mT,) (3.4.5)

m = =co

Notice that with both the timing error and the phase offset assumed to be zero, the
recovered inphase symbols,a [n] , depend solely on the transmitted inphase symbols,

I, and contain no contribution from the transmitted quadrature symbols, @, . The

m
same observation applies to the recovered quadrature symbols, b [n] , which also depend

only on the transmitted quadrature symbols, O, , and contain no contribution from the
transmitted inphase symbols, /. . In other words, no crosstalk is introduced between the

inphase and quadrature channels if both timing error and phase offset are zero. In a
practical communication system, it is very costly to make these two assumptions valid

and therefore the effect of these two errors is discussed in chapter 4.

Although the crosstalk is removed, the effect of intersymbol interference (ISI)
can still be introduced by an improper design of the signalling pulse. This is because
both Equations 3.4.4 and 3.4.5 involve summation of all the transmitted I and Q symbols
respectively. The first criterion for a zero ISI signalling pulse is derived from the I

channel. Assume the k" transmitted I symbol, I, is recovered at n = k, and the

recovered symbol is denoted as I, , then Equation 3.3.4 can be written as,
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L=L-g0) + Y I,-g(kT,~mT,) (34.6)
mek

This equation is purposely separated into two terms to show the mathematical form of
the intersymbol interference. The first term, I, - g (0) , is the desired inphase symbol
scaled by g(0). The second term, which is the summation of contribution of all
inphase symbols other than I, , represents the interference from other symbols within the
inphase channel itself. Therefore the second term is denoted as the intersymbol
interference term. In order to remove the ISI on inphase channel and retrieve /., the
signalling pulse g (#) must satisfy
1 for n=0
g(t=nl)) = { (34.7)

0 otherwise

Equation 3.4.7 is the criterion on the signalling pulse g () for accomplishing zero ISI

on the inphase channel.

To derive the criterion on the quadrature channel, the same procedure is applied.

Again assume that the kb quadrature symbol, Q,, is recovered at n = k and the

recovered symbol is denoted as Q. , then Equation 3.4.5 yields

Or = 0,-2(05T,) + ¥ 0, -g(kT,+0.5T,~mT,) (3.4.8)

m = =oo

mek

The same interpretation is made. The first term, Q,-'g (O.STP) , is the desired

quadrature symbol scaled by g (0.5 Tp) . The second term, which is the summation of



contribution of all quadrature symbols other than Q,, represents the intersymbol
interference. Therefore, in order to remove the ISI on the quadrature channel and
retrieve O, , the signaling pulse g (#) must satisfy

1 for n=0
g(t= 0.5Tp+nTp) = (3.49)
0 otherwise

Equation 3.4.9 is the criterion on the signalling pulse g (¢) for obtaining zero ISI on the
quadrature channel. Note that Equations 3.4.7 and 3.4.9 impose different restrictions on
the same signalling pulse. In order to avoid ISI on both the inphase and quadrature
channels, the signalling pulse must be able to simultaneously satisfy both equations.
Therefore having zero ISI on both inphase and quadrature symbols requires g () to be

1 for n=0,1

glnl=¢g(t = nO.STp) = { (3.4.10)
0 otherwise

Equation 3.4.10 is the time-domain zero ISI criterion for a coherent IF-sampling receiver

with perfect sampling timing. Notice that Equation 3.4.10 takes the same form as the
conventional Nyquist criterion except that the sampling rate on g (¢) is 2/ Tp and two
nonzero samples are required. This is mainly due to the fact that the inphase and
quadrature symbols are obtained at different times. Thus the timing misalignment
problem is solved by imposing two conditions (Equations 3.4.7 and 3.4.9) instead of one

on the signalling pulse.

In addition to the time domain representation, a frequency domain representation
of the zero ISI criterion can also be obtained by taking the discrete-time Fourier

transform (DTFT) of Equation 3.4.10 . In general, the DTFT of g(n] is denoted as

G( ¢ "’) and the transform is defined as
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G(J‘”) = i gln] -7 (3.4.11)

Substituting g [z] from Equation 3.4.10 into Equation 3.4.11 yields

Ko
. ) 2
G(e"”) =1+e’" = (2~cos%)-e 2 (3.4.12)

Applying the relationship between the normalized discrete-time frequency @ and the

continuous-time frequency f : ® = ZnFL, and the relationship between F_ and Tp :

s

F =

5

, Equation 3.4.12 reduces to

Mo 18]

i T
exf RfT)) S5
G| e =|2-cos 5 Pl.e (3.4.13)

In general, the discrete-time Fourier transform, is related to the continuous-time Fourier

transform, G (f) by the sampling theorem as

j2n§ o
Gle “|=F.- Y G(f-kF) (3.4.14)
k

= =00

By combining equations 3.4.13 and 3.4.14, the restriction on G (f) for zero ISI on both

inphase and quadrature channels can be obtained as

T,
- nfT, 45t
2 G(f-kF) =T, -cos—E-e (34.15)
k= —oo

where F_ = Tz Hz
P



Equation 3.4.15 is the frequency domain representation of the zero ISI criterion for a
coherent IF-sampling receiver with perfect sampling timing. The criterion implies that
in order to avoid ISI on both inphase and quadrature channels, the periodic replication of
G (f) must have a magnitude response of

= nfT
Y, G(f-kF)| =T,-|cos—2 (3.4.16)
k= —oo
and a phase response of
. T
- -—lee ifcos—f;‘g>0, t’orlf[<Ti
arg{ Y G(f-kF:)} = P (3.4.17)
. nfT, . ", 1
- T'I'TC 1fC08—2'<0, fOl’If[(-I-,-

)

Notice that, except at the points of phase discontinuity, the phase response is a linear
function of frequency. Both the time domain and frequency domain zero ISI criterion
are shown in Figure 3.4.1. Analysis of equation 3.4.15 leads to the bandwidth
requirement of the signalling pulse. Assume W is the total lowpass bandwidth of the

signalling pulse, then the study can be divided into 3 cases : W< %—— 4
P

2
—_ W>=.
Tp Tp
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g(t=n05 Tp)
(@) IT IT
- - *———eo—
-Tp -O,STP 0 0’5Tp Tp 1.5Tp
Y G(f-kF) -
- T
® N T, |cos— 2
T /
N -+ > f
_3 2 _1 0 1 2 3
T, T, T, T T, T,

Figure 3.4.1 (a) Time domain zero ISI criterion.
(b) Frequency domain zero ISI criterion (magnitude response only).

Casel: W< 2
T
p
Since W is less than W< % and the sampling rate is %— , then spectral overlap
p p

is avoided. Therefore as shown in Figure 3.4.2, it is impossible to fill in the
spectral gaps to satisfy Equation 3.4.15 .



IG(H]
(a) +
NARY .,
1L o 1
T T,
ZG(f—kTZ-)
k= —oo p
(b)
gap gap
TN
' T W S : — s r
23 _2 _1 o 1 2 3
T, T, T, I, T, T,

Figure 3.4.2 (a) Magnitude spectrum of g (z) .
(b) Magnitude spectrum of the periodic replication of G (f) .

Case2: W= 3
Tp

When W is equal to % and the sampling rate is TZ_’ frequency aliasing is
p P

marginally avoided. In this case, there exits only one solution of g (#f) which can

satisfy the zero ISI criterion and the solution is
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®fT,
afT, -i—5* 1
Tp-cos—f—z-e 2 for Ifl<7
G = 2 P (3.4.18)
0 otherwise

The magnitude spectrum is plotted in Figure 3.4.3.

T, 1 4
IGm1 | -
0
2 2
T, T,
Frequency

Figure 34.3 Magnitude spectrum of zero ISI signalling pulse for W = % .

4

The time domain zero ISI pulse, g (z) can be obtained in two ways. The first
approach is a direct application of the inverse continuous-time Fourier transform

of G(f) to obtain g (r) . The second approach involves the reconstruction of a
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bandlimited continuous-time signal from its samples in the Nyquist sampling
theorem. It is the second approach which is used in this thesis to obtain g (¢) .

In general, a continuous-time signal, g (t) , can be constructed from a discrete-

time signal, g [n] , in a process described as follows,

Convert from | g.(2)
glnl —1 sequence to ————— A (£) —» g (2)
impuise train

f

F

5

Figure 3.4.4 Block diagram of reconstruction process

By converting the sequences in g [#] to an impulse train with a sampling rate of

F_, the modulated impulse train is found to be

g = Y glnl -S(t-;'.i) | (3.4.19)

k = =0

The impulse response of the ideal lowpass filter is given as

sin (mF;)
ntF

5

h(t) = sinc pulse = (3.4.20)

By convolving g_(f) with h(z) , the desired continuous-time signal is obtained

as



S1

i sin [x(¢t—n/F)F]
g0 = X elnl - ——is 7 (3421

k==

1 for n=0,1

Substituting g[n] = { and the sampling rate of r& Hz into
P

0 otherwise

Equation 3.4.21 produces the desired zero ISI signalling pulse,

sin (2nt/ TP) sin [2x(t-0.5 Tp) / Tp]
ame/T, | 2m(t-05T)/T,

gl =

(3.4.22)
0251'; - sin (2mt/T,)

nt (0.5 Tp -1)

The pulse described by g () is very similar to a duobinary pulse except that it
has a 100% excess bandwidth. This pulse is plotted in Figure 3.4.5 . Notice that

g (#) can also be viewed as a sum of two sinc pulses with a time offset of

0.5 Tp .

1.4 ™ -y T T ~r T ~v

g ()

—oii‘l'p -1.5Tp -Tp —0.5Tp o 0.5Tp Tp 1.5Tp 2Tp

time

Figure 3.4.5 The minimum bandwidth zero ISI signalling pulse.
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. 2
Case3: W>T

P

With W> T& , the sampling rate is less than twice the highest frequency, As a
p

result, frequency aliasing must occur. Therefore it is possible to have numerous
choices of g (#) to satisfy Equation 34.15 . However, since the transmission
bandwidth should be kept as low as possible, the solution in case 2 is always
better and no further study is pursued for this case.

As a result, for a coherent IF-sampling receiver with perfect sampling timing and a
sampling rate of 2 samples per symbol, the minimum bandwidth for achieving zero

intersymbol interference is 2/ Tp Hz. Any signalling pulse with bandwidth less than
2/ Tp Hz must generate ISI. In other words, an IF-sampling receiver requires a

signalling pulse with at least a 100% excess bandwidth. When the bandwidth of g () is

greater than 2/ Tp Hz , several choices of g (f) can satisfy the zero ISI criterion stated

in Equation 3.4.15 .

3.5 Summary

This chapter has described the details of the IF-sampling communications
system. A linear modulation scheme is employed in the transmitter while the channel is
assumed to be an additive bandpass white Gaussian noise channel. On the receiver side,
the [F-sampling receiver is shown to be capable of extracting the inphase and quadrature
symbols through the sampling process. With the proposed receiver architecture, both the
time and frequency domains of the zero ISI criterion are derived. Also both the
minimum bandwidth and the actual signalling pulse for achieving zero ISI are given in

this chapter.
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Chapter 4 Performance of the Proposed IF-sampling
Receiver

In chapter 3, the proposed IF-sampling receiver was described. The receiver is
general in the sense that any linear digital modulator and detector can be employed.
However, in order to evaluate the performance of a communications system, a particular
modulator and detector must be specified. In this project, differential quadrature phase
shift keying (DQPSK) modulator and differential detector are adopted due to their
simplicity and popularity. The whole system is simulated to obtain the bit error rate
performance under the distortions of timing error, phase offset and noise. As will be
shown in this chapter, the timing error can severely degrade the system performance and
cause irreducible bit error rate. Also, due to the presence of the asymmetric intersymbol

interference, the phase offset becomes an important factor on the system performance.

4.1 DQPSK Modulator and Differential DQPSK Detector

In recent years, a large amount of attention has been paid over digital mobile
communication systems employing differential quadrature phase shift keying (DQPSK)
[14]-[18]. One of the advantages of DQPSK modulation is its high bandwidth efficiency
ranging from 2 bit/sec/Hz (for a 0% excess bandwidth signalling pulse) to 1 bit/sec/Hz
(for a 100% excess bandwidth signalling pulse). The bandwidth efficiency is calculated
using the bandpass bandwidth. In addition, a differential modulation scheme allows the
use of noncoherent detectors which are of simpler implementation than coherent

detectors. Due to these advantages, one particular form of DQPSK modulation, known
as g - DQPSK, has been adopted by both the North American and the Japanese digital

cellular standards [16]. Consequently, DQPSK is also adopted throughout the thesis.
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A DQPSK modulator takes two information bits at a time and produces one

complex-valued symbol, I +jQ,. These two bits are encoded using the phase

difference between two consecutive complex symbols. If the two information bits (also
known as dibits) are 00, 01, 11 or 10, then the phase changes relative to the previous
symbol are 0°, 90°, 180° or 270° respectively. This encoding rule is shown graphically
in Figure 4.1.1 .

01

10

Figure 4.1.1 Signal constellation showing the relationship between the relative phase
shift and the dibit.

Notice that the assignment of the relative phase change follows Gray coding [6, pp.201]
such that all adjacent phase shifts only differ in one binary digit. The advantage of Gray
coding is that since errors are most likely to be made to neighboring points in the signal
constellation, only one bit is decoded incorrectly. This minimizes the number of errors
resulting from the presence of distortion. In DQPSK modulation, an extra complex
symbol is required at the beginning of the symbol sequence to provide a phase reference

for the first dibit. This initial symbol is arbitrarily assumed to be 0.707 +;0.707. By

having the initial phase to be 45° and the encoding rule as shown in Figure 4.1.1, there
are in total 4 possible transmit signal points in the signal constellation (Figure 4.1.2). All

four points reside on the unit circie and their phases are 45°, 135°, 225° or 315°.
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—
~

Figure4.1.2 Constellation showing all four possible transmit signal points.

On the receiver side, the bandpass RF signal is processed by the IF-sampling
receiver and a corresponding sequence of received complex symbols is generated at the
output of the IF-sampling receiver. These distorted complex symbols, a [n] +jb[n],
are then decoded by the differential detector to recover the transmitted information bits.
The distorted inphase and quadrature symbols are denoted by a[n] and b[n]
respectively. A differential (or noncoherent) detector, which employs delay and
conjugate multiplication [2, pp. 274], is adopted in this project. Several other types of
differential detector can also be found in the literature [12], [14]. The block diagram of
the differential detection is shown in Figure 4.1.3.

UUBZO=:LSB =0

__)E_U_L'EE Upep<0=>LSB =1
x

U
I:j MSB
K }
= aI( ) Ja Upsg20=>MSB = 0
Upsg<0=MSB = 1

J, = aln] +jb(n]

—

Figure 4.1.3 Differential detection for DQPSK symbols.
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The received symbols are decoded according to the values of two decision variables
whose derivations are based on the phase change between two consecutive complex
symbols. This phase change is obtained by muitiplying the present received complex
symbol with the complex conjugate of the previous complex symbol. In Figure 4.1.3,

o 4
there is a second multiplication of e’4 which rotates the multiplication product by 45° in
the counter-clockwise direction. This rotation causes the four signal points in Figure
4.1.1 to fall into the centers of the four quadrants. The decision variable for the most

significant bit (MSB), U, , is obtained as

o9
Upsp = [m(][n] I [n-1] -e’i) 4.1.1)

where * denotes complex conjugate. The most significant bit is decoded as O if

Upysg 20 ; otherwise it is a 1. On the other hand, the decision variable for the least

significant bit (LSB), U, ¢ , is determined as

T
U = Re[f{n] T n-1] -e’i) 4.12)

Similarly, the least significant bit is decoded as 0 if U;520 ; otherwise it is a 1.

Notice that this differential detection scheme involves only multiplication and addition in
the calculation of the decision variables. No complex operation, such as trigonometric

function, is required.
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4.2 The Effect of Bandpass White Noise on the Proposed
IF-sampling Receiver

This section studies the propagation of the bandpass white noise through the IF-
sampling receiver. It is assumed that the bandpass white noise has the same bandwidth
as the information-bearing signal. Any out-of-band noise is filtered out by the front-end
bandpass filter shown in Figure 3.3.1. Similar to the information signal, the bandpass
white noise is also processed by the IF-sampling receiver which in turn produces the two
corresponding discrete-time random sequences : z;[n] and z, [n] . The subscript i’
represents the inphase channel whereas the subscript ‘q’ refers to the quadrature
channel. From the expressions of the received inphase and quadrature symbols derived

in Equations 3.3.11 and 3.3.12, the inphase noise sequence z;[n] is found to be,

,
z;[n] = x(nTp-td) - COS ——?-!-9 @4.2.1)
P

. nt,
-y(nTp—td) - sin —7_: +0

and the quadrature noise sequence 2 ” [n] is,

149 ’
z,ln] = x(nT,+05T,-1,) - sin(-—?‘! + eJ 4.2.2)
p

nt,
+y(nTp +0.5Tp-td) - COs -7 +0
P

Several statistical properties namely statistical means, autocorrelation functions, cross-

correlation functions and probability density functions of these two noise sequences are

investigated in this section. Throughout the whole investigation, both ¢, and 8 are

treated as deterministic quantities.
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The investigation starts with the statistical means of the two random processes.

By taking ensemble expectation on z;[n] and z, [n] , the statistical means are

determined to be,
T,
E{z[n]} = E{x(nT,-1,)} - cos --T—+e (4.2.3)
r
E{y(nT, in -4
~E{y(n p—td)} - sin —Tp-+6
and
[ mey
E{zq[n]} = E{x(nTp-&»O.STp—td)} - sin -Tp-+9 4.2.4)

T
+E{y (nTp +0-5Tp“d) }- cos(--f.f +9J

Since both x(#) and y (z) have zero means (Equation 3.2.5), it follows that both z, [n]

and z 7 [n] also have zero means for all time, that is

E{z;[n]} = E{zq[n]} =0 foralln (4.2.5)

The autocorrelation functions of both z,[#] and z, [n] are defined as,

¢z'_z'_ [n;in-k] = E{z;[n] -z;,[n-k]} 4.2.6)

0. [nin—kl = E{z,(n] -z, [n-k]} 4.2.7)

By substituting the expression of z;[n] into Equation 4.2.6, the autocorrelation of
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z;[n] is expanded as,

rr,
¢z,~z,-[";n-k] = E{x(nTp—td) -x(nTp-kTp-td) -cosz[--zj-beJ}
( nt, o my,
-E x(nTp—td) -y(nTp—kTp-td) -cos\-?i-e - sin -T+6
P P (4.2.8)

( mz, [ mey,
-E x(nTp-kTp-td) -y(nTp—td) -cos\-?p--i-e - sin —TP—+B

o T,
+E1y(nT,-1t) -y(nTp—kTp-td) - sin __T_+e
\ P

Since the cross-correlation between the two noise processes x () and y(z) is zero for

all time shifts, the middle two terms are equal to zero and Equation 4.2.8 can be
simplified as

2 mey,
¢, [n;n—-kl = ¢, (t= kT,) - cos ____T_+9

P (4.2.9)

) nt,
+¢yy(t= Ich) - sin —?p+9

Also due to the fact that x(¢f) and y(z) have the same autocorrelation function

(Equations 3.2.6 and 3.2.7), the final expression for the autocorrelation of z;[7] is,

sin (RWkT )
¢zi7-i [" n- k] = ¢Z.'Zi [k] = No - —T:—kT—L (4.2.10)
p

Similarly the autocorrelation function of z_ [n] can be obtained by repeating the above

procedure. Substituting the expression for z " [n] into Equation 4.2.7 yields,



¢zqzq[n;n—k] =

E{x(nT,+0.5T,~t,) -x(nT,—kT,+05T,~1,) - sin”(p) }
+E{x(nT,+05T, ~1,) -y (nT,~kT,+05T,—t)) -sin (p) -cos (P)} |}

+E{y(nT,+05T,~t)) - x(nT,~kT,+05T,t,) - cos (p) - sin (p) }

2
+E{y (nTp +O.5Tp—td) - y(nTp -kTp+0.5Tp -ty -cos”(p)}

nt,
where p = -T+e
P

Applying the facts that the cross-correlation between x () and y (¢) is always zero and

that these two processes have the same autocorrelation function, the final expression for

the autocorrelation of z " [n] is,

sin (anTp)

¢%[n;n-k] = ¢zqzq[k] =N, —_—_nkTp

(4.2.12)

Several observations can be made from Equations 4.2.10 and 4.2.12 . Firstly,

both z;[n] and z . [n] have exactly the same autocorrelation function. Secondly, these

two autocorrelation functions depend only on the difference of the two time indices.

This suggests that both z,[n#] and zZ, [n] are wide-sense stationary random processes.
In addition, the relationship between ¢ _ (1) and ¢,, [k] can be obtained through a
sampling process described in Figure 4.2.1 . The same relationship applies between

0y (¥) and @, , [K] .
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0 (D) = 4, (D) s 0, K] = ¢, [K]

T= kTP where k = 0, £1 £2,...

Figure 4.2.1 Relationship between ¢_ () and ¢, , [k] . The same relationship

applies between ¢yy (t) and ¢z,z,, [&] .

By applying the relationship shown in Figure 4.2.1 and the autocorrelation function and
power density spectrum shown in Figure 3.2.2, it can be shown that the two discrete-time

noise processes, z;[n] and z, [n], can be either white or non-white processes

depending on the excess bandwidth of the signalling pulse. The proof is presented in the
following three cases.

Case 1 : 0% excess bandwidth

With the signalling pulse having 0% excess bandwidth, the total lowpass

bandwidth (W) is,
W= L 4.2.13)
T
p
Then the autocorrelation functions, ¢, (T) and ¢yy (7) , become
sin(n%-)
0 () = 0,,(7) = N,- —— (4.2.14)

These two functions are also sketched in Figure 4.2.2.
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lg.f 6 (D) = 0, (%)
Tp /

=2T -T 0 Tp ZTP

- T

Figure 4.2.2 Autocorrelation functions ¢, (t) and ¢yy (1) for 0% excess bandwidth.

By sampling this autocorrelation function with a sampling rate of 1/ Tp , one can obtain

0., [k] and ¢, ; [X] as

2

= = 2.
0.,k =0, (k] = 7 o [£] 4.2.15)
The sampling points are shown as dots in Figure 4.2.2. Since the discrete-time

autocorrelation functions are zero except at k = 0, the two sequences, z;[n] and z 7 [n],

are white random processes.

The same result can also be obtained in the frequency domain in which the power

density spectra of x (¢) and y () are given as,

1
N, |f|<§Tp'

O (f) =0 () = (4.2.16)

0 otherwise

By periodically replicating ®__(f) with a period of 1/ Tp and multiplying the spectrum
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by the sampling rate (i.e. 1/ Tp) , one can obtain the power density spectra of z;[n]

and Z, [n] as

21T, [2%fT, N
(pzez;( e] p) = d’z,zq( ¢ P) = ?: 4.2.17)
All of these four power density spectra are shown in Figure 4.2.3.
@ (f) =@, (f)
A
a
(@) N,
» f
L
2T, 2T,
j2nfT, jonfT,
‘D’-izi(e P) = (quZq(e P)
(b) * llfg
T,
’ . > f
-3 1 __L o 1 1 3
2Tp T, 2T, 27, Tp 2T,,

Figure 4.2.3 (a) Power density spectra of x () and y(7) for 0% excess bandwidth.

(b) Power density spectra of z,[n] and z, [n] for 0% excess bandwidth.

It is clear that both z;[n] and z, [n] have flat a power density spectra and as a result

they are white processes.



Case 2 : 0% (exclusive) to % (e ive

With the signalling pulse having 0% (exclusive) to 100% (exclusive) excess
bandwidth, the total lowpass bandwidth (W) is in the range,

Tl' <W< 7‘2’ (4.2.18)
P . p

In general, the autocorrelation functions, ¢__(t) and ¢yy (T) are given as,

_sin (*WT)

o (4.2.19)

0 (T) = 6,(0) =N,
A special case of 50% excess bandwidth ( W = 1.5/ TP ) is used as an example and the
corresponding autocorrelation functions of ¢_ (T) and ¢yy (t) are shown in Figure
424.

A o =0,

Figure 4.2.4 Autocorrelation functions of ¢__(t) and ¢yy (1) for 50% excess
bandwidth.

Mathematically, the autocorrelation functions of z;[n] and z " [n] are

0,k = 0, [K] = N%"l (4.220)

Notice that both ¢,, [k] and ¢, 2 [k] are no longer equal to a discrete-time delta
. () q
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function. This implies that the two noise sequences are no longer white. The same

observation can be made in the frequency domain. Both ® _(f) and <byy (f) are

shown in Figure 4.2.5.
® (f) = ‘1’” f)
@) ‘No
o
_3 L 3
4Tp 4Tp
121th') ( J?vﬁfT,,)
(b) N, sz‘-( = Do,
T A
p 2No
- ' T I
I I [ p |
| T | i . i -
B I
$ 1 | Y 1 1 L [ 1 L 1 f
_iT__l. -_I-T 0 T_I-T 1 T 3
2T, | T, | 27, 2T, | 1, | 21,
5 3 1 1 5
4T, 4T, 4T, 4T, 4T,, T,

Figure 4.2.5 (a) Power density spectraof x (z) and y (f) for 50% excess bandwidth.
(b) Power density spectra of z;[n] and z, [n] for 50% excess bandwidth.

2 .
It is clear that the spectrum &, ¢ T, ) is no longer flat and this result is consistent

with the time domain investigation. In general, the two noise sequences z;[n] and

z, [n] are not white processes for the signalling pulse having 0% (exclusive) to 100%

(exclusive) excess bandwidth.



Case 3 : 100% excess bandwi

With the signalling pulse having 100% excess bandwidth, the total lowpass
bandwidth, W, is

W= 2 @.2.21)
TP .

Then the autocorrelation functions, ¢, (t) and ¢” (t) , become

sin(n%—.z)
p

- (4.2.22)

0 (T) = 0,,(0) =N,

These two functions are sketched in Figure 4.2.6.

A
2N, 0. (T =0,,(7

N’

\‘\_/ \/ >
0.5T Tp

-Tp -0.5 Tp 0 P

Figure 4.2.6 Autocorrelation functions ¢, _(t) and ¢yy (1) for 100% excess
bandwidth.

Sampling this autocorrelation function with a sampling rate of 1/ Tp yields ¢, , [k] and

o, . [k as,

2N,
¢, [kl =6, 2 = T, - O [k] (4.2.23)

Since the autocorrelation functions equal to a scaled discrete-time delta function, both

z;[n] andz 7 [n] are white random processes.
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In the frequency domain, the power density spectra of x(z) and y (r) are given

Ny Ifl<g
<I>n = ‘byy N = 14 4.2.24)
0 otherwise

By periodically replicating ®__(f) with a period of 1/ Tp and multiplying the spectrum

by 1/ Tp , the power density spectra of z;{n] and zZ, [n] are obtained as

2T j2=fT 2N
¢zl_z'_(e’ *’) = o, &(e ") = =t (4.2.25)
4

All of these four power density spectra are shown in Figure 4.2.7.

@, (f) = ©,(f)

(a) N
» f
TR AR
TP - TP
j2%fT, J2RfT,
(pzr?-.( P) = zqzq(e P)
®) by
TP
+ -t > f
3 v L 1 3
2Tp Tp 2Tp ZTP Tp 2Tp

Figure 4.2.7 (a) Power density spectra of x (z) and y (¢) for 100% excess bandwidth.
(b) Power density spectra of z;[#] and zZ, [n] for 100% excess bandwidth.



68

Again both z;[n] and z " [n] have flat power density spectra and as a result the noise

sequences, z;[n] and z " [n], are white random processes.

In summary, the two noise sequences, z;[n] and z 7 [n] are white wide-sense

stationary process for both 0% and 100% excess bandwidth signalling pulse. For any
excess bandwidth ranging from 0% (exclusive) to 100% (exclusive), the two noise

sequences are no longer white.

In addition to the autocorrelation function, another important parameter of a
random process is its total average power. For a continuous-time random process, the
total average power is equal to the autocorrelation function evaluated at zero time shift.
Therefore,

Total Average Powerof x(7) = ¢, (1=0) = N,-W (4.2.26)
Similarly,
Total Average Power of y (1) = cpyy (t==0) =N,-W 4.2.27)

For a discrete-time random process, the total average power is also equal to the

autocorrelation function evaluated at zero time shift. Therefore,

Total Average Power of z;[n] = ¢,, [k=0] =N, -W (4.2.28)

and

Total Average Power of Z, [n] = o, z [k=0] =N,-W (4.2.29)
q

Notice that the two discrete-time noise sequences, z;[n] and z, [n] , have the same

average power as the two continuous-time lowpass noise processes, x () and y(f) . As
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a result, as the bandpass noise propagates through the IF-sampling receiver, the noise is
neither reduced nor enhanced. In other words, all noise power propagates through the IF-
sampling receiver without modification.

The fourth investigated property is the cross-correlation function between z; [n]

and z . [n] . The cross-correlation function is defined as,

¢, [nin—kl = E{z[n] -z, [n-kl} (4.2.30)

By substituting the expressions for z;[n] and zZ, {n] into the definition, the cross-

correlation is expanded as,
0y, [nin-k] =
1. 2wz,
E x(nTp-td) ~x(nTp-kTp +0.5Tp -, - Esm _-ZT +26

13
+E{x(nTp-td) -y (nT, -kTP+0.5Tp-td) . cosz(--z,—‘ii—e)}

p (4.2.31)

nt
.E{y(nTp—td) -x(nT,~kT,+0.5T, 1) -sinz(--T—: +e)}

1. 2re,
~-E y(nTp-td) -y(nTP-kTp-i-O.STP-td) -5 sin —-—T:-+29

Since ¢xy (1) =0 forall T, the middle two terms are equal to zero. Also since x (¢)
and y (¢) have the same autocorrelation function, the first and the last terms cancel each
other. Therefore the cross-correlation between z;[n] and z, [n] is always zero for any
value of excess bandwidth and any time-shift.

¢zizq[n;n-k] = ¢% (k<1 =0 (4.2.32)
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The last statistical quantity being studied is the probability density functions of

z;[n] and Z, [n] . Due to the fact that both z,{n] and Z, [n] are linear combinations of
two uncorrelated Gaussian processes, it follows that z;[n] and z 7 [n] are also Gaussian

processes [2, pp.41] .

In summary, the two discrete-time noise sequences are uncorrelated Gaussian
processes with zero means. For the case of 0% and 100% excess bandwidths, these two
processes are white. However, for any excess bandwidth ranging from 0% (exclusive) to

100% (exclusive), these two processes are no longer white.

4.3 The Equivalent Discrete-time Model

In addition to the bandpass communications system model shown in Figure 3.1,
an equivalent discrete-time model can also be derived for the system. This discrete-time
model summarizes the overall effect of the whole communications system (transmitter,
channel and receiver) on the transmitted information symbols. It clearly shows the
effects of any linear distortion affecting the symbols. Due to this capability, the
equivalent discrete-time model is a useful tool for providing insight into the source of

performance degradation and the solution for performance improvement.

4.3.1 The Equivalent Discrete-time Model for Any
Signalling Pulse

The structure of the discrete-time model comes from the two expressions for the
received inphase and quadrature symbols. These two expressions are given in Equations

3.3.11 and 3.3.12. By manipulating these two equations and substituting the definitions



71

of z;[n] and z, [n] , these two equations can be rewritten as,

aln] = Re{(I,+jQ,) -} ®g(nT,~1) +z,[n]  @#3.1)
and

binl = Im{(I,+jQ,) -¢* } ®g(nT, +05T,~1) +z,[n]  (432)

1 43
where ¢ = -T"w and ® denotes discrete-time convolution.
P

By representing these two equations in a block diagram as shown in Figure 4.3.1, the
equivalent discrete-time model is obtained. Notice that since the derivation of these two
equations makes no assumption on the signalling pulse, this discrete-time model is valid
for any signalling pulse employed in the IF-sampling communication system. As
summarized in the diagram, there are three distortions being introduced on the symbols :

1. Firstly, the transmitted complex symbols I +jQ, are rotated in a counter-

clockwise direction by an amount ¢ which is defined above. The amount of rotation
depends on both the phase offset, 9, of the local oscillator and the sampling timing error,
t;. Therefore even if the receiver complexity is increased to allow coherent
downconversion, that is 8 = 0, the signal constellation is still rotated clockwise by

nt,/ Tp. The only two situations in which the rotation vanishes are when the phase
offset exactly counteracts the sampling error, that is 8 = ®z,/ Tp or when both 8 and

t, are equal to zero. Note that this rotation is the only distortion which gives rise to the

crossover (or crosstalk) between the I and Q channels. Thus a zero rotation implies zero

crosstalk.
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2. The second distortion is the asymmetric intersymbol interference (ISI)
channel. Inside this channel, the rotated I/Q symbois experience different forms of
intersymbol interference. The effect of these two intersymbol interferences can be

characterized by the two discrete-time filters with impulse responses denoted as h;[n]
for the inphase channel and hq [n] for the quadrature channel. These two impulse

responses are given as,

h.[n]= g (nTp -t 4.3.3)

and

h,(nl= g (nT,+05T,-t) 4.3.9)

There are two different kinds of impairments combined to cause this asymmetric
intersymbol interference. The first impairment is the sampling timing error which is
responsible for causing the intersymbol interference. This is a typical distortion caused
by the timing error and is common to any digital communications system. The second
impairment, which is unique to the proposed IF-sampling receiver, is the timing
misalignment mentioned earlier in chapter 2. Since the inphase and quadrature symbols
are obtained at different times, different intersymbol interferences are introduced on the
inphase and quadrature symbols. Therefore it is the timing misalignment which gives
rise to the asymmetric nature of the intersymbol interference.

3. The third distortion is the addition of two noise sequences on inphase and
quadrature symbols. The statistical properties of these two noises were covered in the

last section. Notice that unlike the intersymbol interference, the inphase channel noise,

z;[n] and the quadrature channel noise, z,[n] have the same statistical properties.

Therefore the effects of noise on the inphase and quadrature channels are the same.
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4.3.2 The Equivalent Discrete-time Model for Truncated
100% Excess Bandwidth Duobinary Pulse

This section focuses on the effect of the asymmetric intersymbol interference for
the 100% excess bandwidth duobinary pulse. For simplicity, the term duobinary pulse is
always referred to as the 100% excess bandwidth duobinary pulse. Similar to the raised
cosine pulse, this duobinary pulse also has an infinite time duration in both positive and
negative time axes. As a result, both filters in the asymmetric ISI channel have infinite
number of taps in both positive and negative time axes. In order to obtain a simpler and

more meaningful discrete-time model, an approximation is made on the duration of the

duobinary pulse. Since the amplitude of the duobinary pulse decreases with 1/ t2,

where ¢ is time and most of the energy is concentrated in the region from ¢ = ~0.5 Tp to

t=T o the duobinary pulse is approximated by its truncated version, g,(?) , which is

defined as
0257 - sin (2m2/T,) or
p (O.STP-t) for -O.STPSt, )
gr(n) = 4.3.5)
0 otherwise

By substituting this truncated duobinary pulse into the two filter impulse

responses inside the asymmetric ISI channel, one can obtain the equivalent discrete-time

models for different timing errors. The result is presented for three cases : (1) t; = 0,

(2) 0<2,<0.25T, and (3) —0.25T, <1,<0.
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ngl:td=0

With z, = 0, the sampling points coincide exactly with the zero-crossings of the

infinitely long duobinary puise. Therefore the impulse response of the inphase channel
ISI filter becomes,

hilnl= g (nT,~1) = g(nT,) = 8[n] 4356)

whereas the impulse response of the quadrature channel ISI filter is,
hq [r]l=¢g (nI:p +0.5T,-t,) = g(nT, +0.5T) = 8[n] (4.3.7)

Since both ISI filters have the discrete-time delta function as their impuise responses, no
distortion is introduced by these two filters. As a result, the effect of intersymbol
interference vanishes and the remaining two distortions are constellation rotation and
addition of Gaussian noises. The corresponding equivalent discrete-time model is shown
in Figure 4.3.2. Notice that the above argument does not assume the duobinary pulse to
have finite duration and therefore the discrete-time model shown in Figure 4.3.2 is valid
for both the original and the truncated duobinary pulse. Also note that this result is
consistent with the previous result obtained in the signal design for the proposed IF-

sampling receiver.

Case2:0<t,£0.25T,

With the timing error (z;) being not equal to zero, the sampling points no longer

coincide with the zero-crossings of the duobinary pulse. As a result, an infinitely long
intersymbol interference is introduced on the inphase and quadrature symbols. In

addition, since the timing error (¢,) is greater than zero, the actual sampling points occur
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to the left of the optimal sampling points. Here optimal sampling points are referred to
as the sampling points with ¢, = 0. By replacing the original duobinary pulse with its

truncated version, an approximation of the intersymbol interference is obtained and the

result is presented as follows.

Approximating g (7) with g (#) in the inphase channel ISI filter yields,

h;[n] =gp(nT,~1,) 4.3.8)

and substituting 0 <1,<0.257, into the equation of g, () , the approximated impulse
response of the inphase channel filter is found to be,
h;[n] =A-8[n] +B-8[n-1] 4.39)

where A = g, (-¢,)

B = gT(Tp-td)

By making the same approximation and substitution, the approximated impulse response
of the quadrature channel filter is obtained as,
hq [n] = gT(nTP + O.STP —t) = C-38[n] (4.3.10)

where C = gT(O.STp—td)

These two simplified impulse responses are incorporated into the asymmetric ISI
channel and the result is shown in Figure 4.3.3. The values of the tap weights A, B and

C are obtained by substituting different timing errors ranging from 0 to 0.25 Tp into the

truncated duobinary pulse specified in Equation 4.3.5 and the results are summarized in
Table 4.3.1.
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t, A B C

0 1.0 0 1.0
0.107, 0.78 0.13 1.17
0.15T, 0.66 0.216 1.23
o,onp 0.54 0.315 1.26
0.257, 0.424 0.424 1.27

Table 4.3.1 Table of tap weights A, B and C for 0<¢,<0.25 T, .

Several observations can be made on the asymmetric ISI channel. Firstly, with
the truncated duobinary pulse, the Q channel filter is simplified to having only one direct
path scaled by the tap weight C. Since C ranges from 1.0 to 1.27, the Q symbols (after
rotation) are always amplified by a factor of C. More importantly, since the Q channel
filter does not have any second path, there is no intersymbol interference in the Q
channel. On the other hand, the I channel filter is modelled as a two-path ISI channel
with tap weight A representing the gain of the direct path and tap-weight B for the gain
of the delayed path with one symbol delay. Due to the existence of the delayed path,
intersymbol interference, which is caused by one past symbol, is introduced in the I
channel. The amount of ISI is controlled by the ratio of direct path gain to the delayed

path gain. From Table 4.3.1, it is clear that as timing error increases from O to 0.25 Tp ,
the direct path tap weight A decreases from 1 to 0.424 (a 58% drop) whereas the delayed
path tap weight B increases from 0 to 0.424 (a 42% increase). Since both the drop in

tap weight A and rise in tap weight B add up to enhance the ISI, an increase in timing

error can significantly increase the amount of ISI in the I channel. It will be shown in
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the next section that when the direct and delayed paths have the same gain, the system
suffers severe performance degradation. The final comment on the I channel filter is
regarding its z-transform transfer function which is obtained as

1_A (z+B/A)
z

H.(2) =A+B-z for |z|>0 (4.3.11)

So H;(z) has one pole at z =0 and one zero at z = -B/A. [Except when
t; =025 Tp » A is always greater than B. This implies that when 0 <¢,<0.25 Tp , both
zero and pole of H;(z) are inside the unit circle. Therefore H;(z) is a minimum phase
system and its inverse system is always stable. When ¢, = 0.25 Tp, the zero is exactly

on the unit circle and the inverse system of H;(z) is marginally stable.

Case 3: -0.25TpStdS0

Similar to case 2, when the timing error (z,) is not equal to zero, the sampling

points no longer coincide with the zero-crossings of the duobinary pulse and infinitely

long intersymbol interference occurs. However in this case, the timing error (z;) is less

than zero and therefore the actual sampling points occur to the right of the optimal

sampling points. As will be shown below, this change in ¢, makes a significant change

in the characteristics of the asymmetric ISI channel.

Similar procedure is used to obtain the equivalent discrete-time model with the

truncated duobinary pulse. By approximating g (f) with g,(f) in the I channel ISI
filter, and substituting — 0.25Tp £1;<0 into the equation of g+(#), the approximated

impulse response of the I channel filter is found to be,
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h;[n] = gr(nTp —t)= E-5[n] (4.3.12)

where E = gp(-t,)

Similarly, the approximated impulse response of the Q channel filter is obtained as,
hq [n] = gT(nTp + O.STP -t) =F-8[n+1] +G-3(n] (4.3.13)
where G = g,(0.5 Tp- )

F = g (-0.5T,~t)

Notice that h g [n] is a noncausal filter with one element at » = —1. However, due to

propagation delay through the channel, time delay in a communications system is

inevitable. Thus an extra delay of one sample is added to both the inphase and
quadrature channel filters to make h q [n] become causal. After the addition of this

extra one sample delay, the two impulse responses become
h;[n] =E-8[n-1] (4.3.14)
where E = gr(-t)
and
h,[n] =F-8[n] +G-8[n-1] (43.15)
where G = g+(0.5 Tp—td)

By incorporating these two simplified and delayed impulse responses into the
asymmetric ISI channel, the equivalent discrete-time model is obtained and shown in

Figure 4.3.4. The values of the tap weights E, F and G are obtained and summarized
in Table 4.3.2.
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ty E F G

0 1.0 0 1.0
-0. IOT,, 1.17 0.13 0.78
-0.15 Tp 1.23 0.216 0.66
-0.20 Tp 1.26 0.315 0.54
-0.25 Tp 1.27 0424 0.424

Table 4.3.2 Table of tap weights E, F and G for — 0.25 Tp <t,<0.

Several observations can be made from the two simplified and delayed impulse
responses. Firstly, unlike the I channel filter in case 2, this I channel filter shown in
Figure 4.3.4 has only one path scaled by tap weight E. Since there is no second path in
the filter, intersymbol interference is not introduced on the rotated I symbols. Also since
E ranges from 1.0 to 1.27 as z, increases from O to O.ZSTP, the rotated I symbols are

always amplified by a factor E. On the other hand, the Q channel filter is modelled as a

two-path ISI channel with tap weight F in the direct path and tap weight G in the
delayed path. Unlike the ISI in case 2 which is caused by one postcursor, the ISI in this
case is produced by one precursor. Therefore the receiver should lock onto the delayed
path symbols. The amount of ISI is controlled by the ratio of the delayed path gain to
direct path gain. As the ratio decreases, the effect of ISI increases. From Table 4.3.2, it

is clear that as ¢, increases from 0 to 0.25 Tp , the tap weight F increases from 0 to 0.424
(a 42% increase) whereas the tap weight G decreases from 1.0 to 0.424 (a 58%

decrease). Since both the increase in F and decrease in G raise the effect of ISI, an

increase in timing error can significantly increase the amount of ISI in the system. A



final comment on the Q channel filter is regarding the z-transformn of its impulse
response. Taking the z-transform of A 7 [n] (given in Figure 4.3.7) yields

1 _ F(z+G/F)

. for |z >0 4.3.17)

H (z) =F+G-z
Note that since F equals to zero when t, is zero, the above equation is only valid for
-0.25Tp_<.td<0. Thus Hq(z) has one pole at z = 0 and one zero at z = G/F. For
-0.25 Tp <t;<0, G is always greater than F and therefore the zero is always outside
the unit circle. For the situation when ¢; = -0.25 Tp, the zero is exactly on the unit
circle. Thus for -0.25Tp<td<0, h 7 [n] is a maximum phase filter and its inverse
system is an unstable system. When ¢, = -0.25 Tp, the inverse system is marginally

stable.

4.4 Simulation of the IF-sampling system with 100%
Excess Bandwidth Duobinary Pulse

In addition to the analysis of the bandpass and discrete-time models of the IF-
sampling system, another important concern is the system’s ability to transmit the data
reliably through the channel. Typically the reliability is measured by the probability of
bit error. In this thesis, the probability of bit error is obtained by computer simulation of
the equivalent discrete-time model shown in Figure 4.3.1. The simulation program is
written in C and all function calls are ANSI (American National Standards Institute)
compatible. Therefore any C compiler that supports the ANSI standard is capable of
compiling and linking the simulation program.

In the simulation program, the information bits are generated by a random
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number generator whose source code can be found in (19, pp. 282]. This C function,
named as ‘ran2’, generates a uniform random deviate between 0.0 and 1.0 (exclusive of

the endpoint values) and has a long period of approximately 2x10'8. This generator is

recommended by [19, pp. 286] if more than 10® random numbers are generated in a
single calculation. In the simulation, the maximum number of random number of
uniform deviates is around 3x10° and therefore this generator has a sufficiently long
period to provide the randomness of the random number. By using this random number
generator, the information bits are obtained by the following rule : the bit is O if the
uniform random deviate is from 0 (exclusive) to 0.5 (inclusive) ; and the bit is 1 if the
uniform random deviate is from 0.5 (exclusive) to 1.0 (exclusive). As a result, the bits

(either 1 or 0) are equiprobable.

The signalling pulse being simulated is the duobinary pulse with a duration of 98
symbols, that is,

0.25T, - sin (2&e/T,) | |
. - <r<
ntt (0.5 Tp -1) ﬁ for -49 Tp <t<49 Tp
’ 4.4.2)

0 otherwise

g =

With this long duration, nearly all intersymbol interferences introduced by the tail of the
duobinary pulse are taken into account. Notice that an extra scaling factor is added in

the definition of g(¢) . As will be shown later, this scaling factor is used to make the
signal-to-noise ratio independent of the symbol duration Tp. Since g (?) is a truncated

duobinary pulse with a long duration, the Fourier transform of g(f) can be

approximated as,



86

Tp-cos 5" L for |f|<_1-
"/fl’ T, 44.3)

0 otherwise

By applying the Parseval’s Theorem into the definition of energy of g (¢) ,

E,=[ fwa=[ 6l (4.4.4)

the energy of g(t) is found to be,

T --cosz( okl )df =1 (4.4.5)

o
i
H
-ah‘l"‘ <=
-]

Therefore with the definition of g(t) as stated in Equation 4.4.2, the energy of g () is
equal to 1.

As already discussed in section 4.2, the two noise sequences z;[n] and z, [n]

are uncorrelated white Gaussian processes with zero means. The total average powers of

the two noise sequences are,

2N
05,100 = 0, [0) = 7 (4.46)

The system performance is plotted in a graph of the probability of bit error versus
the signal-to-noise ratio (SNR) which is defined as,

_ Average power of transmitted bandpass signal
SNR= Average power of in-band bandpass noise @.4.7)
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Referring to section 3.1, the transmitted bandpass signal s (f) is given as :

s()) = Re{v() - 7y 4.4.8)

where v() = Y, (I,+jQ,) -g (t-mT,)

m= —so

It was shown that the lowpass equivalent signal v (¢) is a cyclostationary process with

an average power density spectrum given by
o, () =—--IGO‘)| 2 E{I,+ig )} (4.4.9)

Since the total average power of s (#) is the total area under ®__(f) and

l

. ) =59,0-1 )+ -®,, (~f-f.) (4.4.10)
then
Average powerof s (1) = [ @, (df (4.4.11)
=1 [@,0-f)dr+; j«b (-f-£)df

NI-—-
Nl'-'

[e.0d+5 |0,

= [e,(ndf

l o2 P 2
= 2—1},'}3{|1,,+JQ,,| }- [lenlier
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The last integral evaluates the energy of g(¢) which has already been shown to be
unity. Also since the transmitted complex symbol, I, +;Q, , always resides on the unit

circle, then

E{|I,+jo’} = E{1} = 1 (4.4.12)

Therefore the average power of s () is obtained as,

Average power of s (£) = % (4.4.13)
p

On the other hand, with the transmitted signal having 100% excess bandwidth, the
average power of in-band bandpass noise is,

2N
Average power of in-band bandpass noise = ——= (4.4.14)

T,

By substituting the results of the average signal power and average noise power into the

definition of signal-to-noise ratio, then the signal-to-noise ratio is found to be,

svr < QT _ 1 "
~ 2N,/T, 4N, @415

o

Equivalently the signal-to-noise ratio expressed in decibel (dB) is,

1
SNR,, = 10- logw(m-) (4.4.16)
o

Notice that the signal-to-noise ratio is independent of the symbol rate and therefore the
symbol period is arbitrarily chosen to be 1 in the simulation, i.e.
Tp =1 (4.4.17)
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Simulation results are obtained to show the degradation caused by the three distortions
which are rotation of signal constellation, asymmetric ISI channel and additive white

Gaussian noise.

Firstly the degradation caused by different timing errors are shown in Figure
4.4.1. In the simulations, the phase shift ¢ is always set to 0. For timing error ¢, equal
to O, the additive white Gaussian noise is the only distortion degrading the system
performance. When the timing error is not zero, the system suffers distortions from both

timing error and noise. The bit error rate curve corresponding to 7, = 0 serves as a

reference for the investigation. At low signal-to-noise ratios, eg. from 2 dB to 6 dB, ail
the bit error rate curves are close to each other. This is because at low SNRs, the effect
of noise dominates the timing error. Therefore the system suffers similar degradation for
different timing errors. As the SNR increases, i.e. the noise power decreases, the
system performance mainly depends on the timing error, or equivalently the asymmetric

intersymbol interference. It is clear that the larger the timing error, the more severe the

system performance degrades. For example, at the probability of bit error of 1073,
which is the targeting bit error rate for voice transmission [20], the system suffers a

significant SNR loss of approximately 7 dB as r, increases from O to O.ITP- The bit
error rate becomes irreducible when ¢, is greater than or equal to 0.15 Tp . Therefore
with 7, greater than 0.15 Tp , the IF-sampling system becomes ineffective in transmitting

data through the system.

The irreducible bit error curve for ¢, = 0.15 Tp can also be analytically observed

from the discrete-time model for truncated duobinary pulse shown in Figure 4.3.3. In

this analysis, the noise sequences are assumed to be zero. As stated in Table 4.3.1, when

t; = O.ISTP , the tap weights A, B and C are given as 0.66, 0.216 and 1.23 respectively.



— timing error,z; = O.OOTP X timing error,t; = O.IOTp
O timingerror,t; = 0.157, X timingerror,t, = 0.207,
-+ timing error,z,; = 0‘25Tp

Probability of bit error

d | 1 1 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-7 ] L ] 1 1 ! 1 1 1

SNR ;p

Figure 4.4.1 Bit error rate curves for different timing errors. For all cases, ¢ = 0.
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Since there is one symbol memory in the DQPSK modulation and another one symbol
memory in the asymmetric ISI channel, three symbols are required to cover all possible
cases. For example, if the three transmit complex symbols are,

[ ej45"’ ej45°’ ejl35°] (4.4.17)

where the first element in the vector corresponds to the first symbol, then the output of
the asymmetric ISI channel is,

[, 1.074%€, 09254 % ] (44.18)

Here it is assumed that no symbol is transmitted before the first symbol and thus there is
no intersymbol interference on the first symbol. However, both the second and third
symbols are corrupted by the asymmetric ISI. For the transmit symbols, the phase

change from the second to the third symbol is 90° and therefore a dibit of ‘01’ is
transmitted in this case. On the other hand, at the output of the asymmetric ISI channel,

ej 109.8°

the second and third symbols are 1.07¢°"° and 0.925 . Therefore the detected

phase transition is 55.2° and the detected dibit is ‘01’. No error is made in this example.

However it is possible for the receiver to make an error even if the two noise
sequences are zero. The occurrence of bit error mainly depends on the combination of

the three transmit complex symbols. One possible combination is

Calaaltad (4.4.19)

Again substituting these three transmit symbols and the three tap weights corresponding
to t; = 0.157, into the discrete-time model yields the output of the asymmetric ISI

channel to be,
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(€%, 092"®% 0.924™] (4.4.20)

Since the phase transition of the second and third transmit symbol is -90°, the

transmitted dibit is ‘10’. However, the phase transition of the second and third received

symbol is -39.6° therefore forcing the detected dibit is ‘00°. As a result, one bit error is

made in the detection. By stepping through all combinations of the three transmit

complex symbols, it is found that the detector makes an error in the following patterns.

Pattern 1 :

Pattern 2 :

Pattern 3 :

Pattern 4 :

Pattern 5 :

Pattern 6 :

Pattern 7 :

Pattern 8 :

" j45° j135° ja

&, 1,
J‘ss"’ e-j135°, e-j45"]

I ei135"’ ej45°’ ejl35"-|
6/135 , e-—j45 , e-jlss"]
- 135" ej45° J13s":|
e ? ?

e-j135°’ e-j45°’ e-jlss"]

e—]45 i d135 , ej45":|

[ —j45° -j135° -j4s
e’ , € 7 , € 7 j

Note that in all cases, only one bit error is made and therefore the probability of bit error

is determined as,

Pr (bit error) = Pr(bit error | wrong pattern) - Pr (wrong pattern)

8

=4><4><4

421
= 0.0625 @420
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From Figure 4.4.1, the simulated bit error rate is about 0.05 which is close to the above
result. The discrepancy between the analytical result and the simulation result stems

from two factors : (1) A truncated duobinary pulse with a short duration of 1.5 Tp is used

in the analytical analysis whereas a much longer duration of 99Tp is used in the

simulation ; (2) The two noise sequences are assumed to be zero in the analytical

analysis whereas the noises are nonzero in the simulation.

Due to the presence of the asymmetric intersymbol interference, the phase shift ¢
also plays an important role in the system performance. The simulation results are

shown in Figure 4.4.2. Again the bit error rate curve corresponding to ¢z, = O serves as
a reference. For r; = O.IOTP and a bit error rate of 10—3 , the system suffers a SNR loss

of approximately 7 dB for ¢ = 0° but only 2 dB for ¢ = 45°. So the performance
difference between the two phase shifts is 5 dB. As ¢, increases to 0.15T ,, the bit error
rate curve for ¢ = 0° becomes irreducible. On the contrary, the bit error rate curve for
® = 45° decreases monotonically with signal-to-noise ratio resulting in a 6 dB loss at a

. -3 . . -
bit error rate of 10 ~. When ty further increases to the worst case, which is 0.25 Tp , the

bit error rate curves for both ¢ = 0° and ¢ = 45° are approximately the same.

The drastic difference between the two phase shifts can be explained by
investigating the four constellations shown in Figure 4.4.3. These four diagrams are
generated by transmitting 1000 bits through the discrete-time model shown in Figure
4.3.3. Without the noise, the top-left diagram shows the constellation of the I/Q symbols

at the output of the rotation. Since ¢ = 0°, this constellation is exactly the same as that
at the output of the DQPSK modulator.
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Figure 4.4.2 Bit error rate curves for different timing errors ¢, and phase shifts ¢ .
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As shown in the diagram, there are only four possible points corresponding to the

transmit phases of 45°, 135°, -135°, -45°. Afier these symbols are distorted by the
asymmetric ISI channel, the resulting constellation no longer contains four points.
Instead, as shown in the top-right diagram, the constellation contains four clusters each
containing more than one point. Notice that the two signal points inside any cluster are
separated in horizontal direction only. This is because the intersymbol interference only
occurs in the inphase channe! (which corresponds to the horizontal axis) but not on the
quadrature channel (the vertical axis). The irreducible bit error rate comes from the fact
that some signal points in neighboring clusters are too close to each other. For example,
the phases of the two signal points ‘a’ and ‘b’ in the top-right diagram only differ by
39.7°. Since the phase difference is between 45° and -45°, the differential detector
decodes the dibits to be 00 which actually should be Q1. As a result, a symbol error is
made.

On the other hand, when ¢ = 45°, the constellations of both rotated and ISI
corrupted symbols are shown in the bottom-left and bottom-right diagrams respectively.
Although the ISI corrupted constellation also has clusters of signal points, the signals in
different clusters are separated far enough such that the differential detector can always
decode the dibits correctly. Therefore no symbol error is made with the absence of

noise. In other words, with ¢ = 45°, the asymmetric ISI channel alone cannot cause

any symbol error and as a result the bit error rate always depends on the noise power.
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270 270

Figure 4.4.3

Top-left : Constellation of rotated symbols for ¢ = 0° and ¢ 1= 0.

Top-right : Constellation of asymmetric ISI channel output for ¢ = 0° and
t; = 0.15 Tp .

Bottom-left : Constellation of rotated symbols for ¢ = 45° and ¢ ;= 0.

Bottom-right : Constellation of asymmetric ISI channel output for ¢ = 45° and
t; = 0.15 Tp .
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Chapter 5 Two Solutions and Their Performance

In the last chapter, simulation results showed a severe performance degradation
due to timing error. Two solutions are proposed to combat this timing error problem.
The first solution is a direct-sequence spread-spectrum IF-sampling system. By using
the autocorrelation property of a pseudonoise sequence, the asymmetric intersymbol
interference can be alleviated by the spreading and the despreading processes. The
second solution takes a different approach. It uses the 100% excess bandwidth
duobinary pulse. By simply increasing the sampling rate to 4 samples per symbol and
selecting the proper two samples, a considerable amount of intersymbol interference can
be avoided. Simulation results are obtained for both systems to show their performance.

5.1 Solution 1 : Direct-Sequence Spread-Spectrum
IF-sampling System

Pseudonoise (PN) sequences have been used extensively in many different areas
[21]. Some of the examples are antijamming communications, multiple user random
access communications with selective addressing capability, global positioning system
(GPS) and accurate universal timing. In the area of point-to-point communications, the
autocorrelation of the PN sequence is proven to be efficient in combating the
intersymbol interference caused by the multipath channel. Since the timing error in the
IF-sampling system also causes intersymbol interference, it is likely that the
autocorrelation of the PN sequence is also capable of alleviating the intersymbol
interference caused by the timing error. This is the main reason why a direct-sequence

spread-spectrum system is chosen as a solution.



5.1.1 Autocorrelation of Barker Sequence

In the IEEE Draft Standard for Wireless LAN [22], the physical layer consists of
a direct-sequence spread-spectrum (DS-SS) system employing an 11 chip Barker
sequence. Due to its adoption by the proposed IEEE wireless LAN standard, this
particular PN sequence is also used in this project. Note that the structures of both
transmitter and receiver proposed in this solution are also applicable to other PN

sequences. The 11 chip Barker sequence is given as :
+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (5.1.1D)

where the left most chip is transmitted first. The first chip is aligned at the start of a
transmitted symbol and the symbol duration is exactly 11 chips long. Barker sequences
are known to exist for only few short sequence lengths [23, pp. 564] [24, pp. 290]. So
far only sequence lengths of 1, 2, 3, 4, 5, 7, 11 and 13 are found and it has been
hypothesized that no longer Barker sequences exist. However, despite its short sequence
length, a Barker sequence exhibits a special autocorrelation function which is very useful
in a DS-SS system. In general, an aperiodic autocorrelation of a real-valued PN
sequence is defined as [25],

N-1-1
Y xx,, O<ISN-1
j=0

N-1+!
C.() = (5.1.2)
j=0

0 =N

where N is the length of the PN sequence. It is found that {24, pp. 290] any Barker

sequence has the following aperiodic autocorrelation :
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N, [I=0
c.(h = (5-1.3)

Qortl, otherwise

This aperiodic autocorrelation is useful in a situation in which the two consecutive
symbols are different in polarity ( for example, the first symbol is a +1 and the second
symbol is a -1) and the locally generated PN sequence is not aligned with the received
PN sequence. Although a rigorous proof is not given, this application is illustrated with
an example in which the 11 chip Barker sequence is used and the two consecutive
symbols are assumed to be +1 and -1. Thus, assuming there is no distortion in the

channel, the received signal is :
r(n] =1-pfn] + (-1) -p[n-11] 5.14)

where p[n] is the 11 chip Barker sequence. By correlating the received signal r[n]

with another locally generated Barker sequence, the correlation output is

10
ylnl = ¥ rlkl-plk-n] (5.1.5)
k=0

where n can be interpreted as the time offset between the received Barker sequence and
the local Barker sequence. The values of y[n] are tabulated in Table 5.1.1 . When
n = 0, the local Barker sequence is aligned with the first Barker sequence. Whenever
n#0, the comelation output always has a magnitude of 1 even when the two

consecutive symbols are different in sign. This property ensures that the correlation
output due to a delayed Barker sequence (the delay is assumed to be an integer multiple

of chip) is always kept as low as *1 and this is useful in alleviating the effects of

intersymbol interference.
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Time Offset, n y[n]
0 11
1 1
2 -1
3 1
4 -1
5 1
6 -1
7 1
8 -1
9 1
10 -1

Table 5.1.1 Values of y[n] for different time offsets n.

5.1.2 The DS-SS IF-sampling Transmitter

In order to make use of the autocorrelation function of the Barker sequence, both
the transmitter and the receiver in the IF-sampling system must be modified. Instead of
passing the complex DQPSK symbols directly into the pulse-shaping filters, two
additional blocks are added to preprocess these complex symbols. The combination of
these blocks are commonly known as spreader {26] and the transmitter structure is
shown in Figure 5.1.1 . Identical processing is performed on the inphase and the
quadrature symbols independently. Firstly the spreader raises the sampling rate by the
length of the Barker sequence. This is achieved by inserting 10 zeros between
successive symbols. This ensures that all eleven chips of the Barker sequence carry the
information of one symbol only and thus no intersymbol interference is introduced by
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the spreader.
Symbol Frequency
Mapping Spreader Pulse Shaping Upconversion
4 [ cos 2nf.0) \.
X Convert from RG]
L )I'T‘M —3Ip [nlfl=sl sequence to —{g, (2) >§—
. DQPSK impulse train
bits 5.0
——9 <
Modulator @-__)

Convert from e
2 M| P [n] Tyl cequence o |5 g, (1)

impulse train
\ RN - J\sin2nf0))

Figure 5.1.1 Transmitter in direct-sequence spread-spectrum IF-sampling system.

M = 11 and p{r] is the 11 chip Barker sequence.

Secondly the spreader imposes the Barker sequence onto the I/Q symbols by filtering the
zero-filled symbol sequences with p [z] . The two output sequences of the spreader are :

n

X = { Y Ik-ﬁ[n-kM]}®p[n] = Y I.-pln-kM] (5.1.6)
k=00

k = —oco

Y, = { > Qk-ﬁ[n—kM]} ®plnl = ¥ O -pln-kiM] (5.7
k= —oo

k = ~oo

Due to the increase of the sampling rate by a factor of M, the transmission rate is also
increased to the chip rate which is M times the symbol rate. The spreaded bandpass

signal is given as,
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s.(8) = z X, -g (t-mT) - cos (2rf.0)
m=-= (5.1.8)

- Y Y,-g.(t-mT,) -sin (2nf.1)
m = —oo
where T, is the chip period and g () is the same 100% excess bandwidth duobinary

pulse as in chapter 4 except that Tp is replaced by T,. Thus,

0.25T - sin (2nt/T,)

n (057, - 1) (5.1.9)

g, (1) =

Notice that by replacing Tp with T_, the lowpass bandwidth is increased from 2/ Tp to
2/T.. Therefore the transmission bandwidth must be increased M times to

accommodate the spreaded signal.

5.1.3 The Channel

Similar to chapter 3, the channel is still assumed to corrupt the transmitted

bandpass spreaded signal s_(t) by the additive bandpass white noise n () . Thus the
received signal r_(2) is:

r.(8) = s.(1) +n,(1) (5.1.10)

All the statistical properties about the noise discussed in chapter 3 still apply and the
bandwidth W is 2/T_ Hz.
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5.1.4 The DS-SS IF-sampling Receiver

Due to the spreading in the transmitter, a reverse process known as despreading
is also required and is implemented in the digital portion of the receiver. In other words,
the complete architecture of the IF-sampling receiver (as shown in Figure 3.3.1) can be

re-used and the only modification is to replace the symbol period Tp with the chip
period T.. Therefore the sampling rate of the sampler is raised by 11 times from 2

samples per symbol to 2 samples per chip. Also the two output sequences of the DS-SS
IF-sampling receiver are no longer the inphase and quadrature symbols. But instead
these two sequences are the inphase and quadrature chips. The architecture of the DS-SS
IF-sampling receiver is shown in Figure 5.1.2 . The despreader takes the I/Q chips,

processes them with 2 identical LTI systems with impulse response p[-n+N,]} and
reduces the sampling rate by a factor of M. Hence, the sampling rate at the output of the
despreader is brought back to the symbol rate. The despreaded sequences are then
multiplied by two different gains denoted as G, and GQ and the outputs are the

recovered inphase and quadrature symbols. By passing these I/Q symbols into the
differential DQPSK detector, the receiver can produce an estimate of the information bits.

In order to understand how the spreading/despreading processes alleviate the

asymmetric ISI and determine the values of G, GQ and N, it is required to obtain a

discrete-time model for the DS-SS system as shown in Figure 5.1.3. Since both
spreading and despreading processes are done in the digital section, the new discrete-
time model would be the original discrete-time model with the addition of the spreader,

despreader and the multiplication of G, and G, on the I and Q channels. Also T, p IS
replaced with T, in the original model. N, is the timing parameter used to compensate

the time shift due to the asymmetric ISI channel.
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Figure 5.1.2 Architecture of the IF-sampling receiver for DS-SS system.
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Similar to the previous approach, the two filters inside the asymmetric ISI
channel are approximated by the truncated duobinary pulse with definition similar to
Equation 4.3.5,

0.25T2- sin (211/T) for 05T <i<T
7t (05T — 1) or TERlsRh

g&(N=1¢g () = (5.1.11)

0 otherwise

The values of G, , GQ and N, depend on the timing error ¢, and the results are
presented in three cases : (1) r; = 0, (2) 0<¢,<0.25T_ and (3) -0.257,<t,<0. In

these three cases, both the two noise sequences and the phase shift are assumed to be
zero.
Casel:t, =0

With the sampling error equal to zero, both the I and Q channel ISI filters are
simplified to the discrete-time delta functions :

h;[n] =g (nT,~ty) = g (nT) = &[n] (5.1.12)
h,[n] = g (nT_+05T.~t,) =g (nT ,+05T) = d[n] (5.1.13)
Then
a.(n] = Y I,-pln—kM] (5.1.14)
k = ~co
b.lnl = Y, O pln—kM] (5.1.15)

= —00
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In general, the recovered I/Q symbols obtained at the output of the multiplication of G,

and GQ are found to be,

an]l =G,- Y a.lml-plm-nM+N,] (5.1.16)
b(n] = G,- 3 b,Iml-plm—nM+N,] (5.L.17)

By substituting a_[n] into Equation 5.1.16 and setting the gains, G, and Gy, to land

N, t0 0, the recovered I symbol becomes,

anl = Y Y I-plm—kM]-plm-nM] (5.1.18)

m=-—ook = oo

Since p[rn] has a duration from n=0 to n=M, the product
plm—-kM] - p[m-nM] would be zero if n# k. Therefore, the nonzero contribution

of p[m—-kM] - p[m—nM] comes from n = k. Thus,

an] =1- Y plm-nM]-plm-nM] =1,-M (5.1.19)

m = =0

Note that the synchronization is assumed to be perfect such that the received Barker
sequence and the local Barker sequence are perfectly aligned. The receiver can always
extract the autocorrelation peak. By following the same arguments, the Q symbols are
recovered as,

b [n] =0, M (5.1.20)
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Therefore, when ¢, = 0, the two gains G; and GQ should be set to 1 while N, should
be 0.

Case 2 : OStd.<.0.25Tc

For the case where z,#0, the I/Q symbols experience asymmetric intersymbol

interference. In order to simplify the analysis, both the inphase and quadrature channel
ISI fiiters are approximated by the truncated duobinary pulse. Thus,

h;ln]l =g, r(nT ~ty) = A_-5[n] +B. -8[n-1] (5.1.21)
h,[n] =g, 7(nT,+05T,~t) = C,-3[n] (5.122)
where A = g (-t )
Bs = gs.T(Tc-td)

Cs = &, T(O'STC— td)

The values of A, BS and C_ are tabulated in Table 5.1.2.

7 A B, C,

0 10 0 1.0
0.107, 0.78 0.13 1.17
0.15T, 0.66 0.216 1.23
0.207, 0.54 0315 1.26
0.25T. 0.424 0.424 1.27

Table 5.1.2 Table of tap weights A_, B, and C, for 0<1,<0.25T, .
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At the output of the asymmetric ISI channel, the two discrete-time sequences are,

aln] =A,- Y L-pln-kM] +B,- ¥ L-pln—1—-kM] (5.123)

= =00 k=00

b.[n] =C.- Y O -pln-kM] (5.1.24)

k = —oo

Due to the presence of a delayed path in the I channel, there are two copies of the
spreaded inphase symbols at the output of the ISI channel. The main purpose of the
despreader is to enhance one copy while suppressing the other one. This is achieved by

the autocorrelation of the Barker sequence. Since A is always greater than or equal to
B_, the first term in Equation 5.1.23 is intended to be enhanced while the second term is

suppressed.

By despreading a_{n] and multiplying the despreaded signal with G,, the

recovered inphase symbol is,

a,[n] =G, 2 a.[m] -plm-nM+N ] (5.1.25)

m = —co

In order to keep the A, component, the receiver should lock onto the first path and thus,

N;=0 (5.1.26)
Then
an] = G- Y Y A -I,-plm—kM] -p[m-nM)]
m=-wk

(5.1.27)
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The first term in Equation 5.1.27 is the same as Equation 5.1.18 except of the scaling
factor G- A,. Therefore the first term is simplified as G;-A_-M - I . The second term

represents the autocorrelation of the Barker sequence with a time offset of 1 chip. Due

to the good autocorrelation property of Barker sequence and [, is always either +0.707
or -0.707, the second term reduces to G,- B_- (£1) -I,. Therefore the final expression
for a_[n] is,

anl =G,-A,-M-I,+G,-B,- (£1) -1 (5.1.28)

n

Since M is 11 and A_2B_, then the second term in Equation 5.1.28 is comparatively

small and thus,
a, [n] ==G,-A:-1|rl-[,l (5.1.29)

For the Q channel, since there is only one path, the despreaded signal would consist of a
single term only and the result is very similar to the previous case except for a scaling
factor. Therefore,

bi[n] = G,-C.-M-Q, (5.1.30)

Notice that there is a gain imbalance between a_[n] and b_[n] . The goal of G, and
G 0 is to correct the gain imbalance and so the following settings are chosen,
G, = /A, (5.1.31)

Gy = 1/€, (5.1.32)

Although the above analysis is based on the assumption of a zero phase shift, the values

of N;, G; and GQ are also applicable to a nonzero phase situation.
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Similar to case 2, asymmetric ISI also appears in this case and the two ISI

channel filters are also approximated as,
h;[n] =E_-8[n-1]

hq[n] =F_-3[n] +G, -8[n-1]

The values of E_, F, and G are given in Table 5.1.3.

F.r =81 (<05 Tc - td)

G, = g, (05T -t

by E, s G,
0 1.0 0 1.0
-0.10T, 1.17 0.13 0.78
-0.15T, 1.23 0.216 0.66
-0.20T, 1.26 0315 0.54
-025T, 1.27 0424 0424

Table 5.1.3 Table of tap weights E_, F_ and G_ for ~0.25T_<¢,<0 .

(5.1.33)

(5.1.34)

Notice that an extra delay of 1 chip is added to both channels so that the quadrature
channel ISI filter becomes causal. The output sequences of the asymmetric ISI channel

are,

a.[n] = E,- 2 I.-pln-1-kM]

(5.1.35)
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b.[n] =F .- Y Q,-pln—kM] +G,- Y Q;-pln-1-kM] (5.1.36)

k =—~oo k = =00

Note that G 2 F and thus the receiver should keep the second term in Equation 5.1.36
and suppress the first term. In order to achieve this, the parameter N, should be,

N, = -1 (5.1.37)

By despreading b_[n] and multiplying the despreaded signal by G, the quadrature

symbols are recovered as,

b,(n] = G,F,-

s

O, -plm—kM] -p[m-1-nM]
(5.1.38)

Q,-plm—-1-kM] -p[m—1-nM]

EM& EMB

E

00 {40

+Gy- G-

With n = k, the double summation in the first term is the autocorrelation of the Barker

sequence with a time offset of 1 chip. Therefore the first term reduces to

GQ -F_- (£1) - @,. On the other hand, the double summation in the second term is the
autocorrelation of the Barker sequence with zero time offset and it can be simplified as
Gy-G,-M- Q, - Thus the final expression for b_[n] is,

b,[n} = Gy-F.- (£1) -Q, + Gy-G,-M-Q, (5.1.39)

Again, GM is larger than F, and thus the recovered quadrature symbols are

approximated as,
b [n] =GQ-GS-M—QH (5.1.40)
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For the inphase channel, the recovered inphase symbols are,
ain] =G,-E.-M-1I, (5.141)

Similar to the previous case, there is a gain imbalance between the inphase and

quadrature symbols. By having the following settings of G, and GQ ,
G, = 1/E, (5.1.42)

G

0 = 1/G, (5.1.43)

the receiver can correct the gain imbalance. Similarly, although the above analysis

assumes zero phase shift, the design parameters N,, G, and GQ are also applicable to

the non-zero phase.

5.1.5 Performance of the DS-SS IF-sampling system

The performance of the DS-SS IF-sampling system is obtained using a simulation
based on the discrete-time model shown in Figure 5.1.3. The signal-to-noise ratio is
defined as in Equation 4.4.15,

1

an, (5.1.44)

SNR =

This is true since the SNR is independent of the data rate which is either the symbol rate
or the chip rate. The simulation results are shown in Figure 5.1.4. Note that the phase

shift, ~ (nt,/T.) +86, is set to zero for all cases. By comparing the performance curves

of the [F-sampling system and the DS-SS IF-sampling system for z; = 0, it is clear that

both systems give the same performance under the absence of intersymbol interference.

When #,#0, the system suffers distortion caused by the timing error and the
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performance degradation is clearly shown in the simulation. Again the bit error rate for
t; = 0 is used as a reference. At bit error rate of 10° , the DS-SS system suffers about
1 dB loss for z, = 0.10T,_ (as opposed to 7 dB in the IF-sampling system). As ¢,

increases to the worst case of 0.25T,, the degradation is increased to a 7 dB loss.

— timing error,; = 0.007, x timingerror,z, = 0.10T_
O timing error,r;, = 0.157, X timing error,r, = 0.20T_
-+ timing error,r;, = 0.25T,

Probability of bit error

R . : : : ; ) . . .
L ) & L L 1 ] N L L i S ]

-7 M N
1 |
024681012141618202224262830

SNR ;p

Figure 5.1.4 Simulated performance of the DS-SS IF-sampling system. Note that the

phase shift, - (rz,/T,) + 8, is zero for all cases.
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The performance degradation mainly comes from three sources : (1) the residual
intersymbol interference, (2) the discard of signal power in the delayed path and (3) the
gain imbalance between the two noise sequences. Since the autocorrelation of the
Barker sequence is not exactly zero for nonzero time shift (Table 5.1.1), the interfering
paths are suppressed but not completely removed. Therefore a residual amount of ISI
still exists at the output of the despreader and degrades the performance. Another factor
is the discard of signal power in the delayed path. Instead of using the signal power
from the delayed path, the despreader simply suppresses or discards it to alleviate ISL

For example, at ¢, = 0.25T_, the signal power is split equally into the direct path and

the delayed path. Since the delayed path is discarded, half of the signal power is lost.
The third degrading factor is the gain imbalance between the two noise sequences. Refer

to the discrete-time model shown in Figure 5.1.3, the two noise sequences, z;[n] and
z, [n] are also multiplied by G, and GQ respectively. Unless the two gains are exactly
the same, gain imbalance is introduced on these two noise sequences. Only when

t; = 0, these two gains are exactly the same.

Although the DS-SS system still suffers degradation from timing error, the
system performance is improved for all ¢, and more importantly, the system no longer
suffers irreducible bit error rate even when ¢, = 0.257_. Thus the spreading and

despreading processes are shown to be effective in alleviating the asymmetric ISI caused
by the timing error.
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5.2 Solution 2 : [F-sampling System with 4 Samples Per
Symbol

In the first solution, the spreading/despreading in the DS-SS system was shown
to be able to suppress the asymmetric intersymbol interference. In this section, an
alternative approach is proposed to avoid the asymmetric ISI by simply doubling the
sampling rate to 4 samples per symbol.

The idea behind this approach is based on the special shape of the 100% excess
bandwidth duobinary pulse. This is illustrated in Figure 5.2.1 in which three truncated
duobinary pulses are plotted with a delay of one symbol period relative to each other.

H N Y
) ESURURRUESURURI /S| SUNSRN ~SU | CUDITPUUY S-S | U SO .
0.6f--en- .. . .......... U
P S ......... .......... \ e e | i
o2k ......... ....... o e : i
ng —O.E;Tp 410 O.S;rp 'l;p 1.5Tp 21' P 2.5frp a;rp 3.5Tp

Figure 5.2.1 Illustration of the safe region for 100% excess bandwidth duobinary pulse.

Notice that by ignoring the tail of the duobinary pulse, there is a region which is free of

IST and has a duration of 0.5 Tp . This observation implies that even if the timing error is
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not zero, a considerable amount of ISI can be avoided as long as the receiver can obtain
the I/Q symbols within this safe region. In order to achieve this goal, the receiver has to
sample the IF signal with 4 samples per symbol and selects the proper two samples out
of four samples within one symbol period. With this approach, the selected two samples
suffer only a small amount of ISI introduced by the tails of the duobinary pulse. Also
notice that this approach does not require modification to the transmitter and thus all the
discussions in chapter 3 about the transmitter and the channel still apply in this section.

5.2.1 IF-sampling Receiver with 4 Samples Per Symbol

In order to take advantage of the safe region, modifications are required to the
digital portion of the receiver. Depending on the timing error, the receiver has to change

from one architecture into a slightly different one.

Case1:0<r,<0.25T,

The receiver architecture for 0 <z, <0.25 Tp is shown in Figure 5.2.2.

inphase
symbols
S[n+2]~>
‘1’4 a(n] Differential
T () L ripln] y
X DQPSK [—> bits
| symbols Detector
t = n(0.25T,) -¢, S[n+11-3,4 e

Srcos("E+ ) = {1-1,-L,1,..}

Figure 5.2.2 Architecture of the IF-sampling receiver with 4 samples per symbol and
0<1,<0.25 Tp .
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The downconverted IF signal r;(r) is sampled with a new sampling rate of 4 samples
per symbol,

4
F_= = Hz (5.2.1)

T,

s

Since the IF center frequency depends on the sampling rate, the IF center frequency also
takes a new value,
F

L

1
- fp Hz (5.2.2)

fir

With this new IF center frequency, the negative and positive spectra of the IF signal do
not overlap unless the bandwidth is greater than 100% excess bandwidth. The

donwconverted IF signal is given as,

re@ = Y I,-g(t—mT)) - cos (2nfi -t +86)

m = —oo

- Y Q,-g(t-mT)) -sin (2xf;pt +6) (5.2.3)

mn = -
+ x(1) - cos (2nf, -t +8)

~ y(#) -sin (2nfpt+0)

By substituting the sampling time,
t = n(025T) -1, (5.2.4)

and the new value of f; into r;(¢) , the sampled IF signal r;z[n] is obtained as,



r,,.-[n] = z Im-g(n0.25Tp-td-mTp) »cos('%t+¢)

m =< =to

-y Q,,-8(n025T,—t,—mT) -sin(’—g-‘i-cb)
= e (5.2.5)

nwt
+ x(n0.251_'p—td) - cos(7+d))

- y(n0.251"p-—td) . sin('%t +¢)

2nt,
where ¢ = ——T— +60
P
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By performing the operations described in Figure 5.2.2, both the inphase symbols a [n]

and the quadrature symbols b [n] are found to be,

aln] = Y I,-g(nT,—mT,+05T, ~1,) - cosd

m=
- % 0. 84T, -mT,+0ST, 1) S0 (520
m=—oo

+ x(nTp+0.5Tp—td) - cosd

-y (nTp + O.STP -t,) - sin¢

binl = Y I,-g(nT,-mT,+025T, ~t,) - sing

m= =oo

+ Y 0, 8(nT,—mT,+025T,-1,) - cos¢ (5.2.7)

m = ~—oo

+ x(nTp+0.25Tp-td) - sin¢
+ y(nT,+025T,~1t,) - cos¢



121

By representing these two equations with a diagram, a discrete-time model is obtained
and shown in Figure 5.2.3. The observation of the safe region can also be made from
these two equations. Recall that the truncated 100% excess bandwidth duobinary pulse
is defined as,

o.251j - sin (21/T,)

for -O.STPStS Tp

7t (0.5T_ -1)
gr(n) = ? (5.2.8)
0 otherwise
By approximating g (t) with g, (f) , it follows that
gr (O.STP —-t;) forn=m
g(nTp—mTp-i-O.STp—td) = { ) (5.2.9)
0 otherwise
and
gT(O.ZSTp-td) forn=m
g(nTp—-mTp+0.25T -t) = { (5.2.10)
P .
0 otherwise

By substituting these two approximations into a[n] and b[n] , the received inphase
and quadrature symbols can be simplified as,
aln] =A,- (I ,-cos¢-Q, -sing)
+ x (nTp +0.5 Tp —t;) - cosd (5.2.11)
-y (nTp +0.5T,-t,) - sin¢
b[n}] = B,- (I,-sino+Q, - cos9)
+ x(nTP + O.25Tp -t,) -sing (5.2.12)
+y (nTp + 0.25Tp —t;) - cos¢
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The values of A, and B, are listed in Table 5.2.1 for different timing errors.

g A, B,

0 1.0 1.27
0. IOTP 1.17 1.23
0.125 Tp 1.20 1.20
0.15 Tp 1.23 1.17
0.20Tp 1.26 1.09
0.25Tp 1.27 1.0

Table 5.2.1 Valuesof A, and B, for0<t Fp-S 0.25 Tp .

As clearly shown in Equations 5.2.11 and 5.2.12, both received inphase and quadrature
symbols consist only of the present I/Q symbols and noise. Therefore, with the
assumption of using a truncated 100% excess bandwidth duobinary pulse, intersymbol

interference no longer exists in the system. Also notice that for any 7, both A, and B,

are always greater than or equal to 1.0 . Thus the I/Q symbols are always amplified by

A, and B,. However, when the gains on I channel (4,) and Q channel (B,) are

different, the system suffers from the gain imbalance. From Table 5.2.1, the gain

imbalance is worst at the two end-points of t,, that is, when ¢, = 0 or when
t; = 0257,. As 1y increases from O, the gain imbalance decreases and eventually
vanishes when 7, = 0.125 Tp. When t; increases further, the gain imbalance becomes

severe again and finally reaches the worst value at ¢, = 0.25Tp . It will be shown later

that the gain imbalance plays a significant role in determining the system performance.

In addition to the signal, the statistics of the two new discrete-time noise
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sequences are also analyzed. From Equations 5.2.6 and 5.2.7, the two new noise

sequences, z'; [n] and z'q [n] , are defined as

Z;[n] = x(nT,+05T,~t)) - cos¢— y(nT,+05T,~t,) -sing  (52.13)

and
z'q [7] = x(nT,+0.25T,~t,) -sing + y(nT,+025T —t,) - cos¢ (52.14)

The autocorrelation of z’,[n] is defined as,

¢, [nin—kl = E{z';[n] -Z";[n-k]} (5.2.15)
Substituting the definition of z”;[n] into Equation 5.2.15 yields,

2
Qz.‘_z.‘_ [an—-k] = E{x (nTp + O.STP-td) . x(nTp -kTp +0.5Tp —t;) -cos’ ¢

-x (nTp + O.STP ~1;) -y (nTP -Ich + O.STP —t;) - cos¢ - sin¢
-x (nTp - kTP + O.STP ~t) -y (nTp + O.STP —t,) -cosé - sind

+y(aT,+05T,~1,)) -y (nT,~kT,+0.5T,—1,) - sin’0 }

(5.2.16)

Since ¢xy (t) =0 for all time t, the middle two terms are zero. Also
6. (1) = ¢yy (7) for all ime t. Therefore the autocorrelation of z;[n] is simplified

as

2N,
Oz lmin~kl = 0., [K] = 0, (KT,)) = —=-8[K] (5.2.17)
P
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In order to have the last equality of the above equation to be valid, the signal bandwidth

is assumed to be 100% excess bandwidth. It is clear that the autocorrelation of z’;[n]
depends only on k and is nonzero only when k£ = 0. Thus 2’;[r] is a wide-sense

stationary white process.

By repeating the above argument, the autocorrelation of z” p [n] is obtained as,

2N,
0,z [min—kl =6, , [k] =0, (kT) = T, -8 [k] (5.2.18)

So 7z’ 2 [n] is also a wide-sense stationary white process.

The cross-correlation of z’;[n] and z’q [n] is defined as,

¢Z’iz',, [nin-k] = E{Z;[n] -2’ [n—kK]} (5.2.19)

Substituting the definitions of z’; [#] and 2z’ q [n] into the above equation yields,

¢z’,-z’,, [nn-k] = E{x (nTp +0.5Tp—td) - x(nTp -—kTp +0.25Tp -1t;) - cos¢ - sind

+x(nT, +05T,~1,) -y (nT, - kT, +0.25T, ~1,) - cos ¢
~x(nT,~kT, +025T,~t,) - y(nT,+05T,~1,) - sin’¢
-y (nT,+05T,~1,) - y(nT, kT, +025T,~1,) - cosé - sin¢ }

(5.2.20)

Again the middle two terms are zero because ¢xy (7) =0 for all T. Since

6. (7) = ¢yy (1) for all 1, the first and the last terms cancel each other and therefore,
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¢y [nin—Kl =0, [kl =0  forallk (5.2.21)

Finally since x(f) and y(#) are uncorrelated Gaussian processes and z';[n]
and z'q [n] are linear combinations of x (#) and y (¢) , therefore z';[n] and z'q [n] are
also Gaussian processes. In summary, both z',[#] and Z 2 [n] are discrete-time wide-

sense stationary uncorrelated Gaussian processes.

Case 2 : —O.ZSTPStdSO

When the timing error 7, takes a negative value from 0 to ~0.257,, the positions

of the two proper samples are shifted to the beginning of a symbol period. This change
is reflected in a slightly different receiver architecture shown in Figure 5.2.4.

inphase
| symbols

9{4,4 |

aln] Differential
"":(t) / ””_- [n] ‘ DQPSK _> bits
quadrature Detector

5 symbols |

= n(0.25TP) -t —* [n+l]'—)‘],4 b [n]
.ﬁcos(’Lz’E+§] = {1,~1,-1,1,...}

Figure 5.2.4 Architecture of the IF-sampling receiver with 4 samples per symbol and
-0.257,<¢,<0.

Notice that the only modification is the time delay on the inphase and quadrature
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channels. By having zero delay on the inphase channel, the receiver can extract the first
sample and assign it as the received inphase symbol. On the other hand, by having an
time advance on the quadrature channel, the receiver extracts the second sample and

assigns it as the received quadrature symbol. The mathematical expressions for a [n]
and b [n] are obtained by processing rip(t) (Equation 5.2.3) as shown in Figure 5.2.4.

It is found that

alnl = Y I,-g(nT,-mT,~t,) - cos¢

m = =00

- 0, &nT,-mT,-t,) -sin¢ (5.2.22)

m = —oo

+ x(nTp-td) - cosd
-y (nTp—td) - sin¢

and

b[n] = Z Im-g(nTp-mTp-!-O.ZSTp—-td) - sind

m = —oo

+ Y, O, 8(nT,-mT,+025T,-1,) - cos¢ (5-2.23)
m = —oo

+ x(nTp+025Tp-td) - sind
+ y(nTp+O.25Tp-—td) - cos¢

These two equations are represented by the discrete-time model shown in Figure 5.2.5.

Again, by approximating g (z) with the truncated 100% excess bandwidth
duobinary pulse, Equations 5.2.22 and 5.2.23 are simplified as,
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Figure 5.2.5 Equivalent discrete-time model for IF-sampling system with 4 samples

per symbol and -0.25Tp £1,<0.



aln] = C;- (I, -cos¢p-Q, -sing)

and

+ x(nTp-td) - cosd

-y ("Tp’td) - sind

b(nl = D,- (I,-sino+Q, - coso)

+ x(nTp+0.25Tp-td) - sind
+ y(nTp+0.25Tp-td) - cosd

where C, = gr(-t) and D, = gr(0-25Tp"‘d)

The values of C, and D, are tabulated in Table 5.2.2.

t; C, D,

0 1.0 1.27
-0.107, 1.17 1.23
_.0.1257'1, 1.20 1.20
-0.157, 1.23 1.17
-0.207, 1.26 1.09
-0.25T, 1.27 1.0

Table 5.2.2 Values of C, and D, for -0.25T,<1,<0.

(5.2.24)

(5.2.25)

The two new discrete-time noise sequences namely Z;[~#] and 2 . [n] are,

129
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2;,[n] = x(nTp—td) - cos¢ - y(nTp-td) - sin (5.2.26)
and

Zq [n] = x(nTp+0.25Tp-td) -sind + y(nTP+O.25Tp-td) -cosd (5.227)

The two autocorrelation functions for Z,[n] and ?.q [n] are found to be,

2N
Oy, [min—k] = ¢, [K] = ¢, (KT,) = —=>-8[k] (5.2.28)
p
k] = _ _ 2N,
0;; [nin-k] = ‘quzq[k] = ¢, (kT)) = T, -8 [k] (5.2.29)

It is clear that both autocorrelation functions depend only on the time shift k£ and
therefore the two noise sequences are wide-sense stationary. Also when the signal
bandwidth is 100% excess bandwidth, the autocorrelation functions are equal to a scaled

discrete-time delta function and therefore the two noise sequences are also white.

In addition to the autocorrelation functions, the cross-correlation function is
determined as,

05, [nn—k] = ¢,, [k] =0  forallk (5.2.30)
e i“q

Thus the two processes are uncorrelated for all time shifts k. Besides, since both noise

processes are linear combination of two uncorrelated Gaussian processes, Z;[n] and
2q [n] are also Gaussian processes. Note that the statistics of the two noise sequences

are exactly the same for both cases of z,.
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522 Performance of the IF-sampling system with 4
Samples Per Symbol

The performance of the IF-sampling with 4 samples per symbol is simulated
using the discrete-time model shown in Figure 5.2.3. Here it is assumed that

0<:,<025 Tp and ¢ = 0. Since modification is made only in the receiver, the

definition of signal-to-noise ratio defined in Equation 4.4.15 still applies.

1
AN

4

SNR = (5.2.31)

Note that the same definition of SNR is used for all three systems.

The simulation results are shown in Figure 5.2.6. Two important points are
observed from the simulation. Firstly, by using the bit error rate curve for the IF-
sampling system with 2 samples per symbo! and zero timing error as a reference, the
simulation shows that the IF-sampling system with 4 samples per symbol can generate a
better performance (from 2 dB to 16 dB) for some timing errors. In other words, instead
of degrading the performance, a certain timing error can actually improve the
performance in this second solution system. For example, at a bit error rate of 10~ , any

timing error ranging from O-ITP to 0.2TP generates a better performance than the one

corresponding to 2 samples per symbol, and the best improvement is about 1 dB.

Secondly, the simulation results are consistent with the argument that the system
performance is mainly controlled by the gain imbalance between the received I/Q
symbols. From Table 5.2.1, it is clear that the gain imbalance starts with the worst value

at t; = 0. As ¢t; increases to 0.125Tp, the gain imbalance decreases and eventually

drops to zero at £, = 0.125 Tp . However, as ¢, further increases to 0.25 Tp , the gain
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X t; = 0.00T,, 4 samples/symbol — ; = 0.00T, , 2 samples/symbol

+ t; = 0.10T, , 4 samples/symbol

% &y = 0.125 Tp , 4 samples/symbol
--f = 0.20Tp , 4 samples/symbol
Ct,= O.25Tp , 4 samples/symbol

Probability of bit error
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Figure 5.2.6 Simulated performance of the IF-sampling system with 4 samples per
symbol. Notethat ¢ = 0.
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imbalance increases and eventually reaches the worst value at ¢, = 0.25 Tp. The same
pattern is observed in the simulation results. The timing errors of 0 and 0.25 TP give the

same and worst performance. At the error rates of 10~ and 107 | the performance
degradations (compared with the 2 samples per symbol system and ¢, = 0) are about
0.8 dB and 2 dB respectively. As t; becomes closer to 0.125Tp, the performance is

getting better. The best performance occurs at 1, = 0.125 Tp and the improvements at

error rates of 10”> and 107 are about 1 dB and 0.2 dB respectively.

However a little inconsistency is also shown in the bit error rate curves for
t; = O.ITP and z; = 0.125 Tp. These two timing errors generate an almost identical
performance from 2 dB to 13 dB. Only when the SNR is greater than 13 dB, then
t; = 0.125 Tp gives a slightly better performance than ¢, = O.ITP.

5.3 Summary

In order to combat the timing error problem, two solutions were proposed in this
chapter. The first solution is a DS-SS IF-sampling system with 11 chip Barker
sequence. This system uses the autocorrelation of the Barker sequence to suppress the

delayed path and thus alleviates the asymmetric intersymbol interference. In order for
the system to operate properly, the three system parameters (G,, GQ and N,) must be
modified in real-time for the variation of 7;,. As t, increases from 0 to 0.257_, the
system performance is gradually degraded from 1 dB loss to 7 dB loss at a bit error rate
of 1073.
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In the second solution, the special pulse shape of the 100% excess bandwidth
duobinary pulse is used to avoid the intersymbol interference. In this system, the
sampling rate is raised to 4 samples per symbol. The system performance also depends

on the timing error but with a different trend. As ¢, increases from 0 to 0.125 Tp , the
performance is gradually improved from 0.8 dB loss to 1 dB gain. As t, increases

further to 0.25 Tp , the performance is doanraded from 1 dB gain back to 0.8 dB loss.

Another unique characteristics of this system is that certain timing errors can actually

improve the performance of the receiver and the best performance occurs at

t; = 0.125 Tp. Overall the second solution outperforms the first solution in terms of

performance and complexity.
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Chapter 6 Conclusion and Future Work

In chapter 2, two important concepts have served as the foundations for the

design of the proposed IF-sampling receiver. With the first concept, F_/4

downconversion, the receiver can use a very simple digital structure to extract the
inphase and quadrature samples from the continuous-time bandpass IF signal. In order
to employ this technique, the receiver must satisfy one requirement : the IF center
frequency must be an odd integer multiple of a quarter of the sampling rate. In other
words, this technique specifies the IF center frequency and provides the idea for the
architecture of the IF-sampling receiver. The second concept involves three sampling
theorems which are (1) the Nyquist sampling theorem, (2) the bandpass sampling
theorem and (3) the sampling theorem for linearly modulated signals with zero
intersymbol interference. The objective of the first two theorems is to avoid spectral
overlap of the sampled signal. However, in the demodulation of a linearly modulated
signal, a certain form of spectral overlap is desired and thus a lower sampling rate is
allowed. It is found that the minimum sampling rate for the recovery of the inphase and
quadrature symbols is 2 samples per symbol. This sampling rate is adopted in the

proposed IF-sampling receiver.

Based on the ideas from the two concepts, the architecture of the IF-sampling
receiver is derived in chapter 3. The receiver samples the IF signal with 2 samples per
symbol and extracts the inphase and quadrature symbols using a simple structure. In
addition to the receiver, both the transmitter and the channel are also specified. The
transmitter performs a typical linear modulation scheme while the channel is assumed to
be an additive bandpass white Gaussian noise channel. No channel fading is considered
in this thesis. With the proposed IF-sampling receiver, both the time and frequency
domain criteria for zero intersymbol interference are derived. By using the frequency

domain criterion, one can prove that the minimum bandwidth for achieving zero
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intersymbol interference is 2/ Tp Hz. Any bandwidth less than 2/ Tp Hz must

generate ISI. In addition to the minimum bandwidth, the actual signalling pulse for zero
ISI and minimum bandwidth is also derived and the result is a 100% excess bandwidth

duobinary pulse.

With the IF-sampling receiver, the effect of the bandpass white Gaussian noise is
studied. Both the first and second order statistics are obtained for the two noise
sequences at the output of the IF-sampling receiver. In addition to the study of noise, an
equivalent discrete-time model is also derived for the IF-sampling communications
system. This model is shown to be useful for analyzing the effect of the complete
system on the information symbols. Besides, the discrete-time model is also used as a
simulation model to obtain the system performance. Simulation resuits show that the
timing error can severely degrade the system performance and cause irreducible bit error
rate. Also due to the presence of the asymmetric intersymbol interference, a phase shift

can cause significant variation in the system performance.

Two solutions are suggested to combat the severe degradation caused by the
timing error. The first solution is a DS-SS IF-sampling system with an 11 chip Barker
sequence. By using the autocorrelation of the Barker sequence, the system can suppress

the delayed paths in the asymmetric ISI channel. Inside this system, there are three

parameters, G;, G, and N,, depending on the timing error and therefore the system

must be able to modify these three parameters in real-time. Simulation results show that
as ¢, increases from 0 to 0.25 Tp , the system performance is gradually degraded from 1

dB loss (best performance) to 7 dB loss (worst performance) at error rate of 1073.

A different approach is used in the second solution which takes advantage of the
special pulse shape of the 100% excess bandwidth duobinary pulse. By sampling the
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continuous-time IF signal with 4 samples per symbol and selecting the proper two
samples, the system can actually avoid a considerable amount of ISI. One unique
characteristics of this system is that certain timing errors can actually produce

performance improvement. As ?, increases from 0 to 0.125 Tp, the performance is

improved from 0.8 dB loss to 1 dB gain. As z, increases further to 0.25 T,, the
performance is degraded from 1 dB gain back to 0.8 dB loss. Therefore the best

performance occurs at t; = 0.125Tp whereas the worst performance is at both z;, = 0

and t; = 0.25 Tp . It is also found that this performance trend is consistent with the gain

imbalance introduced by the 100% excess bandwidth duobinary pulse. In terms of both

system complexity and performance, the second solution outperforms the first solution.

Several issues are not being considered in this project. Firstly, the modulation
scheme is restricted to be linear in this project. Therefore all three systems mentioned in
this thesis cannot be used for nonlinear modulation schemes, such as continuous phase
frequency shift keying (CPFSK) or continuous phase modulation (CPM). Further
research is required for the design of the IF-sampling receiver for nonlinear modulation
schemes. Secondly, equalizer (either linear or nonlinear) can also be used to alleviate
the asymmetric intersymbol interference. However, due to the asymmetric nature of the
intersymbol interference, a conventional equalizer structure may not be adequate.

Further work needs to be done in this area.
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