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ABSTRACT 

Advances in VLSI technology have now made it possible to integrate increasing 

number of devices on a single chip. The reliability of a chip is of foremost importance 

to a VLSI design engineer. Due to the increasing numbei of pins and the complex 

circuitry, it is very difficult to test a chip within an affordable cost. 

Testing a chip involves generating a set of test vectors and their application to 

detect any faults in the circuit. Test generation is considered the most expensive 

step in the testing of a VLSI circuit. The test generation problem is known to be 

NP-complete, which in turn signifies the exponential time complexity of Automatic 

Test Pattern Generation (ATPG) algorithms. Although the test generation problem 

for combinational logic circuits is very well understood, it is difficult to achieve a 

significant breakthrough in reducing the time complexity of ATPG algorithms when 

testing large circuits. 

The work presented in this thesis is a new approach for test generation of com-

binational logic circuits. In our algorithm, the test generation problem has been 

formulated as a global search problem which detects the sensitizing paths between 

the primary input and output nodes. In our approach, a tree of fault assignments is 

created in a similar manner to the depth-first search algorithms staring from primary 

outputs. The new approach avoids the time consuming backtracking procedure used 

in some other ATPG algorithms. The algorithm is designed to replace the traditional 

random test generators as a first phase in a test system. A model for a parallel test 

system is introduced which employs static load partitioning to equally balance loads 
I" 



over the available processors. 

The new test generation algorithm is tested using the ISCAS'85 benchmark com-

binational circuits. Our algorithm guarantees a minimum of 98% fault coverage of 

testable faults in all the benchmark circuits. The experimental results on large circuits 

indicate that our approach is much faster than any of the existing deterministic test 

generation algorithms. The experimental results with our parallel test model prove 

that a substantial efficiency improvement in speed can be obtained. The experimental 

results are compared with other existing test generation techniques. 
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CHAPTER 1 

INTRODUCTION 

The advances in VLSI technology during the last decade have had a great impact 

on testing. Because of the increase in circuit size and the limited accessibility to 

the internal nodes of a circuit, the costs of testing a chip have become a substantial 

part of the overall chip costs. Most engineers would agree that the quality of an 

integrated circuit depends partly on the ability to test it. Testing now accounts for. 

up to 10 percent of the total cost of manufacturing a 1-K RAM chip. For a 64-K 

RAM chip, the figure rises up to 40 percent. New techniques, however, promise help 

in the struggle to minimize costs, by tackling the circuit-testing problem in the design 

stage. 

1.1 Overview of VLSI Testing 

Testing is done in order to discover defects in a digital system. Test activities 

are interwoven with the VLSI design. Architectural design consists o'f partitioning a 

VLSI chip into realizable functional blocks. The logic design of these blocks should 

be synthesized in a testable form or the synthesized logic shouldbe analyzed and 

improved for testability. 

Faulty VLSI chips could be produced during manufacture because of photolithog-

raphy errors, deficiencies in process quality, or improper design. Even if the chip is 

manufactured perfectly, it could subsequently wear-out in the field due to electromi-
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Table 1.1. Types of tests performed. 

Wafer Chip Board System 
Parametric 
Die probe 

Chip test 
Burn-in test 

Incoming inspection 
Board functional 

System test 
Field diagnosis 

gration, hot-electron injection, or other reasons. Environmental effects, such as alpha 

particles and cosmic radiation can also cause a circuit to produce erroneous data. 

Testing is done at various stages in the production of a system: the dies are tested 

during fabrication, the packaged chips before insertion in the boards, the boards after 

assembly, and the entire system when complete. Table 1.1 indicates some of the tests 

performed at the various stages during the manufacturing process of a system. 

As far as the level of VLSI chip testing is concerned, a test generation algorithm is 

used to provide the necessary test vectors which, if applied to the chip, will expose the 

faults occurring at this level of manufacturing. The test cost at this level is primarily 

determined by the cost of generating these test vectors. Consequently, a new discipline 

has emerged to probe the testability problem of a circuit more thoroughly in order 

to give the designer feedback without taking the risk of submitting a circuit design 

which is not testable. As some designers like to put it, a testable design is an optimal 

design. Indeed, design for testability has been very well recognized and served by 

many researchers. 

When considering which test patterns to generate for testing complex circuit, 

one should first consider how good the patterns are for detecting the possible physical 

failures in the circuit. It may be impossible to consider all possible physical failures. 

Hence, test patterns are generated to detect some set of modeled faults in the circuit. 

For example, any line in the gate-level representation of the circuit permanently stuck 
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at logic 0 or 1. The measure of test quality in this case could be the percentage of 

these stuck-at faults detected by the patterns, and is called fault coverage for the fault 

class. A typical goal might be to achieve a fault coverage for single stuck faults of 

99% for the chip. 

Fault coverage is determined by a fault simulation program. Simulation .of all 

faults in a large circuit with many tens of thousands of gates may take a prohibitive 

amount of computer time. Statistical sampling procedures for simulating a fraction 

of the total faults are commonly used for measuring the effectiveness of the test 

patterns. It was found that for large circuits having a few thousand gates, reasonably 

good results can be obtained by simulating only 1000 to 2000 faults. 

1.2 Testability Analysis 

There are various factors that contribute to testing and its cost. Testing cost is 

determined mainly by the cost of test pattern generation and by the cost of test 

application. Test pattern generation cost depends on the computer time required to 

run the test pattern generation program. Test application cost is determined by the 

cost of the test equipment plus the tester time required to apply the test. The cost of 

testing can be reduced by using tests which either fail to detect many faults or cannot 

locate many of the detected faults. This can cause a substantial increase in system 

production and maintainence costs. It is much more expensive to repair a faulty 

printed circuit board than to discard a faulty chip, and it is much more expensive to 

repair a faulty system than to repair a faulty printed circuit board. Consequently, 

more efforts were urgently needed to understand and formulate the test problem such 

that fast and efficient techniques for test pattern generation be provided. The main 

objective is not to compromise the quality of the test patterns, that is, the fault 

coverage should remain high. 
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Attempts to understand circuit attributes that influence testability have produced 

the two concepts of observability and controllability. Observability refers to the ease 

with which the state of internal signals can be determined at the circuit output 

leads. Controllability refers to the ease of producing a specific internal signal value 

by applying signals to the circuit input leads. Many of the 'Design For Testability 

(DFT) techniques are attempts to increase the observability or controllability of a 

circuit design. A straight forward approach to do this is to introduce test points, that 

is, additional circuit inputs and outputs to be used during testing. There is always a 

cost associated with adding test points. For circuit boards adding test points is often 

well justified. On the other hand, for ICs, the cost of test points can be prohibitive 

because of IC pin limitations. 

A straightforward method for determining the testability of a circuit is to use an 

Automatic Test Pattern Generation (ATPG) program to generate the tests and de-

termines the fault coverage. The running time 'of the program, the number of test 

patterns generated, and the fault coverage then provide a measure of the testability 

of the circuit. The difficulty with this approach is mainly the large expense involved 

in running the ATPG program. Also, the ATPG program may not provide sufficient 

information about how to improve the testability of a circuit with poor testability. 

To overcome these difficulties, a number of programs have been written to calculate 

estimates of the testability of a design without actually running an ATPG program 

such as TEMAS (Testability Measure Program) and SCOAP (Sandia Controllabil-

ity/Observability Analysis Program) [9]. 

These Testability Measure (TM) programs implement algorithms that .attempt to 

predict for a specific circuit the cost (running time) of generating test patterns. In 

the process of calculating the testability measure, information is developed identifying 
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those portions of the circuit which are difficult to test. This information can be used 

as a guide to circuit modificationsthat improve testability. 

No accurate relationship between circuit characteristics and testability has yet 

been demonstrated. Thus the circuit parameters calculated by the TM programs are 

heuristic and have been chosen on the basis of experience and study of existing ATPG 

programs. It is not surprising that the various authors of TM programs have chosen 

different circuit characteristics for their estimates of testability. The technique used 

to demonstrate that a given TM program does indeed give an indication of circuit 

testability is to run both the TM program and also an ATPG program on a number 

of different circuits. A monotonic relation between the TM and the ATPG run time 

is offered as a "proof" that the TM program produces a good estimate of circuit 

testability. The difficulty with this validation technique is the high cost of running 

enough examples to be reliable. Some interesting results obtained by using statistical 

methods to evaluate the testability measure program approach are presented in [2]. 

1.3 Faults in VLSI Systems 

As systems increase in complexity, it is useful to be able to describe faults at 

various levels of abstraction in the system. A fault which is described at a very low 

level, for example the level of transistors, may very accurately describe the physical 

phenomena causing the fault but, because of the extremely large number of transistors 

in a VLSI chip, the model may be intractable for the purpose of deriving tests for the 

fault. The two requirements for fault models are accuracy and trac1ability. Accuracy 

means realistic faults should be modeled, while tractability implies that very complex 

systems should be handled. These requirements are in some sense contradictory. 

Recent research, therefore, deals with deriving realistic models at higher levels which 

can accurately capture the faults at lower levels. 
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As an example, consider a contact between two conducting lines in a VLSI circuit. 

If the contact is faulty, then the fault can be described at this level of abstraction as 

a break between two lines. It may also turn out that the break is equivalent to the 

input of a gate being permanently set to logic 0. The fault can then be described at 

the gate level of abstraction as a stuck-at 0 fault. It would be simpler for the purpose 

of analysis to consider the fault at the highest possible level of abstraction. 

Now suppose that contact is not permanently open but is periodically open, de-

pending on the temperature, vibration, or other external causes. This can be de-

scribed as an intermittent fault. However, testing for the fault may never expose it 

since the fault may not be active during the test. If, however, the circuit is designed 

so that the fault caused by the line being open can be detected during normal com-

putation by using some error correcting techniques, the goal of dependable operation. 

can still be achieved. 

A physical failure can also lead to the output of a module being at a nonlogical 

value (for example, indeterminate level between logic 0 and 1). Such faults are difficult 

to describe and detect, but the errors due to these faults may also be detected by 

error detection techniques. 

1.3.1 Fault Models 

Fault models are descriptions of the effect of a defect or failure in a circuit. As 

discussed earlier, fault models are driven by the requirement to drive high quality 

tests for complex circuits. Thus a useful fault model will naturally lead to a test 

generation procedure for the fault. 



7 

1.3.1.1 Transistor-level Fault Models 

Defects in present day integrated circuits can be abstracted to shorts and opens 

in the interconnects and degradation of devices. Fault models at the transistor level, 

therefore, can characterize physical failures quite accurately. Unfortunately, as the 

complexity of VLSI increases, the number of potential faults at the device and in-

terconnect level also increase drastically. Nevertheless, it is necessary to study the 

effects of failures at the transistor level and to develop accurate fault models at this 

level. Better understanding of the effects of failures can be used to develop accurate 

fault models at higher levels which can be applied to complex systems. This approach 

is analogous to that used in the hierarchical design of VLSI systems where complex 

circuits are built from smaller cells. 

Fault models proposed at the transistor level incorporate one or more of the fol-

lowing classes of faults: 

• shorts and opens of transistors or interconnections. 

• delay effects of failures. 

• coupling or crosstalk between nodes of a circuit. 

• degradation of elements. 

Shorts and opens are included in most fault models while the more accurate and 

more complex models include delays. Fault models where activity oi one node affects 

the logic values on another node in the circuit are primarily applied to memories. 

Fault models which incorporate degradations of elements (for example, transistor 

parameter changes, or changes in the value of a resistor) are usually used in analog 

circuits. 
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1.3.1.2 Gate-level Fault Models 

Early fault models were developed at the logic gate level. The popularity of this 

approach can be attributed to several reasons. 

• Such models are simple to design and use. 

• Many faults in discrete technologies can be represented by faults at the logic 

gate level. 

• Use of such fault models allows many of the powerful results in. mathematics 

relating to Boolean algebra to be applied to deriving tests for complex systems. 

• A fault model at the logic gate level can be used to represent faults in many 

different technologies if, in fact, defects and faults in these technologies can be 

mapped to gate faults. 

One of the earliest and still widely used fault models at the gate level of abstraction 

is the stuck-at model. In this model, it is assumed that physical defects and faults 

will result in the lines at the logic gate level of the circuit being permanently stuck-at 

logic 0 or 1. This model has been the source of a great deal of research. It is still 

very popular since it has been shown that many defects at the transistor and circuit 

level can be modeled by the stuck-at fault model at the logic level. In practice, only 

single stuck faults are considered in a circuit. 

A subset of the stuck fault model is the pin, fault model, where dnly input/output 

pins of a module are assumed to be stuck-at 0 or 1 under failure. This has been used 

sometimes when testing printed circuit boards with many VLSI devices. Unfortu-

nately, this fault model does not even include a high percentage of gate level stuck 

faults within the module in most cases and is, therefore, inappropriate for VLSI. 
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1.4 Fault Equivalence and Dominance 

A 
B 
C 

Figure 1.1. A three-input NAND gate example 

Consider the three input NAND gate shown in Figure 1.1. This gate has four 

lines (three inputs and one output) and would, therefore, have eight stuck-at faults, 

each line stuck at 0 or 1. However, the faults A, B, or C stuck-at 0 would result 

in the output D being permanently 1 and, therefore, it is impossible to distinguish 

between an input stuck at 0 from the output stuck at 1. These faults are said to 

be equivalent. Now consider the fault A-stuck-at-1. In order to detect this fault, a 

0 has to be applied on A, and is at B and C so that the effect of the fault can be 

propagated to D. The correct value of D will be a 1 and it will be a 0 under fault. 

This test for A-stuck-at-1 will, therefore, also detect the fault D-stuck-at-0. Hence, 

A-stuck-at-1 is said to dominate D-stuck-at-0. 

Table 1.2. Tests for 3-input NAND gate. 

A B C D Fault Class 
1 i i 0 A/O,B/O,C/0,D/i 
0 1 1 1 A/i,D/0 
i 0 i 1 B/i,D/0 
1 1 0 1 C/i,D/0 
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Figure 1.2. Two faults which are functionally equivalent. 

Using the relations of equivalence and dominance allows many faults to be com-

bined into a single class, reducing the number of faults to be considered in a complex 

system. A three-input NAND gate, therefore, will have four different fault classes 

and the tests for these faults are shown in Table 1.2. In the table, the fault consisting 

of one line 1 stuck-at-0 is shown as 1/0. 

The notion of equivalence and dominance can be applied to more complex circuits. 

Thus two faults which are in different parts of a larger circuit could possibly be 

equivalent. Figure 1.2 shows a simple circuit with four inputs and one output. Stuck-

at-1 faults on the two lines marked a and b are equivalent, that is, the function under 

either faults is the same. However, equivalences such as these are more difficult to 

detect and, in practice, only equivalences and dominances around a gate are normally 

considered. More information on the concepts of the fault equivalence and dominance, 

as well as the idea of reducing the number of fault classes by fault collapsing, are found 

in [12, 18]. 
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1.5 Summary 

In this chapter, motivations that initiated the interest in the testing problem have 

been introduced. The cost of manufacturing a VLSI chip is shown to be very much 

affected by the testability figure of the chip. Design for testability, testability analysis 

programs, and new test generation algorithms are a normal consequence for the test 

process requirements. 

The large number and complex nature of physical failures dictates that a practical 

approach to testing should avoid working directly with the physical failures. In most 

cases, in fact, one is not usually concerned with discovering the exact physical failure; 

what is desired is merely to determine the existence of (or absence of) any physical 

failure. One approach for solving this problem is to describe the effects of physical 

failures at some higher levels of abstraction. This description is called a fault model. 

The stuck-at fault model is the most popular for today's VLSI technology. The 

algorithms described in this work support this fault model. 



CHAPTER 2 

TESTING PROBLEM AND AUTOMATIC TEST 

GENERATION APPROACHES 

In this chapter, the test generation problem is presented. Section 1 presents the 

test generation terminologies used throughout this work. The test problem complexity 

is identified and formulated in Section 2. The basic knowledge of testing concepts is 

presented in Section 3. 

Although numerous approaches to test generation have been reported, only a few 

of these approaches are used in test systems. Section 4 presents some of these ap-

proaches, i.e., D-Algorithm, PODEM (Path Oriented DEcision Making), and FAN. 

These approaches are used as a reference for comparing our results with other work. 

2.1 Definitions 

Common terminology pertaining to test generation for logic circuits is readily 

introduced with an example. Figure 2.1 shows a combinational logic .circuit and a 

test for a single stuck fault that causes node h to permanently assume a 0 state. A 

stuck-at-1 (s-a-1) fault on a signal node causes that node to permanently assume the 

1 state. A stuck-at-0 (s-a-0) fault causes a permanent 0 on the faulted node. The 

five valued logic (0, 1, X, D, T) is used to describe the behavior of a circuit with 

failures. The logic value D designates a logic value 1 for a node in the error free 

circuit and a 0 for the same node in the failing circuit, V is the compliment of D, and 

X designates a DON'T CARE value. A behavior difference between the good circuit 
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and the failing circuit propagates along a sensitized path. In Figure 2. 1, the signal 

path h, j (the bolded line) is referred to as a sensitized path. Externally controllable 

nodes are referred to as primary inputs. Externally observable nodes are referred 

to as primary outputs. In Figure 2.1 assignment of the values 1, 1, X, X, .0 to the 

primary inputs a, b, c, d, e, respectively, constitutes a test for the fault h s-a-0. 

J 

Figure 2.1. Example to illustrate test generation terminology. 

Definition 1 : Two faults are said to be compatible if there exists' at least one test 

vector which detects both faults. 

Definition 2 Two faults are said to be collapsed if the detection of one fault 

'implies the detection of the other fault. The two faults can also be referred to as 

indistinguishable faults. 

Definition The D-drive refers to the node with a logic value D or D and is 

used by the test generation algorithm to bring it closer to the primary outputs. In 

Figure 2.1., node h represents a D-drive to the test generation process. If at any time 

in the test generation procedure, more than one node carries the logic values D or 

then we refer to these nodes as the D-frontier. The test generation algorithm picks 

up one of these nodes to drive the test process, i.e., selecting the D-drive node. 

Definition 4 : The implication procedure refers to the process of using the im-

plication rules of logic gates to propagate signal values at gate input nodes to their 
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output nodes. This procedure is used to check the implication of logic assignments 

made during the test generation procedure. The result is used as a guide to the next 

step in the test procedure. 

Definition 5: Consistency check is a procedure used by test generation algorithms 

to check if the previously made decisions meet some objectives set by the algorithm. 

The decisions made by the test generation algorithm are referred to as inconsistent 

if they don't meet the objectives set by the algorithm. It must be noted that these 

objectives vary during the test procedure. 

2.2 Test Generation Problem 

With the progress of VLSI technology, the problem of fault detection for logic 

circuits is becoming more and more difficult. In developing tests for digital circuits, 

the faults that will actually occur are unknown. Instead, test sets are developed to 

detect a specific set of faults. 

2.2.1 Problem Formulation 

As Goel [8] stated in his paper, the test generation problem can be formulated as 

a search of the n-dimensional 0-1 state space of primary input patterns of an n-input 

combinational logic circuit. For example, in Figure 2.2, g is an internal node and the 

objective is to generate a test for the stuck fault g s-a-U. The logic value at g can 

be expressed as a Boolean function of the primary inputs X1, X2, ..., X,. Similarly, 

each primary output (yj, j = 1, 2, ..., m) can be expressed as a Boolean function of 

the state on node g as well as the primary inputs X1, X2, ..., X,. 

Let 

g = G(X1, X2, ..., X) 
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and 

y=}j(g,Xi,X2, ... X) 

where 1j ≤m and X =Oor1 for 1≤in. 

The problem of test generation for g s-a-O can be stated as one of solving the 

following set of Boolean equations: 

G(X1, X2, ..., X) = 1 

Yj(1,X1,X2,...,X)EBY3(O, Xi, X2,...,X)=i 

for at least one j,i ≤j ≤ mand Xi = 0 or 1 for 1 ≤ i < n. 

The first equation implies that a s-a-0 fault is first excited to logic 1 (opposite to the 

stuck-at level), while the second equation implies that the change of the logic value 

at the fault location can be observed at the primary outputs. The set of equations 

for g s-a-I are the same as above except that G is set equal to 0. 

Xl 

x2 

Xn 

- yl 
- y2 

Figure 2.2. A Combinational circuit used in formulating test generation as an 
n-dimensional 0-1 state space search problem. 
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In short, test generation can be viewed as a search of an n-dimensional 0-1 space 

defined by the variables X (1 ≤ i < n) for points that satisfy the above set of 

equations. More generally, the search will result in finding a k-dimensional subspace 

(k ≤ n) such that all points in the subspace will satisfy the above set of equations. 

2.2.2 NP-Completeness of Test Generation 

The concept of NP-Completeness is used to prove that the amount of time required 

to solve a specific problem is beyond a certain practical limit [3]. The problem of test 

generation, which is known to belong to the class of NP-complete problems, can be 

viewed as a finite space search problem [8]. For a circuit with N primary inputs, there 

exists 2" combinations of input assignments. Automatic Test Generation (ATG) 

algorithms basically search for a point in the primary input space that corresponds 

to a test pattern and consequently, to a solution of the search problem. 

The NP-completeness property of the test generation problem necessitates that 

various heuristics be developed to create practical solutions for it. The PODEM [8] 

and FAN [5] algorithms are elegant examples in this regard. Many other fault analysis 

problems, such as the determination of the size of minimal test sets, coverage of 

multiple faults by single-fault test sets, and coverage of faults by randomly generated 

test sets are similarly besieged by their inherent complexity, and their solutions require 

thoughtful insights. 

2.3 Elementary Testing Concepts 

The three main concepts used by all test generation systems, namely, sensitization, 

consistency, and redundancy are described in this section. Although most of the 

following discussions are limited to combinational circuits and stuck-at-faults, these 

basic concepts can be extended for any digital circuit and any fault model. 
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Figure 2.3. A sample circuit to describe sensitization. 

2.3.1 Sensitization 

Sensitization is a technique where a path consisting of many nodes is created to 

help propagate a stuck-at fault in a circuit. Searching the input space for a test 

pattern is equivalent to searching for a single (or multiple) sensitizing path. 

Consider the circuit of Figure 2.3 and the fault 7 s-a-O. In order to detect this fault 

by a procedure that allows'access only to the primary input lines (1, 2, 3, 4, 5, and 

6) and the primary output line (15), it is essential that a test vector must somehow 

create a change on line 7 and ensure that the change can be seen on line 15. That 

is, the test vector must produce a 1 on line 7, and line 15 should be sensitized to line 

7 in the sense that the output created on line 15 clearly shows whether the signal on 

line 7 is 0 or 1. If the path from line 7 to line 15 is traced in Figure 2.3, the first 

condition for sensitization is that line 10 be a 0. Indeed, if line 10 is a 1, then line 13 

would be 1 irrespective of the value on line 7. In other words, a 1 on line 10 would 

desensitize line 7 to line 13. Moreover, since there is no other path to transmit the 

value on line 7 to line 15, line 10 being a 1 will also desensitize line 7 to line 15. Thus 
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assuming that line 10 is a 0, the next condition for the sensitization is that line 14 

be a 1. If both of these conditions exist in the circuit, then when a 0(1) is applied to 

line 7, the circuit output is going to be a 0(1). In other words, any input vector that 

can create a 1 on line 7, a 0 on line 10, and a 1 on line 14 will in the fault free circuit 

produce a 1 on the output line, and in the faulty circuit a 0 on the output line, and 

will, therefore, be a test vector for 7 s-a-0. 

The concept of sensitization needs to be explained further in the situations involv-

ing more than one path from the faulty line to a primary output line, and in the case 

of multiple stuck-at faults. In summary, the concept of sensitization is fundamental to 

understanding how a fault is detected from the input and output lines only. However, 

the process of determining a sensitized path(s) in a general situation is not a simple 

procedure. 

2.3.2 Consistency 

As shown above, some logic assignments and conditions are needed to carry out 

the sensitization process. However, just formulating such conditions does not always 

guarantee that an input vector satisfying such conditions also exists. Thus, formulat-

ing conditions to create a change and to propagate the change along a sensitized path 

is just one step. The second equally important step is to determine which, if any, 

vector(s) satisfies such conditions. When this process is carried out by exploring the 

- circuit structure, it is often referred to as the line justification or consistency process. 

In general, consistency, or line justification is not a simple process since different 

conditions may result in contradictory requirements. For example, consider the fault 

set (7 s-a-0, 12 s-a-1) of Figure 2.3. The fault is tested by creating changes on both 

the faulty lines, and the change is propagated only from line 7. This will require 
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that the following conditions be held: line 7 is 1, line 12 is 0, line 10 is 0, and line 

9 is 1. However, since line 10 and 12 require the same binary signal, but can have 

only complimentary values, it is clear that no vector will satisfy this particular set of 

conditions. 

An ideal line justification algorithm will, at each step, make a decision that will 

not have to be changed. In general, however, this is not possible since making an 

irreversible decision requires knowledge which is not available at the time of decision 

and can be obtained only by reversing the decision and starting again. The most one 

can do in this situation is to use some insights or heuristics so that as few decisions 

as possible are changed. Actually, due to this decision process, the test generation 

problem is NP-complete [5]. 

2.3.3 Redundancy and undetectability 

A fault is said to be undetectable if there is no vector to detect this fault, and 

the line associated with the fault is called a redundant .line. For instance, in the 

trivial circuit of Figure 2.4, the fault 5 s-a-1 is undetectable, since sensitizing it would 

require that each of lines 3, 4, and 6 be a 1, implying in turn that x1 = 1, x2 = 1, 

and x1 .x2 = 1. These being contradictory requirements, one can conclude that if 5 

s-a-1 existed in the circuit, then as far as the input/output behavior is concerned, the 

circuit is going to behave as if there is no fault in it. Such undetectable fault seems 

to be harmless when not probed further. However, as previous research in the area 

has shown, one must know where the redundant lines in the circuit are, to be able to 

carry out an effective detection of the detectable faults. For example, in the circuit 

of Figure 2.4, the input vector (1, 1, 0) is a test vector for a 1 s-a-0. However, in 

the presence of of the undetectable fault 5 s-a-1, (1, 1, 0) cannot test 1 s-a-0. Thus, 
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xl 
x2 

x3 

Figure 2.4. Example of redundancy. 

an undetectable fault can invalidate the testing of some detectable faults if both are 

present simultaneously. 

Another effect of an undetectable fault is its impact on the test generating efforts 

for a given circuit and a fault set. If a fault set is undetectable, any resources spent 

in trying to obtain a test vector are wasted. It is thus useful to remove all the 

undetectable faults from the fault set before the test generation step. As it turns out, 

even the process of determining whether a fault is detectable or not is as complex 

as the test generation process which is NP-complete. The best hope, therefore, is to 

avoid the appearance of redundant lines during the design phase of the circuit under 

consideration. 

2.4 Test Generation Approaches 

2.4.1 Random Test Generators 

The concept of generating test vectors for a digital circuit by some random process 

probably provides the simplest approach to the test generation problem [1, 20]. The 

major current issues for random test pattern generation are: selecting the test length, 

determining the fault coverage, and identifying random-pattern resistant faults (faults 

that are hard to detect with random patterns). These could, in principle, all be ac-

complished by a full single-stuck fault simulation of the network to be tested [21]. The 
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development of special-purpose equipment is decreasing the cost of fault simulation. 

Despite this cost reduction, full fault simulation remains expensive for large circuits 

that require long random test sequences for adequate fault coverage. 

The only viable alternative to full fault simulation appears to be the use of a 

probabilistic model of random test generation [13]. Probabilistic methods do not 

give exact fault coverage values, but they do provide more insight into the relations 

between circuit characteristics and test parameters. 

2.4.2 Deterministic Test Pattern Generators 

The problem of deterministically generating a test pattern for a given fault is to 

find a combination of assignments of logic values (0 or 1) to the primary inputs which: 

• excite the target fault, 

• monitor the target fault at, at least one of the primary outputs. 

Since the properties of deterministic test generation fulfill the requirements for 

a systematic search problem, automatic test generation algorithms usually build a 

decision tree and apply a backtracking search procedure [5, 8], in order to find a 

solution for problem. 

The D-algorithm [16, 17] is probably the most known test generation algorithm. It 

develops a five-valued {0, 1, X, D, } calculus to be able to carry out the sensitization 

and the line justification procedures in a very formal manner. In this calculus, each 

line can be either a 0, 1, X (unknown), D, or Th. The faulty line is assigned a D 

or 77 depending on the fault on the line. The next step is to use the calculus and 

the circuit structure information to determine values on the other lines so that the 
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D or D can be sensitized to the primary output line. A line justification step is then 

carried out to justify the values assigned in the preceding step. Both the sensitization 

and line justification steps may have to be carried out many times before a test vector 

is obtained. 

The PODEM (Path-Oriented Decision Making) algorithm was introduced in par-

ticular to perform better than the D-algorithm for circuits containing mostly Exclusive-

OR gates. It was, however, demonstrated to have a better performance than the D-

algorithm for various other types of circuits as well. The approach taken by PODEM 

appears to be the first to treat the test generation problem as a classic branch-and-

bound problem. More fundamentally, the algorithm starts by assigning a value of 

o or 1 to a selected primary input (Pi) line, and then determines its implication on 

the propagation of D or D to a primary output line. If no inconsistency is found, it 

again somehow selects another Pi line and, assigns a 0 or 1 to it, and then repeats 

the process, which is referred to as branching. 

The branching procedure basically consists of making an intelligent choice on the 

primary input line to be selected and the binary value to be assigned to it. If, however, 

at any time in this branching, an inconsistency is determined, the branching stops 

and bounding starts. The Pi line which was most recently assigned a binary value is 

assigned the complimentary value, and branching is started again. If, however, both 

the values on the most recent line result in a bounding step, then the Pi line next 

to the most recent is treated in a similar manner. The complete process stops when 

either a test vector is found or when the fault is determined to be undetectable. A 

high level description of the PODEM algorithm is shown in Figure 2.5. 

The PODEM algorithm uses a two-step process to choose a primary input (Pi) 

and logic level for initial assignment. 
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Procedure podem() { 
assign(pi); 

* assign a binary value to unassigned primary input / 
implication(); 

1* apply implication rules to all nodes in D-frontier / 
if a test generated; exit done; 

else if no more combinations of pi's exist; exit undetectable fault. 
else set untried combinations of values on unassigned pi's. 
start branch step. 

} 

Figure 2.5. High level description of PODEM. 

Step 1: Determine an initial objective. The objective should be to bring the test 

generator closer to its goal of propagating a D or to a primary output. 

Step 2: Given the initial objective, choose a Pi and a logic level such that the 

chosen logic level assigned to the chosen Pi has a good likehood pf helping towards 

meeting the intial objective. 

The following two simple propositions are evaluated to carry out the process of de-

termining if a test is possible with additional assigned Pi's. 

Proposition 1: The signal node (for the given stuck fault) has the same logic level 

as the stuck level. 

Proposition 2: There is no signal path from an internal signal node to a primary 

output such that the internal signal node is at a D or a V value and all the other 

nets on the signal path are at X. 

If Proposition 1 is true, then it is obvious that assignment of known values to 

unassigned Pi's cannot result in a test. If Proposition 2 is true, then there exists no 
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signal path along which the D or the _1  can propagate to a circuit output. Hence, 

only if both Propositions 1 and 2 are false, then it is concluded that a test is possible 

with the present Pi assignment even though further enumeration may show that it is 

not. 

Table 2.1 shows a comparison of PODEM and D-algorithm [8]. It shows that 

PODEM achieved 100 percent test coverage on each of the four Error Correction And 

Translation (ECAT) type circuits used. Since DALG (D-Algorithm) and PODEM 

are complete algorithms, given enough time, both will generate tests for each testable 

fault. 

Table 2.1. Comparison of PODEM and DALG. 

Circuit type No. of gates Normalized run time Test coverage 
PODEM DALG PODEM DALG 

ECAT 828 1 34.5 100.0 99.70 
ECAT 935 1 12.8 100.0 93.10 
ECAT 948 1 5.7 100.0 95.70 
- 951 1 2.2 99.50 99.50 
- 1249 1 3.5 98.20 98.20 
- 1172 1 2.6 98.50 98.50 
ALU 1095 1 15.3 96.50 96.20 
MUX 1082 1 3.2 96.60 96.60 
- 915 1 3.9 96.30 96.30 
DEC 1018 1 3.8 99.10 99.10 
PLA 538 1 2.5 94.50 94.50 
PLA 682 2.6 1 89.40 89.40 
PLA 1566 1 3.1 97.40 97.40 

From the above discussions, it is obvious that to accelerate 'an algorithm for 

test generation, it is necessary to reduce the number of occurrences of backtracks 

(branching-bounding cycles) in the algorithm and to shorten the procssing time 

between backtracks. Based on that, the FAN [5] algorithm started with the basic 

conjecture that the PODEM does not fully exploit the excellent framework in which 
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it works. FAN has employed a better heuristic in the bounding-and-branching steps 

to speedup the test generation process. Table 2.2 shows the results obtained on active 

sample circuits by implementing both FAN and PODEM. The results show that FAN 

is more efficient and faster than PODEM. The average number of backtracks in FAN 

is lower compared to that of PODEM. 

Table 2.2. Comparison of FAN and PODEM. 

Circuit No. of gates Normalized run time Test coverage Ave. No. of backtracks 
PODEM FAN PODEM FAN PODEM FAN 

ECAT 718 1.3 1 99.20 99.52 4.9 1.2 
ALU 1003 3.6 1 94.25 95.49 42.3 15.2 
ALU 1456 5.6 1 92.53 96.00 61.9 0.6 
ALU 2002 1.9 1 98.75 98.90 5.0 0.2 
ALU 2982 4.8 1 94.38 96.81 53.0 23.2 

2.5 Summary 

In this chapter, the test generation problem has been presented and formulated. 

It has been shown that the test generation problem is a complex problem and is 

considered to be NP-complete. Different approaches have been used to tackle the test 

problem, either by randomly generating test vectors or by using other deterministic 

test generation methods. Test generation, as a space search problem, has evolved 

in designing efficient algorithms as the case in PODEM and FAN. Most of the test 

systemsreported for this decade are based on these two algorithms.' SOCRATES [19] 

algorithm, for instance, is an improved version of FAN. Based upon the sophisticated 

strategies of the FAN algorithm, an improved implication procedure, an improved 

unique sensitization procedure, and an improved multiple backtrack procedure are 

described. In general, however, most of the work in the testing area is useful under 
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very specific circumstances. Despite the steady growth in the area of digital system 

testing, it has yet to witness the development of a consistent framework which can 

provide efficient testing algorithms for large and complex systems. 



CHAPTER 3 

AN EFFICIENT ALGORITHM FOR TEST 
GENERATION 

The problem of test generation is known to be NP-complete [6, 10]. The present 

approaches for test generation are time-inefficient for large size combinational circuits. 

In this chapter, we present an efficient algorithm for test generation. In our algorithm, 

the test generation problem has been formulated as a model of a global search of 

the sensitizing paths between the primary input and output nodes. Such a simple 

model offers significant improvements in efficiency for the test generation of large 

combinational circuits. 

3.1 Introduction 

A basic problem in testing is to determine an optimal testing procedure for a given 

circuit and determine a set of faults which models most of the failures likely to occur 

in that circuit. A typical testing procedure consists of three steps: test generation, 

test application, and test verification. The performance of a testing procedure is 

often measured in terms of the time and effort required to carry out these three 

steps. The time taken to generate a single test pattern grows exponentially with the 

number of inputs in the circuit. Most deterministic test pattern generation algorithms 

exhaustively search the circuit netlist for test vectors to detect stuck-at faults. To 

improve an algorithm's efficiency, some limitations are imposed on the procedure to 

minimize the number of backtracks and thus the test generation time. A test vector 
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is generated for a target fault and then a fault simulation is applied to check for the 

other faults which can be detected by the same vector. Consequently, the number of 

generated vectors are much less than the number of modeled faults. 

A significant theoretical study [11] suggests that no test generation algorithm for 

combinational circuits with a polynomial time complexity is likely to exist. Goel [7] 

argues that the time for a complete test generation must grow at least as the square 

of the number of gates in the circuit. Presently most well-known algorithms make use 

of the path sensitization idea in one form or the other. Among all, the D-algorithm 

is the oldest and the best-known algorithm. The performance degradation, of the 

D-algorithm arises due to an excessive amount of backtracking. Based on this obser-

vation, Goel used a branch and bound technique and devised a new test generation 

algorithm called PODEM [8], described in chapter 2. Fujiwara and Shimono [5] de-

scribed a technique to further accelerate a path-sensitization algorithm like PODEM. 

Their algorithm, called FAN, makes an extensive analysis of the circuit connectivity 

in a preprocessing step to minimize the amount of backtracking. Schulz et al. [19] 

further improved the performance of FAN by improving the implication procedure 

and built a test generation system called SOCRATES. They also described a unique 

sensitization procedure and an improved multiple backtrace procedure. 

A number of researchers have attempted to reduce the test generation time. How-

ever, no algorithm is efficient for the general class of faults. Each fault may need 

different heuristics for efficient test generation. Using different strategies for test gen-

eration lowers the testing time [14]. The concept of fault partitioning has been used 

in a parallel multiprocessor system to achieve fast test generation for large circuits. 

Patil and Banerjee [15] have shown that large speed up factors can be achieved by 

using a dynamic fault partitioning algorithm. 
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Most approaches discussed above suffer from exponential time complexity in the 

worst case. It is generally believed that, for combinational circuits, the time taken in 

the current test generation approaches is prohibitive. 

In this chapter, we present an efficient test generation algorithm for combinational 

circuits. The test generation problem has been formulated as a model of a global 

search of sensitizing paths between primary input and output nodes. The algorithm 

generates test vectors with at least 98% fault coverage of all testable faults in a circuit 

in a short time. Hence, it can be used to enhance the overall test generation procedure 

by replacing the traditional random test generation technique which has a limited test 

coverage of only 60% to 85%. Moreover, our approach ensures a more compact test 

set than that of the random test generation technique. 

The rest of this chapter is organized as follows. In section 2, the motivations that 

initiated the development of our algorithm is presented. New ideas for a target fault 

switching technique during the search procedure are also discussed. In section 3, we 

describe the test generation problem in the context of our approach. An efficient test 

generation algorithm is introduced in Section 4. Finally, section 5 summarizes this 

chapter. 

3.2 Motivations 

Motivation for this work comes from the observation that test generation for the 

detection of faults in digital circuitry can be made more efficient by employing a 

- target fault switching technique in the search process [22]. For more elaboration, let 

us consider some of the strategies used in PODEM, and explained in chapter 2, in 

the process of searching for a test pattern for a specific target fault. Although the 

following discussion is concerned with PODEM, it also applies to other algorithms 
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such as FAN and SOCRATES. 

In PODEM, backtracking is the most computationally expensive step in the process 

of searching for a test vector. Backtracking refers to a branch procedure terminated 

by a bound step. The branching step goes as deep in the binary search tree as 

possible, while the bound step backs up in the binary search tree to the most recent 

node with an unused alternative assignment. Backtracking stops when either a test 

vector is found or when the fault is determined to be undetectable. A fault is declared 

undetectable if the number of occurrences of backtracks exceeds a limit specified by 

the user. Therefore, a fault classified as undetectable in most deterministic ATPG 

algorithms is either a testable fault which needs more backtrack steps to be detected 

or a truly redundant fault. 

One can conclude that if fi is a target fault in PODEM, then a number of backtrack 

steps occur before the fault is detected or declared undetectable. 'Suppose that the 

average number of backtracks made by PODEM to detect a fault set in a circuit is 

N. Then on the average, only one backtrack step is used to generate a test vector for 

the fault fl, while N-i steps are used to assign logic values that lead to a bound step. 

As a result, some logic assignments associated with the search tree before each bound 

step are rejected, which is a waste of computer time. A better approach is to use 

these logic assignments to direct the test procedure to detecting another target fault. 

Therefore, the logic assignments that do not help in detecting the fault f, could be 

used to detect another fault 12, where f, and 12 are distinguishable faults. To achieve 

that, the test generation algorithm needs a procedure to switch the search process to 

different target faults whenever a bound .step occurs. Since the problem of searching 

for distinguishable sets of faults is as difficult as the test generation problem, we may 

only consider a new target fault which meets the objective of propagating a D or 
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D closer to a primary output using the logic assignments made before the bound 

step. Heuristics can easily be employed to achieve this purpose, for instance, a new 

target fault search procedure might use the circuit topology to search for those faults 

which are topologically nearby the original target fault. Another approach might use 

a random selection of the new target fault from the fault list. 

It is not necessary to implement such procedure in the context of the existing 

ATPG algorithms like PODEM or FAN. In this work, we are taking a global testing 

approach to implement a non-target fault algorithm. In our approach, a tree of fault 

assignments is created in a similar manner to the depth - first search algorithms 

starting from primary outputs. 

3.3 Test Generation Viewed As A Global Search Problem 

Most deterministic Automatic Test Pattern Generation (ATPG) algorithms view 

the test generation problem as a search of the n-dimensional 0-1 state space of primary 

input patterns of an n-input combinational logic circuit. Because of the complexity 

of the test generation problem (i.e. NP-complete), search heuristics are used to limit 

the exponential time complexity of these algorithms. For example, PODEM is an 

implicit enumeration algorithm in which all possible primary input patterns are im-

plicitly examined as tests for a given fault. Implicit enumeration refers to a subset of 

the branch and bound algorithms designed specifically for search of an n-dimensional 

0-1 state space. Although new heuristics are developed to improve the algorithm's 

performance such as those employed in FAN and SOCRATES, significant improve-

ment in timing complexity is not yet achieved. From our study of these algorithms 

we believe that the search for a test vector to detect a single target fault yields time 

- inefficient algorithms. We suggest that a switching technique to different target 

faults during the search process is necessary. 
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In this work, the problem of generating test vectors without targeting a specific 

stuck-at fault set is addressed. An attempt is made to solve this problem by applying 

certain logic assignment rules. These rules consider the representation of a single 

stuck-at fault as a number of fault patterns at the primary inputs. A fault pattern 

refers to a combination of fault assignments (D and ) at the primary inputs. For ex-

ample, a two-input NAND gate with fault D at its primary output can be represented 

as one of three patterns (, D), (1, D, (, 1) at the primary inputs. 

In our approach, a depth - first back fault assignment is conducted starting from 

the primary outputs, where each output is selected in some arbitrary order. The 

depth - first back assignment procedure is terminated at the primary inputs, we refer 

to this process as output cones sensitization. The test generation problem can then 

be modeled as one involving a global sensitization of paths between the primary input 

and output nodes. The object of this work is to show a cost - effective method to 

implement this model. 

3.4 An Efficient Algorithm for Test Generation 

The problem of searching a combinational logic circuit for fault patterns that 

represent a fault on an internal node consists of two parts: defining the back fault as-

signment rules (referred to as B-rules) and implementing a back assignment procedure 

similar to the depth - first search algorithms. 

3.4.1 Back Fault Assignment Rules (B-rules) 

The object of the B-rules is to allow the fault assignment of logic values D and Tfl to 

appear on each node in a circuit at least once during the back assignment procedure. 

Consequently, the resultant fault patterns at the primary inputs will include at least 

a single pattern which sets an internal node to the logic value D or R In other 
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words, the 13-rules guarantee that any stuck-at fault can be excited by some of the 

generated fault patterns. Figure 3.1 defines the 13-rules used in our algorithm. A fault 

is supposed to exist on a gate's output node, and the fault representation is carried 

out at the gate's input nodes. 

D-fl 
D D-1 ,  

frD 

Figure 3.1. The back fault assignment rules. 

For example, a fault D on the output of a NAND gate is expressed as the (, 

) fault pattern at its input nodes. Similarly, a fault on a NAND gate output 

node is expressed as the (D, D) fault pattern at its input nodes. There are other 

representations that can be used, as shown-in section 3, but the B-rules ensure that 

only logic assignments D and 17 are used in our approach. Accordingly, the generated 

fault patterns will represent a D-frontier to all circuit nodes. 

3.4.2 The Back Fault Assignment Procedure 

Consider the problem of generating the fault patterns for a fault D on an internal 

node g as shown in Figure 3.2. There are L paths by which node g can be reached 

from the primary inputs. The region which comprises the sensitizing paths between 
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node g and the primary inputs will be referred to as the output cone of node g. 

Each sensitizing path in the output cone of node g has a length which represents the 

number of logic gates along the path from node g to the primary inputs. For example, 

pathi has a length equals one, while path2 has a length equals two, and so on. The 

back fault assignment procedure arranges the circuit nodes in different levels in the 

following way. If the output node of a gate belongs to an assignment of level L, then 

all the input nodes of this gate belong to level L+1. This situation is similar to the 

two-level circuit configuration with the exception that gates on the same level may 

not be of the same type. 

- Po 

- P02 

Pathl 

 III PathL 

- P0n 

Figure 3.2. A circuit example to describe testing as a Global search problem. 

Now consider the case where node g has a fault logic value equals D. Then using 

the B-rules described earlier and starting from node g, the backfau1t assignment 

procedure sweeps the output cone of node g by propagating the fault D toward the 

primary inputs. The back fault assignment tree grows in a similar manner to the 

depth - first search algorithms. As the back assignment tree builds up, it creates 

fault assignments at each node in the output cone of node g. The back propagation 
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of faults is terminated at the primary inputs. At this point, the output cone of node 

g is said to be regionally sensitized. 

Since different sensitizing paths are not equal in length, some primary inputs will 

be assigned earlier than others. Therefore, the back fault assignment procedure checks 

at each level of assignments for the primary inputs that have been assigned new fault 

values. The procedure codes the primary inputs as a new fault pattern. Consequently, 

each new collected fault pattern corresponds to an added sensitizing path with all its 

nodes assigned to either D or to 2Y. Hence, a rough estimate of the possible number 

of generated fault patterns would be the difference between the maximum and the 

minimum lengths of two sensitizing paths. 

Now consider the case where g is a primary output node. Then the process of 

generating the fault patterns by regionally sensitizing the primary output cones is 

referred to as global sensitization. A high level description of the global sensitization 

algorithm, glob_sens, is shown in Figure 3.3. To illustrate the idea of the glob_sens 

algorithm, we use a sample circuit C17 selected from the ISCAS'85 benchmarks and 

shown in Figure 3.4. 

The algorithm glob_s ens first selects a primary output node and assigns it a D 

logic value. Assume that glob_sens arbitrarily selects the primary output node 10 in 

Figure 3.4. Node 10 now represents the only currently assigned node in a node list 

of assignments. Then according to the B-rules, both inputs of gate G5 are assigned 

a similar logic value 7Y. At this point, a new level of assignment' is created which 

includes a list of two nodes 6 and 9. The algorithm glob_sens keeps track of the node 

numbers in the new list of assignments, the length of this list, and the associated 

logic values, as depicted in Figure 3.3. Starting at node 6 then node 9, the glob_sens 

algorithm assigns the logic value D to the nodes 1, 2, 3, and 7. The first three 
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Input A circuit's netlist. 
Output : A set of test vectors. 

Procedure glob_sens( ) { 
select a primary output node and assign a D logic value to it; 
for eachelement in the node list { 
/ list of previously assigned nodes */ 
execute the back-assignment function; 
return the new list of node assignments; 
return the length of the new list; 

} 
if at least one P1 appeared in the list { 

collect a new test vector; 
if the length of the new list is zero { 

/* only PT nodes appear in the list*/ 
get the next P0; 

if the P0 list is empty { 
exit 

} 
} 
} 

} 

Figure 3.3. The Algorithm to globally sensitizes output cones. 
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nodes belong to the primary input, hence, an input fault pattern (D, D, D, X, X) is 

generated. The three nodes 1, 2, and 3 are then removed from the node list leaving 

node 7 to be the only element in the node list at this level of assignment. Accordingly, 

the fault D at node 7 is propagated using the B-rules to assign the primary inputs 

3 and 4 a logic value of V. The last step produces a change at only two primary 

input lines (3 and 4), and hence provides another fault pattern (D, D, , , X). The 

glob_sens algorithm repeats this procedure for each output cone in a circuit. 

D D 

D D 

D 

X 

x x 

Figure 3.4. Example circuit 017 shows how the back propagation procedure assigns 
fault values to the circuit nodes. 

The glob_sens algorithm either substitutes the X terms with a logic value D, D, 

or simply keeps X unchanged. If the node with the don't care term shares the output 

cone under which the back propagation process is occurred as an input to a gate, the 

algorithm checks for the other gate's input logic value and assigns it to that node. 

For example, node 4 in the first generated fault pattern has an X logic value. Node 

4 is also an input to gate G2, which belongs to the first output conk. The logic value 

assigned to node 4 will be the same as that of node 3 which is D. On the other hand, 

the logic value of node 5 is left unchanged because it is an input to gate G5 which 

does not belong to the first output cone. In this way, we can avoid generating a large 

number of redundant fault patterns since each output cone is dealt with separately. 
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(a) 

(b) 

Figure 3.5. The implication procedure of the resultant fault patterns (a) 
(D,D,D,D,X) (b) (D,D,D,X) 
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Figure 3.6. The implication of the fault pattern (b, , , TD, X). 

a — 
b 
C — 

d <  

e 

f 

9 

Figure 3.7. Fan-out point example. 

Now let us consider the implication of the resultant fault patterns on the circuit 

under consideration. Figures 3.5.a and 3.5.b show the implication of the two fault 

patterns (D, D, D, D, X) and (D, X), respectively. The first pattern sensi-

tizes a path from the primary inputs to the primary outputs through node 6, while 

the other pattern sensitizes the path through node 9. The two patterns combined to-

gether sensitize the output cone of the primary output node 10. As mentioned earlier, 

the glob_s ens algorithm guarantees that each node must be assigned a complimentary 

logic value at least once in the back propagation process. This is simply done by 

taking the compliment of the resultant fault patterns. Figure 3.6 shows the circuit 

C17 with an input fault pattern (, D, V, U, X), which is the compliment of the first 

generated fault pattern. By implication of this pattern, the same'sensitizing paths 

exist but with each internal fault logic value complimented. 

An important point is the behavior of the glob_sens algorithm with fan-out points 

as the one shown in Figure 3.7. In case of nonconvergent fan-out, faults at the fan-
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out points may be collapsed because any test that detects a fault along one of the 

destination lines from the fan-out point will also detect the corresponding fault on 

the origin line of the fan-out point [18]. For example, in the circuit shown in Figure 

3.7, any one of the faults e s-a-1 (s-a-0), f s-a-1 (s-a-0), or g s-a-1 (s-a-0) is collapsed 

with d s-a-1 (s-a-0). That is, the vectors which detect these faults will also detect the 

corresponding fault on line d. In this case, in the back fault assignment procedure, 

if all the nodes e, f, and g are assigned the same logic value at the same level of 

assignment, then the algorithm discards two of these values and holds only one logic 

value and assigns it to node d. In case of conflict, i.e., two nodes being assigned 

different logic values at the same level of assignment, the algorithm holds both values 

and assigns them to node d. Consequently, node d is replicated in the node list with 

two different logic values. As a result, when the logic assignments from node d land 

on the primary input nodes, two fault patterns are generated with only the primary 

inputs involved in the output cone at node d, assigned complimentary logic values. 

For convergent fan-out points, the algorithm behaves in a similar manner. 

3.4.3 Algorithm Constraint 

Due to the connectivity of the logic circuits, some nodes may be assigned a logic 

value more than once. At a fan-out node, for example, different paths are connected 

together and the node may have multiple assignments in the node list. Therefore, the 

algorithm keeps track of the number of assignments for each node and the associated 

logic values. In a circuit, the number of assignments per level may increase dramat-

ically. In the worst case, the computing time for generating the fault patterns may 

grow exponentially. To limit the exponential growth of the size of the assignment tree, 

a parameter K is used in the algorithm to limit the maximum number of assignments 
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for a node in the circuit. The parameter K serves as a tap which limits the number 

of fault patterns released by the circuit and thus controls the time taken to generate 

these vectors. 

The advantage of limiting the maximum number of assignments per node is twofold. 

First, this will dramatically decrease the test generation time. Second, compared to 

the total number of circuit nodes, the size of the arrays storing the dynamic node 

lists and the corresponding logic values can be kept small. This is due to the fact 

that only one* assignment level is considered at a time. Hence, the size of an array 

is much smaller than that of a circuit. In fact, for a wide range of K, the size of the 

arrays never exceeds the number of nodes in the tested circuits. On the other hand, 

low values of K degrades the fault coverage of the test set. 

3.5 Summary 

The current test generation algorithms can generate test vectors for complex com-

binational circuits and guarantee 100 percent coverage for testable faults. However, 

the test generation time increases exponentially with the circuit complexity. A new 

approach which combines simplicity and fast performance has been developed for 

the test generation of large combinational circuits. The similarities of our algorithm 

with current approaches has been identified. The test generation problem has been 

formulated as a problem of a global search of sensitizing paths between the input 

and the output primary nodes. To achieve this objective, a circuit environment is 

created such that all faults which can be detected by multiple - path sensitization are 

sensitized. The algorithm may not detect all faults that are sensitized with only a 

single path. Hence, the fault coverage limitation will only be a function of the circuit 

complexity. 



CHAPTER 4 

A MODEL FOR PARALLEL TEST SYSTEM 

As parallel processing hardware becomes more common and affordable, multipro-

cessors are being increasingly used to accelerate VLSI CAD algorithms. The problem 

of partitioning faults in a parallel test generation/ fault simulation environment has 

received very little attention in the past. In a parallel test system environment, the 

fault partitioning method used can have a significant effect on the overall test length 

and speedup. Also, for efficient utilization of available processors, the work load has 

to be balanced at all times. In this chapter, the model of a parallel test system is 

presented. The test generation algorithm described in chapter 3 is employed in the 

parallel test system. A partitioning method for load balance over processors is also 

described. 

4.1 Introduction 

Parallel test generation is a technique where multiprocessing hardware is used to 

achieve order of magnitudes speedup for test generation. A fault/circuit partitioning 

step precedes the test generation process. Static and/or dynamic fault/circuit parti-

tioning can be used in assigning loads to different processors. In static partitioning, 

an equal number of faults or partitions of a circuit are assigned to each processor. It 

has been shown that each set of faults which belongs to the same processor should be 

a compatible fault set [15]. By definition, every two compatible faults in a fault set 
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will have at least one test vector that detects both faults. Consequently, assigning 

compatible set of faults for each processor yields a time - efficient algorithm. Unfor-

tunately, the problem of generating a compatible set of faults is as hard as the test 

generation process itself. 

Most parallel test generation systems use a test generation/fault simulation envi-

ronment. Each generated vector from one processor is simulated by all other pro-

cessors to minimize the fault list at each processor. Therefore, an equal number of 

faults loaded to each processor is a poor estimate for load distribution. On the other 

hand, dynamic fault partitioning alleviates this problem by keeping track of the idle 

processors and the busy ones. It dynamically redistributes part of the undetected 

faults to the idle processors. This procedure involves massive communications be-

tween the processors for overall efficient performance. Although a much better load. 

balance over processors can be achieved by dynamic partitioning, extensive process 

communication among processors may contribute significantly to the overall run time. 

Another major issue in parallel test generation systems is the test length. The 

test length depends on both the deterministic pattern generator and the partitioning 

method. Random test pattern generators produce a large number of test vectors, 

while the fault coverage is limited to 60%-85%. On the other hand, deterministic 

test pattern generators are producing a small number of vectors with a very high 

fault coverage at the expense of high time complexity. Therefore, deterministic test 

generators have been incorporated in parallel test systems. 

4.2 Parallel Test System Environment 

The design of a parallel test system involves a trade-off between the test length 

and the cut off communication factor for the processors. If two processors are not 
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communicating, they might end up doing the same job, adding time and space over-

heads. For example, let (fl, f2) and (f3, f4) be two sets of faults with the first set 

assigned to processor P1 and the second set assigned to processor P2. Then let fl 

and f4 be compatible faults, i.e., there exists at least one vector which detects both 

faults. Processor P1 will generate a test for fault fl while P2 does the same for fault 

B. If the two processors are not communicating by sending the generated vectors to 

each other for fault simulation, processor P2 will generate another vector for fault f4. 

Hence, a test length of four vectors will be generated, while only three were sufficient. 

An adequate solution to the above problem is the use of a parallel test system 

with the test generation phase made separately without the fault simulation step. 

This wilionly be feasible if the test pattern generator incorporated in the test system 

generates an optimal or a complete set of vectors. As has been indicated in chapter 

3, the proposed algorithm generates a set of test vectors without concurrent fault 

simulation. That is, the test set is first generated and then fault simulation is applied. 

The test set might include redundant vectors, but so far the test length is comparable 

to those generated by other deterministic pattern generators, such redundancy could 

be tolerated. We shall show through experiments that the test length of our algorithm 

is in general less than those generated from other deterministic algorithms. In order 

to incorporate our algorithm in a parallel test system, the fault/circuit partitioning 

step must be carried out first. 

4.3 Partitioning Algorithm 

A clear advantage of the proposed algorithm is that only static partitioning of 

output cones can be used. It is an advantage because it cuts off process communication 

and saves the overhead time of signals between processors. For the static partitioning 

method, an accurate estimate of time units needed to balance the loads over the 
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available number of processors is crucial. We have chosen the number of node back-

assignments made by the test generation algorithm as an accurate estimate for the 

test generation time. Since we are optimizing the system for an overall minimal run 

time, each processor has been assigned a load of equal number of back- assignments. 

The partitioning procedure is shown in Figure 4.1. 

The partition algorithm first calculates the number of assignments associated with 

each output cone. As shown in the partition procedure, to ensure an accurate calcu-

lation of the number of node assignments, a similar procedure to the one used in the 

test generation process has been implemented. The partition procedure groups the 

output cones and divides them among processors according to the number of node 

assignments associated with each cone. The above procedure minimizes the difference 

in the number of node assignments between the largest and the smallest element in 

the resultant group, as depicted in the for loop of the procedure. The fact that the 

procedure starts with the group containing the output cones with maximum number 

of assignments helps in minimizing the differences in the elements of the resultant 

group as the algorithm steps forward. 

For example, consider a circuit with 10 primary outputs and the available number 

of processors N equals 4. If the number of node assignments in the 10 output cones 

are 1, 2, 2, 3, 5, 6, 10, 16, 17, and 20, with N equal to 4, two groups of 4 elements 

and a residual group of 2 elements are created. The first group which includes the 

output cones with the largest numbers of assignments will hold the elements 10, 16, 

17, and 20, while the second group will hold the elements 2, 3, 5, and 6. Executing the 

for loop in the partition procedure results in a new group which holds the elements 

16, 21, 20, and 22, which is going to be 16, 20, 21, and 22 after sorting the group. 

The final step is the addition of the residual group to the last two elements in the 
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Input : Circuit netlist. 
Number of gates, P1 nodes, and P0 nodes. 
Number of available processors (Np). 

Output : An ordered assignment sequence. 

Procedure partition( ) { 
calculate the number of expected back-assignment for each output cone. 
if the P0 list is empty; sort the numbers list; 

else get next P0. 
divide the list into groups with each group having N elements; 
if N/No is not integer; 

create a residual group with the remaining number of elements. 
/ No is the number of primary output nodes. / 
else return the number of groups; 

let group number i be the one with the maximum number of assignments; 
for each element in group i { 

add element j of group i to element N-j of group i+1; 
save result in group i+1; 
sort group i+1; 

} 
repeat the last step until groups are exhausted, including the residual group (if any) 
assign elements in the final group to N processor. 

} 

Figure 4.1. The partitioning algorithm. 
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forehead group. The final group will hold the elements 18, 21, 21, and 22. These 

elements represent the load distribution over a set of 4 processors. The difference 

between the largest and the smallest element in the final group is expressed as Da, 

where Da equals 4 in the above example. The Da number is a measure for the load 

balancing over the available of processors. 

As the static output cone partitioning is used in the parallel test system, each 

processor is assigned the netlist of the output cones associated with it. Consequently, 

only the circuit portions belonging to more than one output cone need to be repli-

cated. Also, as previously mentioned in chapter 3, the dynamic lists generated by the 

proposed algorithm is very small and consumes smaller memory segments compared 

with circuit sizes tested. 

4.4 System Modeling 

As mentioned earlier, the partition algorithm has a significant impact on the paral-

lel test system performance. We have assumed that the static partitioning algorithm 

used in the parallel test system distributes balanced loads to the available processors. 

Consequently, the communication factor between the processors is zero. The idea is 

to give each processor a version of the test generation algorithm and a portion of 

a circuit. Each circuit portion represents at least one output cone. Each processor 

generates a separate test set for the output cone(s) associated with it. With all test 

sets combined together, a final test set is generated. 

Figure 4.2 shows the overall parallel test procedure. The partition algorithm is 

first initiated to create the necessary load for each processor. Then, each processor 

is assigned a circuit partition of output cones by receiving the node numbers of the 

corresponding primary outputs as an initial node list. Each processor then calls the 
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Input : Circuit netlist. 
Number of gates, number of PT's, and number of PO's. 
Number of processors available (Np). 

Output : Test set. 

Procedure paral_test_gen( ) { 
partition( ); 
assign a balanced load to each processor; 
for each processor's assignment { 

test_gen( ); 
/ Generate a test set for each processor's assignment. 
save the test set in a common area for all processors; 

} 

} 
unique(test set); 
for each vector in the final set { 

fault....simO; 
} 
compute the fault coverage. 

Figure 4.2. The parallel testing algorithm. 

*1 
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test generation algorithm to generate a test set for this particular circuit partition. 

• As the processor with the largest load completes generating the last test set, a final 

test set is created by grouping all other sets together. The final set is then minimized 

by removing all redundant vectors in the set keeping only one version of each vector. 

A fault simulation program is then run in order to evaluate the test set and calculate 

the fault coverage. 

As may be seen from the above discussions, a real parallel machine is not really 

needed for implementing the parallel test system. Instead, we have used a single pro-

cessor machine to implement such a system. The partition algorithm is first run, then, 

each processor assignment is run sequentially. Of course, this would not be feasible 

if the partition algorithm uses a dynamic method where process communications is 

required. 

4.5 Summary 

This chapter addressed the issues involved in providing a parallel test genera-

tion system environment by incorporating the test generation algorithm described in 

chapter 3 as the main test generation resource. Requirements of an efficient fault par-

titioning scheme were discussed and a static partitioning scheme is presented. The 

advantage of using static partitioning scheme has been identified, since it cuts off 

communication overheads among processors. 



CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 Introduction 

For an accurate evaluation of a test system, real circuit examples should be used. 

Benchmark circuits constitute a good example for evaluating a test system and also 

for comparing results with other systems. In evaluating our test system, we have 

used the ISCAS'85 [4] combinational benchmark circuits. Table 5.1 shows the eight 

circuit examples used in this research work. At the time of testing, the circuits are 

represented in their netlist format. 

For the purpose of fault simulation, we have built a single-pattern single-fault 

simulator. The fault simulator used in our system simulates each node in the circuit 

for a possible s-a-O and s-a-1 fault. With each vector simulated, all faults detected 

by this vector are automatically removed from the fault list. Consequently, after a 

few cycles of simulation, the process speeds up until the test set is exhausted and ' 

only faults which are not detected remain in the fault list. Some of these faults are 

not modeled in the benchmarks, hence, we compared the output fault list with the 

modeled faults in order to get the exact fault coverage. 

Finally, the proposed test generator and the fault simulator were implemented in 

the C programming language on a SUN SPARC 1+ workstation. The ISCAS'85 [4] 

combinational benchmark circuits were used to evaluate the test generation system. 
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Table 5.1. ISCAS'85 benchmark circuit characteristics. 

Circuit name Function Total gates No. of PIs No. of POs No. of faults 
383 
546 
876 
1193 
1669 
2307 
2416 
3512 

C880 
C1355 
C1908 
C2670 
C3540 
C5315 
C6288 
C7552 

ALU and control 
ECAT 
ECAT 
ALU and control 
ALU and control 
ALU and selector 
16-bit Multiplier 
ALU and control 

60 
41 
33 
233 
50 
178 
32 
207 

26 942 
32 1574 
25 1879 
140 2747 
22 3428 
123 5350 
32 7744 
108 7550 

5.2 Evaluation of the proposed test pattern generator 

The test pattern generator described in chapter 3 can be configured to generate 

tests starting with all the primary outputs grouped together. We will refer to this 

scheme as the grouped output configuration. As will be shown experimentally, the 

grouped output configuration has a better timing performance than single cone con-

figuration where a set of vectors is generated for each output cone individually as 

described earlier. However, the size of dynamic lists in the grouped output configura-

tion far exceeds that of the single cone scheme. The number of assignments per node 

are therefore limited to avoid excessive memory utilization by the grouped output 

scheme. The same technique was also used in the single cone configuration. The 

results have shown a further efficiency improvement in terms of computing time and 

memory space. 

The test pattern generator has been evaluated for the two possible configurations. 

Table 5.2 shows the execution time required for netlist translation and test generation 

when the generator is in the single cone configuration. The table also shows the test 

length and fault coverage for different values of the parameter K. 

In each case, the majority of the modeled faults were detected at small values of K. 
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Table 5.2. Real Execution Performance of Our Algorithm with the ISCAS Benchmark 
Combinational Logic Circuits. 

Circuit Faults  Test Vectors Coverage  Time (sec) 
K=2 K=10 K=20 K=2 K=10 K=20 K=2 K=10 K=20 

C880 942 64 74 78 95.00 98.15 99.93 0.6 0.8 1.0 
C1355 1574 100 106 110 94.10 97.79 99.02. 0.8 1.4 1.6 
C1908 1879 46 68 94 87.0.0 92.11 98.99 1.0 1.4 1.9 
C2670 2747 68 80 92 84.50 89.20 95.41 2.9 5.1 7.9 
C3540 3428 68 94 98 86.20 92.16 95.91 2.8 4.3 6.2 
C5315 5350 96 102 108 94.00 96.13 98.22 7.7 12.2 17.2 
C6288 7744 94 95 96 99.41 99.41 99.54 5.7 7.2 9.2. 
C7552 7550 84 100 116 93.21 96.16 97.52 13.2 22.3 32.4 

It can be seen that the fault coverage increases as we add more sensitizing paths by 

increasing the value of K. Our algorithm is at least two order of magnitude faster than 

those of the PODEM implementation of [15] (shown in table 5.3). As the circuit size 

increases, our algorithm shows a much better time performance compared to PODEM. 

Hence, our algorithm performs efficiently with large circuits where computational 

complexity is critical. 

Table 5.4 shows the results obtained using our algorithm in the grouped outputs 

configuration. As has been mentioned earlier, the timing performance of this config-

uration is better than the single cone scheme. Moreover, the test length is even less 

than the single cone configuration. This is expected because in this configuration, 

the interaction between output cones is allowed and the maximum number of assign-

ments K will be shared by the interconnected cones. Since we are comparing both 

configurations with the same value of K, the limitations on the circuit capability to 

release more test vectors is apparent in the grouped outputs scheme. As a result, the 

test coverage is degraded and a larger value for K is required to achieve a higher fault 

coverage. 
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Table 5.3. Results obtained using RODEM algorithm. 

Circuit Test Vectors Coverage Time (Seconds)  
C880 85 100.00 9.05 
C1355 145 99.49 38.02 
C1908 150 99.73 49.42 
C2670 141 95.52 116.81 
C3540 206 96.82 235.38 
C5315 161 99.20 150.41 
C6288 39 99.94 70.81 
C7552 251 97.71 437.00 

Table 5.4. Results for the grouped outputs configuration, with K = 20. 

Circuit Test Vectors Coverage Time (Seconds)  
C880 69 91.00 0.8 
C1355 18 83.45 1.2 

• C1908 61 93.61 1.5 
C2670 77 89.92 6.4 
C3540 87 90.10 5.0 
C5315 96 94.22 13.9 
C6288 82 95.76 7.3 
C7552 102 92.47 25.9 
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In order to show how both configurations utilize the memory for the storage of 

the dynamic lists, Table 5.5 shows the maximum size of memory segments used by 

the test algorithm at different values of K. Because the limitation on the number of 

assignments applies to all nodes in a circuit, the size of the dynamic lists linearly 

changes with the value of K for each configuration. On the other hand, the ratio 

of memory usage by the grouped outputs scheme to that of the single cone, referred 

to as the memory reduction, is only a function of the circuit itself. If the circuit 

complexity is homogeneously distributed over output cones, the ratio will be very 

high. For example, circuit C6288 is a multiplier, which is characterized by a regular 

design, has a ratio of memory reduction 33.2 at K equals 20. The other extreme is 

exhibited by circuits that have poor complexity distribution over the output cones. 

An example of this circuit is C1355 with a reduction ratio of only 1.18 at K equals 

20. The overall memory utilization is thus in favor of the single cone configuration. 

Table 5.5. Memory utilization comparison results for the two algorithm configura-
tions. 

Circuit  Single cone scheme  grouped outputs scheme  
K=2 K=10 K=20 . K=2 K=10 K=20 

C880 0.025k 0.072k 0.083k 0.109k 0.412k 0.591k 
C1355 0.105k 0.564k 1.085k 0.128k 1.720k 1.280k 
01908 0.088k 0.473k 0.876k 0.159k 0.764k 1.710k 
C2670 0.970k 0.353k 0.508k 0.168k 0.905k 1.819k 
C3540 0.143k 0.640k 1.776k 0.656k 2.192k 2.222k 
C5315 0.080k 0.373k 0.542k 0.522k 1.787k 2.518k 
C6288 0.007k 0.047k 0.102k 0.243k 1.473k 3.388k 
C7552 0.310k 0.984k 1.329k 1.315k 3.749k 6.217k 

From Tables 5.2 to 5.5, the performance of our algorithm can be evaluated as 

follows: 

• The proposed algorithm outperforms any existing deterministic test pattern gen-
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eration algorithms in terms of time complexity and test length. 

. The fault coverage is slightly lower than other ATG algorithms, like PODEM 

and FAN. 

• As the circuit size increases, the algorithm shows an efficient performance at low 

values of K. 

• The grouped outputs configuration is more likely to be used in a small and 

medium size circuit complexity where memory utilization is not critical. 

• The single cone configuration is very efficient in generating tests for large size 

circuits, without compromising the memory utilization. 

• The proposed algorithm is very useful if employed as a first phase in a test 

generation system, replacing the traditional random test generation techniques 

which has a limited fault coverage and longer test length. 

5.3 Static circuit partitioning 

The single cone scheme has been chosen for implementation in a parallel test sys-

tem. As stated above, the static partitioning was carried out by giving each processor 

an equal number of node assignments. Table 5.6 shows the time spent in partitioning 

the circuits into groups and distributing the loads on the processors. The optimal 

number of node assignments G0pt is the average number of assignments, which when 

given to each processor, results in an exact match of timing perfofmance of all pro-

cessors. Da is the maximum load unbalance between two processors expressed as 

the difference of node assignment numbers. In general, the time taken for circuit 

partitioning is negligible for the entire benchmarks. 
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Some of the circuits have been partitioned efficiently, as in C880 and C6288, while 

other circuits were poorly partitioned as in the case of C1908 and C2670. This 

raises the design issue as mentioned before. We recall here that the limitations on the 

number of I/O pins for a VLSI circuit does contribute to the complexity of the testing 

problem. Adding more pins to a VLSI chip will not resolve the test complexity unless 

an adequate distribution of logic circuitry among the I/O pins is accomplished. To 

elaborate, let us take the circuits C2670 and C6288 as examples. Circuit C2670 has 

233 input pins and 140 output pins, while circuit C6288 has only 32 input pins and 

32 output pins. During the partition algorithm run, we found that more than 80% of 

logic assignments in the C2670 circuit belonged to only a few output cones, while the 

other primary output nodes were connected to only one or two gates. As a result, a 

large portion of the C2670 was hard to test despite the relatively large number of I/O 

pins in the circuit. Consequently, as shown in Tables 5.2 and 5.3, the fault coverage 

is low and 4.48% of the modeled faults were undetectable. On the other hand, in 

the C6288 circuit, only small values of Da were obtained and circuit complexity was 

homogeneously distributed among primary output nodes. With only 32 output nodes 

and double the number of gates compared to C2670, a very high fault coverage was 

achieved. 

Table 5.7 indicates the results obtained from the parallel test system for different 

number of processors, at K equals 40. The time shown in this table represents the 

time spent by the processor with the maximum number of node assignment. The test 

generation time difference between the processor with the maximum number of nodes 

and that with the minimum, was negligible. 

As the test generation time becomes smaller, the time taken for netlist translation 

and circuit partitioning will be comparable to the test generation time. For example, 
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Table 5.6. The load distribution over the processors and the time spent in the static 
partitioning procedure. 

Circuit  N = 2 N = 4 N = 8 N = 16 Time (sec) 
Gopt D Gopt Da G0pt Da G0pt D. 

C880 385 0 179 3 89 18 44 5 0.05 
C1355 584 0 292 0 146 0 73 0 0.08 
C1908 506 15 253 23 126 32 63 30 0.10 
C2670 6852 0 3426 100 1713 103 856 107 0.15 
C3540 378 1 189 11 94 23 47 12 0.19 
C5315 8462 9 4231 33 2115 54 1057 61 0.29 
C6288 1317 5 658 13 329 11 164 10 0.35 
C7552 5249 1 2524 20 1312 79 656 90 0.42 

Table 5.7. The run time for the parallel test system with different number of proces-
sors, for K = 40. 

Circuit Time (seconds) 
N=1 N=2 N=4 N=8 N=16 

C880 3.70 1.90 0.95 0.6 0.35 
C1355 3.60 2.00 1.50 1.20 1.10 
C1908 3;70 1.85 1.60, 1.50 1.30 
C2670 24.50 12.70 9.50 5.90 3.10 
C3540 8.90 4.95 4.82 3.70 3.50 
C5315 62.70 28.25 17.11 12.5 8.90 
C6288 15.75 9.00 8.25 7.35 6.50 
C7552 64.55 33.50 22.10 18.00 10.1 



58 

the circuit C7552 takes 6.1 seconds for netlist translation and partitioning, while 

the test generation takes approximately 26 seconds (for K = 20, Table 5.1). This 

ultimately puts a limit on the extent of speedup especially for a large number of 

processors. The speedup figures can be extracted from Table 5.7, at a value of K 

being 40. The results shown in Table 5.7 indicate that for large circuits, we can 

get fairly high speedup ratios. The lower limit on overall test time is the netlist 

translation and circuit partitioning time. For example, as shown in Table 5.7 with 

16 processors, the circuit C7552 requires only 4 seconds for test generation while the 

other 6.1 seconds were spent in netlist translation and circuit partitioning phase. The 

actual speedup ratio would be (64.55-6.1)/(10.1-6.1) = 14.6, approaching the number 

of processors. 

The fault coverage for the parallel test system matches the single processor test. 

generation system with the same value of K. For instance, the fault coverage for the 

parallel test system with K equals 20 matches that shown in Table 5.2. This is because 

the test generation algorithm inherently partitions the circuit into output cones. In 

the parallel test system, the same job was done by first partitioning the circuit into 

output cones and then distributing the jobs among processors. 

5.4 Summary 

In this chapter, the implementation of the algorithm presented in chapter 3 was 

discussed. Experimental results on large circuits show that our algorithm outperforms 

other existing test generation algorithms. The new algorithm is 'presented in two 

different configurations. Advantages and disadvantages of each configuration have 

been investigated. The single cone scheme has been incorporated into a parallel test 

generation system. Also, a static load partitioning method has been used efficiently 

in balancing loads over the available processors. Finally, experimental results based 



59 

on an implementation of our algorithm in a parallel system model on SUN SPARC 1+ 

work-station were presented. Results have shown that considerable speedup factors 

were realized due to the efficiency of the test generation algorithm. Memory utilization 

has also been shown to be very small compared to the circuit size. The overall-test 

system has yielded a high fault coverage and provides time efficient procedures to 

generate tests for large size combinational circuits. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

The rapid advances in integrated circuit technology have made possible the fabri-

cation of digital circuits with a very large number of devices on a single chip. This 

complexity is coupled with an increase in the ratio of logic to pins which drastically 

reduce the controllability and observability of the logic on the chip. In addition, 

there are new and subtle failures being observed with VLSI circuits. These problems 

are already causing difficulties with the testing of the existing complex chips. Test-

ing is expected to become even more difficult with the higher complexity chips that 

are being proposed. This research work proposes a new technique for designing test 

generation algorithms with better time complexity than the existing ones. 

In this research, we described a variety of fault and error models which are used 

as the basis for designing fault-tolerant VLSI systems. The fault models describe 

physical defects and failures and the input patterns, which will expose them, and 

are suitable for testing. Error models on the other hand describe the effects on the 

functional outputs of defects and are useful for on-line error detection. The models 

are described at the gate level of abstraction. 

The test generation problem has also been presented as a space search for test 

patterns which detect single stuck-at faults at the gate level of abstraction. It has been 

shown that the test generation problem is a complex problem and is considered to be 
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NP-complete. Different approaches have been used to tackle the test problem, either 

by randomly generating test vectors or by using other deterministic test generation 

methods. The test generation as a space search problem has evolved in designing 

efficient algorithms for test generation such as PODEM and FAN. Most of the test 

systems reported for this decade are based on these two algorithms. 

The current test generation algorithms can generate test vectors for complex com-

binational circuits and guarantee 100 percent coverage for testable faults. However, 

the test generation time increases exponentially with the increasing circuit complexity. 

A new approach which combines simplicity and fast performance has been developed 

for the test generation of large combinational circuits. The similarities of this algo-

rithm with current approaches have been identified. The test generation problem has 

been formulated as a global search of sensitizing'paths between the input and the out-

put primary nodes. To achieve this objective, a circuit environment is created such 

that all faults which can be detected, by multiple - path sensitization were detected. 

The algorithm may not detect all faults that are sensitized with only a single path. 

Hence, the fault coverage limitation will only be a function of the circuit complexity. 

The fact that the algorithm does not process a decision tree makes it fast enough to 

be compared with random test algorithms. 

The issues involved in providing a parallel test generation system environment 

by incorporating the proposed test generation algorithm as the main test generation 

resource have been discussed. Requirements of an efficient fault partitioning scheme 

were discussed and a static partitioning scheme was presented. The advantage of 

using a static partitioning scheme has been identified by cutting off communication 

time overhead among processors. 
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The implementation of the test generation algorithm is presented with experimen-

tal results derived from the ISCAS'85 combinational benchmark logic circuits. The 

results' on large circuits suggest that our algorithm outperforms the other test gen-

eration algorithms. The, new algorithm is presented in two different configurations. 

Advantages and disadvantages of each configuration have been investigated. The sin-

gle cone scheme has been incorporated into a parallel test generation system. Also, a 

static load partitioning method is efficiently used in balancing loads over the available 

processors. Finally, experimental results based on an implementation of our algorithm 

in a parallel system model on a SUN SPARC1+ work-station were presented. Results 

have shown that considerable speedup factors were realized due to the efficiency of the 

test generation algorithm. Memory utilization has also been shown to be very small 

compared to the circuit size. The overall test system has yielded a high fault coverage 

and provided time efficient procedures to generate tests for large size combinational 

circuits. 

We believe that our algorithm can efficiently replace the random test generators 

used as a first phase in test systems. Although our algorithm runs at a comparable 

speed to random test generators (RTG), the fault coverage is much higher than the 

RTG techniques. Consequently, if our algorithm is integrated with other determin-

istic test pattern algorithms, like PODEM, a very efficient test system will result. 

PODEM, for instance, will search for test vectors for a very small test set which will 

save on overall test time. We hope that this system can be integrated in the future. 
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