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Abstract 

A new membrane wrinkling theory based on the concept of a relaxed strain energy 

function is introduced. The theory is derived as a specific case of the saturated elasticity 

theory. The anisotropy is imported by means of a material metric tensor. The orresponding 

formulations for Neo-Hookean material, including the impending wrinkling surface are 

presented. The theory is then implemented into a finite element code, and several examples 

are studied by using the finite element code. Results of those examples are presented to 

show the effectiveness of the new theory for predicting wrinkling in anisotropic membranes. 

A membrane wrinkle pattern test is also carried out to verify the new theory. 
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Chapter ONE 

Introduction 

1.1 The Concept of Membrane 

A membrane here is an ideal mechanical model. One dimension of the membrane is far 

less than the other two dimensions, thus is negligible. So a membrane is a plane model. 

Besides, a membrane has no bending stiffness and thus can not withstand any compressive 

stresses. However, a real membrane has always some bending stiffness, although its 

bending stiffness may be so small that it has little effect on the stresses. 

The membrane model can be applied to all thin structures bearing tension forces. Such 

examples include parachutes, fabric structures, light aircraft, automobile airbags, 

space-based radar, skin, etc. 

1.2 The Wrinkling Phenomenon of Membranes 

When a thembrane is in a uniaxial tension, there will appear some wrinkles on the 

membrane and those wrinkles will be aligned with the tension direction. Compressive 

stresses are usually involved in the development of off-plane deformation. However, in the 
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a b 

Figure 1.1 Three kinds of stability of equilibrium condition 

case of membranes, no compressive stress can exist since a membrane has no bending 

stiffness and can not withstand any compressive stress. In fact, the wrinkling of membranes 

is essentially due to the fact that the membrane loses the stability of the equilibrium 

condition. 

There are three kinds of possible stability of the equilibrium condition—the stable 

equilibrium, the unstable equilibrium and the indifferent equilibrium, as shown in Figure 

c 

1.1. The ball in Figure 1.1 a is in the equilibrium condition at the lowest point on a concave 

surface, and it will return to its original equilibrium position due to its weight after being 

taken away a small distance from its original equilibrium position. This kind of equilibrium 

condition is called the stable equilibrium. The ball in Figure l.lb is in the equilibrium 

condition on a horizontal plane, and it can keep balance at any point near its original 

equilibrium position on the plane. This kind of equilibrium condition is called the 

indifferent equilibrium. The ball in Figure 1.1 c is in the equilibrium condition at the top 

point of a convex surface, it will roll away under its weight after being given a small 
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disturbance and never return to its original equilibrium position. This kind of equilibrium 

condition is called the unstable equilibrium. 

After being disturbed, the ball moves to a new position from its equilibrium position. 

When the potential energy of the ball at any possible new position is higher than that at its 

equilibrium position, the potential energy at the equilibrium position is a minimum, and the 

ball will return to a position of lower potential energy from a position of higher potential 

energy. On the contrary, of the potential energy at the equilibrium position is a maximum, 

the ball will not return to a position of higher potential energy from a position of lower 

potential energy, unless an external force is involved. When the potential energy of the ball 

at any possible new position is always the same as that at its equilibrium position, any 

possible new position could be its equilibrium position. 

The stability of equilibrium condition of a structure or a structural element is usually 

more complicated than the case of the ball mentioned above. However, no matter how 

many variables are involved, the concept of stability of equilibrium condition is same, there 

are always three kinds of possible stability of the equilibrium condition—the stable 

equilibrium, the unstable equilibrium and the indifferent equilibrium. 

The buckling of a shell is an example of losing stability of equilibrium. At the 

impending buckling point, a shell is in an unstable equilibrium. But before buckling, a shell 

with low bending stiffness can support a small amount of compressive stress. If such a shell 

is subjected tO compression in one principal direction and tension in the other principal 

direction, it will buckle and many narrow wrinkles will form with crests and troughs 

roughly parallel to the tension direction. As the bending stiffness decreases, so do the 
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critical buckling stress and the distance between the crests. When the bending stiffness 

vanishes, so does the critical buckling stress and there would be an infinite number of 

infinitely narrow wrinkles exactly parallel to the tension direction. This is the case of the 

wrinkling of membrane. So a membrane is essentially a thin shell with no bending stiffness. 

In fact, there always exists a small amount of bending stiffness in a real membrane, 

although it may be so small that it is usually neglected in a stress analysis. It is the small 

amount of bending stiffness that determines the real configuration of a wrinkled membrane 

as a finite number of finitely narrow wrinkles. Pogorelov (1967) mentioned an approach to 

membrane wrinkling by viewing the membrane as a thin elastic shell. 

At any point on its surface, a membrane must be in one of three states. In a "double 

wrinkling" state, the membrane is not stretched in any direction. In a "no wrinkling" state, 

the membrane is in tension in all directions. In a "single wrinkling" state, the membrane is 

in a uniaxial tension, which is what we are most interested in. 

1.3 The Importance and Necessity of The Research on The 

Wrinkling Phenomenon of Membranes 

Membranes are widely used as structural elements in many engineering fields. Cohen 

/ 
and Wang (1984) studied the response of elastic and hyperelastic membrane points. Contri 

and Schrefler (1988) carried out a geometrical nonlinear analysis of wrinkled membranes 

using a no-compression material model. Lukasiewicz et al. (1983,1985,1990) studied the 

stability of air-supported cylindrical membranes and the collapse mode and loads of an 

inflatable freestanding membrane. Miller et al. (1985) analyzed partly wrinkled membranes 
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using finite element method. Stanuszek and Glockner (1995) studied key response features 

of spherical inflatables under axisymmetric liquid and hydrostatic loads. Jenkins (1996) 

presented a comprehensive description of the state of the art up to 1996 for all aspects of 

the theory and applications of membranes. Such applications include civil engineering and 

architecture, aeronautics, mechanical engineering, astronautics, biomechanics, etc. 

However, the conventional membrane theory cannot explain the wrinkling phenomenon of 

membranes. In conventional membrane theory, the membrane can resist compression 

without wrinkling although its bending stiffness vanishes. Therefore, the phenomenon of 

wrinkling of membranes is of both practical and theoretical importance. 

In solid' mechanics, there are usually three aspects that need to be considered to 

establish the relation between external forces and displacements. They are equilibrium 

equations—the relation between external forces and stresses, the constitutive law—the 

relation between stresses and strains, and geometric equations—the relation between strains 

and displacements. To describe the phenomenon of wrinkling of membranes, some 

modifications must be made to the conventional membrane theory. Among the three aspects 

above, it seems nothing can be done with equilibrium equations. Thus, there are only two 

possible ways to model the phenomenon of wrinkling of membranes, one is to modify the 

constitutive law and the other is to modify the geometric equations. 

In fact, all existing models of wrinkling of membranes fall into two categories. One is 

to modify the deformation gradient tensor to eliminate compressive stresses occurring in 

the course of the solution procedure. Wu and Canfield (198 1) introduced an extra parameter 

to modify the deformation tensor. Roddeman et al. (1987,1991) generalized their approach 
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to include anisotropic materials and developed the criterion to judge the state of the 

membrane at a point. Their theory was then implemented into a finite element program to 

simulate wrinkled membranes. Muttin (1996) generalized the wrinkling theory of 

Roddeman et al. for curved membranes using curvilinear coordinates. Kang and Tm (1997) 

adopted Muller's method to search for multiple roots of non-linear equations to find the 

wrinkling direction. Lu et al. (200 1) derived explicit formulas for the internal forces and the 

tangent stiffness matrix using curvilinear coordinates and presented a new scheme to find 

the wrinkling direction. 

The other is to modify the constitutive relationship of the membrane to simulate 

wrinkling. This method was first proposed by Wagner (1929) and subsequently developed 

by other researchers, such as Reissner (1939), Kondo et al. (1955), Mansfield (1970), Wu 

(1978), Pipkin (1986,1993,1994), Steigmann (1986,1990), Li (1993), Haseganu (1994) and 

Epstein (1999,2001). Pipkin (1986) showed that the wrinkling of membranes could be 

obtained as minimum-energy states by means of a relaxed strain energy function. 

Steigmann (1990) further developed the concept of the relaxed strain energy function in the 

context of tension-field theory, and Haseganu (1994) developed the numerical 

implementation of their theory. Pipkin (1993) also presented an algorithm for obtaining the 

relaxed energy for anisotropic membranes. Epstein (1999) presented a relaxed energy 

function applicable to arbitrary anisotropic elastic membrane that can be obtained by 

regarding membrane wrinkling as a specific case of saturated elasticity. 

Both models mentioned above can describe the wrinkling phenomenon of membranes, 

but they interpret it differently. More and more investigations on the wrinkling 
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phenomenon of membranes will increase our understanding on the mechanism of the 

wrinkling of membranes. The work we have done is one of those trials. 

The work presented here is based on the wrinkling theory of Epstein, which is 

introduced in Chapter three. The wrinkling theory of Epstein is then formulated using 

curvilinear coordinates and implemented into a finite element program to simulate the 

wrinkling of membranes in Chapter four. Several numerical examples and the membrane 

wrinkle pattern test are presented in Chapter five and Chapter six to demonstrate the 

method. 



Chapter TWO 

Review of Non-linear Membrane Wrinkling Theory 

At any point on its surface, a membrane must take one of three states: double wrinkling 

—being not stretched in any direction, no wrinkling—being stretched in all directions, and. 

single wrinkling—being in a uniaxial tension. Thus a membrane theory must answer two 

questions: how to determine the state of a point on the membrane and how to calculate the 

strain and stress in the three different states. 

There are two different models to simulate the wrinkling of membranes, model I by 

modifying the deformation gradient tensor and model II by modifying the constitutive 

relationship of the membrane. 

2.l Model l 

Consider a membrane represented by its mid-surface in a plane stress state. A 

curvilinear coàrdinate system ( , ) is attached to the mid-surface. The covariant base 
vectors of the coordinate system on the reference and deformed membrane are defined, 

respectively, as 
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ax ax 
G =-, g a a a 

(2.1) 

where X and x are position vectors of a particle referred to origins on the reference and 

deformed membrane, respectively. Greek indices take values in {1,2}. The covariant 

components of the metric tensor on the reference and deformed membrane. are defined, 

respectively, as 

Gap = GaGp, g = gap (2.2) 

The contravariant components of metric tensor and the contra base vectors on the reference 

membrane are ,obtained from 

[G ap ]= [Gap]-', G = Ga13G13 (2.3) 

Now, let's introduce a smoothed pseudo-surface—plane ABCD to replace the real wrinkled 

region, as shown in figure 2.1. Particles on the real wrinkled surface ABCD are projected 

A 

DL 

W 

 1 
Figure 2.1 Wrinkled, pseudo and lengthened surface 
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onto the pseudo-surface. The quantities measured on the pseudo-surface are called 

"nominal" ones while the quantities measured on the real surface are called "real" ones. 

The nominal deformation gradient tensor is 

(2.4) 

The nominal Green strain tensor on the reference membrane is then obtained 

E =! (FT F_I)_E DG ®G', Ea =.-(g —Gao) (2.5) 
2 

where I is the unit tensor. The nominal second Piola-Kirchhoff stress is determined 

through the constitutive relation 

S = SG ® G = H(E) (2.6) 

where H is a tensor function of E. 

In a double wrinkling state, the membrane is not stretched in any direction, so the 

Green strain must satisfy 

E11 +E22 ≤0, E11E22 —E12E21 ≥0 (2.7) 

The real stress and strain both vanish. 

In a no wrinkling state, the membrane is stretched in all directions, so the second 

Piola-Kirchhoff stress must satisfy 

S 1 +S22 ≥0, S"S 22 —S'2S2' ≥0 

The real strain;nd stress are the same as the nominal ones. 

(2.8) 

In a single wrinkling state, the membrane is in a uniaxial tension state. Define 

t = tag" as a unit vector in the tensile principal direction and w = wag" as a unit vector 
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in the other principal direction, as shown in figure 2.1. Then the following conditions hold: 

w•w=1, t•t=1, t. w=taw,.= 0 (2.9) 

When the membrane in single wrinkling state is lengthened transverse to the wrinkles, 

each element of area will undergo rigid body movement until the wrinkles vanish. Both the 

Green strain and Cauchy stress do not change during the rigid body movement. When the 

wrinkles just vanish, the lengthened membrane is still in the same uniaxial tension, then 

define the deformation gradient tensor on the lengthened membrane as 

(2.10) 

where 0 > 0 'is the ratio of lengthening. The Green strain on the wrinkled membrane, 

which is equal to the Green strain on the lengthened membrane, is obtained as 

(2.11) 

where 

E E g ® g, = + - (2 + f3)Wa w, ü' = wF = w G cc (2.12) 

The second Piola-Kirchhoff stress and the Cauchy stress on the lengthened membrane are 

then given by 

S=H(E)=sG ®G (2.13) 

= 

where J = dèt()> 0. The Cauchy stress thus satisfies the following conditions: 

(2.14) 

&w=0 (2.15) 
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t6t>O (2.16) 

From these two conditions, one can obtain the following equivalent conditions: 

(2.17) 

vSii'=O (2.18) 

nSn>O (2.19) 

where is the unit vector along the principal direction of S where the corresponding 

principal stress vanishes, v is an arbitrary vector tangent to the reference membrane 

which is linearly independent of i, and n is the unit vector along the other principal 

direction of S. 

2.2 Model II 

Consider a flat reference membrane Q with coordinates (x1 , x2). A point in the 

membrane can then be expressed as x = xea, where Greek indices run from 1 to 2 and 

{e1 , e2 } is a fixed orthonormal basis. The deformed membrane is of a three dimensional 

configuration, the material particle at x on the reference membrane is displaced to the 

point r(x) = , (x)e,, where Latin indices run from 1 to 3 and e3 = e1 x e2 is the unit 

normal to the refeience membrane. Thus ii(X) are the Cartesian coordinates of material 

points on the deftrmed membrane. 

Define a deformation gradient in Cartesian coordinate system as 

F=Fza (x)ei®ea, Fia =r, (2.20) 

The associated Cauchy-Green strain tensor is: 
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C=F TF=CaDea®e, Ca p= Fi.Fip (2.21) 

Since C(x) is symmetric, positive semi-definite for every x E Q , it possesses an 

orthonormal pair {L(x) = L. (x)ea , M(x) = M a (x)ea } of eigenvectors. Define 

non-negative scalars 

and unit vectors 

(x)=FLI= JL.CL, j.t(x) = IFMI = IM - CM (2.22) 

1(x) = r'FL, m(x) =1.i-'FM (2.23) 

By using these scalars and unit vectors, the deformation gradient and strain can then be 

expressed as. 

F=FL®L+FM®M=7J®L+tm®M (2.24) 

C=2 2L®L+j 2M 0 M+7i1.m(L®M+M 0 L) (2.25) 

According to the definition of L and M, / m = 0 unless 7 = 0 or t = 0. So the 

pair {l(x), m(x)} is an orthonormal basis for the plane tangent to the deformed membrane 

at the point x . Then 2 and p. are the principal stretches, the square roots of the 

eigenvalues of C. 

The strain energy per unit area of the reference configuration for isotropic materials 

can be expressed as a symmetric function of ? and p., 

w(F)= w('L.,p)= w(,,2) (2.26) 

the second Piola-Kirchhoff stress tensor is then obtained as 
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S=l®L+-!im®M 
52 all 

(2.27) 

For incompressible isotropic materials, the principal stretches 2¼. and p. in a 

minimum-energy configuration must satisfy the following condition: 

2 ≥ ,u_112 and ,u ≥ 2 112 (2.28) 

To describe the wrinkling of membrane, a relaxed energy WI? (F) is introduced to 

replace the original energy. The relaxed energy is defined as 

>p'12 t>2'12 

Wl? (F)= Wi? (2, 1u)= 
2>1,  

0 

where W(2, 1u) is the original strain energy, and 

(2.29) 

J(x) = W(x, X-112) = W(x112 , x) (2.30) 

is the strain energy in uniaxial tension. 

Therefore, the values of X and p. are used to determine the state of a point on the 

membrane. In equation (2.29), the first row accounts for no wrinkling state; th6 last row is 

double wrinkling state, while the other two rows represent single wrinkling state. For all 

these three states, the Cauchy-Green strain are given by equation (2.21), and the second 

Piola-Kirchhofftress can then be obtained through the constitutive law by substituting the 

corresponding1relaxed energy W? (F). 

It should be noted that the strain and stress both vanish for double wrinkling case 

because of its zero relaxed energy while they are the same as those of conventional 
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membrane theory for no wrinkling case because the relaxed energy here is the strain energy 

in conventional membrane theory. This is also in accordance with model I. 



Chapter THREE 

Wrinkling Theory of Anisotropic Membranes 

To model 'the wrinkling of membranes, two questions must be answered. One is what 

the wrinkling condition is, while the other is how to calculate the stress and strain in a 

wrinkling configuration. The wrinkling phenomenon of membranes is viewed as a 

particular case of saturated elasticity in this chapter. Thus the saturated elasticity theory is 

introduced first. Then the wrinkling condition of membranes is derived based on the 

saturated elasticity theory, and the wrinkling strain and the constitutive law effective in the 

wrinkling configuration are obtained as well. Next an orthotropization technique is 

presented to introduce the anisotropy into the wrinkling theory of membranes. Finally, 

specific formulation's for Neo-Hookean material are obtained due to its wide engineering 

application, although the wrinkling theory can be applied to a wide variety of materials. 

3.1 The Saturated Elasticity Theory 
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3.1.1 The concept of saturated elasticity 

Consider a hyperelastic material characterized by a strain energy density 

w=w(c) (3.1) 

per unit volume of a given reference configuration, where C = F T F is the right 

Cauchy-Green strain tensor (with components C,), and F is the deformation gradient 

(with components F,' ). Cartesian coordinates are used throughout. The second 

Piola-Kirchhoff stress tensor S (with components S) is given by: 

S=2 aw 
ac 

(3.2) 

When the stresses satisfy a certain condition called the saturation condition, the 

material enters a state of saturated elasticity. That is just as what happens in plasticity case, 

the material yields when the stresses satisfy the yield condition, which is usually expressed 

as the equivalent stress in terms of the yield., limit of the material. But all the strains are 

elastic strains in the saturation elasticity case and thus are reversible. Assume that the 

saturation condition can be expressed mathematically by a homogeneous function f of 

degree m, in the frm: 

(3.3) 

where k2 is a fixed material constant (similar to a uniaxial "yield stress"). The assumed 

homogeneity of the function f naturally leads to the following identity: 
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mf=S asij 
af  

where the summation convention for diagonally repeated indices has been adopted. 

(3.4) 

The concept of saturation can then be interpreted as follows: 

(i) The saturation condition equation (3.3) must always be observed. 

(ii) If the strict inequality given in the saturation condition holds, the material is in the 

"unsaturated domain" and the stresses are given by the unsaturated constitutive law 

- equations (3.1) and (3.2), using the originally given strain energy function. 

(iii) If the 'stresses obtained from the unsaturated constitutive law would not satisfy the 

saturation condition, then the stresses are no longer derivable from the unsaturated 

constitutive law, but satisfy the strict equality given in the saturation condition and 

the material is in the "post-saturated domain". 

(iv) the stresses in the post-saturated domain are derivable from the post-saturated 

constitutive law using a relaxed energy function which is a C' -continuation of the 

given strain energy function from the unsaturated domain. 

The equality in saturation condition can be interpreted as defining a surface in the 

stress space as well as its counterpart a surface ' in strain space through the constitutive 

law. Both stress nd strain spaces are 9-dimensional, and Cartesian dot product of vectors 

therein corresponds to the usual inner product of tensors. By taking advantage of the 

symmetry of the stress and strain, the dimensions of these two space can then be reduced to 

just 6, and the off-diagonal components of tensors should be understood as multiplied by 
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the square root of 2, in order to recover the usual inner product. 

3.1.2 The relaxed energy function 

To determine the relaxed energy function, let us first recall a result from the theory of 

first-order partial differential equations (see Courant (1962)). 

Given a first-order partial differential equation for a function u of n independent 

variables (x1, ... ,xn) 

(3.5) 

where p1 = -s-, the so-called characteristic strips are given by solutions of the following 
characteristic system of ordinary differential equations for the 2n +1 functions x ', p,u 

of a parameter s 

dx'aG 

ds - tp 

_1( dpi . 8G 3G 

ds ' au, 5x ' 

(3.6) 

(3.7) 

(3.8) 

I 

Besides satisfying the characteristic system, a characteristic strip must also satisfy the 

first-order partáI differential equation in that the function G should vanish along it. In the 

post-saturated domain, the equality given in the saturation condition holds and can be 

regarded as a partial differential equation for the relaxed energy function, where the strain 
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components C,, the stress components 1 SU = aw  and the relaxed energy function W 

correspond to x',p1 and u respectively. Then the corresponding characteristic strips of 

the equality given in the saturation condition can be obtained from the following 

characteristic system of ordinary differential equations for the 2n +1 functions Cy So., W 

of a parameter s: 

dC, =2—af 
ds asji 

ds 

= Si) --- = mk2 
ds aS, 

(3.10) 

(3.11) 

The characteristics of the relaxed energy function are disclosed by these three ordinary 

differential equations. First, equation (3.10) indicates that the second Piola-Kirchhoff stress 

keeps constant along characteristic strips. Based on this fact, equation (3.9) means that the 

first order derivatives of the strain with respect to the only parameter s are all constants 

since the derivatives in the right-hand side of equation (3.9) depend on the second 

Piola-Kirchhoff tress only. Thus the characteristic lines in the strain space are straight 

lines. 

Secondly, equation (3.9) and (3.11) imply that the directional derivative in the direction 

of the characteristic is matched as well. This can be shown by calculating the derivative 
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(dw dC,. 
—  in the direction of  approaching the boundary ' from the unsaturated 

ds 

domain. 

(dw =  aw dC13 =1S 2 af  =.! 
ds ), aC, ds 2 " aS1 " 3S,, ds 

(3.12) 

This ensures that the transition between the given strain energy in the unsaturated domain 

and the obtained relaxed energy in the post-saturated domain is of class C. 

Thirdly, equation (3.11) shows that the relaxed energy function grows linearly with s 

along the characteristic lines. Therefore, the initial conditions for the relaxed energy, stress 

and strain along any specific characteristic can be obtained from the known values of the 

given strain energy, stress and strain at the boundary ' between the unsaturated and 

post-saturated domains. 

Fourthly, equation (3.9) shows that the characteristic lines in the strain space are 

perpendicular to the surface > in stress space at the impending saturation point. This is 

called the "normality rule", it is a consequence of the fact that the saturation function 

contains stresses only. The characteristics, in general, are not perpendicular to the surface 

but have the direction of the normal to Z at the corresponding point. 

Based on the normality rule, the value of the relaxed energy function for a given strain 

in the post-saturated domain can be determined as follows. Shoot straight lines from the 

given point to' the surface ' until, for some straight line, its direction coincides with the 

normal at the point in Y, that corresponds to the intersection of the line with '. Then 
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determine the value of the parameter s by calculating the distance between the given 

point and the intersection point of the characteristic with ' and the length of the gradient 

vector of Z at the corresponding point. Indeed, equation (3.9) implied that: 

ds = 

vas as 

dC 
(3.13) 

where dC is the ordinary Cartesian length element in the strain space. 

Finally, by integrating equation (3.9), the total strain can be decomposed additively 

into two parts—the saturated strain and the post-saturated strain, as following: 

(asi j Jcq• =c j+ct (3.14) 

where CO is the integration constant, a function of the second Piola-Kirchhoff stresses ij 

and represents the saturated strain component. To see that this is the case, let s = 0, then 

the total strain is just the saturated strain. As long as the second Piola-Kirchhoff stress 

keeps unchanged, the saturated component remains constant. AC/ is the additive 

post-saturated strain component, which abides by the normality rule. 
I 

The additivity of the Cauchy-Green tensor does not contradict the multiplicative 

decomposition of the deformation gradient, but imposes a restriction upon its post-saturated 

component via the condition: 

(3.15) 
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where the post-saturated strain component can be expressed as: 

FPTFI) = I + 2sF0_T( of "F01 
as  (3.16) 

F" can also be explicitly solved from equation (3.15) for the particular case of 

membrane wrinkling. It should be pointed out that the two post-saturated strain tensors, 

L\C' obtained from .he additive decomposition of the Cauchy-Green strain tensor and 

F"T F" obtained from the multiplicative decomposition of the deformation gradient, are 

always different, their relation is defined by equation (3.16). 

3.2 The wrinkling theory of anisotropic membranes 

3.2.1 The wrinkling condition 

When the saturated elasticity theory is applied to the wrinkling of membranes, the 

wrinkling phenomenon can be viewed as a particular case of the saturated elasticity and the 

analysis can thus be carried out in a purely two-dimensional context, whereby the spaces of 

symmetric second order tensors become three-dimensional. The function f in the 

saturation condition now becomes the determinant function of the stress tensor and the 

constant k is equal to zero. The inequality in the saturation condition is reversed. The 

saturation condition is replaced in this case by the wrinkling condition: 

s1 1s22 -s12s21 ≥ 0 (3.17) 
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By substituting equation (3.2) into the wrinkling condition, one obtains: 

aw aw aw aw  >0 

ac1, ac22 aC12 aC2, - 
(3.18) 

where the assumption that the dependence of W on C12 and C21 has been symmetrized 

has been adopted, so that aw  = . Since the membrane has no bending stiffness and 
ac12 ac2, 

cannot withstand any in-plane compressive stresses, the product and sum of the principal 

stresses, which are equivalent to the determinant and trace of the stress tensor, must be 

non-negative. ,The first condition is implemented by the wrinkling condition, while the 

second condition can be handled by directly excluding a "forbidden zone". 

3.2.2 The stress and strain spaces 

The equality in the wrinkling condition defines a surface E in the stress space and a 

surface E' in the strain space through the constitutive law. The surface E in the 

three-dimensional stress space with coordinates Sf1, s22,J3Js12--%Jis2, is a right-angled 

cone with its axis being the bisector of S1, and S22 . The cone has two sheets, which 

divide the stress space into three zones. The one, whose intersection with the plane S12 = 0 
/ 

falls in the third quadrant, encloses the forbidden zone of double wrinkling; the other, 

whose intersection with the plane S12 = 0 falls in the first quadrant, encloses the no 

wrinkling zone; between these two sheets is the single wrinkling zone. The shape of surface 

' depends on the particular constitutive equation of the membrane, and is obtained by the 
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Figure 3.1 Impending-wrinkling surfaces in the stress and strain space 

strict equality in wrinkling condition. Assuming the reference configuration to be in a 

natural state, the vertex 0 of the cone is mapped to the point V in >' with 

coordinates (1, 1, 0). At this point the normality rule implies the emergence of a forbidden 

cone which is identical with its counterpart in the stress space as shown in Figure 3.1. 

Within the double wrinkling zone both principal stresses are negative, the membrane is 

not stretched in any direction at all, and the configuration can not be determined through 

equilibrium. So the double wrinkling zone should be excluded as a forbidden zone and the 

strain energy density is set zero. Within the no wrinkling zone both principal stresses are 

positive, the membrane is stretched in all direction, and the strain energy density is exactly 

the originally given strain energy density. In single wrinkling zone, one of the principal 
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stresses is zero while the other is positive, the membrane is in a uniaxial tension. The 

original constitutive relationship is no longer effective in this zone, but the strain energy 

function is replaced by a relaxed energy function. The relaxed energy function is a C' 

continuation of the original strain energy function, and keeps constant along the 

characteristic lines. Thus the value of the relaxed energy function at a given point in the 

single wrinkling zone, is just the value of the original strain energy function at the 

intersection point Co of the characteristic line passing through the given point and the 

impending wrinkling surface '. The characteristic line is parallel to the normal n at the 

corresponding point S° of the intersection point Co on impending wrinkling surface 

in stress space. 

A plane perpendicular to the axis of the cone will intersect with the cone on an 

intersection circle, which represents a plane stress state. Given that the square root of 2 

scaling is removed, the projection of such a circle on the S,1, S,2 plane coincides with 

Mohr's circle. Thus, different points on the pircie represent states of stress rotated rigidly 

with respect to each other. On the other hand, two different points could be obtained 

through rotating the circle around the axis of the cone a certain angle 0, and the 

connection betwen the coordinates of these two points in stress space is given by 

following matrix: 

Cos 2 0 sin' 0 'j  sin 0 cos 0 

sin' 0 Cos 2 0 - j sin 0 cos 0 

'jsin0cos0 —Jsin0cos0 cos20—sin20 

(3.19) 
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Therefore, different points on the circle can also represent the same state of stress in 

different orthogonal coordinate systems. Since the cone is the impending wrinkling surface, 

any point on the cone in the first quadrant represents a uniaxial state of stress. This is clear 

on a Mohr's circle. The projection of such a circle on the S11 ,S1-, plane must always pass 

through the origin because the cone is right angled, so the second principal stress is zero, 

and the circle represents a uniaxial state of stress. 

3.2.3 The wrinkling strain 

Since the cone E is right angled, a vector normal to the cone at a point S° 

coincides with the direction of a uniaxial state of stress represented by F, which is the 

symmetrical point of S° about the axis of the cone as shown in Figure 3.1. Point P can 

be obtained by rotating the circle by 180 degrees from S°, so the first principal direction 

of the uniaxial state of stress at P coincides with the second principal direction of the 

uniaxial state of stress at S°. Combining this fact with the normality rule, it turns out that 

the wrinkling (post-saturated) additive component of the strain should be of the form: 

t:sCw =_12u®u (3.20) 

where u is the unit eigenvector of S° corresponding to the zero principal stress, and 2 

is a scalar parameter, whose range of values is determined by the fact that the total strain 

tensor must keep always positive definite. Next, as has been pointed out previously, 

equation (3.15) can be solved explicitly for FP in the case of membrane wrinkling. To 

stress that the results are only valid for the wrinkling case, we now denote F" by F' 
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and define 

FJV = Q(e _a2 e ® e + g ® g ) (3.21) 

where Q is an arbitrary rotation, and e and g are unit eigenvectors of the Cauchy 

stress tensor cs corresponding, respectively, to the zero and the positive principal stresses 

at C = C°. The parameter a2 is a measure of wrinkling while a = 0 corresponds to 

impending wrinkling and a —> co indicates dimensional collapse. Notice that, the 

connection between the Cauchy stress tensor a and the second Piola-Kirchhoff stress 

tensor S can be expressed as: 

o.= JIFSFT (3.22) 

where J is the determinant of F, so it turns out that the vector 

= F 0Te 

is collinear with a. In fact, 

Su' = JF0l cr F 0Tu = JF° 'cre = 0 

so a' is an eigenvector corresponding to the zero eigenvalue of S°. Then we have: 
/ 

C = F OT F  WT F'vFO 

= FOT (e 2a2e ® e+g ® g )F 0 

= F 0T (I_(1_ e 2a2 ® e)F0 

= (i - e_2a2 )' ® 

C° —y'2u®u 

(3.23) 

(3.24) 

(3.25) 
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where 

y 2=(1 e _2a 2 ) JIU I U  (3.26) 

This shows that a deformation gradient of the form (3.21) is a solution of equation 

(3.15) via equation (3.20). In other words, if any other tensor FJV' happens to be a 

solution of equation (3.1 5), it must be able to be resolved uniquely into an orthogonal and a 

positive definite symmetric part through polar decomposition. However, it follows 

immediately that the symmetric positive definite parts of Fly' and F'' must be equal, 

and only the orthogonal parts can be different. This is exactly what is expressed by equation 

(3.21). Thus equation (3.21) is the general solution of equation (3.15) for the case of 

membrane wrinkling. This also confirms the physically intuitive idea that, at constant 

saturated uniaxial stress, the wrinkles remain aligned with the principal tension. Moreover, 

since k = 0 in equation (3.11), the elastic energy remains constant throughout the 

wrinkling process at constant uniaxial stress. 

3.2.4 Orthotropization technique 

To introduce the anisotropy into the membrane wrinkling theory, let us consider a 

general isotropic hyperelastic constitutive law first, 

w = (3.27) 

where 2 and 22 are the eigenvalues of the right Cauchy-Green strain tensor C. The 

relation between the Lagrangian strain tensor L and the right Cauchy-Green strain tensor 

Cis 
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L=1 (C—I) (3.28) 

where I is the identity tensor. Then the characteristic equation satisfied by those 

eigenvalues 2 can be written as: 

det[2L—(2-1)I]= 0 (3.29) 

Now we introduce a thaterial metric through a symmetric positive definite tensor M and 

define the modified eigenvalues 1u satisfying the following characteristic equation, 

det[2L—(u-1)MI]= 0 (3.30) 

Then define the orthotropized constitutive equation associated with the general isotropic 

constitutive law (3.27) via the material metric M as: 

= (3.31) 

where the functional dependence W is the same as before, but.where the eigenvalues 2 

have been replaced by the weighted eigenvalues ,u. M can be written in its eigenbasis in 

the diagonal component form as: 

M = 
(i3 0 

(\0 /3, 
(3.32) 

where fl, > 0 and /32 > 0 can be called the orthotropy parameters. The value /3 = 1 

and /'2 = 1 correspond to isotropy. By solving the modified characteristic equation (3.30), 

the weighted eigenvalues ,u corresponding to the orthotropized strain space can be 
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obtained as: 

E22 ')2 4E11E22 —E12E21  

,8 182 ) 181182 

= cii _1+ C22 —1+ 

2,61 2182 

( C1, —1 + c 22 _1 '2 (c1, -iXc22 -i)-c12c2,  
2,61 2182 , 181182 

3.3 Application to the Neo-Hookean material 

(3.33) 

The Neo-Hookean material is taken as an example here to investigate its impending 

wrinkling suface. 

The strain energy potential of the Neo-Hookean material in 2 dimension can be written 

as: 

+22 +27'2;' —3) (3.34) 

where G is a positive constant with dimensions of force/area (the shear modulus for 

infinitesimal strain). Through replacing the eigenvalues ? with the weighted eigenvalues 

t, the strain energy function can be orthotropized as: 

W = .- GI  c11 —1 + C22 —1 + fl /32  
2fl 182 'IX ) 

(3.35) 

where A = (C11 - 1XC22 - i)— C12 C21 +A,62 + 182 (C11 - ')+ 161 i)+ /31 (C22 - i) . The derivatives 

can be derived as: 
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1 aw = 
IG[/ '81'82 (c,2 —' +,82) (3.36) 

A2 

1 aw = I IG 1 151/32(c1, —I +A)  
22ac22  2 fl2 A2 

! aW IG ,51152C 21  
2 12 ac12 2 A2 

(3.37) 

(3.38) 

Thus the impending wrinkling surface ' for Neo-Hookean material can be given by: 

(3.39) 
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Finite Element Implementation 

The wrinkling theory of anisotropic membrane is formulated using curvilinear 

coordinates for the general configuration, and implemented into a finite element code using 

the four-node bilinear isoparametric element. A scheme for determining the relaxed energy 

function is also presented. 

4.1 The Strain Tensor in Curvilinear Coordinate System 

Consider a membrane in a plane stress state. Let 920 denote the reference 

configuration, which is assumed unstressed. Let Q denote the deformed configuration. 

Assume the membrane moves in a three-dimensional Euclidean space. A convected 

curvilinear coordinate system E, , 2 is attached to the membrane surface. 

The covariant base vectors of the convected coordinate system in reference and 

deformed configuration are defined, respectively, as 
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Figure 4.1 The convected curvilinear coordinate system 

aR  E =-, e a a ar 

34 

(4.1) 

where R and r are position vectors of a particle referred to origins in reference and 

deformed configuration, respectively. The covariant components of the metric tensor in 

reference and deformed configuration are defined, respectively, as 

with their determinants as 

Gap = Ea ED, gap = ea eD 

G=GaD!, g=JgaD 

(4.2) 

(4.3) 

The construction of the convected coordinate system assumes that G does not vanish 
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on Q0. The contravariant components of metric tensors in reference configuration are 

obtained from 

[G]= [Gap ]' 

and the contravariant base vectors are obtained from 

E =GE 

(4.4) 

(4.5) 

The deformation gradient tensor F on C2 is 

F=ea®E (4.6) 

The right Cauchy-Green strain tensor C is obtained from 

C = F T  F = ® E 0 = gpGGEp ® Ea (4.7) 

For an orthotropic material, the covariant base vectors Ea can be expressed in the 

unit base vectors M,of orthotropy as 

Ea =MM (4.8) 

So the right Cauchy-Green strain tensor C becomes 

C = gGPG Pa Ep ® E = 0 M = CM 0 M (4.9) 

4.2 Geometry of Membrane Element 
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A total Lagrangian formulation and a displacement-based isoparameteric finite element 

formulation are adopted here. Both the fixed Cartesian coordinate system x, y, z in the 

Euclidean space and the natural coordinate system attached to the membrane 

element are the same as before (see Figure 4.1). The coordinate interpolations on Q and 

92 and the displacement interpolation are: 

RN1R1 

r = 

U = 

(4.10) 

(4.11) 

(4.12) 

where N1 is the interpolation function for the I th node and q is the total number of 

nodes of the element. The covariant base vectors of the natural coordinate system on 

and 92 are: 

I 

where 

Ea = NiaRi (4.13) 

ea =Niarj (4.14) 
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Figure 4.2 Four-node space bilinear isoparametric element 

(a)in xyz space (b)in I2 space 

(4.15) 

Here the four-node space bilinear isoparainetric element is chosen. The isoparametric 

coordinates in the x, y, z space are shown in Figure 4.2a. For a four-node isoparametric 

element, axes and 42 pass through midpoints of opposite sides. Axes ' and 42 

are arbitrary curvilinear axes. Sides of the element are at E = ±1 and at 42 = ±1. 

Coordinates x,,-'y  and z within the element are defined by 

x = (4.16) 
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y=y1N1 (4.17) 
1=1 

The individual shape functions are 

(4.18) 

N1= !(1_ 1 1_ 2) (4.19) 
4 

N2 = .(1+ 1 1_ 2) (4.20) 

N3 =.(1+11+2) 

N4 

(4.21) 

(4.22) 

Let 0 denote the angle between the unit base vector M 1 of orthotropy and the 

covariant base vector E1 in a particular element (see Figure 4.3). Then according to their 

geometric relation, the covariant base vectors can be expressed in the unit base vectors of 

orthotropy as: 

E1 =E1cos0M1 +IE1sin0M2 (4.23) 

= E2 I cos(y + e) M 1 + E2I sin(7 + o) M 2 (4.23) 
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Figure 4.3 Co-variant base vectors and unit base vectors of orthotropy 

where y is the angle between the two covariant base vectors E1 and E2. The positive 

direction of y and 0 is the counterclockwise direction. 

4.3 Tangent Stiffness Matrix of Membrane Element 

The total potential energy 1J, of a membrane is composed of the strain energy W 

and the potential V of external forces. 

r-IP =w+v (4.24) 

According to the principle of stationary potential energy, the equilibrium configuration 
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can be found from the stationary value of JJ: 

'" (4.25) 
as as as ac as 

where S is the displacement vector of the membrane, K(S) is the general stiffness 

matrix, also a function of the displacement state, and R is the external force vector. The 

equilibrium equation (4.18) cannot be solved directly because of its double non-linearity. 

The double non-linearity lies on the geometric non-linearity that the general stiffness matrix 

depends on the displacement state and the material non-linearity that even within the 

wrinkling, a neo-Hookean material is nonlinear. Thus, the Newton-Raphson method is 

adopted to solve the equilibrium equation (4.18). The tangent stiffness matrix K7. is 

obtained as: 

L9 
K 2w  

T aO 2 s 
(4.26) 

with the coefficient k7,j corresponds to displacement components 6' and 8j being 

determined from 

a2w aw  ac ac aw cpll 1tdA (4.27) .1. tdA= 
A aa kac ao a + ac aao j 

where A is th integration area of the membrane element, and t is the thickness of the 

membrane. Fr a given point in double wrinkling zone in strain space, its contribution to 

the coefficient is zero because of its zero strain energy density. For single wrinkling 
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case and no wrinkling case, the derivatives appeared in equation (4.20) can be evaluated 

numerically by means of the relaxed energy function and the original strain energy function, 

respectively. 

4.4 The Scheme for Determining the Relaxed Energy Function 

The value of the relaxed energy function at a given point C' in single wrinkling zone 

equals to the value of the original strain energy function at the intersection point C° of the 

characteristic ,line passing through C' and the impending wrinkling surface E'. The 

characteristic line is parallel to the normal n of Z at the corresponding point S°. Based 

on these two facts, the iterative scheme for the determination of the relaxed energy function 

follows: 

(1) For a given point CG in single wrinkling zone, set its initial direction no which 

forms 45° with the bisector of C11 and C22. 

(2) Shoot a straight line along no from the given point Ca to intersect the bisector 

of C1 and C22 at C'. 

(3) Find the intersection point Co of Cad and the surface ' through dichotomy. 

Construct the vector C° - Ca . 

(4) Calculate the normal n at the corresponding point S° of C° on 

(5) Calculate the cross product between the two vectors n and Co - Ca. 
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(6) If the length of the product is less than a given tolerance, stop and calculate the 

strain energy density at Co. 

(7) Otherwise, change the direction n° to + CO - CG) and repeat steps (2)—(7). 

4.5 The Finite Element Program For the Wrinkling Analysis of 

Anisotropic Membranes 

By using the finite element formulations obtained above, a finite element program for 

the wrinkling analysis of anisotropic membranes is developed from scratch with the 

Microsoft Visual C++ on the Windows' 98 platform. The finite element program consists of 

three parts— preprocessor, main analyzer and postprocessor. The preprocessor generates 

node coordinates data, finite element grid data, material property data and boundary data in 

a proper data format for the main analyzer. The main analyzer then completes the nonlinear 

wrinkling analysis and gives out the numerical results of stresses, strains and displacements. 

The postprocessor displays the wrinkling analysis results visually according to the 

numerical results. The postprocessor can also be used to check node coordinates data, finite 

element grid data and boundary data visually. 

The code of these three parts is listed in the appendix. 
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Examples 

To verify the validity of the wrinkling theory of anisotropic membrane, several 

numerical examples are carried out in this chapter. Some of examples are taken from 

reference papers and the results obtained here agree well with those previously published 

results. 

5.1 Example 1: A Square Membrane with Traction-free 

Boundaries 

Consider a 1 X lm square membrane with traction-free horizontal boundaries. The 

thickness of the membrane is O.00lm. The shear modulus is 400MPa. The meshed 

reference configuration is shown in Figure 5.1. The membrane is first deformed by holding 

the left vertical boundary fixed, stretching horizontally and translating upward the right 

vertical boundary O.lm and 0.2m respectively. The deformed mesh is shown in Figure 5.2. 
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The short lines in the elements in single wrinkling zone represent the magnitude of 

principal stress. The single wrinkling zone nearly covers the entire membrane. The 

computed maximum stress is 181 M Pa and occurred at the point of the lower left and upper 

right corner elements. 

Next the right vertical boundary is stretched more with the total horizontal stretch 

being 0.2m while keeping its transverse translation unchanged. The result is the wrinkling 

is suppressed and the single wrinkling zone is limited to two free edges and the middle of 

the membrane as shown in Figure 5.3. The computed maximum stress is 235M Pa at the 

same points as before. 

Further, the right vertical boundary is stretched and translated more and both of the 

stretch and translation are 0.5m now. The single wrinkling zones are further suppressed and 

limited only to two free edges as shown in Figure 5.4. The computed maximum stress is 

341MPa. 

Finally, the right vertical boundary is translated more to a total translation of 1 .Om 

while its stretch is held unchanged. As expected, this increases the single wrinkling zones 

as shown in Figure 5.5. The maximum stress is 363M Pa in this final configuration. These 

figures agree well with previously published result by Haseganu and Steigmann(1994). 

To test the sensitivity with the mesh, the same square membrane is meshed with a 5 x 5 

grid and a lOx 10 grid separately, and subjected to a simple stretch of O.lin. The deformed 

meshes are shown in Figure 5.6 and 5.7. The maximum stresses are 1 14MPa and 125MPa 

respectively, and the difference is about 10%. 
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Figure 5.1 The meshed reference configuration of a square sheet with traction-free 

horizontal boundaries 

Figure 5.2 The deformed mesh for displacements u = 0. lm and v = 0.2m 
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Figure 5.3 The deformed mesh for displacements u = 0.2m and v = 0.2m 

Figure 5.4 The deformed mesh for displacements u = 0.5m and v = 0.5m 
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Figure 5.5 The deformed mesh for displacements u = 0.5m and v = 1.0m 
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1- 1 

I I 

Figure 5.6 The deformed 5x5 mesh for 0.1m simple stretch 

Figure 5.7 The deformed 10xlO mesh for 0.lm simple stretch 
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5.2 Example 2: An Annular Membrane with Concentric Circular 

Boundaries 

Consider first an annular membrane bounded by concentric circles. The outer radius is 

0.5m and the inner radius is 0.125m. The thickness is 0.001m. The shear modulus of the 

membrane is 4OMPa.The meshed reference configuration is shown in Figure 5.8. The 

isotropic annular membrane is first deformed by holding the outer boundary fixed and 

rotating the inner boundary rigidly 450 counterclockwise. The deformed configuration is 

shown in Figure 5.9. The short lines indicate the first principal direction in the single 

wrinkling zone and the length of these lines is proportional to the first principal stress at 

each point. The computed maximum first principal stress is 23MPa and occurred at the 

center points of elements along the inner boundaries. 

Then the inner boundary is lifted up 0.3m. The corresponding deform configuration is 

shown in Figure 5.10 while the single wrinkling zone is shown in a plane figure in Figure 

5.11. Due to the radial stretch, the single wrinkling zone is suppressed. That is similar to the 

stretching and shearing of the square membrane. The maximum stress is 29.7MPa and 

occurred at the center points of elements along the outer boundaries. 

Next consider an anisotropic annular membrane with orthotropy parameters f3 = 1.5 

and f3 = 0.75.'. The inner boundary is also rotated 450 counterclockwise while the outer 

boundary is holding fixed. The deformed configuration is shown in Figure 5.12. The single 

wrinkling zone did not change in this case, but the stress field changed a lot. The 
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maximum stress is 31 MPa and occurred at the center points of two elements by the outer 

boundaries along the weak direction of the orthotropy e2. 

Then switch these two orthotropy parameters, that is 13 = 0.75 and P2 = 1.5. This is 

just the case of turning the reference configuration 900 and the resulting single wrinkling 

zone reflected this kind of geometric relation as shown in Figure 5.13. The maximum stress 

is the same as before but occurred at the center points of two elements by the outer 

boundaries along the weak direction of the orthotropy e1. These figures conform to the 

results of Lu et al(2001). 
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Figure 5.8 The meshed reference configuration of an annular membrane 

Figure 5.9 The deformed configuration for 450 counterclockwise rigid rotation of the 
inner boundary for isotropic case 
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Figure 5.10 The deformed configuration for 0.3m lateral deflection and 450 

counterclockwise rigid rotation of the inner boundary 

Figure 5.11 The single wrinkling zone of Figure 5.8 in a plane figure 

52 
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Figure 5.12 The deformed configuration for 45° counterclockwise rigid rotation of the 
inner boundary for anisotropic case P, = 1.5, P2 = 0.75 

I 

Figure 5.13 The deformed configuration for 45° counterclockwise rigid rotation of the 
inner boundary for anisotropic case P, = 0.75,P2 = 1.5 
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5.3 Example 3: An Annular Membrane with Eccentric Circular 

Boundaries 

Another example is the twisting of an annular membrane with eccentric circular 

boundaries. The outer radius is 0.5m and the inner radius is 0.125m. The center of the inner 

boundary is moved to (0.2, 0.0). The membrane is deformed by rotating and lifting the 

inner boundary rigidly 300 counterclockwise and 0.lm upward respectively while keeping 

the outer boundary fixed. Figure 5.14 gives the meshed reference configuration while the 

other three 'figures 5.15, 5.16 and 5.17 shows the deformed configuration for 

iI = 1, P2 = 1 , = 1.5, 132 = 0.75 and 13 = 0.75, 132 = 1.5 respectively. The maximum 

stresses are 30.4M Pa, 38.2M Pa and 45M Pa respectively. 
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Figure 5.14 The meshed reference configuration of an annular membrane with eccentric 
circular boundaries 

Figure 5.15 The deformed configuration for isotropic case 
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Figure 5.16 The deformed configuration for 13 =1.5,32 = 0.75 

Figure 5.17 The deformed configuration for P, = 0.75,P2= 1.5 
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5.4 Example 4: An Annular Square Membrane 

Consider a 2.0 X 2.0m square membrane with a 0.7 X 0.7m central square hole. The 

thickness is 0.001m and the shear modulus of the membrane is 400MPa. The meshed 

reference configuration is shown in Figure 5.18. The double arrow marked with l3 and 

2 indicates the orthotropy direction of the material on the quarter of the square membrane. 

The annular square membrane is deformed by holding the outer boundary fixed, rotating 

the inner boundary rigidly 450 counterclockwise and lifting the inner boundary upward 

0.5m. The deformed configuration for isotropic case, 13 = P2 = 1.0, is shown in Figure 

5.19. The short lines indicate the first principal direction in the single wrinkling zone and 

the length of these lines is proportional to the first principal stress at each point. The 

computed maximum first principal stress is 345MPa and occurred at the center points of 

elements on the center of the outer boundaries. The deformed configuration for orthotropic 

cases, P, =0.8,132=1.0, 13=1.2,132 =1.0, f3 =1.0,132=0.8 and 131=1-01P2 = 1.2, are 

shown in Figure 5.20, 5.21, 5.22 and 5.23 respectively. 



Chapter FIVE Examples 58 

2.00m 

PZ 

A y 

pz 

Pi 

p P1 

 >x 

Figure 5.18 The meshed reference configuration of an annular square membrane 
f' y 

Figure 5.19 The deformed configuration for isotropic case, P, = P2 = 1.0 



Chapter FIVE Examples 59 

Figure 5.20 The deformed configuration for anisotropic case, P, = 0.8,132 = 1.0 

Figure 5.21 The deformed configuration for anisotropic case, P, = 1.2,P2 = 1.0 
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Figure 5.22 The deformed configuration for anisotropic case, f3 = 1.0, 12 = 0.8 

Figure 5.23 The deformed configuration for anisotropic case, P, = •o = 1.2 



Chapter SIX 

Membrane Wrinkle Pattern Test 

To demonstrate the wrinkling phenomenon and wrinkling patterns of membranes, the 

membrane wrinkle pattern test is carried out and test results are presented. 

6.1 Testing Device 

The testing device of membrane wrinkle pattern test is consisted of a main frame, a guard 

ring, a rigid disk, a walking frame and three adjustable bolts, as shown in Figure 6.1. 

The main frame is a two-layer rigid space frame. It offers necessary support to other 

components. The guard ring is a rigid ring attached to the top layer of the main frame, and is 

used to fix the outer boundary of a sample membrane by means of a fastening belt. The rigid 

disk is supported by a small frame attached to the walking frame through an adjustable bolt, 

and is used to fix the inner boundary of a sample membrane through a fastening belt. Through 

the adjustable bolt connected to the rigid disk, the inner boundary of a sample membrane can 

be displaced laterally, so the bolt is called the lateral adjustive bolt. The walking frame is 

installed on the lower layer of the main frame, and can be driven horizontally by another 
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/ 
Figure 6.1 Testing device of membrane wrinkle pattern test 

adjustable bolt/The function of the walking frame is to achieve an eccentric inner boundary, 

so the driving'bolt is called the eccentric adjustive bolt. The last adjustable bolt is mounted on 

the walking frame, and is connected to a rocker arm through turnbuckle, which is assembled 
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on the lateral adjustive bolt by keyway. Through the third adjustable bolt, the rigid disk can 

be rotated up to 45 degree with respect to the guard ring. Thus the third adjustable bolt is 

called the rotating adjustive bolt. 

With this testing device, samples with both concentric and eccentric circular boundaries 

can be twisted and displaced laterally. 

6.2 Membrane Wrinkle Pattern Test 

The objective of the membrane wrinkling pattern test is to demonstrate and obtain the 

wrinkling pattern of an annular membrane with concentric and eccentric circular boundaries 

for both isotropic and anisotropic cases. The sample membranes used here are two sheets of 

thin polyethylene membrane. One of the sample membranes is scotch-taped parallelly to 

simulate an orthotropic membrane. 

In the test, the walking frame is first driven to one end where the rigid disk for fixing the 

inner boundary of sample membrane is concentric with the guard ring and the rigid disk is 

lifted about 5 centimeters. Then the sample membrane is mounted upon the testing device 

and both inner and outer boundaries are fixed by using the fastening belts. Finally, the inner 

boundary is rotated counterclockwise 15 degree and the wrinkling pattern obtained is shown 

in figure 6.2. 

After unloading the sample membrane, the walking frame is driven to the other end, 

which is about.'8 centimeters from its original position, and the eccentric boundaries are set 

up. Then the 'wrinkling pattern test is repeated with the same isotropic sample membrane. 

The corresponding wrinkling pattern obtained is shown in figure 6.3. 
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At last, the test was repeated using the orthotropic sample membrane with concentric and 

eccentric boundaries, and test results are shown in figure 6.4 and 6.5, respectively. 

Comparing the numerical analysis results of annular membranes with concentric and 

eccentric boundaries in chapter 5 with the membrane wrinkle pattern test results, we can see 

that they agree well each other although there exist some effect factors, such as different 

material property and boundary conditions. The difference of wrinkle patterns of orthotropic 

and isotropic samples in our test is not as apparent as that in chapter 5. There are three 

possible reasons., The first reason could be that what is plotted out in Chapter 5 is the first 

principal stress instead of the deformed configuration. The second could be that the 

difference of the properties along two orthotropic axes in our test is not big enough, and the 

deformed configuration is so far away from the impending wrinkling state that the orthotropy 

has little effect on the wrinkle pattern. The third could be that our orthotropic sample 

membrane did not successfully reflect the orthotropic property due to the difficulty of 

modeling the orthotropic material. 
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Figure 6.2 The wrinkling pattern of an isotropic membrane with concentric boundaries 
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Figure 6.3 The wrinkling pattern of an isotropic membrane with eccentric boundaries 
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Figure 6.4 The; wrinkling pattern of an orthotropic membrane with concentric boundaries 
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Figure 6.5 Th wrinkling pattern of an orthotropic membrane with eccentric boundaries 



Chapter SEVEN 

Conclusions and Recommendations 

The validity of a new wrinkling theory of anisotropic elastic membrane is tested by 

implementing the theory into a finite element code and analyzing a series of problems 

involving membrane wrinkling by using the finite element code. The results obtained are in 

accordance with both the previously published results by other investigators and the testing 

results obtained from a membrane wrinkle pattern test. 

The wrinkling theory of anisotropic elastic membrane is based on a somewhat different 

way to look at problems. By viewing the wrinkling of membrane as a particular case of the 

saturated elasticity, the wrinkling condition is naturally obtained from the theory of 

saturated elasticity and the wrinkling theory of elastic membrane is established accordingly. 

The orthotropizati'on technique is then adopted to introduce the anisotropy into the 

wrinkling theory 

Although/ numerical examples studied are not real engineering problems, they 

successfully show the ability of the new wrinkling theory in predicting wrinkling 

phenomenon in anisotropic elastic membrane. Results of the membrane wrinkle pattern test 
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agree well with that of numerical examples, except that wrinkle patterns of orthotropic and 

isotropic samples in our test are not so different from each other. 

Since being viewed as a particular case of the saturated elasticity, the phenomenon of 

membrane wrinkling is no longer an isolated specific case of solid mechanics, it has been 

integrated into the whole picture of deformation in solid mechanics. Thus, the further 

investigation on the phenomenon of membrane wrinkling will also increase our 

understanding on the deformation mechanism from elastic deformation to saturated elastic 

deformation, and to plastic deformation. 

To describe the wrinkled configuration exactly, the bending stiffness of a real 

membrane must be taken into consideration. This is not included in our present work, but it 

should be done in the nearest future. 
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Appendix 

A listing of the relavent three parts—the preprocessor, the main analyzer and the 

postprocessor of the visual C++ procedure is given here for future reference. 

II The Preprocessor  
1/ T3.cpp version 1.1 March 28, 2002 

#include <stdio.h> 
#includc <math.h> 
#include <iostream.h> 
#include <fstream.h> 

void main() 
{double b 1 ,b2,x,y,z,s,t,ex,ey,w,x 1,x2,yl ,y2,zl,z2,rl ,r2,rr,th,thl,j d1 80.0/3.1415926, 

G,L,L1,L2,; 
mt n,i,j ,k,i 1,j 1,sl,t 1,t2,ii,jj; 

//main menu 
cout<<" Data file type:\n"; 
cout<<" 1 square sheet\n"; 
cout<<" 2 square sheet with a center square hole\n"; 
cout<<" 3 circular sheet with a center circular hole\n"; 
cout<<" 4 circular sheet with an eccentric circular hole\n"; 
cout<<" P1easeselect:"; cin>>sl; 
ofstream fout('sl.dt"); 
switch (si) { / 

case 1: I/square sheet 
cout<<"\n Square sheet:\n"; 
cout<<" Length of edge:"; cin>>L; 
cout<<"\n Length of element:"; cin>>s; 
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z=O.O; n=int (L/s+O.1); il=n+1; 
fout<<" 1 "<<ii i 1<<"\n"; 1/nodal coordinates 
for (i=O;i<il;i++) for (j=O;j<il;j++) 
{x=j*s; y=j*5; 

if (j0) k=O; else k=1; 
fout<<x<<" "<<y<<" "<<z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 

cout<<"\n Number of different material property:"; cin>>i; 
fout<<i<<"\n"; //Material property 
cout<<"\n Shear Modulus:"; cin>>G; fout<<G<<"  

cout<<"\n Thickness of membrane:"; cin>>t; fout<<t<<" "; 
cout<<"\n Orthotropy parameter B 1:"; cin>>bl; fout<<bl<<"  

cout<<"\n Orthotropy parameter B2:"; cin>>b2; fout<<b2<<"\n"; 
fout<<n*n<<"\nf'; //element data 
for (i0;i<il-1;i++) for (j=1;j<il;j++) 
fout<<i*il+j<<" u<<i*il+j+1<<" <<(i+1)*i 1+j+1<<" "I<<(i+l)*i 1+j<<" 1 0.0\n" 
fout<<3 i 1<<"\n"; z=O.O; //given displacement 
cout<<"\n X displacement:"; cin>>x; 
cout<<"\n' Y displacement:"; cin>>y; 
for (i=1i<i1+1 ;i++) 
{j=i*i 1; 
fout<<j<<" 1 "<<x<<"\n'; 
fout<<j<<" 2 "<<y<<"\n"; 
fout<<j<<" 3 "<<z<<"\n"; }; 

fout<<"O\n"; //load data 
fout.closeQ; 
cout<<"\n The data file is in sl.dt now!"; 
break; 

case 2: //square sheet with a center square hole 
cout<<"\n square sheet with a center square hole\n"; 
cout<<" Length of outer edge:"; cin>>L2; 
cout<<"\n Length of inner edge:"; cin>>L1; 
cout<<"\n Layer of element along circular direction in a quarter area:"; cin>>tl; 
cout<<"\n Lager of element along radius direction:"; cin>>t2; 
cout<<"\n Z coordinate of inner boundary:"; cin>>z; 
n=4*t1*(t2t1); z=O.O; il=tl+1; j1t2+1; 
fout<<" 2 z<n<<"\n"; //nodal coordinates 
for (i=O;i<tl ;i++) 
{y1=L,1*O.5; xl=i*L1/tl+yl ; y2L2*O.5; x2=i*L2/tl+y2; 

s=(x2-xl)/t2; t=(y2-yl)/t2; 
for (jO;j<j 1;j++) 
{x=xl+j*s; y=yl+j*t; if((j=0)Il(jj1)) k=O; else k=1; 
fout<<x<<" "<<y<<" "<<z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 
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for (i=1 ;i<il ;i++) 
{x1=L1*O.5; yli*L1/tl+xl; x2=L2*O.5; y2i*L2/tl+x2; 
s=(x2-x 1)/t2; t=(y2-yl)/t2; 
for (jO;j<j1;j++) 
{x=xl+j*s; y=yl+j*t; if ((j==O)(j==j 1)) k=O; else k=1; 
fout<<x<<" "<<y<<" "<<z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 

}, 
for (i=O;i<tl ;i++) 
{x1L1*O.5; y1=i*L1/t1x1 ; x2=L2*O.5; y2=i*L2/t1x2; 

s=(x2-x 1)/t2; t=(y2-yl)/t2; 
for (j=O;j<j 1;j++) 
{x=xl+j*s; yyl+j*t; if ((j==O)J(j==j 1)) k=O; else k=1; 
fout<<x<<" "<<y<<" "<<Z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 

for (i=1 ;i<il;i++) 
{ y1=L1O.5; x1=i*L1/t1y1; y2L2*O.5; x2=i*L2/tl_y2; 
s=(x2- 1)/t2; t=(y2-yl)/t2; 
for (j=O;j<j 1 ;j++) 

{xxl+j*s; y=yl+j*t; if ((j==O)II(j==jl)) k=O; else k=1; 
fout<<x<<" "<<y<<" "<<z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 

cout<<"\n Number of different material property:"; cin>>i; 
fout<<i<<"\n"; I/Material property 
cout<<"\n Shear Modulus:"; cin>>G; fout<<G<<"  

cout<<"\n Thickness of membrane:"; cin>>t; fout<<t<<" "; 
cout<<"\n Orthotropy parameter B 1:"; cin>>bl; fout<<bl<<"  

cout<<"\n Orthotropy parameter B2:"; cin>>b2; fout<<b2<<"\n"; 
fout<<tl*t2*4<<"\nh'; I/element data 
for (i=O;i<tl-1;i++) for (j=O;j<t2;j++) 
fout<<i*jl+j+1<<" "<<(i+l)*jl+j+l<<?' "<<(i+l)*jl+j+l+l<<" "<<i*j1ij+1+1<< 

if 1 O.O\n"; 

for (jO;j<t2;j++) 
fout<<(tl_1)*jl+j+1<<" I?<<2*tl*jl+j+1<<?I "<<2*tl*jl+j+1+1<<" "<< 

(tl_1)*jl+j+1+1<<" 1 O.O\n"; 
for (j=O;j<t2;j++) 
fout<<t1*ji+j+1 <<" "<<j+l<<" "<<j+l+l<<" "<<tl*j 1+j+1+1<<" 1 O.O\n"; 
for (i1;i(t1;i++) for (jO;j<t2;j++) 
fout<<(ilt1)*j 1+j+1<<" "<<(i+tl_l)*j l+j+1<<" "<<(i+tl_l)*j 1+j+1+1<< 

It "<<(i+tl)*j 1+j+1+1<<" 1 O.O\n"; 
for (i=O;i<tl-1;i++) for (j=O;j<t2;j++) 
fout<<(i+2*tl)*j 1+j+1<<" "<<(i+2*tl+1)*j 1+j+1<<" "<<(i+2*tl+1)*j 1-i-j+1+1<< 

11 "<<(i+2*tl)*j 1+j+1+1<<" 1 O.O\n"; 
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j3*tl_1; 

for (j=0;j<t2;j++) 
fout<<i*j 1+j+1<<" "<<(iit1)*j 1+j+1<<" h'<<(i+tl)*j l+j+1+1<<" "<<i*j i+j+i+i<< 

O.O\n"; 
i=2*tl_1 ; 
for (j=0;j<t2;j++) 
fout<<(i+tl+1)*jl+j+1<<fl l'<<i*jl+j+l<<h' ll<<i*jl+j+1+l<< 

11 "<<(i+tl+l)*ji+j+l+l<<h' 1 0.0\n"; 
for (i=1;i<tl;i++) for (j=0;j<t2;j++) 
fout<<(i+3*tl)*j 1+j+1<<" hl<<(i+3*tl_1)*j 1+j+1<<" hl<<(i+3*tl_1)*j 1-i-j+1+1<< 

It "<<(i+3t1)*j 1+j+1+1<<" 1 0.0\n"; 
fout<<3 *tl * 4<< 'J\n h' ; // given displacement 
cout<<"\n Z displacement of inner boundary:"; cin>>z; 
cout<<"\n Rotating angle of inner boundary:"; cin>>rr; 
rr=rr/jd; rl=cos(rr); r2s1n(rr); s=45 .0/id; z2=sin(s); zl=cos(s); 
xl =L2/z2*(z2sin(srr)); x2=L2/zl * (cos(s-rr)-z 1); y1-x2; y2=x 1; 
s=(x2-xi)/tl; t=(y2-y 1)/ti; 
for (i0;i'<tl ;i++) 
{ x=fs+x1; yj*t+yl; j=(j+1)*jl; 
fout<<j<<" 1 "<<x<<"\n"; 
fout<<j<<" 2 "<<y<<"\n"; 
fout<<j<<" 3 "<<z<<"\n"; }; 

x2=L2*0.5; xl=0.207*L2; yl=-x2; y2=xl; s=(x2-xl)/tl; t=(y2-yl)/tl; 
for (i=O;i<tl;i++) 
{ x=is+x1; y=i*t+yl; j=(i+tl+tl+1)*jl; 
fout<<j<<" 1 "<<x<<"\n"; 
fout<<j<<" 2 "<<y<<"\n"; 
fout<<j<<" 3 "<<z<<"\n"; }; 

xl=L2*0.5; x20.207*L2; yl=x2; y2=-xl; s=(x2-xi)/t1; t=(y2-yl)/tl; 
for (i=1 ;i<il ;i++) 
{ xi*s+xi; yj*t+yl; j=(i+tl)*jl; 
fout<<j<<" 1 "<<x<<"\n"; 
fout<<j<<" 2 "<<y<<"\n"; 
fout<<j<<"/3 "<<z<<"\n"; }; 

x2=L2*0.5; x10.207*L2; yl=x2; y2=-xl; s=(x2-xl)/tl; t=(y2-yl)/tl; 
for (i=1 ;i<il ;i++) 
{ x=i*s*xl; yj*t+yl; j=(i+3*tl)*jl; 
fout<<j<<" 1 "<<x<<"\n"; 
fout<j<<" 2 "<<y<<"\n"; 
fout<<j<<" 3 "<<z<<"\n"; }; 

fout<<"O\n"; //load data 
fout.closeQ; 

cout<<"\n The data file is in sl.dt now! "; 
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break; 

case 3: //circular sheet with a center circular hole 
cout<<"\n Circular sheet with a center circular hole\n"; 
cout<<"\n Outer radius:"; cin>>r2; 
cout<<"\n Inner radius:"; cin>>rl; 
cout<<"\n Layer of element along circular direction in a quarter area:"; cin>>tl; 
cout<<"\n Layer of element along radius direction:"; cin>>t2; 
cout<<"\n Z coordinate of inner boundary:"; cin>>zl; 
cout<<"\n Z displacement of inner boundary:"; cin>>w; 
cout<<"\n Rotating angle of inner boundary:"; cin>>rr; rr=rr/jd; 
cout<<"\n The angle between x axis and orthotropy direction:"; cin>>thl; 
n4*tl*(t2+l); il=4*tl ; j1t2+l; yl=l.5707963/tl; z2=zl/t2; 
fout<<" 3 "<<n<<"\n"; //nodal coordinates 
for (j=Q;j<j 1 ;j++) 
{ xl=rl+(r2_rl)/t2*j; z=zl_j*z2; 
for (i0;i<il;i++) 
{ y2yI* i;  xx1 *cos(y2); y=xl *sin(y2); 

if (j==t2) k=O; else k=l; 
fout<<x<<" "<<y<<" "<<z<<" '<<k<<" "<<k<<" "<<k<<"\n"; }; 

cout<<"\n Number of different material property:"; cin>>i; 
fout<<i<<"\n"; I/Material property 
cout<<"\n Shear Modulus:"; cin>>G; fout<<G<<"  

cout<<"\n Thickness of membrane:"; cin>>t; fout<<t<<" It 

cout<<"\n Orthotropy parameter Bi:"; cin>>bl; fout<<bl<<"  

cout<<"\n Orthotropy parameter B2:"; cin>>b2; fout<<b2<<"\n"; 
fout<<tl *t2*4<<"\n"; yl=yl *jd; //element data 
for (i0;i<il;i++) for (j=O;j<t2;j++) 
{ ii=il*(j+l)+i+1+l; jj=j+jl*j+1+l; if(jj(1+j)*il+l)jjj*il+l; 
if(ii==(2+j)*il+l) ii=(j+l)*il+1; th=(i+O.5)*y1thl; 
fout<<i+j *i 1+1 <<" "<<(l+j)*i 1+i+l <<" "<<ij<<" "<<jj<<" 1 "<<th<<"\n"; }; 

fout<<3 i 1<<"\n"; y 1=y llj d; //given displacement 
for (i=O;i<i 1 ;j'I-+) 
{ x2=yl *i; x  =rr+x2; xrl *(cos(x 1)-cos(x2)); y=rl * (sin(x 1)-sin(x2)); 
fout<<i+I<<" 1 "<<x<<"\n"; 
fout<<i-F1<<" 2 "<<y<<"\n"; 
fout<<i+1<<" 3 "<<w<<"\n"; }; 

fout<<"Q\n"; //load data 
fout.closeQ; 
cout<<"\n The data file is in sl.dt now!"; 
break; 
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case 4: 1/circular sheet with an eccentric circular hole 
cout<<"\n Circular sheet with an eccentric circular hole\n"; 
cout<<"\n Outer radius:"; cin>>r2; 
cout<<"\n Inner radius:"; cin>>rl; 
cout<<"\n Layer of element along circular direction in a quarter area:"; cin>>tl; 
cout<<"\n Layer of element along radius direction:"; cin>>t2; 
cout<<"\n Z coordinate of inner boundary:"; cin>>zl; 
cout<<"\n Z displacement of inner boundary:"; cin>>w; 
cout<<"\n Rotating angle of inner boundary:"; cin>>rr; rr=rr/jd; 
cout<<"\n The angle between x axis and orthotropy direction:"; cin>>thl; 
cout<<"\n X coordinate of the center of inner circle:"; cin>>ex; 
cout<<"\n Y coordinate of the center of inner circle:"; cin>>ey; 
n=4*tl*(t2+l); il=4*tl; jl=t2+l; yl=l.5707963/tl; z2=zl/t2; 
fout<<" 4 "<<n<<"\n"; //nodal coordinates 
for (j=0;j<j 1 ;j++) 
{ z=zl-jz2; 
for (i=0;i<il ;i++) 
{ y2='1i; 
L(-r 1 ey*sin(y2)ex* cos(y2)+sqrt(r2*r2(ex*sin(y2)_ 

ey* cos(y2))* (ex* sin(y2)_ey* cos(y2))))/t2; 
xl=rl+j*L; x=xl*cos(y2)+ex; yxl*sin(y2)+ey; 
if 0==t2) k=0; else k=1; 
fout<<x<<" "<<y<<" "<<z<<" "<<k<<" "<<k<<" "<<k<<"\n"; }; 

cout<<"\n Number of different material property:"; cin>>i; 
fout<<i<<"\n"; //Material property 
cout<<"\n Shear Modulus:"; cin>>G; fout<<G<<"  

cout<<"\n Thickness of membrane:"; cin>>t; fout<<t<<" "; 
cout<<"\n Orthotropy parameter B1 : ";  cin>>bl; fout<<bl<<"  

cout<<"\n Orthotropy parameter B2:"; cin>>b2; fout<<b2<<"\n"; 
yl=yl *jd; fout<<tl*t2*4<<"\n'I; I/element data 
for (i=0;i<il;i++) for (j=0;j<t2;j++) 
{ ii=il*(j+l)+i+1+l; jj=i+il*j+l+l; if(jj==(l+j)*il+1)jj=j*jl+l; 
if (ii(2+j)il+l) ii(j+1)*il+l; th=(i+0.5)*yl_thl; 
fout<<i+j i 1+1<<" "<<(l+j)*il +i+1<<" "<<ii<<" "<<jj<<" 1 "<<th<<"\n"; }; 

fout<<3 i 1<iz"\n"; yl=yl/jd; I/given displacement 
for (i=0;i<ij ;i++) 
{ x2=yl *j; xl=rr+x2; x=rl *(cos(xl)_cos(x2)); y=rl*(sin(x l)_sin(x2)); 
fout<<i*1<<" 1 "<<x<<"\n"; 
fout<<i+l<<" 2 "<<y<<"\n"; 
fout<<i+l<<" 3 "<<w<<"\n"; }; 

fout<<"O\n"; I/load data 
fout.closeO; 
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cout<<"\n The data file is in sl.dt now!"; 
break; 

default: break; }; 

} 

/1 The Main Analyzer  
I/She et2.h version 1.1 March 28,2002 
I/DefInition of element and structure classes 

#include <Math.h> 

const dofn=3L,maxnode200L,maxe1e200L,maxk25000L,maxv 1000L,namel=25L; 
const NNo=4L; 
const double ksi[4]={-1.O,1.O,1.O,-1.O},eta[4]{-1.O,-1.O,1.O,1.O}; 
const double r=sqrt( 1 .2),ki [4]={sqrt((3 .O+r+r)/7.0),-sqrt((3 .O+r+r)/7.0), 

sqrt((3 .O-r-r)/7.0),-sqrt((3 .O-r-r)/7.0) }; 
const double H[4]={O.5-1/6.O/r,O.5-1/6.O/r,O.5+1/6.O/r,O.5+1/6.O/r}; 

class GivenDp 
{int no,dof,tdof; double v,rk; 
public: 
int GetnoQ; 
jut GetdofO; 
jut GettdofQ; 
void Settdof(int i); 
double GetvO; 
double GetrkO; 
void Setv(double s); 
void Setrk(double s); 
GivenDp(int i, intj, double s); 
GivenDpQ; 
GivenDpQ; 

class EM4Load 
{int type,dof,node; double v; 
public: 
jut GettypeQ; 
jut GetdofO; 
jut uetnodenoO; 
double GetvO; 
EM4Load(int atype, int adof, int ano, double s); 
EM4LoadQ; 
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EM4LoadQ; 

class MPoint 
{ double x,y,z, dp[dofn],ddp[dofn]; //dp:displacement,ddp:delta displacement 

mt No, dof{dofnj; 
public: 

double GetXO{return x;}; 
double GetYO{return y;}; 
double GetZO{return z;}; 
void SetPoint(double px,double py,double pz){x=px;ypy;zpz;}; 
void Setdof(int i,intj); 
mt GetNoO{return No; }; 
void SetNo(int i){No=i; }; 
mt Getdof(int i); 
void Setdp(int i); 
double Getdp(int i); 
void Setddp(int i,double dpi); 
double. Getddp(int i); 
void totaldpQ; 
MPoint(int allo,double px,double py,double pz, mt adof[dofn]); 
void SetMPoint(int allo,double px,double py,double pz, mt adof[dofn]); 
MPointO{ }; 
MPoint() { }; 

class EM4 
{ mt No,LN,EPN,ln; 
double t,bl,b2,g,thl; 
MPoint pt[NNo]; 
EM4Load ld[dofn]; 
double dp[12]; 
double N(int i, double ks, double et); I/Shape Function 
double NKsi(ini i, double et); //N,ksi 
double NEta(int i, double ks); //N, eta 
double DCDU(int h, mt i, intj, mt k, double ks, double et, double dpl[12]); 
//h=1 dc/du 2 d"2c/du"2,i1 cli, 2 c22, 3 cl2;j,kO-'3 u1u4 4-'7 vl-v4 8i1 wl-'w4 
void findit(int sv,double xb[7],double &x,double &y,double &z); 
double jjsn(double xl,double yl,double zl,double x2,double y2,double z2,double 

&x,double &y,double &z); 
double jjcs(double xl,double yl,double zl,double x2,double y2,double z2); 
void direction(double xl,double yl,double zl,double x2,double y2,double z2,double 

&x,double &y,double &z); 
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void normals(double xb[7],double &x,double &y,double &z,double &sl,double 
&s2,double &s12); 

void intersectpoint(int sv,double xb[7],double dx,double dy,double dz,double 
&x,double &y,double &z,int &i); 

double svalues(double x[7]); 
double csurface(double x[7]); 
public: 

void STIFO(double c[12][12]); 
void STIFT(double c[12][12]); 
void StrainC(double ss[3],double ks, double et, double dpl[12]); 
void Setdof(int i,int j,int k); 
void Setdp(int rn, mt NDISP, double DP1[maxv], MPoint pa[maxnode]); 
MPoint GetPoint(int i); 
void Sett(double s); 
double GetB(int i); 
void SetB(double si,double s2); 
double GetGQ; 
void SetG'(double s); 
double GetTh1O; 
void SetThl(double s); 
double GettO; 
double Getdp(int i); 
void SetLoad(EM4Load s); 
void FORIvHI(int i,int 11[12]); 
double w(double x[6]); 
double spk(int m, double x[7]); 
double ndl(int n, mt sub[2], double x[7]); 
double nd2(int n, mt sub[2], double x[7]); 
double nd(int n, mt sub[2], double x[7]); 
double nda(int n, mt sub[2], double x[7]); 
double wi(double x[7], mt &i); 
void Forrndp(int NDISP, double dp[maxv]); 
void Forrndp2(int NDISP, double dpi [maxv]); 
void SetEM4(int allo,int p[NNo],MPoint pp[],double aG,double at,double 

abi,double ab2,double ath); 
EM4(int allo,int p[NNo],MPoint pp{],double aGj,double at,double abl,double 

ab2,clouble ath); 
EM4Q; 
-EM4O; ; 

class Sheet2 
{ mt nodenumber,elementnumber,gdnumber,loadnumber,NDISP,type; 
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MPoint pa[maxnode]; //mpointarray 
EM4 ea[maxele]; //EM4array 
GivenDp gd[maxe1e]; //GivenDisplacernentarray 
EM4Load ld[maxnode]; //Loadarray 
void ASSEMB2(int IB,int II[ 12],double C[ 12] [12],double R[maxk] ,int NDISP,int 

BV,int V[maxv],int PHASE); 
void DIAGADR(int NDISP,int BV,int IV,int V[maxv]); 
void LDLT1 (mt NDISP,int BV,int V[maxv],double R[maxk],double T[maxv]); 
void SLVEQ1(int NDISP,int By, mt V[maxv], double R[maxk], double B[maxv], mt 

BB); 
mt Setdof(int p); 
void SetGDK(intNDISP,int BY, mt V[maxv], double R[maxk]); 
void SetGDR(int NDISP, double B[maxk]); 

public: 
mt Getnodenumber() { return nodenumber; }; 
mt Getelementnumber() { return elernentnumber; }; 
MPoint GetMPoint(int i); 
EM4 GetEM4(int i); 
EM4Load GetEM4Load(int i); 
void SetSheet2(CString fn); 
void AnalyseO; 
void Outresult(int ii); 
Sheet2Q; 
-'Sheet2O; 

/1 She et2. cpp version 1.1 April 3,2002 
//Implimentation of definition of element and structure classes 

#include "stdafx.h" 
#include "Sheet2.h" 
#include <Math.h> 
#include <iostream.h> 
#include <fstream'h> 

GivenDp*************** 

mt GivenDp:: Getno() { return no;); 
mt GivenDp: :Getdof() { return dof; }; 
mt GivenDp: ;Gettdof() { return tdof; }; 
void GivenDp: :Settdof(int i){tdof=i;}; 
double GivenDp:: GetvO f return v;}; 
double GivenDp::GetrkQ{return rk;}; 
void GivenDp: : Setrk(double s) {rk=s; }; 
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void GivenDp: : Setv(double s) {v=s; }; 
GivenDp::GivenDp(int i, intj, double s){no=i; dof=j; v=s; rk=O.O;}; 
GivenDp: :GivenDp() { }; 
GivenDp: :GivenDp() { }; 

EM4Load 

mt EM4Load::GettypeQ{return type;}; 
//lype:1-concentrate force; 2-surface traction, 3 -body force 
mt EM4Load::GetdofO{return dof;}; 
mt EM4Load::GetnodenoO{ return node;}; 
double EM4Load::GetvQ{ return v;}; 

EM4Load::EM4Load(int atype, mt adof, mt ano,double s) 
{type=atype; dof=adof node=ano; v=s; }; 

EM4Load: :EM4Load() {v=O.O;}; 
EM4Load: :-'EM4Load() { }; 

Mpojnt *********** 

mt MPoint::G'etdof(int i){ return dof[i];}; 
void MPoint: : Setdof(int i,int j) {dof[i]=j;}; 

MPoint::MPoint(int allo,double px,doublc py,double pz, mt adof[dofnj) 
{ inti; 

x=px; y=py; z=pz; No=allo; 
for (i=O;i<dofn;i++) {dof{i]=adof{i]; dp[i]=O.O; ddp[i]=O.O;}; 

void MPoint::SetMPoint(int allo,double px,double py,double pz, mt adof[dofn]) 
{ inti; 

x=px; y=py; z=pz; Noallo; 
for (i=O;i<dofn;i++) {dof[i]adof[i]; dp[i]=O.O; ddp[i]=O.O; }; 

void MPoint::Setdp(int i) { dp[i]=dp[i]+ddp[i]; }; 
double MPoint::Gtdp(int i) { return dp[i]; }; 
void MPoint::Setddp(int i,double dpi) { ddp[i]=dpi; }; 
double MPoint::Getddp(int i) { return ddp[i]; }; 

EM4--4 nodes membrane element *********** 
double EM4::N(int i, double ks, double et) //i=0,1,2,3->node 1, 2,3,4 
{return (1 .O±ksi[i] *ks)*(1 .O+eta[i] *et)*025;}; 

double EM4::NKsi(int i, double et) {return ksi[i]*(1.O+eta[i]*et)*O.25;}; 
/11=0,1,2, 3->node 1,2,3,4 
double EM4::NEta(int i, double ks) {return eta[i]*(i.O+ksi[i]*ks)*O.25;}; 
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//i=O, 1,2,3->node 1, 2,3,4 

void EM4: STIFO(double c[ 12] [12]) 
{ mt i,j ,k,ii,jj ,sub[3] [2]; double x[7] ,s,cc[4] [4] [3]; 

for (i0;i<12;i++) for (j=O;j<12;j++) c[i][j]=O.O; x[4]b1; x[5]=b2; x[6]=g; 
for (i0;i<12;i++) dp[i]=O.O; 
for (j=0;j<3;j++) {sub[j][1]=O; sub[j][O]=j+1; }; 
for (i=O;i<12;i++) 
{ dp[i]10.O; 

for (ii=O;ii<4;ii++) for (jj=O;jj<4;jj++) StrainC(cc[ii] [jj],ki[ii],ki{jj],dp); 
for (j=O;j<12;j++) for (ii=O;ii<4;ii++) for (jjO;jj<4;jj++) 
{ for (k=O;k<3;k±+) x[k]=cc[ii][jjj[k]; x[3]=x[2]; s=O.O; 

for (k=O;k<3 ;k++) s=s+nd2( 1,sub [k] ,x)*DCDU(1 ,k,j ,j ,ki[ii] ,ki[jjj ,dp); 
c[i] [j]=c[i] [j]+H[ii] *H[jj]*s*t; 

}; dp[i]=O.O; 

} 

void EM4: : STIFT(double c[12] [12]) 
{ mt i,j,k,m,ii,jj,sub[3][3][2]; 
double x[7],ks,et,s,sl,cc[4] [4] [3],cdul [3] [12] [4] [4],cdu2[3] [12] [12] [4] [4]; 
for (i=O;i<12;i++) for (j=O;j<12;j++) c[i][j]=O.O; x[4]b1; x[5]=b2; x[6]=g; 
for (ii=O;ii<4;ii++) for (jj=O;jj <4;jj ++) 
{ ks=ki [ii]; et=ki [jj]; StrainC(cc[ii] [jj ],ks,et,dp); 

for (k=O;k<3 ;k++) for (i=O;i<12;i++) 
{ cdu 1 [k] [i] [ii] [jj]=DCDU( 1 ,k,i,j ,ks,et,dp); 

for 0=0;j <12-,j++) cdu2[k] [i] [ii [ii] [jjj=DCDU(2,k,i,j ,ks,et,dp);}; 

for (i=O;i<3;i++) for (j=O;j<3;j++) {sub[i][j][O]i+1; sub[i][j][1]=j+1; }; 
for (i=O;i<12;i++) for (j=O;j<12;j++) for (ii=O;ii<4;ii++) for (jj=O;jj<4;jj++) 
{ for (k=O;k<3;k++) x[k]cc[ii][jj][k]; x[3]=x[2]; s10.O; 

for (m0;m<3;m++) 
{ s=O.O; for (k=O;k<3 ;k++) s=s+nd2(2,sub[m] [k] ,x)*cdu 1 [k] U] [ii] [jj]; 
sl=sl+s*cdtül [m][i][ii][jj]+nd2(1,sub[m][O],x)*cdu2[m][i][j][ii]Uj]; }; 

c[i][jJc[i] [j]+H[ji]*H[jj]*sl*t; 

double EM4;csurface(doub1e x[7]) 
{double d,bl,b2; 
bl=x[4]; b2=x[5]; d=(x[1]1.O+b2)*(x[O]1.O+b1)x[2]*x[3]; 
return d*d*db1*b2*d*(b1*(x[1]1.O+b2)+b2*(x[O]1.O+b1))+b1*b1*b1*b2*b2*b2; }; 
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double EM4::svalues(double x[7]) //Return sll+s22 for apoint (cll,c22,c12) 
{ double d,bl,b2; 
bl=x[4]; b2=x[5]; d=(x[1]..1.0+b2)*(x[O]1.O+b1)x[2]*x[3]; 
return (b1+b2)*d*db1*b1*b2*b2*(x[O]+x[1]2.O+b1+b2); }; 

void EM4: :intersectpoint(int sv,double xb[7] ,double dx,double dy,double dz,double 
&x,double &y,double &z,int &i) 

{ double xl ,yl,z 1,x2,y2,z2,p,v,t2,xO,yo,zo,tp[7]; 
xo=xb[0]; yo=xb[ 1]; zo=xb[2]; for (i=0;i<7;i++) tp[i]xb[i]; 

I/Get the intersection point (x2,y2,z2) of the straight line and the plane z=O 
//IfzO=O then get the intersection point of the straight line and line x=yz=O 

if (fabs(z0* 1 .0e6)<1 .0) {x2dx-dy; y2=(yO*dxxO*dy)/x2; x2=y2; } 
else {x2=xOz0*dx/dz; y2=y0z0*dy/dz; }; 
z2=0; p=O.5; xl=xO; yl=yO; zl=zO; 

//JInd the midpoint of(xl,yl,zl) and (x2,y2,z2) 
x=(x2+xl)*p; y=(y2+yl)*p; z(z2+zl)*p; 
1=0; t2=1.0e-6; 

1/check fpoint(x,y,z) is on the surface, otherwise improve it 
tp[0]x; tp[1]=y; tp[2]z; tp[3]=tp[2]; 
if (sv1) v=svalues(tp); else if (sv=0) v=csurface(tp); 
while 

((fabs(v)>t2)&&((fabs(x2-x 1)> 1 .oe-8)l I(fabs(y2-y 1)> 1 .0e-8)I I(fabs(z2-zl)> 1.0 
e-8))) 

{ if (v>0.0) {x2=x; y2=y; z2=z; } else {xl=x; yl=y; zl=z; }; 
x=(x2+xl)*p; y=(y2+yl )*p; z=(z2+zl)*p; i4+1; 
tp[O]=x; tp[1]=y; tp[2]=z; tp[3]=tp[2]; 
if (sv== 1) v=svalues(tp); else if (sv==0) v=csurface(tp); 

if (sv1) { i0; intersectpoint(0,tp,dx,dy,dz,x,y,z,i); }; 
} 

void EM4: :normals(double xb[7] ,double &x,double &y,double &z,double &s 1 ,double 
&s2,double &s12) 

{ double d,bl,b2/g; 
b 1=xb[4] ;b2=xb[5]; g=xb[6]; d=(xb[1]- 1.0+b2)*(xb[0] 1 .0+b 1)-xb[2] *xb[3]; d=1 .0/did; 

1/normal (s22, sil, -s12) 
s2=g*(1.0/b2b1*b2*(xb[0]_1.0+b1)*d); s1=g*(1.0/blb1*b2*(xb[1]1.0+b2)*d); 
s12=g*bl*b2*xb[2]*d; dsqrt(sl*sl+s2*s2+s12*s12); 
if (fabs(dj .0e6)>1.0) {x=s2/d; y=sl/d; z=-s12/d;}; 

void EM4: :direction(double xl ,double yl ,double z 1,double x2,double y2,double z2, 
double &x,double &y,double &z) 
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{ double d; 
x=x2-xl; y=y2-yl; z=z2-zl; d=sqrt(x*x+y*y+z*z); 
if (fabs(d*1.0e6)>1 .0) {x=xld; y=y/d; z=z/d;} else {x=0.0; y=O.O; z0.O;}; 

double EM4::jjcs(double xl,double yl,double zl,double x2,double y2,double z2) 
{ return xl*x2+yl*y2+zl*z2; }; 

double EM4: :jj sn(double xl ,double yl,double zl,double x2,double y2,double 
z2,double &x,double &y,double &z) 

{ double d; 
x=y1*z2z1*y2; y=z1*x2x1*z2; z=x1*y2y1*x2; d=sqrt(x*x+y*y+z*z); 

return d; }; 

void EM4::findit(iit sv,double xb[7],double &x,double &y,double &z) 
{int ij; double x 1,yl ,z 1 ,x2,y2,z2,d,alfa,alfal ,p,s 1 ,s2,s 12,xO,yO,z0,tp[7],b 1 ,b2,g,sg; 
double hd=3.1415926585/180.O,jd=1/hd,x3,y3,z3; p=O.5; 
//Set initial direction: form 45 degree angle with line c12=O,cll=c22, 
xO=xb[0]; yo=xb[1]; zO=xb[2; b 1=xb[4]; b2=xb[5]; g=xb[6J; 
for (i=0;i<7;i++) tp[ixb[i]; 
x2=0.5 * (x0+y0+sqrt((x0yO)* (xo-y0)+2.0 *zo*zo)); y2=x2; z2=0.0; 
d=sqrt((x2xO)*(x2x0)+(y2y0)* (y2y0)+z0*z0); 
x2=(x2-x0)id; y2(y2-yo)/d; z2=-z0/d; 
i=0; intersectpoint(sv,xb,x2,y2,z2,x,y,z,i); tp[O]=x; tp[1]=y; tp[2]=z; tp[3]=tp[2]; 
norma1s(tpx1,yl,z1,s 1,s2,s12); j0; 
aIfa=jjsn(x1,y1,z1,x2,yz2,x3,y3,z3); alfal=jjcs(xl,yl,zl,x2,y2,z2); sg=1.O; 
while (fabs(alfa)>5.0e-3) 
{ if(alfal<-1.0e-8) sg=-1.O; else sgl.O; 
x2=(x2+sg*x 1)*p; y2=(y2+sg*y l)*p; z2(z2+sg*z 1)*p; 
d=sqrt(x2*x2+y2*y2+z2*z2); 
if (fabs(d)> 1 .0e-6) {x2=x2/d; y2=y2/d; z2=z2/d; }; 
i=0; intersectpoint(sv,xb,x2,y2,z2,x,y,z,i); tp[0]=x; tp[1]=y; tp[2]=z; tp[3]=tp[2]; 
normals(tp,xl,yl,zl,sl,s2,s 12); 
alfa=jj sn(x 1,1,z 1 ,x2,y2,z2,x3 ,y3 ,z3); alfal=jj cs(x 1,yl,z 1,x2,y2,z2); 

/ 

double EM4::'ndl(int n, mt sub[2], double x{7]) 
{ double v,s,xl [7],rv; mt i; 

for (i=4;i<7;i++) xl[i]x[ij; for (i=0;i<4;i++) xl[i]=0.0; 
v=csurface(x); s=sva1ues(x); 

if ((x[0]<0.0)II(x[1]<0.0)) rv=0.0; 
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else if ((x[O]<1.0)&&(x[1]<1.0)) rv=O.O; 
else if ((v>=1 .Oe-8)&&(s>=O.0)) rv=nd(n,sub,x); 
else if (s<O.0) {findit(1,x,xl [O],x 1 [1],xl [2]); xl [3]=xl [2]; rv=nd(n,sub,x 1);} 
else if ((v<-1 .Oe-8)&&(s>0.0)) 

{findit(O,x,xl [O],xl [1],xl [2]);xl [3]=xl [2]; rv=nd(n,sub,xl);} 
return rv; 

double EM4::nd2(int n, hit sub[2], double x[7]) 
{ double v,s,xl [7],rv; mt i; 

for (i=4;i<7;i++) xl [i]=x[i]; for (i=O;i<4;i++) xl [i]=O.O; 
v=csurface(x); s=svalues(x); 
if ((x[O]<O.0)Ij(x[ 1 ]<O.0)) rv=O.O; 
else if ((x[O]<1.0)&&(x[1]<l.0)) rv0.O; 
else if ((v>=1 .Oe-8)&&(s>=O.0)) rv=nda(n,sub,x); 
else if (s<O.0) {findit(1,x,x 1 [0] ,xl [1 ],xl [2]); xl [3]=xl [2]; rv=nda(n,sub,xl);} 
else if ((v<-1.Oe-8)&&(s>0.0)) 

{findit(O,x,x 1 [0],xl [1],x 1 [2]); xl [3]=xl [2]; rv=nda(n,sub,x 1);} 
return rv; 

double EM4::wl(double x[7], mt &i) 
{ double v,s,xl [7]; 

for (i=4;i<7;i++) x  [i]=x[i]; for (i=O;i<4;i++) xl [i]=O.O; 
v=csurface(x); s=svalues(x); 
if((x[0]<0.0)II(x[1]<0.0)) {i=2; return 0.0;} 
else if ((x[0]<O.997)&&(x[ 1 ]<O.997)) {i2; return 0.0;} 
else if ((v>1 .Oe-8)&&(s>0.0)) {i0; return w(x);} 
else if (s<0.0) {i=1; findit(1,x,xl [0],xl [1],xl [2]); xl [3]x1 [2]; return w(xl);} 
else if ((v<-1 .Oe-8)&&(s>='O.0)) 

{i=1; findit(O,x,xl [O],xl [1],xl [2]); x  [3]=xl [2]; return w(xl);} 
else { i=3; return w(x);}; 

double EM4::w(double x[7]) 
{ double cll,c22,c12,c21,btl,bt2,gg; 

cll=x[0]-1.D; c22=x[1]-1.O; c12=x[2]; c21=x[3]; 
gg=x[6]; btl=x[4]; bt2=x[5]; 
return 0.5* gg* (cii /btl+c22/bt2- 1 .0+bt 1 * bt2l((c22+bt2)* (cii +btl)-c 12*c2 1)); 

double EM4::spk(int m, double x[7]) 
{int sub[2]; double s; 
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sub[0]=m+1; sub[2]=0; 
if (m<2) snd(1,sub,x); else if (m==2) 

{s=nd(1 ,sub,x); sub[0]=m+2; s=0.5 * (s+nd( 1,sub,x)); }; 
return s; 

double EM4::nda(int n, mt sub[2], double x[7]) 
{double s,d,gg,btl,bt2,cl 1,c22,c 12,c2 1,c3 ,gb; 
cll=x[0]-1.0; c22=x[1]-1.0; c12=x[2]; c21=x[3]; btl=x[4]; bt2=x[5]; gg=x[6]; 
d=(c22+bt2)*(c11+bt1)c12*c21; 
if (n==1) 
{ gb=0.5*gg*btl*bt21d/d; 
switch (sub[0]) { 

case 1: s=0.5*gg/btl (c22+bt2)*gb; break; 
case 2: s=0.5*gg/bt2(e1 1+btl)*gb; break; 
case 3: s=b*c21; break; 
default:break; } 

} 
else if (n==2) 
{ c3=0.5(c 12+c2 1); gb=gg*btl*bt2/d/d/d; 

switch (sub[0]) { 
case 1: switch (sub[1]) 
(case 1 :s=gb* (c22+bt2)* (c22+bt2); break; 
case 2:s=0.5*gb*(2.0*(c22+bt2)*(c 11+btl)-d); break; 
case 3 :sgb*(c22+bt2)*c3; break; 
default:break; }; break; 

case 2: switch (sub[1]) 
{case 1 :s0.5*gb*(2.0*(c22+bt2)*(c11+bt1)d); break; 
case 2:s=gb* (cli +btl)*(c 11+bt1); break; 

case 3:s=_gb*(cll+btl)*c3; break; 
default:break; }; break; 

case 3: switch (sub{1]) 
{case 1:s=gb*(c22+bt2)*c3; break; 
casei2:s=gb*(c11+bt1)*c3; break; 

case 3:s=0.25*gb*(d+c3+c3); break; 
default:break; }; break; 

default:jreak; }; 

return s; 

double EM4::nd(int n, mt sub[2], double x[7]) 
{int i,m=7; double x  [7],s,h; 
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for (i=0;i<m;i++) xl [i]=x[i]; i=sub[n-1]-1; h=fabs(xl [i])* 1.0e-8; 
xi[i]=xl[i]+h; 
if (n> 1) s=(nd(n- 1, sub, xl )-nd(n- 1, sub, x))/h; else s=(wl (xl ,i)-wl (x,i))/h; 
return s; 

void EM4::StrainC(double ss[3],double ks, double et, double dpi [12]) 
{ double g[2] [2] ,cg[2] [2] ,s,s 1,s2,d,vb[6] ,M[2] [2] ,c[2] [2]; mt i,j ,kl,k2,ii,jj; 
for (i=0;i<6;i++) vb[i]=0.0; 
for (i0;i<4;i++) 
{ si =NKsi(i,et); s2=NEta(i,ks); 
vb[0]=vb[0]+(pt[i] .GetXQ+dp 1 [i3])s 1; vb[3]=vb[3]+(pt[i] .GetXQ+dp 1 [i*3])*s2; 
vb[ 1 ]vb[i ]+Qt[i] .GetYQ+dp 1 [i3+1])"s 1 ;vb[4]vb[4]+(pt[i].GetYQ+dp 1 [i*3+1 ])*52; 
vb[2]=vb[2]+(pt[i] .GetZQ+dpl [i*3+2])*s 1; vb[5]=vb[5]+(pt[i] .OetZ+dp1 [i*3+2])*s2; 

for (i=0;i<2;i++) for (j=O;j<2;j++) g[i][j]=0.0; 
for (i=0;i<3;i++) 
{ g[0][O]g[0][O]+vb[i]*vb[i]; g[1][1]=g[1][i]+vb[i+3]*vb[i+3]; 
g[O][1]=g[.0] [1]+vb[i]*vb[i+3]; 

g[iJ[O]=g[O][1J; 
for (i=O;i<6;i++) vb[i]=0.0; 
for (i=0;i<4;i++) 
{ sl=NKsi(i,et); s2=NEta(i,ks);. 
vb[0]=vb[0]+pt[i] .GetXO* si ;vb[ 1]=vb[ 1 ]+pt[i] .GetYO*s 1 ;vb [2]vb [2]+pt[i] .GetZO* si; 
vb [3 ]=vb[3]+pt[i] .GetXO* s2;vb[4]=vb[4]+pt[i] .GetYO*s2;vb [5]vb [5]+pt[i] .GetZO*s2; 

for (i=0;i<2;i++) for (j=0;j<2;j++) cg[i][j]=O.O; 
for (i=0;i<3;i++) 
{ cg[0] [0]=cg[0] [0]+vb[i] *vb[ij; cg[1] [1]=cg[ 1] [1 ]+vb[i+3] *vb[i+3]; 
cg[0] [1 ]=eg[0] [1]+vb[ij *vb[i+3]; 

sl=sqrt(cg[0][0]); s2=sqrt(cg[1][1]); d=thl*3. 1415926/180.0; 
s=acos(cg[0] [1]/s,i/52)* 180.0/3.1415926; d=(s+th190.0)*3.l415926/180.0; 
s=(270.0ss+th1)*3. 1415926/180.0; 
M[0] [0]=cos(d)/sl; M[0] [1]sin(d)/s 1; M[l] [0]=cos(s)/s2; M[1 ] [1]=sin(s)/s2; 
for (i=0;i<2;i+,+) for (j=0;j<2;j++) 
{c[i][j]=0.0; 
for (ii=0;iiz2;ii++) for (jj=0;jj<2;jj++) c[i] [j]=c[i] [j]+g[ii] [jj]*M[ii][i]*M[jj][j]; 

ss[0]=c[0][0]; ss[1]=c[1][1]; ss[2]=c[0][1]; 
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double EM4::DCDU(int h, mt i, intj, jut k, double ks, double et, double dpl[12]) 
//h=1 dc/du 2 d"2c/dut'2,i=O cli, 1 c22, 2 c12,j,k=O11 ui,vl,wi ... w4 
{ double s,sl,s2,s3,r[4],sk,se; mt il,jl,i2,j2,kk; 
double g[2] [2],cg[2] [2] ,vb[6] ,M[2] [2]; mt kl,k2,ii,jj; 
j 1=j%3; il=j/3; sk=NKsi(il,et); se=NEta(il,ks); 
for (ii=0;ii<6;ii++) vb [ii]0.0; 
for (ii=0;ii<4;ii++) 
{ si =NKsi(ii,et); s2=NEta(ii,ks); 
vb[0]=vb[0]+pt[ii] .GetXO*s 1; vb [3]=vb[3 ]+pt[ii] .GetXO*s2; 
vb[ 1]=vb[ 1]+pt[ii] .GetYO*s 1; vb [4]=vb[4]+pt[ii] .GetYO*s2; 
vb[2]=vb[2]+pt[ii] .GetZO*s 1; vb[5]=vb[5]+pt[ii] .GetZO*s2; 

for (ii=0;ii<2;ii++) for (jj=0;jj<2;jj++) cg[ii][jj]=0.0; 
for (ii=0;ii<3 ;ii++) 
{cg[0] [0]=cg[0] [0]+vb[ii] *vb[ii]; cg[1] [1]=cg[ 1] [1 ]+vb[ii+3] *vb[ii+3]; 
cg[0] [ 1]=cg[0] [1 ]+vb[ii] *vb[ii+3]; 

sl=sqrt(cg[O][0]); s2=sqrt(cg[1][1]); s=thl*3.1415926/180.0; 
s3=acos(cg[0]{1]/sl/s2)* 180.0/3.1415926; s=(s3+thl_90.0)*3.1415926/180.0; 
s3(27O.Os3s3+th1)*3. 1415926/180.0; 
M[0] [0]=cos(s)/s 1; M[0] [1 ]=sin(s)/s 1; M[l] [0]=cos(s3)/s2; M[ 1] [1]=sin(s3)/s2; 
switch (h) 
{ case 1: switch (ii) 
{ case 0: for (kk=0;kk<4;kk++) r[kk]=dpl [kk*3]+pt[kk].GetXQ; break; 
case 1: for (kk=0;kk<4;kk++) r[kk]=dpl [kk*3+1]+pt[kk].GetYO; break; 
case 2: for (kk=0;kk<4;kk++) r[kk]dpl [kk*3+2]+pt[kk].GetZO; break; 
default: break; 

sl=0.0; s2=0.0; s3=0.0; 
for (kk=0;kk<4;kk++) {s 1s 1+r[kk] *NKsi(kk,et); s2s2+r[kk] *NEta(,ks);}; 
s3=sk*s2+se*sl; sl=sl*2.0*sk; s2=s2*2.0*se; 

g[0][0]=sl; g[1][1]=s2; g[0][1]=s3; g[1][0]s3; s=0.0; 
switch (i) 
{case 0:for (ii0;ii<2;ii++) for (jj=0;jj<2;jj++) s=s+g[ii]jj]*M[ii] [0]*M[jj][0];break; 
case 1 :for (ii=0;ii<2;ii++) for (jj=0;jj<2;jj++) s=s+g[ii] [jj]*M[ii] [1]*M[jj][1];break; 
case 2:for (ii=0;ii<2;ii++) for (jj=0;jj<2;jj++)s=s+g[ii][jj]*M[ii][0]*M[jj] [1]; break; 
default: break; 

}; break; 
case 2: j2=%3; i2=k/3; 

if 01==j2) 
{r[0]=NKsi(i2,et); r[ 1 ]=NEta(i2,ks); 
si 2.0*sk*r[0]; s2=2.0*se*r[1] ; s3=sk*r[ 1]+se*r[0]; 

g[0][0]=sl; g[1][l]=s2; g{0][1]=s3; g[1][0]=s3; s=0.0; 
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switch (i) 
{case 0: for (ii=0;ii<2;ii++) for (jj0;jj<2;jj++) ss+g[ii] [jj] *M[ii] [O]*M[jj] [0]; break; 
case 1: for (ii=O;ii<2;ii++) for (jj0;jj<2;jj++) s=s+g[ii][jj]*M[ii][1]*M[jj][1]; break; 
case 2: for (ii=0;ii<2;ii++) for (jj=O;jj<2;jj++) ss+g[ii] [jj] *M[ii] [0] *M[jj] [1]; break; 
default: break; }; 
} else s=0.0; break; 

default: break; 

return s; 

void EM4::Formdp2(int NDJSP, double dpi [maxv]) 
{int i,j,k,m,ii,jj ,sub[3] [2]; double x[7],ks,et,s,s 1 [12],cc[3]; 

for (j=O;j<3;j++) {sub[j][0]j+i; sub[j][i]=0;}; 
x[4]=bi; x[5]=b2; x[6]=g; 
for (j0;j<12;j++) 
{ si [j]=O.O; for (ii=0;ii<4;ii++) for (jj=O;jj<4;jj++) 
{ ks=ki[ii]; et=ki[jj]; StrainC(cc,ks,et,dp); for (k=O;k<3;k++) x[k]=cc[k]; 

x[3]x[2]; s=0.0; for (k0;k<3 ;k++) s=s+nd2( 1 ,sub[k] ,x)*DCDU( 1 ,k,j ,j ,ks,et,dp); 
si [j]=sl [j]+H[ii]*H[jj]*s; 

};k=3; 
for (i=O;i<NNo;i++) for (j=O;j<3;j++) 
(m=pt[i] .Getdof(j); if ((m>O)&&(m<NDISP)) dpi [m]=dp 1 [m] -si [i*k+j] *t; }; 

MPoint EM4::GetPoint(int i) {return pt[i];}; 

void EM4: : Setdof(int i,int j ,int k) {pt[i] .Setdoij ,k); }; 

void EM4::Setdp(int m, mt NDISP, double DP1[maxv], MPoint pa[maxnode]) 
{int i,j,k; 
for (i=0;i<NNo;i++) for (j0;j<m;j++) 
{k=pt[i] .Getdof(j)'; 
if ((k>0)&&(k<=NDISP)) 
{pt[i] .Setddp(j;DP 1 [k]); pt[i] .Setdp(j); dp[i*dofn+j]pt[i].Getdp(j); 
pa[pt[i] .GetNoO] .Setddp(j ,DP 1 

double EM4: :Getdp(int i) { return dp [i] 
void EM4: :SetB(double si ,double s2) {b 1=sl ;b2=s2; }; 
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double EM4::GetB(int i){ if (i1) return bi; else return b2; }; 
void EM4::SetG(double s){g=s;}; 
double EM4::GetGO{return g;}; 
void EM4::SetThl(double s){thls;}; 
double EM4::GetTh1Q{return thl;}; 
void EM4::Sett(double s){t=s;}; 
double EM4::GettQ{return t;}; 

void EM4::SetLoad(EM4Load s) 
{ld[ln]=EM4Load(s. GettypeQ,s.GetdofQ,s.GetnodenoQ,s.GetvQ); ln=ln+ 1; }; 

void EM4::FORMII(int 1, mt II[12]) 
{intj,k; 
for (jO;j<12;j++) IIU]0; 
for (j=O;j <NNo;j++) for (k=O;k<i;k++) II[k+j *i]pt[j] .Getdof(k); 

void EM4::Fo±mdp(int NDISP, double dp[maxv]) 
{int i,j,k,m; double s; 
if (ln>O) for (i=O;i<ln;i++) switch (ld[i].GettypeO) 
{case 1: k=ld[i].GetnodenoO; 

for (j0;j<NNo;j++) if (pt[jj .GetNoOk) m=pt[fl .Getdof(ld[i] .GetdofO-1); 
if ((m>O)&&(m<NDISP)) dp[m]dp[m]+ld[i] .GetvQ; break; 

case 2: k=ld[i].GetnodenoO; 
for (j=O;j<NNo;j++) if (pt[j] .GetNoQ=k) mpt] .Getdof(ld[i] .GetdofO-1); 
if ((m>O)&&(m<NDISP)) dp[m]dp[m]+ld[i].GetvO; break; 

case 3: for (m0;m<4;m++) 
{s=O.O; for (j=O;j<4;j++) for (k=O;k<4;k++) s=s+H[j]*H[k]*N(m,ki[j],ki[k]; 

j=pt[m] .Getdof(ld[i] .GetdofO- 1); 
if (a>O)&&a<=NDISP)) dp]dp]+1d[i] .GetvO*s; }; break; 

default: break; 

}; 

I 
void EM4::SetEM4(int allo,int p[NNo],MPoint pp[],double aG,double at,double 

1 abl,double ab2,double ath) 
{inti,j,s[3]; , 

No=allo; g=ab; t=at; blabl; b2=ab2; thl=ath; 
for (i=O;i<NNo;i++) 
{for (j=O;j<dofn;j++) s[j]pp[p[i]] .Getdof(j); 
pt[i] SetMPoint(pp[p[i]] .GetNoO,pp[p[i]] .GetX,pp[p[i]] .GetY,pp[p[i]] .GetZO,$); }; 
for (i=O;i<12;i++) dp[i]0.O; 

}; 
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EM4: :EM4(int allo,int p[NNo],MPoint pp [] ,double aG,double at,double ab 1,double 
ab2,double ath) 

{int i,j,s[3]; 
No=allo; In--O; g=aG; t=at; bl=abl; b2=ab2; thl=ath; 

for (i=O;i<NNo;i++) 
{for (j=O;j <dofn;j++) s[i]=pp[p[i]] .Getdof(j); 
pt[i]=MPointp[p[i]] .GetNo,pp[p [i]] .GetXQ,pp[p[i]] .GetYO,pp[p [i]] .GetZO,$); }; 
for (iO;i<12;i++) dp[i]=O.O; 

EM4::EM4() 
(int i,s[3]={O,O,O}; 
for (i=O;i<NNo;i++) pt[i]=MPoint(O,O.O,O.O,O.O,$); In--O; 
for (i=O;i<12;i++) dp[i]=O.O; 

EM4: :EM4Q' 
{inti; 
for (i=O;i<NNo;i++) pt[i].'-MPointO; if (In>O) for (i=O;i<ln;i++) 1d[i].-'EM4LoadO; 

//********************Sheet2 

void Sheet2: :AS SEMB2(int IB,int II[ 12] ,double C[ 12] [12],double R[maxk] ,int NDISP,int 
BV,int V[maxv],int PHASE) 

{ mt I,J,K,IA,JA; 
for (I=1;I<1B;I++) 
{ for (J1 ;J<=4;J++) 
{ IA=11[I-1]; JA=II[J-1]; if(IA<JA) { K=IA; IA=JA; JA=K; }; 

if ((JA>O)&&(IA<=NDISP)) 
{ if (PHASE==2) {K=V [BV+IA]-IA+JA; R[K]=R[K]+C[I- 1] [J- 1] ;} 

else if (V[BV+IA]<IA-JA) V [B V+IA]=IA-JA; }; 

I, 

void Sheet2::DIAGADR(int NDISP,int BV,int IV, mt V[maxv]) 
{intl; 
V[BV]=IV; 16r (1=1 ;I<=NDISP;I++) V[BV+I]=V[BV+I]+V[BV+I- 1 ]+ 1; 

void Sheet2::LDLT1(int NDISP,int BV,int V[maxv],double R[maxk],double T[maxv]) 
{ mt H,I,J,K,L,G,P,VI1,VJ1,VI,VJ; double S,SK; 
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VI=V[BV]; 
for (1=1 ;I<=NDISP;I++) 
VI 1=VI; VI=V[BV+I]; H=I+ 1+VI 1 -VI; VJ=V[BV+H- 1]; 
for (J=H;J<=I;J++) 
S=O.O; VJ1=VJ; VJ=V[J+BV]; G=VJ-J; P=J-1; L=VJ1+1-G; if(L<H) L=H; 
for (K=L;K<P;K++) SS+T[I-K] *R[G+K]; 
if (I==J) { SK=R[VI]; S=R[VI]-S; R[VI]=S; } 

else {G=VI-I+J; S=R[G]-S; T[I-J]=S; R[G]=S/R[VJ]; }; 

void Sheet2: SLVEQ 1 (mt NDISP,int BV,int V[maxv] ,double R{maxk] ,double 
B[maxv],int BB) 

{ mt I,J,K,P,VI,VI1,Q; double S; 
VI=V[BV]; 
for (1=1 ;I<=NDISP;I++) 
{ VI1=VI;'VI=V[BV+I]; PVI-I; Q1-1; S0.O; 

for (JVI 1+1 -P;J<=Q;J++) S=S+R[P+J] *B [J+BB]; B [BB+I]=B [BB+I]-S; } 
for (1=1 ;I<=NDISP;I++) B [BB+I]B [BB+I]/R[V[BV+I]]; 
for (I=NDISP;I>l;I--) 
{ VI=V[BV+I]; J=I-l; VI1=V[BV+J]; P=VI-I; S=B[BB+I]; 

for (KVI 1+1-P;K<=J;K++) B [BB+K]=B [BB+K]-R[P+K] * S; 

}; 

void Sheet2::SetGDK(int NDISP,int BV, mt V[maxv], double R[maxk]) 
{int i,j,k; 
if (gdnumber>O) for (i=O;i<gdnumber;i++) 
{j=gd[i] .GettdofQ; 
if ((j>O)&&(j <=NDISP)) {k=V[BV+j]; R[k]=R[k] * 1 .0e6; gd[i].Setrk(R[k]); }; 

void Sheet2: :SetGDR(int NDISP, double B [maxk]) 
{inti,j; 11 
if (gdnumber>Q) for (i=O;i<gdnumber;i++) 
{j=gd[i].GettdbfO; if ((j>O)&&(j<=NDISP)) {B[j]=gd[i] .GetrkQ*gd[i] .GetvQ;} ;}; 

MPoint Sheet2::GetMPoint(int i) {return pa[i-1];}; 
EM4 Sheet2: : GetEM4(int i) { return ea[i] ; }; 
EM4Load Sheet2: :GetEM4Load(int i) {return ld[i] ; }; 
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hit Sheet2::Setdof(int p) //p=2 linear case, p=3 nonlinear case 
{ mt I,J,k,ii,Ji; 

k0; 
for (I=O;I<nodenumber;I++) for (J=O;J<p;J++) if (pa[I] .Getdof(J)== 1) 
{ kk+1; for (I 1=O;I 1 <elementnumber;I1++) for (J1=O;J1<NNo;J 1++) 
if (ea[I 1] .GetPoint(J 1).GetNoO==I) { ea[I 1] .Setdof(J 1,J,k); break;}; 
if(gdnumber>O) for (I1=O;I1<gdnumber;I1++) 

if ((I==gd[I 1].GetnoQ)&&(J==gd[I 1] .GetdofO)) {gd[I 1]. Settdof(k); break; } ; }; 
return k; 

void Sheet2: :Analyse() 
{ mt m,i,k,I,J,K,JJ,BV,kk,dofm,sub[3] [2] ,II[ 12] ,V[maxv]; 
double mdp,mrv,mrvO,mdpO,dpe[ 12] ,x[7] ,cc[3] ,ss[3] ,s,tl ,s 1 ,s2,ZK[maxk] ,ZK 1 [maxk]; 
double C[12][12],DP[maxv],jd=180.O/3.1415926; 
MPointp; 

ofstream fout("middle.r"); 
dofm=2; 
if (loadnumber>O) for (I=O;I<loadnumber;I++) if (ld[I] .GetdofO==2) dofm=3; 
if (gdnumber>O) for (I=O;I<gdnumber;I++) if (gd[I].GetdofQ==2) dofm=3; 
NDISP=Setdof(dofm); BV=1; 
for (I=O;I<maxv;I++) V[I]O; 
for (I=O;I<elementnumber;I++) 

{ea[I] .FORMII(dofm,II); ASSEMB2(dofm*4,II,C,ZK,NDISP,BV,V,O); }; 
DIAGADR(NDISP,BV,O,V); 
fout<<"NDISP"<<NDISP<<" V[NDISP]=t1<<V[NDISP+BV]<<'t\n"; 
for (I=O;I<maxk;I++) ZK[I]=O.O; 
for (I=O;I<elementnumber;I++) 
{ea[I] .FORMII(dofn,II); 
ea[I] .STIFO(C); ASSEMB2( 12,II,C,ZK,NDISP,BV,V,2); 

SetGDK(NDISPBV,V,ZK); 
LDLT1 (NDISP,BV,V,ZK,DP); 
for (I=O;I<maxv;I++) DP[I]=O.O; 
for (I=O;I<elementnumber;I++) ea[I] .Formdp(NDISP,DP); 
SetGDR(NDISP,DP); 
mrvO=O.O; for (I=O;I<maxv;I++) if (fabs(DP[I])>mrvO) mrvO=fabs(DP[I]); 
SLVEQ 1 (NDISP,BV,V,ZK,DP,O); 
fout<<" Linear Displacement \n"; 
for (1=1 ;I<=NDISP;I++) fout<<I<<'t "<<DP[I]<<'t\n"; 
fout<<*t************************\n\n\ndl; 
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for (I=0;I<elementnumber;I++) ea[I] .Setdp(dofn,NDISP,DP,pa); 
for (I=0;I<nodenumber;I++) for (K0;K<dofn;K++) pa[I] . Setdp(K); 
mdp00.0; 
for (I=0;I<nodenumber;I++) for (J=0;J<dofn;J++) if (pa[I].Getdof(J)>O) 

if (fabs(pa[I] .Getdp(J))>mdpO) mdpo=fabs(pa[I] . Getdp(J)); 
fout<<"\n\nNonlinear Analysis.. .\n"; 
NDISP=Setdof(dofn); BV=1; 
for (I=0;I<maxv;I++) V[I]=O; 
for (I=0;I<elementnumber;I++) 

{ea[I] .FORMII(dofn,II); AS SEMB2( 12,II,C,ZK,NDISP,BV,V,0); }; 
DIAGADR(NDISP,BV,O,V); JJ=O; 
fout<<"NDISP="<<NDISP<<" V[NDISP]="<<V [NDISP+BVJ<<"\nt1; 
do 
{ if ((JJ==0)II(JJ%5==0)) 
{ for (I=0;I<maxk;I++) ZK1 [1]=0.0; 
for (I=O;I<elementnumber;I++) 
{ ea[I].FORMII(dofn,ll); 

ea[I] .STIFT(C); ASSEMB2(12,II,C,ZK1,NDISP,BV,V,2); 

for (I=0;I<maxk;I++) ZK[I]=ZK1 [I]; 
if (gdnumber>0) for (I=0;I<gdnumbr;I++) 
{J=gd[I] .GetnoO; K=gd[I] .GetdofO; gd[I].Setv(gd[I] .GetvO-pa[J] .Getddp(K)); }; 

SetGDK(NDISP,BV,V,ZK); 
LDLT 1(NDISP,BV,V,ZK,DP); 
for (I=0;Fmaxv;I++) DP [1]=0.0; 
for (I=0;I<elementnumber;i[++) ea[I] .Formdp(NDISP,DP); 
for (I=0;I<elementnumber;I++) ea[I] .Formdp2(NDISP,DP); 
SetGDR(NDISP,DP); 
mrv=0.0; for (I=0;I<maxv;I++) if (fabs(DP[I])>mrv) mrv=fabs(DP[I]); 
mrv=mrv/mrv0; 
SLVEQ 1 (NDISP,BV,V,ZK,DP,0); 
fout<<" Displacement \n"; 
for (1=1 ;I<=NDISP;I++) fout<<I<<" "<<DP [I]<<"\n"; 
fout<<I** **********************\nh'; 

mdp=0.0; 
for (1=1 ;I=NDISP;I++) if (fabs(DP [I])/mdpo>mdp) 
{mdp=fabs(DP[I])/mdpO; kk=I;}; 
for (I=0;I<elementnumber;I++) ea[I] .Setdp(dofn,NDISP,DP,pa); 
for (I=0;I<nodenumber;I++) for (K=0;K<dofn;K++) pa[I].Setdp(K); 
mdp0=0.0; 
for (I=0;I<nodenumber;I++) for (J=0;J<dofn;J++) if (pa[I] .Getdof(J)>0) 
if (fabsQa[I] .Getdp(J))>mdpO) mdpo=fabs(pa[I] .Getdp(J)); 
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JJ=JJ+1; 
fout<<"Loop: "<<JJ<<" Max Ddp/Dp="<<mdp<<" Max RightVector="<<mrv<<" 

MdpO="<<mdpO<<" I="<<kk<<"\n"; 
} while ((JJ== 1)II((mdp>5 .Oe-2)I I(mrv> 1 .Oe-2))); 

fout<<h*********************** * \n h' ; 

fout.closeQ; Outresult( 1); 

void Sheet2: :SetSheet2(CString fn) 
lint i,j ,k,m,ii,ke,ij [4] ,adof[3]; double x,y,z,emt[6] [5]; 

ifstream fin(fn); fin>>type>>nodenumber; for (i=O; i<nodenumber; i++) 
{fin>>x>>y>>z; for 0=0;j<3 ;j++) fin>>adof[j]; 
pa[i] .SetMPoint(i,x,y,z,adof); }; 

fin>>ke; for (i=O;i<ke;i++) for (j=O;j<4;j++) fin>>emt[i][j]; 
fin>>elementnumber; for (i=O;i<elementnumber;i++) 
{fin>>ij [O]>>ij [1]>>ij [2]>>ij [3]>>m>>x; m=m-1; for (j=O;j<NNo;j++) ij [j]ij [j]-1; 
ea[i] . SetEM4(i,ij ,pa,emt[m] [0] ,emt[m] [1],emt[m] [2] ,emt[m] [3] ,x); 

fin>>gdnumber; if (gdnumber>0) for (i=0;i<gdnumber;i++) 
{fin>>j>>k>>x; gd[i]=GivenDp(j -1,k- 1,x); }; 
fin>>loadnumber; if (loadnumber>0) for (i=O;i<loadnumber;i++) 
{fin>>ii>>j>>k>>m>>x; m=m-1; ld[i]=EM4Load(j ,k,m,x); ii=ii- 1; 
for (k=0;k<NNo;k++) if (ea[ii] .GetPoint(k).GetNoO==m) ea[ii] .SetLoad(ld[i]); }; 

fin.closeO; NDISPO; 
Outresult(0); 

void Sheet2: :Outresult(int ii) 
lint i,j,k,m,sub[3] [2]; double s,sl ,s2,tl,ss[3],x[7],dpe[12],cc[3],jd=180.0/3 .1415926; 

if (ii==0) 
{ ofstream fout("slr.rO"); 
fout<<nodenumber<<"\n"; 
for (i=0; i<nodenumber; i++) 
{ fout<<i+ 1 <<" "<<pa[i] .GetXO<<" "<<pa[i] .GetYQ<<" "<<pa[i] .GetZQ<<"  

for =O;j'z3;j++) fout<<pa[i].Getdof(j); fout<<"\n"; }; 
fout<<elernentnumber<<"\n"; 
for (i=0;i<elementnumber;i++) 
{fout<<i+'l; for (j=0;j<4;j++) fout<<" "<<ea[i].GetPoint(j).GetNoQ+l; 
fout<<" "<<ea[i] .GetGO<<" "t<<ea[i] .GettQ<<" t'<<ea[i] .GetTh 1Q<< 

"<<ea[i] .GetB(1)<<" "<<ea[i] .GetB(2)<<"\n"; }; 
fout<<gdnumber<<'t\n"; if (gdnumber>0) 
for (i=0;i<gdnumber;i++) 
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fout<<i+ 1 <<" "<<gd[i] .GetnoQ+ 1<<" "<<gd[i] .GetdofO<<" "<<gd[i] .GetvQ<<"\n"; 
fout<<loadnumber<<"\n"; 
if (loadnumber>0) for (i0;i<loadnumber;i++) 
fout<<i+ 1<<" "<<id [i] .GettypeQ<<" "<<ld[i] .GetnodenoQ+ 1 <<" "<<ld[i] .GetdofO<< 

"<<ld[i] .GetvO<<"\n"; 
fout.closeO; } 

else if (ii==1) 
{ofstream foutl("slr.rl"); 
ofstream fout2("slr.r2"); fout2<<type<<" "<<nodenumber<<"\n"; 
for (i=0;i<nodenumber;i++) 
{ fout2<<pa[i] .GetXO<<" "<<pa[i] .GetYQ<<" "<<pa[i] .GetZO<<"  

for (k=0;k<dofn;k++) fout2<<pa[i] .Getdp(k)<<" "; fout2<<"\n" ; }; 
fout2<<elementnumber<<"\n"; 
for (i=0;i<nodenumber;i++) { fouti <<"Node"<<i+ I<<":"; 
for (k=0;k<dofn;k++) fouti <<pa[i] .Getdp(k)<<" "; fout 1<<°\n" ; }; 

foutl<<"  
for (k=0;k<dofn;k++) {sub[k][0]=k+1; sub[k][1]=0;}; 
for (i=0;i<1ementnumber;i++) 
{ fout1<Z"E1ement No: "<<i+ 1<<" "; for (k=0;k<12;k++) dpe[k]=ea[i] .Getdp(k); 
ea[i] .StrainC(cc,0.0,0.0,dpe);x[4]=ea[i] .GetB(1);x[5]=ea[i] .GetB(2);x[6]=ea{i] .GetGO; 
for (k=0;k<NNo;k++) fout2<<ea[i] .GetPoint(k).GetNoO+ 1<<' "; 
for (k=0;k<3;k++) {x[k]cc[k]; foutl<<x[k]<<" "; }; x[3]x[2]; 
s=ea{i].wl(x,m); fout2<<m<<" 
for (k=0;k<dofn;k++) 
{ss[k]=2.0*ea[i].nd2(1,sub[k],x); fouti <<ss[k]<<","; fout2<<ss[k]<<" 
tl=0.5 *atan2(ss[2]+ss[2],ss[O]...ss[ 1]); 
s=sqrt(0.25 *(ss[0]_ss[ 1 ])*(ss[O]ss[1 ])+ss[2]*ss[2]); 
s2=0.5*(ss[0]+ss[1]); s1s2+s; s2=s2-s; 
foutl<<"s 1="<<sl<<" s2="<<s2<<" ti='<<ti *jd<<" "<<m<<"\n"; 
fout2<<sl<<" "<<s2<<" "<<tl<<"\n"; 

foutl<<" \n"; 
foutl.closeQ; fout2.closeQ;}; 

/ 

Sheet2: : Sheet2O{ }; 

Sheet2: :Sheet2() 
{inti; 

if (nodenuriiber>0) for (i=0;i<nodenumber;i++) pa[i].'-'MPointQ; 
if (elementnumber>0) for (i=0;i<elementnumber;i++) ea[i] .'-EM4Q; 
if (gdnumber>0) for (i0;i<gdnumber;i++) gd[i] .GivenDpO; 
if (loadnumber>0) for (i=0;i<loadnumber;i++) ld[i] .-'EM4LoadO; 
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II The Postprocessor 
si View. cpp: implementation of the Cs] View class 

/1 CS] View drawing 

void CS1View::OnDraw(CDC* pDC) 

{ CPen aPenl,aPen2,aPen3; CBrush aBrushl,aBrush2; 
mt i,j ,k,nn,ne,me[200] [5] ,nd,ty,xl=200,yl=3 00,zl=1 00,z0=250,y0=3 50; 

double ncd[200] [7],xmin,xmax,ymin,ymax,zmin,zmax,xd,thl [200] ,th; 
CStrings,sl; 

CS1Doc* pDoc = GetDocumentO; 
AS SERT_VALID(pDoc); 
if (drawm0de0) 
{ifstream fino(dfn); fin0>>ty>>nn; 

for (i=0; i<nn; i++) for (j0;j<6;j++) fino>>ncd[i][j]; 
fino>>k; for (i=0; i<k; i++) fino>>xd>>xd>>xd>>xd; 
finO>>ne; for (i=0;i<ne;i++) { for (j=0;j<5;j++) fino>>me[i][j]; fino>>xd;}; 
for (i=0; i<nn; i++) for (j=3;j<6;j++) ncd[i][j]=0.0; 
finO>>nd; if (nd>0) for (i=0; i<nd; i++) 
{finO>>j>>k>>xd; ncd[j-1][k+2]=xd; }; 
finO.closeO; 

} 
else 
{ ifstream finl("slr.r2"); finl>>ty; finl>>nn; th=0.0; 

for (i=0; i<nn; i++) for (j=0;j<6;j++) finl>>ncd[i][j]; 
finl>>ne; 
for (i=0;i<ne;i++) 
{for (j=0;j<5;j++) finl>>me[i][jj; 
fin 1>>xmin>>ymin>>zmin>>ncd[i] [6]>>ymax>>thl [i]; 
if (ncd[i] [6]>th) th=ncd[i] [6]; 

fini .c1oseQ 

switch (drawmode) { 
case 0: 
for (i=0;' i<nn; i++) for 0=0;j<3 ;j++) ncd[i] [j+3]=ncd[i] [j]+ncd[i] [j+3]; 
for (i=O;i<ne;i++) for (j=0;j<4;j++) me[i] [j]=me[i][j]-1; 
xmin=100.0; xmax=-100.0; ymin=100.0; ymax=-100.0; zmin=100.0; zmax=-100.0; 
for (i=0;i<nn;i++) 
{ xd=ncd [i] [3 ]; if (xmin>xd) xmin=xd; if (xmax<xd) xmax=xd; 

xd=ncd[i][4]; if (ymin>xd) ymin=xd; if(ymax<xd) ymax=xd; 
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xd=ncd[i]{5]; if (zmin>xd) zmin=xd; if (zmax<xd) zmax=xd; }; 
xmin=xmax-xmin; ymin=ymax-ymin; zmin=zmax-zmin; 
if (xmin>0.00 1) xmax=0.707*xl/xmin; else xmax 1.0; 
if (ymin>0.00 1) ymax=yl/ymin; else ymax=1 .0; 
if (zmin>0.001) zmax=zl/zmin; else zmax=1.0; 
aPen2.CreatePen(PS_SOLID, 1,RGB(255,0,0)); 
pDC->SelectStockObj ect(NULL_BRUSH); 

7* pDC->SelectObject(&aPen2); 
pDC->MoveTo(yO,zo); k=20; 
pDC->LineTo(yo+yl+k,zo); 
pDC->LineTo(yO+yl+k- 1 5,zO-5); 
pDC->MoveTo(yo+yl+k,zo); 
pDC->LineTo(yO+yl+k- 1 5,zo+5); 
pDC->TextOut(yo+yl+k+2,zo-10,"y"); 
pDC->MoveTo(yo,z0); 
pDC->LineTo(yo,zO-zl-k); 
pDC->LineTo(yo+5,z0-zl-k+15); 
pDC->MoveTo(yo,zo-zl-k); 
pDC->jineTo(y0-5,z0-z1-k+15); 
pDC->TextOut(yo+15,zo-zl-k-10,'tz"); 
pDC->MoveTo(y0,zO); 
yl=y0+int ((x1+k+k)* 0.707); 
zl=zO+int ((xl+k+k)*0.707); 
pDC->LineTo(yl,zl); 
pDC->LineTo(yl+ 15 ,zl-6); 
pDC->MoveTo(yl,zl); 
pDC->LineTo(yl+6,zl- 15); 
pDC->TextOut(yl- 15,zl-20,"x"); 

*1 aPen 1 .CreatePen(PS_SOLID,3 ,RGB(0,00)); 
aPen3 .CreatePen(PS_SOLID,3,RGB(0,0,255)); 
pDC->SelectStockObj ect(NULL BRUSH); 
pDC->SelectObj ect(&aPenl); 
for (i=0;i<nn;i++) 
/*( yi[i]=yO+/int (ncd[i] [4]*ymaxncd[i] [3] *xm ax); 

zi[i]=z0- mt (ncd[i] [5] *zm ax_ncd[j] [3] *xmax); }; 
*/{ yi[i]=y0+ mt (ncd[i] [0] *ymax);//_ncd[i] [0] *xi.nax); 
zi [i]=zO- mt (ncd[i] [1] *ym); } ;//-ncd[i] [0] *xmax); }; 
for (i=0;i(ne;i++) 
{pDC->SelectObj ect(&aPen3); for (j=0;j <3 ;j++) 

{yl=yi[me[i] [j]]; zl=zi[me[i][j]]; 
y2=yi[me[i] [j+1]]; z2=zi[me[i] [j+1]]; 
pDC->MoveTo(y 1,z 1); pDC->LineTo(y2,z2); } 
yl=yi[me[i] [3]]; zl=zi[me[i][3]]; 
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y2=yi[me[i] [0]]; z2zi{me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 

1* if (me[i] [4]==2) pDC->SelectObj ect(&aPen2); else pDC->SelectObj ect(&aPen3); 
yl=yi[me[i] [3]]; zlzi[me[i][3]]; 
y2=yi[me[i][1]]; z2zi[me[i] [1]]; 

pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 
yl=yi[me[i] [2]]; zl=zi[me[i][2]]; 
y2=yi{me[i][0]]; z2=zi[me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 

*1 }. 
break; 
case 1: 

for (i=0; i<nn; i++) for (j=0;j<3;j++) ncd[i]+3]=ncd[i][j+3]+ncd[i][j]; 
for (i=0;i<ne;i++) for (j=O;j<4;j++) me[i][j]=me[i][j]-1; 
xmin=100.0; xmax=-100.0; ymin=100.0; ymax=-100.0; zmin=100.0; zmax=-100.0; 
for (i=0;inn;i++) 
{ xd=ncd[i] [0]; if (xmin>xd) xmin=xd; if (xmax<xd) xmax=xd; 

xd=ntd[i][1]; if (ymin>xd) ymin=xd; if (ymax<xd) ymax=xd; 
xdncd[i][5]; if (zmin>xd) zmin=xd; if (zmax<xd) zmax=xd; }; 

xmin=xmax-xmin; ymin=ymax-ymin; zmin=zmax-zmin; 
if(xmin>0.001) xmax=xl/xmin; else xmax=1.0; 
if (ymin>0.001) ymax=0.5*yl/ymin; else ymax=1.0; 
if (zmin>0.001) zmax=zl/zmin; else zmax=1.0; 
I/if (zmax>ymax) zmaxymax; else ymax=zmax; 
aPen2.CreatePen(PS_SOLID, 1,RGB(255,0,0)); 
pDC->SelectStockObj ect(NULL_BRUSH); 
pDC->SelectObject(&aPen2); 

1* pDC->MoveTo(yo,zo); k=20; 
pDC->LineTo(yo+yl+k,zO); 
pDC->LineTo(yo+yl+k- 15,z0-5); 
pDC->MoveTo(yo+yl+k,zO); 
pDC->LineTo(yO+yl+k- 15,z0+5); 
pDC->TextOut(yo+yl+k+2,z0- lO,"y"); 
pDC->MoveTo(yo,zo); 
pDC->LineTo(yo,zo-zl-k); 
pDC->Line,To(y0+5,zO-zl-k+ 15); 
pDC->MveTo(y0,z0-zI-k); 
pDC->LiieTo(y0-5,z0-zl-k+15); 
pDC->Te'xtOut(y0+15,z0-zl-k- 10,'tz"); 
pDC->MoveTo(yo,zO); 
yl=yO+int ((x1+k+k)*0.707); 
zl=z0+int ((xl+k+k)*0.707); 
pDC->LineTo(yl,zl); 
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pDC->LineTo(y 1+ 15,z 1-6); 
pDC->MoveTo(yl,zl); 
pDC->LineTo(yl+6,zl-15); 
pDC->TextOut(yl-15,zl-20,"x"); 

*1 aPeni .CreatePen(PS_SOLID,3 ,RGB(0,0,0)); 
aPen3 .CreatePen(PS_SOLID,3 ,RGB(0,0,25 5)); 
pDC->SelectStockObj ect(NULL_BRUSH); 
pDC->SelectObject(&aPenl); 

/ for (F=0;i<nn;i++) 
{ yi [i]=yo+ mt (ncd[i] [1] *ymax_ncd[j] [0] *xmax); 

zi [i]=z0- mt (ncd[i] [2] *zmaxncd[j] [0]*xmax);}; 
for (i=0;i<ne;i++) 
(pDC->SelectObject(&aPenl); for (j=0;j <3 ;j++) 

{yl=yi[me[i][j]]; zl=zi[me[i] [j]]; 
y2=yi[me[i][j+1]]; z2=zi[me[i] [j+1]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); } 
yl=yi[me[i][3]]; zl=zi[me[i][3]]; 
y2=yi[me[i][0]]; z2=zi[me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 
yl=int (0.25*(yi[me[i] [0]]+yi[me[i] [2]]+yi[me[i] [1 ]]+yi[me[i] [3]])); 
zlint (0.25*(zi[me[i] [0]]+zi[me[i] [2]]+zi[me[i] [1 ]]+zi[me[i] [3]])); 
pDC->SelectObj ect(&aPen2); 
if (me[i] [4]==1) 
{j=me[i][0]; k=me[i][1]; xd=(ncd[k][0]ncd[j][0])*0.5; xd=0.1; th=thl[i]; 
j=xd*cos(th)*xmax; k=xd*sin(th)*ym ax; 

pDC->MoveTo(yl-k+j ,z 1-j);pDC->LineTo(y 1+k-j ,z 1+j); } 
else if (me[i] [4]==2) pDC->TextOut(y 1-5,z 1-5, "+"); 

*1 
for (i=0;i<nn;i++) 
{ yi[i]y0+ mt (ncd[i][3]*xmax); 

zi[i]=z0- mt (ncd[i] [4] *ymax+ncd[j] [5] *zmax); }; 
for (F0;i<ne;i++) 
(pDC->SelectObj ect(&aPen3); 

for (j0;j<3;j++) 
{yl=yi[rne[i] [j]]; zl=zi[me[i][j]]; 
y2=yi[me[i][j+1]]; z2=zi[me[i][j+1]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); } 
yl=yi[me[i][3]]; zl=zi[me[i] [3]]; 
y2=yi[me[i][0]]; z2=zi[me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 

1* yl=int (0.25 *(yi[me[i] [0]]+yi[me[i] [2]]+yi[me[i] [1]]+yi[me[i] [3]])); 
zl=int (0.25 *(zj[me[j] [0]]+zi[me[i] [2]]+zi[me[i] [1 ]]+zi[me[i] [3]])); 
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*1 

pDC->SelectObj ect(&aPen2); 
if (me[i] [4]= 1) 
{j=me[i] [0]; k=me[i] [1]; xd(ncd[k] [0]-ncd[j] [O])*O.5; 
j=xd*cos(thl [j])*xmax; k=xd* sin(th 1 [j])*ymax; 
pDC->MoveTo(y 1-k+j ,z1-j)pDC->LineTo(y 1+k-j ,zl+j); } 

else if (me[i] [4]2) pDC->TextOut(y 1-5,z 1-5, "+"); 

}; 
break; 

case 2: 
for (i=0; i<nn; i++) for 0=0;j<3 ;j++) ncd{i] j+3]=ncd[i] [j+3]+ncd[i] U]; 
for (i0;kne;i++) for (j=0;j<4;j++) me[i] U]=me[i]U] -1; 
xmin=100.0; xmax=-100.0; ymin=100.0; ymax=-100.0; zmin=100.0; zmax=-100.0; 
for (i=0;i<nn;i++) 
{ xd=ncd[i] [0]; if (xmin>xd) xmin=xd; if (xmax<xd) xmax=xd; 

xd=ncd[i][1]; if (ymin>xd) ymin=xd; if(ymax<xd) ymax=xd; 
xd=ncd[i][2]; if (zmin>xd) zmin=xd; if (zmax<xd) zmax=xd; }; 

xmin=xmax-xmin; ymin=ymax-ymin; zmin=zmax-zmin; 
x1400 yl=400; if(ty=1) {xl=200; yl=200; yO=yO-200; z0=zO+200; }; 
if (xmin>0.00 1) xmax=xl/xmin; else xmax= 1.0; 
if (ymin>0.001) ymax=yl/ymin; else ymax=1.0; 
if (zmin>0.001) zmax=zl/zmin; else zmax=1.0; 
I/if (zmax>ymax) zmax=ymax; else ymax=zmax; 
aPen2.CreatePen(PS_SOLID, 1,RGB( 150,100,0)); 
aPen2.CreatePen(PS_SOLID, 1 ,RGB(250,0,0)); 
pDC->SelectStockObj ect(NULL_BRUSH); 
pDC->SelectObj ect(&aPen2); 
pDC->MoveTo(yO,zo); k=20; xl=xl/2; 
pDC->LineTo(yo+xl+k,zo); 
pDC->LineTo(yo+xl+k-15,zO-5); 
pDC->MoveTo(yO+xl+k,zo); 
pDC->LineTo(yo+xl+k- 15,z0+5); 
pDC->TextOut(yO+xl+k+2,zo- 10,"x"); 
pDC->MoveTo(yo,zo); yl=z0-k-3 0; 
pDC->LineTo(yo,zo-yl-k); 
pDC->LineTo(y0+5,zo-yl-k+15); 
pDC->MoveTo(y0,z0-yl-k); 
pDC->LineTo(y0-5,z0-yl-k+15); 
pDC->lektOut(y0+15,z0-yl-k-10,"y"); 
aPeni .CfeatePen(PS_SOLID,3 ,RGB(0,0,0)); 
aPen3 .CreatePen(PS SOLID,3 ,RGB(0,0,255)); 
pDC->SelectStockObj ect(NULL_BRUSH); 

1* pDC->SelectObject(&aPenl); 
for (i=0;i<nn;i++) 
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{ yi[i]=yo+ mt (ncd[i][0]*xmax); 
zi[i]=zO- mt (ncd[i][1]*ymax);}; 

for (i=0;i<ne;i++) 
{pDC->SelectObj ect(&aPenl); for 0=0;j<3 ;j++) 

{yl=yi[me[i] U]]; zlzi[me[i] [j]]; 
y2=yi[me[i][j+1]]; z2=zi[me[i][j+1]]; 
pDC->MoveTo(yl ,zl); pDC->LineTo(y2,z2); } 
yl=yi[me[i] [3]]; zl=zi [me [i] [3]]; 
y2=yi[me[i] [0]]; z2=zi[me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 
ylint (0.25 *(yi[me[i] [0]]+yi[me[i] [2]]+yi[me[i] [1 ]]+yi[me[i] [3]])); 
zl=int (0.25 *(zj[me[j] [0]]+zi[me[i] [2]]+zi[me[i] [1 ]]+zi[me[i] [3]])); 
pDC->SelectObj ect(&aPen2); 
if (me[i][4]1) 
{ th=0.0; xd=0.05; th=th+thl [i]; if ((i>=ne/4)&&(i<ne/4*3)) th=th+1.5707963; 
j=xd*cbs(th)*xmax; kxd*sin(th)*ym ax; 

pDC->MoveTo(y 1-j ,z 1+k);pDC->LineTo(y 1+j ,z 1-k); } 
else if (me[i] [4]==2) pDC->TextOut(yl-5 ,zl-5 , 

for (i=0;i<nn;i++) 
{ yi[i]=yO+ mt (ncd[i][3]*xmax); 

zi[i]=z0- mt (ncd[i][4]*ymax);}; 
pDC->SelectObj ect(&aPen3); 
for (i=0;i<ne;i++) 
{ for =0j<3;j++) 

{yl=yi[me[i] U]]; zl=zi[me[i][j]]; 
y2=yi (me [i] [j+1]]; z2=zi[me[i][j+1]]; 
pDC->MoveTo(y 1 ,zl); pDC->LineTo(y2,z2); } 
yl=yi[me[i][3]]; zlzi[me[i] [3]] 
y2=yi[me[i] [0]]; z2zi[me[i] [0]]; 
pDC->MoveTo(yl,zl); pDC->LineTo(y2,z2); 

} 
pDC->SelectObj ect(&aPen2); 
xmin=ncd[me[0] [1]] [0]-ncd[me[0] [3]] [0]; 
ymin=ncd[me[0] [1]] [1]-ncd[me[0][3]] [1]; 
xmin=sqrt(xmin*xmin+ymin* ym in)/th* 0.25; 
for (i=0;i<ne;i++) 
{ yl=int (0.25* (yi[me[i] [0]]+yi[me[i] [2]]+yi[me[i] [1 ]]+yi{me[i] [3]])); 

z1=int (0.25 *(zj[me[j] [0]]+zi[me[i] [2]]+zi[me[i] [1 ]]+zi[me[i] [3]])); 
if (m[i][4]==1) 
{ th=0.0; xd=xmin*ncd[i][6]; th=th+thl[i]; 

if ((ty==2)&&(i>=nel4)&&(i<ne/4*3)) th=th+1.5707963; 
j=xd*cos(th)*xmax; k=xd* sin(th)* ymax; pDC->SelectObject(&aPen2); 
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pDC->MoveTo(yl-j ,z 1+k);pDC->LineTo(yl+j ,zl-k); } 
else if (me[i] [4]==2) pDC->TextOut(yl-5 ,z 15,h1+1t); 

I th=0.0; xd=xmin*ncd[i][6]; th=th+thl[i]; 
if ((ty==2)&&(i>=ne/4)&&(i<ne/4* 3)) th=th+ 1.5707963; 
j=xd*cos(th)*xmax; k=xd*sin(th)*ymax; 

if (me[i] [4]== 1) pDC->SelectObj ect(&aPen2); 
else if (me[i] [4]==0) pDC->SelectObj ect(&aPen 1); 
pDC->MoveTo(yl-j ,zl+k);pDC->Linelo(y 1+j ,zl-k); 

*1 

break; 
default :break; 

if (mpSelection == NULL) 
{ POSITION pos = pDoc->GetStartPositionQ; 

mpSelection = (CS 1 CntrItem*)pDoc>GetNextClientItem(pos); 

} 
if (mpSelection != NULL) 

mpSelection->Draw(pDC, CRect(10, 10, 210, 210)); 

} 


