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ABSTRACT 

The dynamics of an incompressible fluid slowly flowing through internally 

corrugated circular tubes were studied experimentally and through numerical 

simulation. The corrugations involved step changes in diameter along a tube. 

Velocity profiles, pressure gradients in the tube and the streamline patterns inside 

the cavities were determined or observed. Hydrogen bubbles and fiber optics were 

employed for flow visuali7ation. The flow rate of a highly viscous glycerine mixture 

with water was maintained in the creeping (Re < 2) regime. 

Velocity profiles calculated through solving the stream function - vorticity 

transport equations showed spatial oscillations through different planes over a cycle 

of the corrugation. Configurations with wider cavities showed the maximum 

deviations from the parabolic profile through a tube of the same diameter as the 

narrower segment along the flow path. The results were qualitatively but not 

quantitatively similar to published experimental results to suggest an incomplete 

resolution of some issues in the numerical simulation. Calculated pressure drops 

show drag reduction relative to a smooth tube but the effect was not as dramatic 

compared to experimental measurements. For the latter, configurations with cavity 

aspect ratio (width/depth) of 0.5-0.6 and ridge to recess width ratios of 1 showed the 

highest drag reductions; up to 30%. Both the calculated streamlines and those 

observed through streak photography of tiny hydrogen bubbles have similar contours 

but the calculated ones were more symmetric. The actual flows reveal irreversibility 

through asymmetry of streamlines. 
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NOMENCLATURE 

Symbol Definition 

a radial distance to the ridge, m 

b radial distance to the mouth of the cavity, m 

B ball constant 

D diameter of the narrower tube segment, m 

f friction factor (Equation (5.3)) 

L length of the measured distance, m 

P pressure, kPa 

r radial distance, m 

R radius of the narrower segment of the tube, m 

Re Reynolds number 

Sb density of the ball, kg/m3 

Sf density of the fluid, kg/m3 

T time interval of the falling ball, s 

C average axial velocity, m/s 

Vr radial velocity, m/s 

VZ axial velocity, m/s 

y modified radial distance, m2 

z axial distance, m 



Greek Letters 

constant in Equation (2.1) 

constant in Equation (2.1) 

Y depth of the cavity, m 

o width of the ridge, m 

A difference 

€ width of the cavity, rn 

A index of refraction 

u dynamic viscosity, mPa.s 

p mass density of the fluid, kg/m3 

v kinematic viscosity, m2/s 

stream function 

vorticity 

(radial distance)(vorticity) 

Superscripts 

* dimensional quantity 

average 

Subscripts 

i axial index 

j radial index 

w wall 

xiv 
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1. INTRODUCTION 

Many problems in nature and in engineering involve the flow of fluids at low 

Reynolds numbers. The particular problem of interest in this study involves flow 

through internally corrugated tubes as occurs in living plants, mammalian circulation 

systems, narrow capillary tubes and porous media. In such tubes, flow occurs through 

the central portion while pockets of fluid circulate within the cavities or depressions 

at the wall. That is the flow structure is divided in two domains or separated. Studies 

on creeping flow in cavities have been motivated by the fundamental interest in the 

phenomenon of separation flow at low Reynolds number. Separation and formation 

of vortices may lead to changes in drag on a body or pressure gradients for internal 

flows. 

For example, abnormal flow conditions develop in mammalian circulatory systems 

due to boundary irregularities and the flow patterns can be an important factor in the 

development and progression of arterial diseases. The boundary irregularities in the 

blood vessels are caused by deposits of intravascular plaques on or the loss of 

compliances and formation of periodic constrictions by the vessel wall[Chow and 

Soda, 1972]. Such wall irregularities are normally detrimental to the effective 

performance of the circulatory system. In the other systems, flow separation and 

vortices appear beneficial. An example is in living plants. 

Water absorbed by the roots of higher terrestrial plants is transported over 

long distances to the leaves via xylem vessels and tracheary elements[Jeje, 1985]. 
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Xylem vessels are porous-walled, closed ended microcapillaries of various lengths 

organized into intricate network structures. In many plants, secondary cellulosic 

strands form rings at intervals or spirals inside the capillary channels. These appear 

to improve the capacity of xylem vessels to convect water at necessary rates towards 

the leaves at fixed driving potential or pressure gradients. That is, the irregularities 

aid in drag reduction. 

The latter example, and the need to understand macro-scale flows at 

microscopically irregular walls of tubes, has motivated this study. The model consists 

of rings of two internal diameters arranged alternately. The rims of the rings are 

sharp and such that they form separation and attachment lines for the flow. It is of 

interest to determine bow variations in ring structures affect the flow patterns and 

the pressure gradients along tubes of irregular geometry. 

1.1 Objectives and Scope of Study 

The study involves both experiments and numerical simulation. The flow 

occurs at Reynolds number (based on the diameter of the narrower rings) less than 

2. Such flows are in the creeping range as anticipated for the ascent of sap in plants. 

The objectives are to establish which geometric arrangements lead to the lowest 

pressure drop per unit length of the tube and to correlate this to the flow patterns 

developed. The controlling parameters are the aspect ratios of the recesses and the 

mean flow rates through the ducts. The geometry is axisymmetric. 

Experiments involve the flow of water-glycerine mixtures at high viscosity, 
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pressure drop measurements and flow vlsuali7ation using hydrogen bubbles. 

Numerical simulation of the flow was performed by solving a finite-difference 

form of the complete Navier-Stokes equation. Because different length scales exist 

for the core flow and the cavities, the equations were solved separately for the two 

regions and both velocity and velocity gradients were matched in an overlaying 

region. The equations in. cylindrical coordinates were solved by the interactive 

approach[Brandeis and Rom, 1981]. The interactive method involve solving the 

equations for the two regions sequentially whenever a cavity is encountered. Finally, 

the numerical results are compared with those of experimental. 

1.2 Physical Description of Domain 

A schematic diagram of the channel and expected flow structures is shown in 

Figure 1.1. The figure shows periodic cavity on the wall of the circular tube and fluid 

is flowing through the tube. Cavity ABCD is open and one or more vortices could 

be trapped within. Two or more attachment/separation points may exist in the cavity. 

For narrow cavities (short CD), A and B represent the two branch or stagnation 

points. If CD is wide, at least two other branch points may exist along that wall and 

more than one vortex will be trapped. 

Over the ridge BE, a bubble of near stagnant fluid may also exist depending 

on the Reynolds number. 



Fig. 1.1: Physical description of flow domain. 
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2. LITERATURE REVIEW 

The fact that microscopic structures at a wall can effect drag reduction on an 

external surface or a decrease in pressure drop in pipe flows has been 

documented[Gaudet, 1987]. It is an issue of great curiosity and it has generated 

considerable commercial interest, particularly with regards to long distance transport 

of hydrocarbon fluids from production sites to markets[Weiss, 1993]. Primary 

attention has been given to the laminar sublayers of turbulent flows on surfaces with 

riblets. These are fine, stream-wise aligned surface grooves at pipe walls. Such 

structures have been indicated capable of reducing the overall drag or pressure drop 

by - 8%. For flows which are entirely laminar, Taylor[1971, Figure 4] has 

experimentally demonstrated, for rotating flows between two flat plates - one of 

which is grooved in circular patterns, that the frictional resistance can be lowered. 

In this geometry, the grooves are also stream-wise oriented. 

The mechanisms for drag reduction for the turbulent and laminar flows are 

expected to be different. With turbulent flows in the external stream, riblets are 

suggested to align moving vortical streaks which are close to the bounding surface 

and bursts (or small jets) outside the laminar boundary layer. Thus wall shear 

patterns are controlled. For laminar flows, swirling eddies, like corkscrews trapped 

in the grooves, may be the agents for drag reduction in Taylor's experiments. 

Alternately, the recesses filled with fluid provides partial slip at the apparent 

boundaries defined by the plane of the ridges. Slip is reflected in a lower overall 
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frictional resistance even with the considerable increase in fluid contact area. 

When the grooves are oriented perpendicular to the direction of the stream, 

as is of current interest, two-dimensional ring vortices are trapped and maintained 

within the recesses. These may act as roller-bearings under certain conditions, to 

cause a reduction in frictional resistance to the flow situation. 

In the following, the literature pertinent to the current study is briefly 

reviewed. Different structures for periodic surface irregularities (step, triangular, 

trochoidal and sinusoidal channels) have been considered by other investigators. 

Single deformations at the walls (projections and cavities with step and rounded 

contours) have also been examined. The focus is here on slow flows through periodic 

configurations, in particular with step changes. 

2.1 Flow in Corrugated Tubes 

The motivation for existing studies have been predominantly to model the 

micro-channel flows through granular porous media as have been idealized by 

Scheidegger[1957]. Such flows have low Reynolds number and the diameter of a pore 

expands and contracts alternately in the stream-wise direction. Both experimental and 

numerical simulation using equations of motion have been undertaken. Studies 

closest to the current one in terms of the geometry of the flow channels and the 

regime of flow were undertaken by Dullien and Azzam[1973, 1977] and Jeje[1985]. 

These will be reviewed first. 
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2.1.1 Channels with Step Changes 

Dullien and Azzam[1973] presented experimental results on flow rates and 

pressure gradient measurements through corrugated tubes assembled from flat-

surfaced discs (3.175 mm thick) with different diameter holes bored through them. 

The test section was - 0.18 m long and the diameter of the four-size holes ranged 

from 0.43 to 4.6 mm. Different combinations, in pairs, of two bore sizes were used 

to construct fifteen different corrugated tubes, the axial cross-sections of which form 

square waves with sharp edges. In such an arrangement, the stream-wise length of an 

internal recess equalled the length of the ridge, unlike the configurations in the 

present study. The flow stabilization arrangements up- and down-stream of the test 

sections were not mentioned although they indicated that end effects were checked 

for and found negligible through varying the length of the test section. The Reynolds 

number for the flow (apparently of water) ranged from 2 to 700. The plot of a typical 

run showed that the fluid flow rate was linearly related to the pressure drop across 

the test section at low pressures but the flow rate was slower than this linear pattern 

at an overall pressure gradient in excess of - 1 Pa/m. That is the flow resistance had 

increased relative to the flow rate. This is reflective of the non-Darcian effects 

associated with inertia in porous media [Scheidegger, 1957]. 

Through volume-averaging the Navier-Stokes equation, Dullien and 

Azzam[1973] were able to derive a form of equation similar to the empirical 

Forchheimer modification to Darcy's law. This equation 

V<p> = + pv2 (2.1) 
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has two parameters (, 3) which are constants in Forchheimer's equation but 

dependent on the flow field in the author's expression. The second term on the right 

is the correction introduced to account for inertial effects in non-Darcian flow. The 

author's effort were directed to obtaining values for c and f3 as related to the flow 

geometry. 

Dullien and Azzam[1973] also discussed the issue. of the area of voids at a 

cross-section of a porous media which is useful for calculating pore velocities 

characteristic for the flow. The volume-averaged quantity which corresponds to the 

Dupuis-Forchheimer application and the cross-section of the narrower of the pore 

diameters were identified as possible choices. This issue is also important in the 

application of a characteristic diameter for scaling of the flow through pores of 

different diameters in series. When the recesses are span-wise narrow but radially 

deep, i.e. the diameter of the larger pore is much greater than that of the narrow 

one, the volume-averaged area (which is volume of a repeating unit divided by its 

length) and consequently an equivalent diameter calculated from it has no physical 

significance. The diameter of stream tube for the flow, although varying periodically 

downstream, may not be significantly different from that of the narrower tube. On 

the other hand, if the axial length of the recessed region is significant and the 

indentation is shallow, i.e. the diameter of the bigger pore is only slightly bigger than 

the narrow one, the diameter of the stream tube may vary between the extremes. 

Under such circumstances, branch points (attachment and separation) may exist at 

the recessed wall and the geometry approximates a series of orifice plates at well-
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spaced intervals in a channel. An equivalent diameter based on volume-averaging 

may then be useful but its value would be nearly the same as for the narrow pore. 

From these arguments and for consistency of presenting the results, the diameter of 

the narrow tube is chosen as the characteristic length scale for the current work. 

The same authors, Azzam and Dullien[1977], undertook a numerical 

simulation of flow through the same tubes as in the foregoing study. They solved the 

complete Navier-Stokes equation for steady flow for one cycle of the periodic 

structure. They elected to use the axial length of the cycle (or wavelength) as the 

characteristic dimension instead of a diameter. Implicit in their interpretation is that 

geometric similarity for the tubes implies dynamic similarity for the flow patterns 

since values for the ratio of the diameter of the narrow pore to the wavelength was 

considered to be the parameter which determined the existence of circulation within 

the recesses irrespective of the absolute values for width and depth of the recesses. 

Experimental observations, such as reported in this study, does not support such a 

conclusion or inference. The problem formulation suffered from two difficulties. One 

is that vorticity had to be prescribed at the wall of the channel without reference to 

the singularities (and source of concentrated vorticity generation) near the sharp 

corners of the square contours. The second difficulty is that the inlet to the cycle of 

interest was assumed to have a parabolic flow profile as the initial form in an 

iterative procedure involving corrections through the use of the solution for 

downstream edge (i.e. the start of another structure cycle). Results from such a 

technique are sensitive to the selected inlet profiles, particularly from a branch point. 
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The plots in their figure 4 suggest that flow profiles are essentially parabolic over a 

major fraction of the length of a ridge. This thereby excludes the formation of a 

bubble of near stagnant fluid over the projections which are the inner surfaces of the 

narrower tube. A more rigorous approach, as adopted here requires that an inlet 

region of constant diameter and adequate length be included such that the boundary 

condition (at the inlet) is known unequivocally. Calculations also should be done to 

include a number of cycles in recognition that, though the flow will be locally steady, 

flow development occurs downstream. 

The results on pressure drop were also not as informative as required. The 

parameter p (termed normalized pressure) will not be unity at the inlet to the tube 

as indicated. It may be less than or equal to zero. Plots of this variable versus 

distance (Figures 7 and 8) provides no information with regards to the relative values 

of the pressure gradients for the different tubes. Finally, the authors compared the 

pressure drops calculated to that evaluated using Hagen-Poiseuille's equation. For 

the latter, velocity profiles have to be assumed fully developed over each of the 

segment of constant bore. They used this ratio to define an "excess momentum loss 

factor". Such a comparison may be assumed irrelevant for structures with short 

segment lengths. A comparison with results for a constant diameter tube at similar 

Reynolds number may be more appropriate. 

The only other study known to the author of this study with step changes in 

the channel diameter is that of Jeje[1985]. In this experimental study, pressure 

gradients were measured along corrugated tubes of three types. It was demonstrated 
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that, at low Reynolds number, (<1), resistance to flow decreased for the irregular 

walled tubes compared to smooth walled channels. Trapped laminar vortices are 

suggested to aid in drag reduction and the flow patterns were found irreversible even 

at Reynolds number as low as 0.08. It is this study which has been expanded on in 

this investigation. 

2.1.2 Flow in Periodic Cavity 

Payatakes et al.[1973] numerically solved the steady-state Navier-Stokes 

equations for an incompressible Newtonian fluid through a periodically constricted 

tube. They retained all the terms of the Navier-Stokes equations including the 

nonlinear inertia terms. The authors simulated the geometry which is connected with 

the modelling of a packed bed of sand. The authors calculated the streamlines, axial 

and radial velocity profiles, pressure profiles and the dimensionless pressure drop 

versus Reynolds number relation. Their Reynolds number varied from 1 to 75. 

Payatakes et al.[1973] based their Reynolds number on volumetric (volume-averaged) 

diameter for one cycle of the periodic structure. The volumetric diameter was 

defined as the diameter of a cylindrical smooth tube which has the same volume and 

length as the periodic constricted tube. Their plots of friction factor versus Reynolds 

number at different volumetric diameter (Figure 9) shows that with an increase in 

volumetric diameter, friction factor decreases, not increases as concluded by 

Batra[1969] and Dullien and Batra[1970]. Payatakes et al.[1973] suggest that the 

results should be correlated not only with volumetric diameter alone, as was done by 
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Batra[1969], but with volumetric diameter and amplitude of the constricted tube. 

They pointed out that even for fixed values of volumetric diameter and amplitude, 

the friction factor of a periodically constricted tube is not uniquely determined but 

that it also depends on the geometry of the wall. 

Batra et al.[1970] experimentally investigated the effect of geometric 

parameters for laminar flow through irregular surfaced rectangular tubes. The 

nominal diameters of the narrower segment were 6.35 mm and 9.53 mm. The 

periodically convergent-divergent wall structures were triangular in profile. The 

authors determined friction factor values for the Reynolds number range of 1 to 

2000. Volume-averaged mean diameter was used to calculate Reynolds number and 

friction factor. They observed that for wavy tubes, the measured friction factors 

deviate markedly from those for smooth tubes. For uniform channels (amplitude-to-

wavelength ratios ranging between 0.0090 and 0.0169) Fanning friction factors follow 

the relationship f= 18/Re. For wavy channels (depth-to-mean width ratios ranging 

from 0.0112 to 0.0550) there was no effect on the frictional pressure drops due to the 

waviness of the narrow side walls. For wavy channels having larger values of depth-

to-mean width ratios (0.0742 to 0.1855) the friction factor values are higher compared 

with those of the uniform channel. 

Steady axisymmetric behaviour of a fluid flowing in the laminar regime 

through a corrugated tube was studied by Savvides and Gerrard[1984]. They solved 

the vorticity and stream function transport equations for an incompressible fluid 

flowing through a tube containing triangular grooves perpendicular to the flow 
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direction by a finite difference technique. 

The geometrical parameters and Reynolds number were varied to examine 

variations in the patterns of flow separation. The geometric parameters were width-

to-diameter and depth-to-diameter ratios for the cavities. 

The authors calculated the product of Reynolds number and dimensionless 

pressure drop along a corrugation cycle. In a corrugated tube at low Re-values, Re(-

AP/Az) was found to be independent of Re but the parameter was higher than 32, 

the value for a smooth straight tube. The diameter D in their calculations was the 

maximum value in the channel, not one defined by a stream tube or the narrower 

segments of the channel. Thus both Re and AP/Az might have been overestimated. 

They varied their Reynolds number from 10 to 200. 

2.1.3 Single Cavity 

Bozeman and Dalton[1973] numerically solved the NasrierStokes equations 

for the steady two-dimensional flow of a viscous incompressible fluid in a single 

closed rectangular cavity. The main objective of the authors was to perform a 

systematic evaluation of four different methods of finite difference equations. The 

Reynolds number range was from 10 to 1000. It is not clear from their work how they 

calculated the Reynolds number. They obtained asymmetric flow patterns in cavities 

of aspect ratios (depth/width) ranging from 1 to 2. 

Pan and Acrivos[1967] observed the flow patterns in a single closed 

rectangular cavity where the motion was induced by the uniform translation of the 
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top wall. The authors studied the flow patterns for Reynolds number ranging from 

20 to 4000. They based their Reynolds number on the width of the cavity and velocity 

of translation of plate. They authors concluded that, for deep cavities, the viscous and 

inertia forces should remain of comparable magnitude within the whole domain. On 

the other hand, for shallow cavities, the steady flow should consists essentially of a 

single core of streamlines with viscous effects being confined to thin shear layers near 

the boundaries. 

Shen and Floryan[1985] studied low Reynolds number flows over single closed 

rectangular cavities. The numerical results were obtained the Reynolds number value 

of 0.01. They based their Reynolds number on the depth of the cavity. The authors 

calculated the streamlines inside the cavity in details for various aspect ratios (0.5 - 

4.0). They repeated their calculations with the null Reynolds number and found that 

the flow patterns to be exactly the same as for Re = 0.01, and the values of the stream 

function were negligibly different. They considered pure Couette[Schlicting, 1979; p. 

6] and pure Poiseuille[Schlicting, 1979; p.11] flow and concluded that the flow 

patterns were slightly or not affected while the values of the stream function were 

quite different. 

Friedman[1970] studied the flow of a homogeneous viscous fluid in a straight 

circular pipe containing a single recess. He solved the complete Navier-Stokes 

equations for Reynolds number ranging from 0 to 500. The author based his 

Reynolds number on the radius of narrower segment of pipe and initial velocity. He 

assumed flat velocity profile at the inlet to the pipe and the parabolic profile far 
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downstream. He presented the development of the velocity along the axis. In the case 

of a flow in a straight circular pipe, the velocity along the axis is an increasing 

monotonic function of z (pipe axis). If a recess is added to the pipe, the development 

of velocity along pipe axis is quite different. For small Re, it grows first from 1 to a 

local maximum, then it drops to a local minimum, and at last turns back into an 

increasing monotonic function, and tends asymptotically to 2. This is to be expected 

since the main separating streamline "widens" the pipe and therefore reduces the 

velocity field. This phenomena depends mainly of Re and the width of the recess. It 

is stronger for small Re and cavity width >> 1. 

Sinha et al.[1982] used smoke visualization, static pressure measurements, and 

hot wire anemometry to investigate flow in a cavity driven by a laminar boundary 

layer. Reynolds numbers, based on the cavity depth, were 662, 1324 and 2648. The 

authors classified the cavities as shallow-closed, shallow-open, open and deep based 

on depth/width ratio of the cavities. They found that the pressure distribution was 

characterized by negative pressure over most of the cavity floor followed by a small 

pressure recovery in the downstream face of the cavity. 

Mehta and Lavan[1969] solved numerically the problem involving flow in a 

single closed rectangular cavity, located in the lower wall of a two-dimensional 

channel. To minimize the number of parameters, the authors assumed the channel 

length to be infinite and the upper wall of the channel was moved with a constant 

velocity. They calculated streamline patterns inside the cavity for aspect ratios 

(depth/width) of 0.5, 1.0 and 2.0 and for Reynolds numbers of 1, 10 and 100. 
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Reynolds number was based on the width of the cavity. The authors concluded that 

the position of the separating streamline was affected by the numerical treatment of 

the singularity in the vorticity field at the external corners. 

Higdon[1985] studied shear flow over ridges and cavities in low Reynolds 

number range. He solved the Navier-Stokes equations in two-dimensional domain. 

The author obtained streamline patterns, velocity profiles and shear-stress 

distribution along the walls in cylindrical and rectangular shaped ridges and cavities. 

He did not mention the basis of his calculating the Reynolds number as well as the 

values of Re at which he performed his calculations. He employed these results in 

a discussion of the effect of the flow pattern on convective transport processes. 

2.1.4 Interactive Methods 

Brandeis and Rom[1980] proposed an interactive model for numerical 

computation of laminar separated flow. The authors divided the flow field into three 

regions, applying a simplified mathematical model in each of them; (a) outer flow for 

which the full potential equation (hyperbolic) was used; (b) viscous, laminar sublayer 

in which the compressible boundary-layer model (parabolic) is used; (c) recirculating 

flow modeled by the incompressible Navier-Stokes equations (elliptic). The method 

employs matching of flow variables along the overlapping boundaries of the regions. 

The interactive method in general require significantly smaller computer time as well 

as memory space, making their use economically preferable. They based their 

Reynolds number on the width of the cavity for cavity Reynolds number and distance 
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from the leading edge of the plate to the beginning of the interaction for the outer 

two zones Reynolds number. The authors obtain streamline patterns, vorticity 

contour map for a cavity of aspect ratio 2 at Reynolds number of 5.4 based on the 

cavity width. The flow patterns were asymmetric about the midplane of the cavity. 

Brandeis and Rom[1981] modified their three-layer interactive method two-

layer model for computation.of viscous flow in a cavity with recirculation for cavity 

of aspect ratio (depth/width) of 1 at Reynolds number based on cavity width of 5.4. 

The "matching model" matches the velocities and their gradients at the interface of 

the two computation domain. 

Present work uses this two-layer interactive method in numerical simulation. 

The overlapping region was taken to be one grid size wide in the direction 

perpendicular to the flow. 

2.1.5 Flow in a Convergent-Divergent Tubes 

Christiansen et al.[1972] numerically solved the general equations of motion 

for laminar flow of Newtonian fluids from a larger tube of circular cross-section 

through an abrupt contraction into a coaxial tube of smaller diameter. They varied 

the ratio of the diameter of large tube to that of the smaller tube from one to eight 

and studied the radial and axial velocity profiles. The authors varied the Reynolds 

number from 0.01 to 500, which was based on the diameter of the smaller tube. They 

calculated the dependence of axial velocities on Reynolds number and found that 

with the increase of Reynolds number the parabolic profile becomes flat at the tube 
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axis. 

Cheng[1972] obtained numerical solutions of the Navier-Stokes 

equation for viscous, incompressible fluid flow in an arbitrary internal passage. The 

author used finite element method to overcome the difficulties arising from the 

nonlinearity of the governing equations and the complexity of the boundary 

conditions. Cheng[1972] calculated the shear stress in the domain of computation at 

Reynolds number ranging from 0 to 100, and the contraction parameter (width of 

narrow channel-to-width of the bigger channel) ranging from 0.2 to 0.6. Reynolds 

number was based on half-channel width. He observed a sharp increase in shear 

stress near the minimum cross-section and the maximum shear stress occurs slightly 

upstream of the narrowest cross-section. 
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3. ANALYSIS AND NUMERICAL MODELLING 

The flow fields for the present study are described by the Navier-Stokes and 

continuity equations. The coordinate system is cylindrical and axisymmetric. Swirling 

motions are absent. Therefore, at steady-state, only the space variables r' and z' 

constitute the independent variables for the system. The Navier-Stokes equations in 

the primitive variables ('yrt and vt) is formulated in terms of stream function and 

vorticity transport equations. The resulting expressions are discretized using a finite 

difference technique and solved numerically. The method is described in this chapter 

in detail. 

3.1 Flow Fields 

The flow domain may be divided into two zones. Flow through the core or 

central portion of the tube, zone I in Figure 3.1, is driven by pressure forces and 

governed by viscous and inertia forces. Within the cavity, zone II, the flow is driven 

by the shear forces at the boundary with zone I. Velocities are lower in the cavity 

and viscous forces assume higher significance. 

3.2 Primitive Equations 

The constitutive equations for both zones are the continuity equation 

1a(PZV) + = 0 

and the equations of motion given in the r'-direction by 

(3.1) 
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Figure 3.1: Schematic Diagram of Computational Domain 
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1 ap* + a / 1 a (I*v *)) + V t +Vz _ - 
* az * p * r *\ i * * 

and in the z'-direction by 

Vt- +Vz__ - 
81 * az 

1 [ _L(2: * avz 
a* --;) + 

(3.2) 

(3.3) 

It is assumed for these equations that the fluid is Newtonian (p is constant), 

incompressible and there are no body forces. The tube is symmetric, so only axial 

and radial velocities were considered. These equations are written in the primitive 

variables of velocity components, vr* and v, and pressure P', and the fluid properties 

of mass density p, and kinematic viscosity, u. 

All the variables in equations (3.1) to (3.3) are dimensional. Pressure can be 

eliminated from equations (3.2) and (3.3) by cross-differentiating and subtracting the 

resulting expressions[Schlichting, 1979]. 

3.2.1 Core Region 

Zone I is the core region through which the fluid is in axial translation. This 

region includes entrance and exit lengths of a straight tube which has the same 

diameter as the narrower pore of the corrugated tube and ten cycles of the periodic 

step changes in channel diameter. The entrance length was chosen as equal to two 

(2) times the narrower segment of the tube. The initial set of step changes constitute 

the flow development domain. It is assumed that the flow is fully developed before 
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reaching the inlet and any upstream diffusion of vorticity[Vrentas et al., 1966] is 

confined to the entrance region. Through adopting the following dimensionless 

variables, with a characteristic length chosen as the diameter D of the narrower tube 

and the average velocity C through such tube as the nondimensionlizing factor for 

the velocity[Salim, 1994]: 

7 * 

= -, z = - 

D D 

vz - = •_=_, vz = 

U U 
P = Re - pUD 

pU2 II 

and also defining stream function (F) and vorticity (o) such that: 

v =! =-2:! 
rz' rar 
av av 

Z 

--, . 

(3.4) 

(3.5) 

Equations (3.1) to (3.3) can be transformed into the nondimensional vorticity 

transport and stream function equations, 

Q((v) + a ((V) _..c. L1 aia •aç1 
ar- - r az2j 

and 

C-
8z2 a1 1Y a]: 

The coordinates are further transformed, by defining 

(3.6) 

(3.7) 
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(3.8) 

so that for equal increments in y, the increments in r are smaller near the walls than 

near the axis of the tube. The rationale for this transformation is that the mesh 

points are concentrated near the wall where the vorticity gradients are largest[Ralph, 

1986]. Equations (3.6) and (3.7) then become: 

and vorticity 

where 

c=! +4y 
8z2 

(3.9) 

(C'lr) - + -(Cv) = 1 [4y _ + 
ay VY- Oz - •[ 2 aZ2j (3.10) 

a", 
2 
ay 

(3.11) 

(3.12) 

3.2.2 Boundary Conditions 

Solutions to the elliptic equations require the specifications of the boundary 

conditions. A parabolic velocity profile is prescribed at the entrance to the flow 

arrangement. 

Atz=O for all y 
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= 16y, ¶ = 0.125(1-4y) 2 

Vz = 2 (1 -4y), ii = 0 

Along the centre line, i.e., y = 0 for all z 

0 = 0.125, Vr = 0 

At the outlet of the long exit tube (- 5D), the boundary conditions are, 

z=L/D for all y 

= 16y, 'J = 0.125(1-4y) 2 

v = 2(1-4y), y r = 0 

At the walls, AB and EF, r=0.5 (Figure 3.1), 

TW - IWI 
aT 

= 0, [4!] - = 0 

except at the branch points where C, = 0 

(3.13) 

(3.14) 

(3 . 1.5) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Velocities and their gradients on line BE are matched with the solution of cavity 
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region. 

Axial pressure gradient was found from the equation of motion in axial 

direction from: 

Re(-.-\ = 8-a2T - 4y V Z - a2v 
, azj 

3.3 Cavity Region 

+ Re[2v s/i ay. + vz_ az (3.20) 

In the cavity CDHG (as shown in Figure 3. 1), the velocities are lower than in 

the core flow. Scaling of the equations for this region was done using the 

characteristics length y, the depth of the cavity and the kinematic viscosity, u; that 

is, u/y. Introducing the following dimensionless variables, 

I = Z - 

Y 
- vz* 

vz 
Y p(v/y) 2 

Vr 
v/Y 

and also defining stream function ('F) and vorticity () as follows: 

and 

Vr T- az aT - vz - ar 

-r -- a--v co , = - 

I 

(3.21) 

(3.22) 

(3.23) 

the resulting nondimensional vorticity transport and stream function equations are, 
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+ - VrC  - . a i ac + (3.24) 
r - r Tr-( r Tr-) az2 

and 

(= -- + 
az2 ör.r äi 

(3.25) 

The coordinates are transformed as was done for the core flow, using equation (3.8). 

The resulting equations are, 

and 

where 

! +4y -c 
8z2 

2%/cj - +  avzC_  = 4y..! + 

az 2 az2 

V r = V = 2 aT 
.az 

(3.26) 

(3.27) 

(3.28) 

3.3.1 Boundary Conditions 

Boundary conditions which apply in the cavity are written below. The 

boundary GH is taken at one grid point inside in the inner region (Figure 3.1). 

At the wall (lines BC, CD, DE), 

Along the wall CD which is parallel to the tube axis, 
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TW = o, (-) = az  011) = 0 

CW = 4 01Y 2 W 

41Y a2T) 

On the walls BC & DE which are perpendicular to the flow direction, 

'W lIZ I 2 
' 

(3.29) 

(3.30) 

(3.31) 

Vorticity at the branch points and corners B, C, D and B vanishes[Roach, 1976]. 

Values for vorticity and stream function on line GH are obtained from the solution 

to the core zone equations. 

3.4 Numerical Analysis 

The system of partial differential equations which describes the flow fields is 

solved by a finite difference technique. Figure 3.2 shows the schematic of the 

computational domain used for the numerical analysis. A rectangular grid is laid on 

this domain. The mesh sizes are different in z and y directions. In order to predict 

the small scale flow pattern, a very dense grid structure is used. All the variables are 

defined at the mesh points where the horizontal and vertical grids intersect each 

other. Subscripts i and j refer to z and y coordinates respectively. The mesh spacings 

along the z and y directions are 'Az' and 'Ay' respectively. Due to the limited storage 

capacity of the computing system and large CPU time required for the solution, the 
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computational domain was confined to 10 cavity lengths along the axial direction. 

3.4.1 Discretization 

The set of equation to be solved comprised of (3.6) and (3.7) for core region 

and (3.32) and (3.33) for cavity region. Since, the accuracy of central-difference is 

second order, all the derivatives were approximated by central differences. The finite 

difference forms of the equations (3.2) and (3.3) are obtained for core region as 

follows: 

J-1 A (v() i,j+1 - ( r( ) ii_i] -  (VrC) i,j  j  (VC) i+1,j -  

Ay V(j -1)y L 2Iz 

=......[4 (j-1) Ay  C±, +1 2C, +  Ci+, j -2C1, j +C±_1,l 
Re (Ay) 2 z) 2 j 

(3.32) 

and 

=  j+1, i-1,j +4 (j-i) T, +1 -2P .1. ,3 + 
'Di,j (z) 2 Ly 

For cavity region, the discretized equations are 

Y 
( 

= 4(j-1)iy 

and 

Ay 

- + 

(Iy) 2 

(3.33) 

- (vC),  + (vC)+, j - (vC)  

1. 2Az 
+ C+1, -  2 C. +  

(Az) 2 

(3.34) 
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p =  i+1,j  +4 (j-1)   
Di,j (Az) 2 Ay 

where the velocity equations for both regions are discretized as follows: 

and 

1  - 

V =   
r (j-1)Ay 2Az 

V = -  i,j+1 - i,j-1 
Zj,j AY 

(3.35) 

(3.36) 

(3.37) 

3.42 Initialization and Boundary Conditions 

Initialization conditions is based on a parabolic velocity profile in the main 

stream. 

For 0 ≤y ≤0.25 

C = 16y, T = O.125(1-4y) 2 (3.38) 

VZ = 2(1-4y), Vr = 0 (3.39) 

(a) Calculation are initialized by prescribing values for C and F. The conditions were 

discretized as follows, 

Core region: 
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= 16(j-1)AY, = 0.125(1-4(j -1) Ay) 2 (3.40) 

V Zi,J = 2(14 (j 1) Ay) y ri,j = 0 

Cavity Region: 

(3.41) 

Initialization conditions based on zero velocities in the cavities were used. 

= 0, '1' = 0 for all y (3.42) 

cili = 0, 'I'j,j = 0 

where y varies from GH to CD. 

and 

vzi.j rj,j = 0 

(3.43) 

(3.44) 

(b) Tnflow and Centreline boundary: Since no mesh points exists outside the 

boundary, the method of "reflection" was used to eliminate the grid point outside the 

boundary by replacing it with the point just one grid inside the domain. 

Core Region: 

At z = 0 

= 16(j-1)Ay 

= 0.125(1-4(j -1) Ay) 2 

At y = 0, or at the centreline due to the symmetry of the configuration 

(3.45) 

(3.46) 
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V Zj,j =2(1-4(j--1)Ay) (3.47) 

= 0, T i,j = 0.125 (3.48) 

i,j+2 + .J - 4. , V  L 
zi.j Ay Vrj = 0 (3.49) 

(c) Wall: At the walls the velocity and their gradients are always zero, due to the "no-

slip" condition. 

Core Region: 

Along the walls AB and EF (see Figure 3.2), 

r =8 w-1 
'DW JW y (3.50) 

except at the branch points. 

Cavity Region: 

In the cavity region, due to the "no-slip" condition at the wall BC, CD and DE (see 

figure 3.2), the velocity and stream function are zero. 

Along wall CD, parallel to the tube axis, 

= 8  w-1  
W JW AY Ic - Ay 

and on walls BC and DE which are perpendicular to the flow direction, 

vorticity being zero at the corners. 

(3.51) 
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3.5 Solution Procedure 

As the domain was divided into two regions, the continuity of solution 

between the two regions was ensured by matching the flow variables at the interface. 

For this purpose, a matching model[Brandeis and Rom, 1981], making use of partial 

overlap between the two computational regions, was utilized. The basic procedure 

of the matching model is to transform the variables at the interface between the two 

regions. That is, the variables calculated from one zone are scaled appropriately 

using the ratio of the scaling parameters. The overlap, presented schematically in 

Figure 3.2, facilitates matching not only the two velocity components, but their 

gradients as well. 

3.5.1 Algorithm 

The solution algorithm using Gauss-Seidel Implicit method is as follows. 

STEP 1: The initial and boundary conditions are calculated from equations 

(3.38), (3,39) (3.40), (3.41), (3.42), (3.43), (3.44), (3.45), (3.46), (3.47), (3.48), (3.49), 

(3.50) and (3.51) for the appropriate computational region 

STEP 2: For Core Region, the (and 'F are calculated from equations (3.32) 

and (3.33) 

STEP 3: Improve the velocities using equations (3.36) and (3.37) 

STEP 4: The velocities and their gradients at GH boundary from the Core 

region to Cavity region undergo compatibility transformation using appropriate 
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scaling criteria. 

STEP 5: Continue the same calculation as in step 2 for the Outer region using 

equations (3.34) and (3.35) 

STEP 6: Update the velocities in the cavity region using the updated values 

of (and 'F 

STEP 7: Transform the velocities and their gradients at BE boundary 

following the same procedure as in step 4 

STEP 8: If 11 ô C I I avg iO and I I8 'F I I avg 1O, stop the calculation. 

Otherwise go to step 2. 

The geometries and dimensionless variables of the nine corrugated tubes are 

presented in Table 3.1. 
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Table 3.1: Computational Grid Arrangements 

Az Ay Grids at 

Inlet 

Grids at 

Outlet 

Grids per 

Cavity 

Grids 

per Ring 

Set 1 0.004 0.0033 500 x 76 1000 x 76 30 x 148 30 x 76 

Set 2 0.004 0.0033 500 x 76 1000 x 76 54 x 148 30 x 76 

Set 3 0.004 0.0033 500 x 76 1000 x 76 62 x 109 30 x 76 

Set 4 0.004 0.0033 500 x 76 1000 x 76 152 x 136 30 x 76 

Set 5 0.004 0.0033 500 x 76 1000 x 76 •36 x 190 30 x 76 

Set 6 0.004 0.0033 500 x 76 1000 x 76 62x 118 30 x 76 

Set 7 0.004 0.0033 500 x 76 1000 x 76 30 x 232 30 x 76 

Set 8 0.004 0.0033 500 x 76 1000x 76 62 x 85 30 x 76 

Set 9 0.004 0.0033 500 x 76 1000 x 76 727 x 148 30 x 76 
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4. EXPERIMENTS 

4.1 Experimental Set-up 

A schematic diagram of the experimental apparatus is shown in figure 4.1. The 

apparatus was designed to operate at atmospheric pressure and constant 

temperatures between 10°C and 30°C. For all the runs, the temperatures were 

23.5 ± 0.5°C. Viscosities of the test fluid, because of its sensitivity to temperature and 

its hygroscopicity (moisture absorption from air), were measured frequently under 

conditions of the experiments. 

The apparatus consists of a flow pump, a storage tank, a water bath, a flow 

straightener, the test section, a separation tank, hydrogen bubble generator and a 

Validyne model 103 pressure transducer with Validyne model CD 223 display system. 

The test section consists of plexiglass tubes in three sections (A, B, C in Figure 4.1) 

submerged in a glycerin-water bath. The latter was provided to maintain constant 

temperatures around the test section and to minim17e parallax for flow visualization 

and recording of flow patterns on photographic film. Refractive indices for glycerine-

water mixtures and plexiglass are given in Table 4.1. 

The glycerin-water mixture flow loop starts from the storage tank and the 

liquid flows through the flow straightener, sections A, B and C, into a separation 

tank. From the separation tank the fluid is drawn by a peristaltic pump and 

discharged into the storage tank. In transit after the pump, liquid is conducted 

through a water bath such that the temperature remains near room temperature. 
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Figure 4.1: Schematic Diagram of the Experimental Setup 
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Pressure drop was measured across the central portion of the test section B 

using a calibrated Validyne DP 103-28 differential pressure transducer cell. The DP 

cell was connected to a Validyne CD 223 display device. Hydrogen bubble generators 

composed of thin platinum wires (dia. 0.045 mm) were used to mark the flow. One 

wire was located vertically through the tube axis several tube diameters into section 

A. This allowed determination of the centreline velocity for a fully developed 

parabolic profile in the straight, constant cross-section tube. Other wires were located 

after 5 to 10 cycles of the corrugated section. This allowed the monitoring of the flow 

patterns in the core and within the cavities downstream. 

4.2 Flow Medium 

In all experimental runs, the test or flowing medium was a mixture of 

glycerine and distilled water which initially contained 96 volume percent of glycerine 

doped with sodium sulphate. With time (-- weeks), the glycerine absorbed moisture 

from air and became diluted despite the location of a silica-gel column between the 

tank and the vent to the atmosphere. The viscosity, as measured, gradually decreased 

over the period of the experiments. 

4.3 Fluid Properties 

The flow through the corrugated tubes utilized the glycerine-water mixture. 

The physical properties of the water were taken from steam tables, and those of 

glycerine were determined experimentally. 
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Viscosities of glycerine-water mixtures were measured with the "Hoeppler 

Precision Vicosimeter". A spherical ball is allowed to fall through a known distance 

and the time of fall is measured by a stop watch. Using the time of fall and the 

densities of the ball and the fluid medium, the viscosity is calculated using Eq. 4.1 

(see Table 4.1 for published values used for calibration). All the measurements were 

done at known temperature, - 23.5±0.5'C and atmospheric pressure. 

The viscosity in mPa.s or centipoises is given by the following formula: 

= T*(Sb-Sf)*B (4.1) 

• wherein 

u= absolute (dynamic) viscosity in centipoises 

T= time interval of the falling ball, sec 

Sb = density of the ball, gm/cc 

Sf= density of the fluid at the measuring temperature, gm/cc 

B= ball constant 

Density of glycerine was measured using a pydnometer at room temperature 

and atmospheric pressure (see Table 4.1). 

4.4 Preparation of the Test Fluid 

A mixture of approximately 4% (by volume) water (doped with sodium 

sulphate) in glycerine was made as follows. A 1 ppm solution of the salt in water, was 

first made. Approximately 100 gm of sodium sulphate was dissolved in 950 ml of dist-
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Table 4.1: Physical Properties of Glycerine-water mixture(20C)' 

% Glycerine in water 

Density, p 

(kg/rn2) 

Viscosity, i 

(mPa.$) 

Index of 

Refraction, 

A 

100 1261 1761.00 1.4735 

96 1200 748.80 1.4674 

92 1141 353.70 1.4613 

84 1024 70.84 1.4462 

80 966 47.88 1.4431 

72 854 19.88 1.4310 

60 691 6.40 1.4129 

52 588 3.46 1.4011 

Plexiglass 1.4900 

tRalph, 1986; CRC Handbook of Chemistry and Physics, 1982-1983, p. D-239. 
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illed water with continuous stirring. Then 1050 ml of the salt-water solution was 

added to 20 litres of glycerine in a tank. The solution was stirred for at least 30 min  

to ensure uniformity. 

4.5 Procedure 

At the beginning of each run, the flow line including the lines connected to 

the pressure transducer was cleaned of air bubbles. Bubbles were removed either by 

dismantling the system components or the use of a vacuum on the storage tank while 

re-circulation flow was maintained for - 4 hours. The bubbles then dissolved. After 

that, the liquid was allowed to flow by gravity from the elevated storage tank into the 

tube. This provided a nearly disturbance-free feed. The tank was vented to maintain 

pressure and isolated except for flexible inlet and outlet tubes so that vibrations were 

not transmitted from the pump. Silica gel, as noted above, was used in the vent line 

so that dilution of the hygroscopic glycerine-water mixture occurred only very slowly. 

The liquid passed through a flow straightener consisting of 11cm long by 0.455 cm 

diameter plastic straws in a 33.5 cm long by 8.5 cm diameter cylindrical tube. The 

mixture then flowed through a converging funnel before entering the inlet section of 

the test tube. The inlet section, denoted by A, is a tube of 1.97 cm diameter and 84 

cm in length. The middle section, B, is the test section, where alternating rings of 

plexiglass having different inner diameters were assembled. The specifications of the 

rings used to assemble the test section are given in Table 4.2 and two and a half 

cycles of the corrugation are shown in Figure 4.2. The test section was about 60 cm 
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Table 4.2: Cavity and Ring Specifications 

Type Ring Spacing, cm 

o 

Cavity Width, cm 

€ 

Cavity Depth, cm 

Y 

1 0.239 0.238 0.392 

2 0.239 0.428 0.389 

3 0.239 0.488 0.198 

4 0.239 1.194 0.341 

5 0.239 0.287 0.574 

6 0.239 0.488 0.239 

7 0.239 0.238 0.748 

8 0.239 0.488 0.050 

9 0.239 5.730 0.390 
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Figure 4.2: Schematics Diagram of Ring and Cavity 
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long. Thus between 10 and 126 cycles were in the test section which was connected 

to the exit section C. The latter was 60 cm long and 1.97 cm in diameter. Each run 

required approximately 1 hour to reach steady-state (as indicated by constant 

pressure drop and constant fluid level in the main storage tank) from a different 

setting of tank elevation. After reaching steady-state, if the flow was stopped and 

restored, fully developed flow was re-established in fractions of a second because of 

the high fluid viscosity[Bird et al., 1960, p.129]. After reaching steady-state, the 

pressure drop across the middle 40-50 cm of the test section and temperature of the 

glycerine bath were recorded. The centreline velocity in section A was determined 

by measuring the time interval required by the hydrogen bubbles to traverse a 

specified distance (10 cm.). The average velocity is half of this value. After the 

pressure drop and the flow rate were recorded, the set-up was adjusted for the next 

run. In this way, 8 to 10 flowrate settings were taken for one arrangement of rings. 

The same was repeated for other type of cavity specifications. 

4.6 Flow-visualization experiments 

Flow visualization experiments were confined to the cavity region in the 

middle of the test section. Flows in the core of the corrugated tube could also be 

monitored but these involve following individual bubbles located at different 

distances from the tube axis. Consecutive time-lines marked by the hydrogen bubbles 

and generated at known intervals may also be used to determine the velocity profiles 

at each cross-section of a cycle of the corrugated tube. These were not explored in 
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this study. Of interest were the streamlines at the entrance to and within the cavities. 

These were marked by individual bubbles in prolonged exposures on photographic 

film. That is, streak photographs of illuminated bubbles were obtained of the 

pathlines. 

The equipment consisted of a Nikon camera fitted with extension bellows and 

a 135 mm lens. This was on a heavy and stable mount to which a translating stage 

was attached. This arrangement allowed easy focusing and achievement of a 2-3 

times magnification of the object located about 20 cm away. The test section was 

illuminated from the top from an angle of 300 to the vertical from the rear by two 

optics fibres attached to a light box. The light source was a tungsten-halogen bulb as 

used in projectors. The light was relatively cool at the ends of the fibres. At the back 

of the test section, a flat black card was placed at about 45° to the horizontal to 

provide contrast. This card was immersed in the bath of glycerine. The arrangement 

was similar to that used by Jeje[1985]. 

The procedures for taking pictures are as follows. The system was adjusted so 

that a steady flow occurred through the test section. This rate was measured. Then 

hydrogen bubbles, less than 0.2 mm but greater than 0.05 mm, were generated 

through adjustments of power and charge/discharge duties of the capacitors in the 

bubbles generator. The flow was then stopped. This allowed bubbles to rise under 

buoyancy into the cavity of interest. Between 15 and 30 minutes were required for 

3-6 bubbles to travel about 2 mm into the cavity. Larger bubbles ascended too fast 

and thus will not define closed loops once flow is re-started and trapped vortices 
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form. Bubbles that were too small dissolved before they reached the proper heights. 

When bubbles - 01 mm were in the cavity, the flow through the core was re-started. 

The bubbles then started to circulate with the stream to track the streamlines Picture 

taking started after 1-2 minutes. Exposures were between 20 and 120 s, typically 30-

60 s. For longer exposures, the bubbles (when large) may change trajectories due to 

buoyancy or (when small) shrink through dissolution of the gas to become invisible. 

It was essential to have the rings of the corrugated tube properly aligned to avoid 

swirling flows within the cavity which changed progressively the plane of re-

circulation of the streamline. The circulation patterns could also be distorted if the 

projections or ridges made by the narrower bore discs were not in a horizontal line. 

Pictures were taken under conditions similar to those for pressure 

measurements. Some of the results are presented in the following chapter and 

compared with results from numerical simulation. 
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5. RESULTS AND DISCUSSION 

Experimental and calculated results for nine configuration of corrugated tubes 

are presented in this chapter. Velocity profiles calculated over one cycle of the 

corrugation are presented in Figures 5.1 to 5.9. Pressure gradients from experiments 

are plotted versus Reynolds number in Figures 5.1O(a and b) and friction factor 

versus Reynolds number in Figures 5.11(a and b). The invariance of the product of 

friction factor and Reynolds number for all the flow configurations is demonstrated 

in Figure 5.12. Some calculated stream- and equivorticity-lines are plotted in Figures 

5.13 to 5.20. Streamlines for varied flow conditions, as obtained from experiments, 

are shown in Figures 5.21 and 5.22. These results are examined discussed in the 

following. 

5.1 Velocity Profiles in the Core Region 

Velocity profiles derived from equations 3.9 through 3.11 are plotted at planes 

through midpoints of ridges (a) and cavities (b) (as depicted in Figure 4.2) in Figures 

5.1 through 5.9. Parabolic velocity profiles through a straight tube of diameter D (of 

the narrower bore) are superimposed for comparison. Figure 5.la is for set 1 (Table 

4.2) for which the ratio €/y (the cavity aspect ratio) is 0.619. That is, the depth of 

the cavity is - 1.64 times its width in the streamwise direction. The presence of the 

cavity does cause modifications to the velocity profiles in the spatially periodic 

geometry. 

Calculated profiles for axial velocity versus radial position in Figure 5.1 were 
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identical for Reynolds numbers of 0.5, 1.0 and 1.5, i.e. the flow rate did not effect any 

substantial changes in the pattern. On the ridge or protuberance, the velocity along 

the tube axis was less than for the parabolic profile. The two lines crossed twice as 

might be expected for the same volume rate, i.e. when continuity is satisfied. Over 

the cavity, the velocity pattern was nearly the same as over the ridge at the centre 

portion of the tube. At distance D/2 from the tube axis, the velocity was - 5% of the 

mean value as might be expected with re-circulation occurring inside the cavity. The 

profiles were however different quantitatively from the experimental results reported 

in Figure 3 by Jeje[1985] and reproduced in Figure 5.lb. Deviations from the 

parabolic profiles in the experimental results were more exaggerated even at 

Reynolds number < 0.2. Along the axis, over both ridge and the cavity, velocities 

were significantly lower than for Poiseuille flow and the deviation was larger, i.e. the 

core profile was flatter over the centre of the cavity than elsewhere in contrast to the 

present calculated results. The insensitivity of the velocity profiles to the flow rate 

or Reynolds number as suggested by the calculations were also not supported by 

experimental results[Figure 3b; Jeje, 1985]. Profiles were flatter near the axis as the 

Reynolds number increased. 

A number of reasons can be suggested for the variance. One is that the 

conditions along the boundary of the calculation domain over the cavity could not be 

specified a priori and requires matching with solutions for the cavity region. Both the 

shear stress(proportional to the velocity gradient) and the local velocity have to 

assume the same values for the two regions which were overlapped. The overlapped 
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region might have been too narrow, particularly since the core region did not extend 

any distance into the cavity region. That is, the points of separation and 

reattachment, the branch (or stagnation) points which are the corners of the step 

changes in the corrugated tube should have been totally immersed in both domains. 

It was also initially assumed that the velocity profiles were parabolic and fully 

developed 05 diameters of the narrower tube upstream of the test section and 0.5 

diameters downstream. These were later modified to 2 and 5 diameters respectively. 

Any changes are not reflected in the velocity profiles plots. Due to the higher 

viscosity of the fluid and the low flow rates, the latter entrance and exit lengths are 

considered sufficient for the assumption of parabolic profiles at both boundaries. 

Calculations done on pressure drop suggests 1 diameter upstream and 3 diameters 

downstream were sufficient. 

Other reasons for the differences may be due to inadequate grid sizing, the 

computational algorithm which may allow accumulation of indeterminate errors and 

the criteria for matching two overlapping domains. Nonetheless, calculations for the 

different geometrical configurations can be compared. Velocity profiles calculated for 

set 7 are shown for Re =1 in Figure 5.2. For this configuration, the cavity depth was 

3 times its width, which was identical to that for set 1 presented in Figure 5. la. The 

calculated profiles were nearly identical to suggest that changes in the depth of the 

cavity did not affect the results. A slight increase in the width of the cavity (e) 

without changes in the ridge width (ô) did effect a noticeable change in the profiles, 

in particular at r/R - 0.8 when deviations from the parabolic profile were obvious. 
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A comparison of the profiles for set 2 (c/y = 1.10) and set 1 is probably 

informative. For set 2, € had increased by about 80% relative to set 1, all other 

dimensions remaining unchanged. Deviations from parabolic profile are significant 

for set 2 (Figure 5.4) in the tube core in reference to set 1 (Figure 5.la). The cavity 

depths were similar for both cases. Velocity gradients at the walls were also different 

for the two sets; the gradient for set 1 being smaller than -4u/R for parabolic flow. 

The implications is that longer cavities allow for wider oscillations in the velocities 

nearer the wall but not in the core region. 

Increase in the cavity length and a decrease in its depth as for sets 6 and 3 in 

Figure 5.5 and 5.6 respectively lead to profiles over the ridge and cavity being more 

distinct all the way to the tube axis. For set 4 (Figure 5.7), € has been lengthened 

considerably and the velocity profiles show wide oscillations over a cycle of the 

corrugated tube. Set 8 in Figure 5.8, however, demonstrates that increasing aspect 

ratio c/y is not the only parameter forcing larger oscillations in the velocity field. 

The plots for this set are similar to that for set 3 in Figure 5.6. For set 8, the cavity 

depth is shallow but € is the same as for set 3. For set 4, both the depth (y) and 

cavity width (€) were higher than for the two sets. This suggests that the cavity width 

exercises considerable influence on the flow patterns and may partially justify the use 

of A/D ((c+ ô)/D) by Dullien and Azzam[1973] for characterizing the flow. The 

depth in relation to the width of the cavity, nonetheless, determines the flow 

structures trapped in this region and the neglect of this scale on assuming similarity 

of flow patterns irrespective of the actual dimensions of €, 8 and ' are not supported 
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by experimental observations. 

Finally, the profile for tube configuration set 9 in Figure 5.9 can be compared 

with the other sets. For this arrangement, € was long at almost 3 diameters of the 

narrow tube. The tube structure approximates a cascade of orifice plates in a tube 

under the slow flow conditions. The oscillations in the flow are similar to those for 

set 4 (Figure 5.7) but with lower deviations from the parabolic profile. Since the 

cavity depth (y) for sets 4 and 9 were not very different, it is concluded that, over the 

long cavities for set 9, some recovery in flow has been achieved as was not as evident 

for set 4. Yet the oscillations persisted at a significant level compared with sets 1 and 

2. 

5.2 Axial Pressure Gradients 

Plots of pressure gradients over a number of corrugation cycles as obtained 

from experiments are plotted in Figure 5.10 (a and b) versus Reynolds number (0 - 

2) for the different arrangements. Each of the plots is a straight line as might be 

anticipated from a force balance on a steady flow through a straight, uniform-bore 

tube. For the latter, the relationship 

AP 
= 32-E (5.1) 

L D2 

is obeyed. This is the Hagen-Poiseuille law. On re-arrangement of equation (5.1), one 

gets 
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= p( Diip\ 13 = 3211.2 
1.1) D3  

(5.2) 

where for a constant diameter (D) of the narrower tube of the configurations, 13 is 

a constant equivalent t0 a scaling parameter. A plot of AP/L versus Reynolds 

number then yields the slope 13 for a flow arrangement. Slopes lower than (32fl2/D3p) 

suggest that there is drag reduction for the flow. Consequently, the value assigned to 

D - for the narrower tube, the wider tube or one based on volume averaging, 

assumes considerable significance for the claim of drag reduction. This issue has been 

mentioned earlier in the review of previous studies, in particular that of Duffien and 

Azzam[1973]. 

For the range of geometrical variations in this study, flow visualization 

experiments, show that streainlines at the outer edge of the core region did not 

penetrate significantly into the cavities except those which are relatively shallow ( r 

- 0.05) and long, i.e. > 1 cm. That is, only for two of the sets (4 and 9) would any 

ambiguities arise. For set 8 with shallow cavity, errors on use of D or (D+ y) are 

small. The stream tubes are therefore effectively defined by the diameter of the 

narrower tube. The results themselves provide justification. 

Data for sets 1 and 7 show the largest drag reductions and these were similar 

even though the cavity depth (y) for set 7 is almost double that for set 1, all other 

parameters remaining unchanged. The next level of drag reduction was exhibited by 

set 5 with e/y which is intermediate between values for the other two foregoing. This 
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set, however, has a slightly wider cavity then for both. Set 2 followed in the sequence. 

However, sets 3, 6 and 8 with the same ô/(ô + e), a characteristic ratio used by 

Dullien and Azzam[1973, 1977], equal to 0.329 showed different drag reductions. The 

primary difference for the three were the cavity depths (y). Of the three, set 6 with 

the largest y also has the most drag reduction followed by set 3. But the shallow 

cavity set (8) exhibits the least drag reduction of all the sets. In the data, sets 2 and 

6, inspite of significant differences in y but with similar c, showed similar levels of 

drag reduction. That is, what is responsible for lowering the frictional resistance to 

the flow is a combination of the absolute lengths for e, 8 and y as they determine 

the flow structures in the cavities and the ratio of the lengths in combination with the 

tube diameter, not a simple geometric similarity as suggested in earlier studies. 

The results have been re-plotted in terms of friction factor f, defined as 

05f = 32 if = AP l/2PU2 )( D) L (5.3) 
M ult••) 

versus Reynolds number on Figures 5.11 (a and b). The constancy of the left side 

equation (5.3) at different Reynolds numbers is more clearly shown in Figure 5.12. 

The scatter of experimental results is random and less than 2%. Figure 5.12 shows 

that the configuration in set 7 leads to a reduction in friction factor of - 30% at the 

low Reynolds number studied. Such a dramatic improvement in reducing drag will 

be of course beneficial to maintaining the ascent of sap in living plants in which such 

structures are sometimes observed. 

Results from numerical calculations are presented in Table 5.1 for comparison 
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with experimental data. The predictions show drag reductions which are both smaller 

than from experiments and not in the same order. Set 4, for example, shows the 

lowest drag reductions from numerical calculations. Issues associated with the 

simulation still have to be resolved. 

5.3 Streamline and Equivorticity Contours 

5.3.1 Computational Results 

Streamlines and equivorticity contours calculated from numerical simulation 

are shown in Figures 5.13 to 5.21. The plots in Figure 5.13 are for the tube 

configuration of set 1. Streamlines show a counter-clockwise circulation in the cavity. 

The ring vortex formed is symmetric about the mid-plane through the cavity and the 

streamlines in the core region are indented towards the recess. The structures are 

similar to those reported for single cavities in works by Higdon[1985, 1990] and 

others. The streamline which divide the two regions of flow (core and cavity), 

however, seems to separate and reattach at points which do not correspond to the 

corners or true stagnation points. 

The contour of vorticity shows radially inwards (towards the tube axis) 

increasing values with the highest vorticity near the branch points as one would 

anticipate. Along the midplane through the cavity perpendicular to the tube axis, 

highest vorticity occurred outside the cavity in the region of closepacked streamlines. 

The "eye" of the streamlines within the cavity did not correspond to where the 

vorticity is highest. Vorticity was also low at distances deeper than the cavity width, 
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Table 5.1: Experimental and Calculated Pressure Gradients 

Tube Arrangement Experimental 

(0.5f)Re 

Caculated 

(0.5f)Re 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Set 6 

Set 7 

Set 8 

Set 9 

22.50 

24.43 

26.25 

27.43 

23.85 

25.12 

22.28 

29.40 

29.05 

30.50 

28.95 

28.47 

24.34 

30.18 

28.46 

30.50 

29.10 

26.85 
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Fig. 5.13: (a) Stream function and (b) vorticity contour map 
for set 1, Re= 1.0 
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from the mouth. 

The plots were similar to the above for set 7 which exhibited the highest drag 

reduction of all the tube configurations investigated. Calculations predict that a 

second weak vortex exists deeper in the cavity, starting about one cavity width inside 

the recess. The pattern of vorticity distribution is similar also for sets 1 and 7. 

Sets 2 and 5, the next most efficient configuration for drag reduction, showed 

similar patterns to sets 1 and 7 respectively. For cavities whose depth are of the 

order of the width, one large circulation is noted. When the depth is of the order of 

twice the width or more, other vortices are predicted in the cavity as have been 

predicted and observed by Friedman[1970], Pan and Acrivos[1967], Bozeman and 

Dalton[1973], Mehta and Lavan[1969] and others for flow over single open or closed 

cavities. 

Deviations from the above start to appear as the cavity width is made larger. 

For set 6, shown in Figure 5.17, the streamlines in the cavity have two "eyes" or 

centres of circulation. The cavity depth (y) is shallower than the width (€) and 

rotating flows occur around both eyes. The flow pattern is symmetric about the 

midplane through the cavity to suggest that inertial effects are neither substantial 

inside and at the open surface of the cavity. That is, the flow is predicted to be 

reversible at Reynolds number < 2. A line of zero vorticity divides the cavity into 

two zones with opposite signs for the parameter. Extrema for vorticity are not within 

the cavity space but at the walls. The above patterns are the same for set 3 but in an 

exaggerated form. For this set, only the cavity depth is shallower than for set 6. 
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Fig. 5.14: (a) Stream function and (b) vorticity contour map 
for set 7, Re= 1.0 
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Fig. 5.15 (a) Stream function and (b) vorticity contour map 
for set 5, Re= 1.0 
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Fig. 5.16: (a) Stream function and (b) vorticity contour map 
for set 2, Re= 1.0 
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Streamlines from the "outer" flow penetrated deeper into the cavity but no branch 

points existed at the distal cavity wall. 

As the cavity width to depth ratio (e/y) was further increased, two separate 

vortices are predicted as illustrated with set 4 in Figure 5.19. Streamlines would then 

penetrate to the distal wall and an attachment and a separation point would each 

exist at this wall. The cavity depth for this configuration is greater than for set 3 

(Figure 5.18) for which the vortices had not become isolated. Thus the absolute 

cavity width in some relationship to depth, determines the flow structures that 

will emerge. Results for set 8 with very shallow depth (Figure 5.20) are simply the 

same form as for set 4. Small vortices are trapped at the corners. A similar structure 

can be anticipated for set 9 which has the highest aspect ratio (c/y). 

From the foregoing, it may be suggested that drag reduction is effected by 

thecirculatory flows in the cavity acting as ball-bearings for the core flow. Single 

vortices at the inlet to the cavity are apparently more efficient if the calculation 

results can be compared with experimental data for pressure drop. A comparison 

with the results of numerical simulation for pressure drop would suggest that the 

configuration in set 4 for which two vortices were incipient is most efficient while the 

other structures lead to less efficient flows. The discrepancy and the symmetry always 

observed with the calculations, i.e. negligible inertia, are attributed to difficulties 

associated with the calculations as earlier described. 
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Fig. 5.17: (a) Stream function and (b) vorticity contour map 
for set 6, Re= 1.0 
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Fig. 5.18: (a) Stream function and (b) vorticity contour map 
for set 3, Re= 1.0 
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Fig. 5.19: (a) Stream function and (b) vorticity contour map 
for set 4, Re= 1.0 
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Fig. 5.20: (a) Stream function and (b) vorticity contour map 
for set 8, Re= 1.0 
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5.3.2 Experimental Observations 

Visualization of the flow patterns through recording the stream paths of some 

tiny hydrogen bubbles generated in the flow stream is, as earlier described, based on 

streak photography. For laminar flow, the lines of the photographic images are also 

the streamlines when the flows are steady and the frame reference or observation 

point is stationary[Lugt, 1983; Tritton, 1983]. The region of observation is confined 

to the cavities and the neighbourhood of the ridges, i.e. the wall region for the core 

flow. Bubbles which move through the field of view in the axial direction and the 

flow trapped within the cavities are expected to describe the paths of motion of the 

liquid itself as long as the bubbles were sufficiently small and the population density 

was low to preclude interference. The location of the filament for generating bubbles 

was sufficiently displaced from the observation site (at least 10 cm) and enough time 

was given between the start of the flow and recording of images that velocity deficits 

between a bubble and the liquid immediately around it are expected to be 

negligible[Clayton and Massey, 1967; Wilkinson and Willoughby, 1981]. In regions 

of low velocities (< 0.1 mm/s) within the cavity, buoyancy is still important and 

"streamlines' may appear not to close as a tracer bubble is displaced to a different 

orbit. This behaviour were observed for long exposures and very slow flows of the 

glycerine-water mixture through the corrugated tubes. Tracks of the hydrogen 

bubbles, nonetheless, provide information about the number, size and asymmetries 

of the vortices in the recesses and the streamlines which bound the open cavities. 

These are presented in the following. 
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Photographic images for the streamline patterns for set 7, the tube 

configuration arrangement with the lowest drag, are shown in Figure 5.21 at 

Reynolds number of unity (1) for the core flow. Only one vortex, near the cavity 

entrance, could be observed and this was nearly symmetric about the midplane 

(orthogonal to the tube exit) through the cavity. The streamlines at the mouth were 

only slightly asymmetric, showing a steeper slope at the upstream end than for the 

downstream. The importance of adequately aligning the tubes is demonstrated in 

Figure 5.22. Here, the downstream ring was slightly misaligned so that, in the field 

of view, the ridge downstream was - 1mm shorter than the ridge upstream.The 

vortex in the cavity was significantly skewed. In general, the features are qualitatively 

the same as for the numerical calculations for the same tube in Figure 5.14. The flow 

patterns for set 1 were, as expected similar to that for set 7. 

For set 2 (Figure 5.23), three pictures are presented for core flow at Reynolds 

numbers of 0.5, 1.0 and 1.51. The flow structures are similar for all the Reynolds 

numbers and in comparison with calculated results for this arrangement (Figure 

5.15). The vortices and streamlines at the mouth show slight asymmetries even at 

Reynolds number of 0.5. 

Set 6 in Figure 5.24 at Re = 1.0, as was predicted from calculations (Figure 

5.17), shows two centres of circulation circumscribed by streamlines through the rest 

of the cavity. The same structures are apparent at a Reynolds number of 0.5 (Figure 

5.24b) even though most of the streamlines were not closed because exposure time 

was too short. 
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In the series of tube configurations, set 3 has the next wider cavity. At 

Reynolds number of 1.0, as is shown in Figure 5.25, two centres of circulation form 

within the cavity and these were larger and wider separated than for set 6 under 

similar flow conditions. Streamlines from the outer flow penetrated significantly into 

the cavity but did not reach the wall to form branch points. Similar patterns were 

also observed at Reynolds number of 0.5 and 1.5. 

As the cavity length was further increased (set 4), the streamlines from the 

cavity mouth penetrated to the distant walls in agreement with predictions from 

computations. Two vortices were trapped in the corners of the recess away from the 

main flow. 

It is concluded from the foregoing that the experimental observations and 

calculated streamlines are in qualitative agreement. For the two, small difference 

exist in the shapes of the contours near the entrance to the cavities and since values 

for the stream function were not derived from the observations, it is not possible to 

compare numerically the degree of variation and at which locations the deviations 

are significant. Only a partial success is claimed for the simulation consequently. 
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Figure 5.21: Streamlines (or pathlines of tiny hydrogen bubbles) in and at the mouth 
of a cavity for set 7 (c = 0.238 cm, y = 0.748 cm, ô = 0.239 cm and D = 1.97 cm); 
Re = 1.0 [Top] 

Figure 5.22: Streamlines (or pathilnes of tiny hydrogen bubbles), for slightly 
misaligned ring, in and at the mouth of a cavity for set 7 (c = 0.238 cm, y = 0.748 
cm, ô = 0.239 cm and D = 1.97 cm); Re. = 1.0 [Bottom] 
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• Figure 5.23a: Streamlines (or pathlines of tiny hydrogen bubbles) in and 
of a cavity for set 2 (c = 0.428 cm, y = 0.389 cm, 8 = 0.239 cm and D 
Re = 0.5 [Top] 

Figure 5.23b: Streamlines (or pathlines of tiny hydrogen bubbles) in and 
of a cavity for set 2 (c = 0.428 cm, y = 0.389 cm, 8 = 0.239 cm and D 
Re = 1.0 [Middle] 

Figure 5.23c: Streamlines (or pathlines of tiny hydrogen bubbles) in and 
of a cavity for set 2 (e = 0.428 cm, y = 0.389 cm, 8 = 0.239 cm and D 
Re = 1.5 [Bottom] 

at the mouth 
= 1.97 cm); 

at the mouth 
= 1.97 cm); 

at the mouth 
= 1.97 cm); 
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Figure 5.24a: Streamlines (or pathlines of tiny hydrogen bubbles) in and at the mouth 
of a cavity for set 6 (€ = 0.487 cm, y = 0.239 cm, ô = 0.239 cm and D = 1.97 cm); 
Re = 0.5 [Top] 

Figure 5.24b: Streamlines (or pathlines of tiny hydrogen bubbles) in and at the mouth 
of a cavity for set 6 (c = 0.487 cm, y = 0.239 cm, 8 = 0.239 cm and D = 1.97 cm); 
Re = 1.0 [Middle] 

Figure 5.25: Streamlines (or pathlines of tiny hydrogen bubbles) in and at the mouth 
of a cavity for set 3 (c = 0.487 cm, y = 0.198 cm, 8 = 0.239 cm and 1) = 1.97 cm); 
Re = 1.0 [Bottom] 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions  

The following are concluded from this study: 

From experiments performed with nine types of cavity configurations, the 

cavity with aspect ratio (width/depth) of 0.3-0.6 and ridge to recess width ratios of 

1 showed the highest drag reduction. 

Both the calculated streamlines and those observed through pathlines of tiny 

hydrogen bubbles are in qualitative agreement. 

Calculated velocity profiles showed spatial oscillations through different planes 

over a cycle of corrugation. Configurations with wider cavities showed a maximum 

deviations from the parabolic profile through a tube of the same diameter as the 

narrower segment along the flow path. 

Recommendations  

A few recommendations can be made towards improving the existing experimental 

procedure, and the study of flow through internally corrugated tube in general: 

The Reynolds number could be increased to extend the range for the study 

of the flow behaviour and patterns in the cavity. 

Cinematography rather than still pictures will improve the visualization of the 

dynamic progression of the flow structure. 

Instead of using hydrogen bubbles as the flow visualization technique, other 

techniques such as Laser-Doppler anemometry may be employed. 
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APPENDIX A 

Calibration of Differential Pressure Transducer 

The Validyne DP 103 differential pressure transducer, using diaphragm dash 

no. 22, was calibrated using water with the display shown on Validyne CD 223 digital 

display. First a tygon tube manometer was attached to DP 103 and it was filled with 

water. Next one arm of the manometer was raised to increase the pressure and the 

system was allowed to come to a steady-state. After reaching steady-state, the value 

on the digital display was noted for the corresponding AP in kPa of water. In this way 

the whole spectrum of AP was covered. The pressure drop in kPa of water is plotted 

against the CD 223 display reading in rectangular coordinates. The calibration curve 

is shown in Figure Al. A straight line is fitted through the data points using least 

squares method. The equation of the curve is given by, 

AP = O.0060084*x - 0.004814 

where, AP is the pressure in kPa and x is the CD 223 display reading. 
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