
THE UNIVERSITY OF CALGARY

A NOVEL SEARCH APPROACH FOR TEST

GENERATION

by

Abdel-Fattah Sayed Yousif

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

September, 1992

© Abdel-.Fattah Sayed Yousif 1992

I+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1 0N4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The. author has granted an

irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,

distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or

otherwise reproduced without
his/her permission.

Canad9+8 a

Your tile Votre référence

Our file Noire référence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque

nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelqüe forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qul protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN ø-315-79jj 1—X

Name
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

E /4,—ift-s cl,, J\
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General 0473
Agronomy 0285
Animal Culture and

Nutrition 0475
Animal Pathology 0476
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777
Wood Technology 0746

Ge
Biology

neral 0306
Anatomy 0287
Biostatistics 0308
Botany 0309
Cell 0379
Ecology. 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Lanuage

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geodesy 0370
Geology 0372
Geophysics. 0373
Hydrology 0388
Mineralogy 0411
Paleobotony 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Palynology 0427
Physical Geography 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religjon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology
Toxicology

Home Economics

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and
Astrophysics

Atmospheric Science
Atomic
Electronics and Electricity
Elementary Particles an
High Energy

Fluid and Plasma
Molecular
Nuclear
Optics
Radiation
Solid State

Statistics

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

Is-4 4-
SUBJECT CODE

UMI

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family
Studies 0628

Industrial and Labor
Relations 0629

Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 034.4
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

0460 Engineerina
0383 General 0537
0386 Aerospace 0538

Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geotechnology 0428

Operations Research 0796
0606 Plastics Technology 0795
0608 Textile Technology 0994
0748
0607 PSYCHOLOGY

General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Exoerimental 0623
Industrial 0624
Personality 0625
Pliysiolopical 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

0798
0759
0609
0610
0752
0756
0611
0463

Nom
Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans I'espcice réservé ci-dessous.

UM1
SUJEI

Categories par sujets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET [ES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de tart 0377
Journalisrne 0391
Musique 0413
Sciences de l'information 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communautaires 0275
Commerce 0688
Economie domestique 0278
education permanente 0516
Cducation préscolaire 0518
Education sanitaire 0680
Enseignement agricole 0517
Enseignement bilingue et

multiculturel 0282
Enseignement industriel 0521
Enseignement primaire. 0524
Enseignement proFessionnel 0747
Enseignement religieux 0527
Enseignement secondaire 0533
Enseignement special 0529
Cnseignement supérieur 0745
Evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire do l'éducation 0520
Longues et littérature 0279

Lecture 0535
Mathematiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie do 'education 0998
Physique 0523
Programmes d'études et
enseignement 0727

Psychologie 0525
Sciences 0714
Sciences sociales 0534
Sociologie do 'education 0340
Technologie 0710

LANGUE, UTTERATIJRE ET
LINGUISTIQUE
Langies

Génércilités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Genéralités 0401
Anciennes 0294
Comporée 0295
Mediévale 0297
Moderne 0298
AFricaine 0316
Américaine 0591
Anglaise 0593
Asiatique 0305
Canaduenne Anglaise) 0352
Canadienne Francaise) 0355
Germanique 0311
Latino-américaine 0312
Moyen-orientale 0315
Romano 0313
Slave et est-européenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Generalités 0473
Aaronomie. 0285
AlTmentation et technologie

alimentaire 0359
Culture 0479
Eleva9e et alimentation 0475
Exploitation des péturages 0777
Pathologie anima!e 0476
Pathologie véétale 0480
Physiologie 't le 0817
Sylvicullure et taune 0478
Technologie du bois 0746

Biologie
Généralités 0306
Anatomie 0287
Biologie (Statistuques) 0308
Bioloie moléculaire 0307
Botanique 0309
Cellule 0379
Ecologie 0329
Entomologie 0353
Genetique 0369
Limnologie 0793
Microbiologie 0410
Neuro!ogie 0317
Oceanographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Biogéochimie 0425
Géochimie 0996
Géodésie 0370
Géographie physique 0368

Géologle 0372
Geophysique 0373 Wrologie 0388

eralogie 0411
Ocecinographie physique 0415
Paleobotanique 0345
Paleoecologie 0426
Paleontologie 0418
Paleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences do Ia sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audiolagie 0300
Chimiothérapie 0992
Dentisterie 0567
Développement humain 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Médecine du travail et

thérapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologie 0571
Pharmacie 0572
Pharmacologie 0419
Physiotherapie 0382
Radiologie 0574
Sante mentole 0347
Sante publique 0573
Soins unfirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Généralités
Cie rge
Etudes bibliques
Histoire des religions
Philosophie Cie Ia religion

Theologie

SCIENCES SOCIALES
Anthropologie

Archeologie
Culturelle
Physique

roit
Economie

Genéralités
Commerce-Affaires
Economie agricole
Economie du travail
Finances
Histoire
Theorie

Ctudes oméricaines
etudes canodiennes
Etudes féministes
Folklore
GCographie
Gerontologie
Gestion des affaires

Géneralités
Administration
Bonques
Comptobilité
Marketing

Histoire
Histoire generale

CODE DE SUJET

Ancienne 0579
Médiévale 0581

0422 Moderne 0582
Histoire des flairs 0328

0318 Africaine 0331
0319 çanadienne 0334
0321 Etats-Unis 0337
0320 Européenne 0335
0322 Moyen-orientale 0333
0469 Latino-américaine 0336

Asie, Australie et Océanie 0332
Histoire des sciences 0585
Loisirs 0814

0324 PlaniFication urbaine et
0326 regionale 0999
0327 Science politique
0398 Géneralités 0615

Administration publique 0617
0501 Droit of relations
0505 internationales 0616
0503 Sociologie
0510 Généralités 0626
0508 Aide et bien-ótre social 0630
0509 Criminologie et
0511 établissements
0323 penitentiaires 0627
0385 Demographie 0938
0453 Etudes de I' individu et
0358 - do la Famille 0628
0366 Etudes des relations
0351 interethniques et

des relations raciales 0631
0310 Structure et développement
0454 social 0700
0770 Théorie et méthodos. 0344
0272 Travail et relations
0338 industriolles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genéralités 0485
Biochimie 487
Chimie agricole 0749
Chimie anaytique 0486
Chimie minerale 0488
Chimie nucléaire 0738
Chimie organique 0490
Chimie pharmaceutique 0491
Physique 0494
PolymCres 0495
Radiation 0754

Mathématiques 0405
Physique

Genéralités 0605
Acoustique 0986
Astronomie et
astrophysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Météorologie 0608
Optique 0752
Particules (Physique

nucléaire) 0798
Physique atomique 0748
Physique do l'état solide 0611
Physique moléculaire 0609
Physique nucléaire 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
Informatique
Ingenierie

Généralités
Agricole
Automobile

Biomédicale 0541
Chaleur et thor
modynamique 0348

Condituonnement
(Emballage) 0549

Genie aérospatial 0538
Genie chimique 0542
Genie civil 0543
Genie électronique et

électrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucléaire - 0552
lnénierie des systämes 0790
Meconique navale 0547
Metallurgie 0743
Science des matériaux 0794
Technique du pétrole 0765
Technique minière 0551
Techniques sanitaires et

municipales 0554
Technologie hydraulique 0545

Mecanique oppliquée 0346
Geotechnologie 0428
Matiéres plastiques

(Technologie) 0795
Recherche opérationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnalité 0625
Psychobiologie 0349
Psychologie clinique 0622
Psychologie du comportement 0384

0984 Psychologie du developpement 0620
Psychologie expérimentale 0623

0537 Psychologie industrielle 0624
0539 Psychologie physiologique 0989
0540 Psychologie sociale 0451

Psychometrie 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty

of Graduate Studies for acceptance, a thesis entitled, "A NOVEL SEARCH AP-

PROACH FOR TEST GENERATION", submitted by Abdel-Fattah Sayed Yousif in

partial fulfillment of the requirements for the degree of Master of Science.

Dr. Jun Cu, Superviser
Dept. of Electrical & Computer Engineering

,Df.Jim Haslett
"Dept. of Electrical & Computer Engineering

Date-

Dr. B. Nowrouzi'n
DeiTTElectrical & Computer Engineering

Dr. P. Kwok
Department of computer science

11

ABSTRACT

Advances in VLSI technology have now made it possible to integrate increasing

number of devices on a single chip. The reliability of a chip is of foremost importance

to a VLSI design engineer. Due to the increasing numbei of pins and the complex

circuitry, it is very difficult to test a chip within an affordable cost.

Testing a chip involves generating a set of test vectors and their application to

detect any faults in the circuit. Test generation is considered the most expensive

step in the testing of a VLSI circuit. The test generation problem is known to be

NP-complete, which in turn signifies the exponential time complexity of Automatic

Test Pattern Generation (ATPG) algorithms. Although the test generation problem

for combinational logic circuits is very well understood, it is difficult to achieve a

significant breakthrough in reducing the time complexity of ATPG algorithms when

testing large circuits.

The work presented in this thesis is a new approach for test generation of com-

binational logic circuits. In our algorithm, the test generation problem has been

formulated as a global search problem which detects the sensitizing paths between

the primary input and output nodes. In our approach, a tree of fault assignments is

created in a similar manner to the depth-first search algorithms staring from primary

outputs. The new approach avoids the time consuming backtracking procedure used

in some other ATPG algorithms. The algorithm is designed to replace the traditional

random test generators as a first phase in a test system. A model for a parallel test

system is introduced which employs static load partitioning to equally balance loads
I"

over the available processors.

The new test generation algorithm is tested using the ISCAS'85 benchmark com-

binational circuits. Our algorithm guarantees a minimum of 98% fault coverage of

testable faults in all the benchmark circuits. The experimental results on large circuits

indicate that our approach is much faster than any of the existing deterministic test

generation algorithms. The experimental results with our parallel test model prove

that a substantial efficiency improvement in speed can be obtained. The experimental

results are compared with other existing test generation techniques.

iv

Acknowledgement

I would like to express my gratitude and appreciation for the help and guidance

given to me by Jun Gu throughout this research work.

I am also grateful to my colleagues R. Purl, H. Kenawy, and I. Williamson who

were kind enough to read the contents of this thesis during its preparation and provide

me with helpful comments.

Finally, I would like to acknowledge the financial support provided by the Electrical

and Computer Engineering Department at the University of Calgary.

v

To

my family

vi

CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGEMENT V

DEDICATION Vi

TABLE OF CONTENTS vii

LIST OF TABLES Viii

LIST OF FIGURES ix

CHAPTERS

1. INTRODUCTION 1

1.1 Overview of VLSI Testing 1

1.2 Testability Analysis 3

1.3 Faults in VLSI Systems 5

1.3.1 Fault Models 6

1.3.1.1 Transistor-level Fault Models 7

1.3.1.2 Gate-level Fault Models 8

1.4 Fault Equivalence and Dominance 9

1.5 Summary 11

2. TESTING PROBLEM AND AUTOMATIC TEST GENERATION
APPROACHES 12

2.1 Definitions 12

2.2 Test Generation Problem 14

2.2.1 Problem Formulation 14

2.2.2 NP-Completeness of Test Generation 16

2.3 Elementary Testing Concepts 16
vi'

2.3.1 Sensitization 17

2.3.2 Consistency 18

2.3.3 Redundancy and undetectability 19

2.4 Test Generation Approaches 20

2.4.1 Random Test Generators 20

2.4.2 Deterministic Test Pattern Generators 21

2.5 Summary 25

3. AN EFFICIENT ALGORITHM FOR TEST GENERATION. 27

3.1 Introduction 27

3.2 Motivations 29

3.3 Test Generation Viewed As A Global Search Problem 31

3.4 An Efficient Algorithm for Test Generation 32

3.4.1 Back Fault Assignment Rules (B-rules) 32

3.4.2 The Back Fault Assignment Procedure 33

3.4.3 Algorithm Constraint 40

3.5 Summary 41

4. A MODEL FOR PARALLEL TEST SYSTEM 42

4.1 Introduction 42

4.2 Parallel Test System Environment 43

4.3 Partitioning Algorithm 44

4.4 System Modeling 47

4.5 Summary 49

5. EXPERIMENTAL RESULTS 50

5.1 Introduction 50

5.2 Evaluation of the proposed test pattern generator 51

5.3 Static circuit partitioning 55

5.4 Summary 58

6. CONCLUSIONS AND FUTURE WORK 60

REFERENCES 63

viii

LIST OF TABLES

1.1 Types of tests performed. 2

1.2 Tests for 3-input NAND gate. 9

2.1 Comparison of PODEM and DALG. 24

2.2 Comparison of FAN and PODEM. 25

5.1 ISCAS'85 benchmark circuit characteristics. 51

5.2 Real Execution Performance of Our Algorithm with the ISCAS Benchmark
Combinational Logic Circuits 52

5.3 Results obtained using PODEM algorithm. 53

5.4 Results for the grouped outputs configuration, with K = 20. 53

5.5 Memory utilization comparison results for the two algorithm configurations. 54

5.6 The load distribution over the processors and the time spent in the static
partitioning procedure 57

5.7 The run time for the parallel test system with different number of proces-
sors, for K = 40. 57

ix

LIST OF FIGURES

1.1 A three-input NAND gate example 9

1.2 Two faults which are functionally equivalent. 10

2.1 Example to illustrate test generation terminology 13

2.2 A Combinational circuit used in formulating test generation as an n-
dimensional 0-1 state space search problem. 15

2.3 A sample circuit to describe sensitization 17

2.4 Example of redundancy. 20

2.5 High level description of PODEM 23

3.1 The back fault assignment rules 33

3.2 A circuit example to describe testing as a Global search problem. 34

3.3 The Algorithm to globally sensitizes output cones 36

3.4 Example circuit C17 shows how the back propagation procedure assigns
fault values to the circuit nodes 37

3.5 The implication procedure of the resultant fault patterns (a) (D, D, D, D, X)
(b) 38

3.6 The implication of the fault pattern X). 39

3.7 Fan-out point example. 39

4.1 The partitioning algorithm. 46

4.2 The parallel testing algorithm. 48

x

CHAPTER 1

INTRODUCTION

The advances in VLSI technology during the last decade have had a great impact

on testing. Because of the increase in circuit size and the limited accessibility to

the internal nodes of a circuit, the costs of testing a chip have become a substantial

part of the overall chip costs. Most engineers would agree that the quality of an

integrated circuit depends partly on the ability to test it. Testing now accounts for.

up to 10 percent of the total cost of manufacturing a 1-K RAM chip. For a 64-K

RAM chip, the figure rises up to 40 percent. New techniques, however, promise help

in the struggle to minimize costs, by tackling the circuit-testing problem in the design

stage.

1.1 Overview of VLSI Testing

Testing is done in order to discover defects in a digital system. Test activities

are interwoven with the VLSI design. Architectural design consists o'f partitioning a

VLSI chip into realizable functional blocks. The logic design of these blocks should

be synthesized in a testable form or the synthesized logic shouldbe analyzed and

improved for testability.

Faulty VLSI chips could be produced during manufacture because of photolithog-

raphy errors, deficiencies in process quality, or improper design. Even if the chip is

manufactured perfectly, it could subsequently wear-out in the field due to electromi-

2

Table 1.1. Types of tests performed.

Wafer Chip Board System
Parametric
Die probe

Chip test
Burn-in test

Incoming inspection
Board functional

System test
Field diagnosis

gration, hot-electron injection, or other reasons. Environmental effects, such as alpha

particles and cosmic radiation can also cause a circuit to produce erroneous data.

Testing is done at various stages in the production of a system: the dies are tested

during fabrication, the packaged chips before insertion in the boards, the boards after

assembly, and the entire system when complete. Table 1.1 indicates some of the tests

performed at the various stages during the manufacturing process of a system.

As far as the level of VLSI chip testing is concerned, a test generation algorithm is

used to provide the necessary test vectors which, if applied to the chip, will expose the

faults occurring at this level of manufacturing. The test cost at this level is primarily

determined by the cost of generating these test vectors. Consequently, a new discipline

has emerged to probe the testability problem of a circuit more thoroughly in order

to give the designer feedback without taking the risk of submitting a circuit design

which is not testable. As some designers like to put it, a testable design is an optimal

design. Indeed, design for testability has been very well recognized and served by

many researchers.

When considering which test patterns to generate for testing complex circuit,

one should first consider how good the patterns are for detecting the possible physical

failures in the circuit. It may be impossible to consider all possible physical failures.

Hence, test patterns are generated to detect some set of modeled faults in the circuit.

For example, any line in the gate-level representation of the circuit permanently stuck

3

at logic 0 or 1. The measure of test quality in this case could be the percentage of

these stuck-at faults detected by the patterns, and is called fault coverage for the fault

class. A typical goal might be to achieve a fault coverage for single stuck faults of

99% for the chip.

Fault coverage is determined by a fault simulation program. Simulation .of all

faults in a large circuit with many tens of thousands of gates may take a prohibitive

amount of computer time. Statistical sampling procedures for simulating a fraction

of the total faults are commonly used for measuring the effectiveness of the test

patterns. It was found that for large circuits having a few thousand gates, reasonably

good results can be obtained by simulating only 1000 to 2000 faults.

1.2 Testability Analysis

There are various factors that contribute to testing and its cost. Testing cost is

determined mainly by the cost of test pattern generation and by the cost of test

application. Test pattern generation cost depends on the computer time required to

run the test pattern generation program. Test application cost is determined by the

cost of the test equipment plus the tester time required to apply the test. The cost of

testing can be reduced by using tests which either fail to detect many faults or cannot

locate many of the detected faults. This can cause a substantial increase in system

production and maintainence costs. It is much more expensive to repair a faulty

printed circuit board than to discard a faulty chip, and it is much more expensive to

repair a faulty system than to repair a faulty printed circuit board. Consequently,

more efforts were urgently needed to understand and formulate the test problem such

that fast and efficient techniques for test pattern generation be provided. The main

objective is not to compromise the quality of the test patterns, that is, the fault

coverage should remain high.

4

Attempts to understand circuit attributes that influence testability have produced

the two concepts of observability and controllability. Observability refers to the ease

with which the state of internal signals can be determined at the circuit output

leads. Controllability refers to the ease of producing a specific internal signal value

by applying signals to the circuit input leads. Many of the 'Design For Testability

(DFT) techniques are attempts to increase the observability or controllability of a

circuit design. A straight forward approach to do this is to introduce test points, that

is, additional circuit inputs and outputs to be used during testing. There is always a

cost associated with adding test points. For circuit boards adding test points is often

well justified. On the other hand, for ICs, the cost of test points can be prohibitive

because of IC pin limitations.

A straightforward method for determining the testability of a circuit is to use an

Automatic Test Pattern Generation (ATPG) program to generate the tests and de-

termines the fault coverage. The running time 'of the program, the number of test

patterns generated, and the fault coverage then provide a measure of the testability

of the circuit. The difficulty with this approach is mainly the large expense involved

in running the ATPG program. Also, the ATPG program may not provide sufficient

information about how to improve the testability of a circuit with poor testability.

To overcome these difficulties, a number of programs have been written to calculate

estimates of the testability of a design without actually running an ATPG program

such as TEMAS (Testability Measure Program) and SCOAP (Sandia Controllabil-

ity/Observability Analysis Program) [9].

These Testability Measure (TM) programs implement algorithms that .attempt to

predict for a specific circuit the cost (running time) of generating test patterns. In

the process of calculating the testability measure, information is developed identifying

5

those portions of the circuit which are difficult to test. This information can be used

as a guide to circuit modificationsthat improve testability.

No accurate relationship between circuit characteristics and testability has yet

been demonstrated. Thus the circuit parameters calculated by the TM programs are

heuristic and have been chosen on the basis of experience and study of existing ATPG

programs. It is not surprising that the various authors of TM programs have chosen

different circuit characteristics for their estimates of testability. The technique used

to demonstrate that a given TM program does indeed give an indication of circuit

testability is to run both the TM program and also an ATPG program on a number

of different circuits. A monotonic relation between the TM and the ATPG run time

is offered as a "proof" that the TM program produces a good estimate of circuit

testability. The difficulty with this validation technique is the high cost of running

enough examples to be reliable. Some interesting results obtained by using statistical

methods to evaluate the testability measure program approach are presented in [2].

1.3 Faults in VLSI Systems

As systems increase in complexity, it is useful to be able to describe faults at

various levels of abstraction in the system. A fault which is described at a very low

level, for example the level of transistors, may very accurately describe the physical

phenomena causing the fault but, because of the extremely large number of transistors

in a VLSI chip, the model may be intractable for the purpose of deriving tests for the

fault. The two requirements for fault models are accuracy and trac1ability. Accuracy

means realistic faults should be modeled, while tractability implies that very complex

systems should be handled. These requirements are in some sense contradictory.

Recent research, therefore, deals with deriving realistic models at higher levels which

can accurately capture the faults at lower levels.

6

As an example, consider a contact between two conducting lines in a VLSI circuit.

If the contact is faulty, then the fault can be described at this level of abstraction as

a break between two lines. It may also turn out that the break is equivalent to the

input of a gate being permanently set to logic 0. The fault can then be described at

the gate level of abstraction as a stuck-at 0 fault. It would be simpler for the purpose

of analysis to consider the fault at the highest possible level of abstraction.

Now suppose that contact is not permanently open but is periodically open, de-

pending on the temperature, vibration, or other external causes. This can be de-

scribed as an intermittent fault. However, testing for the fault may never expose it

since the fault may not be active during the test. If, however, the circuit is designed

so that the fault caused by the line being open can be detected during normal com-

putation by using some error correcting techniques, the goal of dependable operation.

can still be achieved.

A physical failure can also lead to the output of a module being at a nonlogical

value (for example, indeterminate level between logic 0 and 1). Such faults are difficult

to describe and detect, but the errors due to these faults may also be detected by

error detection techniques.

1.3.1 Fault Models

Fault models are descriptions of the effect of a defect or failure in a circuit. As

discussed earlier, fault models are driven by the requirement to drive high quality

tests for complex circuits. Thus a useful fault model will naturally lead to a test

generation procedure for the fault.

7

1.3.1.1 Transistor-level Fault Models

Defects in present day integrated circuits can be abstracted to shorts and opens

in the interconnects and degradation of devices. Fault models at the transistor level,

therefore, can characterize physical failures quite accurately. Unfortunately, as the

complexity of VLSI increases, the number of potential faults at the device and in-

terconnect level also increase drastically. Nevertheless, it is necessary to study the

effects of failures at the transistor level and to develop accurate fault models at this

level. Better understanding of the effects of failures can be used to develop accurate

fault models at higher levels which can be applied to complex systems. This approach

is analogous to that used in the hierarchical design of VLSI systems where complex

circuits are built from smaller cells.

Fault models proposed at the transistor level incorporate one or more of the fol-

lowing classes of faults:

• shorts and opens of transistors or interconnections.

• delay effects of failures.

• coupling or crosstalk between nodes of a circuit.

• degradation of elements.

Shorts and opens are included in most fault models while the more accurate and

more complex models include delays. Fault models where activity oi one node affects

the logic values on another node in the circuit are primarily applied to memories.

Fault models which incorporate degradations of elements (for example, transistor

parameter changes, or changes in the value of a resistor) are usually used in analog

circuits.

8

1.3.1.2 Gate-level Fault Models

Early fault models were developed at the logic gate level. The popularity of this

approach can be attributed to several reasons.

• Such models are simple to design and use.

• Many faults in discrete technologies can be represented by faults at the logic

gate level.

• Use of such fault models allows many of the powerful results in. mathematics

relating to Boolean algebra to be applied to deriving tests for complex systems.

• A fault model at the logic gate level can be used to represent faults in many

different technologies if, in fact, defects and faults in these technologies can be

mapped to gate faults.

One of the earliest and still widely used fault models at the gate level of abstraction

is the stuck-at model. In this model, it is assumed that physical defects and faults

will result in the lines at the logic gate level of the circuit being permanently stuck-at

logic 0 or 1. This model has been the source of a great deal of research. It is still

very popular since it has been shown that many defects at the transistor and circuit

level can be modeled by the stuck-at fault model at the logic level. In practice, only

single stuck faults are considered in a circuit.

A subset of the stuck fault model is the pin, fault model, where dnly input/output

pins of a module are assumed to be stuck-at 0 or 1 under failure. This has been used

sometimes when testing printed circuit boards with many VLSI devices. Unfortu-

nately, this fault model does not even include a high percentage of gate level stuck

faults within the module in most cases and is, therefore, inappropriate for VLSI.

9

1.4 Fault Equivalence and Dominance

A
B
C

Figure 1.1. A three-input NAND gate example

Consider the three input NAND gate shown in Figure 1.1. This gate has four

lines (three inputs and one output) and would, therefore, have eight stuck-at faults,

each line stuck at 0 or 1. However, the faults A, B, or C stuck-at 0 would result

in the output D being permanently 1 and, therefore, it is impossible to distinguish

between an input stuck at 0 from the output stuck at 1. These faults are said to

be equivalent. Now consider the fault A-stuck-at-1. In order to detect this fault, a

0 has to be applied on A, and is at B and C so that the effect of the fault can be

propagated to D. The correct value of D will be a 1 and it will be a 0 under fault.

This test for A-stuck-at-1 will, therefore, also detect the fault D-stuck-at-0. Hence,

A-stuck-at-1 is said to dominate D-stuck-at-0.

Table 1.2. Tests for 3-input NAND gate.

A B C D Fault Class
1 i i 0 A/O,B/O,C/0,D/i
0 1 1 1 A/i,D/0
i 0 i 1 B/i,D/0
1 1 0 1 C/i,D/0

10

Figure 1.2. Two faults which are functionally equivalent.

Using the relations of equivalence and dominance allows many faults to be com-

bined into a single class, reducing the number of faults to be considered in a complex

system. A three-input NAND gate, therefore, will have four different fault classes

and the tests for these faults are shown in Table 1.2. In the table, the fault consisting

of one line 1 stuck-at-0 is shown as 1/0.

The notion of equivalence and dominance can be applied to more complex circuits.

Thus two faults which are in different parts of a larger circuit could possibly be

equivalent. Figure 1.2 shows a simple circuit with four inputs and one output. Stuck-

at-1 faults on the two lines marked a and b are equivalent, that is, the function under

either faults is the same. However, equivalences such as these are more difficult to

detect and, in practice, only equivalences and dominances around a gate are normally

considered. More information on the concepts of the fault equivalence and dominance,

as well as the idea of reducing the number of fault classes by fault collapsing, are found

in [12, 18].

11

1.5 Summary

In this chapter, motivations that initiated the interest in the testing problem have

been introduced. The cost of manufacturing a VLSI chip is shown to be very much

affected by the testability figure of the chip. Design for testability, testability analysis

programs, and new test generation algorithms are a normal consequence for the test

process requirements.

The large number and complex nature of physical failures dictates that a practical

approach to testing should avoid working directly with the physical failures. In most

cases, in fact, one is not usually concerned with discovering the exact physical failure;

what is desired is merely to determine the existence of (or absence of) any physical

failure. One approach for solving this problem is to describe the effects of physical

failures at some higher levels of abstraction. This description is called a fault model.

The stuck-at fault model is the most popular for today's VLSI technology. The

algorithms described in this work support this fault model.

CHAPTER 2

TESTING PROBLEM AND AUTOMATIC TEST

GENERATION APPROACHES

In this chapter, the test generation problem is presented. Section 1 presents the

test generation terminologies used throughout this work. The test problem complexity

is identified and formulated in Section 2. The basic knowledge of testing concepts is

presented in Section 3.

Although numerous approaches to test generation have been reported, only a few

of these approaches are used in test systems. Section 4 presents some of these ap-

proaches, i.e., D-Algorithm, PODEM (Path Oriented DEcision Making), and FAN.

These approaches are used as a reference for comparing our results with other work.

2.1 Definitions

Common terminology pertaining to test generation for logic circuits is readily

introduced with an example. Figure 2.1 shows a combinational logic .circuit and a

test for a single stuck fault that causes node h to permanently assume a 0 state. A

stuck-at-1 (s-a-1) fault on a signal node causes that node to permanently assume the

1 state. A stuck-at-0 (s-a-0) fault causes a permanent 0 on the faulted node. The

five valued logic (0, 1, X, D, T) is used to describe the behavior of a circuit with

failures. The logic value D designates a logic value 1 for a node in the error free

circuit and a 0 for the same node in the failing circuit, V is the compliment of D, and

X designates a DON'T CARE value. A behavior difference between the good circuit

13

and the failing circuit propagates along a sensitized path. In Figure 2. 1, the signal

path h, j (the bolded line) is referred to as a sensitized path. Externally controllable

nodes are referred to as primary inputs. Externally observable nodes are referred

to as primary outputs. In Figure 2.1 assignment of the values 1, 1, X, X, .0 to the

primary inputs a, b, c, d, e, respectively, constitutes a test for the fault h s-a-0.

J

Figure 2.1. Example to illustrate test generation terminology.

Definition 1 : Two faults are said to be compatible if there exists' at least one test

vector which detects both faults.

Definition 2 Two faults are said to be collapsed if the detection of one fault

'implies the detection of the other fault. The two faults can also be referred to as

indistinguishable faults.

Definition The D-drive refers to the node with a logic value D or D and is

used by the test generation algorithm to bring it closer to the primary outputs. In

Figure 2.1., node h represents a D-drive to the test generation process. If at any time

in the test generation procedure, more than one node carries the logic values D or

then we refer to these nodes as the D-frontier. The test generation algorithm picks

up one of these nodes to drive the test process, i.e., selecting the D-drive node.

Definition 4 : The implication procedure refers to the process of using the im-

plication rules of logic gates to propagate signal values at gate input nodes to their

14

output nodes. This procedure is used to check the implication of logic assignments

made during the test generation procedure. The result is used as a guide to the next

step in the test procedure.

Definition 5: Consistency check is a procedure used by test generation algorithms

to check if the previously made decisions meet some objectives set by the algorithm.

The decisions made by the test generation algorithm are referred to as inconsistent

if they don't meet the objectives set by the algorithm. It must be noted that these

objectives vary during the test procedure.

2.2 Test Generation Problem

With the progress of VLSI technology, the problem of fault detection for logic

circuits is becoming more and more difficult. In developing tests for digital circuits,

the faults that will actually occur are unknown. Instead, test sets are developed to

detect a specific set of faults.

2.2.1 Problem Formulation

As Goel [8] stated in his paper, the test generation problem can be formulated as

a search of the n-dimensional 0-1 state space of primary input patterns of an n-input

combinational logic circuit. For example, in Figure 2.2, g is an internal node and the

objective is to generate a test for the stuck fault g s-a-U. The logic value at g can

be expressed as a Boolean function of the primary inputs X1, X2, ..., X,. Similarly,

each primary output (yj, j = 1, 2, ..., m) can be expressed as a Boolean function of

the state on node g as well as the primary inputs X1, X2, ..., X,.

Let

g = G(X1, X2, ..., X)

15

and

y=}j(g,Xi,X2, ... X)

where 1j ≤m and X =Oor1 for 1≤in.

The problem of test generation for g s-a-O can be stated as one of solving the

following set of Boolean equations:

G(X1, X2, ..., X) = 1

Yj(1,X1,X2,...,X)EBY3(O, Xi, X2,...,X)=i

for at least one j,i ≤j ≤ mand Xi = 0 or 1 for 1 ≤ i < n.

The first equation implies that a s-a-0 fault is first excited to logic 1 (opposite to the

stuck-at level), while the second equation implies that the change of the logic value

at the fault location can be observed at the primary outputs. The set of equations

for g s-a-I are the same as above except that G is set equal to 0.

Xl

x2

Xn

- yl
- y2

Figure 2.2. A Combinational circuit used in formulating test generation as an
n-dimensional 0-1 state space search problem.

16

In short, test generation can be viewed as a search of an n-dimensional 0-1 space

defined by the variables X (1 ≤ i < n) for points that satisfy the above set of

equations. More generally, the search will result in finding a k-dimensional subspace

(k ≤ n) such that all points in the subspace will satisfy the above set of equations.

2.2.2 NP-Completeness of Test Generation

The concept of NP-Completeness is used to prove that the amount of time required

to solve a specific problem is beyond a certain practical limit [3]. The problem of test

generation, which is known to belong to the class of NP-complete problems, can be

viewed as a finite space search problem [8]. For a circuit with N primary inputs, there

exists 2" combinations of input assignments. Automatic Test Generation (ATG)

algorithms basically search for a point in the primary input space that corresponds

to a test pattern and consequently, to a solution of the search problem.

The NP-completeness property of the test generation problem necessitates that

various heuristics be developed to create practical solutions for it. The PODEM [8]

and FAN [5] algorithms are elegant examples in this regard. Many other fault analysis

problems, such as the determination of the size of minimal test sets, coverage of

multiple faults by single-fault test sets, and coverage of faults by randomly generated

test sets are similarly besieged by their inherent complexity, and their solutions require

thoughtful insights.

2.3 Elementary Testing Concepts

The three main concepts used by all test generation systems, namely, sensitization,

consistency, and redundancy are described in this section. Although most of the

following discussions are limited to combinational circuits and stuck-at-faults, these

basic concepts can be extended for any digital circuit and any fault model.

17

Figure 2.3. A sample circuit to describe sensitization.

2.3.1 Sensitization

Sensitization is a technique where a path consisting of many nodes is created to

help propagate a stuck-at fault in a circuit. Searching the input space for a test

pattern is equivalent to searching for a single (or multiple) sensitizing path.

Consider the circuit of Figure 2.3 and the fault 7 s-a-O. In order to detect this fault

by a procedure that allows'access only to the primary input lines (1, 2, 3, 4, 5, and

6) and the primary output line (15), it is essential that a test vector must somehow

create a change on line 7 and ensure that the change can be seen on line 15. That

is, the test vector must produce a 1 on line 7, and line 15 should be sensitized to line

7 in the sense that the output created on line 15 clearly shows whether the signal on

line 7 is 0 or 1. If the path from line 7 to line 15 is traced in Figure 2.3, the first

condition for sensitization is that line 10 be a 0. Indeed, if line 10 is a 1, then line 13

would be 1 irrespective of the value on line 7. In other words, a 1 on line 10 would

desensitize line 7 to line 13. Moreover, since there is no other path to transmit the

value on line 7 to line 15, line 10 being a 1 will also desensitize line 7 to line 15. Thus

18

assuming that line 10 is a 0, the next condition for the sensitization is that line 14

be a 1. If both of these conditions exist in the circuit, then when a 0(1) is applied to

line 7, the circuit output is going to be a 0(1). In other words, any input vector that

can create a 1 on line 7, a 0 on line 10, and a 1 on line 14 will in the fault free circuit

produce a 1 on the output line, and in the faulty circuit a 0 on the output line, and

will, therefore, be a test vector for 7 s-a-0.

The concept of sensitization needs to be explained further in the situations involv-

ing more than one path from the faulty line to a primary output line, and in the case

of multiple stuck-at faults. In summary, the concept of sensitization is fundamental to

understanding how a fault is detected from the input and output lines only. However,

the process of determining a sensitized path(s) in a general situation is not a simple

procedure.

2.3.2 Consistency

As shown above, some logic assignments and conditions are needed to carry out

the sensitization process. However, just formulating such conditions does not always

guarantee that an input vector satisfying such conditions also exists. Thus, formulat-

ing conditions to create a change and to propagate the change along a sensitized path

is just one step. The second equally important step is to determine which, if any,

vector(s) satisfies such conditions. When this process is carried out by exploring the

- circuit structure, it is often referred to as the line justification or consistency process.

In general, consistency, or line justification is not a simple process since different

conditions may result in contradictory requirements. For example, consider the fault

set (7 s-a-0, 12 s-a-1) of Figure 2.3. The fault is tested by creating changes on both

the faulty lines, and the change is propagated only from line 7. This will require

19

that the following conditions be held: line 7 is 1, line 12 is 0, line 10 is 0, and line

9 is 1. However, since line 10 and 12 require the same binary signal, but can have

only complimentary values, it is clear that no vector will satisfy this particular set of

conditions.

An ideal line justification algorithm will, at each step, make a decision that will

not have to be changed. In general, however, this is not possible since making an

irreversible decision requires knowledge which is not available at the time of decision

and can be obtained only by reversing the decision and starting again. The most one

can do in this situation is to use some insights or heuristics so that as few decisions

as possible are changed. Actually, due to this decision process, the test generation

problem is NP-complete [5].

2.3.3 Redundancy and undetectability

A fault is said to be undetectable if there is no vector to detect this fault, and

the line associated with the fault is called a redundant .line. For instance, in the

trivial circuit of Figure 2.4, the fault 5 s-a-1 is undetectable, since sensitizing it would

require that each of lines 3, 4, and 6 be a 1, implying in turn that x1 = 1, x2 = 1,

and x1 .x2 = 1. These being contradictory requirements, one can conclude that if 5

s-a-1 existed in the circuit, then as far as the input/output behavior is concerned, the

circuit is going to behave as if there is no fault in it. Such undetectable fault seems

to be harmless when not probed further. However, as previous research in the area

has shown, one must know where the redundant lines in the circuit are, to be able to

carry out an effective detection of the detectable faults. For example, in the circuit

of Figure 2.4, the input vector (1, 1, 0) is a test vector for a 1 s-a-0. However, in

the presence of of the undetectable fault 5 s-a-1, (1, 1, 0) cannot test 1 s-a-0. Thus,

20

xl
x2

x3

Figure 2.4. Example of redundancy.

an undetectable fault can invalidate the testing of some detectable faults if both are

present simultaneously.

Another effect of an undetectable fault is its impact on the test generating efforts

for a given circuit and a fault set. If a fault set is undetectable, any resources spent

in trying to obtain a test vector are wasted. It is thus useful to remove all the

undetectable faults from the fault set before the test generation step. As it turns out,

even the process of determining whether a fault is detectable or not is as complex

as the test generation process which is NP-complete. The best hope, therefore, is to

avoid the appearance of redundant lines during the design phase of the circuit under

consideration.

2.4 Test Generation Approaches

2.4.1 Random Test Generators

The concept of generating test vectors for a digital circuit by some random process

probably provides the simplest approach to the test generation problem [1, 20]. The

major current issues for random test pattern generation are: selecting the test length,

determining the fault coverage, and identifying random-pattern resistant faults (faults

that are hard to detect with random patterns). These could, in principle, all be ac-

complished by a full single-stuck fault simulation of the network to be tested [21]. The

21

development of special-purpose equipment is decreasing the cost of fault simulation.

Despite this cost reduction, full fault simulation remains expensive for large circuits

that require long random test sequences for adequate fault coverage.

The only viable alternative to full fault simulation appears to be the use of a

probabilistic model of random test generation [13]. Probabilistic methods do not

give exact fault coverage values, but they do provide more insight into the relations

between circuit characteristics and test parameters.

2.4.2 Deterministic Test Pattern Generators

The problem of deterministically generating a test pattern for a given fault is to

find a combination of assignments of logic values (0 or 1) to the primary inputs which:

• excite the target fault,

• monitor the target fault at, at least one of the primary outputs.

Since the properties of deterministic test generation fulfill the requirements for

a systematic search problem, automatic test generation algorithms usually build a

decision tree and apply a backtracking search procedure [5, 8], in order to find a

solution for problem.

The D-algorithm [16, 17] is probably the most known test generation algorithm. It

develops a five-valued {0, 1, X, D, } calculus to be able to carry out the sensitization

and the line justification procedures in a very formal manner. In this calculus, each

line can be either a 0, 1, X (unknown), D, or Th. The faulty line is assigned a D

or 77 depending on the fault on the line. The next step is to use the calculus and

the circuit structure information to determine values on the other lines so that the

22

D or D can be sensitized to the primary output line. A line justification step is then

carried out to justify the values assigned in the preceding step. Both the sensitization

and line justification steps may have to be carried out many times before a test vector

is obtained.

The PODEM (Path-Oriented Decision Making) algorithm was introduced in par-

ticular to perform better than the D-algorithm for circuits containing mostly Exclusive-

OR gates. It was, however, demonstrated to have a better performance than the D-

algorithm for various other types of circuits as well. The approach taken by PODEM

appears to be the first to treat the test generation problem as a classic branch-and-

bound problem. More fundamentally, the algorithm starts by assigning a value of

o or 1 to a selected primary input (Pi) line, and then determines its implication on

the propagation of D or D to a primary output line. If no inconsistency is found, it

again somehow selects another Pi line and, assigns a 0 or 1 to it, and then repeats

the process, which is referred to as branching.

The branching procedure basically consists of making an intelligent choice on the

primary input line to be selected and the binary value to be assigned to it. If, however,

at any time in this branching, an inconsistency is determined, the branching stops

and bounding starts. The Pi line which was most recently assigned a binary value is

assigned the complimentary value, and branching is started again. If, however, both

the values on the most recent line result in a bounding step, then the Pi line next

to the most recent is treated in a similar manner. The complete process stops when

either a test vector is found or when the fault is determined to be undetectable. A

high level description of the PODEM algorithm is shown in Figure 2.5.

The PODEM algorithm uses a two-step process to choose a primary input (Pi)

and logic level for initial assignment.

23

Procedure podem() {
assign(pi);

* assign a binary value to unassigned primary input /
implication();

1* apply implication rules to all nodes in D-frontier /
if a test generated; exit done;

else if no more combinations of pi's exist; exit undetectable fault.
else set untried combinations of values on unassigned pi's.
start branch step.

}

Figure 2.5. High level description of PODEM.

Step 1: Determine an initial objective. The objective should be to bring the test

generator closer to its goal of propagating a D or to a primary output.

Step 2: Given the initial objective, choose a Pi and a logic level such that the

chosen logic level assigned to the chosen Pi has a good likehood pf helping towards

meeting the intial objective.

The following two simple propositions are evaluated to carry out the process of de-

termining if a test is possible with additional assigned Pi's.

Proposition 1: The signal node (for the given stuck fault) has the same logic level

as the stuck level.

Proposition 2: There is no signal path from an internal signal node to a primary

output such that the internal signal node is at a D or a V value and all the other

nets on the signal path are at X.

If Proposition 1 is true, then it is obvious that assignment of known values to

unassigned Pi's cannot result in a test. If Proposition 2 is true, then there exists no

24

signal path along which the D or the _1 can propagate to a circuit output. Hence,

only if both Propositions 1 and 2 are false, then it is concluded that a test is possible

with the present Pi assignment even though further enumeration may show that it is

not.

Table 2.1 shows a comparison of PODEM and D-algorithm [8]. It shows that

PODEM achieved 100 percent test coverage on each of the four Error Correction And

Translation (ECAT) type circuits used. Since DALG (D-Algorithm) and PODEM

are complete algorithms, given enough time, both will generate tests for each testable

fault.

Table 2.1. Comparison of PODEM and DALG.

Circuit type No. of gates Normalized run time Test coverage
PODEM DALG PODEM DALG

ECAT 828 1 34.5 100.0 99.70
ECAT 935 1 12.8 100.0 93.10
ECAT 948 1 5.7 100.0 95.70
- 951 1 2.2 99.50 99.50
- 1249 1 3.5 98.20 98.20
- 1172 1 2.6 98.50 98.50
ALU 1095 1 15.3 96.50 96.20
MUX 1082 1 3.2 96.60 96.60
- 915 1 3.9 96.30 96.30
DEC 1018 1 3.8 99.10 99.10
PLA 538 1 2.5 94.50 94.50
PLA 682 2.6 1 89.40 89.40
PLA 1566 1 3.1 97.40 97.40

From the above discussions, it is obvious that to accelerate 'an algorithm for

test generation, it is necessary to reduce the number of occurrences of backtracks

(branching-bounding cycles) in the algorithm and to shorten the procssing time

between backtracks. Based on that, the FAN [5] algorithm started with the basic

conjecture that the PODEM does not fully exploit the excellent framework in which

25

it works. FAN has employed a better heuristic in the bounding-and-branching steps

to speedup the test generation process. Table 2.2 shows the results obtained on active

sample circuits by implementing both FAN and PODEM. The results show that FAN

is more efficient and faster than PODEM. The average number of backtracks in FAN

is lower compared to that of PODEM.

Table 2.2. Comparison of FAN and PODEM.

Circuit No. of gates Normalized run time Test coverage Ave. No. of backtracks
PODEM FAN PODEM FAN PODEM FAN

ECAT 718 1.3 1 99.20 99.52 4.9 1.2
ALU 1003 3.6 1 94.25 95.49 42.3 15.2
ALU 1456 5.6 1 92.53 96.00 61.9 0.6
ALU 2002 1.9 1 98.75 98.90 5.0 0.2
ALU 2982 4.8 1 94.38 96.81 53.0 23.2

2.5 Summary

In this chapter, the test generation problem has been presented and formulated.

It has been shown that the test generation problem is a complex problem and is

considered to be NP-complete. Different approaches have been used to tackle the test

problem, either by randomly generating test vectors or by using other deterministic

test generation methods. Test generation, as a space search problem, has evolved

in designing efficient algorithms as the case in PODEM and FAN. Most of the test

systemsreported for this decade are based on these two algorithms.' SOCRATES [19]

algorithm, for instance, is an improved version of FAN. Based upon the sophisticated

strategies of the FAN algorithm, an improved implication procedure, an improved

unique sensitization procedure, and an improved multiple backtrack procedure are

described. In general, however, most of the work in the testing area is useful under

26

very specific circumstances. Despite the steady growth in the area of digital system

testing, it has yet to witness the development of a consistent framework which can

provide efficient testing algorithms for large and complex systems.

CHAPTER 3

AN EFFICIENT ALGORITHM FOR TEST
GENERATION

The problem of test generation is known to be NP-complete [6, 10]. The present

approaches for test generation are time-inefficient for large size combinational circuits.

In this chapter, we present an efficient algorithm for test generation. In our algorithm,

the test generation problem has been formulated as a model of a global search of

the sensitizing paths between the primary input and output nodes. Such a simple

model offers significant improvements in efficiency for the test generation of large

combinational circuits.

3.1 Introduction

A basic problem in testing is to determine an optimal testing procedure for a given

circuit and determine a set of faults which models most of the failures likely to occur

in that circuit. A typical testing procedure consists of three steps: test generation,

test application, and test verification. The performance of a testing procedure is

often measured in terms of the time and effort required to carry out these three

steps. The time taken to generate a single test pattern grows exponentially with the

number of inputs in the circuit. Most deterministic test pattern generation algorithms

exhaustively search the circuit netlist for test vectors to detect stuck-at faults. To

improve an algorithm's efficiency, some limitations are imposed on the procedure to

minimize the number of backtracks and thus the test generation time. A test vector

28

is generated for a target fault and then a fault simulation is applied to check for the

other faults which can be detected by the same vector. Consequently, the number of

generated vectors are much less than the number of modeled faults.

A significant theoretical study [11] suggests that no test generation algorithm for

combinational circuits with a polynomial time complexity is likely to exist. Goel [7]

argues that the time for a complete test generation must grow at least as the square

of the number of gates in the circuit. Presently most well-known algorithms make use

of the path sensitization idea in one form or the other. Among all, the D-algorithm

is the oldest and the best-known algorithm. The performance degradation, of the

D-algorithm arises due to an excessive amount of backtracking. Based on this obser-

vation, Goel used a branch and bound technique and devised a new test generation

algorithm called PODEM [8], described in chapter 2. Fujiwara and Shimono [5] de-

scribed a technique to further accelerate a path-sensitization algorithm like PODEM.

Their algorithm, called FAN, makes an extensive analysis of the circuit connectivity

in a preprocessing step to minimize the amount of backtracking. Schulz et al. [19]

further improved the performance of FAN by improving the implication procedure

and built a test generation system called SOCRATES. They also described a unique

sensitization procedure and an improved multiple backtrace procedure.

A number of researchers have attempted to reduce the test generation time. How-

ever, no algorithm is efficient for the general class of faults. Each fault may need

different heuristics for efficient test generation. Using different strategies for test gen-

eration lowers the testing time [14]. The concept of fault partitioning has been used

in a parallel multiprocessor system to achieve fast test generation for large circuits.

Patil and Banerjee [15] have shown that large speed up factors can be achieved by

using a dynamic fault partitioning algorithm.

29

Most approaches discussed above suffer from exponential time complexity in the

worst case. It is generally believed that, for combinational circuits, the time taken in

the current test generation approaches is prohibitive.

In this chapter, we present an efficient test generation algorithm for combinational

circuits. The test generation problem has been formulated as a model of a global

search of sensitizing paths between primary input and output nodes. The algorithm

generates test vectors with at least 98% fault coverage of all testable faults in a circuit

in a short time. Hence, it can be used to enhance the overall test generation procedure

by replacing the traditional random test generation technique which has a limited test

coverage of only 60% to 85%. Moreover, our approach ensures a more compact test

set than that of the random test generation technique.

The rest of this chapter is organized as follows. In section 2, the motivations that

initiated the development of our algorithm is presented. New ideas for a target fault

switching technique during the search procedure are also discussed. In section 3, we

describe the test generation problem in the context of our approach. An efficient test

generation algorithm is introduced in Section 4. Finally, section 5 summarizes this

chapter.

3.2 Motivations

Motivation for this work comes from the observation that test generation for the

detection of faults in digital circuitry can be made more efficient by employing a

- target fault switching technique in the search process [22]. For more elaboration, let

us consider some of the strategies used in PODEM, and explained in chapter 2, in

the process of searching for a test pattern for a specific target fault. Although the

following discussion is concerned with PODEM, it also applies to other algorithms

30

such as FAN and SOCRATES.

In PODEM, backtracking is the most computationally expensive step in the process

of searching for a test vector. Backtracking refers to a branch procedure terminated

by a bound step. The branching step goes as deep in the binary search tree as

possible, while the bound step backs up in the binary search tree to the most recent

node with an unused alternative assignment. Backtracking stops when either a test

vector is found or when the fault is determined to be undetectable. A fault is declared

undetectable if the number of occurrences of backtracks exceeds a limit specified by

the user. Therefore, a fault classified as undetectable in most deterministic ATPG

algorithms is either a testable fault which needs more backtrack steps to be detected

or a truly redundant fault.

One can conclude that if fi is a target fault in PODEM, then a number of backtrack

steps occur before the fault is detected or declared undetectable. 'Suppose that the

average number of backtracks made by PODEM to detect a fault set in a circuit is

N. Then on the average, only one backtrack step is used to generate a test vector for

the fault fl, while N-i steps are used to assign logic values that lead to a bound step.

As a result, some logic assignments associated with the search tree before each bound

step are rejected, which is a waste of computer time. A better approach is to use

these logic assignments to direct the test procedure to detecting another target fault.

Therefore, the logic assignments that do not help in detecting the fault f, could be

used to detect another fault 12, where f, and 12 are distinguishable faults. To achieve

that, the test generation algorithm needs a procedure to switch the search process to

different target faults whenever a bound .step occurs. Since the problem of searching

for distinguishable sets of faults is as difficult as the test generation problem, we may

only consider a new target fault which meets the objective of propagating a D or

31

D closer to a primary output using the logic assignments made before the bound

step. Heuristics can easily be employed to achieve this purpose, for instance, a new

target fault search procedure might use the circuit topology to search for those faults

which are topologically nearby the original target fault. Another approach might use

a random selection of the new target fault from the fault list.

It is not necessary to implement such procedure in the context of the existing

ATPG algorithms like PODEM or FAN. In this work, we are taking a global testing

approach to implement a non-target fault algorithm. In our approach, a tree of fault

assignments is created in a similar manner to the depth - first search algorithms

starting from primary outputs.

3.3 Test Generation Viewed As A Global Search Problem

Most deterministic Automatic Test Pattern Generation (ATPG) algorithms view

the test generation problem as a search of the n-dimensional 0-1 state space of primary

input patterns of an n-input combinational logic circuit. Because of the complexity

of the test generation problem (i.e. NP-complete), search heuristics are used to limit

the exponential time complexity of these algorithms. For example, PODEM is an

implicit enumeration algorithm in which all possible primary input patterns are im-

plicitly examined as tests for a given fault. Implicit enumeration refers to a subset of

the branch and bound algorithms designed specifically for search of an n-dimensional

0-1 state space. Although new heuristics are developed to improve the algorithm's

performance such as those employed in FAN and SOCRATES, significant improve-

ment in timing complexity is not yet achieved. From our study of these algorithms

we believe that the search for a test vector to detect a single target fault yields time

- inefficient algorithms. We suggest that a switching technique to different target

faults during the search process is necessary.

32

In this work, the problem of generating test vectors without targeting a specific

stuck-at fault set is addressed. An attempt is made to solve this problem by applying

certain logic assignment rules. These rules consider the representation of a single

stuck-at fault as a number of fault patterns at the primary inputs. A fault pattern

refers to a combination of fault assignments (D and) at the primary inputs. For ex-

ample, a two-input NAND gate with fault D at its primary output can be represented

as one of three patterns (, D), (1, D, (, 1) at the primary inputs.

In our approach, a depth - first back fault assignment is conducted starting from

the primary outputs, where each output is selected in some arbitrary order. The

depth - first back assignment procedure is terminated at the primary inputs, we refer

to this process as output cones sensitization. The test generation problem can then

be modeled as one involving a global sensitization of paths between the primary input

and output nodes. The object of this work is to show a cost - effective method to

implement this model.

3.4 An Efficient Algorithm for Test Generation

The problem of searching a combinational logic circuit for fault patterns that

represent a fault on an internal node consists of two parts: defining the back fault as-

signment rules (referred to as B-rules) and implementing a back assignment procedure

similar to the depth - first search algorithms.

3.4.1 Back Fault Assignment Rules (B-rules)

The object of the B-rules is to allow the fault assignment of logic values D and Tfl to

appear on each node in a circuit at least once during the back assignment procedure.

Consequently, the resultant fault patterns at the primary inputs will include at least

a single pattern which sets an internal node to the logic value D or R In other

33

words, the 13-rules guarantee that any stuck-at fault can be excited by some of the

generated fault patterns. Figure 3.1 defines the 13-rules used in our algorithm. A fault

is supposed to exist on a gate's output node, and the fault representation is carried

out at the gate's input nodes.

D-fl
D D-1 ,

frD

Figure 3.1. The back fault assignment rules.

For example, a fault D on the output of a NAND gate is expressed as the (,

) fault pattern at its input nodes. Similarly, a fault on a NAND gate output

node is expressed as the (D, D) fault pattern at its input nodes. There are other

representations that can be used, as shown-in section 3, but the B-rules ensure that

only logic assignments D and 17 are used in our approach. Accordingly, the generated

fault patterns will represent a D-frontier to all circuit nodes.

3.4.2 The Back Fault Assignment Procedure

Consider the problem of generating the fault patterns for a fault D on an internal

node g as shown in Figure 3.2. There are L paths by which node g can be reached

from the primary inputs. The region which comprises the sensitizing paths between

34

node g and the primary inputs will be referred to as the output cone of node g.

Each sensitizing path in the output cone of node g has a length which represents the

number of logic gates along the path from node g to the primary inputs. For example,

pathi has a length equals one, while path2 has a length equals two, and so on. The

back fault assignment procedure arranges the circuit nodes in different levels in the

following way. If the output node of a gate belongs to an assignment of level L, then

all the input nodes of this gate belong to level L+1. This situation is similar to the

two-level circuit configuration with the exception that gates on the same level may

not be of the same type.

- Po

- P02

Pathl

 III PathL

- P0n

Figure 3.2. A circuit example to describe testing as a Global search problem.

Now consider the case where node g has a fault logic value equals D. Then using

the B-rules described earlier and starting from node g, the backfau1t assignment

procedure sweeps the output cone of node g by propagating the fault D toward the

primary inputs. The back fault assignment tree grows in a similar manner to the

depth - first search algorithms. As the back assignment tree builds up, it creates

fault assignments at each node in the output cone of node g. The back propagation

35

of faults is terminated at the primary inputs. At this point, the output cone of node

g is said to be regionally sensitized.

Since different sensitizing paths are not equal in length, some primary inputs will

be assigned earlier than others. Therefore, the back fault assignment procedure checks

at each level of assignments for the primary inputs that have been assigned new fault

values. The procedure codes the primary inputs as a new fault pattern. Consequently,

each new collected fault pattern corresponds to an added sensitizing path with all its

nodes assigned to either D or to 2Y. Hence, a rough estimate of the possible number

of generated fault patterns would be the difference between the maximum and the

minimum lengths of two sensitizing paths.

Now consider the case where g is a primary output node. Then the process of

generating the fault patterns by regionally sensitizing the primary output cones is

referred to as global sensitization. A high level description of the global sensitization

algorithm, glob_sens, is shown in Figure 3.3. To illustrate the idea of the glob_sens

algorithm, we use a sample circuit C17 selected from the ISCAS'85 benchmarks and

shown in Figure 3.4.

The algorithm glob_s ens first selects a primary output node and assigns it a D

logic value. Assume that glob_sens arbitrarily selects the primary output node 10 in

Figure 3.4. Node 10 now represents the only currently assigned node in a node list

of assignments. Then according to the B-rules, both inputs of gate G5 are assigned

a similar logic value 7Y. At this point, a new level of assignment' is created which

includes a list of two nodes 6 and 9. The algorithm glob_sens keeps track of the node

numbers in the new list of assignments, the length of this list, and the associated

logic values, as depicted in Figure 3.3. Starting at node 6 then node 9, the glob_sens

algorithm assigns the logic value D to the nodes 1, 2, 3, and 7. The first three

36

Input A circuit's netlist.
Output : A set of test vectors.

Procedure glob_sens() {
select a primary output node and assign a D logic value to it;
for eachelement in the node list {
/ list of previously assigned nodes */
execute the back-assignment function;
return the new list of node assignments;
return the length of the new list;

}
if at least one P1 appeared in the list {

collect a new test vector;
if the length of the new list is zero {

/* only PT nodes appear in the list*/
get the next P0;

if the P0 list is empty {
exit

}
}
}

}

Figure 3.3. The Algorithm to globally sensitizes output cones.

37

nodes belong to the primary input, hence, an input fault pattern (D, D, D, X, X) is

generated. The three nodes 1, 2, and 3 are then removed from the node list leaving

node 7 to be the only element in the node list at this level of assignment. Accordingly,

the fault D at node 7 is propagated using the B-rules to assign the primary inputs

3 and 4 a logic value of V. The last step produces a change at only two primary

input lines (3 and 4), and hence provides another fault pattern (D, D, , , X). The

glob_sens algorithm repeats this procedure for each output cone in a circuit.

D D

D D

D

X

x x

Figure 3.4. Example circuit 017 shows how the back propagation procedure assigns
fault values to the circuit nodes.

The glob_sens algorithm either substitutes the X terms with a logic value D, D,

or simply keeps X unchanged. If the node with the don't care term shares the output

cone under which the back propagation process is occurred as an input to a gate, the

algorithm checks for the other gate's input logic value and assigns it to that node.

For example, node 4 in the first generated fault pattern has an X logic value. Node

4 is also an input to gate G2, which belongs to the first output conk. The logic value

assigned to node 4 will be the same as that of node 3 which is D. On the other hand,

the logic value of node 5 is left unchanged because it is an input to gate G5 which

does not belong to the first output cone. In this way, we can avoid generating a large

number of redundant fault patterns since each output cone is dealt with separately.

38

(a)

(b)

Figure 3.5. The implication procedure of the resultant fault patterns (a)
(D,D,D,D,X) (b) (D,D,D,X)

39

Figure 3.6. The implication of the fault pattern (b, , , TD, X).

a —
b
C —

d <

e

f

9

Figure 3.7. Fan-out point example.

Now let us consider the implication of the resultant fault patterns on the circuit

under consideration. Figures 3.5.a and 3.5.b show the implication of the two fault

patterns (D, D, D, D, X) and (D, X), respectively. The first pattern sensi-

tizes a path from the primary inputs to the primary outputs through node 6, while

the other pattern sensitizes the path through node 9. The two patterns combined to-

gether sensitize the output cone of the primary output node 10. As mentioned earlier,

the glob_s ens algorithm guarantees that each node must be assigned a complimentary

logic value at least once in the back propagation process. This is simply done by

taking the compliment of the resultant fault patterns. Figure 3.6 shows the circuit

C17 with an input fault pattern (, D, V, U, X), which is the compliment of the first

generated fault pattern. By implication of this pattern, the same'sensitizing paths

exist but with each internal fault logic value complimented.

An important point is the behavior of the glob_sens algorithm with fan-out points

as the one shown in Figure 3.7. In case of nonconvergent fan-out, faults at the fan-

40

out points may be collapsed because any test that detects a fault along one of the

destination lines from the fan-out point will also detect the corresponding fault on

the origin line of the fan-out point [18]. For example, in the circuit shown in Figure

3.7, any one of the faults e s-a-1 (s-a-0), f s-a-1 (s-a-0), or g s-a-1 (s-a-0) is collapsed

with d s-a-1 (s-a-0). That is, the vectors which detect these faults will also detect the

corresponding fault on line d. In this case, in the back fault assignment procedure,

if all the nodes e, f, and g are assigned the same logic value at the same level of

assignment, then the algorithm discards two of these values and holds only one logic

value and assigns it to node d. In case of conflict, i.e., two nodes being assigned

different logic values at the same level of assignment, the algorithm holds both values

and assigns them to node d. Consequently, node d is replicated in the node list with

two different logic values. As a result, when the logic assignments from node d land

on the primary input nodes, two fault patterns are generated with only the primary

inputs involved in the output cone at node d, assigned complimentary logic values.

For convergent fan-out points, the algorithm behaves in a similar manner.

3.4.3 Algorithm Constraint

Due to the connectivity of the logic circuits, some nodes may be assigned a logic

value more than once. At a fan-out node, for example, different paths are connected

together and the node may have multiple assignments in the node list. Therefore, the

algorithm keeps track of the number of assignments for each node and the associated

logic values. In a circuit, the number of assignments per level may increase dramat-

ically. In the worst case, the computing time for generating the fault patterns may

grow exponentially. To limit the exponential growth of the size of the assignment tree,

a parameter K is used in the algorithm to limit the maximum number of assignments

41

for a node in the circuit. The parameter K serves as a tap which limits the number

of fault patterns released by the circuit and thus controls the time taken to generate

these vectors.

The advantage of limiting the maximum number of assignments per node is twofold.

First, this will dramatically decrease the test generation time. Second, compared to

the total number of circuit nodes, the size of the arrays storing the dynamic node

lists and the corresponding logic values can be kept small. This is due to the fact

that only one* assignment level is considered at a time. Hence, the size of an array

is much smaller than that of a circuit. In fact, for a wide range of K, the size of the

arrays never exceeds the number of nodes in the tested circuits. On the other hand,

low values of K degrades the fault coverage of the test set.

3.5 Summary

The current test generation algorithms can generate test vectors for complex com-

binational circuits and guarantee 100 percent coverage for testable faults. However,

the test generation time increases exponentially with the circuit complexity. A new

approach which combines simplicity and fast performance has been developed for

the test generation of large combinational circuits. The similarities of our algorithm

with current approaches has been identified. The test generation problem has been

formulated as a problem of a global search of sensitizing paths between the input

and the output primary nodes. To achieve this objective, a circuit environment is

created such that all faults which can be detected by multiple - path sensitization are

sensitized. The algorithm may not detect all faults that are sensitized with only a

single path. Hence, the fault coverage limitation will only be a function of the circuit

complexity.

CHAPTER 4

A MODEL FOR PARALLEL TEST SYSTEM

As parallel processing hardware becomes more common and affordable, multipro-

cessors are being increasingly used to accelerate VLSI CAD algorithms. The problem

of partitioning faults in a parallel test generation/ fault simulation environment has

received very little attention in the past. In a parallel test system environment, the

fault partitioning method used can have a significant effect on the overall test length

and speedup. Also, for efficient utilization of available processors, the work load has

to be balanced at all times. In this chapter, the model of a parallel test system is

presented. The test generation algorithm described in chapter 3 is employed in the

parallel test system. A partitioning method for load balance over processors is also

described.

4.1 Introduction

Parallel test generation is a technique where multiprocessing hardware is used to

achieve order of magnitudes speedup for test generation. A fault/circuit partitioning

step precedes the test generation process. Static and/or dynamic fault/circuit parti-

tioning can be used in assigning loads to different processors. In static partitioning,

an equal number of faults or partitions of a circuit are assigned to each processor. It

has been shown that each set of faults which belongs to the same processor should be

a compatible fault set [15]. By definition, every two compatible faults in a fault set

43

will have at least one test vector that detects both faults. Consequently, assigning

compatible set of faults for each processor yields a time - efficient algorithm. Unfor-

tunately, the problem of generating a compatible set of faults is as hard as the test

generation process itself.

Most parallel test generation systems use a test generation/fault simulation envi-

ronment. Each generated vector from one processor is simulated by all other pro-

cessors to minimize the fault list at each processor. Therefore, an equal number of

faults loaded to each processor is a poor estimate for load distribution. On the other

hand, dynamic fault partitioning alleviates this problem by keeping track of the idle

processors and the busy ones. It dynamically redistributes part of the undetected

faults to the idle processors. This procedure involves massive communications be-

tween the processors for overall efficient performance. Although a much better load.

balance over processors can be achieved by dynamic partitioning, extensive process

communication among processors may contribute significantly to the overall run time.

Another major issue in parallel test generation systems is the test length. The

test length depends on both the deterministic pattern generator and the partitioning

method. Random test pattern generators produce a large number of test vectors,

while the fault coverage is limited to 60%-85%. On the other hand, deterministic

test pattern generators are producing a small number of vectors with a very high

fault coverage at the expense of high time complexity. Therefore, deterministic test

generators have been incorporated in parallel test systems.

4.2 Parallel Test System Environment

The design of a parallel test system involves a trade-off between the test length

and the cut off communication factor for the processors. If two processors are not

44

communicating, they might end up doing the same job, adding time and space over-

heads. For example, let (fl, f2) and (f3, f4) be two sets of faults with the first set

assigned to processor P1 and the second set assigned to processor P2. Then let fl

and f4 be compatible faults, i.e., there exists at least one vector which detects both

faults. Processor P1 will generate a test for fault fl while P2 does the same for fault

B. If the two processors are not communicating by sending the generated vectors to

each other for fault simulation, processor P2 will generate another vector for fault f4.

Hence, a test length of four vectors will be generated, while only three were sufficient.

An adequate solution to the above problem is the use of a parallel test system

with the test generation phase made separately without the fault simulation step.

This wilionly be feasible if the test pattern generator incorporated in the test system

generates an optimal or a complete set of vectors. As has been indicated in chapter

3, the proposed algorithm generates a set of test vectors without concurrent fault

simulation. That is, the test set is first generated and then fault simulation is applied.

The test set might include redundant vectors, but so far the test length is comparable

to those generated by other deterministic pattern generators, such redundancy could

be tolerated. We shall show through experiments that the test length of our algorithm

is in general less than those generated from other deterministic algorithms. In order

to incorporate our algorithm in a parallel test system, the fault/circuit partitioning

step must be carried out first.

4.3 Partitioning Algorithm

A clear advantage of the proposed algorithm is that only static partitioning of

output cones can be used. It is an advantage because it cuts off process communication

and saves the overhead time of signals between processors. For the static partitioning

method, an accurate estimate of time units needed to balance the loads over the

45

available number of processors is crucial. We have chosen the number of node back-

assignments made by the test generation algorithm as an accurate estimate for the

test generation time. Since we are optimizing the system for an overall minimal run

time, each processor has been assigned a load of equal number of back- assignments.

The partitioning procedure is shown in Figure 4.1.

The partition algorithm first calculates the number of assignments associated with

each output cone. As shown in the partition procedure, to ensure an accurate calcu-

lation of the number of node assignments, a similar procedure to the one used in the

test generation process has been implemented. The partition procedure groups the

output cones and divides them among processors according to the number of node

assignments associated with each cone. The above procedure minimizes the difference

in the number of node assignments between the largest and the smallest element in

the resultant group, as depicted in the for loop of the procedure. The fact that the

procedure starts with the group containing the output cones with maximum number

of assignments helps in minimizing the differences in the elements of the resultant

group as the algorithm steps forward.

For example, consider a circuit with 10 primary outputs and the available number

of processors N equals 4. If the number of node assignments in the 10 output cones

are 1, 2, 2, 3, 5, 6, 10, 16, 17, and 20, with N equal to 4, two groups of 4 elements

and a residual group of 2 elements are created. The first group which includes the

output cones with the largest numbers of assignments will hold the elements 10, 16,

17, and 20, while the second group will hold the elements 2, 3, 5, and 6. Executing the

for loop in the partition procedure results in a new group which holds the elements

16, 21, 20, and 22, which is going to be 16, 20, 21, and 22 after sorting the group.

The final step is the addition of the residual group to the last two elements in the

46

Input : Circuit netlist.
Number of gates, P1 nodes, and P0 nodes.
Number of available processors (Np).

Output : An ordered assignment sequence.

Procedure partition() {
calculate the number of expected back-assignment for each output cone.
if the P0 list is empty; sort the numbers list;

else get next P0.
divide the list into groups with each group having N elements;
if N/No is not integer;

create a residual group with the remaining number of elements.
/ No is the number of primary output nodes. /
else return the number of groups;

let group number i be the one with the maximum number of assignments;
for each element in group i {

add element j of group i to element N-j of group i+1;
save result in group i+1;
sort group i+1;

}
repeat the last step until groups are exhausted, including the residual group (if any)
assign elements in the final group to N processor.

}

Figure 4.1. The partitioning algorithm.

47

forehead group. The final group will hold the elements 18, 21, 21, and 22. These

elements represent the load distribution over a set of 4 processors. The difference

between the largest and the smallest element in the final group is expressed as Da,

where Da equals 4 in the above example. The Da number is a measure for the load

balancing over the available of processors.

As the static output cone partitioning is used in the parallel test system, each

processor is assigned the netlist of the output cones associated with it. Consequently,

only the circuit portions belonging to more than one output cone need to be repli-

cated. Also, as previously mentioned in chapter 3, the dynamic lists generated by the

proposed algorithm is very small and consumes smaller memory segments compared

with circuit sizes tested.

4.4 System Modeling

As mentioned earlier, the partition algorithm has a significant impact on the paral-

lel test system performance. We have assumed that the static partitioning algorithm

used in the parallel test system distributes balanced loads to the available processors.

Consequently, the communication factor between the processors is zero. The idea is

to give each processor a version of the test generation algorithm and a portion of

a circuit. Each circuit portion represents at least one output cone. Each processor

generates a separate test set for the output cone(s) associated with it. With all test

sets combined together, a final test set is generated.

Figure 4.2 shows the overall parallel test procedure. The partition algorithm is

first initiated to create the necessary load for each processor. Then, each processor

is assigned a circuit partition of output cones by receiving the node numbers of the

corresponding primary outputs as an initial node list. Each processor then calls the

48

Input : Circuit netlist.
Number of gates, number of PT's, and number of PO's.
Number of processors available (Np).

Output : Test set.

Procedure paral_test_gen() {
partition();
assign a balanced load to each processor;
for each processor's assignment {

test_gen();
/ Generate a test set for each processor's assignment.
save the test set in a common area for all processors;

}

}
unique(test set);
for each vector in the final set {

fault....simO;
}
compute the fault coverage.

Figure 4.2. The parallel testing algorithm.

*1

49

test generation algorithm to generate a test set for this particular circuit partition.

• As the processor with the largest load completes generating the last test set, a final

test set is created by grouping all other sets together. The final set is then minimized

by removing all redundant vectors in the set keeping only one version of each vector.

A fault simulation program is then run in order to evaluate the test set and calculate

the fault coverage.

As may be seen from the above discussions, a real parallel machine is not really

needed for implementing the parallel test system. Instead, we have used a single pro-

cessor machine to implement such a system. The partition algorithm is first run, then,

each processor assignment is run sequentially. Of course, this would not be feasible

if the partition algorithm uses a dynamic method where process communications is

required.

4.5 Summary

This chapter addressed the issues involved in providing a parallel test genera-

tion system environment by incorporating the test generation algorithm described in

chapter 3 as the main test generation resource. Requirements of an efficient fault par-

titioning scheme were discussed and a static partitioning scheme is presented. The

advantage of using static partitioning scheme has been identified, since it cuts off

communication overheads among processors.

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

For an accurate evaluation of a test system, real circuit examples should be used.

Benchmark circuits constitute a good example for evaluating a test system and also

for comparing results with other systems. In evaluating our test system, we have

used the ISCAS'85 [4] combinational benchmark circuits. Table 5.1 shows the eight

circuit examples used in this research work. At the time of testing, the circuits are

represented in their netlist format.

For the purpose of fault simulation, we have built a single-pattern single-fault

simulator. The fault simulator used in our system simulates each node in the circuit

for a possible s-a-O and s-a-1 fault. With each vector simulated, all faults detected

by this vector are automatically removed from the fault list. Consequently, after a

few cycles of simulation, the process speeds up until the test set is exhausted and '

only faults which are not detected remain in the fault list. Some of these faults are

not modeled in the benchmarks, hence, we compared the output fault list with the

modeled faults in order to get the exact fault coverage.

Finally, the proposed test generator and the fault simulator were implemented in

the C programming language on a SUN SPARC 1+ workstation. The ISCAS'85 [4]

combinational benchmark circuits were used to evaluate the test generation system.

51

Table 5.1. ISCAS'85 benchmark circuit characteristics.

Circuit name Function Total gates No. of PIs No. of POs No. of faults
383
546
876
1193
1669
2307
2416
3512

C880
C1355
C1908
C2670
C3540
C5315
C6288
C7552

ALU and control
ECAT
ECAT
ALU and control
ALU and control
ALU and selector
16-bit Multiplier
ALU and control

60
41
33
233
50
178
32
207

26 942
32 1574
25 1879
140 2747
22 3428
123 5350
32 7744
108 7550

5.2 Evaluation of the proposed test pattern generator

The test pattern generator described in chapter 3 can be configured to generate

tests starting with all the primary outputs grouped together. We will refer to this

scheme as the grouped output configuration. As will be shown experimentally, the

grouped output configuration has a better timing performance than single cone con-

figuration where a set of vectors is generated for each output cone individually as

described earlier. However, the size of dynamic lists in the grouped output configura-

tion far exceeds that of the single cone scheme. The number of assignments per node

are therefore limited to avoid excessive memory utilization by the grouped output

scheme. The same technique was also used in the single cone configuration. The

results have shown a further efficiency improvement in terms of computing time and

memory space.

The test pattern generator has been evaluated for the two possible configurations.

Table 5.2 shows the execution time required for netlist translation and test generation

when the generator is in the single cone configuration. The table also shows the test

length and fault coverage for different values of the parameter K.

In each case, the majority of the modeled faults were detected at small values of K.

52

Table 5.2. Real Execution Performance of Our Algorithm with the ISCAS Benchmark
Combinational Logic Circuits.

Circuit Faults Test Vectors Coverage Time (sec)
K=2 K=10 K=20 K=2 K=10 K=20 K=2 K=10 K=20

C880 942 64 74 78 95.00 98.15 99.93 0.6 0.8 1.0
C1355 1574 100 106 110 94.10 97.79 99.02. 0.8 1.4 1.6
C1908 1879 46 68 94 87.0.0 92.11 98.99 1.0 1.4 1.9
C2670 2747 68 80 92 84.50 89.20 95.41 2.9 5.1 7.9
C3540 3428 68 94 98 86.20 92.16 95.91 2.8 4.3 6.2
C5315 5350 96 102 108 94.00 96.13 98.22 7.7 12.2 17.2
C6288 7744 94 95 96 99.41 99.41 99.54 5.7 7.2 9.2.
C7552 7550 84 100 116 93.21 96.16 97.52 13.2 22.3 32.4

It can be seen that the fault coverage increases as we add more sensitizing paths by

increasing the value of K. Our algorithm is at least two order of magnitude faster than

those of the PODEM implementation of [15] (shown in table 5.3). As the circuit size

increases, our algorithm shows a much better time performance compared to PODEM.

Hence, our algorithm performs efficiently with large circuits where computational

complexity is critical.

Table 5.4 shows the results obtained using our algorithm in the grouped outputs

configuration. As has been mentioned earlier, the timing performance of this config-

uration is better than the single cone scheme. Moreover, the test length is even less

than the single cone configuration. This is expected because in this configuration,

the interaction between output cones is allowed and the maximum number of assign-

ments K will be shared by the interconnected cones. Since we are comparing both

configurations with the same value of K, the limitations on the circuit capability to

release more test vectors is apparent in the grouped outputs scheme. As a result, the

test coverage is degraded and a larger value for K is required to achieve a higher fault

coverage.

53

Table 5.3. Results obtained using RODEM algorithm.

Circuit Test Vectors Coverage Time (Seconds)
C880 85 100.00 9.05
C1355 145 99.49 38.02
C1908 150 99.73 49.42
C2670 141 95.52 116.81
C3540 206 96.82 235.38
C5315 161 99.20 150.41
C6288 39 99.94 70.81
C7552 251 97.71 437.00

Table 5.4. Results for the grouped outputs configuration, with K = 20.

Circuit Test Vectors Coverage Time (Seconds)
C880 69 91.00 0.8
C1355 18 83.45 1.2

• C1908 61 93.61 1.5
C2670 77 89.92 6.4
C3540 87 90.10 5.0
C5315 96 94.22 13.9
C6288 82 95.76 7.3
C7552 102 92.47 25.9

54

In order to show how both configurations utilize the memory for the storage of

the dynamic lists, Table 5.5 shows the maximum size of memory segments used by

the test algorithm at different values of K. Because the limitation on the number of

assignments applies to all nodes in a circuit, the size of the dynamic lists linearly

changes with the value of K for each configuration. On the other hand, the ratio

of memory usage by the grouped outputs scheme to that of the single cone, referred

to as the memory reduction, is only a function of the circuit itself. If the circuit

complexity is homogeneously distributed over output cones, the ratio will be very

high. For example, circuit C6288 is a multiplier, which is characterized by a regular

design, has a ratio of memory reduction 33.2 at K equals 20. The other extreme is

exhibited by circuits that have poor complexity distribution over the output cones.

An example of this circuit is C1355 with a reduction ratio of only 1.18 at K equals

20. The overall memory utilization is thus in favor of the single cone configuration.

Table 5.5. Memory utilization comparison results for the two algorithm configura-
tions.

Circuit Single cone scheme grouped outputs scheme
K=2 K=10 K=20 . K=2 K=10 K=20

C880 0.025k 0.072k 0.083k 0.109k 0.412k 0.591k
C1355 0.105k 0.564k 1.085k 0.128k 1.720k 1.280k
01908 0.088k 0.473k 0.876k 0.159k 0.764k 1.710k
C2670 0.970k 0.353k 0.508k 0.168k 0.905k 1.819k
C3540 0.143k 0.640k 1.776k 0.656k 2.192k 2.222k
C5315 0.080k 0.373k 0.542k 0.522k 1.787k 2.518k
C6288 0.007k 0.047k 0.102k 0.243k 1.473k 3.388k
C7552 0.310k 0.984k 1.329k 1.315k 3.749k 6.217k

From Tables 5.2 to 5.5, the performance of our algorithm can be evaluated as

follows:

• The proposed algorithm outperforms any existing deterministic test pattern gen-

55

eration algorithms in terms of time complexity and test length.

. The fault coverage is slightly lower than other ATG algorithms, like PODEM

and FAN.

• As the circuit size increases, the algorithm shows an efficient performance at low

values of K.

• The grouped outputs configuration is more likely to be used in a small and

medium size circuit complexity where memory utilization is not critical.

• The single cone configuration is very efficient in generating tests for large size

circuits, without compromising the memory utilization.

• The proposed algorithm is very useful if employed as a first phase in a test

generation system, replacing the traditional random test generation techniques

which has a limited fault coverage and longer test length.

5.3 Static circuit partitioning

The single cone scheme has been chosen for implementation in a parallel test sys-

tem. As stated above, the static partitioning was carried out by giving each processor

an equal number of node assignments. Table 5.6 shows the time spent in partitioning

the circuits into groups and distributing the loads on the processors. The optimal

number of node assignments G0pt is the average number of assignments, which when

given to each processor, results in an exact match of timing perfofmance of all pro-

cessors. Da is the maximum load unbalance between two processors expressed as

the difference of node assignment numbers. In general, the time taken for circuit

partitioning is negligible for the entire benchmarks.

56

Some of the circuits have been partitioned efficiently, as in C880 and C6288, while

other circuits were poorly partitioned as in the case of C1908 and C2670. This

raises the design issue as mentioned before. We recall here that the limitations on the

number of I/O pins for a VLSI circuit does contribute to the complexity of the testing

problem. Adding more pins to a VLSI chip will not resolve the test complexity unless

an adequate distribution of logic circuitry among the I/O pins is accomplished. To

elaborate, let us take the circuits C2670 and C6288 as examples. Circuit C2670 has

233 input pins and 140 output pins, while circuit C6288 has only 32 input pins and

32 output pins. During the partition algorithm run, we found that more than 80% of

logic assignments in the C2670 circuit belonged to only a few output cones, while the

other primary output nodes were connected to only one or two gates. As a result, a

large portion of the C2670 was hard to test despite the relatively large number of I/O

pins in the circuit. Consequently, as shown in Tables 5.2 and 5.3, the fault coverage

is low and 4.48% of the modeled faults were undetectable. On the other hand, in

the C6288 circuit, only small values of Da were obtained and circuit complexity was

homogeneously distributed among primary output nodes. With only 32 output nodes

and double the number of gates compared to C2670, a very high fault coverage was

achieved.

Table 5.7 indicates the results obtained from the parallel test system for different

number of processors, at K equals 40. The time shown in this table represents the

time spent by the processor with the maximum number of node assignment. The test

generation time difference between the processor with the maximum number of nodes

and that with the minimum, was negligible.

As the test generation time becomes smaller, the time taken for netlist translation

and circuit partitioning will be comparable to the test generation time. For example,

57

Table 5.6. The load distribution over the processors and the time spent in the static
partitioning procedure.

Circuit N = 2 N = 4 N = 8 N = 16 Time (sec)
Gopt D Gopt Da G0pt Da G0pt D.

C880 385 0 179 3 89 18 44 5 0.05
C1355 584 0 292 0 146 0 73 0 0.08
C1908 506 15 253 23 126 32 63 30 0.10
C2670 6852 0 3426 100 1713 103 856 107 0.15
C3540 378 1 189 11 94 23 47 12 0.19
C5315 8462 9 4231 33 2115 54 1057 61 0.29
C6288 1317 5 658 13 329 11 164 10 0.35
C7552 5249 1 2524 20 1312 79 656 90 0.42

Table 5.7. The run time for the parallel test system with different number of proces-
sors, for K = 40.

Circuit Time (seconds)
N=1 N=2 N=4 N=8 N=16

C880 3.70 1.90 0.95 0.6 0.35
C1355 3.60 2.00 1.50 1.20 1.10
C1908 3;70 1.85 1.60, 1.50 1.30
C2670 24.50 12.70 9.50 5.90 3.10
C3540 8.90 4.95 4.82 3.70 3.50
C5315 62.70 28.25 17.11 12.5 8.90
C6288 15.75 9.00 8.25 7.35 6.50
C7552 64.55 33.50 22.10 18.00 10.1

58

the circuit C7552 takes 6.1 seconds for netlist translation and partitioning, while

the test generation takes approximately 26 seconds (for K = 20, Table 5.1). This

ultimately puts a limit on the extent of speedup especially for a large number of

processors. The speedup figures can be extracted from Table 5.7, at a value of K

being 40. The results shown in Table 5.7 indicate that for large circuits, we can

get fairly high speedup ratios. The lower limit on overall test time is the netlist

translation and circuit partitioning time. For example, as shown in Table 5.7 with

16 processors, the circuit C7552 requires only 4 seconds for test generation while the

other 6.1 seconds were spent in netlist translation and circuit partitioning phase. The

actual speedup ratio would be (64.55-6.1)/(10.1-6.1) = 14.6, approaching the number

of processors.

The fault coverage for the parallel test system matches the single processor test.

generation system with the same value of K. For instance, the fault coverage for the

parallel test system with K equals 20 matches that shown in Table 5.2. This is because

the test generation algorithm inherently partitions the circuit into output cones. In

the parallel test system, the same job was done by first partitioning the circuit into

output cones and then distributing the jobs among processors.

5.4 Summary

In this chapter, the implementation of the algorithm presented in chapter 3 was

discussed. Experimental results on large circuits show that our algorithm outperforms

other existing test generation algorithms. The new algorithm is 'presented in two

different configurations. Advantages and disadvantages of each configuration have

been investigated. The single cone scheme has been incorporated into a parallel test

generation system. Also, a static load partitioning method has been used efficiently

in balancing loads over the available processors. Finally, experimental results based

59

on an implementation of our algorithm in a parallel system model on SUN SPARC 1+

work-station were presented. Results have shown that considerable speedup factors

were realized due to the efficiency of the test generation algorithm. Memory utilization

has also been shown to be very small compared to the circuit size. The overall-test

system has yielded a high fault coverage and provides time efficient procedures to

generate tests for large size combinational circuits.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The rapid advances in integrated circuit technology have made possible the fabri-

cation of digital circuits with a very large number of devices on a single chip. This

complexity is coupled with an increase in the ratio of logic to pins which drastically

reduce the controllability and observability of the logic on the chip. In addition,

there are new and subtle failures being observed with VLSI circuits. These problems

are already causing difficulties with the testing of the existing complex chips. Test-

ing is expected to become even more difficult with the higher complexity chips that

are being proposed. This research work proposes a new technique for designing test

generation algorithms with better time complexity than the existing ones.

In this research, we described a variety of fault and error models which are used

as the basis for designing fault-tolerant VLSI systems. The fault models describe

physical defects and failures and the input patterns, which will expose them, and

are suitable for testing. Error models on the other hand describe the effects on the

functional outputs of defects and are useful for on-line error detection. The models

are described at the gate level of abstraction.

The test generation problem has also been presented as a space search for test

patterns which detect single stuck-at faults at the gate level of abstraction. It has been

shown that the test generation problem is a complex problem and is considered to be

61

NP-complete. Different approaches have been used to tackle the test problem, either

by randomly generating test vectors or by using other deterministic test generation

methods. The test generation as a space search problem has evolved in designing

efficient algorithms for test generation such as PODEM and FAN. Most of the test

systems reported for this decade are based on these two algorithms.

The current test generation algorithms can generate test vectors for complex com-

binational circuits and guarantee 100 percent coverage for testable faults. However,

the test generation time increases exponentially with the increasing circuit complexity.

A new approach which combines simplicity and fast performance has been developed

for the test generation of large combinational circuits. The similarities of this algo-

rithm with current approaches have been identified. The test generation problem has

been formulated as a global search of sensitizing'paths between the input and the out-

put primary nodes. To achieve this objective, a circuit environment is created such

that all faults which can be detected, by multiple - path sensitization were detected.

The algorithm may not detect all faults that are sensitized with only a single path.

Hence, the fault coverage limitation will only be a function of the circuit complexity.

The fact that the algorithm does not process a decision tree makes it fast enough to

be compared with random test algorithms.

The issues involved in providing a parallel test generation system environment

by incorporating the proposed test generation algorithm as the main test generation

resource have been discussed. Requirements of an efficient fault partitioning scheme

were discussed and a static partitioning scheme was presented. The advantage of

using a static partitioning scheme has been identified by cutting off communication

time overhead among processors.

62

The implementation of the test generation algorithm is presented with experimen-

tal results derived from the ISCAS'85 combinational benchmark logic circuits. The

results' on large circuits suggest that our algorithm outperforms the other test gen-

eration algorithms. The, new algorithm is presented in two different configurations.

Advantages and disadvantages of each configuration have been investigated. The sin-

gle cone scheme has been incorporated into a parallel test generation system. Also, a

static load partitioning method is efficiently used in balancing loads over the available

processors. Finally, experimental results based on an implementation of our algorithm

in a parallel system model on a SUN SPARC1+ work-station were presented. Results

have shown that considerable speedup factors were realized due to the efficiency of the

test generation algorithm. Memory utilization has also been shown to be very small

compared to the circuit size. The overall test system has yielded a high fault coverage

and provided time efficient procedures to generate tests for large size combinational

circuits.

We believe that our algorithm can efficiently replace the random test generators

used as a first phase in test systems. Although our algorithm runs at a comparable

speed to random test generators (RTG), the fault coverage is much higher than the

RTG techniques. Consequently, if our algorithm is integrated with other determin-

istic test pattern algorithms, like PODEM, a very efficient test system will result.

PODEM, for instance, will search for test vectors for a very small test set which will

save on overall test time. We hope that this system can be integrated in the future.

REFERENCES

[1] P. Agrawal and V. D. Agrawal. Probabilistic Analysis, of Random Test Gen-

eration Method for Irredundant Combinational Logic Networks. IEEE Trans.

Comp., C-24(7):691-695, July 1975.

[2] V. D. Agrawal and M. R. Mercer. Testability measures - what do they tell us?

IEEE Test Conf., Chirry Hill, Phil., pages 391-396, 1982.

[3] A. V. Aho, E. Hoperoft, and J. D. Ullman, editors. The Design and Analysis of

Computer Algorithms. Addison - Wisley, Mass., 1974.

[4] F. Brglez and H. Fujiwara. A neutral Netlist of 10 Combinational Benchmark.

Circuits and a Target Translator in FORTRAN. IEEE International Symposium

on Circuits and Systems, June 1985.

[5] H. Fujiwara and T. Shimono. On the Acceleration of Test GenerationAlgorithms.

IEEE Trans. Comp., C-32:1137-1144, Dec. 1983.

[6] M. Garey and D. Johnson. Computer and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco, 1987.

[7] P. Goel. Test Generation Costs Analysis and Projections. Proc. .17th Design

Automation Conference, pages 77-84, June 1980.

[8] P. Goel. An Implicit Enumeration Algorithm to Generate Tests For Combina-

tional Logic Circuits,. IEEE Trans. Comp., C-30:215-222, March 1981.

[9] L. H. Goldstien and E. L. Thigpen. Scoap: Sandia controllability/observability

analysis program. Des. Aut. Con!., Minneapolis, Minn., June 1980.

64

[10] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Comp'uter

Science Press, Washington, DC, 1978.

[11] 0. H. Ibarra and S. K. Sahni. Polynomially Complete Fault Detection Problems.

IEEE Trans. Comp., C-24:242-249, March 1975.

[12] E. J. McCluskey and F. W. Clegg. Fault Equivalence in Combinational Logic

Networks. IEEE Trans. on Comp., C-20:1286-1293, Nov. 1971.

[13] E. J. McCluskey, S. Makar, S. Mourad, and K. D. Wagner. Probability Models

for Pseudorandom Test Sequences. IEEE Trans. on CAD, 7(1), Jan. 1988.

[14] Hyoung B. Min and William A. Rogers. Search Strategy Switching: An Alter-

native to Increased Backtracking. Int. Conf. on Testing, Sept. 1989.

[15] Srinivas Patil and P. Banerjee. Performance Trade-Offs in a Parallel Test Gen-

eration/Fault Simulation Environment. IEEE Trans. on CAD, Dec. 1991.

[16] D. K. Pradhan. Fault-Tolerant Computing. Prentice Hall, 1986.

[17] J. P. Roth. Diagnosis of Automata Failures, A Calculus and A Method. IBM J.

Res. Dev., 10:278-291, July 1966.

[18] D. R. Schertz and G. Metze. A New Representaion for Faults in Combinational

Digital Circuits. IEEE Trans. on Comp., C-21:858-866, August 1972.

[19] Michael M. Schulz, Erwin Trischler, and Thomas M. Sarfert. SOCRATES: A

Highly Efficient Test Pattern Generation System. IEEE Trans. On CAD, 7(1),

Jan. 1988.

[20] J. J. Shedletsky and E. J. McCluskey. The, Error Latency of A Fault in A

Sequential Digital Circuit. IEEE Trans. Comp., C-25:655--659, June 1976.

65

[21] J. A. Wacukauski, E. A. Eichelberger, D. 0. Forlenza, E. Lindbloom, and T. Mc-

Carthy. Fault Simulation for Structured VLSI. VLSI Systems Design, page 20,

Dec. 1985.

[22] A. Yousif and Jun Gu. An Efficient Global Search Algorithm for Test Generation.

Submitted to IEEE Trans. On CAD for publication, 1992.

