-1-
LOGICAL ARITHMETIC

John G. Cleary 1
The University of Calgary, Alberta, Canada.

Abstract

In the past, implementations of real arithmetic within logic programming have been
non-logical. Difficulties include an inability to alter the order of execution of statements
and incorrect handling of the different results caused by finite precision arithmetic.
Using interval analysis a simple description of real arithmetic is possible. This can be
translated to an implementation within Prolog. As well as having a sound logical basis the
resulting system allows a very concise and powerful programming style and is
potentially very efficient.

I Introduction

Logic programming aims to use sets of logical formulae as statements in a
programming language. Because of many practical difficulties the full generality of logic
cannot (yet) be used in this way. However, by restricting the class of formulae used to
Horn clauses, practical and efficient languages such as Prolog are obtained. One of the
main problems in logic programming is to extend this area of practicality and efficiency to
an ever wider range of applications [Kowalski, 1979]. This paper considers such an
extension for arithmetic.

To see why arithmetic as it is commonly implemented in Prolog systems is not
logical consider the following example:

X =067, Y=045, Zis X*Y, Z=0.30

This uses the notation of the 'Edinburgh style' Prologs [Clocksin, 1981]. (For the
moment an underlying floating point decimal arithmetic with two significant digits is
assumed). The predicate 'is' assumes its righthand side is an arithmetic statement,
computes its value, and unifies the result with its lefthand side. In this case the entire
sequence succeeds; however, there are some serious problems. The first is that the
answer Z = 0.30 differs from the correct infinite precision answer Z = 0.3015. This
causes difficulties in long sequences of arithmetic operations, where the propagation of
such errors can lead the final result to have little or no resemblance to the correct answer.

The second problem arises because in a pure logic program the order of statements
should be irrelevant to the correctness of the result (at worst termination or efficiency
might be affected). This is not true of the example above. The direction of execution of
'is' is strictly one way so that

Y =045, Z=030, Zis X*Y

will deliver an error when X is found to be uninstantiated inside 'Z is X*Y'. Even if
some form of arithmetic were devised capable of binding X it is not clear what value it
should be bound to. For, if the underlying arithmetic rounds the results of operations,
both the following sequences of statements should succeed:

-2-

X=0.66,Y =045, Z=0.30, Zis X*Y
X=0.67,Y=045 Z=0.30, Zis X*Y

So, it is unclear which value should be given to X, 0.66 or 0.67.

The problem then, is to implement arithmetic in as logical a manner as possible
while still making use of efficient floating point arithmetic. The solution has three parts.
The first is to represent Prolog's arithmetic variables internally as intervals of real

numbers. So the result of 'Z is 0.45%0.67' is to bind Z to the interval (0.30,0.31). This
says that Z lies somewhere in the interval, which is certainly true and probably as
informative as possible given finite precision arithmetic. (Note that Z is not bound to the
data structure (0.30,0.31); this is a hidden representation in much the same way that
pointers are used to implement logical variables in Prolog but are not explicitly visible to
the user. Throughout this paper brackets such as (...) or [...] will be used to represent
open and closed intervals, not Prolog data structures.)

The second part of the solution is to translate expressions such as 'Z is (X*Y)/2' to
relational form, in this case to 'multiply(X,Y,T), multiply(2,Z,T)' where 'T' is an extra

variable introduced as part of the translation. Both the * and / operators have been
translated to ‘multiply’ (with parameters in a different order). In the final implementation
this relational form is insensitive to which parameters are instantiated and which are not.
The third part is to provide a control predicate called 'split' to guide an iterative search for
solutions.

The resulting system not only provides a correct logical form of arithmetic but is

sufficiently powerful to be able to solve equations such as '0 is X*(X-2)+1' directly.
This is an example of the fact that in logical arithmetic most expressions are invertable;
they can be used to evaluate the expression or to solve for an unknown variable. As in
standard Prolog the underlying implementation provides a weak problem solving
technique which is sometimes sufficient in itself or can be used to program more
powerful techniques.

Interval arithmetic has traditionally been treated as a functional rather than a
relational theory. (Alefeld,1983) provides a good introduction to this 'classical’ theory.
Such functional theories are able to compute values but are unable to invert or solve
equations. They also have difficulties in defining some operations such as division, a
problem which does not arise in logical arithmetic (ibid, p5). A number of computer
packeages for such interval arithmetic have been implemented (Cole,1982), (Yohe,
1979). Bundy [1984] has implemented an interval arithmetic package in Prolog. Like the
previous systems mentioned it is functional and was built to provide correct information
about the ranges of functions with a major application in qualitative physical reasoning.
Bundy's work differs from that here in that it provides no way of representing logical real
variables and as it is functional rather than relational it does not provide any technique for
solving equations. Like Bundy (and unlike most interval systems) I carefully distinguish
open and closed intervals. Bundy also used rational arithmetic whereas I seek to
correctly handle the problems of finite precision real arithmetic such as that commonly
available in hardware.

The next section gives a somewhat more formal description of the underlying
interval arithmetic used. Section III shows how to describe primitive predicates in the
arithmetic and gives effectively computable procedures for a number of them. Section IV

-3-

shows that it is necessary to provide extra control if the arithmetic is to be used invertably
to solve equations. Section V examines a number of example programs and analyses
their usefulness and convergence properties. Section VI concludes with a summary and
some remarks on implementing logical arithmetic.

IL. Interval Representation

So that lower and upper bounds can be operated on as single entities, an interval
will be treated as a pair of bounds. Each bound has an attribute of being open or closed
and an associated number. For example the half open interval (0.31,0.33] will be treated

as the pair 0.31(and 0.33) written as {0.31,,0.33;) . (The brackets are subscripted to
minimize visual confusion.) As well as the usual real numbers oo and —cc will be used as
part of bounds. Let the set of reals be R, then the set of upper bounds, U(R), is defined as
all the bounds of the form xj and xy where x ranges over the reals including oo but

excluding —oo . The set of lower bounds, L(R), is similarly defined as all bounds of the

form x; and x where x ranges over the reals including —o and excluding oo . The set of

all intervals, I(R), is the product of these two sets L(R) x U(R) . The notation for these
objects is: intervals will be written as 1, J or K; bounds within intervals will be written

as gorh asin(gh) ; the real part of a bound will be written as x or y and the bracket as u
or v, as in x; and logical variables within Prolog programs will be written as X, Y or Z.

Using this notation loosely, intervals will be identified with the appropriate subset
of the reals. For example, the following identifications will be made:

[—00,1 5) = <—°°[,1 5)) = {X: X< 15}

[_°°v°°] = <_°°[l°°]> =R
and (-132.4] = (13,24} = {x:~13 < x<24} .

(These notations will be used interchangeably as convenient).
It is useful to have a linear ordering on all the bounds in L(R) UU(R):
X,<yy ¢ (x<y) v (x=y A u<v)
where x<y is the usual ordering on the reals extended to include oo and —co and where

u<v is determined by the order Xy < X[< X] < X(. This ordering on the brackets is

carefully chosen so that intervals such as (3.1,3.1) map correctly to the empty set. The
general rule is that an interval with a lower bound g and upper bound h (written as the

pair (g,h)) will be empty iff h<g. For example, according to the definition above
3.1¢>3.1y, so (3.1,3.1) is, correctly, computed as being empty. The definition also
allows the intersection of two intervals to be computed using

{gh N (g’,h") =(min(g,g’), max(h,n’)) .

The finite arithmetic available on computers is represented by a finite subset, S, of

thereals. For example, S might be the set of numbers representable by a fixed length
exponent and mantissa floating point format, a bounded set of integers or a bounded set

-4-

of rational numbers. In what follows it is only necessary to assume that 0,1 € S. The
set of intervals over S is |(S) defined as above for [(R).
It is useful to have a function, 'approx', from subsets of R to I(S) which

associates with each subset the smallest interval in [(S) which contains it. Because of
the availability of e and -eo in the bounds such an interval is always uniquely defined.

‘approx' can also be used as a mapping from [(R) to [(S), for example,
‘approx([3.141592...,3.141592...]1)=(3.1,3.2)', that is, the best interval approximation

tomin [(S) is (3.1,3.2).

Intervals are introduced into logic by extending the notion of unification. A logical
variable X can be bound to an interval I , written X:I . Unification of X to any other
variable Y gives the following results:

+if Y is unbound then it is bound to the interval I, written as Y:I ;

«if Y is bound to the interval J then X and Y are rebound to the same interval I A J
(the unification fails if I NJ is empty);

«a constant C is equivalent to the interval 'approx([C,C])’;

«if Y is bound to anything other than an interval the unification fails.

Note that unlike standard Prolog a variable may be rebound many times, although each
time the length of the interval it is bound to will be shorter. This is analogous to the
situation where a variable is bound to a partially uninstantiated data structure, the
components of which are later bound.

Following are two simple Prolog programs and the bindings that result when they
are run (assuming two significant digits of accuracy):

X =3.141592 X:(3.1,3.2)
X>-522,Y<31,X=Y X:(-5.3,31] Y:(-5.3,31]

III Primitive predicates

In order to develop a useful arithmetic it is necessary to specify some primitive
arithmetic predicates. To do this I first develop a general way of specifying such
predicates as subsets of the n-dimensional reals, R2, and I then show effectively
executable routines for implementing them. The primitive predicates defined are addition,
multiplication, ordering, inequalities and integer. The techniques developed are
sufficient, however, to handle a much wider range of predicates.

Addition

Addition is implemented by the predicate ‘add(X,Y,Z)" which says that Z is the
sumof X and Y. ‘add' can be viewed as a subset of R3 defined by:
add={(xy,z):xyze R, x+y=z2}
Given an initial binding of variables to intervals, X:I, Y:J and Z:K, the full set of
solutions of the constraint 'add(X,Y,Z)' is given by all triples of real numbers in the set

‘add NnI'xJxK ' To get an effective representation of this set it is necessary to
approximate it while ensuring that no triples satisfying the constraints are excluded. The

-5-
underlying representation of variables only allows them to be bound to intervals, so the
only way to achieve this approximation is to narrow the intervals to which X, Y and Z are
bound. As a preliminary to giving a rigorous procedure for doing this, Figure 1
illustrates this process of narrowing. The initial bindings are X:[0,2], Y:[1,3] and
Z:[4,6]. After applying 'add(X,Y,Z)' the smallest possible bindings are X:[1,2], Y:[2,3]
and Z:[4,5]. Note that all three intervals have been narrowed.

To get the best approximation the intervals should be narrowed as much as
possible, while ensuring that no triples satisfying the constraints are excluded. That is,
if the new bindings after narrowing are X:I*, Y:J’, and Z.K* they must obey:

I'XJ'XK” o addNnIxJxK

The best values of I'.J’ and K’ can be determined from the projected values of the set
‘add N I xJ x K '. For example, I’ must be a superset of the projection on the x—axis :

I' o {x:Jyz<xyz>e add NI xJxK}

Each such projected set uniquely defines a smallest interval which contains it (this is true

of any subset of the reals provided co and —co are available as bounds). Extending the
domain of the function 'approx' introduced earlier I will write

I"xJ"xK” =approx(add NI xJ xK)
to indicate that I'J’ and K* are the unique smallest intervals determined in this way.

If narrowing is done more than once for a single constraint then it can be proven
that the intervals change only once on the first narrowing (space does not allow the proof
to be given here). So it is not necessary to repeat the narrowing calculations more than
once for a particular constraint although it will be seen later that the existance of other
constraints may force further execution of the narrowing calculation.

These results about 'add’ depend in no way on its properties other than that it is a
subset of R3. The analysis and results can trivially be extended to any subset of Rn.
However, 'add’ does have the property that all projections of 'add NI x J x K "are
intervals themselves. I will refer to this property as interval convexity or convexity for
short. If a set is convex then the calculation of optimum narrowings for it is greatly

simplified. Unfortunately, some sets such as 'multiply' are not convex. A technique for
dealing with them is described in the next sub—section.

Because 'add’ is convex it is only necessary to compute the end points of the
projected sets when narrowing. To see how to do this consider the variable Z in
'add(X,Y,Z)". The narrowed binding K’ is known to be a subset of K and also of the

sums of all the possible values in 7 and J. That is:
KoK

and I+J o K’
where I+] = {z: Axel,y eJ, x+y=z}

It can be shown that these two constraints completely determine K ', that is:
K'=Kn(I+))

-6-
I+J can be computed easily from the end points of its intervals as follows:

(gh) +(g)h) =(g+g, h+h'
where addition of the bounds is defined by

Xytyy = (x+y)u+v

and x+y is the usual real addition extended to include oo . This and addition of brackets
(u+v) are defined in the two tables below. The entries marked ? do not occur and so need
not be specified.

+ -00 X o0

-00] =00 00 ?
y| -0 X+y oo

oo ?) 00

AN e Y N +
O e e |
AN N0 M e
~ O N
A~ D o~ 9|~

Similarly for the other two variables:

J'=Jn (K-

I'=sIn(K~J)
where K-J= K+(-J)
and -J= {-y:yeJ}

—J can be calculated using <I,h) = (-h,-1) and —(x,)= (-x)_, where —x is the usual
negation of real numbers extended to include . The table for negating the brackets is:

Multiply

The predicate 'multiply’ can be defined in the same way as 'add' but because it is
not interval convex a different approach is needed when constructing a narrowing
algorithm for it. The definition of 'multiply as a subset of R3 is

multiply = { (x,y,2) : x,y,z € R, x*y=z }.
To see that this is not convex consider the following example:

multiply(X,Y,Z) X:[-2,3] Y:[-oo,00] Z:[1,1]

In functional form this is 'Y is 1/X". Taking the smallest intervals containing the

projections of the constrained set 'multiply N[-2,3] x [~0,00] x [1,1]', there is no
change after narrowing. However, this does not tell the whole story, as Y cannot take on
the value 0 (no real number between -2 and 3 multiplied by O can give 1). In fact, there
is a gap of values from —1/2 to 1/3 which Y cannot validly take on. That is, the projection

-7-
of the constrained set onto the y—axis is not an interval, but is the union of the two

intervals [—e0,~1/2]U[1/3,00] . One way to ensure the maximum possible amount of
narrowing in this case is to bind Y separately to the two intervals by backtracking. When
this is done two different narrowings are obtained:

X:[-2,0] Y:[=00,~1/2] Z:[1,1]
and X:[0,3] Y:[1/3,00] Z:[1,1]

(note that both X and Y are bound to different intervals).

Such backtracking can be placed on a firmer footing by noting that the set ‘multiply’
can be partitioned into two separate sets each of which is convex, viz:

‘multiply = multt U mult
where multt= { (x,y,2) : x,y,z€ R, x20, x*y=z }
and mult- = { (xy,2) : xyze R, x<0, x¥y=z} .

(There are many possible such partitions, the one chosen is as good as any other).
The narrowing algorithm for 'multiply’ then selects one of the subsets of 'multiply’
and narrows using just that set; eventually after backtracking the other set will be used to

do the narrowing. The narrowing algorithm for 'multiply' given below computes I°, J”,
and K given that

I"xJ* x K’ = approx(multiply N I X J X K).
Itis given without the rather lengthy proof of its correctness.

Narrowing algorithm for multiply

In order to simplify a number of special cases an initial check is done to see if any
of I, J, or K are bound to [0,0].
if K = [0,0] then visit the following two bindings by backtracking
I'=1n [0,0], J'=J, K'=K=[0,0]

I'=l, J'=Jn [0,0], K'=K=[0,0]
else if 1=[0,0] or J=[0,0] then
I'=l, J'=J K'=K=[0,0]
else narrow using mult* and mult, visiting each in turn by backtracking;

The narrowing algorithm for mult+ is given below (the algorithm for mult- is essentially
identical apart from appropriate manipulations of signs):
I'=InN[0,00] N

((KN[000])*inv(J N [0,00])) U ((-K N [0,00]) * inv(-/ N [0,00])))
J'=Jninv((I N[00]) *K)
K'=Kn({(Nn[0o])*J)
where IxJ= {x*y: xel,yel},

inv(l) = {y: xel, x*y=1},
and -/ is defined above for 'add'.

-8-

Because of the way it is used above, 'inv' need only apply to positive intervals not equal
to [0,0]. It can be calculated using the following rules:

inv((Lh}) = {inv(D), inv(h))
inv(x,) =ifx =0 thenoo _ else
if x = oo then 0_,

else (1/x) _,
where 1/x is the usual real division and —u is taken from the tables for add.

Again, because of the way it used, [*J always has I positive and not equal to [0,0] . It
can be calculated using

(g:h) *(g'h') =(min((g*g'h*g), max(h*h',g*h)) .
If x ory is zero then a special case occurs and x,*y, = Oy, as shown below:

If neither x or y is zero then x,*y, = (x*y),., Where x*y is the usual real arithmetic

extended to include oo . The two tables below show this and the multiplication of
brackets u*v:

x|) [1 (

)))« % | —o0 ¥(<0) y(>0) oo
(]) [1 (X(>0)[=0 x*y x*y oo
I DT S T e e
() C) «

Divi zer

It is interesting to see what happens to our definition of 'multiply' when a divide by
zero is attempted. In most computer systems this leads to some form of exception or
error routine being executed. In relational notation 'X is Y/0' becomes

'multiply(X,0,Y)". If X and Y are unbound then they become narrowed to X:[—00,00]
and Y:[0,0]. Thatis, X can take on any real value and Y must be 0.

Inequalities

Inequalities such as 'X 2 Y' are readily accommodated. Given initial bindings
X:(g,h) Y:(g'h'") and the constraint X > Y then the new narrowed bindings are:
X:(max(g,h'),max(g',h))
and Y:(min(g',h),min(g,h")) .

As with other predicates both of X and Y may be narrowed at the same time. For
example if initially X:[1,5], Y:[2,6] and 'X 2 Y' then after narrowing X:[2,5] and
Y:[2,5]. >'and '2' are both interval convex so it is not necessary to investigate more
complex narrowings.

An inequality such as X # Y' is more problematic. If X and Y are both bound to
extended intervals, say X:[1,2] and Y:[0,2] then no narrowing is possible. All values of
X and Y constitute possible solutions. If X were 1.5 then Y could be 1.495 or 0.5 and
so on. The only case where some narrowing can be done is if one of X or Y is a point.
If X:[1,1], Y:[0,2] and "X # Y, then Y can be split to the two intervals: Y:[0,1) and
Y:(1,2].

Integers

A predicate to restrict a variable to integers is easily realized by taking the integers

as a subset of R to define the predicate. Given X:(g,h) and the constraint 'integer(X)'
then the binding after narrowing is:

X:(gl|h))
where [xv]= if, 1is the smallest integer such that i2xy,
and [x"|= i},iis the largest integer such that < xy.

Note that the definition is careful to ensure that for example | 3) | = 2I.

As an example, if X:(2,4.5] and 'integer(X)', then after narrowing the binding is
X:[3,4]. ‘integer' is not interval convex, so, the preceding example might be handled by
the alternate bindings X:[3,3] and X:[4,4]. This does not seem to be useful in practice
and could involve a very large number of backtracking steps for initial bindings such as

X:[=00,100).
IV Control

The theory so far provides a means for computing arithmetic functions in the usual
way building up values from previously known ones. Interestingly, the definitions of the
individual predicates given above are not sensitive to which parameters are instantiated.
This gives some hope that it might be possible to solve equations merely by stating them.
In this section I introduce an additional control predicate called 'split' which is necessary
to make this practical. In the next section I examine the range of equations which are
practically soluble using 'split' and narrowing.

Splitting

-10 -

The example equation in Figure 2 shows why more control is needed over
execution of predicates if equations are to be solved. The equation there is 'X+X is 10",

which translates to the relational form 'add(X,X,10)". Initially X:[—co,00] and when the
narrowing described above for 'add' is attempted nothing happens; X remains bound to
the same interval. Splitting uses Prolog-like backtracking to examine different possible

solutions to the equation. In this case X can be bound to the alternate intervals [0,00] or
[—o°,0) and provided both are eventually tried no possible solutions will be excluded.

Figure 2 shows that when X is bound to [0,e¢] narrowing immediately further binds it to
[0,10]. Further progress requires another split, this time into the two intervals [0,5] and
(5,10]. [0,5] is used first and narrows to the solution [5,5]. Upon backtracking (5,10]

narrows to the empty set, that is, no solution is possible. Finally [—o0,0) is tried and it
too fails by narrowing to the empty set.

Splitting is invoked by the control predicate 'split(X)'. Its effect is to cause the
argument variable to be split whenever no further narrowing is possible by any of the
primitive predicates. It is important to understand that a predicate such as 'add(X,X,10)’
is not completed after one narrowing is done, it may have to be reinvoked for another
narrowing whenever X is narrowed by some other predicate. Thus, in the simple
program 'add(X,X,10), split(X)', normal Prolog control first invokes 'add’, which

executes its local narrowing algorithm, then executes 'split' which binds X:[0,00). This

causes the local narrowing algorithm for 'add' to be executed again, which is a departure
from the normal Prolog control.

In situations where there are many primitive predicates including 'split' the control
algorithm used is as follows:

sthe local narrowing algorithms for any primitive predicates called are executed until
no further narrowing occurs;

sthen one of the current 'split' predicates is executed and the process of narrowing is
started again;

+finally when there is no further splitting or narrowing to be done normal Prolog
control resumes (any failure during narrowing causes a normal Prolog fail and
backtrack).

Although very simple, this control is sufficient for all the examples considered in the next
section.

The control predicate 'split' can be programmed many ways; all that is required is
that the subintervals generated and visited by backtracking completely cover the original
interval. The form used here splits the original interval in half. There are a number of
spacial cases that need to be handled: when 0 is in the interval it is used as the split point;
when e or -eooccurs as a bound it is treated as if it were respectively the smallest or
largest number in S; and when the end points of the interval are adjacent members of S,
as in [x,y], then the three intervals [x,x], (x,y) and [y,y] are generated. More
sophisticated algorithms have been used to good effect but they would unnecessarily
complicate the following examples.

-11-
V. Example Equations

Square Root

Figure 3 shows how the square root of a number is computed using the equation
"X*X is Y' (it is assumed that all such functional forms are translated to relational form

for execution). Two extra constraints are added: 'Y > 0' which ensures that only the
positive solution is found; and 'split(X)' which forces an accurate solution to be found
for X. The system alternates between narrowing and splitting six times before
converging to the best possible interval (1.414,1.415) (for this and subsequent examples
decimal floating point arithmetic with four digit accuracy is used).

Given the weak and general nature of the narrowing algorithm for multiplication it
is perhaps surprising that the calculation converges quadratically. That is, if the error

before one cycle of narrowing and splitting is €, then afterwards it is €2/2. This can be
seen in the list of errors in Figure 3, which shows the difference from the final value for
the upper and lower bounds in each iteration. Logical arithmetic also automatically takes
care of a number of other programming details:

+the second iteration binds X:[1,2], this is equivalent to the normal practice when
computing a square root iteratively of making the value of the argument itself the
first estimate for the square root;

«the last two iterations squeeze the last possible drops of precision from the system
by searching the region from 1.414 to 1.416;

sthe system automatically terminates when the limits of precision are reached and no
further narrowing is possible;

* if the constraint 'Y > 0' is lifted then both the positive and negative solutions will
be found by backtracking.

General polynomial

These properties can be extended to polynomials of arbitrary degree. Any
polynomial will automatically generate all solutions by backtracking. A little care is
needed however to ensure that convergence is as fast as possible and to prevent too many
spurious solutions being generated by inaccuracies inherent in the equations. Consider,
for example the equation x3-6x2-7x—6=0. It has a single root lying in the interval
(7.104,7.105). If the program for solving it is stated as:

X* (X*(X-6)-7)-61s 0, split(X)

then this interval is the only answer returned. However, the form that the equation is
stated in can affect the accuracy of the answer. For example, if it is stated as:

X*X*X — 6xX*X - 7#X - 6 is 0, split(X)

then a number of other intervals near this, for example (7.103,7.104), are also returned
as solutions. This does not invalidate the claim that interval arithmetic is logically correct,
as this principle only ensures that correct solutions are never rejected. The moral here is
that while different forms of an equation may be equivalent in infinite precision arithmetic
thier computational properties and the number of potential solutions they offer may differ.
The 'problem’ of the second of the equations returning additional solutions is intrinsic to
the equation itself; it is impossible to evaluate that form of the polynomial and be sure that

-12-

a zero does not lie in the interval (7.103,7.104). The first of the equations above is in
Horner form which is already known from standard numerical analysis to be a good way
of evaluating a polynomial. The general principle here is that if an equation is in a form
that can be gvaluated accurately then the number of potential solutions returned by
splitting will be reduced.

The convergence for a polynomial is quadratic (as with the square root above)
whenever the current interval being examined contains only a single root and the interval
is small. This is satisfactory except when a polynomial has multiple roots or two roots
very close together. Convergence is still guaranteed but may be very much slower. This
can be remedied at the cost of a more complex program by standard techniques such as

finding a zero of the derivative (or) and dividing the final equation by (x-ot).

Simultaneous Equations

The ability to solve equations merely by stating them carries over to simultaneous
equations in a number of variables. For example the following linear equation is solved
directly by narrowing and splitting:

X+Yisl,
X -Yis2,
split(X), split(Y).

Figure 4 shows the search tree for the solution. Just stating the equations in this way is
entirely satisfactory for small problems. Unfortunately, the search for a solution takes
time O(2%) where n is the number of variables in the equations. In the case of linear
equations this can be reduced to time O(n3) by writing a Gaussian elimination program in
logical arithmetic (or using other well known techniques for solving linear equations).
Programming this way in logic still gives substantial advantages: the final solutions are
given with guaranteed error bounds; if the problem has no solution then the equations fail;
it is not necessary to code a special test to take care of this case; and in Gaussian
elimination the final step of back substitution to obtain the final values for the variables
can be omitted completely.

Integer divisors

Consider the problem of finding all integer divisors of some integer. This could be
coded as:

div(X,Y,Z).- X+Y is Z, integer(X), integer(Y), integer(Z).
This is a little naive as it allows all of div(3,4,12), div(4,3,12), div(-3,-4,12) and
div(—4,-3,12) as well as div(1,12,12) etc. To get a more realistic set X should be
constrained to be greater than 1 and also less than Y, that is:

div(X,Y,Z):— X*Y is Z, X>1, X<Y, integer(X), integer(Y), integer(Z).

Figure 5 shows the resulting search tree for the calls 'div(X,Y,12), split(X). The
narrowing steps are shown in detail so that the alternation between the narrowing caused
by ‘'multiply' and that caused by 'integer' can be seen. The execution time for the
resulting algorithm is O(\n) where the divisors of n are being sought. This is what you
would get using the simple algorithm of testing all numbers from 2...Vn to see if they
divide n.

-13 -
modulus

A good example of the power of logical arithmetic is the following program for
'mod(X,Y,Z)' (where Z = X mod Y):

mod(X,Y,Z):- Y >0, X is Y#N + Z, integer(N),Z>0,Z < Y.
mod(X,Y,Z):- Y <0, X is Y*N + Z, integer(N),Z<0,Z > Y.

The two clauses allow for the cases where Y is positive and where it is negative (the
remainder may then be negative). This has very much the flavor of a specification of
'mod’ and is eminently executable as well. For example, given the call 'mod(23,5,Z),
split(Z)', Z is first bound to [0,5) by the two inequalities, this allows N to be narrowed to
(3.6,4.6] by ‘multiply', this is further narrowed by 'integer(N)' to [4,4], and finally the
binding Z:[3,3] is obtained. When the second clause is visited by backtracking it fails
because of the inequality 'Y < 0.

factorial
A factorial function can be straightforwardly defined as:

fact(0,1).
fact(1,1).

fact(N,R):- integer(N), N > 1, M is N-1, fact(M,Z), R is Z*N.

This works as expected for calls such as 'fact(2,Z)' where Z is bound to [2,2].
Interestingly, the inverse call 'fact(N,2)' also works correctly, binding N:[2,2].
Unfortunately, it then goes into an infinite loop searching for solutions with N=3,
N=4.... This can be easily fixed by adding the redundant specification that R must be
greater than N, giving a new final clause:

fact(N,R):- integer(N), N > 1, M is N-1, fact(M,Z), R is Z*N, R > N,

The resulting program is fully invertable with a call of the form 'fact(N,Z)' taking time
O(N) when Z is bound to a single integer.

VI. Conclusion

The examples above show that logical arithmetic has all the properties that have
come to be expected from a logic programming language:

» the code is close to or identical with specifications;

* many programs are invertable or can be used in a number of ways;

« the resulting programs are concise;

+ in casting arithmetic in a logical or relational style a very elegant theory of arithmetic
has emerged.

The semantics of a Prolog program including this style of arithmetic differ from
standard prolog in that an answer is not guaranteed to be correct; all that is guaranteed is
that no possible answers will be excluded. For example, extracting the square root of 2
ended by binding the result to (1.414,1.415) an interval which contains an infinite
number of reals only one of which is actually a solution. Similarly, it is possible that

-14 -

intervals will be returned which contain no solution at all, although it will not be possible
to tell this within the constraints of the finite accuracy arithmetic available.

I would like to suggest that logical arithmetic as described here could provide the
lowest level of arithmetic available to a Prolog programmer. This requires that an
efficient implementation be possible. The narrowing algorithms for the primitive
predicates are obviously more complex than single floating point arithmetic operations but
they should not be beyond modern microcoded systems, and within the decade would
possibly fit on a single CPU chip. One problem for an interpreter is that standard floating
point arithmetic instructions can be very awkward to use as they often do not provide
sufficient control over the direction in which truncation and rounding occur (when
writing my own system for this I handled my own exponents and mantissas directly as
integers in order to get a correct implementation). There is some hope, however, that
given the correct low level support the arithmetic could be very efficient. For example,
in some cases it is possible to optimize the bindings resulting from narrowings as simple
assignments without any need to record information on a backtrack trail.

Acknowledgments

I'would like to thank Jon Rokne for introducing me to interval arithmetic and for his
encouragement in this work and Ian Witten and Brian Wyvill for comments and
suggestions. Support was received from the Natural Sciences and Engineering Research
Council of Canada.

References
Alefeld, G. and Herzberger, J. (1983), "Introduction to interval computations,"
Academic Press, New York (translated from "Elemente der Intervallrechnung" by
Rokne, J.).

Bundy, A. (1984), A generalized interval package and its use for semantic checking,"
ACM Trans. on Mathematical Systems, 10(4)397-409.

Clocksin, W.F. and Mellish, C.S (1984), "Programming in Prolog," Springer Verlag,
New York.

Cole, A.J. and Morrison, R. (1982), "Triplex: a system for interval arithmetic,"
Software Practice and Experience , 12(4)341-350

Kowalski, R.A. (1979), "Logic for problem solving," Elsevier North Holland, New
York.

add(X,Y,Z)

Initial bindings X:[0,2] Y:[1,3] Z:[4,6]
X+Y=[0,21+[1,3] [1,5]
Z-X=[4,6]-[0,2] [2,6]
Z-Y=[4,6]-[1,3] [1,5]

Resulting

narrowed bindings | X:[1,2] Y:[2,3] Z:[4,5]

Figure 1. Execution of narrowing algorithm for 'add'

Functional form: X+X is 10, solve(X)

Relational form: add(X,X,10), solve(X)

Splitting
X: ['°°a°°]
\ m Narrowing

[0,e°] [-2,0)

[0’10]\ E g Failure
[0,5] (5,10]
[5.5] X

Solution

Figure 2. Example of use of narrowing and splitting to solve an equation

Functional form: X*Xis 2, X > 0, split(X).

Relational form: multiply(X,X,2), X>0, split(X).

\ Splitting
X:[_Nsm]

[0,00]¢ m Narrowing
/ \ -
[1,60] [0,1) > Pl
[1,2]- X
/ \ Error bounds on successive iterations
[1.5,2] [1,1.5) Lower Upper
lu *1.414 oo
g (1.333.1.5)s *0.414 0.585
+0.081 0.085
/ \ «0.002 0.001
[1.416,1.5) (1.333,1.416) +0.000 0.000

m m «0.000 0.000

g (1.412,1.416)

\y

[1.414,1.416) (1.412,1.414)

l l

[1.414,1.415)¢ g

"\

(1.414,1.415) [1.414,1.414]

J

(1.414.1.415)« X

Figure 3. Solution of square root.

Functional form: X+Y is 1, X-Y is 2, split(X), split(Y).

x:[-ooﬁle[-oo,«]

X:[0,00] Y:[-e0,00] X:[-00,0) Y:[-00,e0]
X:[0,3] Y:[-2,1] =
X:[0,3] Y:[-0.5,1] X:[0,3] ﬁ-Z,-O.S)
XiILS.LS] Y05.051 X

Figure 4. Linear simultaneous equation.

div(X,Y,Z):- X*YisZ, X>1,X <Y,
integer(X), integer(Y), integer(Z).
~div(X,Y,12), split(X).
X:[-oo,oo] Y:['°°’°°]

(1,50] (1,09} X>1,X<Y

(1,12) (1,12) X*YisZ

[2,11] [2,11] integer(X), integer(Y)

[2,6] [2,6] X*YisZ

X:[4,6] Y:[2,6] X:[2,4) Y:[2,6]
X<Y [4,6] [4,6] 2,31 [2,6] integer(X)
X*YisZ X [23] [46] X*YisZ

X:[2.5,3] Y:[4,6] X:[2,2.5) Y:[4,6] _
integerX) [3,3] [4,6] [2,2] [4,6] integer(X)

X*YisZ 3,31 [44] [2,2] [6.6] X*YisZ

Figure 5. Integer divisors.

