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I. Introduction

In order that a multiprocessor system be considered successful, an improvement in perfor-
mance over a single processor system must be evident. This improvement will probably be emphasized in
the particular application area for which the multiprocessor was designed: image processing, geophysics,
robotics, and so on. Indeed, performance may be degraded significantly when the multiprocessor is used
for a task that is inappropriate for the particular architecture. It is important to be able to predict, with
some confidence, the performance measures of interest for a particular system acting on a particular prob-
lem.

The VISTA Multiprocessor [11] was. designed as a system for performing image processing
operations, especially those that can be performed on sub-images of an image. There are many operations
that are commonly performed on digital signals: filtering, transformations, statistical measurements, and so
on. Many two dimensional signals, including images, can be treated as collections of one dimensional sig-
nals for the purposes of implementing these operations[3,5,6,13]. In other cases an image may be broken
up into regions, each of which may be processed in parallel. In the case of the Fourier transform, single
rows and columns can be defined as regions. The processing of each region is independent of all of the
others, and can be carried out in any order{12,16].

VISTA is designed to operate on regions of images. Each processor has local code and data-
memory which can be loaded by a central processor called the master control unit (MCU). Image regions
are loaded into the processors across a common bus, and a processor operates only on data in its local
memory. Control of bus transfers centrally offers a number of advantages, the most important of which is
the elimination of contention, as such. The processors do not request data; the MCU sends a region into
local data memory and then allows the processor to proceed. The MCU then repeats this process with the
next processor, and so on. When the first processor has finished, it sets a bit that the MCU can see; there
are now two possibilities for how to proceed. Either the MCU can load all processor memories and then
start over again, looking for set completion bits, or it can start over again when the first processor sets its
completion bit. In the latter case, it can be scen that no more processors will actually be used than the
MCU can reasonably deal with, and this number will depend on the region size and algorithm being imple-
mented.

One other modification can be made to improve things further. When a processor has com-
pleted its task, the MCU must unload the local data memory into the global Frame Buffer and load a new
region into the local memory. While this is happening, the processor involved is idle. If two buffers are
used, and both are loaded initially, then the MCU simply swaps buffers and starts the processor immedi-
ately, then unloads the processed buffer while the processor works on the other. This doubles the local
memory requirement while reducing the idle time of the processors to nearly nil.

When the system is started there is an initialization time during which processors will be idle.
This corresponds to a pipeline startup time. There is a similar time when all processors have finished,
again corresponding to the time taken to unload a pipeline. Other than at these two moments, none of the
processors being used will be idle, and the bus will be working at near maximum capacity. This method of
handling the local data memories will be referred to as a distributed cache memory [14,14], and
superficially resembles the arrangement found on the FLIP processor{8].

The lack of contention in the Vista system should mean that a model could be easily con-
structed. However, the real system, once constructed, demonstrated better performance than had been cal-
culated. We then proceeded to do a more thorough analysis and simulation to more fully understand the
workings of the system.



IT Analysis of the VISTA System

The VISTA system as constructed uses an 8086 microprocessor as the MCU, with each other processor
being a TMS32017 Signal Processor chip [10]. VISTA will perform an operation on an image that is bro-
ken up into sub-images each of which resides in a large frame buffer. Each TMS processor has local
memory: 2048 words of program and 2048 words of data memory; data memory is divided into two
*pages’ of 1024 words each.

Definitions of variables that will be used in the analysis are:

Number of bytes in one sub-image.
Actual number of processor units allocated to this problem.
Time needed to load one sub-image into a processor cache.

Symbaol Meaning

B Maximum bus transfer rate, bytes per sec.
k Total number of processors oa the bus.
M Number of columns in the object image.
N Number of rows in the object image.

Ng Total number of sub-images.

Ny

N,

T,

Tp

Total real time needed to complete the entire problem.
Real time needed for a particular phase:

(L=Load, R=Reload, Ul=Unload phase 1, U2=Unload phase 2)
Time needed by the MPU to send one byte onto the bus. (Overhead)
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T, Time needed by one processor unit to process one sub-image.

Tw Total amount of processing time needed 10 complete the entire problem.

Twy Twr .- Amount of processing time done in a particular phase.
Some of the simple results are:

_ N*M (.

N = N, (Simplest case)
=N, * 1

Ty =N *T, + i

Computation on the VISTA machine can be divided into three phases. First, the processors are loaded
with sub-images. This corresponds to the start-up phase of a pipeline, and is called the load cycle. For
each processor, the first buffer if loaded, then the processor is started, and then the second buffer is loaded.
Since each sub-image takes T, seconds to be loaded, and there are N, processors each with 2 buffers, the
load cycle take 2N, T, seconds.

Next, the results are removed from buffers and replaced with fresh data to process. For each
processor: first the processor is restarted, then the processed data is removed from the full buffer, and then
new data is loaded. This continues until all sub-images have been sent, and is called the reload cycle. A
sub-cycle involves reloading all N, processors once, and will require 2N, T, seconds. During the reload
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Figure 1 - Outline of the Vista Hardware



cycle, all processors are working.

The final phase is the unload cycle, in which the last of the results are collected. As the final
page full of data is gathered from a processor it becomes inactive, corresponding to the terminal phase of a
pipeline. At first, each processor being unloaded is started before unloading, since it still has a single full
buffer remaining unprocessed; then the last buffers are unloaded and the processors go idle. Thus the
unload cycle consists of two distinct parts. During the first part, or cycle Ul, all N, processors have a
buffer unloaded and are restarted on the final buffer, which was loaded previously. During the second part,
or cycle U2, all N, processors have their final full buffer unloaded and become idle.

It is important to be able to predict how much real time is required to compute a given result
on the Vista system. Because of the way in which the processors are connected, this analysis is not obvi-
ous. What is clear is that the total real time needed is the sum of the real times needed for the load cycle,
reload cycle, cycle U1, and cycle U2. This is the basis for the analysis below.

Assume for a moment a problem that uses three processors, each having two pages. The load
and reload cycles can be illustrated as follows:

Time units are integer multiples of T .

Operation Work done so far Real Time Total Work
T1 T2 T3 (after op) (After op)
Load Tlpage0O 0 0 0 1 0
Start T1 0 00 1 0
LoadTlpagel 1 0 O 2 1
Load T2page0 2 0 0 3 2
Start T2 200 3 2
Load T2pagel 3 1 0O 4 4
Load T3page0 4 2 0 S 6
Start T3 4 2 0 5 6
Load T3pagel S5 3 1 6 9
------------------- End of Load Cycle
Reload subcycle A:
Restart T1 531 6 9
Unload Tlpage0 6 4 2 7 12
Load Tlpage0 7 5 3 8 15
Restart T2 7573 8 15
Unload T2 page0 8 6 4 9 18
Load T2page0 9 7 5 10 21
Restart T3 9 75 10 21
Unload T3page 0 10 8 6 11 24
Load T3page0 11 9 7 12 27

reload subcycle B: Repeat, unloading page 1 and then loading again

Continue until all sub-images have been sent.

End of Reload Cycle
The timing of the unload cycle is peculiar, and will be dealt with later.
By definition, it can be seen that the work done by processor 1 in the Load phase is T; processor

seconds (PS). By inspecting the diagram above, it can be seen that the work done by processor 2 is
T,~2T, and so on for all N, processors. In general, the load phase work done by processor i is:



Ty =T,-2i-1DT}
Thus, the total work done in the load phase, considering all N, processors, is:

‘g(T, -2Ai-NT,) = Ng(T, =2Ty +2T3) = 'NgT, - I22{1‘1, + EZT;,

N, N,(N,+1)
=NPT‘ +2NPT', —2Tb‘§l =NPT( +2NPT), —2T|,(—Lf+) =NPT, +2N’Tb -TbNPZ—TbNP

Tw =N, (T; - Ty (Np-1))
This amount of work is done in real time Tgr, = 2N, T}, where work is in PS units.

Computation of the work done in the reload cycle is simpler. Each step in the reload cycle involves
one load and one unload operation, which takes 2T, in terms of real time. Since each sub-cycle of the
reload cycle involves N, of these steps, then the real time needed for a complete sub-cycle would be
2N, Tp. During this period, each processor is active for T; seconds, and so a total work of N, T; is per-
formed.

In most cases it will not happen that C will be an integer. Each subcycle can be broken down into a
number of load-unload pairs, and while a full subcycle has N, of these, the final subcycle can have fewer.
This fact causes problems in calculating the duration of the unload cycle. What should be clear is that C is
a rational number, consisting of an integer part (/ = total number of completed reload sub-cycles) and some
fractional part (/ = number of unload-load operations in the partial cycle), or

J
C=I+
N
and the real time needed to complete C subcycles is
N,T,C =2N,T; (1+7{p—) =N, Tyl +2T3J

The reload cycle has ended after the last block has been loaded into a processor. At this point, all proces-
sors have both buffers loaded, and until now the MPU has been constantly active ( no idle time). A total of
2N, T, + 2N, T, C seconds of real time has passed and a total of 2N, +N,, C blocks have been loaded into
processors. Since all buffers have been loaded, we have

Ng =2N, + CN, =N, (2+C)

=N
andthusC—-N;—-Z.

It is possible to find the times at which the processors will start execution. By inspection, it can be
seen that processor T; will be started for cycle j, j = 1,2... at time
.. 2i-1 ifj=1
TGJ)=\ (j-102N, Ty +2G-1T; if j > 1
where cycle 0 is the load cycle. Unload cycle start times are not computable in this way. It is also possible
to compute values for I and J. Since C=(/ +-)§I-’—),
P

J _Np
J=NymodN,, I=NgdivN,-2

Assume that processors are loaded in ascending numeric order. Then we know that processors numbered 1
through J will be loaded exactly once more than will the processors from J+1 through N, and will




therefore be started one extra time. The number of starts of a processor i is:
L JI+2ifigy
SO=Y1+1ifi>J
This counts starts in the load and reload cycles only. All of these facts are needed to determine the MCU
idle time during the unload cycle.

Unload cycle U1 starts at real time 2T}, N, (C + 1). At this time, does the MCU have to wait before
unloading the next processor, the first in the unload cycle? If the MCU does wait, it will wait for processor
number J +1 first. T,y will finish its second last buffer at time T(J+1, SJ+1)}+T;. That is, at the last start
time + the time needed to complete processing. The current time should now be T(J, S())}+27T}, or the time
at which the last processor in the final reload cycle was started + the time needed to unload and reload that
Pprocessor.

If the time at which processor J+1 will finish is greater than the current time, then the MCU must
wait for J+1 to finish before unloading it. If the MCU does not wait, it unloads processor J+1, taking time
T, to do so, and then checks processor J+2. Again, the MCU will either wait for J+2 or unload it directly,
and so on for all N, processors. Each processor after J+1 will be ready for unloading at intervals of 2T}
seconds, but it only takes T, seconds to unload a processor. Thus, the MCU will wait for J+1 if

X =T,-2T;N, >0
The MCU will wait for J+2 if
X=T,+Ty -2T,N, >0
In general, the MCU will wait for processor J+1+q (modulo N, ) if there exists a value ¢ such that
X =T, +qT, -2T,N, >0
where
0<gq <N,

If the wait time is negative then the MCU does not wait, and X is set to 0.

If the MCU waits for a processor in the first half of the unload cycle, then it will also wait for
half of the rest of the processors remaining to be loaded, and will wait T, seconds for each of them. This is
because a processor needs 2T}, seconds to be serviced in the reload cycle, but only T, seconds in the Ul
cycle. We can then say that

Y=

NE—q—l] T,
- The total time that the MCU spends waiting during the U1 cycle is X+Y, and so the total real time spent in
the Ul cycle is
TRU] =NPT5 +X+Y

The second half of the unload cycle, U2, may also involve waiting.

The second half of the unload cycle, U2, may also involve waiting. Cycle U2 begins the
moment that the last buffer has been unloaded in cycle Ul. Before that processor was unloaded, T}
seconds before the end of Ul, it was started on its last full buffer. This means that cycle U2 will end when
that processor has finished work on its buffer and has itself been unloaded. This requires time T; + T}

seconds in all, and so cycle U2 must always require T,+T,~T}, = T, seconds.
The total real time needed by Vista to solve a given problem can now be calculated. It is

TR =Tpr + Tre + Tpu1 + Tru2

=2N, Ty +2CNp Ty + N, Tp+X +Y) + T,

The conditions for which this formula is correct are;
1. C21




2. T‘ -ZTbN’ SO
T¢+Tb
3. k2 [—Trb—l

These would be the normal conditions of operation for the Vista processor in any case. In plain English,
these conditions are:

1.  There are many more blocks of data to be processed than there are processors.

2. The time needed by a processor to complete one calculation is significantly greater than the time
needed to transmit one block to the processor.

3. The Vista processor has a minimum number of processors available to dedicate to the problem.
II1. Removing Simplifications
The expression Np = —%I:i is a simplification that assumes the image can be broken up into

equal sized sub images exactly. In many cases this cannot be done; there will be a region of overlap
between sub-images. An example would be edge enhancement using a 3x3 template, in which case the
boundary row and column would need to be retransmitted with later sub-images.

If a is the number of rows in a sub-image, and b is the number of columns in a sub-image then
we can break up a row into K sections of b bytes each, where each section except the first and last overlaps
by one byte on each end. The first and last have a one byte overlap on one end only. In this case
M =K (b-1) + R,, where R,, is the number of bytes left over (R, <b). The best value of b causes Ry=0,

which occurs when K = #I- exactly. Now the number of bytes transmitted per row is actually

M+K =M+-M. For example, if M=64 we could have b=17, and a total of 68 bytes per row would be
sent. The same is done for columns, and instead of NM bytes being transmiited we get

M+ 2L+ bytes. The extra bytes are overhead caused by breaking up the problem into smaller
pieces. Dividing this more precise byte count by N, gives a much better value for Np.

IV. Simulation

The expression that was derived above for determining the real time needed by Vista to solve a
given problem is only accurate when the three conditions are satisfied. There are at least seven other cases
to be examined in detail and new expressions could be derived for each case. Rather than do this a Simula
[18] simulation of Vista was constructed that would predict execution times in all cases. An instruction
level model was also built so that actual Vista code could be executed [10].

The simulation consisted of 368 lines of Simula, and was conducted along conventional lines.
There was an array of 200 Simula process class items each representing a TMS32010 processor, and each
containing two arrays to be used as the data buffers. There was also another process class item that
represented the MCU. Its job was to load (and unload) data from a large central array (frame buffer) into
the TMS local memories. Concurrency was managed by the Simula coroutine facilities.

An initial version of this simulation was written before construction of the Vista prototype was
begun, and was used to test design issues before they were actually built. As a result there were no major
hardware changes made to repair faulty design decisions. Also, it turned out that the Simula code written
as the MCU model was close enough to the real code needed for the real MCU that it was translated into
8086 assembler'and used in the real system.

The simulation model and the analytic model have agreed with each other in predicting execu-
tion times for all situations that were tried.

V. Results
The Vista system actually constructed consists of one MCU, one processor, and one 500K
frame buffer. No DMA device is used, so the MCU must perform the actual data reads and writes. This is
not ideal, but is sufficient for assessment purposes. The benchmark program is a two dimensional FFT on a
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256 by 256 image.

The Vista system performs the FFT in 12.6 seconds. This does not seem impressive until com-
pared with the time taken on a VAX 11/780: 92 seconds. A second processor would cut the time in half, to
6.3 seconds. Our prototype would allow four processors at most to be fully utilized, at which point the FFT
would take 3.2 seconds.

The simulation model in this paper would predict a time of 11.28 seconds to perform the FFT.
The difference may be explained, in part, by the fact that the TMS processors has several instructions that
cannot be accurately timed. These instructions cause the internal pipeline to be cleared, increasing the exe-
cution unpredictably by up to a factor of four. Because the prototype Vista has only one TMS processor,
the analytic model could not be applied. Note that a two dimensional transform is actually two separate
steps, one for rows and the other for columns. Transforming columns has a larger MCU overhead due to
greater complexity in indexing an element; the array is stored in row major order.

Much of the problem with the prototype is caused by the lack of DMA capability on the bus
used (Multibus [7]). Assuming a bus rate DMA controller as part of the MCU, the figures become more
impressive. Each processor can transform a row or column in 0.022 seconds, and transmission of the entire
image across the bus and back requires 0.05 seconds. Thus, the best that Vista can do is to use 112 proces-
sors and compute the FFT in 0.1 seconds. This is an effective computation rate of 350 MIPS using a com-
mon bus.

There is another feature of Vista that makes it interesting when applied to image processing.
Algorithms intended for use on systolic [9] pipeline, or pyramid [2] architectures can be run on Vista with
no hardware change. The software for processor page swapping would be modified to conform to the data
transfer method of the architecture being simulated. A Vista simulating a systolic array would not perform
as well as would the actual systolic array, but the performance would still be adequate, and the perfor-
mance loss is compensated for by flexibility.

Further work is proceeding on the Vista system. Future processors will be based on the
TMS32030 processor, which permits much more memory and is twice the speed of the TMS32010. A cus-
tom DMA controller is also being designed for use on a different bus. Finally, much of the control logic for
the processor, currently requiring one entire Multibus card, is being redesigned for a VLSI implementation.
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