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ABSTRACT 

This thesis presents mathematical and graph-theoretic techniques for the design 

and implementation of digital filters incorporating two important practical features, 

namely, structural uniformity and fast processing speeds. The desired structural uni-

formity is achieved through multiply-accumulate (MAC) modularization of the digital 

filter, where MAC-modularization is defined as the process of translating the filter 

algorithm consisting of separate multiplication and addition operations into a corre-

sponding algorithm consisting of MAC operations only. The desired fast processing 

speed, on the other hand, is achieved by using redundant number arithmetic to im-

plement the constituent MAC operations. The use of redundant number arithmetic 

eliminates the carry-propagation in the corresponding arithmetic operations, leading 

to a processing speed which is totally independent of the signal wordlength of the dig-

ital filter. The proposed techniques are illustrated through their application to the 

MAC-modularization of a LDI Jaumann digital filter and its implementation using 

novel redundant number MAC arithmetic architectures. 
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CHAPTER 1 

INTRODUCTION 

About three decades ago, the introduction of Fast Fourier transform by Cooley 

and Tukey [19] and the growing expertise in digital circuit technology led to a new 

era in signal processing [27]. This era was marked by the rapid growth of digital 

filtering [1] and digital signal processing (DSP) [5]. 

The field of DSP is concerned with the processing of signals represented in dig-

ital form. It is widely used in digital audio and video processing, sonar and radar 

processing, bio-medical signal processing, speech processing, digital communications, 

and a host of other applications. 

Early developments in the field of DSP borrowed several ideas from analog filter 

theory and analog signal processing. This was natural since the fields of analog filter 

theory and analog signal processing were already well established. However, with 

the passage of time, scientists and engineers quickly realized that digital processing 

techniques promised several new important practical features, and, at the same time, 

did not suffer from some of the shortcomings (e.g. aging, drift, etc.) of the corre-

sponding analog processing techniques. This permitted the digital implementation of 

new and highly sophisticated signal processing algorithms. In addition, the contin-

uing improvements in the allied fields of digital processing technology led to greater 

acceptance and increased importance of DSP, culminating in an accelerated growth 

in its potential applications. 

Along with the developments in DSP, a parallel breakthrough took place in the 

field of electronics. Component technology took a major leap forward as it evolved 

from discrete transistors to very large scale integrated (VLSI) circuits containing 

hundreds of thousands of transistors on a single chip. With the increased complexity 
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of VLSI circuits, there was a need to free the designer from many of the low-level 

design details. This resulted in the birth of computer-aided design (CAD) tools which 

allowed higher levels of abstraction in VLSI circuit design. These tools permitted 

substantial improvements in the productivity on the part of the system designers. 

During the past decade, rapid advancements have taken place in the fields of 

VLSI circuits and CAD, along with novel mathematical and algorithmic advances 

in DSP. This has resulted in a sharp growth in the potential applications of signal 

processing. However, the growing complexity of modern DSP systems has placed 

an ever increasing demand on performance, sophistication, and real-time processing, 

strongly indicating the need for massive computational power. 

The availability of low-cost, high-density, fast VLSI circuits makes high-speed pro-

cessing of large volumes of data practical and cost-effective. In addition, the extrac-

tion of concurrency in DSP algorithms results in ultra-high throughputs and permits 

major technical advancements in real-time DSP applications. However, it is quite 

obvious that the full potential of VLSI circuits cannot be realized with the existing 

DSP systems and their underlying arithmetic architectures. This is because the data-

dependency limitations of these systems do not permit highly concurrent operations, 

and the speed limitations inherent in the existing arithmetic architectures do not 

allow high-speed processing. Furthermore, large design and layout costs suggest the 

utilization of a repetitive modular structure. Such a structure is not consistent with 

the existing DSP-systems, mainly due to the fact that the conventional DSP algo-

rithms do not inherently possess modularity. Therefore, modern DSP systems must 

be designed to possess the desirable features of concurrency, fast processing speeds, 

and structural modularity. 

In the design of modern DSP systems, there exists a serious need for providing 

means of seamless progression from signal processing theory and algorithms to the 

corresponding VLSI processor architectures and implementations. This means that 
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there must be a design philosophy which can be employed for the systematic develop-

ment of a high-speed modular DSP system starting from the algorithmic level. The 

development of such a design methodology requires a harmonious blend of ideas from 

the disciplines of computer engineering and computer science, signal processing, and 

VLSI circuit design. 

This thesis presents a novel systematic design philosophy for the realization of dig-

ital filters as a class of high-speed modular DSP architectures. This design philosophy 

progresses from the algorithmic level to the hardware implementation level achieving 

two main goals as illustrated in Fig. 1.1. 

1. Modularization of the digital filter algorithm. 

2. Use of high-speed arithmetic architectures based on redundant number arith-

metic. 

Digital Filter SFG 

MAC-Modularization 

High-Level Synthesis 

Redundant Number 
Arithmetic 
Architectures 

VLSI Implementation 
 I 

Figure 1.1. Proposed Design Philosophy for DSP Systems 

Digital filter algorithms are generally represented in the form of signal-flow graphs 
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(SFGs) consisting of multiplication and addition operations. Unfortunately, the non-

homogeneous nature of these operations does not permit a corresponding straightfor-

ward concurrent implementation. However, it is possible to translate these algorithms 

into suitable equivalent forms involving combined multiply-accumulate (MAC) oper-

ations (see Definition 1 below). The translation of a digital filter algorithm consisting 

of separate multiplication and addition operations to a corresponding algorithm con-

sisting of MAC operations is referred to as MAC-modularization. The resulting MAC-

modularized digital filter algorithm possesses regularity and modularity, thereby per-

mitting efficient use of the available computing resources, simpler scheduling, and 

easier design and implementation. MAC-modularization constitutes the first step in 

the proposed design philosophy. 

Definition 1 The MAC operation is defined as a composite operation involving the 

multiplication of a multiplicand X and a multiplier Y and the addition of an addend 

Z in accordance with 

P=X.Y+Z. (1.1) 

The next step in the above design philosophy involves the high-level synthesis [10] 

of the MAC-modularized digital filter SFG. The goal of high-level synthesis is to 

produce a register-transfer level implementation of the digital filter subject to certain 

specified constraints. This implementation includes a data-path as well as a control-

path design. 

High-level synthesis includes the tasks of scheduling and allocation. The process of 

scheduling involves the assignments of operations to various time steps. The process 

of allocation, on the other hand, involves the binding of the scheduled operations to 

the corresponding MAC units, as well as the subsequent allocation of the auxiliary 

resources (registers, multiplexers etc.) to facilitate the data transfers. 
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The high-level synthesis information is used for the architectural design of a DSP 

processor for the implementation of the digital filter algorithm. The resulting proces-

sor typically consists of a control-unit and a data-path. The control-unit is designed 

by using the sequence of operations specified in the schedule, and the data-path is 

designed by using the allocation information to allocate the operations to MAC arith-

metic architectures. These architectures achieve high-speed operation by employing 

redundant number arithmetic. Redundant numbers allow redundancy to exist in 

the number representation, thereby eliminating carry-propagation to result in very 

high-speed computation. 

Finally, the processor can be implemented in a VLSI circuit by using the full-

custom or semi-custom design techniques. 

Chapter 2 presents a theoretical background for fixed-point DSP arithmetic by in-

troducing various number systems and arithmetic processing methodologies. This is 

followed by a rigorous mathematical analysis concerning recoding, rounding, and over-

flow processing of redundant numbers. A novel 5-digit overlapped scanning technique 

is presented for modified radix-4 recoding [53] of radix-2 redundant numbers [50]. Fur-

thermore, two techniques for product rounding in radix-2 redundant number arith-

metic are developed. Finally, arithmetic overflow processing issues for radix-2 redun-

dant numbers are discussed. 

In Chapter 3, the results in Chapter 2 are exploited and applied to the design and 

implementation of novel high-speed VLSI arithmetic architectures for multiplication 

and MAC operations. This includes a novel approach for very high-speed mixed-

redundant digit-serial [22] modified-Booth [36] multiplication. It is shown that the 

area-time efficiency and throughput of the resulting multipliers far surpass those of 

the existing digit-serial modified-Booth multipliers [15]. It is also shown that re-

dundant number arithmetic provides best results for fully-parallel multiplication or 

MAC operations. Next, a novel architecture for high-speed mixed-redundant parallel 
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modified-Booth MAC arithmetic operation is presented. Finally, this architecture is 

extended to handle radix-2 redundant number multiplication by employing the mod-

ified radix-4 recoding technique, and is subsequently used for the design of a high-

speed fully-redundant parallel MAC arithmetic architecture. These parallel MAC 

architectures employ new techniques such as partitioned accumulation and concur-

rent rounding and overflow correction. The resulting architectures are subsequently 

parameterized in terms of their area-time requirements for corresponding Actel 1.2z 

technology implementations, and are verified by using Viewlogic simulations. 

Chapter 4 is concerned with a rigorous theoretical approach to MAC-modularization 

of digital filter SFGs. This approach consists of graph-theoretic techniques and their 

subsequent translation into algorithms for MAC-modularization. Taking into account 

the fact that several MAC-modularized digital filter SFGs can result starting from 

the same initial SFG, a fitness function is developed for the selection of the optimal 

SFG. This fitness function is based on finite-precision arithmetic effects exhibited 

by the corresponding MAC-modularized digital filters. Subsequently, enumerative 

and heuristic approaches to MAC-modularization are developed on the basis of the 

proposed fitness function. Finally, these approaches are incorporated in a software 

package called MAC-M for the MAC-modularization of digital filters. 

In Chapter 5, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 are illustrated 

by applying them to the design and implementation of a practical lowpass LDI [28] 

Jaumann [6] digital filter. The optimal MAC-modularized LDI Jaumann digital filter 

is obtained by using MAC-M. The resulting Jaumann digital filter is then parti-

tioned into three separate data-path modules by taking into account the inherent 

concurrency in the digital filter structure. This concurrency is then exploited to de-

velop a schedule in terms of state equations for each data-path module in order to 

facilitate efficient high-speed parallel implementation of the filter. The simulation 
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results demonstrate the achievable operational clock speed of 50 MHz, corresponding 

to a maximum permissible sample rate of 8.33 MHz for an Actel 1.2j.t technology 

implementation. This implementation is verified by using impulse response simula-

tions. The striking feature of this implementation is that its speed of operation is 

completely independent of the signal wordlength within the digital filter. 

Finally, Chapter 6 presents the conclusions and suggestions for future related re-

search. 
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CHAPTER 2 

THEORETICAL BACKGROUND FOR REDUNDANT 
NUMBER ARITHMETIC 

2.1 Introduction 

A generic DSP system consists of an arithmetic unit interposed between the input 

and output sub-systems, and a controller, as shown in the schematic in Fig. 2.1. The 

input sub-system accepts digital signals and converts them into a prescribed format 

required for further processing by the arithmetic unit. The arithmetic unit processes 

these digital signals in accordance with the operations required in the DSP algorithm. 

The controller governs the pattern of data flow within the DSP system. The combined 

operation of the input sub-system, arithmetic unit, and the controller, results in the 

application of the desired DSP algorithm to the internal input signal, generating the 

corresponding internal output signal. This output signal is then passed to the output 

sub-system which converts it into a format required at the output of the DSP system. 

CONTROLLER 

Digital 
Sample 
Input 

I 
N 
P 
U Data 

flow 
Path 

ARITHMETIC UNIT 

Flow of Processing 

'p. 

Data 
flow 
Path 

0 
U 
T 
P 
U 
T 

Figure 2.1. A Generic DSP System 

Transformed 
Digital 
Output 
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The main computation-intensive processing in a DSP algorithm is carried out by 

the arithmetic unit. It is therefore the computational capability of the arithmetic 

unit that has a major impact on the performance of the DSP system. The capability 

of the arithmetic unit is affected by a large number of factors, most importantly, the 

number representation, the processing methodology, the architecture, and the speed 

and density of the available VLSI technology. 

Section 2.2 presents a detailed discussion of the various number systems and pro-

cessing methodologies suitable for fixed-point DSP arithmetic functional units. This 

discussion is followed by an overview of the concepts underlying redundant number 

arithmetic in Section 2.3. Section 2.4 presents a rigorous mathematical approach for 

high-speed multiplication and MAC arithmetic operation using redundant number 

representations. This approach includes a 5-digit overlapped scanning technique for 

the recoding of radix-2 redundant numbers. This is followed by the development of 

two techniques to facilitate rounding of radix-2 redundant numbers. Finally, arith-

metic overflow processing issues for these numbers are discussed. 

2.2 Arithmetic Schemes for Fixed-Point DSP 

The computational capability of the arithmetic functional unit is affected by a num-

ber of factors, most importantly, the number representation, the processing methodol-

ogy, the architecture, and the speed and density of the available VLSI technology. Of 

these, the number representation and the processing methodology have a direct bear-

ing on the maximum speed achievable by the DSP system. This section is concerned 

with an introduction to the various arithmetic number systems, their features and 

properties, followed by an overview of the various available processing methodologies. 
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2.2.1 Number Representation 

The main factors involved in the implementation of a DSP algorithm are the 

manner in which numerical data are stored in memory, and how they are processed 

by the arithmetic functional unit. The choice of an appropriate internal number 

representation system has a simultaneous impact on the architecture and performance 

of the arithmetic unit as well as on the numerical scope available on the corresponding 

DSP system. 

Finite-precision digital arithmetic units restrict the permissible numerical repre-

sentations to finite length. Therefore, a good choice for the internal number represen-

tation and the processing methodology, together with a clever architectural design, 

affects both the accuracy of approximated real arithmetic as well as the efficient 

implementation of the machine operations. 

Broadly speaking, arithmetic number systems can be divided into the following 

three categories: 

1. Traditional Number Systems 

2. Non-traditional Number Systems 

3. Quasi-traditional Number Systems 

2.2.1.1 Traditional Number Systems 

The basis for most of the existing arithmetic functional units is the traditional 

radix number system. In this system, a radix-r number X is represented by a digital 

vector of (n + k)-tuples as [20] 

X = , XO.X_l,... X_k)r, (2.1) 

where the component xi for —k ≤ i < n - 1 is called the jth digit of the vector X 

with xi E {0, 1,... , (r - 1)}, and where r (≥ 2) is the radix of the number system. 
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Moreover, the first n digits , xo) form the integer portion of the number 

X, and the remaining k negatively indexed digits (x_i,... , x...,) form the fractional 

portion of the number X. A radix-point is used to divide these portions. 

Traditional number systems may be further categorized as [20]: 

1. Fixed-radix number system 

2. Mixed-radix number system 

3. Weighted-radix number system 

In the fixed-radix number system, all digits assume the same radix value r. A 

fixed-radix number A having a radix r is represented as 

A = (a_1afl_2 . . . ao),., (2.2) 

where a_1 represents the sign digit which assumes the value r - 1 (0) if A < 0 (≥ 0). 

For A ≥ 0, an-l= 0, and the magnitude of A may be represented as 

JAI =   (mfl...2mfl_1 . . . mimo)r, (2.3) 

where mi = ai for all i E {(n - 2),... , 1, 0}. For the corresponding negative number 

represented by A, on the other hand, there are the following three distinct fixed-point 

number representations: 

Sign-Magnitude Number Representation 

A = ((r - 1)m_2 . . . mimo)., (2.4) 

where mi for i E {(n - 2),... , 1, 0} represents the i-th magnitude digit, and where A 

and A differ only in their sign digits. 

Diminished-Radix Complement Number Representation 

1)iYifl2 . . . (2.5) 
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where fni = (r —1)— mi for i E {(n —2),... ,1,O}, and where A = r' —1—A. The 

radix-2 version of this number representation is called the one's complement number 

representation. 

Radix Complement Number Representation 

A = (((r - 1)ni_2 ... ihiñio) + 1)r, (2.6) 

wherein  = (r— 1)—mi for i E {(n —2),... ,1,0}, and where A = r'2 —A. The 

radix-2 version of this number representation is called the two's complement number 

representation. 

Two's complement (TO) number representation (TCNR) is in widespread use 

nowadays due to its simplicity in representation, processing, and storage [17]. TCNR 

system forms a major topic of discussion in this thesis. 

The mixed-radix number system assumes different radix values in different digit 

positions, and the weighted-radix number system associates a variable weighting factor 

to each digit position [20]. 

2.2.1.2 Non-Traditional Number Systems 

Traditional number representations suffer from the inherent drawback of carry 

(borrow)-propagation in the addition (subtraction) arithmetic operation which ad-

versely affects the maximum processing speed achievable by the corresponding arith-

metic functional units. Non-traditional number systems employ unconventional means 

of number representation to limit/eliminate carry (borrow)-propagation. These num-

ber systems find application in time-critical DSP systems. 

Non-traditional number systems can be mainly categorized as: 

1. Residue Number System 

2. Logarithmic Number System 



13 

3. Rational Number System 

4. Redundant Number System 

Residue numbers [11, 20] have no weighting factor assigned to the digit positions. 

The residue digits in a residue number can be processed independently, allowing 

totally carry-free computation. 

Logarithmic numbers [12, 20] are represented by exponentials in order to speed up 

multiplication and division in terms of addition and subtraction operations, respec-

tively. They also enable geometric rounding in order to enhance number accuracy. 

However, the addition and subtraction of logarithmic numbers is achieved by using 

look-up tables. 

Rational numbers [20] allow the representation of numeric quantities as fractions 

in terms of numerator-denominator integer pairs. Any arithmetic operation on such 

numbers always results in rational numbers. This allows closed operations [20] with-

out resorting to infinite precision arithmetic, leading to extremely high accuracy. The 

rational number system is still in the theoretic stage with regards to implementation. 

Redundant numbers [2, 20, 35] allow redundancy to exist in the number representa-

tion, thereby permitting a single algebraic value to be represented in several different 

ways. This redundancy forms the key to the elimination of carry-propagation, allow-

ing very high-speed computation. Redundant arithmetic forms the main component 

of the discussion in this thesis and is dealt with in greater detail in Section 2.3. 

2.2.1.3 Quasi-Traditional Number Systems 

Quasi-traditional number systems are a hybrid combination of traditional and non-

traditional number systems. A typical quasi-traditional number system is the radix-2 

hybrid-redundant number system proposed in [8]. In this number system, parts of 

the number are in radix complement representation, while the remaining parts are in 
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redundant number representation, allowing the carry-propagation chains to be limited 

only to a certain desired fraction of the complete wordlength. The quasi-traditional 

number systems are beyond the scope of the present thesis. 

2.2.2 Processing Methodology 

The processing methodology dictates the nature of the data-flow within the DSP 

system. Therefore, it has a direct impact on the maximum achievable speed and the 

hardware area requirement of the DSP system. There are four distinct processing 

methodologies available: 

1. Bit-Serial Processing 

2. Bit-Parallel Processing 

3. Digit-Serial Processing 

4. Serial-Parallel Processing 

Bit-serial implementations process one input bit at a time and are ideal for low-

speed applications [25]. Such implementations require fewer interconnections, less 

hardware, and less pin-out. Bit-parallel implementations, on the other hand, process 

all the bits of a word/sample in a single clock-cycle, and require the largest amount of 

area, interconnection, and pin-out [47, 13]. These implementations are ideal for ap-

plications requiring maximum speed. Digit-serial implementations attempt to strike 

a compromise between the bit-serial and bit-parallel implementations by processing 

more than one bit per clock-cycle [22]. These implementations are ideal 'for moderate 

speed applications, where the bit-serial processing is too slow, and the bit-parallel 

processing is more expensive in terms of area than necessary. Serial-parallel imple-

mentations also attempt to take advantage of both bit-serial and bit-parallel imple-
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mentations by processing one of the operands serially and the other in parallel in a 

single clock-cycle [39]. 

2.3 Redundant Number Arithmetic 

Traditional number representation systems suffer from the inherent problems of 

carry (borrow) propagation in the addition (subtraction) operation, limiting the per-

formance of DSP systems. Redundant numbers, on the other hand, allow redundancy 

to exist in the number representation, thereby permitting a single algebraic value to 

be represented in several different ways. This redundancy forms the key to the elim-

ination of carry (borrow) propagation, for very high-speed computation. 

2.3.1 Signed-Digit Number Representation 

Signed-Digit (SD) Number Representation (SDNR) [2, 7, 20] systems form a class 

of number representations which employ redundancy in representation to limit the 

carry (borrow) propagation to one digit position to the left (assuming right to left 

arithmetic operation) during addition (subtraction) operation, thereby allowing the 

elimination of carry (borrow) propagation chains. SDNR may be considered as an 

extension of the fixed-radix system in the sense that it permits positive and negative 

weighted digits in the allowable digit-set. 

Given a radix r, each digit of a SD number can assume the following 2a + 1 

values [20] 

Or={,... ,I,0,1,... ,a}, (2.7) 

where a represents —a, and where the maximum digit magnitude a must be within 

the region 

r-1  
2 1_a_ri. (2.8) 

In the above equation, 1.1 denotes the ceiling function. Taking into account the fact 
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that a ≥ 1, Eqn. (2.8) implies that r ≥ 2. In order to ensure minimum redundancy in 

the balanced digit set °'r, a must be chosen equal to [11 ], where L.J denotes the floor 

function. The radix-2 SD system has the digit-set 02 = f 1,  0, 1} and is also known as 

the signed-binary (SB) number representation (SBNR) [29]. Similarly, the radix-4 SD 

system can have the digit-set o = {, ], 0, 1, 2} which constitutes the minimum re-

dundancy digit-set and is also known as the modified radix-4 representation. Another 

possible digit-set for r = 4 is o = {, , 1, 0, 1,2, 3}. 

2.3.1.1 Conversion between SDNR and Traditional Radix-r Number Sys-
tem 

Let X = (xe_i,... , xi, Xo)r be a traditional radix-r number, and let 

Y = , yj, /)r be the equivalent SD number representing the same algebraic 

value. Then, the conversion from X to Y is carried out by generating an interim 

difference digit di for every digit xi as [20] 

di = xi - (2.9) 

where b 1 = 0 (1), if xi <a (>a). The i-th SD .yj is then obtained as 

y=d1+b. (2.10) 

The conversion of the SD number Y back to the traditional form X is achieved by 

x = iYi - IY-1, (2.11) 

where + (Yj represents the positive (negative) component of Y, and where 

denotes the magnitude function. 

2.3.1.2 SDNR Addition and Subtraction 

Consider a SD number represented by n+m+1 digits z (i = m,... , 1, 0, —1,... , —n) 

and having the algebraic value 

M 

Z =  (2.12) 
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where the values of r and zi are such that the following requirements are satisfied [2]. 

1. r is a positive integer. 

2. The algebraic value Z = 0 must have a unique SD representation. 

3. There exist transformations between conventional sign-magnitude rn-digit rep-

resentation and SD rn-digit representation for every algebraic value within the 

machine representable range. 

4. Totally parallel addition and subtraction is possible for all digits in correspond-

ing positions of the two SD operands. 

The arithmetic operations of totally-parallel addition and subtraction of the two 

digits zi and yj from the corresponding i-th positions of the representation of the SD 

numbers Z and Y are defined as follows [2]: 

Definition 2 Addition of digits zi and yj are considered totally parallel if the following 

two conditions are satisfied: 

1. The sum digit s (i-th digit of the sum S = Z + Y) is a function of only z, y, 

and the transfer digit tj from the (i - 1)-th position on the right: si = f(z, y, ti). 

2. The transfer digit t 1 at the (i + 1)-th position on the left is a function only of 

the augend digit zi and the addend digit yj: t 1 = g(zj, y). 

Definition 3 Totally parallel subtraction of yj from zi is performed as the totally 

parallel addition of the additive inverse of y, i.e., z - yi = z + (). 

The addition of the two digits zi and yj are therefore carried out in two successive 

steps. In the first step, an outgoing transfer digit and an interim sum digit Wi 

are formed such that 

zi + yi = r.t114 + Wi. (2.13) 
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In the second step, the sum digit si is formed in accordance with 

w + t. (2.14) 

As shown in [2], the above definitions lead to the conditions 

IzI ≤ r - 1, 

ti E {I,O,1}, 

and 

(wjl<r -2. 

Finally, by using Eqns. (2.15) through (2.17), one arrives at [2] 

r> 2, 

for totally parallel addition using SDNR. 

2.3.2 Signed-Binary Number Representation 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The requirement for carry-free addition and subtraction places a restriction on the 

value of r (c.f. Eqn. (2.18)). However, a need to develop carry-free computation for 

the case of r = 2 (which represents SBNR) arose due to the fact that it allows simple 

two-level logic realization, and is extremely suitable for VLSI implementation. It has 

been demonstrated in [2] that totally carry-free addition is possible for a modified SD 

representation if the addition rules in Eqns. (2.13) and (2.14) are modified to allow 

for the propagation of the transfer digit over two digit positions to the left. The 

resulting addition is executed in three successive steps in accordance with 

zi + y = r.t 1 + w, 

w+t,=r. Fl +w, 

(2.19) 

(2.20) 
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and 

Si = w + 1', (2.21) 1. 

where z, y, and si represent the i-th modified SD positions. 

The relationships in Eqns. (2.19) through (2.21) can be translated for a two-step 

carry-propagation free addition in SBNR as follows [34]. In the first step, the interme-

diate carry ci E {I, 0, 1} and the intermediate sum digit s E {I, 0, 1} are determined 

at each digit position so that they satisfy the relationship z + Yi = 2c +i + s, as 

shown in Table 2.1 [34], where X can assume any value from the digit set {I, 0, 1}. In 

the second step, s and ci are added to form s, noting that this addition does not 

generate any carry. Fig. 2.2 demonstrates an example for such a carry-free addition 

in SBNR. 

Table 2.1. Computation Rule for First Step in Carry-Propagation Free Addition 

Zi Yi Zi_l,Yi_1 Cii sit 

1 1 X 1 0 

1/0 0/1 both ≥0 1 I 
1/0 0/1 either or both <0 0 1 

0 0 X 00 

1/1 1/1 x 0 0 

I/O 0/1 both ≥0 0 I 

I/O 0/1 either or both < 0 I 1 

I I .x 10 

2.3.2.1 SBNR Two-Level Encoding 

There are two main methods for the two-level logic encoding of SB numbers for 

digital implementation, each of which can be minimally-redundant or maximally-
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zi 

yl 

Si 
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1 1 

0100 

I 000 

1 0 

111000100 

Step 1 

Step 2 

Figure 2.2. Example of Carry-Free Addition using SBNR 

redundant. Minimally-redundant encodings employ a restricted set of two-level logic 

values to represent the SB-digits, leading to a unique two-level logic representation 

for each SB-digit. Maximally-redundant encodings, on the other hand, exploit the 

maximum redundancy available in two-level logic, leading to a non-unique two-level 

logic representation for certain SB-digits. 

The above mentioned methods for two-level SB number encoding are: 

1. Negative-Positive (n, p) Encoding: In the (n, p)-encoding, the digits yj of a SB 

number Y are represented in their (negative, positive) form given by (y,yt) 

where y,-.represents the negative part and yt represents the positive part of the 

digit y. 

2. Sign-Value (s, v) Encoding: In the (s, v)-encoding, the digits yj of a SB num-

ber Y, are represented in their (sign, value) form given by (yj, yfl, where y 

represents the sign and y' represents the value (magnitude) of the digit y. 

These encodings are given in their minimally and maximally redundant forms as 

shown in Table 2.2. 

2.3.2.2 SBNR Addition and Subtraction Cells 

SBNR addition and subtraction cells for minimal two-level encoding have been 

reported in [34] and [42]. 
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Table 2.2. SBNR Two-Level Encodings 

yi minimal: maximal: (yr, yt) minimal: (y', yfl maximal: (! y) 
0 (0,0) (0, 0), (1,1) (0,0) (0, 0), (1,0) 

1 (0,1) (0,1) (0,1) (0,1) 

I (1,0) (1,0) (1,1) (1,1) 

Adder Cell for Minimal (n, p)-encoding 

[34] formalized the results in Table 2.1 for the addition of Z and Y using minimal 

(n, p)-encoding in accordance with 

Zid = Z + zt 

Yid = Y + yt 

Pi = 

Ui = Zjd..P i_i + .Yid•Pi-1 + Zt.yjd + Zjd.yt 

ti = Zjf.JjrJ.fj_ + Yid'Pi-1 + + Zid.Yzd.Pi_1 

= 

Si = ti.Ui_l 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Adder Cell for Minimal (s, v)-encoding 

Similarly, [42] formalized the results in Table 2.1 for the addition of Z and Y using 

minimal (s, v)-encoding in accordance with 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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= u.3;:T (2.33) 

z ED Vi-1 (2.34) 

2.3.3 Mixed SB/TC Number Addition and Subtraction 

Redundant number arithmetic has found widespread application in TC multipli-

cation due to its carry-free addition property. Several bit-parallel [47] multipliers use 

intermediate redundant number representation to achieve high-speed TC multiplica-

tion. These approaches carry out the intermediate partial product summations in 

purely redundant number arithmetic. However, such approaches require fully redun-

dant adders which are two to three times more VLSI area expensive compared to 

conventional full-adders. 

Several methods have been investigated to reduce the area costs of TC multipliers 

employing redundant number arithmetic. One such method is to use mixed SB/TC 

number addition and subtraction [4, 42]. 

2.3.3.1 Theoretical Background for Mixed SB/TC Number Addition and 
Subtraction 

Consider a N-digit SB number Y given by 

N-i 

(2.35) 

and a N-bit TC number X given by 

N-2 

X = _XN_12N' + x2t Xi E {O, 1}. (2.36) 

Let the digits yj in Eqn. (2.35) be represented in their maximal (n, p)-encoding. 

The sum S of Y and X is expressed as 

S = Y +X. (2.37) 
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Substituting Eqns. (2.35) and (2.36) in Eqn. (2.37), one obtains 

N-2 

S = (—xN_1 + y-1 - y )2N_i + (x + yt - Yi (2.38) 

In order to achieve uniform addition, Y (X) is extended one position to the left by 

padding with a zero (sign extension), to yield 

N-i 

S = XIJ2'V +E (x + yt - yfl21. 

Table 2.3. Generation of and s 

yi xi st,.1 sl 
00 

10 

To 

0 

1 

0 

0 

1 

1 

01 1 1 

11 1 0 

Ii 0 0 

(2.39) 

The SB sum terms in their maximal (n, p)-encoded form are generated as shown in 

Table 2.3. By using the results in Table 2.3, Eqn. (2.39) yields 

N—i 
S = _XN 2N +E (2s+ - sfl21. (2.40) 

By using the fact that the 2Nth term in Eqn. (2.40) corresponds to a negative power, 

one obtains 

N-i 

= 8-2N + E (2st,. - sfl21 + 4, 
1=0 

where $ = 0. Eqn. (2.41) can now be written as 

N N 

S = (s - s1)2 = 
1=0 1=0 

(2.41) 

(2.42) 
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It can be observed that Eqn. (2.42) represents S in its SB format. Moreover, it can 

be observed from Eqns. (2.39), (2.40), and Table 2.3 that the process of mixed SB/TC 

number addition is totally carry-free. Mixed SB/TO number subtraction Y - X can 

be achieved in a similar manner, the only difference being that all the bits of X are 

now complemented and $ = 1. 

The above addition and subtraction operations can be implemented by using Type-

1 Full-Adders [4, 2OJ. Fig. 2.3 and Fig. 2.4 demonstrate mixed SB/TO number addi-

tion and subtraction, respectively. 

- + 

5N S  

- + 

8N 8N 

- + 

XN1 'N-i 1'N-i 

- + 

5N-i 5N-i 

- + 
xi Yi Yi X  Yo Yo 

- + 

S i S i 

Figure 2.3. Mixed SB/TO Number Addition 

XN1 'N-i 'N-i 

- + 

5N-i N-1 

- + 
xi Yi Yi 

- + 

S 0 S 

X  Yo Yo 

- + 

Si Si 

- + 
s0 S0 

Figure 2.4. Mixed SB/TO Number Subtraction 

0 

i 

A similar theoretical approach can be developed for the (s, v)-encoded representa-
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tion of Y and S. The addition and subtraction circuits for the minimal (s, v)-encoding 

based mixed SB/TC number arithmetic are shown in [42]. 

2.4 Theoretical Background for High-Speed Multiplication 
and MAC Operation using SB Arithmetic 

This section outlines a theoretical background for high-speed multiplication and 

MAC operation using SB arithmetic. A novel overlapped scanning technique for the 

modified radix-4 recoding of SB numbers is presented together with its mathematical 

proof, algorithm, and implementation. This is followed by a mathematical devel-

opment of rounding techniques for SB arithmetic, resulting in two algorithms for 

high-speed SB rounding. Finally, the overflow processing aspects of SB arithmetic 

are discussed. 

2.4.1 Modified Radix-4 Recoding of SB Numbers 

The key point in high-speed multiplication is the reduction of the number of in-

termediate partial-product components, and the carry-free computation of the cor-

responding partial-product sums. While the former involves number transformation, 

the latter is achieved by redundant number addition/subtraction. 

Number transformations require the recoding of a given N-digit number to a 

digit redundant number, where k ≥ 1. Such transformations are called multibit-

recoding and are well known in the case of TC numbers. They permit the recoding of 

TC numbers to minimally-redundant radix-r SD numbers (with r ≥ 2). Of these, the 

most popular recodings involve the cases of r = 2 (conventional-Booth recoding [3]) 

and r = 4 (modified-Booth recoding .[36]). The modified-Booth recoding is used in 

almost all the recoded-TC multiplication units, and conducts a 3-bit overlapped scan-

ning on a given TC multiplier in order to convert the multiplier into its corresponding 

modified radix-4 representation having the digit-set {, I, 0, 1, 2}. This allows the gen-

eration of the intermediate partial-product components by uniform shifting, zeroing, 
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and/or negation of the multiplicand, thereby permitting high-speed and efficient VLSI 

implementation. However, there is need for such a recoding scheme for SB numbers 

in order to facilitate high-speed fully-SB multiplication. 

In the following, a novel 5-digit overlapped scanning technique is developed for 

recoding SB numbers to their corresponding modified radix-4 format [49] for high-

speed fully-SB multiplication. 

2.4.1.1 Theoretical Background for Modified Radix-4 Recoding of SB-
Numbers 

Let Y represent an N-digit SB-number in accordance with 

N—i 

Y= yE{i3O,1}. (2.43) 
1=0 

Moreover, let a 5-digit overlapped scanning of the digit-sets 

< Y2n+3 Y2n+2 Y2n+1 Y2n Y2n-1 > 

be carried out successively for n = —1,0,... , - 1) (taking yj = 0 for i < 0 or 

i> (N - 1)) to form the digits 

where wn+i 

and tfl 1 

zn+1 = wn+1 + tn+1, 

represents the weight digit in accordance with 

Wn i = j 2Y2n+3 
+ Y2n+2 

if !/2n+3 = Y2n+2 

if Y2n+2 = 0 and Y2n+3 = Y2n+i 
otherwise 

represents the transfer digit in accordance with 

- f Int((y2,i + Y2n)/2) if Y2n 0 
tn+i - Int((j2+i + Y2n-1)/2) if Y2n = 0, 

(2.44) 

(2.45) 

(2.46) 

and where Int(.) represents the integer part of its argument. Finally, let the (ff1 +1)- 

digit radix-4 number Z be formed in accordance with 

N i 1 

= Zn+14fl+i . (2.47) 
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Theorem 2.1 The number Z in Eqn. (2.47) constitutes the modified radix-.4 repre-

sentation of the SB-number Y in Eqn. (2.43). 

Proof Consider the case when J2Y2n+1+Y2nI ≥ 2 (including t2Y2n+3+Y2n+21 542 

and I2Y2n+3 + Y2n+21 = 2), and the case when I2Y2n+1 + Y2nI < 2. By applying 

Eqns. (2.44), (2.45) and (2.46), and by carrying out an exhaustive enumeration, one 

obtains 

tz+iI <2. (2.48) 

Furthermore, by considering the cases, I2Y2n+1 + Y2nI < 2, I2Y2n+1 + Y2n1 = 2, and 

I2Y2n+1 + Y2n I > 2, and by applying Eqns. (2.45) and (2.46) exhaustively for every 

possible instance of the transfer and weight digit, one obtains 

4t+i + Wn = 2Y2n+1 + I/2n. 

Eqn. (2.43) can now be expressed as 

(11-1) 
(2y2+1+y2)4. 

i=O 

By using Eqn. (2.49) and by partitioning, one obtains 

(11-') 1 (11-1) 
Y = E t1+14+' + 

i=O i=O 

(2.49) 

(2.50) 

(2.51) 

By making use of the fact that to = 0, and the fact that w rE21 =  0, and by applying 

Eqn. (2.44) to Eqn. (2.51), one obtains 

(11-') 
Y= z 14'', (2.52) 

where the right-hand side corresponds to Eqn. (2.47), leading to 

Z = Y (2.53) 

The proof is established by the fact that Eqn. (2.48) restricts the magnitude of 

each digit to less than 3, and by the fact that Eqn. (2.53) indicates that the algebraic 

value of the original number is preserved. U 
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2.4.1.2 Algorithm for Modified Radix-4 Recoding of SB-Numbers 

The SB-number Y can now be recoded into its corresponding modified radix-4 

form Z by using Theorem 2.1. This can be achieved by using the pseudo-code in 

Algorithm 1 below. 

Algorithm 1 

input: Y in SBNR; 

output: Z in modified radix-4 SDNR; 

begin 

read Y; 

initialize Z=O; 

set y=O for i<O or i>(N-1); 
for n = —1 to (11 —1) 
begin 

select the digits Y2n+3, !12n+2, Y2n+1 112n, Y2n-1 

compute from the selected digits using Eqn. (2.45); 

compute t from the selected digits using Eqn. (2.46); 

zn+1 = wn+1 +in+1'; 

Z = Z + Zn+i41 

end 

write Z; 

end. 

Fig. 2.5 demonstrates the application of Algorithm 1 (Page 28) to a 16-digit SB-

number Y = (1110100111100011)2 (= (58913)jo). It is clearly observed that the final 

output Z = (102221201)4 is the modified radix-4 representation of Y, and that it 

preserves the algebraic value (58913). 

2.4.1.3 Implementation of the Modified Radix-4 Recoding of SB-Numbers 

This section is concerned with the implementation of the above 5-digit overlapped 

scanning technique. In what follows, t1 and are derived in terms of their 
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1 0 7 2 7 1 0 1 

Figure 2.5. Illustration of the Application of the Recoding in Algorithm 1 (Page 28) 

(s, v)-encoded forms given by 

Wni <sw +1 ,bw +1 ,aw +1 > (2.54) 

n+1 E <8t +1 ,at +1 > (2.55) 

In these equations, and represent the signs of and respectively. 

a +1 and represent the 2°-component of and t,.1, respectively. b +1 

represents the 2'-component of 

The equations for the (.s, v) representations of and t 1 are developed in 

terms of y, y, and y'. Here y, y, and y are used to indicate that the y-th digit 

of the input word Y is 0, 1, and I respectively. 

_O' 1 0 1 1 0 1 1 0 1 
- Y2n+3Y2n+2 T Y2n+3Y2n+2 T Y2n+3Y2n+2Y2n+1 T Y2n+3Y2n.i-2Y2n+1 

_____ (2.56) 

- Y2n+3Yn+ (2.57) 

A (2.58) 

s+1 = (2.59) 

aj+, 
_1 0 1 I 0 I 1 1 I 
- Y2n+1Y2n•Y2n-1 r Y2n+1Y2n•Y2n-1 -I- Y2n+1•Y2n 1 Y2n+pY2n (2.60) 

Eqns. (2.56) to (2.60) are now used to derive the final output in terms of z, 1. Again, 

is represented in its (s, v)-encoded form as shown below 

(2.61) 
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In Eqn. (2.61), s 1, b2+1, and a+1 represent the sign, 21-component, and the 20 

component of zi respectively, and are given by 

s11 - .sfl1 + s t+1 .b +1 .at +1 

s 1 a wn+1 .sTt--n+j .atn+1 + .a +1 .s1 .aj +1 + b +1 .aj +1 

= a +1 .b +1 .aj+1 + a +1 .at+1 + b +1 .at +1 

2.4.2 Rounding Techniques for SB-Arithmetic 

(2.62) 

(2.63) 

(2.64) 

The multiplication [47] of two single-precision numbers results in a double-precision 

product. For further storage and processing, this double-precision product must be re-

duced to a single-precision result while ensuring minimum deviation from the double-

precision product. This reduction is achieved by rounding [32]. Rounding forms a 

critical operation in arithmetic functional units. In order to ensure widespread com-

patibility, current and future arithmetic functional units must adhere to well defined 

and efficient rounding schemes. Several such rounding schemes already exist, most 

notably the IEEE standard 754 default rounding to the nearest/even (RNE) [32], and 

the rounding to nearest/up (RNU) schemes being in widespread use [18]. 

The following discussion deals with the development of rounding techniques for 

SB-arithmetic. A relationship that exists between the number truncation in TC-

arithmetic and the corresponding truncation in SB-arithmetic is derived. This rela-

tionship is subsequently exploited and applied to the development of a pair of novel 

techniques for SB rounding. These techniques are then translated into algorithms 

suitable for two-level logic implementation. 

2.4.2.1 SB RNU and RNE Techniques 

The relationship between the number truncation using TC arithmetic and the 

corresponding operation using SB arithmetic is derived. This relationship is subse-
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quently exploited together with the existing TC RNU and RNE techniques [32] to 

arrive at the corresponding techniques for RNU and RNE of SB numbers [53]. 

Truncation of TC numbers and its equivalent in SBNR 

The relationship between TC number truncation and the corresponding operation for 

SB numbers is presented. 

Let U represent a N-bit TC number in accordance with 

N-2 

U—UN-1 2 +E u2', Ui E {O, 1}. 
i=O 

Similarly, let V represent a N-digit SB-number 

N-i 

V= E vj22, vE{I,O,1}. 

(2.65) 

(2.66) 

Moreover, let U (V) be partitioned into its most significant word UMSW (VMSW) and 

least significant word ULSW (VLSW) in accordance with 

N-2 N-i 

UMSW = tN_l2M 1 +E u22 (VMSW = v2), 
i=K 

K-i K-i 

ULSW ti22 (VLSW = E v2), 

(2.67) 

(2.68) 

where the term 2' corresponds to the least significant bit (digit) of UMSW (VMSW), 

so that 

and 

Finally, let 

U = UMSW + ULSW, 

V = VMSW + VLSW. 

(2.69) 

(2.70) 

U = V. (2.71) 

The following lemma establishes the relationship between ULSW and VLSW. 
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Lemma 1 ULSW can be expressed in terms of VLSW as 

ULSW VLSW if VLSW ≥O 
= VLSW + 2K otherwise. 

Proof Let VLSW be expressed as 

K-i 

VLSW = VK 2K +E i32' , 

where UK E {O, 1, I} represents the sign digit, and v3j E {O, 1}, for VLSW. Then, 

K-i 
o ≤ f52t < (2K - 1). 

(2.72) 

(2.73) 

(2.74) 

Based on Eqns. (2.69) through (2.71), and Eqn. (2.73), a relationship between 

ULSW and VLSW can be determined based on the following two cases. 

Case (a): VLSW ≥ 0. In this case, Eqns. (2.73) and (2.74) lead to UK = 0. Therefore, 

by using 0 ≤ ULSW < (K - 1), together with Eqn. (2.71) and the fact that values in 

this range are not expressible in powers-of-2 higher than K - 1, it follows that 

ULSW = VLSW. (2.75) 

Case (b): VLSW < 0. In this case, Eqns. (2.73) and (2.74) lead to UK = I. Therefore, 

by using Eqn. (2.73), one obtains 

K 

VLSW = _2K + >J21. 

From Eqn. (2.74) and case (a), it follows that 

K 

= Uj,sw. 

Substituting Eqn. (2.77) into Eqn. (2.76), one obtains 

ULSW = VLSW + 2K 

Together, cases (a) and (b) complete the proof. 

(2.76) 

(2.77) 

(2.78) 

U 
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Let UTRUN be the result of truncating U by dropping ULSW. Mathematically, this 

can be represented as 

UTRUN = U - ULSW. (2.79) 

Then, UTRUN can be obtained from V in accordance with the following lemma. 

Lemma 2 UTRUN can be obtained from V as 

IVMSW if VLSW≥O 
UTRUN 1. VMSW - 2K otherwise. (2.80) 

Proof By using Eqn. (2.79), Eqn. (2.71), and by partitioning V on the basis of 

Eqns. (2.69) and (2.70), one obtains 

UTRUN = VMSW + (VIJSW - ULSW). (2.81) 

The proof is completed at once through the application of Lemma 1 to Eqn. (2.81). 

Rounding of TC numbers and its equivalent in SBNR 

The existing TC RNU and RNE techniques are exploited together with Lemma 2 to 

derive the corresponding operation for SB numbers. 

Let ULSW (.VLSW) be represented as 

where 

ULSW = UK_12K' + ULSW, 

11 n K-1 ri 
VLSW = VK_1h + VLSW, 

K-2 
rr - 
1)LSW = 2_.. ULz, 

i=O 

K-2 

LSW = 
i=O 

and where UK-1 (VK_1) represents the round [32] bit (digit). 

(2.82) 

(2.83) 

(2.84) 

(2.85) 
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Table 2.4. RNU for SB-numbers 

Rounded 

Value 
1pLsw ≥ 0 Vi,sw <0 

Vjc_izO,l VK_1—1 VK_10,l VK_1 = l 

VRNU VMSW VMSW + 2K VMSW VMSW - 2K 

Theorem 2.2 The RNU value of V as represented by VRNU can be derived from 

Eqn. (2.83) and Eqn. (2.70) as given in Table 2.. 

Proof The proof proceeds by applying TC RNU to U, and by deriving its 

corresponding equivalent operation as applied to V through the help of Lemma 2. 

It is known that TC'RNU of U is carried out by the addition of a term 2K1 to 

U, followed by the truncation of the resulting number up to and including the term 

21'_1 [32]. 

The addition of a 2'' term to U can be mathematically represented by using 

Eqns. (2.69) and (2.82) as 

(U + 2K_i) = UMSW + (UK-1 + 1)2<_1 + ULSW. 

By invoking Eqns. (2.71), (2.70), and (2.83) in Eqn. (2.86) one obtains 

(U + 2K_1) = VMSW + (vK_1 + 1)2K_1 + 

(2.86) 

(2.87) 

Next, let (U + 2'< ')TRUN be the result of subtracting the algebraic value of ULSW 

from (U + 2K_1) given by 

(1/ TT + c h ITT h )TRUN = (() + Ki c ) - K-1\ fl 

Then, based on Eqns. (2.87) and (2.88), one can distinguish two cases: 

Case (a): "z,sw ≥ 0. In this case, Lemma 2 yields 

TT K-i\ 
IU I + h )TRUN TI = VMSW + I,VK.1 + i)L 

(2.88) 

(2.89) 
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To obtain VRNU from Eqn. (2.89), the effect of (VK_1 + 1)21 _1 must be taken into 

account first, followed by the truncation of the resulting 2' 1 th term. 

By substituting the possible values of VK_1 in Eqn. (2.89), one obtains 

(U + 2K _l)TRUN _ I TI 
VMSW +L 

VMSW + 2K 

VMSW 

if VK-1 = 0 
if VK...1 = 1 
If VK-1 = I 

(2.90) 

By retaining the terms 2',... , 2N1 in the above equation, and through a second 

application of Lemma 2, one obtains 

VRNU = I VMSW+2'< if Vj_j>O 
VMSW otherwise. 

Case (b): i,sw <0. In this case, Lemma 2 yields 

ITT nK-1  r,K-1 
IV + h )TRUN = VMSW + VK_1 

By substituting the possible values of vK_1 in Eqn. (2.92), one obtains 

I VMSW if VK_1 = 0 
(U + 2K_l)TRUN = VMSW + 2K-1 if vj<....i = 1 

I. VMSW - 2K-1 if vK_1 = 1 

(2.91) 

(2.92) 

(2.93) 

By retaining the terms 2K ,••• ,2N1 in the above equation, and through a second 

application of Lemma 2, one obtains 

f V,f$W2' ifvK_1<0 

VRNU = 1 VMSW otherwise. 

Together, cases (a) and (b) complete the proof. U 

Theorem 2.2 forms the basis for the derivation of the RNE value of V. 

(2.94) 

Theorem 2.3 The RNE value of V as represented by VRNE can be derived from 

Eqn. (2.83) as given in Tables 2.5 and 2.6. 

Proof The proof is established by demonstrating the validity of the results in 

Table 2.5, followed by establishing the validity of the results in Table 2.6. 
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Table 2.5. SBNR RNE for VLSW 54 0 

Rounded 

Value 
LSW > 0 f2 sw <0 

VK_i=O,l VK_1 1 VK_1=O,l VK_1=l 

VRNE VMSW VMSW + 2K VMSW VMSW - 2K 

Table 2.6. SBNR RNE for isw = 0 

Rounded 

Value VK_1 = 0 VK_1 = 1 VK_i = 1 

VRNE VMSW 

VK=O VKO VKO VK:/:4 0 

VMSW VMSW + 2K VMSW VMSW - 

The relationship between RNU and RNE in TC number representation is as given 

in Table 2.7 [32], where X can take on any value from the digit set {0, 1}, and where 

d represents a don't care condition. Clearly, the results produced by RNU and RNE 

are identical when ULSW 0 0. This implies that VLSW 54 0, and consequently the 

results in Table 2.5 hold from Theorem 2.2. 

From Table 2.7, it can be seen that RNE differs from RNU only when UK = 0, 

UK-1 = 1, and ULSW = 0 (the latter implying that i,sw = 0). This leads to the 

following three cases regarding V, depending on the possible values for VK_1. 

Case (a): VK_1 = 0. This case implies that UK-1 = 0. The use of Theorem 2.2 and 

Table 2.7 yields 

VRNE = VMSW. (2.95) 
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Table 2.7. Relationship between TC RNE and RNU 

Before Rounding Add to 

UK-1 

UK After 

Rounding 

UK UK-1 ULSW RNE RNU UK RNE U RNU K 

x 0 =0 d 1 x x 
x 0 540 d 1 X X 

0 1 =0 0 1 0 1 

1 1 =0 1 1 0 0 

X 1 5140 1 1 x 31 

Case (b): VK_1 = 1. In this case, the use of Theorem 2.2 yields 

K 
VRNU=VMSW+2 . 2.96 

By substituting various possible values for vK, and by using the result in Eqn. (2.96), 

one obtains the following. 

1. vK = 0: This implies that UK = 0 and UK-1 = 1. By using Table 2.7 and 

Eqn. (2.96), 

VRNE = VRNU - 2K  = VMSW. (2.97) 

2. vK h 0: This implies that UK = 1 and UK-1 = 1. By using Table 2.7 and 

Eqn. (2.96), 

VRNE = V TI RNU II = VMSW + 

Case (c): VK_i = I. In this case the application of Theorem 2.2 yields 

VRNU=VMSW. (2.99) 

By substituting various possible values for VK, and by using the result in Eqn. (2.99), 

one obtains the following. 
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1. vK = 0: This implies that UK = 1 and UK-1 = 1. By using Table 2.7 and 

Eqn. (2.99), 

VRNE = VRNU = VMSW. (2.100) 

2. vK 54 0: This implies that UK = 0 and UK-1 = 1. By using Table 2.7 and 

Eqn. (2.99), 

it K 
YRNE = VRNU - n = V i, MSW h 

The proof for the results in Table 2.6 is completed by cases (a), (b), and (c). 

This completes the proof of Theorem 2.3. 

2.4.2.2 Algorithms for SB RNU and RNE 

Theorems 2.2 and 2.3 are recast into algorithms suitable for RNU and RNE of 

SB numbers. These algorithms employ a pair of two-level logic based SIGN and 

STICKY indicators for the state of sw, where SIGN is 0 (1) if sw ≥ 0 (<0), 

and STICKY is 0 (1) if flLsw = 0 (54 0). The pseudo-code for the algorithms is as 

follows. 

Algorithm 2 RNU of SB Numbers. 

input: V; 

output: VRNU; 

begin 

read V; 

decompose V into VMSW, VK_i, and Vi,sw; 

compute SIGN from Vi,sw; 

VMSW >> K; /* Shift K digit positions right. *1 
if (SIGN == 0) 

if (vK_1 == 1) 

VRNU = VMSW + 1; 

else 
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VRNU = VMSW; 

endif 

else 

if == I) 

VRNU = VMSW - 1; 

else 

VRNU = VMSW; 

endif 

endif 

write VRNU; 

endif. 

Algorithm 3 RNE of SB Numbers. 

input: V; 

output: VRNE; 

begin 

read V; 

decompose V into VMSW, VK_1, 

compute STICKY from Vr,sw; 

if (STICKY == 0) 

VMSW >> K; /* Shift K digit positions right. 

if (VK_1 == 0) 

VRNE = VMSW; 

else if (VK_1 == 1) 

if (VK == 0) 

VRNE = VMSW; 

else 

VRNE = VMSW + 1; 

endif 

else 

if (vK == 0) 

VRNE = VMSW; 

else 

VRNE = VMSW - 1; 

endif 

and Vr1sw; 

*1 
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endif 

else 

compute VRNU from V using Algorithm 2 (Page 38); 

VRNE = VRNU; 

endif 

write VRNE; 

end. 

2.4.2.3 Implementation of the SB RNE Algorithm 

Generalized equations for the implementation of the SB RNE algorithm (c.f. Al-

gorithm 3 (Page 39)) are developed. In order to obtain VRNE, a correction (CR) is 

applied to the least significant digit of VMSW. In order to simplify the implementa-

tion, CR 15 represented in terms of its minimal (n, p)-encoded SB format as (ci, AR). 

By using Algorithm 3 (Page 39), one can generate CR as shown in Table 2.8, where X 

can take on any value from the digit set {i, 0, 1} for vK, and any value from the digit 

set {0, 1} for SIGN and STICKY. 

Table 2.8. SBNR Correction Generation for RNE 

VK_1 VK STICKY SIGN AR cR Add to VMSW 

1 

1 

x 
0 
3?:0 

x 
0 

0 

x 
x 
X 

0 

00 

1 

0 

0 

0 

0 

1. 

1 x 1 1 00 0 

1 X 1 0 10 1 

I 0 0 X 00 0 

I x 1 1 01 I 
I 5?:0 0 X 0 1 1 

1 x 1 0 00 0 
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From Table 2.8, the generalized equations for generating CR are given by 

C'R = (vK_i = 1).(VK 54 O).STICKY + (VK_1 = 1).STICKY.SIGN 

= (v = I).(vK 0).STICKY + (VK_i = STICKYSIGN 

2.4.3 Overflow Processing for SB Arithmetic 

(2.102) 

(2.103) 

Consider the addition of two SB numbers X and Y to generate the final SB repre-

sented sum S. In traditional arithmetic, an overflow occurs if the algebraic value of 

X + Y is not representable in the available wordlength of S. However, in the case of 

redundant number arithmetic, an overflow can occur even when the algebraic value 

of X + Y is within the machine representable length of S. In this way, overflow in 

SBNR addition can be categorized as either correctable or non-correctable. 

Let the N-digit SB numbers X and Y be represented as 

and 

N-i 

X=x12 xE{J,0,1} 
i=O 

N-i 

Y yE{i3O,1}, 

respectively. Furthermore, let the SB sum S (= X + Y) be represented as 
N-i 

S SN2N+ sE{i3O,1}, 

where SN represents the overflow detection-and-correction digit. 

(2.104) 

(2.105) 

(2.106) 

Lemma 3 The overflow indicated by 8N 0 is correctable if the first non-zero digit 

to the right, given by Sk, satisfies the condition 

.sign(sN) 52 sign(sk), (2.107) 

where sign() denotes the sign of its argument. 
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Proof Given that an overflow exists, Eqn. (2.107) indicates that the corrected 

digits s through s_ assume the algebraic value given by SN2N - sk2k. Since 

this algebraic value is representable in the digit range {k,... , (N - 1)}, the overall 

algebraic value of the sum S is representable in the digit range {0,... , (N - 1)}. 

Therefore, the overflow is correctable. U 

Alternative proofs for correctable overflow can be found in [2] and [35]. 

Correctable overflows can be corrected by additional processing involving extra 

computation cycles or extra hardware resources. 

An overflow is left uncorrected, if after the attempted correction, the corrected 

digit s 0. Provided that the system is appropriately designed, all the overflows 

occurring within the system must be correctable. DSP-systems employing fixed-point 

fractional arithmetic are designed to prevent overflows. In such systems, only directly 

correctable overflows can occur. 

Definition 4 A directly correctable overflow occurs if 

(SN 0 SN-1) 54 0. (2.108) 

In this case the corrected digit values s and s_ can be determined as 

s'=0 

s_1 - 23N - SN_i. 

(2.109) 

(2.110) 

Lemma 4 In fixed-point DSP systems based on fractional arithmetic, only directly 

correctable overflows can occur. 

Proof In fixed-point DSP systems based on fractional arithmetic, the absolute 

maximum algebraic value of S (given by ISMAX I) is restricted as 

ISMAXI ≤ 1. (2.111) 
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Based on Eqn. (2.111) and the fact that 8N-1 corresponds to the 2°-term in fractional 

arithmetic, any resulting overflow must obey Eqn. (2.108). Therefore, the overflow is 

directly correctable (c.f. Definition 4). 

A different treatment of overflow effects in SBNR can be found in [9]. 

2.5 Chapter Summary 

This chapter has presented a rigorous theoretical background for redundant num-

ber arithmetic for applications in DSP systems. 

Section 2.2 has dealt with the arithmetic schemes available for fixed-point DSP. 

This included a discussion of the various possible arithmetic number systems, namely, 

the traditional, non-traditional, and quasi-traditional number systems. In addition, 

a discussion was included regarding the processing methodology fér DSP systems. 

In Section 2.3, the theoretical background has been presented for redundant num-

ber arithmetic. The properties of SDNR and the concept underlying carry-free addi-

tion and subtraction have been discussed, leading to the extension of the results to 

SB and mixed SB/TC number arithmetic. 

In Section 2.4, a rigorous mathematical approach has been presented for high-speed 

multiplication and MAC arithmetic operation using SBNR. This approach included 

a novel 5-digit overlapped scanning technique for the modified radix-4 recoding of SB 

numbers. This has been followed by the development of two techniques facilitating 

RNTJ and RNE of SB numbers. These techniques have been established by devel-

oping a relationship between number truncation in SB and TC arithmetic, and by 

exploiting this relationship together with the available TC RNU and RNE techniques. 

Finally, arithmetic overflow processing issues for SB numbers have been discussed to-

gether with its ramifications regarding directly correctable overflows in fixed-point 

DSP systems. 
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CHAPTER 3 

HIGH-SPEED REDUNDANT NUMBER ARITHMETIC 
ARCHITECTURES 

3.1 Introduction 

This chapter presents the exploitation of the theoretical results in Chapter 2 for 

the development of novel design and implementation techniques for high-speed VLSI 

multiplication and multiply-accumulate (MAC) arithmetic operations. 

The discussions begin with the development of a technique for very high-speed 

mixed SB/TC digit-serial [22] modified-Booth [36] multiplication, where the high-

speed property is realized by eliminating the carry propagation in partial product 

sum computation. The resulting multipliers incorporate IEEE Standard 754 default 

rounding presented in Algorithm 3 (Page 39). It is shown that the area-time effi-

ciency and throughput of these multipliers far surpass those of the existing digit-serial 

modified-Booth multipliers [15]. It is also shown that the use of redundant number 

arithmetic is most attractive for fully parallel multiplication and MAC operations. 

The discussions proceed by using mixed SB/TC number arithmetic together with SB 

RNE technique (c.f. Algorithm 3 (Page 39)) for the development of a high-speed 

mixed SB/TC MAC arithmetic architecture. The resulting architecture employs the 

new techniques of partitioned accumulation and concurrent rounding and overflow 

correction. Subsequently, the modified radix-4 recoding technique (c.f. Algorithm 1 

(Page 28)) is used to extend this architecture to handle fully-SB parallel MAC arith-

metic operation. 

The above developments also include the parameterization of each of the proposed 

architectures in terms of their area-time requirements for the corresponding Actel 

1.2/1 technology implementations. The resulting implementations are subsequently 

verified by using Viewlogic simulations. 
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The proposed high-speed mixed SB/TC digit-serial modified-Booth multipliers are 

developed in Section 3.2. Section 3.3 presents the architecture for high-speed mixed 

SB/TC parallel modified-Booth MAC arithmetic operation. Finally, Section 3.4 

presents the high-speed fully-SB parallel MAC arithmetic architecture. 

3.2 High-Speed Mixed SB/TC Digit-Serial Modified-Booth 
Multiplication 

In practical DSP applications, it may be desirable to combine the area-efficiency 

of a bit-serial architecture with the time-efficiency of a corresponding bit-parallel ar-

chitecture into a single area-efficient and time-efficient digit-serial architecture [16]. 

Digit-serial architectures [22, 38] process multiple bits of the input data word per 

clock cycle, where the number of bits processed in each clock cycle is referred to as 

the digit size. A systematic unfolding technique was presented in [22] for the de-

sign of digit-serial architectures. In [16], this approach was exploited and applied to 

the design and implementation of TC digit-serial modified-Booth [36, 3] multipliers. 

Unfortunately, TC number arithmetic suffers from the inherent carry/borrow propa-

gation problems. For higher values of the digit-size, the carry/borrow chain increases 

in length, resulting in an increased critical path length and reduced achievable oper-

ational speed. In addition, the underlying digit-serial unfolding technique increases 

the bit-level pipelining distance by the digit-size, forming another propagation path 

which is orthogonal to the original carry/borrow propagation path. 

The creation of the above propagation paths sets an upper limit on the achievable 

operational speed in the existing digit-serial modified-Booth multipliers, rendering 

these multipliers area-efficient and time-efficient only for digit-sizes close to 4. In 

addition, these modified-Booth multipliers require sign extension of the intermediate 

partial product sum components for correct TC multiplication which leads to lengthy 

and non-uniform interconnects in the corresponding hardware implementation. Such 

interconnects grow with increasing the digit size. 
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This section deals with a novel approach to high-speed digit-serial modified-Booth 

multiplication based on mixed SB/TC number arithmetic [48]. The resulting high-

speed property is realized by eliminating the above carry/borrow propagation in the 

constituent partial product sum computations. This is achieved by computing the 

partial product sum components in SB format, while maintaining the corresponding 

intermediate partial product components in TC format. IEEE Standard 754 rounding 

of the resulting full-precision SB product is achieved by using Algorithm 3 (Page 39). 

The rounded product is subsequently converted into its TC format by employing a 

simple high-speed look-ahead conversion. 

The salient feature of the resulting digit-serial modified-Booth multipliers is that 

they permit very high throughputs for arbitrary values of the digit size. Moreover, 

they lead to combined area-efficient and time-efficient implementations even for the 

values of the digit size exceeding 4 where the conventional modified-Booth multipliers 

begin to become inefficient. In addition, they do not involve any sign extension, 

permitting uniform implementations with highly localized interconnections (suitable 

for practical implementation in VLSI). 

3.2.1 Theoretical Background for High-Speed Mixed SB/TC Digit-Serial 

Modified-Booth Multiplication 

In the proposed mixed SB/TC digit-serial modified-Booth multiplication approach, 

the M-bit TC multiplicand XTC and the N-bit TC multiplier yTC are first de-

composed into a set of D radix-2' components XrC and }CTC, respectively, where 

i E 10,11 ... , D— 1}, and where D is the digit size (the mathematical details underly-

ing this decomposition are presented in [15]). The conventional modified-Booth recod-

ing technique is then applied to the decomposed components YTC by an overlapped 

scan on triplets.of the multiplier bits Y2n+1,112n, and Y2n.-1 (for n E {O, 1,... , f1-1}, 
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with y = 0) to obtain the full-precision TC product as 

N i 1 

pTa = Z XTC4n , 

- where 

n0 

Zn = qn (2bn +.a), 

where an, b, and the sign bit s, are obtained from the multiplier bits as 

an = Y2n-1 Y2n, 

= (Y2n-1 Y2n).(Y2nY2n+1), 

= Y2n+1, 

and where q, is defined in terms of the sign bit s, as 

if Sn = 0 
if S, = 1. 

By representing the full-precision TC product in Eqn. (3.1) in its SB format as 

D-1 M+N-1 
pSB = E pB = j Pn2nj Pn E {I,o,i}, 

i=O n=O 

one can form the corresponding digit-serial full-precision product components pSB in 

accordance with 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

N r 
12 

PS  = E PPTC ' 

(3.7) 

(3.8) 

where the constituent intermediate partial product components ppTC are given by [15] 

PPT Pn C [anXTC 21(2714 1—t)1Di D + bfl XC2n)modD 2 1(2n—i)/)i 
(i-2n-1)mc'dD 

(3.9) 

for i E {0,1,... ,D— 1}. 

The full-precision product components p.SB for each value of i can be determined 

as 

DS - B DDCSB 
I i -11 (3.10) 
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through successive applications of the recursive relationship 

PPSSB =PPS+ TC pp 

in n. 

(3.11) 

The salient feature of Eqns. (3.11) is that it permits the computation of the terms 

PPSf+1 independently of each other for the various values of i, which is made 

possible due to the absence of carry/borrow propagation between the terms PPSf F1 

and PPSB1 for ii i2 E {O,1,... ,D - 1}. Then, the corresponding TC product is 

obtained as 

pT0 = ppS+I - JpSBI (3.12) 

The proposed digit-serial modified-Booth multipliers exploit the above parallelism 

in terms of i (arising from mixed SB and TC computation) together with that in terms 

of n (arising from the nature of digit-serial computation) to secure a very high-speed 

multiplication. 

3.2.1.1 Algorithm for Mixed SB/TC Digit-Serial Modified-Booth Multi-
plication 

The pseudo-code for the mixed SB/TC digit-serial modified-Booth multiplication 

is as follows. 

Algorithm 4 

input: XTC,YTC,M,N,D ; 

/* M and N are multiplicand and multiplier wordlengths, respectively. *1 
/* D is the digit size. */ 

output: RNE; 

begin 

read XTC, yTC M, N, D; 

for i = 0 to D-1 do 

begin 
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PPS 3 =0 

decompose XTC and yTC into radix2' components X/' C and yTC 

end 

for n = 0 to f] - 1 do 

begin 

z, = (-'2Y2n+1+y2n+y2n-1); 

evaluate Pn, an and bn from Z; 

for i0toD-ldo 

begin 

pp7' = p1 ( bnX(i....2n_1)modD 21(2n+1-i)/D1 D + anX(i....2n)modD 2 1(2 i)/D] D) ; 

pD8SB - PPSf +ppT,; .L - 

end 

end 

initialize pSB =0• 

for ± = C to D-1 do 

begin 

DSB_DDOSB 
.Lj 11 it 

pSB = pSB + .FB2i; 

end 

decompose pSB into its MSW and LSW; 

Apply Algorithm 3 (Page 39) to pSB and obtain 

PT - DSB+ SB-
1 RNE £RNE - .LRNE 

•- DTC write 1RNE' 

end. 

DSB 
.L RNE' 

3.2.2 Mixed SB/TC Digit-Serial Addition and Subtraction 

The architecture of a mixed SB/TC digit-serial adder for a digit size of D is as 

shown in Fig. 3.1, where A denotes the bit-delay operator. This architecture shows 

the addition of a TC number X and a SB number Y. There are lcm(N, D)/N two-

input multiplexors associated with this adder, where lcm() denotes the lowest common 

multiple of its arguments. The multiplexors are shown in dotted lines since they exist 
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only when the condition i = NmodD, 2NmodD, ..., [(lcm(N, D)/N - i)N]modD is 

satisfied. If the condition is not satisfied, the associated multiplexor does not exist 

and the signal ct is directly connected to the output st. It can be observed that the 

absence of any carry-propagation path from one Ti-adder to another ensures constant 

addition time (equal to the delay through a Ti-adder), regardless of the digit-serial 

unfolding factor D. 

0 

9 
Si 

S -1 

Figure 3.1. Mixed SB/TC Digit-Serial Addition 

The architecture of a mixed SB/TC digit-serial subtractor is as shown in Fig. 3.2. 

The subtraction is achieved by complementing all the bits of the TC number X to 

be subtracted from the SB-number Y. When the LSB signal is indicated by the 

SELj signal, a i is fed to the st output. Again, it can be seen that the subtraction 

operation is totally borrow-free. 
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1 

Figure 3.2. Mixed SB/TC Digit-Serial Subtraction 

3.2.3 Architecture for High-Speed Mixed SB/TC Digit-Serial Modified-

Booth Multipliers 

This subsection is concerned with the translation of Algorithm 4 (Page 48) into 

an architecture for the design and implementation of very high-speed mixed SB/TC 

digit-serial modified-Booth multipliers. The proposed implementation consists of a 

tandem connection of ({N/21 + 1) modules as shown in the schematic diagram in 

Fig. 3.3. The first (IN/21 - 1) modules in this diagram are structurally identical. 

Furthermore, the {N/2]-th module is the same as its predecessor modules save for the 

fact that it contains an additional pre-rounding circuit. Finally, the (1 N/2] + 1)-th 

module contains the circuit for rounding and digit-serial SB to TC conversion. 

The communication between the (IN/21 + 1) modules in the proposed digit-serial 
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multiplier occurs as follows. The first [N/21 modules have Xli, Y11, MSWI1, LSWI, 

CI, and CLI as their input signals, while having XO, YO, MSWO, LSWO1, CO, 

and CLO as their corresponding output signals (except for the output signals of the 

I N/2]-th module which will be discussed later). Here, X11 (X01) and YI (Y01) rep-

resent the decomposed TC multiplier input (output) and TC multiplicand input (out-

put) components, respectively. Moreover, MSWI1 (MSWO1) and LSWI1 (LSWO) 

represent the SB most-significant digit input (output) and SB least-significant digit 

input (output) components, respectively. Finally, CI (CO) represents the multiplica-

tion control signal input (output), and CLI (CLO) represents the rounding control 

signal input (output). 

The IN/21-th module generates the output signals MO1, Sticky, Sign, and CO, 

which are then consumed as input signals by the (IN/2 + 1)-th module. Here, 

MO1 represents the truncated product, and Sticky and Sign represent the rounding 

correction to be applied to MO1 to result in the final rounded SB product. The 

(IN/21 + 1)-th module generates the IEEE Standard 754 rounded TC product P1 

with its least significant bit synchronized to the rising edge of the signal CO. 

lut Module 

xxi xoi xxi 

yli Yoi yxi 

MSWXI MSWOi MSWXI 

LSWII LSWOI LSWIi 

CX Co CX 

CLI CLO CLI 

xoi Mu 

RND 

Sticky 

Sign 

CO 

(N/2 + l)-th 
Round-and-
Convert 
Module 

Figure 3.3. Level-i Architecture of Mixed SB/TC Digit-Serial Multiplication Unit 
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Each of the modules are described in the following, for generalized values of D, n 

and i. 
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3.2.3.1 Generic Hardware Module for Mixed SB/TC Digit-Serial Modified-
Booth Unit for General Values of D, n, and i 

The generic hardware module constitutes the modules 1 through (1 N/2] - 1), as 

shown in Fig. 3.4 for general values of D, n, and i. This module has D vertically 

stacked sub-cells for computation of the partial product sum components in terms of 

LSWO(i+l)modD and MSWO(j+l)modD. The dotted elements are present only if the 

condition given is satisfied. If the condition fails, the output of the preceding element 

is directly connected to the input of the current element. The heavy lines represent 

the pair of signals required to carry a single S13-digit. 

C3n-1)mc.a o • 
D r' 

(3n)mod 0 • 0-1 

Cxx 

((3n+i)mod D)+1 

P.....S 

((3n+i)rnod P)+i 

B(,d p.....0 

D-1, ..., ((3n+l )uod 0)-il 

(3n.i)nod 0.....0 

Si 

(n)mod P • P-i 

CLO 

Cii-. Si 

(3n,2)bcd P 

d y 

Cii4 

J4SWIi-

HSWII, 

7  i • 0-1. 2 (i+2)iod P • 7  P-i 

ci 

7 1 
i • 0-i f't! 

Ct(i41)ro 0-. 

Do 
(i XI *3)znod P 

2X (1.3) D 

yl i 

P-i 

[j 
0 iD-i 

L1- ri 
•i)irod P 

._r LZj 

C' 

I (in.2. 3)mod P 

0-1 

LSWU LSWO (11) 

Cxx 

H Co 

So 
(i4i)mod P 

Figure 3.4. Generic Hardware Mixed SB/TC Digit-Serial Multiplication Module for 
Generalized Values of D, n and i. 

The decomposed multiplier components Y shown in the module in Fig. 3.4, are 
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used to form the terms A, Bi and S, which are then used to form the intermediate TC 

partial-product components pp. The i-th Ti-adder sums the pp-th component with 

the MSWI-th component. This addition generates the components C and Ct 1. 

The component Ct is subsequently combined with Cit to generate the (i+ i)modD-

th SB-digit in the form of PPSO(i+l)modD. The assertion of the signal CI forces the 

first digit of the corresponding PPSO1 to be sent out as the LSWO. The component 

CI 1 however, constitutes the positive part of the next higher power-of-two digit, 

and is generated in the same or the next clock cycle depending on the value of i (c.f. 

Fig. 3.4). 

The control signals associated with the modules are given by [15] 

Cl-,= CI[[(3n + 1)/DJ - [(3 - D)n/Dj - n] (3.13) 

ci - f CI[[(3n + 2)/DJ - [(3 - D)n/Dj - n] for i = (3n + 2)modD 

- GND otherwise (3.14) 

Ciz - .1 CI[L(3n + 2)/D] - [(3 - D)n/Dj - n] for i = (3n + 2)modD 
- CI[[(3n + 3)/DJ - [(3 - D)n/Dj - n] for i = (3n + 3)modD (3.15) 

In addition, the control-signal CLI is passed through these modules with the delay 

existing only if the specified condition is satisfied. This signal indicates the compu-

tation of the least-significant-digit of the product. 

It can be observed that the partial product sum is in SBNR. This means that there 

is no sign-extension required for the MSW0j components. Therefore, it is sufficient 

to attach zeros to the most-significant part of MSWOi during the assertion of CL. 

This is unlike traditional TC multiplication, where sign-extension is required. The 

absence of sign-extension in the proposed multipliers results in local interconnections 

of short length within the modules. This is a definite advantage in comparison to 

the fully TC digit-serial modified-Booth multipliers, where sign-extension introduces 

global connections of large lengths within the corresponding modules. 



55 

From Fig. 3.4, it can be observed that the PPSO1 components are computed in 

parallel, with the computation time being independent of the digit-size (due to the 

absence of carry-propagation)-

3.2.3.2 Pre-Rounding Module for the Mixed SB/TC Digit-Serial Modified-
Booth Unit for General Values of D, n, and i 

The architecture of the Pre-rounding module (which corresponds to the F1-th 

module) is shown in Fig. 3.5. This module consists of three sections, namely, the 

Encoder, the Decoder and the Pre-Round section. The Encoder and Decoder sections 

operate in the manner described in the previous section except for the fact that 

PPSOi redirection towards LSWOj does not occur in the Decoder. Furthermore, the 

MSW of the product is directed towards MOj once C4 is asserted in the Decoder. 

SB The round-digit corresponding to pf2 is extracted and passed separately to the 

next module in the form of RND. This digit is formed at the (3n + 2)modD-th 

cell in the Decoder on the assertion of CI.. Simultaneously, the Pre-Round section 

computes the SIGN and STICKY bits. SIGN is generated by first computing a 

generalized bit-value SCj for the i-th LSWI by taking into consideration the sign of 

the its immediate least-significant word. Table 3.1 depicts the encoding scheme for 

the generalized SC, where X can take on any value from the digit set {O, 1}. 

Table 3.1. Computation of the Generalized SC 

LSWI Intermediate SIGN upto LSWI SC 

0 

0 

1 

1 

0 

1 

1 

0 
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I (3n)eod 0 • 0-1 

CIX 
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Figure 3.5. Pre-Rounding Module for Generalized Values of D, n, and i. 

The components SC1 are all generated in parallel using a lookahead section [20]. 

This is achieved by examining the positive and negative parts of each LSWI1 as 

shown in Fig. 3.5. The computation of the least-significant SB-component (pgB) of 

the product is indicated by the assertion of the signal CLL. This initializes the SIGN 

and STICKY-bit generation logic. SIGN corresponds to the last SC1 generated on 

the assertion of CI,,. STICKY is also generated from the lookahead section. It can 
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be observed that, computing the STICKY-bit is very simple since all the LSWIs 

are in S13-format. The assertion of CI, causes the SIGN and STICKY-bits to be 

latched for further processing by the (1 N/21 + 1)-th module. 

3.2.3.3 Round and Convert Module for the Mixed SB/TC Digit-Serial 
Modified-Booth Unit for General Values of D, n, and i 

The outputs of the Pre-round module are fed to the Round and Convert module. 

This module carries out the following functions: 

Rounding (IEEE Standard 754 RNE) of the SB-MSW. 

. Conversion of the final S13-RNE result into its corresponding TC-form. 

The IEEE Standard 754 RNE is carried out by using the (N - 1)-th digit (i.e. 

LS-digit of the SB-MSW) in conjunction with the SIGN, STICKY and RND in-

formation generated by the Pre-Round module. The correction CR (c.f. Eqns. (2.102) 

and (2.103)) is generated as shown in Fig. 3.6, and is subsequently applied to the 

MSW of the product in two steps. The principle underlying this two-step correction 

is explained with an example in Fig. 3.7, which depicts the application of a correction 

of +1 ((ci, cj) = (0, 1)) to the SB-number 1101. 

The incoming SB-MSW is first recoded in Step-1 as shown in Table 3.2. This 

allows the negative component of the correction (ci) to be applied without generating 

a carry/borrow. The resulting SB-number after the negative correction is re-recoded 

as shown in Table 3.3, to allow the positive component of the correction (AR) to be 

consumed without generating a carry/borrow. Fig. 3.7 depicts the process. 

The rounding is triggered on the assertion of the signal CIX, by the application of 

the two-step correction to W. R02 are generated in parallel, and are subsequently 

consumed by the lookahead converter [20] in order to form the TC-result PTG'. The 

degree of lookahead possible for a given digit-size depends upon the number of inputs 
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Figure 3.6. Round and Convert Module for Generalized Values of D, n, and i. 

Co 

per gate available in the given technology, and the position of the multiplexer as shown 

in the lookahead section of Fig. 3.6. The least significant bit of PTc is synchronized 

with the CO signal. 

3.2.4 Re-pipelining 

Digit-serial structures are generated by systematic unfolding [22] of the correspond-

ing bit-serial structures. However, the unfolding process also increases the critical 

path lengths by spreading them over the digit-size. 

The unfolding of conventional fully TC bit-serial multipliers to result in the cor-

responding TC digit-serial multipliers gives rise to two critical paths as shown in the 
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Step 1 
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1C 

Figure 3.7. Principle Underlying the SB Rounding (An Example). 

Table 3.2. Step 1 of SBNR Correction 

Incoming SB - digit Recoded set 

0 

1 

1 

0,0 

0,1 

schematic in Fig. 3.8. The first critical path is the carry-propagation path which 

is shown by vertical dotted lines. This is eliminated in the proposed mixed SB/TC 

digit-serial modified-Booth multipliers by utilizing the carry-free addition/subtraction 

property of mixed SB/TC number arithmetic. The second critical path is the partial-

product sum computation path which is shown by horizontal heavy lines. This path 

arises due to the spreading of the bit-level pipeline over the digit-size after unfold-

ing. Re-pipelining is employed to break these horizontal propagation paths (achieved 

by inserting latches judiciously at certain intervals between modules). The required 

re-pipelining interval is determined in terms of the desired speed, look-ahead circuit 

speed, chip area, and permissible latency. 
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Table 3.3. Step 2 of SBNR Correction 

Incoming SB - digit Recoded set 

0 

1 

1 

0,0 

0,1 

Affo 

Unfolding by 3 

Figure 3.8: Critical Paths arising from Bit-Serial to Digit-Serial Unfolding. 

The optimal re-pipelining interval 0 required to maximize the efficiency of the 

multipliers can be computed as 

where 

0 = max[(T - io)/tTlj , OMIN], 

to = 3t+ tDFF + 2tMUX, 

(3.16) 

(3.17) 

and where tT1, tG, tDFF, and tMUX represent the delays through a Ti-adder, gate, 

D-flip-flop (DFF), and multiplexer (MUX), respectively. Moreover, 0MIN represents 

the minimum re-pipelining interval (which is equal to 1 in the present discussion), 

and T represents the minimum allowable clock period (c.f. Eqn. (3.19)). 
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3.2.5 Performance Analysis 

In this section, the proposed digit-serial multipliers are first parameterized in terms 

of their hardware and time requirements. Subsequently, their throughputs and effi-

ciencies are compared with those of the existing digit-serial modified-Booth multipliers 

both for various wordlengths and for various digit sizes. 

3.2.5.1 Parameterization 

Hardware Requirements 

The hardware requirements for the digit-serial multipliers are calculated in terms of 

the number of DFFs, Ti-adders, two-input MUXs, and auxiliary gates. The results 

are as shown in Table 3.4, where 

1 if (IN/21 + 1)modD = 0, 1, 
0 otherwise, 

(3.18) 

where F represents the maximum number of inputs-per-gate available in the target 

technology, and where 1 represents the look-ahead factor such that 0 < 1 < 1. 

Table 3.4. Area Requirements 

Type of Hardware Cell Requirement 

Ti-Adders D(N/2 + 1) 

2-input Multiplexors [(12— 4L1/D])(N/2 - 1)] + 10 
D-Flip-Flops 14(N/2)+12+ L(3 - D)N/(2D)j + (6D+2)( f(N/(2 x ))1 

- 

3 - EN/2-1 1) + / o fi3n + 1)modD/D1 

AND, OR and XOR gates (4D + 3 - L1/DflN/2 + 10 + 5D + FD/(F - 1)1 + 
2{Dl/(F - ')l + 2' 12 f(i + 1)/(F - 1)1 + 

(D-DI-1)/2 
F(i+1)/(F-1)1 

i(D1-1)/21 E j 
=0 f(k + 1)/(F - 1) 

f(D-D1-I)/21 

+ 
+ 

Minimum Allowed Clock Period 

The minimum allowed clock period T can be calculated through a worst-case analysis 
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(involving the remaining critical path) in accordance with 

T = (flogF(DI + 1)1 + flogF(D - Dl + 1)1)tG + 4tG + tMUX + tDFF, 
(3.19) 

if 0 is to be chosen as given in Eqn. (3.16). However, if 0 is chosen otherwise, the 

minimum allowed clock period is given by T' in accordance with 

= max[ T, (to + IjltTi) 1. (3.20) 

Computational Delay 

The computational delay of the proposed multipliers is given by [(3N)/(2D)] +[]+1 20 

bit-clock periods. Here, the computational delay refers to the time interval between 

the arrival of the least significant bit of the multiplicand (starting with CI to the first 

module being asserted) and the departure of the most-significant bit of the LSWO 

(i.e the least-significant bit of the rounded and converted product), starting with CO 

having been asserted. 

3.2.5.2 Comparison with Existing Digit-Serial Multipliers 

Fig. 3.9 shows the maximum possible throughput 

H = D/(MT) (3.21) 

for various values of the multiplicand wordlength M and the digit-sizes D with F = 4, 

1 = 0.5, and M = N. Here, F = 4 represents the maximum available inputs-per-gate 

for the Actel 1.29 technology, and I = 0.5 represents the average degree of lookahead 

possible for the various values of D and n. 

From Fig. 3.9, it can be seen that the throughputs of the proposed modified-

Booth multipliers increase linearly with increasing the digit size. This is due to the 

totally carry/borrow-free nature of the partial product sum computation, the look-

ahead nature of the final SB to TC conversion, and the re-pipelining employed in 
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the partial product sum formation. It can also be observed that the throughputs of 

the proposed multipliers (solid curves) are more than 2 to 3 times higher than those 

of the modified-Booth multipliers in [15] (dashed curves). In this way, the former 

multipliers are suitable for DSP applications requiring very high processing speeds. 

Figure 3.9. Throughput for F = 4, and I = 0.5, for the proposed multipliers (solid 
lines) and the multipliers in [15] (dashed lines) 

Fig. 3.10 shows the hardware area requirement of the proposed multipliers (solid 
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lines) for various values of the multiplicand wordlength M and the digit-sizes D with 

F = 4, 1 = 0.5, and M = N. A comparison with the corresponding hardware 

area requirements of the modified-Booth digit-serial multipliers in [15] (dashed lines) 

shows that the proposed multipliers require substantially higher hardware area. The 

hardware area requirement for the proposed multipliers shows sharper increase with 

increasing digit-sizes compared to the existing multipliers due to the increased need 

of repipelining latches. 

Fig. 3.11 shows the efficiency of the proposed multipliers for various values of the 

multiplicand wordlength M and the digit-sizes D with F = 4, 1 = 0.5, and M = N, 

where the efficiency is defined as throughput per unit area. By comparing the effi-

ciencies for the novel modified-Booth multipliers (solid lines) with the corresponding 

efficiencies for the modified-Booth digit-serial multipliers in [15] (dashed lines), it can 

be observed that the efficiencies of the former multipliers increase monotonically with 

increasing the digit-size, whereas those of the latter decrease after a digit-size of 4. 

This indicates that the novel multipliers are most suitable for digit sizes greater than 

4. Moreover, the efficiencies of the novel multipliers reach their maxima at D = 

indicating that the most area-time efficient radix-2 mixed SB/TC multiplier is the 

fully parallel multiplier. 

In summary, once the digit-size D and the multiplicand and multiplier wordlengths 

M and N are selected, one can use the design parameters F and 0 to arrive at the 

desired throughput and efficiency. This is in contrast to the existing digit-serial 

modified-Booth multipliers where the throughput and efficiency are fixed given D, 

M, and N. Moreover, most DSP algorithms require N < M, in which case there 

is marked reduction in the number of re-pipelining latches required in the proposed 

multipliers. This is predicted to result in a substantial reduction in the required 

area for a fixed achievable throughput, leading to a corresponding increase in the 

efficiency. The above predicted reduction is due to the strong dependence of the area 
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M=32 

M=22 

Figure 3.10. Hardware Area Requirements for F = 4, and I = 0.5, for the proposed 
multipliers (solid lines) and the multipliers in [15] (dashed lines) 

requirements of the proposed multipliers on the value of N. 

3.2.6 Verification 

The proposed digit-serial modified-Booth multipliers are verified through Viewlogic 

simulations using the Actel 1.2k technology. The simulation results for a digit-size of 

2 (3) are as shown in Fig. 3.12 (3.13), with the corresponding test vectors being as 
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Figure 3.11. Efficiency for F = 4 and I = 0.5, for the proposed multipliers (solid 
lines) and the multipliers in [15] (dashed lines) 

given in Table 3.5. 

In Figs. 3.12 and 3.13, XI[. 0] and YI[. : 0] represent the decomposed com-

ponents of the multiplicand and multiplier, respectively, and PO[. : 0] represents 

the decomposed components of the final TC product. Moreover, CI represents the 

input control signal with which the LSBs of the multiplicand and multiplier compo-

nents are aligned. In addition, SIGN and STICKY bits are indicated by SIGN and 
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Table 3.5. Verification Test Vectors 

Test Vector XTC yTC IEEE Rounded Product (TC) 

1 0.0011010 0.1010110 0.0010001 
2 1.1101001 0.1010110 1.1110001 

3 0.0011010 1.0110111 1.1110001 
4 1.1101001 1.0110111 0.0001101 

5 0.0011000 0.0011000 0.0000100 

SKY, respectively. Finally, MO[. 0] indicate the SB-MSW components in their 

non-rounded form and RND indicates the SB round-digit. RO[. : 0] indicate the 

rounded S13-components. The LSB of PO[. : 0] is synchronized with the rising edge 

of the CO-signal. All the SB-signals are indicated in their two-bit bus format using 

the maximal (n, p)-encoding. Therefore, the bus values of 3, 2, 1, and 0 indicate the 

SB-digit values of 0, I, 1 and 0, respectively. Note that the above multipliers have 

been built with 0 = 3. 

The functionality of the above multipliers is verified by comparing the simulation 

results in Fig. 3.12 and Fig. 3.13 with the expected results in Table 3.5. Further, 

the maximum operational speed and the computational delays of these multipliers 

have also been verified to be in agreement with the theoretically calculated values. 

Details regarding the architecture and operation of the above multipliers for D = 2 

and D = 3 are available in [46]. 

3.3 High-Speed Mixed SB/TC Parallel Modified-Booth MAC 
Arithmetic Architecture 

The operation of many DSP algorithms is based on repetitive accumulation of 

independently formed multiplication products. In such algorithms, the multiplica-

tion and accumulation operations can be combined naturally into a single indivisible 
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MAC [47] operation. This operation permits finite-precision arithmetic architectures 

which are less susceptible to the harmful effects of roundoff noise. The resulting ar-

chitectures lead to reduced chip bussing [40] and increased speed of computation in 

the corresponding VLSI implementations. Therefore, designing fast MAC arithmetic 

architectures is of key theoretical and practical importance on the part of computer 

scientists and engineers. 

The existing DSP systems usually employ TC number arithmetic [20]. The prob-

lems associated with the use of TC number arithmetic have already been discussed. 

These problems result in considerable reduction in the computational speed of DSP 

systems having large wordlengths. Redundant number arithmetic, on the other hand, 

features totally carry-free addition and subtraction, permitting the corresponding ar-

chitectures to be clocked at very high speeds. However, a design based on fully 

redundant number arithmetic is expensive in terms of VLSI chip area. This is the 

reason why redundant number arithmetic is used only in the intermediate processing 

stages in TC arithmetic functional units [4]. 

In [34], redundant number arithmetic was incorporated in the modified-Booth al-

gorithm [36] for the computation of the intermediate partial product sums, leading to 

the design of a high-speed bit-parallel TC digital multiplier. However, this technique 

requires the use of fully redundant number digital adders. Such adders are more 

expensive in terms of chip area than the conventional full-adders. 

Mixed SB/TC number arithmetic has shown a lot of promise for high-speed multi-

plication using minimum VLSI chip area. In, the previous section, it was shown that 

the most area-time efficient mixed SB/TC modified-Booth multipliers are the parallel 

multipliers. In this section, mixed SB/TC arithmetic is exploited together with the 

SB RNE technique (c.f. Algorithm 3 (Page 39)) for the development of a high-speed 

mixed SB/TC MAC arithmetic architecture [50]. 
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3.3.1 High-Speed Mixed SB/TC Parallel Modified-Booth MAC Opera-

tion 

Consider a MAC operation involving a M-bit TC multiplicand XTC, a N-bit TC 

multiplier yTC, and a M + N - 1-digit SB addend ASB, in accordance with 

pSB = XTC.YTC + ASB, 

where XTC, yTC and As' are given by 

and 

M-2 

XTC = _XM _12M 1 x12 xi E {O, 1}, 

yTC = _YM_12N 1 +E yi2 y E {O, 1}, 

M+N-2 

ASB = E a2 ai E {,O,1}. 
i=O 

(3.22) 

(3.23) 

(3.24) 

Furthermore, let ASB be partitioned into its most-significant word (MSW) MS and 

least-significant word (LSW) As' w in accordance with 

and 

M+N-2 
ASB - 

"MSW - L1 a,. 
iN-1 

N-2 
ASB _V' C)1 
'LSW - a.. 

i=O 

(3.25) 

(3.26) 

In the MAC arithmetic operation, the modified-Booth recoding is applied to the 

multiplier yTa by an overlapped scan on triplets of bits Y2n+1, Y2n, and Y2n-1 (for 

n E {O, 1,... , f] - 1}, with y = 0), to obtain the full-precision MAC result pB 

as 

ff1 1 M+N-2 

pSB = zxTc472 + ASB = p2 p E {i, 0, 1}, 

where z, is computed in accordance with Eqn. (3.1). 

(3.27) 
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The mixed SB/TC parallel MAC arithmetic operation is initiated by applying the 

modified-Booth recoding technique to the multiplier yT0 to generate the recoded dig-

its z,. These digits are used to compute the intermediate partial product components 

z XTc4 in TC format, while computing the intermediate partial product sums pSB 

in their SB formats by using the recursive relationship 

pSB = ZnXTC4fl + DSB 
• 

where pSB - ASB LSW''DnS<B1 = 0 and where P,j0 is given by 1  

n 
PnSB 3 ASB = z3XTc4 + '1LSW 

(3.28) 

(3.29) 

It is interesting to note that the generation of the intermediate partial product com-

ponents Zn X TC4n need not entail any loss of computational time as these components 

can be obtained as hard-wired shifted versions of the multiplicand XTC. It is also 

interesting to note that the the intermediate partial product sum components P do 

not require any sign-extension as they are already in their SB formats. Therefore, it 

suffices to use, instead, zero insertion at the most significant part of P,, simplifying 

the corresponding implementation. 

The recursion in Eqn. (3.28) proceeds for successive values of m = {O, 1,... , f] - 

1}, to generate the resulting SB-product P_1 = SB - ASB W .  This SB-product MS 

is then decomposed into its constituent MSW PmffW and LSW Pfj. Subsequently, 

pSB' ASB MSW t1MSW and CR are added concurrently using a radix-2 fully-redundant addition 

in accordance with 

PS t1 B nSB' ASB 
rRNE = rMSW + MSW + CR, (3.30) 

where CR represents an IEEE Standard 754 rounding correction. The rounded result 

RNE is converted to its TC format by using 

DTC - DSB+ DSB 
2 RNE 1RNE - 1 RNE (3.31) 
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where PE constitutes the final MAC result. 

In the case of DSP algorithms involving repetitive MAC arithmetic operations, 

the full-precision SB results obtained from the intermediate (i.e. all but the last) 

MAC operation(s) serve as the full-precision addends for the subsequent operations. 

Therefore, CR = 0 for the intermediate MAC operations, while CR E {O, 1, I} for the 

last operation. The last operation also involves the conversion of the overall SB result 

to its TC format in accordance with Eqn. (3.31). 

3.3.2 Mixed SB/TC Parallel MAC Arithmetic Architecture 

In this section, the theoretical results in Section 3.3.1 are exploited for the devel-

opment of an architecture for high-speed MAC arithmetic operation. The resulting 

MAC architecture is as shown in the schematic diagram in Fig. 3.14. 

In the above MAC arithmetic architecture, the TC multiplier Y is fed to a bank 

of Modified-Booth Recoder modules. These recoder modules convert the multiplier Y 

into its corresponding modified radix-4 redundant number representation [49]. The 

TC multiplicand X is fed to a bank of Modified-Booth Decoder modules within the 

MAC arithmetic functional unit kernel. The modified-Booth decoded outputs are fed 

in their TC formats to the Mixed SB/TO Adder rows. The first row of mixed SB/TC 

adders has the LSW of the result accumulated in the previous clock cycle (ALS w ) as 

its input. The full-precision result pSB is generated from the least significant digit Po, 

at the top-right corner, to the most significant digit PM+N-2, at the bottom-left corner 

of the MAC kernel. Each mixed SB/TC adder row generates the intermediate partial 

product sums pSB which contain the two digits P2n+1 and P2n belonging to Paw. 

These digits are consumed by the SIGN and STICKY Generation module to generate 

the indicators SIGN and STICKY. These indicators are fed to the Correction Logic 

module in order to generate the rounding correction CR. The (ff1 - 1)-th mixed 

SB/TC adder row generates Pj/s'w which is fed to the Rounding, MSW Addition, 
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and Overflow Correction module, to generate the IEEE Standard 754 rounded result 

RNE• The rounding operation for PRSNBE is controlled by the RND signal. The result 

RNE is subsequently accumulated by the MSW Accumulator while the LSW P T 

is accumulated by the LSW Accumulator. The content of the MSW Accumulator is 

subsequently converted to its TC format PENC E by the CLA Conversion module. 

In the proposed architecture, the overflow correction, rounding, and MSW-addition 

all occur concurrently. This is because redundant number arithmetic permits the 

addition operations at the most-significant part of the MSW-adder to be decoupled 

from those at the least-significant part of the MSW-adder. The overflow correction is 

applied at the most-significant part, while the rounding correction is applied at the 

least-significant part of MSW, to facilitate concurrency in computation. Additional 

information regarding the various modules in the architecture in Fig. 3.14 is given in 

the following subsections. 

3.3.2.1 Modified-Booth Recoder Modules 

The modified-Booth recoders carry out the 3-bit overlapped scan of the TC mul-

tiplier Y to generate z, in Eqn. (3.27) in terms of a, b, and si in accordance with 

Eqns. (3.3), (3.4), and (3.5). 

3.3.2.2 Modified-Booth Decoder Modules 

The modified-Booth decoders generate 0, ±1 and ±2 times the multiplicand X 

depending on the output of the modified-Booth recoders at the corresponding row 

position. The modified-Booth decoders in the n-th row generate the partial product 

components 

N-i 

zX4' = (oN 2V +E oi2')4 n, 

where the decoded components oi are determined in accordance with 

(3.32) 

oi = s (ax_i + bx), (3.33) 
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Figure 3.14. The Mixed SB/TC Parallel MAC Arithmetic Architecture 

where 0N = XN_1, and where x = 0. Moreover, si is fed as a carry to the corre-

sponding n-th mixed SB/TC adder row. 

3.3.2.3 Mixed SB/TC adder row 

The terms p.SB are generated by the mixed SB/TC adder for the n-th row. 
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3.3.2.4 SIGN and STICKY Generation Module 

As mentioned above, the MAC kernel generates the least significant digits two at 

a time. In this way, the SIGN and STICKY Generator computes the SIGN and 

STICKY indicators by considering two least significant digits at a time. Each two-

digit computation cell consumes sticky, signin, the jth least significant digit p, and 

the i - 1' least significant digit pi-1 as its inputs, and generates stick Yout and signout 

in accordance with 

stick Yout = p '_1 + p.sticky, (3.34) 

signout = pj + ;_1.y + signj.p 1.p/. (3.35) 

In this way, the output of the last (leftmost) computation cell corresponds to STICKY 

and SIGN. 

It can be observed from Eqns. (3.34) and (3.35) that the time required to compute 

.sticky0j and signotz2 for each pair of least significant digits is less than the time re-

quired for the mixed SB/TC addition. This means that for the (s, v) representation, 

stick Youi and sign,. can be computed faster than the least significant digit genera-

tion process, and consequently this operation can be carried out concurrently with 

the partial product addition operation. In contrast, the (n, p) representation requires 

longer time and a greater number of gates for such a computation. Therefore, the 

(s, v) representation is particularly attractive on the part of the SIGN and STICKY 

Generator. Moreover, it can be observed that the generation of the STICKY indi-

cator is much faster and easier in this case as compared to the cases of the traditional 

multipliers. 

3.3.2.5 Correction Logic Module 

The correction logic examines the round digit PN-2, the least significant digit of 

the MSW PN.i, SIGN, and STICKY and generates the correction information 
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required for proper rounding of the SB MSW. The RND signal enables rounding 

when high (logic 1), and disables rounding when low (logic 0). During intermediate 

repetitive MAC operations in a DSP algorithm, RND is held low to permit full-

precision accumulation. During the last MAC operation in the algorithm, RND is 

pulled high in order to round the SB result. Rounding is achieved by generating CR 

through the use of PN-1 and PN in accordance with 

cj = p 2.p_2.p 1.STICKY + p 2.p 2. STICKY. SIGN 
(3.36) 

and 

c = p 2.p 2.p 1.STICKY + p_2.p,_2. STICKY. SIGN 

(See also Eqns. (2.102) and (2.103)). 

3.3.2.6 Rounding, MSW-addition, and Overflow Correction Module 

(3.37) 

This module carries out the rounding and overflow correction of the result of the 

addition of PMSBSW to AP w. The central part of this module is a fully redundant 

MSW adder [42] which adds P'M, to Ajw. However, SBNR addition in fixed-point 

fractional arithmetic DSP-systems can result in a directly correctable overflow [49], 

requiring overflow correction immediately after the addition. An overflow occurs if 

the digit PN+M-1 generated by the MSW adder is non-zero. The overflow is always 

directly correctable if the absolute value of the final result is less than one. This occurs 

if P•M-1 and IpN+M—.1 I = IPN+M-2 I 0. The sign and value components 

of the most-significant digit of the final result after overflow correction are given by 

-'S 
rnSu correced 

7nsd ' corrected 

= P.r+M_1 + PY\TM_1.PsjM_2, (3.38) 

(3.39) P,r+M-1 + PYq-j-M_1.Pr—. 

The computation of msd orrected and msd rrecjed occurs concurrently with the appli-

cation of the rounding correction to the MSW, permitting very high-speed operation 
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in the resulting MAC arithmetic implementations. 

3.3.2.7 Accumulator Module 

This module accumulates the N + M - 1-digit result. It is divided into two parts, 

namely the MSW Accumulator and the LSW Accumulator. In this module, the pN-th 

digit is required for the MSW Accumulator because it forms a part of PSMBSW and is 

also required for the LSW Accumulator because it forms a part of pfrW (the latter 

is in turn used to compute the rounding correction cR). 

The MSW Accumulator and LSW Accumulator are both clocked by using the 

CLK signal and can be cleared (initialized) by using the CLR signal. 

3.3.2.8 CLA Conversion Module 

The CLA module is a high-speed carry-lookahead converter [20], used for con-

verting the final rounded SB result into its TC form. This module is separated from 

the MAC-kernel by the MSW Accumulator, thereby creating a pipeline facilitating 

high-speed operation. 

3.3.3 Performance Characteristics 

In this section, the performance characteristics of the MAC arithmetic architecture 

in Fig. 3.14 are discussed in terms of the hardware area and computational time re-

quirements. These requirements are parameterized at the gate-level for corresponding 

ASIC implementations. 

3.3.3.1 Hardware Area Requirement 

The hardware area requirement of the above arithmetic architecture in terms of 

gate-equivalents is as shown in Table 3.6. Here, nj refers to the number of digits 

input to the jt1 CLA block, nib is the number of lookahead blocks in the converter, F 
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Table 3.6. Hardware Area Requirements 

Type of Hardware Cell Requirement Gate Equivalents per Cell 

Modified-Booth Recoders F 11 6 
Modified-Booth Decoders M f1 4 

Mixed Adders (M + 1)11 5 

SIGN and STICKY Generators rN - 1 5 

Correction Generator 1 8 

Overflow Corrector 1 4 

Redundant Adders (M + 1) 10 

CLA Converter 1 

>' 

+ 1)/(F - 1)1 
jf(k + 1)/(F - 

+ 

+ 

1)1) 
DFFs with Reset 2(M + N - 1) 6 

Auxiliary Gates 1 2ff ] 

is the maximum number of inputs per gate permitted by the underlying technology, 

and M and N are the multiplicand and multiplier wordlengths, respectively. 

3.3.3.2 Computational Time Requirement 

The computational time requirement of the MAC arithmetic architecture is given 

in terms of the minimum achievable clock period T. By considering the worst case 

critical path in the architecture, T is obtained as 

T = max[ {tDFF + tRECODE + tDEcoDE + tUR + I 11tMADD + tRADD}, 
nib 

{tDFF + tG(4 + ( {logF(nj + 1)1 + 1)}]. 
j=1 

(3.40) 

In Eqn. (3.40), tRECODE (tDECODE) represents the time required for modified-Booth 

recoding (decoding), tCR represents the time required for generating the rounding 

correction CR, tMADD (tRADD) represents the time required by the mixed SB/TC 

(radix-2 fully-redundant) addition, tDFF represents the delay through a D-Flipflop, 



80 

and tG represents the delay through a logic gate. 

3.3.4 Verification 

An 8 x 8+15 parallel MAC arithmetic functional unit was designed for implemen-

tation using the Actel 1.2ji technology parameters. This arithmetic functional unit 

was simulated using the maximum achievable clock rate of 40 MHz for a correspond-

ing implementation having a typical logic gate delay of 1 nanosecond. The Viewlogic 

simulation results shown in Fig. 3.15 depict the intermediate signals generated in the 

course of the MAC operations together with the last operation which also includes 

rounding. In Fig. 3.15, buses Y (X) represent the 8-bit TC multiplier (multiplicand). 

RND (CLR) represents the rounding (clear) signal, and CLK represents the system 

clock. Furthermore, (MSWS, MSWV) represent the MSW Ps'w in its minimal-

(s, v) form. Finally, RNDS and RNDV represent the p%_1 and p_2 digits, and 

(LSWS, LSWV) represent the LSW PfJ14, of the result. The overall TC result after 

CLA conversion is given by ANS (which corresponds to PE)' 

The test vectors associated with the simulation results in Fig. 3.15 are given in 

Table 3.7 together with the expected full-precision MAC results, accordingly. The 

simulation begins with the MSW and LSW accumulators being cleared by setting 

CLR = 1. Subsequently CLR is set to zero and four successive multiplications are 

carried out with accumulation in full-precision. The RND signal is pulled up with 

the rising edge of the 4th clock cycle to enable the IEEE standard 754 rounding of 

the multiplied and accumulated result collected during the first 4 clock cycles. This 

result is converted to its TC form by using the CLA converter and is available on the 

ANS bus during the 52h clock cycle (made possible by the inherent pipelining in the 

architecture). 

The simulation results in Fig. 3.15 are in complete agreement with the correspond-

ing expected results in Table 3.7. 
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Table 3.7. Series of MAC Arithmetic Operations for Verification 

CLKCycle yTC XTC MAC Result 

0 0.0000000 0.0000000 0.00000000000000 

1 0.1010110 0.0011010 0.00100010111100 

2 0.1010110 1.1101001 0.00000100000010 

3 1.0110111 0.0011010 1.11100110011000 

4 1.0110111 1.1101001 0.00000000100111 

3.4 High-Speed Fully-SB Parallel MAC Arithmetic Archi-
tecture 

The previous section dealt with the application of redundant number arithmetic 

to TC MAC architectures. However, the resulting architectures prove to be slow for 

certain time-critical DSP applications. This is due to the overhead in conversion of 

the final SB result to its corresponding TC form, becoming a major bottleneck for 

applications requiring large signal wordlengths. 

This section presents a technique for high-speed parallel MAC operation based on 

fully-SB arithmetic [49]. In this technique, SBNR is employed throughout to represent 

the multiplier and the multiplicand, the intermediate partial products, and the final 

multiply-accumulated result. 

The above technique combines the power of the 5-digit overlapped scanning tech-

nique (c.f. Section 2.4.1) and the carry-free addition property of SB numbers to 

achieve high multiplication speed at reduced hardware requirement. This is coupled 

with partitioned accumulation and concurrent high-performance rounding and over-

flow correction to result in an overall fast multiplication and accumulation. This 

resulting MAC architecture finds use in critical high-speed DSP applications. 

The proposed MAC technique consists of three distinct functions. The first func-
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tion involves a 5-digit overlapped scanning technique for the parallel recoding of the 

multiplier into a corresponding modified radix-4 redundant number representation 

(c.f. Algorithm 1 (Page 28)). The recoded multiplier is subsequently used to gen-

erate the intermediate partial products by uniform shifting, negation, or zeroing of 

the SB-multiplicand. The advantage of this recoding scheme is that it leads to a 

reduction in the number of intermediate partial products by a factor of two. This 

facilitates fast multiplication, and, at the same time, leads to a reduced hardware 

requirement. 

The second function is the addition of the intermediate partial products for the 

generation of the full-precision multiplication result prior to rounding. This addition 

is achieved in an entirely carry-free manner, facilitating very high multiplication speed 

independently of the multiplicand wordlength. 

Finally, the third function is accumulation, rounding, and overflow processing of 

the resulting full-precision multiplication product to generate the IEEE standard 754 

RNE result (c.f. Algorithm 3 (Page 39)). 

3.4.1 High-Speed Fully-SB Parallel MAC Operation 

Consider a MAC operation involving a M-digit SB multiplicand XSB, a N-digit 

SB multiplier ySB and a M + N - 1-digit SB addend A B , in accordance with 

pSB = XSB.YSB + ASB, 

where XSB , ySB and ASB are given by 

and 

M-i 
XSB = x22 xi E {I,O,i}, 

i=O 

N-i 

ySB. y2i y Ell, O,1}, 
i=O 

M+N-2 

ASB = a22 ai E 0, 11. 
1=0 

(3.41) 

(3.42) 

(3.43) 
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Furthermore, let ASB be partitioned into its MSW and LSW ASB in accor-

dance with Eqn. (3.25) and (3.26), respectively. 

In the MAC arithmetic operation, the 5-digit overlapped scanning technique (c.f. 

Algorithm 1 (Page 28)) is applied to ySB to obtain the full-precision MAC result 

pSB as 

1'1-2 M+N-2 

pSB = z+1x5B4n+1 + ASB = p2 pi E {i, 0, 1}, 
n=—' i=o (3.44) 

where the digits z,1 are computed in accordance with Eqn. (2.44). 

The fully-SB parallel MAC arithmetic operation is initiated by applying the mod-

ified radix-4 recoding technique to the multiplier ySB to generate the recoded digits 

These digits are used to compute the intermediate partial product components 

z+iXTc4 1 in TC format, while computing the intermediate partial product sums 

in their SB formats by using the recursive relationship 

PSB = z+jX4' + pSB 

where PS,B_ ASB pSB 
- LSW n<-1 = 0, and where P,>.0 is given by 

n 
DSB SB 
n+1≥O = zJ+iXsB4i+l + Aw. 

(3.45) 

(3.46) 

It is interesting to note that the generation of the intermediate partial product com-

ponents z+iXsB4 l need not entail any loss of computational time as these compo-

nents can be obtained as hard-wired shifted versions of the multiplicand XSB. It is 

also interesting to note that the intermediate partial product sum components pSB do 

not require any sign-extension as they are already in their SB formats. Therefore, it 

suffices to use, instead, zero insertion at the most significant part of pSB simplifying 

the corresponding implementation. 

The recursion in Eqn. (3.45) proceeds for successive values of n = 1-1, 0,  1,... f1 - 

2}, to generate the resulting SB-product Pj pSB _1 = - This SB-product 
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is then decomposed into its constituent MSW I MSW and LSW P!sBw . Subsequently, 

Pf/,, and CR are added concurrently using a radix-2 fully-redundant addi-

tion in accordance with 

DSB DSB1 SB 
RNE  MSW +MSW+CR, 

where CR represents an IEEE Standard 754 rounding correction. 

3.4.2 Fully-SB Parallel MAC Arithmetic Architecture 

(3.47) 

In this subsection, the theoretical results in Section 3.4.1 are exploited for the de-

velopment of an architecture for high-speed MAC arithmetic operation. The resulting 

MAC architecture is as shown in the schematic diagram in Fig. 3.16. 

In the above MAC arithmetic architecture, the SB multiplier Y is fed to a bank of 

Modified Radix-4 Recoder modules. These recoder modules convert the multiplier V 

into its corresponding modified radix-4 redundant number representation [49]. The SB 

multiplicand X is fed to a bank of Modified Radix-4 Decoder modules within the MAC 

arithmetic functional unit kernel. The modified radix-4 decoded outputs are fed in 

their SB formats to the SB Adder rows. The first row of SB adders has the LSW of the 

result accumulated in the previous clock cycle (ALS w ) as its input. The full-precision 

result pSB is generated from the least significant digit po, at the top-right corner, to 

the most significant digit PM+N-2, at the bottom-left corner of the MAC kernel. Each 

SB adder row generates the intermediate partial product sums pSB which contain the 

two digits P2n+I and P2n belonging to P sBw . These digits are consumed by the SIGN 

and STICKY Generation module to generate the indicators SIGN and STICKY. 

These indicators are fed to the Correction Logic module in order to generate the 

rounding correction CR. The (fe] - 1)-th SB adder row generates P BSIW  which is 

fed to the Rounding, MSW Addition, and Overflow Correction module, to generate 

the IEEE Standard 754 rounded result E• The rounding operation for PROBE is 
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controlled by the RND signal. The result is subsequently accumulated by the 

MSW Accumulator while the LSW P, is accumulated by the LSW Accumulator. 

Note that in the proposed architecture, the overflow correction, rounding, and 

MSW-addition all occur concurrently. 

SB Multiplicand X SB Multiplier V Modified-Radix-4 Recoders 

+ 
Modified-Radix-4 Decoders 

SB Adder Row 
I I 

Modified-Radix-4 Decoders 
SB Adder Row 

KERNEL 

Modified-Radix-4 Decoders 

LSW Accumu ator 
A £4 

SB Adder Row 

+  
Rounding, MSW Addition 

and 
Overflow Correction  

:. 

Corre 
ctlon 
Loq1ic  

CLK CLR 

Final Rounded and Accumulated Product 

Figure 3.16. The Fully-SB Parallel MAC Arithmetic Architecture 

SIGN and 
STICKY 
Generator 

AND 

CLK CLR 

The details of each of the modules in Fig. 3.16 are as given below. 
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3.4.2.1 Modified Radix-4 Recoder Module 

The modified radix-4 recoders recode the SB-multiplier Y into its corresponding 

modified radix-4 number Z by using Algorithm 1 (Page 28). The components z 1 of 

Z are encoded in accordance with Eqn. (2.61) and are fed to separate rows of decoders 

to generate the intermediate partial products. 

3.4.2.2 Modified Radix-4 Decoder Module 

The modified radix-4 decoders have z, 1 and the SB-multiplicand X as their in-

puts, and generate the corresponding intermediate SB partial product as their output. 

The decoders generates their output by appropriate shifting, negation or zeroing of 

the SB-multiplicand based on the value of z,1. 

3.4.2.3 SB Adder Row 

The terms are generated by the SB adders (c.f. Section 2.3.2.2) for the n-th 

row. 

3.4.2.4 SIGN and STICKY Generation Module 

The operation of this module is as described in Section 3.3.2.4. 

3.4.2.5 Correction Logic Module 

The operation of this module is as described in Section 3.3.2.5 

3.4.2.6 Rounding, MSW-Addition, and Overflow Correction Module 

The operation of this module is as described in Section 3.3.2.6. 

3.4.2.7 Accumulator Module 

The operation of this module is as described in Section 3.3.2.7 
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3.4.3 Performance Characteristics 

In this subsection, the performance characteristics of the MAC arithmetic archi-

tecture in Fig. 3.16 are discussed in terms of the hardware area and computational 

time requirements. These requirements are parameterized at the gate-level for corre-

sponding ASIC implementations. 

3.4.3.1 Hardware area requirement 

The hardware area requirement of the above arithmetic architecture in terms of 

gate-equivalents is as shown in Table 3.8. 

Table 3.8. Hardware Area Requirements 

Type of Hardware Cell Requirement Gate Equivalents per Cell 

Modified-Radix-4 Recoders 1] 25 

Modified-Radix-4 Decoders Mr L21 12 

Fully-Redundant Adders (M + 1)[(1 + 1) 10 

SIGN and STICKY Generators - 1 ri. i 5 

Correction Generator 1 8 

Overflow Corrector 1 4 

DFFs with Reset 2(M + N - 1) 6 

3.4.3.2 Computational Time Requirement 

The computational time requirement of the MAC arithmetic architecture is given 

in terms of the minimum achievable clock period T. By considering the worst case 

critical path in the architecture, T is obtained as 

T = (iDFF + tRECODE + tDECODE + tCR + (F1 + 1)i5BADD) 
(3.48) 
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In Eqn. (3.48), tRECODE (tDECODE) represents the time required for the modified-

radix-4 recoding (decoding), tCR represents the time for generating the rounding 

correction cR, tSBADD is the time required for SB addition, and tDFF represents the 

delay through a D-Flip-flop. 

3.4.4 Verification 

An 8 x 8 + 15 parallel fully-SB MAC arithmetic unit employing minimal-(s, v)-

encoding was designed for implementation using the Actel i.2p technology. The 

Viewlogic simulation results shown in Fig. 3.17 depict the intermediate signals gener-

ated in the course of the MAC operations. In Fig. 3.17, the buses YO (XO) through 

Y7 (X7) represent the SB digit-components of the 8-digit multiplier Y (multiplicand 

X). The accumulate input has been shown using the buses RO through R14. The 

IEEE standard 754 rounded and accumulated result is given as P using the buses P0 

through P7, with P7 representing the most significant digit after overflow detection 

and correction. 

The test vectors associated with the simulation results in Fig. 3.17 are given in 

Table 3.9 together with the full-precision and the expected RNE SB MAC results, 

accordingly. The computational time required by the above MAC unit was also 

verified by comparing it with the theoretically expected result. 

Table 3.9. Verification Test Vectors 

Test Vector (Y)SB (X)SB (Accumulate Iflput)SB RNE SB Result 

1 0.1111010 0.1101010 I.iiioiooiooiooi 0.0001010 

2 0.1011010 I.iiilill 0.00010100101000 0.0001101 

3 1.0111001 0.0101010 0.11010011010110 1.1101110 

4 0.1110111 1.1101111 0.11010001010001 1.1111010 
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3.5 Chapter Summary 

In this chapter, the theoretical results in Chapter 2 have been exploited for the de-

velopment of novel design and implementation techniques for high-speed VLSI arith-

metic multiplication and MAC arithmetic operations. 

In Section 3.2, a technique has been developed for very high-speed mixed SB/TC 

digit-serial modified-Booth multiplication. The salient feature of the resulting mul-

tipliers is that they permit very high throughputs for arbitrary values of digit size. 

Moreover, they do not involve any sign extension, permitting uniform implementa-

tions with highly localized interconnections. It has been shown that the area/time 

efficiency and throughput of the resulting multipliers far surpass those of the existing 

digit-serial modified-Booth multipliers. It has also been shown that mixed SB/TC 

number arithmetic is most attractive for fully parallel multiplication and MAC arith-

metic operations. 

In Section 3.3, an architecture has been presented for high-speed mixed SB/TC 

parallel modified-Booth MAC operation. This architecture features new techniques 

such as partitioned accumulation and concurrent rounding and overflow correction. 

It is most suitable for DSP algorithms that employ repetitive accumulation of inde-

pendently formed multiplication products. 

In Section 3.4, the modified radix-4 recoding technique has been used to extend 

the architecture in Section 3.3 to handle fully-SB parallel MAC arithmetic operation. 

The above multiplication and MAC arithmetic architectures have been param-

eterized in terms of their area-time requirements for the corresponding Actel 1.2 

technology implementations. The resulting implementations have been verified by 

using Viewlogic simulations. 
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CHAPTER 4 

MAC-MODULARIZATION OF DIGITAL FILTERS 

4.1 Introduction 

In the VLSI implementation of digital filter algorithms, it is often desirable to 

employ uniform building blocks in conjunction with regular and modular architec-

tures [44, 21]. Such architectures have several advantages in terms of localized in-

terconnections, pipelinability, ease in scheduling, and simplification of design and 

implementation effort. 

Recent advances in VLSI technology have led to the availability of highly parallel 

processing elements (e.g. systolic arrays) for demanding modern digital filter appli-

cations [14]. The resurgence of non-traditional arithmetic has led to an increase in 

the computing power available by such parallel processing elements. The exploitation 

of the available computing power for efficient high-speed processing depends on the 

regular distribution of the data dependencies, and the regularity of basic operations 

in the digital filter algorithm. 

Digital filter algorithms are generally represented in the form of signal-flow graphs 

(SFGs) [1], consisting of multiplication and addition operations. Unfortunately, the 

non-homogeneous nature of these operations does not permit straightforward parallel 

and systolic realization. However, it is possible to translate these algorithms into 

suitable equivalent forms involving combined multiply-accumulate (MAC) arithmetic 

operations [52]. The translation of a digital filter algorithm consisting of separate 

multiplication and addition operations to a corresponding algorithm consisting of 

MAC operations only is referred to as MAC-modularization. The resulting MAC-

modularized digital filter algorithm possesses regularity and modularity, thereby per-

mitting efficient use of the available computing elements, simpler scheduling, and 

easier design and implementation. 
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There are however certain limitations of digital filter SFGs which prevent the 

application of MAC-modularization techniques to them. Consequently, digital filter 

SFGs need to be converted to a more suitable representation called the directed 

reduced SFG. 

MAC-modularization is based on the application of graph-theoretic [33, 24, 41] 

techniques to the directed reduced SFG. These techniques achieve MAC-modularization 

by exploiting certain properties of the directed reduced spanning tree of the directed 

reduced SFG. Multiplication operations are moved in a systematic manner along 

the directed reduced spanning tree in order to result in the corresponding MAC-

modularized directed reduced SFG. Finally, the resulting SFG is converted back to its 

corresponding MAC-modularized digital filter SFG. In all, the MAC-modularization 

procedure can be summarized as follows. 

1. Generate a directed reduced SFG for the given digital filter SFG, 

2. Generate a directed reduced spanning tree for the directed reduced SFG, 

3. Apply MAC-modularization techniques to the directed reduced SFG using the 

directed reduced spanning tree, and 

4. Generate a digital filter SFG consisting of MAC operations using the resulting 

MAC-modularized directed reduced SFG. 

It should be pointed out that there exists a unique MAC-modularized digital filter 

SFG corresponding to a given directed reduced spanning tree. However, a directed 

reduced SFG can have several directed reduced spanning trees. This results in sev-

eral MAC-modularized solutions for a given digital filter SFG. Although all these 

solutions are equivalent in terms of infinite-precision arithmetic realization, they ex-

hibit remarkably different properties for the corresponding finite-precision arithmetic 

realizations. 
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In this thesis, the finite-precision arithmetic effects of overflow and roundoff noise 

are taken into account to develop a fitness function in order to facilitate the selec-

tion of an optimal MAC-modularized solution. This fitness function is then used to 

develop two different techniques for MAC-modularization, one based on exhaustive 

enumeration of all the possible solutions, and the other based on a heuristic approach. 

The enumerative approach generates all the possible solutions and then employs the 

fitness function to select the optimal solution. This approach is suitable for small 

and medium size problems. However, large problems are computationally intractable 

because of the rapid enlargement of the solution space. Therefore, a heuristic ap-

proach is also developed. This heuristic approach operates by the local application 

of the fitness function in order to generate a near optimal solution at the expense of 

minimal computational effort. It is shown that this heuristic approach generates a 

solution which is indeed close to the optimal solution. 

Finally, the above techniques are implemented in the form of a powerful object-

oriented software package for MAC-modularization. This software has weights associ-

ated with the finite-precision effects of overflow and roundoff noise, thereby permitting 

a certain degree of user control on the fitness function. This software package imple-

ments both, the enumerative, and the heuristic approaches. It has been tested with 

a variety of dense and sparse multiplication problems, and the results are presented 

in this chapter. 

Section 4.2 deals with the theoretical basis and techniques for MAC-modularization 

of digital filter SFGs. Graph-theoretic techniques are developed using the directed 

reduced SFG and the directed reduced spanning trees, and are supported with the 

help of mathematical theorems and proofs. These techniques are subsequently trans-

lated into algorithms for MAC-modularization. However, these techniques result in 

several solutions for a given digital filter SFG, necessitating the development of a 

fitness function for the selection of the optimal solution. Section 4.3 is concerned 
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with the development of such a fitness function based on finite-precision arithmetic 

effects. Sections 4.4 and 4.5 present enumerative and heuristic approaches to MAC-

modularization. Finally, these techniques are used for the development of a powerful 

object-oriented MAC-modularization software package in Section 4.6. 

4.2 Principle underlying MAC-Modularization 

The first step in the process of MAC-modularization involves the conversion of a 

given digital filter SFG into its corresponding directed reduced SFG as defined in the 

following. 

Definition 5 A directed reduced SFG is a class of single-input single-output con-

nected SFGs consisting of directed edges and vertices (nodes), having 

• one input node with no incoming edges, 

. one output node with no outgoing edges, 

• addition nodes with two incoming edges, 

• one multiplication operation per edge, and 

• no self loops. 

Note that by definition the directed reduced SFG is devoid of any delays. 

Let G(V, E) represent a directed reduced SFG, where V is a set of vertices and 

E is a set of directed edges. Every vertex v (E V) represents an addition node. 

Every directed edge e1 (€ E) is associated with a multiplication coefficient mij, and 

a signal-flow and precedence relationship from the node ni to the node nj. Let d(v) 

represent the in-degree of the vertex v, and be defined as the number of directed 

edges which have v as their terminating vertex. Similarly, let d0 (v) represent the 

out-degree of the vertex v, and be defined as the number of directed edges which have 

v as their originating vertex. Further, let the direct-addition input of a node n3 E V 

be defined as the directed edge eij with a multiplication coefficient of unity. Lastly, 
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let the multiplication input of the node nj be defined as the directed edge ehj with 

a multiplication coefficient other than unity. Then, one can define a root node for 

G(V, E) as follows. 

Definition 6 The root node p is defined as a unique node associated with G(V, E) 

such that 

1.EV, 

2. d1 (p) = 0, and 

3. every other node in the set V is reachable from p along a directed path consisting 

of the edges contained in the set E. 

In the MAC-modularization procedure, a reduced SFG consisting of the operations 

of multiplication and addition is converted to a corresponding SFG consisting of MAC 

operations (c.f. Definition 1) as follows. 

M . n. in.. 
aa. 1 

in bi 

Direct-add 

n 
a 

MAC -Modu1ari zation 

.. 

II fl \in * m 
1 1 ai 

/ 

/ I 

11 
/ 

in / m ai b i 0) MAC 
-., 

Figure 4.1. Principle Underlying MAC-Modularization 

J 



97 

Let the schematic in Fig. 4.1 represent a section of G(V, E), consisting of the 

nodes Ina, nb, n, n} E V, and the directed edges {eaj, e&, e} E E. Fig. 4.1 shows 

the conversion of the edge eai into a direct-addition input to the node n1 in order 

to achieve the MAC-modularization of the node n. By taking into account the fact 

that the addition node ni has two incoming edges cal and ebl, the process of MAC-

modularization can be seen as the procedure of moving the multiplication coefficient 

on one of the incoming edges to translate that edge into a direct-addition input, while 

suitably adjusting the multiplication coefficients on the other incoming edge and the 

outgoing edges of the node n. From a graph-theoretic viewpoint, if Cal represents a 

tree edge, then ej would represent the co-tree edge. At the same time, every other 

edge Cj would represent an outgoing edge from nj to an arbitrary node n E V. In 

summary, the MAC-modularization can be described as the conversion of eaj into a 

direct-addition edge, the scaling of the multiplication coefficient on CU by i--ai , and the 
scaling of the multiplication coefficient on ej by mal. The multiplication operation 

on the co-tree edge Cbj can now be combined with the addition operation on the node 

n1 itself, to result in one composite MAC operation. 

The MAC-modularization procedure is developed in terms of a corresponding di-

rected reduced spanning tree associated with the directed reduced SFG. The directed 

reduced spanning tree is defined as follows. 

Definition 7 The directed reduced spanning tree is a directed tree of a directed reduced 

SFG in which every node except the input node has an in-degree of unity. 

A directed graph is a directed tree if it has a root node and its underlying undirected 

graph is a tree, i.e., it is connected and circuit free. A subgraph H of G(V, E) is 

called a directed reduced spanning tree of G, if H is a directed tree which includes 

all the vertices of G. Therefore, H can be designated as H(V, E'), where E' C E. 

Furthermore, every vertex v E V in H(V, E') has a unique directed path from the 
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root p to itself, consisting of the edges in the set E. 

Theorem 4.1 The root node of a directed reduced SFG is the input node. 

Proof Let the input node of the directed reduced SFG be denoted by s. Since 

the directed reduced SFG is defined to be connected (c.f. Definition 5), there exists 

at least one directed path from the node s to every other node in the directed reduced 

SFG. However, the node s has no incoming edge on account of the fact that d(s) = 0. 

Therefore, it can be seen that no other node nj qualifies to be the root because there 

exists no directed path from any node nj to the node s. Hence, the node s qualifies 

as the root node. U 

MAC-modularization of a directed reduced SFG is carried out by translating the 

tree arcs to direct-addition arcs, requiring the existence of at least one directed re-

duced spanning tree. 

Theorem 4.2 There exists at least one directed reduced spanning tree in a given 

directed reduced SFG. 

Proof By contradiction. 

Let U denote the set of un-visited nodes and S denote the set of visited nodes. 

Starting with the input node s, with U = V - {s} and S = {s}, add nodes to S in 

accordance with the following procedure: 

while (U 54 0) do 

begin 

choose a node n E S; 

choose u E U such that n and u are connected by an arc 

S=S+{u}; 

U=U—{u}; 

end 

e; 
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In the above procedure, each node is visited only once. This results in a directed 

reduced spanning tree of G which is constructed systematically by adding the the 

arcs e, in each iteration. Therefore, each node except the node s has an in-degree 

of unity. 

This procedure fails to terminate if there exists at least one node in U which is not 

reachable from any node in S. This means that such a node is not connected to any 

other node in G. Therefore, G is not a directed reduced SFG (c.f. Definition 5), 

leading to a contradiction. 

It can be noted that the above procedure can be used exhaustively to generate all 

the possible directed reduced spanning trees of G rooted in the node S. 

By using Theorems 4.1 and 4.2, it can be shown that MAC-modularization is 

possible if and only if the spanning tree of G is a directed reduced spanning tree 

rooted in the node s. In order to demonstrate this, let the in-degree matrix D of G 

be defined as 

- f d(n) if ni = n 
-k if flj5tflj 

where k is the number of edges in G from ni to n. Then, 

(4.1) 

Lemma 5 A finite directed graph with no self loops is a directed tree with root g if 

and only if its in-degree matrix D satisfies the following properties: 

1. 

l 
D(n1,n)=1 o1 

if ni = p 
if ni 54 p. 

(4.2) 

2. The co-factor resulting from the erasure the p-th row and column of D yields 1. 

Proof See [41]. 

It can be seen easily that the directed reduced spanning tree satisfies Lemma 5. 
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Theorem 4.3 The given directed reduced SFG C can be MAC-modularized if and 

only if its underlying spanning tree is a directed reduced spanning tree rooted in the 

node s. 

Proof 

a) If part: From first principles. If the underlying spanning tree is a corresponding 

directed reduced spanning tree rooted in the node s, the multipliers from the tree edges 

can be moved to the corresponding co-tree edges, and the resulting multiplication 

operations on the co-tree edges can be combined with the corresponding additions at 

the nodes to form MAC operations (c.f. Fig. 4.1). This begins at the input node s 

and progresses along the given directed reduced spanning tree towards the leaf nodes, 

resulting in a MAC-modularized reduced SFG. This establishes the if part of the 

theorem. 

b) Only if part: By contradiction. The proof is developed along the lines of the proof 

of Lemma 5. 

Define a graph H'(V, E') which spans all the nodes of the C starting at the input 

node s, with the arcs consisting of the direct-addition arcs corresponding to a MAC-

modularized reduced SFG of G. Further, assume that H'(V, E') is not a directed 

reduced spanning tree of C. 

Let D be the in-degree matrix of H'(V, E'). Then D(s, s) = 0, since the input 

node has no predecessors. Furthermore, D(n, n) = 1 if ni 0 s, since each node in 

a MAC-modularized directed reduced SFG has only one direct-addition input by the 

definition of H'(V, E'). Thus, property (1) of Lemma 5 holds. 

Now, let the vertices of H'(V, E') be remembered in such a manner that the root 

node s is numbered 1, and if n -+ n, then i <j. This is achieved by numbering 

the vertices which are successors of 1 as 2, 3, ... and sequentially numbering vertices 

which are the successors of 2, 3, etc. till all the vertices have been numbered. The new 
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in-degree matrix D' is derivable from the original in-degree matrix D by performing 

some permutations on the rows and some permutations on the columns. Since such 

permutations do not change the determinant, the new in-degree matrix will satisfy 

the following properties. 

10 ifi=j=lori>j 
D'(i,j) = 1 if i -j and i = 2,3,... ,n (4.3) 

Therefore, the co-factor resulting from the erasure of the first row and column of D' 

yields 1. Thus, property (2) of Lemma 5 also holds. This implies that H'(V, E') is 

indeed a directed reduced spanning tree of G, contradicting the assumption. 

As demonstrated earlier (see proof of Theorem 4.2), a directed reduced SFG can 

have several directed reduced spanning trees rooted in s. Theorems 4.1 and 4.3 can 

easily be used to show that any of these directed reduced spanning trees can be used 

to MAC-modularize the directed reduced SFG. 

Theorem 4.4 A given directed reduced SFG can be modularized into an equivalent 

SFG consisting of MAC operations by any one of the directed reduced spanning trees 

rooted in the node s. 

Proof MAC operations are three input operations (c.f. Definition 1), where Z 

corresponds to the direct-addition input (tree arc), X corresponds to the multiplied 

input (co-tree arc), and Y corresponds to the multiplication coefficient on the co-tree 

arc. These operations are combined together to represent a single node in a given 

MAC-modularized directed reduced SFG. Each such node is reachable from the input 

node s, but the node s in not reachable from any other node. Therefore, the directed 

reduced spanning trees must be rooted in the node s. This, in conjunction with 

Theorems 4.1 and 4.3, completes the proof. 

The number of MAC operations resulting from the MAC-modularization of a di-

rected reduced SFG is given in accordance with the following theorem. 
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Theorem 4.5 A directed reduced SFG with n addition operations can be modularized 

into an equivalent SFG consisting of (n + 1) MAC operations using any of the directed 

reduced spanning trees, except in the case when the directed path from the root node 

to the output node in the corresponding directed reduced spanning tree has unity gain. 

In such a case only n MAC operations are required. 

Proof For MAC-modularization, all incoming arcs to addition nodes in a given 

directed reduced spanning tree must be made direct-addition arcs. The resulting 

incoming arc to the output node reflects the total gain from the root node to the 

output node along that directed reduced spanning tree. This output edge may have a 

non-unity gain since the output node has an out-degree of 0. Therefore, a redundant 

direct-addition edge with an addend of zero must be augmented to the output node, 

and the output node, output edge, and the redundant direct-addition edge must be 

combined into a MAC operation, resulting in (n + 1) MAC operations. 

In the case that the directed path from the root node to the output node has 

a gain of unity, no such redundant direct-addition is required, resulting in n MAC 

operations. 

4.2.1 Co-Tree Multiplier Value Computation 

One can exploit the directed reduced spanning tree in conjunction with the directed 

reduced SFG in order to determine the co-tree multiplier values in the corresponding 

MAC-modularized directed reduced SFG. 

Lemma 6 Any co-tree multiplier mij between the nodes ni and nj corresponding to 

the arc eij in the directed reduced SFG assumes a new value given by 

= mjj.(gj/gj), (4.4) 

where gk represents the gain from the input node to the node nk along the correspond-

ing directed reduced spanning tree. 
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Proof Consider an arbitrary directed reduced spanning tree of G(V, E), with a 

pair of nodes ni and nj shown explicitly, in Fig. 4.2. Let the co-tree edge eij have an 

initial gain of m3. Let the unique paths from the node s to the node ni and from the 

node s to the node nj have the gains gj and gj, respectively. 

n. 
1 

input 

S 

Figure 4.2. Co-tree Multiplier Value Computation 

I 

n  

MAC-modularization involves the systematic movement of the multiplications along 

these paths in order to make these path gains unity. Therefore, the effective multi-

plication coefficient movement across n (nj) is gj (g3). Since mij corresponds to the 

output (input) multiplication coefficient of n (nj), m = mjj.(gj/gj). This completes 

the proof. 

4.2.2 Output Multiplier Value Computation 

The value of the output multiplier is equal to the gain from the root (input) node 

to the output node along the directed reduced spanning tree. If this gain is not unity, 

an additional MAC operation is required at the output node (c.f. Theorem 4.5) with 
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its addend input of zero. 

4.2.3 Node-numbering in the directed reduced SFG 

Let N and U represent a set of numbered and un-numbered nodes. Let G(V, E) 

be the directed reduced SFG whose nodes are to be numbered. Let s be the input 

node of G. 

Algorithm 5 

begin 

node_nurn = 0; 

assign the number nodenum to the node s; 

N={s}; U=V—{s}; 

while (U 0) do 

begin 

B = {n,... , flk} such that 

a) n,... ,nkEU 

b) n,... ,flk are connected as terminating nodes by unit edges 

with N; 

U=U— B; 

while (B 0) do 

begin 

node..num = node-mum + 1; 

assign the number node_num to nj, where nj E B; 

N= N+{n}; 

B = B - 

end 

end 

end. 
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4.2.4 Self-loop Elimination 

The conversion of a digital filter SFG to a corresponding directed reduced SFG 

requires delay removal. However, delay removal can result in the creation of self-loops 

at certain nodes. Such self-loops prevent the successful application of the graph-

theoretic techniques for MAC-modularization. 

The above problem is best resolved by eliminating these self-loops. This is achieved 

by disconnecting the outgoing part of the self-loop edge from the originating node, and 

connecting it to the input node. Fig. 4.3 demonstrates the elimination of the self-loop 

at the node n1. The self-loop is eliminated by breaking the self-loop and connecting 

the outgoing part of the self-loop edge to the input node with the multiplier m,j given 

by 

m 3 - { 1 if = 1 
- 0 otherwise. 

(4.5) 

This technique of self-loop elimination permits the generation of all the directed 

reduced spanning trees with e,,i as the co-tree arc when mjj = 1 (allowing the self-loop 

to be a direct-addition input to ni). Note that the original self-loop multiplication 

coefficients must be remembered as they need to be restored after generating the 

required directed reduced spanning trees. 

4.2.5 Algorithm for converting a digital filter SFG to its corresponding 

directed reduced SFG 

Let V denote the set of all the nodes in the given digital filter SFG. The algorithm 

for converting a digital filter SFG to its corresponding directed reduced SFG is as 

follows. 

Algorithm 6 

begin 
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Figure 4.3. Self-Loop Elimination 

Eliminate all the delays and short their corresponding connection 

points; 

Eliminate all the self-loops using the technique in Sec. 4.2.4; 

Assign a tag to each eliminated self-loop arc; 

Remember the original multiplication coefficient values of each of 

the self-loop arcs; 

Number each node ni E V using Algorithm 5 (Page 104); 

end. 

4.2.6 Algorithm for MAC-modularizing the directed reduced SFG 

The following algorithm converts a given directed reduced SFG (generated using 

Algorithm 6 (Page 105)), into a corresponding MAC-modularized directed reduced 
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SFG. 

Algorithm 7 

begin 

Construct a directed reduced spanning tree for the 

directed reduced SFG (see the following); 

Compute the new co-tree multiplier values by using the constructed 

tree and Lemma 6; 

Insert the output MAC operation using the technique in Sec. 4.2.2; 

Convert all the tree arcs (except the output arc) to 

direct-addition arcs; 

Combine the resulting tree and co-tree; 

Combine the node additions and their corresponding co-tree 

multiplications into composite MAC operations; 

end. 

4.2.7 Algorithm for converting a MAC-modularized directed reduced 

SFG to the corresponding digital filter SFG consisting of MAC 

operations 

The following algorithm converts the given MAC-modularized directed reduced 

SFG (generated using Algorithm 7 (Page 107)) into its corresponding digital filter 

SFG consisting of MAC operations. 

Algorithm 8 

begin 

Reconstruct the self-loops using the tagged arcs; 

Restore self-loop multipliers for tagged arcs with m,i = 0; 

Insert the delays on the appropriate arcs; 

end. 



108 

4.3 Optimal MAC-Modularized digital filter SFG Selection 

In the previous section, it was shown that one can use any of the directed reduced 

spanning trees of a given directed reduced SFG in order to carry out the MAC-

modularization of the corresponding digital filter SFG. Since each of these spanning 

trees leads to a unique MAC-modularized solution, one can obtain a family of solutions 

for a given digital filter SFG. Although the resulting solutions are all equivalent in 

terms of infinite-precision arithmetic, they exhibit remarkably different properties 

for the corresponding finite-precision arithmetic implementations. In this thesis, the 

finite-precision behaviour of the solutions is used as a criterion to arrive at the optimal 

MAC-modularized digital filter SFG. 

There are primarily three finite-precision arithmetic effects in fixed-point digital 

filter implementations. These are [37]: 

1. Transfer function deviation due to coefficient quantization. 

2. Overflow oscillations (limit cycles) due to signal growth within the system. 

3. Roundoff noise caused by multiplication product rounding. 

The first of the above three effects is linear in nature and simply leads to errors 

in the time-domain and frequency-domain response characteristics of the implemen-

tation. The second and third effects, on the other hand, are non-linear in nature and 

influence the stability of the digital filter. Furthermore, they determine the dynamic 

range and the signal-to-noise ratio of the system. The finite-precision arithmetic ef-

fects associated with the overflow oscillations and roundoff noise serve as a valuable 

criteria for the selecting the optimal MAC-modularized digital filter SFG. 

It is important to note that, since the linear effects (measured using sensitivity 

characteristics) are strongly influenced by the topology, and since the MAC modular-

ization preserves the general topology of the SFG, the proposed MAC modularization 

does not degrade the sensitivity features of the original digital filter. 
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In the following, the Li-norm calculations [25] for the possible degree of overflow 

and roundoff noise are used to select the optimal MAC-modularized digital filter SFG. 

The possible degree of overflow is determined by the maximum gain from the input 

node to the addition nodes within the digital filter. The roundoff noise is determined 

by summing the gains from the multiplier outputs to the output node of the digital 

filter. The possible degree of overflow affects the number of bits/digits to be allocated 

to the most-significant part of the signal word, whereas the roundoff noise affects the 

number of bits/digits to be allocated to the least-significant part of the signal word. 

This section is concerned with the development of a fitness function for finding 

the optimal MAC-modularized solution for a given digital filter SFG. This fitness 

function is developed in terms of the possible degree of overflow and roundoff noise in 

the digital filter. It is also shown that the overflow and roundoff noise characteristics 

of the MAC-modularized solution can be determined by using the corresponding 

directed reduced spanning tree in conjunction with the overflow and roundoff noise 

characteristics of the original digital filter SFG. 

4.3.1 Fitness Function for MAC-Modularized Reduced-SFGs 

The fitness function for any given kth MAC-modularized digital filter SFG can be 

determined by 

fitness(Hk(V, Ek)) = (oflowweight x °MAX) + (roffweight x >I R) (4.6) 

In this equation, Hk(V, Ek) represents the k21 directed reduced spanning tree associ-

ated with the directed reduced SFG G(V, E) of the original digital filter SFG, with 

Ek C E. Moreover, °MAX represents the Li-norm value of the maximum over-

flow at the addition nodes in the MAC-modularized digital filter SFG. In addition, 

R represents the sum of the Li-norm values of the roundoff noise contributions 

of each of the co-tree arcs of Hk(V, Ek) that have non-unity absolute gains. Finally, 

1 
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of low-weight and rof f_weight are the user specified weights associated with the 

overflow and roundoff noise contributions, respectively. 

The fitness function in Eqn. (4.6) is used for the selection of a MAC-modularized 

solution that inherently minimizes the harmful finite-precision effects of overflow os-

cillations and roundoff noise. Such a solution is optimal in terms of the user defined 

weights for overflow and roundoff noise. 

4.3.2 Overflow and Roundoff Noise Calculations 

In this subsection, a technique is developed to determine the Li-norm values of 

the possible degree of overflow and roundoff noise in any MAC-modularized solution. 

This technique is based on the corresponding directed reduced spanning tree and the 

Li-norm values of the possible degree of overflow and roundoff noise in the original 

digital filter SFG. The resulting technique permits the computation of the fitness 

function in a very simple and straightforward manner. 

The possible degree of overflow and the roundoff noise in a given digital filter SFG 

are computed in terms of the maximum gains from the input to any addition node and 

the sum of the gains from the multiplier outputs to the output node, respectively. To 

facilitate the discussion, it is shown that the MAC-modularization of a node affects 

the gain at that node only, leaving the gains at all the other nodes unchanged. This 

property is subsequently used to develop the technique for computing the possible 

degree of overflow and roundoff noise in the MAC-modularized digital filter SFG. 

Theorem 4.6 MAC-modularization of an arbitrary node ni in given digital filter SFG 

results in a change in the gain at that node only, leaving the gains at all other nodes 

unchanged. 

Proof Let the schematic in Fig. 4.4 represent a section of a digital filter SFG 

with a node ni in its pre-modularized state. Let gp represent the gain from the 
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input node s to the node n. Moreover, let the digital filter under consideration be 

infinite-precision linear. 
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Figure  4.4. Section of Reduced-SFG: Pre-Modularized State 

Further, let the application of MAC-modularization to the node ni by the movement 

of the multiplier maj result in the configuration as shown in Fig. 4.5. Let g, now 

represent the corresponding new gain at the node n,,. 

Due to the fact that the system is linear, the movement of the multiplier rnaj (c.f. 

Fig. 4.5) does not disturb any of the loop gains in the system. Moreover, since the 

nodes n,, and nb can be reached from ni through feedback paths only, the gains at 

nodes n, and rib remain unchanged in accordance with 

= g. 

and 

= gb, 

respectively. 

(4.7) 

(4.8) 
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0 

The gain from the input node .s to the node n before MAC-modularization can be 

expressed as 

gi = mzg + mbigb. (4.9) 

The corresponding gain after modularization becomes 

g = g + mbl 
— g 
Mai 

By using Eqns. (4.9) and (4.10), one obtains 

1 
g 

Mai 

(4.10) 

(4.11) 

Similarly, the gain from the input node s to the node nj before MAC-modularization 

can be expressed as 

= mjjgj + rnkjgk. (4.12) 

The corresponding gain after modularization becomes 

g = mjjmajg + mkigk. (4.13) 
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By using Eqn. (4.11) in Eqn. (4.13), one obtains 

g = flu. (4.14) 

Therefore, from Eqns. (4.7), (4.8), (4.11), and (4.14), it can be seen that MAC-

modularization of the node ni changes the gain at that node only, leaving the gains 

at all other nodes unchanged. This completes the proof. 

Let n, represent an arbitrary node in a given directed reduced SFG. Moreover, let 

Oi represent the Li-norm value of the possible degree of overflow at node n. Further, 

let R11 and R21 represent the Li-norm values of the roundoff noise caused by each 

of the two incoming edges to n. Then, the node ni is characterized in terms of its 

overflow and roundoff noise contributions with the 3-tuple 

< 0,R1,R21 > . (4.15) 

The same node n, after MAC-modularization is characterized by a corresponding 

3-tuple 

< 0,R' 1,R' 1> . (4.16) 

Note that R'11 or R'21 is zero if the corresponding multiplier in the MAC-modularized 

directed reduced SFG is 1 or —1. The 3-tuple in Eqn. (4.16) can be derived from the 

corresponding 3-tuple in Eqn. (4.15) in accordance with the following theorem. 

Theorem 4.7 Given a directed reduced SFG with the Li-norm values of the possible 

degree of overflow and roundoff noise for each node ni represented using the 3-tuple in 

Eqn. (4.15), the corresponding Li-norm values after MAC-modularization, as given 

in Eqn. (4.16), can be derived as 

(4.17) 
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and 

R' I giRi if jmI 0 1 
= 0 otherwise, 

(4.18) 

where gi is the gain from the root (input) node to node ni along the corresponding 

directed reduced spanning tree, and m.,i is the multiplier coefficient along the directed 

edge e. 

Proof MAC-modularization of a given directed reduced SFG is carried out by 

moving the multipliers along the directed reduced spanning tree starting at the root 

node and moving towards the leaf nodes until all the tree edges (except for the output 

edge) become direct-addition edges. This procedure results in a multiplier movement 

of gj across node n1. Since the overflow is computed as a function of the maximum 

gain from the input to that node n, the multiplier movement of 9t across ni results 

in c = (t)° in accordance with Eqn. (4.11). On the other hand, the roundoff error 

is computed using the gain from the multiplier output incoming to the node ni to the 

output node. A multiplier movement of gi across the node ni increases this gain by 

gj, thereby resulting in = g1R,;. However if ImjJ = 1, then the roundoff error 

contribution becomes 0 since multiplication by 1 or —1 does not induce any roundoff 

error. This, in conjunction with Theorem 4.6 completes the proof. U 

In summary, the directed reduced spanning tree can be used to compute the new 

overflow and roundoff error values for the corresponding MAC-modularized digital 

filter SFG. 

4.4 An Enumerative Approach to MAC-Modularization 

For digital filter SFGs having small to medium sizes, it is possible to perform an 

exhaustive enumeration of MAC-modularized solutions for finding the optimal solu-

tion. This exhaustive enumeration involves, the generation of all the corresponding 

directed reduced spanning trees of the given directed reduced SFG, and the selection 

of the optimal solution based on the fitness function in Eqn. (4.6). 
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4.4.1 Algorithm for Directed Reduced Spanning Tree Enumeration 

Let S represent the set of all the nodes in a given directed reduced SFG. At 

each iteration of the following algorithm, let the set S be partitioned into two sets, 

namely V signifying the set of visited nodes, and U signifying the set of unvisited 

nodes. Moreover, let T represent a set of partial directed reduced spanning trees at 

each iteration of the algorithm. Further, let maxnode..num(P) return the maximum 

number associated with a node in the given set of nodes P, and let num(n;) return the 

node number of the node n. Also, let adj(e) return the adjacent incoming edge to 

the edge ejt at node n. Finally, let mu1t(e) return the multiplier coefficient rnjj along 

the edge eji. Then, the algorithm for directed reduced spanning tree enumeration is 

as follows: 

Algorithm 9 

read the directed reduced SFG with nodes S; 

read the root node r of the directed reduced SFG; 

begin 

Step .1: 

T=Ø; V={r}; U=S—V; 

Step : 

Find node ni E U such that 

num(n) == maxiode_num(V) + 1; 

Step 3: 

Add ni to every ti E T separately for each edge e3 (with rnu1t(e) 54 0) 

from V to n; 

/ If T had k trees, it now has k or 2k trees (forward direction). */ 
Step : 

/* Now for the trees generated in the backward direction. / 
for (every edge es,, (with mu1t(e) 54 0) from ni to V) do 

begin 

Tiemp = 0 
for (every tree tj E T) do 
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begin 

t2,P = 

if ((ttemp has no edge e) && (adj(e) does not arise from ni)) 

tiemp = ttcmp + eip - adj(e1); 

if (ttemp is a valid directed reduced spanning tree) 

Tiemp Ttemp + {ttemp}; 

end 

T= T+Ttemp; 

end 

Step 5: 

V=V+{n2}; U—U—{n}; 

Step 6: 

if (U 0) 

repeat steps 2 through 6; 

end. 

4.4.2 Proof of Operation 

The proof of working of Algorithm 9 (Page 115) is established through the following 

theorem. 

Theorem 4.8 The application of Algorithm 9 (Page 115) to a directed reduced SFG 

results in a set T of all the possible directed reduced spanning trees of that directed 

reduced SFG. 

Proof The proof is deferred until Lemmas 7, 8, and 9 are established. 

The following lemma deals with the directed reduced spanning trees of the set 

V + {n1} with the newly added node ni as the leaf node. 

Lemma 7 The addition of the node rtj in Step 3 of Algorithm 9 (Page 115) results in 

all the possible partial directed reduced spanning trees associated with the set V + {n} 

having ni as one of the leaf nodes. 
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Proof By contradiction. Let ti € T for i = 1,2,... , p represent all the possible, 

say p, partial directed reduced spanning trees associated with the visited set V. Then, 

after the application of Step 3 of Algorithm 9 (Page 115), one obtains the new set 

T of either p new partial directed reduced spanning trees if only one directed edge 

connects V to n, or 2p partial directed reduced spanning trees if two directed edges 

connect V to n. If the new set T is not the exhaustive set of partial directed reduced 

spanning trees associated with V + {n} having ni as one of the leaf nodes, then 

three cases can arise. Either ni is not connected directly to V, or T is not the 

exhaustive set of partial directed reduced spanning trees associated with the set V, 

or both. The former case is not possible since ni is numbered one higher than the 

max_node_num(V), meaning that ni is directly connected to V. The latter case leads 

to the violation of the assumption that T is the exhaustive set of partial directed 

reduced spanning trees of the set V before the application of Step 3. All these lead 

to a contradiction, completing the proof. I 

Lemma 8 The addition of an outgoing edge e1 from the node ni to V in Step 4 of 

Algorithm 9 (Page 115) results in all the possible partial directed reduced spanning 

trees associated with the set V + {n}, having ni as one of the non-terminating nodes, 

and having a single outgoing edge e1 from ni to V. 

Proof By contradiction. At the beginning of Step 4 (i.e. after the completion of 

Step 3), the set T contains p (or 2p) partial directed reduced spanning trees associated 

with the set V + {n}. By applying the inner for loop of Step 4 for all tj E T, one 

obtains the set Temp of partial directed reduced spanning trees, where each ti E Tiemp 

contains ni as the non-leaf node having e1 as the corresponding outgoing edge. 

Assume that there exists a tree t1 such that 

1. t1 is a partial directed reduced spanning tree associated with the set V + {n}, 
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2. tj contains ni as a non-leaf node having e1 as the corresponding outgoing edge 

towards the set V, and 

3. ti Ttemp 

Then, Step 4 of Algorithm 9 (Page 115) leads to any, some, or all of the following 

conditions. a) ej1 does not connect ni to V, b) e1 has no adjacent incoming edge in 

the set V + {ni l, or c) T is not an exhaustive set of partial directed reduced spanning 

trees of V. Condition a violates our assumption regarding the tree ii. Condition 

b means that the set V has an unconnected node in it, leading to a contradiction. 

Condition c leads to a direct contradiction by using Lemma 7. This completes the 

proof. 

The above lemmas can be used to prove that the addition of a new node to an 

already existing set partial directed reduced spanning trees of nodes V in accordance 

with Algorithm 9 (Page 115) results in all the possible directed reduced spanning 

trees of V + {n}. 

Lemma 9 The addition of arbitrary edges e1, e2,... , eik from node ni to the set V 

in Step j of Algorithm 9 (Page 115), results in all the possible partial directed reduced 

spanning trees associated with the set V + {n}. 

Proof From Lemma 7 and 8, one can obtain an exhaustive set of two types of 

partial directed reduced spanning trees of the set V + {n}. The first type has ni as 

the leaf node, and the second type has ni as the non-leaf node and also has e1 as its 

corresponding outgoing edge. 

Let e2 be added to connect ni to V. Then by applying Step 4 of Algorithm 9 

(Page 115) for e2, and reasoning along the lines as for Lemma 8, one obtains the set 

Tiemp of two types of partial directed reduced spanning trees. The first type has e2 as 

the only outgoing edge from the node ni to the set V, and the second type has both 



119 

e1 and e2 as the outgoing edges from the node ni to the set V. Therefore, the set 

T + Ttemp is an exhaustive set of partial directed reduced spanning trees associated 

with the set V + {n} having the edges e1 and e2. 

In this way, one can show that the addition of the edges e3,... , eik leads to all 

the possible partial directed reduced spanning trees associated with the set V + {n} 

having eil, e2,... , ejj as their corresponding outgoing edges. This completes the 

proof. U 

Finally, one can use the above lemmas to establish the proof of Theorem 4.8. 

Proof of Theorem 4.8: By induction. Consider a section of a directed reduced 

SFG with nodes r, n1, and n2, numbered as 0, 1, and 2, respectively, as shown in the 

partial SFGs in Fig. 4.6. These SFGs show all the possible ways of connecting the 

nodes r, n1, and n2. 
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Figure 4.6. Schematic for Proof of Theorem 4.8 

2 

Since r connects only to n1, after the first iteration of Algorithm 9 (Page 115) one 

obtains, T = {}, V = {r,ni}, and U = S - V. Here, t1 is the only possible partial 



120 

directed reduced spanning tree associated with the visited set V. The addition of n2 

to the set V in the second iteration of Algorithm 9 (Page 115) results in the updated 

set T of one or two trees as shown in Fig. 4.6. It is clear that the set T still remains 

an exhaustive set of partial directed reduced spanning trees associated with the set 

V through the first and second iterations. 

Assuming that T is the exhaustive set of directed reduced spanning trees for 

V = {r, m1, n2,... , flk-1}, the application of Algorithm 9 (Page 115) to nk in conjunc-

tion with Lemma 9 results in the updated set of trees T which contains all possible 

partial directed reduced spanning trees of the set V = {r,ni,n2,... ,rlk_1,flk}. This 

completes the proof. 

4.4.3 Algorithm for Enumerative MAC-Mo dularization 

Algorithm 9 (Page 115) is used for the design of an algorithm for enumerative 

MAC-modularization as follows. 

Algorithm 10 

begin 

input: The digital filter SFG; 

convert the digital filter SFG to G(V,E); 

1* G(V, E) is the directed reduced SFG / 
Determine all n directed reduced spanning trees of G(V,E) given by 

Hk(V,Ek), k=1,2,... ,n in accordance with Algorithm 9 (Page 115); 

V Hk(V,Ek) do 

select the best H(V,E) based on Eqn. (4.6); 

MAC-modularize the digital filter SFG using H(V,E), Algorithm 7 

(Page 107), and Algorithm 8 (Page 107); 

end. 
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4.5 A Heuristic Approach to MAC-Modularization 

This section presents an heuristic approach to MAC-modularization for problems 

having medium to large sizes. This heuristic operates on the basis of a locally optimal 

edge selection based on the fitness function. This heuristic is shown to generate near-

optimal solutions very rapidly. 

4.5.1 Algorithm for Heuristic Spanning Tree Generation 

Let S represent the set of all nodes in a given directed reduced SFG. At each iter-

ation of the following algorithm, let the set S be partitioned into two sets, namely V 

signifying the set of visited nodes, and U signifying the set of unvisited nodes. More-

over, let Hheur( V, Ehew.) represent the heuristically obtained partial directed reduced 

spanning tree at each iteration of the algorithm. Further, let edge..f itness(e, Hheur) 

represent the fitness index of the edge ej3 due to the movement of the multiplier m 5 

from the node ni E V to the node nj E U, by using the partial directed reduced 

spanning tree Hhe,r(V) Eheur), given by 

edge_fitness Hheur (V, Eheur )) = 
1  

(of low_weight x O) + (rof f_weight x Rtarj_flode(adj(ejj)),j) (4.19) 

Then, the algorithm for heuristically obtaining a near-optimal directed reduced 

spanning tree is given by the following pseudo-code. 

Algorithm 11 

read the directed reduced SFG with nodes 5; 

read the root node r of the directed reduced SFG; 

begin 

U=S—{r}; V={r}; D=E={}; 

construct Hheur (V, E); 

while (U 0) do 

begin 
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V (n1 E U) do 

if ((2 n. E V) && (na, == predecessor(n1))) 

D = D + {(n,n)}; 

select an arbitrary edge e E D; 

D = D - {eap}; 

while (D 54 0) do 

begin 

select an arbitrary edge epq E D; 

if (edge_f itness(epq, Hheur( V, E)) > edge_f itness(eap, Hheur( V, E))) 

eap = Cpq; 

D=D—{epq}; 

end 

/ np is the terminating node of the resulting e / 
U=U—{np}; 

V=V+{n}; 

E = E +  

construct Hheur (V, E); 

end 

output Hheur(V,E); 

end. 

The above algorithm progresses successively from the root (input) node onwards, 

and at each iteration, updates the set of visited nodes V by adding the node ne E U 

which is connected from V to U with the edge having the best edge fitness in accor-

dance with Eqn. (4.19). Therefore, at each iteration of the algorithm, a new locally 

optimal edge (and its corresponding node) is added to the already existing partial 

directed reduced spanning tree Hheur(VI E). The final resulting heuristically obtained 

directed reduced spanning tree Hheur(V) Eheur) is the locally optimal solution, and can 

be employed for MAC-modularization of the directed reduced SFG as shown in the 

following algorithm. 
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4.5.2 Algorithm for Heuristic MAC-Modularization 

Algorithm 11 (Page 121) is used for the design of an algorithm for heuristic MAC-

modularization as follows. 

Algorithm 12 

begin 

input: The digital filter SFG; 

convert the digital filter SFG to G(V,E); 

/* G(V, E) is the directed reduced SFG / 
Use Algorithm 11 (Page 121) to determine Hhur(V,E); 

MAC-modularize the digital filter SFG using Hheur(V,E), Algorithm 7 

(Page 107), and Algorithm 8 (Page 107); 

end. 

4.6 Implementation of MAC-Modularization Algorithms 

Algorithms 10 and 12 (Pages 120 and 123) have been applied successfully to the 

design and development of a software package called MAC-Modularizer (MAC-M) 

for automated MAC-modularization of digital filter SFGs. This package has been 

developed by employing an object-oriented design strategy and has been implemented 

using the C++ programming language. MAC-M has been applied to a variety of 

digital filters having SFGs with dense or sparse multiplication operations. MAC-M 

consists of two modules: 

1. Enum module: In this module, Algorithm 10 (Page 120) is used to exhaustively 

generate all the possible solutions and then select the optimal solution. This 

module provides the user with a list of all the possible solutions together with the 

Li-norm values for the possible degree of overflow and roundoff noise. Further, 

it can identify the optimal and the worst solutions. 
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2. Heur module: In this module, Algorithm 12 (Page 123) is used generate the 

heuristic solution rapidly. This module also provides the Li-norm values for 

the possible degree of overflow and roundoff noise in the heuristic solution. 

4.6.1 Test Cases 

In the following, the usefulness of MAC-M is demonstrated through its applica-

tion to the MAC-modularization of a pair of digital filters, one having dense, and 

another sparse multiplication operations. 

1. Case 1: This case constitutes a digital low-pass filter in [21] having a SFG 

with dense multiplication operations. The low-pass filter schematic is shown in 

Fig. 4.7. The corresponding optimal MAC-modularized realization is shown in 

the schematic in Fig. 4.8. The Enum module generated 25600 solutions for this 

case, taking a CPU time of approximately 14 minutes on a Sun SPARC-b. The 

Heur module generated the heuristic solution within approximately 5 seconds. 

In this case, the fitness functions (c.f. Eqns. (4.6) and ((4.19)) were evaluated 

by using of low-weight = roff..weighi = 1.0. 

2. Case .2: This case constitutes a digital LDI-Jaumann low-pass filter in [6] having 

a SFG with sparse multiplication operations. The LDI-Jaumann low-pass filter 

schematic is shown in Fig. 4.9. The corresponding optimal MAC-modularized 

realization shown in the schematic in Fig. 4.10. The Enum module generated 

4612 solutions for this case, taking a CPU time of approximately 5 minutes 

on a Sun SPARC-b. The Heur module generated the heuristic solution within 

approximately 3 seconds. In this case, the fitness functions were again evaluated 

by using of lowweight = roff..weighi = 1.0. 

A comparison of the solutions obtained by using MAC-M for Cases 1 and 2 in 

terms of the Li-Norm measures of their overflow and roundoff noise values is as shown 
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Figure 4.7. Case 1: Unmodularized Original digital filter SFG 

in Tables 4.1 and 4.2, respectively. It is observed from the results that the optimal and 

worst solutions differ greatly in their fitness values, and that the heuristic algorithm 

produces a near-optimal result. 

Table 4.1. Comparison of solutions for Case 1 

Li-Norm Values Optimal Worst Heuristic 

Overflow 8.79888 5586.37 19.9865 

Roundoff 10.8912 7.67213 10.7343 

Total 19.69008 5594.04213 30.7208 

4.7 Chapter Summary 

This chapter has presented a rigorous theoretical approach to the MAC-modularization 

of digital filter SFGs. 
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Table 4.2. Comparison of solutions for Case 2 

Li-Norm Values Optimal - Worst Heuristic 

Overflow 5.53031 183.289 5.53031 

Roundoff 13.4639 6.7878 14.8879 

Total 18.99421 190.0768 20.41821 

0.562703 

R 

-I 

0.000 

Section 4.2 has dealt with the theoretical basis and techniques for MAC-modularization 

of digital filter SFGs. This includes graph-theoretic techniques for MAC-modularization 

using the directed reduced SFG and the directed reduced spanning trees. These tech-

niques have subsequently been translated into algorithms for MAC-modularization. 

In Section 4.3, it has been recognized that the above techniques result in several 

solutions for a given digital filter SFG. This has necessitated the development of a 

fitness function for the selection of the optimal solution. The fitness function has been 
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Figure 4.9. Case 2: Unmodularized Original digital filter SFG 

Figure 4.10. Case 2: Optimal MAC-Modularized digital filter SFG 



128 

developed based on the finite-precision arithmetic effects of overflow and roundoff 

noise. 

Section 4.4 has presented an enumerative technique for MAC-modularization. This 

technique permits the generation of all the directed reduced spanning trees of a given 

directed reduced SFG, facilitating an exhaustive consideration of all the possible 

MAC-modularized digital filter SFGs. 

The above enumerative technique is suitable for small and medium size problems. 

However, large problems are computationally intractable because of the rapid en-

largement of the solution space. This has led to the development of a corresponding 

heuristic technique in Section 4.5 for MAC-modularization. This technique has been 

based on local application of the fitness function in order to generate a near optimal 

solution, reducing the required computational effort substantially. 

Finally, the enumerative and heuristic techniques have been used for the devel-

opment of a powerful object-oriented MAC-modularization software package called 

MAC-M in Section 4.6. The usefulness of MAC-M has been demonstrated through 

its application to a pair of digital filters, one having dense, and the other sparse mul-

tiplication operations. It has also been demonstrated that the heuristic technique 

produces a near-optimal result. 



129 

CHAPTER 5 

DESIGN AND IMPLEMENTATION OF A REDUNDANT 
NUMBER MAC-MODULARIZED LDI JAUMANN 

DIGITAL FILTER 

5.1 Introduction 

This chapter is concerned with an illustration of the results obtained in Chapters 3 

and 4, and their application to the design and gate level implementation of a practical 

LDI [28] Jaumann [6] digital filter. 

The initial step in the above design involves MAC-modularization of the digital 

filter which yields a uniform and modular structure, lending itself to efficient VLSI 

implementation. The next step involves the exploitation of the inherent parallelism 

in the Jaumann digital filter structure by identifying subsystems which can operate 

concurrently. This is followed by the development of the state update equations for 

characterizing the operatiqn of the overall filter in terms of the identified subsystems. 

The digital filter obtained after MAC-modularization may suffer from the harmful 

effects of finite-precision arithmetic, namely, the transfer function errors (linear phe-

nomenon), and the overflow saturation and roundoff noise (non-linear phenomena). 

Transfer function errors are brought within acceptable limits by selecting the appro-

priate MAC coefficient wordlengths. Overflow saturation is counteracted by adding 

upper guard bits/digits to the signal word while roundoff noise is counteracted by 

adding lower guard bits/digits. This is followed by the selection of the proper num-

ber representations for the signal and MAC coefficient words in order to maximize 

the operational speed of the digital filter. 

The state update equations involving finite-precision arithmetic are subsequently 

translated into a gate-level implementation of the digital filter. This consists of sep-

arate data-paths for the implementation of each of the subsystems together with a 
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global control unit. The implementation is simplified due to the modularity in the 

filter structure resulting from MAC-modularization. The constituent MAC architec-

tures are implemented using redundant number arithmetic in order to exploit the 

maximum speed available by the given implementation technology. 

Section 5.2 deals with the MAC-modularization of a fifth-order Iowpass LDI Jau-

mann digital filter [25], together with the development of the corresponding state 

update equations for the constituent subsystems. The signal and MAC coefficient 

wordlengths required for the finite-precision arithmetic implementation of the MAC-

modularized LDI Jaumann digital filter are calculated in Section 5.3. Section 5.4 

presents the number representations adopted for the signal and MAC coefficient 

words. The data-path and control unit implementations for the Jaumann digital 

filter are presented in Section 5.5. In Section 5.6, the resulting Actel l.2p technology 

implementation is verified by using its impulse response Viewlogic simulations. The 

simulation results demonstrate an achievable clock rate of 50 MHz yielding a sample 

rate of 8.33 MHz. The striking feature of this implementation is that its speed of 

operation is completely independent of the signal wordlength within the digital filter. 

5.2 MAC-Modularization of the LDI Jaumann Digital Filter 

The schematic in Fig. 5.1 shows the SFG of a fifth-order lowpass LDI Jaumann 

digital filter [6]. This Jaumann digital filter can be visualized as consisting of three 

different subsystems, namely, the top and bottom subsystems A 1I and JtI incorporat-

ing forward and backward Euler digital integrators, and the central interconnection 

subsystem JV. The top subsystem Al1 contains 3 digital integrators, and the bottom 

subsystem./V2 contains 2 digital integrators. 

The digital filter in Fig. 5.1 has an important property of offering a high degree of 

parallelism in the constituent arithmetic operations. There are several ways to exploit 

this parallelism for achieving a corresponding high-speed implementation. For exam-
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Figure 5.1. Lowpass LDI Jaumann Digital Filter before MAC-Modularization 

pie, the top and bottom subsystems N'1 and Al2 can operate concurrently, permitting 

separate data-path implementations. 

The MAC-modularization of the digital filter in Fig. 5.1 is carried out by us-

ing the software package MAC-M introduced in Chapter 4. The resulting optimal 

MAC-modularized SFG is shown in the schematic diagram in Fig. 5.2. In this way, 

the subsystems A/, All, and Ar2 are translated to the new subsystems Al0, N'1, and 

, respectively. The subsystems Al1 and R2 consist of 5 and 3 MAC operations, 

respectively. In order to achieve the maximum possible operational speed, the fil-

ter is implementing by using two pieces of hardware redundant number arithmetic 

MAC units. One MAC unit is dedicated to the subsystem , and the other to the 
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M 2 

Figure 5.2. Optimal MAC-Modularized Lowpass LDI Jaumann Digital Filter 

subsystem 

It is observed that the process of MAC-modularization maintains all the MAC co-

efficients in the subsystem to either +1 or —1. Therefore, the resulting subsystem 

is implemented by using a single redundant arithmetic combinational unit. 

The state variables associated with the MAC-modularized digital filter are shown 

in Fig. 5.2. The state variables C!v11 and CM2 are used for communicating from 

to and NO to R2 , respectively. Similarly, the state variables MCI and MG2 

are used for communicating from Al1 to )f'o and A/'2 to A/3, respectively. The input 

to the filter is represented by the variable IN, and its output is represented by the 

variable OUT. In addition, each subsystem is also associated with a corresponding 
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set of internal variables. The subsystem has Z1, Z2, Z3, and Z4 as its internal 

set of variables. The subsystem Au has M1 , M1y, X, and Xv as its internal set of 

variables. Similarly, the subsystem .A/T has M2x and YU as its internal set of variables. 

The relationships between the above variables are expressed in terms of state 

update equations which describe the operation of the overall MAC-modularized digital 

filter. The state update equations for this digital filter in terms of those of AIO, H1, 

and R2 are combined and presented in the following algorithm. 

Algorithm 13 

input: IN; 

output: OUT; 

begin 

/* The inputs to the subsystems *1 

input MC, MC, IN to 

input CMV, MC,, Mrx , M' to 

input CM, MC, Mx to .N; 

/ Equations characterizing the operation of subsystem *1 

compute Zi using Zi = IN + IN'; 

compute Z2 using Z2 = MC + MC; 

compute Z3 using Z3=MCr—MC; 

compute Z4 using Z4 = Z, - Z2; 

compute CM' using CM' = Z4 + Z3 

compute CMr' using CM' = Z4 - z3 

compute OUT using OUT=; 

/ State update equations characterizing the operation of subsystem 

compute Xv using Xv = MC + (—O.78125)Mry; 
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compute M' using M' = Mx + (O.46875)Xv; 

compute Xu using XU = CM ± (—l.0)Mx; 

compute using M1'1 = M' + (l.0)M x ; 

compute MC 1 using MCr+l = MC + (O.25)Xu; 

/ State update equations characterizing the operation of subsystem AI 

compute M' using M' = + (1.0)MC; 

compute Yu using Yu=CM+(-1.375)Mx; 

compute MC' using MC' = MC + (O.21875)Yu; 

/ The outputs of the subsystems *1 

output CM', CM', OUT from 

output MC 1 from Al1; 

output MC' from Al2; 

write OUT; 

end. 

*1 

In the above algorithm, the superscript n - 1, n, or n + 1 associated with any 

variable indicates the value of that variable in the n - 1, nth , or n + l' operation 

cycle. 

5.3 Calculation of the Required MAC Coefficient and Signal 
Wordlengt hs 

In this section, the harmful effects of finite-precision arithmetic are investigated for 

the calculation of the required wordlengths for the MAC coefficients and the internal 

signals. 
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5.3.1 Calculation of the Required MAC Coefficient Wordlength 

In a fixed-point digital filter implementation, the values of the constituent MAC 

coefficients must be quantized to a finite wordlength. The quantized MAC coefficients 

give rise to errors in the time-domain and the frequency-domain response of the digital 

filter. Therefore, the MAC coefficient wordlengths must be determined in such a 

manner that the above errors are confined to acceptable limits. 

The lowpass LDI Jaumann digital filter exhibits exceptionally low passband sen-

sitivity [25] with respect to coefficient quantization errors. Therefore, it is possible 

to quantize the MAC coefficient values to only 6 bits/digits as demonstrated in [25] 

and [15]. 

5.3.2 Calculation of the Required Signal Wordlength 

Let °MAX represent the Li-norm value of the maximum signal gain from the 

digital filter input to any node within the filter and let E R represent the sum of 

the Li-norm values of the signal gains from each MAC node (having a coefficient 

other than +1 or —1) to the output node of the digital filter. Furthermore, let ISigna1 

represent the input signal wordlength, and let lUpper and 1Lower represent the upper 

and lower guard bits/digits required to counteract the effect of overflow and roundoff 

noise, respectively. Then, lUpper can be determined by using °MAX in accordance 

with 

tUpper = 11og2(O1 )1.  

Similarly, I Lower can be determined by using F, R in accordance with 

- f f1og2(> R + g') for truncation 2 
Lower - flog2( R + ')1 for rounding, 

where g' is determined in terms of the input to output gain gj0 as 

- gjo if the filter output is obtained by truncation 5 3 9 - if the filter output is obtained by rounding. 
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The minimum required internal wordlength of the filter 1lnternal is determined by using 

Eqns. (5.1) and (5.2) as 

1lnternal = lUpper + 1Signa1 + 1Lower, (5.4) 

where lUpper and lLower add to the most-significant and least-significant part of the 

signal word, respectively. 

For the optimal MAC-modularized lowpass LDI Jaumann digital filter shown in 

Fig. 5.2, °MAX = 5.53031, >2R = 13.4639, and ,qo = 2.02602. By using Eqns. (5.1) 

and (5.2) one obtains lUpper = 3, and 1Lower = 4. Since the signal wordlength is given 

to be iSignal = 12 bits/digits, Eqn. (5.4) yields 1lnternal = 19 bits/digits. 

5.4 Number Representation of the Signal and MAC Coeffi-
cient 

This section presents the number representation adopted for the signal and coeffi-

cient word. 

5.4.1 Representation of the Signal Word 

In this implementation, the signal is represented by using SB number represen-

tation (c.f. Section 2.3). The SB signal is represented in two-level logic using the 

minimal-(n,p) encoding (c.f. Table 2.2). This has two advantages. 

1. It permits simple two-level logic realization, and 

2. It permits simple and straightforward negation of the signal word. 

The latter can be achieved by simply swapping the ii and p bits at each digit posi-

tion without incurring any hardware cost. SBNR is employed because it eliminates 

carry/borrow propagation in addition/subtraction, thereby permitting the digital fil-

ter to operate at a very high speed independently of the signal wordlength. 
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5.4.2 Representation of the MAC Coefficient 

Algorithm 1 (Page 28) is employed to convert the given MAC coefficients into 

their corresponding modified radix-4 representation (c.f. Section 2.4.1). The result is 

encoded in two-level logic by using Eqn. (2.61). Such a representation of the MAC 

coefficients eliminates the need for the modified radix-4 recoders in the corresponding 

MAC architectures leading to an increase in the maximum achievable speed in the 

resulting implementation. Moreover, this representation also permits multiplication 

by unity, which is otherwise not possible using TCNR. 

5.5 Gate-Level Implementation of the MAC-Modularized LDI 
Jaumann Digital Filter 

The optimal MAC-modularized digital filter in Fig. 5.2 is used together with Al-

gorithm 13 (Page 133) to arrive at gate-level implementation of the digital filter. The 

resulting implementation can be visualized as consisting of three separate data-paths 

implementing the subsystems k7, , and , and a global control unit as shown 

in the schematic in Fig. 5.3. The data-path subsystems communicate by using the 

data buses MCI, MC2, CM1, and CM2 which consist of the 19 x 2-bit wide signals 

associated with the corresponding state variables in accordance with Algorithm 13 

(Page 133). 

The global control unit controls the operation of the digital filter by communicating 

with each of the data-path subsystems through the Control Bus, COEFF1 Bus, and 

COEFF2 Bus. The Control Bus transmits the digital filter control word from the 

control unit to the data-path subsystems. This control word carries the information 

regarding the state updates required in each clock cycle of the digital filter operation. 

The details regarding the control word are discussed in subsection 5.5.2. The COEFF.1 

Bus and COEFF2 Bus carry the 3 x 3-bit wide .signals associated with the MAC 

coefficients for the subsystems A7j and Al2, respectively. 
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Figure 5.3. Architecture of the MAC-Modularized Lowpass LDI Jaumann Digital 
Filter 

The implementation of the data-path subsystems and control unit by using the 

basic hardware cells given in [45] is discussed in the following. 

5.5.1 Gate-Level Implementation of the Data-Path Subsystems 

The implementation of the data-path subsystems .N, JVJ, and A/, is shown in 

the schematic in Fig. 5.4. This implementation is developed by exploiting the corre-

sponding set of state update equations given in Algorithm 13 (Page 133). The heavy 

lines in the schematic diagram in Fig. 5.4 represent the data buses associated with 

the state variables, while the other lines represent the control signals. The labels 

CLK and CLR represent the clock and reset signals to the data-path subsystems, 

respectively. 

The implementation of the A/ data-path subsystem is shown in the central portion 



139 

510 

511 

620 

521 

510 

511 

NIX 
sly — 

xUy Cu 

MIX   

Al a 

2 0 

CR 1 ..*3 

1? 
Al 

COEPI'l 

NIX 

B 

DECODER DECODER 

Ad 

S 

SAC 

C20 

CII 

CII 

C23 

STATE 

I 0 

(CIO .C20 •C 2.C22) 

STATE  

1 O MIX 

LD 

Cli .CZI 

STATE  

C13 .C23 

STATE 

 eLK 

Cli .C20 

STATE 

I 0 Cu—  B 

A  

A 
S 

A-B 

A 

B 

A  

A 

B 

A+B 

A 
S 

A - B 

 CA 

S 

 KB 

STATE 

0 

eLK 

STATE 

'II 0 

-H  

NIX 

NIX 

-.1 

CR 2 -. 

WC 2 -K 
A 

N 
2 

COEPK2 - V N 

B 

0 

DECODER 

1 CO 

II 2—Cl 

II 3—Cl 

STATE 

1 0 

as 

CO 

STATE 

I 0 

Cl 

STATE 

I ONC 2 

— N21 

— Vu 

Ct-C 

CI 

Figure 5.4. Implementation of the Data-Path Subsystems 



140 

of the schematic in Fig. 5.4. The input signals to this subsystem are IN, MCI, and 

MC2. The output signals generated by this subsystem are OUT, CM1,and CM2. 

The control signal associated with this subsystem is LD. 

The implementation of the Al1 data-path subsystem is shown in the top portion 

of the schematic in Fig. 5.4. It consists of 1 MUX-3, 1 MUX-4, 1 MAC unit, 2 

DECODERs, and 4 STATE registers. Observe that the variables Xu and Xv time-

share the same state register representing the new state variable Xuv. The control 

signals associated with this subsystem are S11, S10, S21, and S20. 

The implementation of the )V2 data-path subsystem is shown in the bottom portion 

of the schematic in Fig. 5.4. It consists of 2 MUX-3s, 1 MAC unit, 1 DECODER, 

and 3 STATE registers. The control signals associated with this subsystem are Si 

and SO. 

5.5.2 Gate-Level Implementation of the Control Unit 

The control unit is implemented after developing the control word required for the 

MAC-modularized digital filter. 

5.5.2.1 Development of the Control Word 

The control word carries the information regarding the state updates required in 

each clock cycle of the digital filter operation. It is derived by using the state update 

equations in Algorithm 13 (Page 133). 

LD Si SO S11 S1O S21 S20 

Figure 5.5. Control Word for the MAC-Modularized Lowpass LDI Jaumann Digital 
Filter 

The control word is as shown in Fig. 5.5 and is a 7-bit value formed by using 
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the control signals LD, 811, 810, 521, 520, Si, and SO. These control signals are 

required for the proper operation of the data-path subsystems and are as shown in 

Fig. 5.4. The sequence of control word values required for processing one sample of 

the input signal is derived as follows. In the first clock cycle, the input sample is 

read, and the data-path subsystem JVj computes the state variables OUTS, CMr, 

and CM. In the subsequent five clock cycles, the data-path subsystems Al1 and A/Ta 

operate concurrently. The state variable MC 1 is computed by the subsystem Rl-

by using five of these clock cycles, while the state variable MC' is computed by 

by using three of these clock cycles. Therefore, six clock cycles are the subsystem iV  

required for processing one single sample of the input signal. 

The value of the control word changes periodically with a period of 6 clock cycles. 

The sequence of the control word values for one period of operation is as shown in 

Table 5.1. Therefore, it is very simple to build the control FSM for this filter as there 

is only a repetitive pattern of six 7-bit signals to be generated. 

Table 5.1. Control Word Values for Processing One Sample 

Clock Cycle Control Word Value 

0 

1 

2 

3 

4 

5 

1000000 

0000000 

0010101 

0101010 

0111011 

0110100 
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5.5.2.2 Implementation of the Control Unit 

The control unit is implemented as shown in the schematic in Fig. 5.6. The 

COUNTER-05 cell counts from 0 to 5 repetitively, thereby enabling the execution 

of the 6 control instructions in Table 5.1. 

COUNTER 

CLK—CLK 0 

:1-

CLR—.CLR 2 

Instruction 
ROM 

7-bits X 6 

- 0 
1 —4-----g-4  I I 

I I 

—i 
0-5 

6-1 MUX 

Register 

COEFF1 
ROM 

9-bits X 6 

0 
1 6-1 MUX 
2 

Register 

V 

COEFF2 
ROM 

9-bits X 6 

0 
1 6-1 MUX 
2 

V 

Register 

Control Word COEFF1 COEFF2 

Figure 5.6. Implementation of the Control Unit 

The schematic in Fig. 5.6 also contains three ROM banks, namely the Instruction 

ROM, COEFF-1 ROM, and the COEFF-2 ROM. The Instruction ROM stores the 

control instructions shown in Table 5.1. The COEFF-1 ROM and COEFF-2 ROM 

store the MAC coefficients required for the operation of .A1 and A/, respectively. 

These ROMs are connected to 6 - to - 1 multiplexers to allow the correct data to 

be fed to the corresponding control and coefficient buses. These multiplexers are 

controlled by the six-state counter COUNTER-05. Finally, the control word bits and 

the MAC coefficient bits for each cycle are latched before being fed to the data-path 
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subsystems. 

5.6 Viewlogic Verification 

The above lowpass LDI Jaumann digital filter was successfully verified using the 

Viewlogic simulations of the corresponding impulse response for an Actel 1.2k tech-

nology implementation. 

The simulation results are shown in Fig. 5.7, where LD, S1[1 : 0], S1JO[1 : 0], 

and S2_10[1 : 0] represent the control word components LD, (Si, SO), (811, 810), 

and (521, S20), respectively. Y1[8 : 0] and YO[8 : 0] represent the 9-bit (representing 

3 digits) MAC coefficients fed to the subsystems T and , respectively. The input 

signal IN is represented in its minimal-(n, p) format using the bus INPP[18 : 0] 

for the p-part of the digits, and the bus INPN [18 0] for the n-part of the digits. 

Similarly, the output signal OUT is represented in its minimal-(n, p) format using 

the bus OUTP[18 : 0] for the p-part of the digits, and the bus OUTN[18 : 0] for 

the n-part of the digits. The final output is derived by removing the overflow and 

roundoff digits from OUT. The signals CLR and CLK are used to reset and clock 

the registers within the digital filter, respectively. 

The simulation results presented in Fig. 5.7 have been carried out at the maximum 

clock rate of 50 MHz. Since each sample requires 6 clock cycles to be processed, 

the maximum sample rate achievable by this implementation is 8.33 MHz. These 

simulations employed a typical delay of 1 nanosecond per gate. Therefore, it is seen 

that the choice of redundant arithmetic permits the exploitation of the maximum 

speed available by the given technology. It is again worth mentioning that this sample 

rate is totally independent of the siglial wordlength of the digital filter. 

5.7 Chapter Summary 

In this chapter, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 have been il-



LD 

G1_10 

020 

02 

XNPP 

20010 

0000 

00010 

ct1 

CLR-

0 o o o o •• ° ° 

0 a a: :o0 0 0o :o a 

000 000 000 000 DOO 000 000 000 004 Poo 000 

oiopoo x : 00000 

00000 : 

0000po : 000000 000048 : OO290 000ao P01441 001205 002009 : 0000 000s 

000000 : 001000 001220 004484 005402 004824 004822 000010 004490 001102 

_pJU_Ju1JuuJUuwu1J1JwJlJu1J1J1J1Ju1J1JU1J1J1Ju.u1Ju1J1 

J 

OILS) 
0 SOOn lu 

T1. (O.cor 

Figure 5.7. Impulse Response Simulation Results for the Lowpass LDI Jaumann Digital Filter 
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lustrated by applying them to the design and implementation of a practical lowpass 

LDI Jaumann digital filter. Section 5.2 has dealt with the MAC-modularization of 

the LDI Jaumann digital filter, together with the development of the corresponding 

state update equations for the constituent subsystems. The signal and MAC coeffi-

cient wordlengths required for the finite-precision arithmetic implementation of the 

MAC-modularized Jaumann digital filter have been calculated in Section 5.3. In Sec-

tion 5.4, the number representations adopted for the signal and MAC coefficient words 

have been defined. The data-path and control unit implementations for the digital 

filter have been presented in Section 5.5. In Section 5.6, the resulting Actel l.2p 

technology implementation has been verified by using its impulse response Viewlogic 

simulations. The simulation results demonstrate an achievable clock rate of 50 MHz 

yielding a sample rate of 8.33 MHz. The striking feature of this implementation is 

that its speed of operation is completely independent of the signal wordlength within 

the digital filter. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary of the Thesis 

This thesis has presented the theoretical foundation underlying a novel system-

atic design philosophy for the realization of digital filters as a class of high-speed 

modular DSP architectures. Mathematical and graph-theoretic techniques have been 

presented for incorporating two important practical features in the resulting digital fil-

ters, namely, structural uniformity and fast processing speeds. The desired structural 

uniformity has been achieved through multiply-accumulate (MAC) modularization 

of the digital filter. The desired fast processing speed, on the other hand, has been 

achieved by using redundant number arithmetic to implement the constituent MAC 

operations. 

In Chapter 2, a theoretical background was presented for fixed-point DSP arith-

metic by introducing various number systems and arithmetic processing methodolo-

gies. This was followed by a rigorous mathematical analysis concerning recoding, 

rounding, and overflow processing of redundant numbers. A novel 5-digit overlapped 

scanning technique was presented for modified radix-4 recoding of SB numbers. Fur-

thermore, two techniques for product rounding in SB number arithmetic were devel-

oped, namely, the RNU and RNE techniques. Finally, arithmetic overflow processing 

issues for SB numbers were discussed together with the concept of directly correctable 

overflow in fixed-point DSP systems. 

In Chapter 3, the results in Chapter 2 were exploited and applied to the design and 

implementation of novel high-speed VLSI arithmetic architectures for multiplication 

and MAC operations. This included a novel approach for very high-speed mixed 

SB/TC digit-serial modified-Booth multiplication. It was shown that the area-time 
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efficiency and throughput of the resulting multipliers far surpass those of the existing 

digit-serial modified-Booth multipliers. It was also shown that redundant number 

arithmetic provides best results for fully parallel multiplication or MAC operations. 

Next, a novel architecture for high-speed mixed SB/TC parallel modified-Booth MAC 

arithmetic operation was presented. Finally, this architecture was extended to handle 

SB number multiplication by employing the modified radix-4 recoding technique, 

and was subsequently used for the design of a high-speed fully-SB parallel MAC 

arithmetic architecture. These parallel MAC architectures employ new techniques 

such as partitioned accumulation and concurrent rounding and overflow correction. 

The resulting architectures were subsequently parameterized in terms of their area-

time requirements for corresponding Actel 1.2k technology implementations, and were 

verified by using Viewlogic simulations. 

Chapter 4 was concerned with a rigorous theoretical approach to MAC-modulariza-

tion of digital filter SFGs. This approach consists of graph-theoretic techniques and 

their subsequent translation into algorithms for MAC-modularization. Taking into 

account the fact that several MAC-modularized digital filter SFGs can result start-

ing from the same initial SFG, a fitness function was developed for the selection of 

the optimal SFG. This fitness function is based on finite-precision arithmetic effects 

exhibited by the corresponding MAC-modularized digital filters. Subsequently, enu-

merative and heuristic techniques for MAC-modularization were developed on the 

basis of the proposed fitness function. These techniques have been incorporated in a 

software package called MAC-M for the MAC-modularization of digital filters. Fi-

nally, the usefulness of MAC-M was demonstrated through its application to a pair 

of digital filters, one having dense, and another sparse multiplication operations. 

In Chapter 5, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 were illustrated 

by applying them to the design and implementation of a practical lowpass LDI [28] 
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Jaumann [6] digital filter. The optimal MAC-modularized LDI Jaumann digital filter 

was obtained by using MAC-M. The resulting Jaumann digital filter was then par-

titioned into three separate data-path modules by taking into account the inherent 

concurrency in the digital filter structure. This concurrency was then exploited to 

develop a schedule in terms of state equations for each data-path module in order 

to facilitate efficient high-speed parallel implementation of the filter. The simulation 

results demonstrated the achievable operational clock speed of 50 MHz, correspond-

ing to a maximum permissible sample rate of 8.33 MHz for an Actel i.2p technology 

implementation. This implementation was verified by using impulse response simu-

lations. The striking feature of this implementation is that its speed of operation is 

completely independent of the signal wordlength within the digital filter. 

6.2 Contribution of the Thesis 

To the best of the author's knowledge, the following contributions of the present 

thesis are original. 

6.2.1 Chapter 1 

• The systematic design philosophy for the realization of digital filters as a class 

of high-speed redundant number arithmetic modular DSP architectures. 

6.2.2 Chapter 2 

• The 5-digit overlapped scanning technique for modified radix-4 recoding of SB 

numbers (Section 2.4.1). 

• The techniques for RNU and RNE of SB numbers to facilitate high-speed round-

ing (Section 2.4.2). 

• The concept of SB directly correctable overflow for fixed-point DSP systems 

(Section 2.4.3). 
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6.2.3 Chapter 3 

• The high-speed mixed SB/TC digit-serial modified-Booth multipliers featuring 

very high throughputs and efficiencies (Section 3.2). 

• The architecture for high-speed mixed SB/TC parallel modified-Booth MAC 

arithmetic operation (Section 3.3). 

• The architecture for high-speed fully-SB parallel MAC arithmetic operation 

based on the modified radix-4 recoding technique (Section 3.4). 

• The concepts of partitioned accumulation and concurrent rounding and overflow 

processing (Sections 3.3 and 3.4), 

6.2.4 Chapter 4 

• The graph-theoretic approach for MAC-modularization of digital filters (Sec-

tion 4.2). 

• The enumerative technique for MAC-modularization (Section 4.4). 

• The heuristic technique for MAC-modularization (Section 4.5). 

• The software package MAC-M for automated MAC-modularization (Section 4.6). 

6.2.5 Appendix A 

• The proof for the modified-Booth recoding technique based on non-redundant 

radix-4 and modified radix-4 representation of TC numbers (Section A.2). 

6.3 Suggestions for Future Related Research 

This work has led to the opening of several windows of opportunity for future 

related research in redundant number arithmetic, MAC-modularization, and the allied 

fields of their potentialities. 
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There is a need for the development of mathematical techniques in the areas of re-

coding, rounding, and overflow processing of higher-radix redundant numbers. These 

techniques can be exploited in conjunction with most-significant-digit-first [30] digit-

serial processing [31] for low latency ultra-fast DSP applications. The area/time 

tradeoffs in such systems must be carefully weighed against that of least-significant-

digit-first systems. Moreover, area/time benefits can potentially be enhanced through 

the introduction of limited redundancy in the number representation. This can be 

achieved by employing quasi-redundant number representation [8] which is still an 

unexplored area. 

From the implementation point of view, advances in ternary logic [43] can lead to 

a breakthrough in the applications of SBNR. This is because ternary logic forms a 

natural implementation, platform for SBNR. 

The use of genetic algorithms for MAC-modularization of digital filters is a logical 

extension of the research presented in this thesis. Automated high-level synthesis of 

MAC-modularized digital filters is also an interesting topic for further research. This 

is because, unlike the conventional synthesis approaches which use two-input one-

output addition and multiplication operators, this approach will involve three-input 

one-output MAC operators. Moreover, the identification of chained accumulations in 

MAC data-flow graphs and their exploitation in building the schedules can result in 

potential benefits in terms of increased speed of operation and lower roundoff errors. 

In addition, there is scope in the area of scheduling MAC DSP algorithms for mapping 

to systolic array MAC arithmetic processors. 

Asynchronous architectures have gained renewed popularity due to their low power 

consumption property. The design and high-level synthesis of asynchronous MAC-

modularized digital filters is yet to be explored and, is a candidate for future research. 

The initial work in this area has been carried out in [47], where several novel asyn-

chronous parallel MAC arithmetic architectures have been developed and compared. 
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APPENDIX A 

ALTERNATIVE PROOF OF MODIFIED-BOOTH 
RECODING BASED ON NON-REDUNDANT RADIX-4 

NUMBER ARITHMETIC 

Al Introduction 

The modified-Booth recoding algorithm was developed by Macsorley [36] more 

than three decades ago. This recoding algorithm finds important practical appli-

cations in two's complement (TC) multiplication, particularly due to the fact that 

it reduces the number of intermediate partial product components generated during 

the course of multiplication by a factor of two. This leads not only to a substantial 

reduction in the multiplication time, but also to a marked economy in terms of the 

real-estate area in a corresponding VLSI hardware implementation. 

Consider a N-bit number Y represented in TC format in accordance with 

N-2 

Y = _YN_l2N 1 + 
n=O 

(A.1) 

where the bits y, E {O, 1}, and where N is an even integer. Then, through the appli-

cation of the above recoding algorithm, the number Y is replaced by a corresponding 

modified radix-4 signed-digit (SD) representation [49] given by [36] 

N-2 
2 

Z = zn4'1, (A.2) 
n=O 

where the digits z, E {O, ±1, ±2}. These digits are determined by using 

Zn = 2Y2n+1 + Y2n + Y2n-1, (A.3) 

with y-1 = 0. 

The salient feature of the number representation in Eqn. (A.2) is that all of the 

digits Zn take on values from the same balanced digit-set {0, ±1, ±2}, making the 

corresponding summation uniform. 
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In 1975, Rubinfield [26] presented a proof of the modified-Booth recoding algorithm 

by establishing the algebraic equivalence of the number Y in Eqn. (A.1) and the 

number Z in Eqn. (A.2). This equivalence was established by splitting Eqn. (A.1) 

as 

N-2 N-3 

Y_YN_l2Nl+ Yn2"+ > (A.4) 
n=O(even) n=1(odd) 

followed by the addition and subtraction of the summation E N-3 y,2' to yield 

N—i N-2 N-3 

Y - - y2' + L + 2 E Yn2n. (A.5) 
n=i (odd) n=O(even) n=i(odd) 

Subsequently, Eqn. (A.5) can be simplified to 

N-2 

(A.6) 
n=O(even) 

by combining the constituent summations. Finally, Eqn. (A.2) was established by 

changing the summation index from ii to 2n in Eqn. (A.6), and by invoking Eqn. 

(A.3) in the result. 

In this thesis, an alternative proof for the modified-Booth recoding algorithm is 

established [51] by successively transforming the number Y from its TC to its non-

redundant radix-4 [23], and from its non-redundant radix-4 to its modified radix-4 

SD representation. 

A.2 Proof of the Modified-Booth Recoding Algorithm 

The TC number Y in Eqn. (A.1) can be expressed in its non-redundant radix-4 

representation in accordance with [23] 

N-4 

Y = (2yNi + YN_2)4 2 2 + >(2y2n+1 + y2n)4 , (A.7) 

where the term (-2yN-1 + yN-2) represents the sign, and the terms (2y2fl+1 + Y2n) 

represent the magnitude of the number Y. Unfortunately, the representation in 

Eqn. (A.7) suffers from two different (but interrelated) problems: 
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1. The sign term (-2yN-1 + yN-2) takes on values from the digit-set {O, ±1, —2}, 

whilst the magnitude terms (2y2n+1 + Y2n) take on values from the digit-set 

{ 0,1,2, 3}, making the number representation non-uniform. 

2. The permitted value of 3 for the magnitude terms (2y2.+1 + Y2n) can make a 

corresponding hardware implementation potentially impracticable. 

In this contribution, it is proposed to recast Eqn. (A.7) into an equivalent repre-

sentation in such a manner that the resulting sign term and magnitude terms all take 

on values from the same balanced digit-set. This is achieved through the introduction 

of the transformation 

4t +1 + w = 2Y2n+1 + Y2n (A.8) 

in Eqn. (A.7), where the transfer digits t1 and the weight digits w, can be de-

termined uniquely from Eqn. (A.8). In particular, by recalling that Yn E {0, 1}, 

Eqn. (A.8) can be solved for t+1 and w,-, to yield 

and 

tn+1 = Y2n+1 

Wn = 2Y2n+1 + Z/2n, 

implying that t,, 1 e {0, 1} and w, E {O, ±1, —2}. 

By invoking Eqns. (A.9) and (A.10), Eqn. (A.7) can be transformed to 

N-2 

Y= >J(wn+tn)4. 

(A.9) 

(A.10) 

(A.11) 

By taking into account the possible values for the transfer and weight digits t, and 

w, it can be shown that (w + t) E {0, ±1, ±2}, making Eqn. (A.11) a uniform 
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representation of the number Y. In order to complete the proof, it remains to be 

shown that 

W n + jn = Zn . (A.12) 

By invoking Eqn. (A.1O) for the sign term and Eqn. (A.8) for the magnitude 

summation terms in Eqn. (A.7), one obtains 

N.-4 

N-2 

Y = WN-242 + E(4t+i +w)4', 
n0 

(A.13) 

where the term w represents the transformed sign term. By splitting the summa-

tion in Eqn. (A.13), one can write 

N-I N-4 

N-2 
Y = wN-24 + E i,+i4" 4 + -i-- w,,4' . (A.14) 

n=0 n=O 

In order to proceed further, Eqn. (A.14) is simplified by making use of the fact 

N-I N-2 
—r-

N-2 

WI4 + = E w4' . (A.15) 
n0 n=O 

Moreover, by substituting = 0 in Eqn. (A.9), one obtains to = 0, implying 

N-I 
22 

= 
n=O n=O 

(A.16) 

Then, by substituting Eqns. (A.15) and (A.16) in Eqn. (A.14), and by combining 

the resulting summations, one immediately arrives at Eqn. (A.11). But, by us-

ing Eqns. (A.9) and (A.10), the terms w, + tn appearing under the summation in 

Eqn. (A.11) are given by 

W n + tn = — 2Y2n+l + Y2n + Y2n-I. (A.17) 

Finally, by comparing Eqns. (A.17) and (A.3) one arrives at Eqn. (A.12), establishing 

the proof. 



REFERENCES 

[1] A. ANToNIou, Digital Filters - Analysis, Design, and Applications, McGraw-

Hill, Inc., (1993). 

[2] A. AVIZIENIS, Signed Digit Numbe(r) Representation for Fast Parallel Arith-

metic, IRE Transactions on Electronic Computers, (September 1961), pp. 389-

400. 

[3] A. D. BOOTH, A Signed Binary Multiplication Technique, Quart. J. Mech. Appl. 

Math., 4 (1951). 

[4] A. VANDEMEULEBROECKE, B. VANzJELEGHEM AND P. JESPERS, A New 

Carry-Free Division Algorithm and its Application to a Single-Chip 1021j-bit RSA 

Processor, IEEE Journal on Solid-State Circuits, 25 (June 1990), pp. 748-755. 

[5] A. W. OPPENHEIM AND R. SCHAFER, Digital Signal Processing, Prentice-Hall 

Ltd., (1994). 

[6] B. NowRouzlAN, N.R. BARTLEY AND L.T. BRUTON, Design and DSP-Chip 

Implementation of a Novel Bilinear-LDI Digital Jaumann Filter, IEEE Transac-

tions on Circuits and Systems, CAS-37 (June 1990), pp. 695-706. 

[7] B. PARHAMI, Generalized Signed-Digit Number Systems: A Unifying Framework 

for Redundant Number Representations, IEEE Transactions on Computers, 39 

(January 1990), pp. 89-98. 

[8] D. S. PHATAK AND I. KOREN, Hybrid Signed-Digit Number Systems: A Unified 

Framework for Redundant Number Representations with Bounded Carry Propa-

gation Chains, IEEE Transactions on Computers, 43 (August 1994), pp. 880-890. 

[9] D. TIMMERMANN AND B.J. HOSTICKA, Overflow Effects in Redundant Binary 

Number Systems, Electronics Letters, 29 (March 1993), pp. 440-441. 



156 

[10] D.E. THOMAS, E.D. LANGNESE, R.A. WALKER, J.A. NESTOR, J.V. RAJAN, 

AND R.L. BLACKBURN, Algorithmic and Register-Transfer Level Synthesis: The 

System Architect's Workbench, Kuiwer Academic Publishers, (1990). 

[11] F. J. TAYLOR, A VLSI Residue Arithmetic Multiplier, IEEE Transactions on 

Computers, C-31 (June 1982). 

[12] G.-K. MA AND F. J. TAYLOR, Multiplier Policies for Digital Signal Processing, 

IEEE ASSP Magazine, (January 1990), pp. 6-19. 

[13] G. PANEERSELVAM AND B. NOWROUZIAN, Multiply-Add Fused RISC Archi-

tecture for DSP Applications, Proceedings of IEEE Pacific RIM on Communi-

cations, Computers and Signal Processing, Victoria, B.C. Canada, (May 1993), 

pp. 108-111. 

[14] H.T. KUNG, Why Systolic Architectures, IEEE Computer, (January 1982), 

pp. 37-42. 

[15] J. H. SATYANARAYANA, A Powerful Genetic Algorithm for the High Level Syn-

thesis of Globally Optimal Digit-Serial Digital Filters, M.Sc. Thesis, Dept. of 

Electical and Computer Engineering, The University of Calgary, Canada, (June 

1994). 

[16] J. H. SATYANARAYANA AND B. NOWROUZIAN, Design and FPGA implemen-

tation of Digit-Serial Modified Booth Multipliers, Journal of Circuits, Systems 

and Computers, (In Press). 

[17]  , A Comprehensive Approach to the Design of Digit-Serial Modified Booth 

Multipliers, Proc. 26th IEEE South-eastern Symp. on System Theory, Athens, 

OH, (March 1994), pp. 229-233. 



157 

[18] J. M. YoHE, Roundings in Floating Point Arithmetic, IEEE Transactions on 

Computers, C-22 (June 1973), pp. 577-586. 

[19] J.W. COOLEY AND J.W. TuKEY, An Algorithm for Machine Computation of 

the Complex Fourier Series, Math. Computation, 19 (1965), pp. 297-301. 

[20] K. HWANG, Computer Arithmetic - Principles, Architecture and Design, John 

Wiley & Sons, 1979. 

[21] K. ITo AND H. KUNIEDA, VLSI System Compiler for Digital Signal Process-

ing: Modularization and Synchronization, IEEE Transactions on Circuits and 

Systems, CAS-38 (April 1991), pp. 423-433. 

[22] K.K. PARHI, A Systematic Approach for the Design of Digit-Serial Signal Pro-

cessing Architectures, IEEE Transactions on Circuits and Systems, CAS-38 (June 

1991), pp. 358-375. 

[23] K.K. PRIMLANI AND J. L. MEADOR, A Nonredundant-Radix-j Serial Multi-

plier, IEEE Journal of Solid-State Circuits, 24 (December 1989), pp. 1729-1736. 

[24] L. M. MAXWELL AND M. B. REED, The Theory of Graphs - A Basis for 

Network Theory, Pergamon Press, (1971). 

[25] L. M. SMITH, Design and Bit-Serial Implementation of LDI-Jaumann Digital 

Filters, M.Sc. Thesis, Dept. of Electical and Computer Engineering, The Univer-

sity of Calgary, Canada, (September 1993). 

[26] L. P. RUBINFIELD, A Proof of the Modified Booth's Algorithm for Multiplication, 

IEEE Transactions on Computers, (October 1975), pp. 1014-1015. 

[27] L. R. RABINER AND B. GOLD, Theory and Application of Digital Signal Pro-

cessing, Prentice-Hall Ltd., (1993). 



158 

[28] L.T. BRuToN, Low Sensitivity Digital Ladder Filters, IEEE Transactions on 

Circuits and Systems, CAS-22 (March 1975), pp. 168-176. 

[29] M. ANDREWS, A Systolic SBNR Adaptive Signal Processor, IEEE Transactions 

on Circuits and Systems, CAS-33 (February 1986), pp. 230-238. 

[30] M. J. IRWIN AND R. M. OWENS, Design Issues in Digit Serial Processors, 

International Symp. on Circuits and Systems, (1989), pp. 441-444. 

[31] , Fully Digit On-Line Networks, IEEE Transactions on Computers, C-32 

(April 1983); pp. 402-406. 

[32] M.R. SANTORO, G. BEWICK AND M. A. HOROWITZ, Rounding Algorithms for 

IEEE Multipliers, Proceedings of the 9-th Symposium on Computer Arithmetic, 

Santa Monica, CA, USA, (September 1989), pp. 176-183. 

[33] N. CHRISTOFIDES, Graph Theory - An Algorithmic Approach, Academic Press, 

(1975). 

[34] N. TAKAGI, H. YASuuRA AND S. YAJIMA, High Speed VLSI Multiplication 

Algorithm with a Redundant Binary Addition Tree, IEEE Transactions on Com-

puters, C-34 (September 1985), pp. 789-796. 

[35] 0. SPANIOL, Computer Arithmetic, John Wiley & Sons, (1981). 

[36] O.L. MACSORLEY, High Speed Arithmetic in Binary Computers, Computer 

Arithmetic, Dowden Hutchinson and Ross Inc., 21(1980), pp. 100-104. 

[37] R. A. ROBERTS AND C. T. MULLIS, Digital Signal Processing, Addison-wesley 

Publishing Company, (1987). 

[38] R. HARTLEY AND P. CORBETT, Digit-Serial Processing Techniques, IEEE 

Transactions on Circuits and Systems, CAS-37 (June 1990), pp. 707-719. 



159 

[39] R.F. LYON, Two's Complement Pipeline Multipliers, IEEE Transactions on 

Communications, (April 1976), pp. 418-425. 

[40] R.K. MONTOYE, E. HOKENEK AND S.L. RUNYON, Design of the IBM RISC 

System/6000 Floating-Point Execution Unit, IBM Journal Res. Develop., (Jan-

uary 1990), pp. 59-70. 

[41] S. EVEN, Graph Algorithms, Computer Science Press, (1979). 

[42] S. KUNINOBU, H. EDAMATSU, T. TANiGIJCHI AND N. TAKAGI, Design of High 

Speed MOS Multiplier and Divider using Redundant Binary Representation, Proc. 

of the 8-th Symp. on Computer Arithmetic, (May 1987), pp. 80-86. 

[43] S. L. HURST, Multiple-Valued Logic - Its Status and Its Future, IEEE Trans-

actions on Computers, C-33 (December 1984), pp. 1160-1179. 

[44] S.-Y. KUNG, H.J. WHITEHOUSE AND T. KAILATH - EDITORS, VLSI and 

Modern Signal Processing, Prentice-Hall Information and System Sciences Series, 

(1985). 

[45] V. M. RAO, Design and Implementation of a High-Speed Redundant Number 

Multiply-Accumulate-Modularized LDI-Jaumann Digital Filter, Internal Techni-

cal Report, Dept. of Electrical and Computer Engineering, The University of 

Calgary, Canada, (July 1996). 

[46]  , Design and Implementation of Novel High-Speed Digit-Serial Modified-

Booth Multipliers, Internal Technical Report, Dept. of Electrical and Computer 

Engineering, The University of Calgary, Canada, (July 1996). 

[47] V. M. RAo AND B. NOWROUZIAN, Design and Implementation of Asyn-

chronous Parallel Multiply-Accumulate Arithmetic Architectures, Proceedings of 



160 

the 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, Brazil, 

(August 1995), pp. 761-764. 

[48] , A Novel Approach to the Design and Implementation of Very High-Speed 

Digit-Serial Modified-Booth Multipliers, Proceedings of the 39th Midwest Sym-

posium on Circuits and Systems, Ames, Iowa, U.S.A., (August 1996), p. in press. 

[49] , A Novel High-Speed Parallel Multiply-Accumulate Arithmetic Architecture 

Employing Modified Radix-4 Signed-Binary Recoding, Proceedings of the 39th 

Midwest Symposium on Circuits and Systems, Ames, Iowa, U.S.A., (August 

1996), p. in press. 

[50] , Novel High-Speed Bit-Parallel Multiply-Accumulate Arithmetic Architec-

ture., Proceedings of the Advanced Signal Processing Algorithms, Architectures 

and Implementations Conference of the SPIE VI, Denver, CO, U.S.A., (August 

1996), p. in press. 

[51] , Alternative Proof of Modified-Booth Recoding, submitted to the Electronics 

Letters, (July 1996). 

[52] , A Novel Modularization Approach to the Design and Implementation of 

High-Speed Redundant Arithmetic DSP Architectures, Proceedings of the Mi-

cronet Annual Workshop, Ottawa, Canada, (March 1996), pp. 45-46. 

[53] , Rounding Techniques for Signed Binary Arithmetic, Proceedings of the 

1996 Canadian Conference on Electrical and Computer Engineering, Calgary, 

Canada, (May 1996), pp. 294-297. 


