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Discrete-Time Expectation Maximization Algorithms
for Markov-Modulated Poisson Processes

1

2

Robert J. Elliott and W. P. Malcolm3

Abstract—In this paper, we consider parameter estimation4
Markov-modulated Poisson processes via robust filtering and5
smoothing techniques. Using the expectation maximization algo-6
rithm framework, our filters and smoothers can be applied to esti-7
mate the parameters of our model in either an online configuration8
or an offline configuration. Further, our estimator dynamics do not9
involve stochastic integrals and our new formulas, in terms of time10
integrals, are easily discretized, and are written in numerically sta-11
ble forms in W. P. Malcolm, R. J. Elliott, and J. van der Hoek, “On12
the numerical stability of time-discretized state estimation via clark13
transformations,” presented at the IEEE Conf. Decision Control,14
Mauii, HI, Dec. 2003.15

Index Terms—Change of measure, counting processes, expecta-16
tion maximization (EM) algorithm, martingales.17

I. INTRODUCTION18

THE WELL-KNOWN expectation maximization (EM) al-Q119

gorithm [8], [17] provides a scheme for solving a problem20

common in signal processing: estimating the parameters of a21

probability distribution for a known, partially observed dynami-22

cal system. This problem has received considerable attention for23

common signal models, such as the discrete-time Gaus-Markov24

model or the observation of a Markov process through a Brown-25

ian motion, [10], [24]. In this paper, we propose EM algorithms26

for the so-called Markov-modulated Poisson process (MMPP).27

A MMPP is conditionally a Poisson counting process, whose28

rate of arrivals depends upon the state of an indirectly observed29

Markov chain. These models have enjoyed many successful30

applications in queueing theory, and more recently, have been31

studied in the context of packet traffic estimation, and biomedi-32

cal and optical-signal processing.33

Since our hidden-state process models are continuous-time34

Markov chains, the parameter estimation problem we consider,35

concerns computing estimates for the rate matrix of the Markov36

chain and the vector of Poisson intensities for the observation37

process. Traditionally, the EM algorithm is implemented by38

maximizing a log-likelihood function over a parameter space39

[11], [21], [22]. In some applications, this approach can lead to40
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technical difficulties. For example, the form of the log-likelihood 41

function could be complicated or the operation of maximization 42

of this function might be difficult. 43

The implementations of the EM algorithms we present are the 44

so-called filter-based and smoother-based EM algorithm [4], 45

[10]. In the filter-based scheme, the parameter estimates are 46

computed online by running a set of four recursive filters whose 47

only storage requirements are previous estimates. Adapting the 48

transformation techniques introduced by Clark [1], we compute 49

the so-called robust versions of these filter, where the obser- 50

vation processes appear as parameters rather than as stochastic 51

integrators. These formulations have been shown to have some 52

numerical advantages [16]. Our smoother-based EM algorithm 53

exploits a type of identity between the forward robust filter and 54

its reverse-time counterpart. Smoothed estimates are obtained 55

without recourse to stochastic integration. 56

The paper is organized as follows. In Section II, the signal 57

models for the state and observation processes are defined; our 58

reference probability measure is also defined in this section. In 59

Section III, we briefly recall the EM algorithm and compute a 60

filter-based EM algorithm for MMPPs. In this section, we also 61

compute robust filter dynamics that do not include stochastic 62

integrals. In Section IV, we compute a robust smoother-based 63

EM algorithm for an MMPP. Finally, in Section V, we compute 64

a discrete-time data-recursive smoother-based EM algorithm for 65

an MMPP. 66

II. DYNAMICS AND REFERENCE PROBABILITY 67

Initially, we suppose that all processes are defined on the 68

measurable space (Ω,F) with probability measure P . 69

A. State Process Dynamics 70

Suppose that the state process X = {Xt, 0 ≤ t} is a 71

continuous-time finite-state Markov chain with rate matrix 72

A and an initial probability distribution p0 . We now use 73

the well-known canonical representation for a Markov chain, 74

that is, without loss of generality, the state space of X is 75

L = {e1 ,e2 , . . . ,en}, where ei denotes a column vector in R
n 76

with unity in the ith position and zero elsewhere. The dynamics 77

for this process are 78

Xt = X0 +
∫ t

0
AXudu + Mt. (2.1)

Here, M is a (σ{Xt, 0 ≤ t}, P )-martingale and the matrix A ∈ 79

R
n×n is a rate matrix for the process X . 80
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B. Observation Process Dynamics81

Suppose that the state process X is observed through a count-82

ing process whose Doob–Meyer decomposition is83

Nt =
∫ t

0
〈Xu, λ〉du + Vt. (2.2)

Here, V is a (σ{Nu, 0 ≤ u ≤ t}, P )-martingale, 〈·, ·〉 denotes84

an inner product, and λ ∈ R
n
+ is a vector of n nonnegative85

Poisson intensities. Our filtrations are given by86

Ft = {Ft}, where Ft
∆=σ{Xu ; 0 ≤ u ≤ t} (2.3)

Y0,t = {Y0,t}, where Y0,t
∆=σ{Nu ; 0 ≤ u ≤ t} (2.4)

G0,t =
{
G0,t

}
, where G0,t

∆= σ{Nu,Xu ; 0 ≤ u ≤ t}. (2.5)

C. Reference Probability87

We define a probability measure P † on the space (Ω,F) such88

that, under P †, the following two conditions hold.89

1) The state process X is a Markov process with intensity90

matrix A and initial probability distribution p0 .91

2) The observation process N is a standard Poisson process,92

that is, N has a fixed intensity of unity.93

The real-world probability measure P is defined by setting94

dP

dP †

∣∣∣∣
G0 , t

= Λ0,t (2.6)

where95

Λ0,t =
∏

0<u≤t

〈Xu, λ〉∆Nu exp

{∫ t

0
(1 − 〈Xu, λ〉)du

}

= 1 +
∫ t

0
Λu−

(
〈Xu, λ〉 − 1

)(
dNu − du

)
. (2.7)

Here,96

∆Nτ
∆=Nτ − lim

ε ↓ 0
Nτ−ε

= Nτ − Nτ−. (2.8)

Lemma 1: Under the measure P , the dynamics for the Markov97

process X are unchanged and given by (2.1).98

A proof of Lemma 1 is given in the Appendix. Further detail99

on the theory of Girsanov’s theorem and its application to esti-100

mation problems for stochastic dynamical systems can be found101

in the texts [2] and [3].102

III. FILTER-BASED EM ALGORITHM103

A. EM Algorithm104

The EM algorithm is a two-step iterative process for comput-105

ing maximum likelihood (ML) estimates. This process is usually106

terminated when some imposed measure of convergence for the107

sequence of maximum likelihood estimators (MLEs) is satis-108

fied. Let θ index a given family of probability measures Pθ ,109

where θ ∈ Θ. All such measures Pθ defined on a measurable110

space (Ω,F) are assumed absolutely continuous with respect to 111

a fixed probability measure P . Suppose Y ⊂ F . 112

The two iterative steps in the EM algorithm are as follows. 113

1) Expectation step: Fix θ∗ = θ̂τ , then compute Q(·, θ∗), 114

where 115

Q(θ, θ∗) = Eθ∗

[
log

dPθ

dPθ∗
|Y

]
. (3.9)

2) Maximization step: Maximize Q(θ, θ∗) over the space Θ 116

θ̂τ +1 ∈ argmax
θ ∈Θ

Q(θ, θ∗). (3.10)

B. State Estimation Filters 117

The so-called filter-based form of the EM algorithm for a 118

continuous-time Markov chain observed in Brownian motion 119

was presented in [4] and a robust version is given in [10]. In 120

this paper, we develop a version of the techniques used in [10] 121

for parameter estimation with MMPPs. This method is based 122

essentially on four quantities, each concerning the indirectly 123

observed Markov process X and each computed by using the 124

information up to and including time t. We now list the four 125

quantities of interest for the filter-based EM algorithm. 126

1) Xt , the state of the Markov chain. We are in- 127

terested in E[Xt |Yt ]. By Bayes’ Theorem this is 128

E†[ΛtXt |Y0,t ]/E†[Λt |Y0,t ]. Write 129

qt
∆=E†

[
ΛtXt |Y0,t

]
. (3.11)

Then, 130

qt = q0+
∫ t

0
Aqudu

+
∫ t

0
diag

{
〈λ,e�〉−1

}(
dNu−du

)
∈ R

n . (3.12)

Here, 131

diag
{
〈λ,e�〉 − 1

}

=


〈λ,e1〉 − 1

〈λ,e2〉 − 1
. . .

〈λ,en 〉 − 1

 (3.13)

and A is the rate matrix for the process X . The unnor- 132

malized probability q is converted to its corresponding 133

normalized probability by noting that
∑n

i=1〈Xt,ei〉 = 1, 134

so E†[Λt |Yt ] = 〈qt ,1〉. Here, 1 = (1, 1, . . . , 1)′ ∈ R
n . 135

Therefore, 136

P (Xt = ei |Y0,t) =
〈qt ,ei〉∑n
�=1〈qt ,e�〉

. (3.14)

A proof of (3.12) is given in the Appendix. 137

2) Ji
t , the cumulative sojourn time spent by the process X in 138

state ei is 139

Ji
t =

∫ t

0
〈Xu,ei〉du. (3.15)
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3) N
(j,i)
t , the number of transitions ei → ej of X , where140

i 
= j, up to time t is141

N
(j,i)
t =

∫ t

0
〈Xu−,ei〉 〈dXu ,ej 〉. (3.16)

4) Gi
t , the level integrals for the state ei , is142

Gi
t =

∫ t

0
〈Xu,ei〉dNu . (3.17)

Using Bayes’ Theorem, if H = {Ht, 0 ≤ t} is any G adapted143

process144

E[Ht |Y0,t ] =
E†[Λ0,tHt |Y0,t ]
E†[Λ0,t |Y0,t ]

. (3.18)

Here, E†[·] denotes an expectation taken under the measure P †.145

Write146

σ(Ht) = E†[Λ0,tHt |Y0,t ]. (3.19)

Indexing the sequence of passes of the EM algorithm by τ =147

1, 2, 3 . . ., the update formulas for the parameter estimates are148

as follows:149

[Âτ +1](i,j ) =
E[N (j,i)

T |Y0,T ]
E[Ji

T |Y0,T ]
=

σ(Ni,j
T )

σ(Ji
T )

(3.20)

and150

〈λ̂τ +1 ,ei〉 =
E[Gi

T |Y0,T ]
E[Ji

T |Y0,T ]
=

σ(Gi
T )

σ(Ji
T )

. (3.21)

The conditional expectations in equations (3.20) and (3.21) are151

computed using the previous (at pass τ ) parameter estimates for152

A and λ.153

The updates for [Âk ](i,j ) and 〈λ̂k ,ei〉 are computed by eval-154

uating the expectations in (3.20) and (3.21), respectively. How-155

ever, it is, in general, not possible to compute recursive dynam-156

ics for the processes Ji , N (j,i) , and Gi . It is, however, possi-157

ble to compute dynamics for the associated product quantities158

σ(Ji
t Xt), σ(N (j,i)

t Xt), and σ(Gi
tXt), where, for example,159

σ(Gi
tXt) = E†[Λt Gi

t Xt |Yt ] ∈ R
n . (3.22)

The fundamental idea behind the filter-based EM algorithm is160

to compute recursive filters for quantities such as (3.22), then161

marginalize the state variable X to evaluate the estimators given162

by (3.20) and (3.21). We now give recursive filters to estimate,163

respectively, the product quantities JiX , N (j,i)X , and GiX .164

Theorem 1: The vector-valued process σ(JiX) ∈ R
n satisfies165

the stochastic integral equation166

σ(Ji
t Xt) =

∫ t

0
Aσ(Ji

uXu )du +
∫ t

0
〈qu ,ei〉du ei

+
∫ t

0
diag

{
〈λ,e�〉 − 1

}
σ(Ji

u−Xu−)
(
dNu − du

)
.

(3.23)

Here, σ(Ji
0X0) = 0 and q is the solution of (3.12).167

Theoremm 2: The vector-valued process σ(N (j,i)X) ∈ R
n 168

satisfies the stochastic integral equation 169

σ(N (j,i)
t Xt) =

∫ t

0
Aσ(N (j,i)

u Xu )du

+
∫ t

0
〈qu ,ei〉〈Aei ,ej 〉du ej

+
∫ t

0
diag

{
〈λ,e�〉 − 1〉

}
× σ(N (j,i)

u− Xu−)
(
dNu − du

)
. (3.24)

Here, σ(N (j,i)
0 X0) = 0 and q is the solution of (3.12). 170

Theorem 3: The vector-valued process σ(GiX) ∈ R
n satis- 171

fies the stochastic integral equation 172

σ(Gi
tXt) =

∫ t

0
Aσ(Gi

uXu )du

+
∫ t

0
〈qu−,ei〉〈λ,ei〉dNuei

+
∫ t

0
diag

{
〈λ,e�〉 − 1}σ(Gi

u−Xu−)
(
dNu − du

)
.

(3.25)

Here, σ(Gi
0X0) = 0 and q is the solution of (3.12). 173

A proof of Theorem 3 is given in the Appendix. Theorems 1 174

and 2 can be readily proven by similar means. By using the solu- 175

tions of (3.23), (3.24), and (3.25), the updates for the parameter 176

estimates are given by 177

[Âτ +1](i,j ) =
〈σ(N (j,i)

T XT ),1〉
〈σ(Ji

T XT ),1〉 (3.26)

and 178

〈λ̂τ +1 ,ei〉 =
〈σ(Gi

tXT ),1〉
〈σ(Ji

T XT ),1〉 . (3.27)

C. Robust State Estimation Filters 179

Each of the dynamics given by (3.23)–(3.25) contain stochas- 180

tic Lebesgue–Stieltjes integral terms. These stochastic integrals, 181

with respect to the observation process N , can be eliminated by 182

using a version of a gauge transformation due to Clark [1]. 183

Consider the diagonal matrix 184

Γt
∆= diag

{
γi

t

}
∈ R

n×n . (3.28)

Here, γi
t

∆= exp
{
(1 − 〈λ,ei〉)t

}
〈λ,ei〉Nt with γi

0 = 0. Note 185

that the matrix Γ−1
t is nonsingular. Using the Itô rule, one can 186

show that 187

Γ−1
t =

∫ t

0
diag

{
〈λ,e�〉 − 1

}
Γ−1

u du

+
∫ t

0
Γ−1

u−diag
{
〈λ,e�〉−1 − 1

}
dNu . (3.29)
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With qt
∆= Γ−1

t qt , we have188

qt = q0 +
∫ t

0
Γ−1

u AΓuqu du. (3.30)

Equation (3.30) was established in [13]. For any F-adapted189

integrable process H , we write190

σ(H) = Γ−1
t σ(Ht). (3.31)

Now, our objective is to compute filters to estimate the product191

processes GiX , N (j,i)X , and JiX . Let us first consider the192

process σ(Gi X). Dynamics for the gauge transformed process193

σ(Gi
t Xt) = Γ−1

t σ(Gi
t Xt) can be computed by applying the194

product rule195

d(Γ−1
t σ(Gi

t Xt)) = Γ−1
t−d(σ(Gi

t Xt)) + dΓ−1
t σ(Gi

t− Xt−)

+ ∆Γ−1
t ∆σ(Gi

t Xt). (3.32)

The result of this calculation is196

Γ−1
t σ(Gi

t Xt) =
∫ t

0
Γ−1

u AΓuσ(Gi
u Xu )du

+
∫ t

0
〈qu ,ei〉〈λ,ei〉dNuei

+
∫ t

0
diag

{
〈λ,e�〉−1

}
σ(Gi

u−Xu−)(dNu−du)

+
∫ t

0
diag

{
〈λ,e�〉 − 1

}
σ(Gi

uXu )du

+
∫ t

0
diag

{
〈λ,e�〉−1 − 1

}
σ(Gi

u−Xu−)dNu

+
∫ t

0
diag

{
〈λ,e�〉−1 − 1

}
〈qu ,ei〉〈λ,ei〉dNu ei

+
∫ t

0
diag

{
〈λ,e�〉−1 − 1

}
× diag

{
〈λ,e�〉−1 − 1

}
σ(Gi

u− Xu−) dNu .

(3.33)

Several stochastic integrals in (3.33) cancel, noting197

diag
{
〈λ,e�〉 − 1

}
+ diag

{
〈λ,e�〉−1 − 1

}
+diag

{
〈λ,e�〉−1 − 1

}
diag

{
〈λ,e�〉−1

}
=0 ∈ R

n×n (3.34)

giving198

σ(Gi
t Xt) =

∫ t

0
Γ−1

u AΓuσ(Gi
uXu )du +

∫ t

0
〈qu ,ei〉dNuei .

(3.35)
The stochastic integral in (3.35) can be simplified by stochastic199

integration by parts200 ∫ t

0
〈qu ,ei〉dNuei = 〈qt ,ei〉Nt −

∫ t

0
Nu 〈dqu ,ei〉. (3.36)

Finally, our dynamics for σ(Gi
tXt) read 201

σ(Gi
tXt) =

∫ t

0
Γ−1

u AΓuσ(Gi
uXu )du

+ 〈qt ,ei〉Ntei −
∫ t

0
Nu 〈dqu ,ei〉ei . (3.37)

Similarly, one can apply the product rule to compute process dy- 202

namics for the quantities σ(Ji
t Xt) and σ(N (j,i)

t Xt). The results 203

of these calculations are, respectively, 204

σ(Ji
t Xt) =

∫ t

0
Γ−1

u AΓuσ(Ji
uXu )du +

∫ t

0
〈qu ,ei〉du ei

(3.38)
and 205

σ(N (j,i)
t Xt) =

∫ t

0
Γ−1

u AΓuσ(N (j,i)
u Xu )du

+
∫ t

0
〈qu ,ei〉〈Aei ,ej 〉du ej . (3.39)

D. Discrete-Time Filters 206

For all time discretizations, we will consider a partition on an 207

interval [0, T ] and write 208

Π(K )
[0,T ]

∆=
{
0 = t0 , t1 , . . . , tK = T

}
. (3.40)

Here, the partition is strict, that is, t0 < t1 < · · · < tK = T . To 209

denote the mesh of the partition, we write 210

‖Π(K )
[0,T ]‖ = max

1≤k≤K
{tk − tk−1}. (3.41)

For brevity, we shall use the notation ξk
∆= ξtk

, where ξk denotes 211

a process ξ at a time point tk . Further, we write ∆(k−1,k) = 212

tk − tk−1 . Approximating the integral in (3.30), we get 213

qtk
≈ qtk −1

+ Γ−1
tk −1

AΓtk −1 qtk −1
∆(k−1,k) (3.42)

so 214

qtk
= Γtk

qtk
≈ Γtk

Γ−1
tk −1

[
I + ∆(k−1,k)A

]
qtk −1 . (3.43)

This suggests the recursion 215

q̂k
∆= ΓkΓ−1

k−1

[
I + ∆(k−1,k)A

]
q̂k−1 . (3.44)

Here, q̂ denotes an estimate of the unnormalized probability 216

generated by the suboptimal discrete-time recursion at (3.43). 217

Remark 1: An important feature of the filter formulation at 218

(3.44) is that the sampling interval or ∆(k−1,k) can be chosen 219

to ensure a certain type of numerical stability. Here, numerical 220

stability is taken to mean 〈q,ei〉 ≥ 0 for all i ∈ {1, 2, . . . , n}. 221

The details of this property are given in [16]. 222

Writing the dynamics given by (3.37) recursively at sampling 223

instants tk and tk−1 , we get
224

σ(Gi
tk

Xtk
) = σ(Gi

tk −1
Xtk −1 )

+
∫ tk

tk −1

Γ−1
u AΓuσ(Gi

uXu )du
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+ 〈qtk
,ei〉Ntk

ei − 〈qtk −1
,ei〉Ntk −1 ei

−
∫ tk

tk −1

Nu 〈dqu ,ei〉ei . (3.45)

Making an Euler–Maruyama1 approximation, we have225 ∫ tk

tk −1

Nu 〈dqu ,ei〉ei =
∫ tk

tk −1

Nu 〈Γ−1
u AΓuqudu, ei〉ei

≈ Ntk −1 Γ
−1
tk −1

〈Aqtk −1 ei〉∆(k−1,k)ei

(3.46)

and with some algebraic manipulation226

〈qtk
,ei〉Ntk

ei − 〈qtk −1
,ei〉Ntk −1 ei

= Γ−1
tk −1

〈qtk −1 ,ei〉(Ntk
− Ntk −1 )ei

+ ∆(k−1,k)Γ−1
tk −1

〈Aqtk −1 ,ei〉Ntk
ei (3.47)

we see that227

σ(Gi
kXk ) ≈ σ(Gi

k−1Xk−1)

+ Γ−1
k−1AΓk−1σ(Gi

k−1Xk−1)∆(k−1,k)

+ Γ−1
k−1〈q̂k−1 ,ei〉(Nk − Nk−1)ei

+ ∆(k−1,k)Γ−1
k−1〈Aq̂k−1 ,ei〉Nk ei

− Nk−1Γ−1
k−1〈Aq̂k−1 ,ei〉∆(k−1,k)ei . (3.48)

Now, by multiplying both sides of (3.48) on the left-hand side228

by the matrix Γk , we get229

σ(Gi
kXk ) ≈ ΓkΓ−1

k−1σ(Gi
k−1Xk−1)

+ ΓkΓ−1
k−1Aσ(Gi

k−1Xk−1)∆(k−1,k)

+ ΓkΓ−1
k−1〈q̂k−1 ,ei〉(Nk − Nk−1)ei

+ ΓkΓ−1
k−1〈Aq̂k−1 ,ei〉(Nk − Nk−1)ei .

(3.49)

Our estimator of the quantity σ(Gi
kXk ) has dynamics230

σ̂(Gi
kXk ) ∆= ΓkΓ−1

k−1

[
I + ∆(k−1,k)A

]
σ̂(Gi

k−1Xk−1)

+ ΓkΓ−1
k−1

[
〈q̂k−1 ,ei〉 + ∆(k−1,k)〈Aq̂k−1 ,ei〉

]
× (Nk − Nk−1)ei . (3.50)

After similar calculations, the remaining discretized filters read231

σ̂(N (j,i)
k Xk ) = ΓkΓ−1

k−1

[
I + ∆(k−1,k)A

]
σ̂(N (j,i)

k−1 Xk−1)

+ΓkΓ−1
k−1〈q̂k−1 ,ei〉〈Aei ,ej 〉∆(k−1,k)ei

(3.15)

232

σ̂(Ji
kXk ) = ΓkΓ−1

k−1

[
I + ∆(k−1,k)A

]
σ̂(Ji

k−1Xk−1)

+ ΓkΓ−1
k−1〈q̂k−1 ,ei〉ei . (3.52)

1We will use this particular approximation throughout this paper, however,
other approximations could also be used.

E. Discrete-Time Filter-Based EM Algorithm 233

Summarizing the results from the previous sections, our filter- 234

based EM algorithm reads 235

Initialization ∀(i, j) ∈ {(1, 1), (1, 2), . . . , (n, n)},
Choose [Â0 ](i,j ) , for each i ∈ {1, 2, . . . , n}
choose 〈λ̂,ei〉.

Step 1 Using (3.26) and (3.27), compute
the MLEs, [Âτ +1]i,j and λ̂τ +1 .

Step 2 Decide to stop or continue from step 2.

IV. SMOOTHER-BASED EM ALGORITHM FOR MMPPS 236

In many implementations of the EM algorithm, for example, 237

[24] and [29], the expectation step is completed with smoothed 238

rather than (online) filtered estimates. Typically, the smoothing 239

scheme used is the so-called “fixed interval smoother.” Com- 240

puting smoothing schemes for MMPPs can be particularly diffi- 241

cult [23], [26]. One source of this difficulty is the task of devel- 242

oping backwards dynamics. This task usually leads to construct- 243

ing stochastic integrals evolving backward in time. However, the 244

approach we use to develop smoothing algorithms completely 245

avoids these difficulties. To compute our smoothers we exploit 246

a special identity between forward and backward robust dynam- 247

ics, and as a consequence, do not need to consider the backward 248

stochastic integration at all. 249

A. Smoothed State Estimation for the Process X 250

We first briefly recall the state estimation MMPP smoother 251

presented in [14]. For a smoothed estimate for the process X ∈ 252

R
n , we wish to evaluate the expectation E[Xt |Y0,T ], where 253

0 ≤ t ≤ T . By Bayes’ rule [3], we have 254

E[Xt |Y0,T ] =
E†[Λ0,T Xt |Y0,T ]
E†[Λ0,T |Y0,T ]

. (4.53)

Consider the numerator of (4.53) 255

rt
∆=E†[Λ0,T Xt |Y0,T ]

= E†[Λ0,tΛt,T Xt |Y0,T ]

= E†[E†[Λ0,tΛt,T Xt |Y0,T ∨ Ft ]|Y0,T ]

= E†[Λ0,tXtE
†[Λt,T |Y0,T ∨ Ft |Y0,T ]. (4.54)

Under the measure P †, X is a Markov process, so the inner 256

expectation in the previous line of (4.54) is 257

E†[Λt,T |Y0,T ∨ Ft ] = E†[Λt,T |Y0,T ∨ σ{Xt}]. (4.55)

Write 258

vi
t,T

∆= E†[Λt,T |Y0,T and Xt = ei ]. (4.56)

Omitting further calculations, it can be shown [14] that 259

rt = 〈qt ,e1〉〈vt,T ,e1〉e1 + 〈qt ,e2〉〈vt,T ,e2〉e2 + · · ·
+ 〈qt ,em 〉〈vt,T ,en 〉en ∈ R

n . (4.57)

The normalized smoothed-state estimate of X is then 260

E[Xt |Y0,t ] =
rt

〈rt ,1〉
. (4.58)
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Note that261

〈rt ,1〉 = 〈qt , vt,T 〉
= E†[Λ0,T 〈Xt,1〉|Y0,T ]

= E†[Λ0,T |Y0,T ] (4.59)

is independent of t. Therefore262

d

dt
〈rt ,1〉 =

d

dt
〈qt , vt,T 〉

= 〈dqt , vt,T 〉 + 〈qt , dvt,T 〉
= 〈Γ−1

t AΓtqt , vt,T 〉 + 〈qt , dvt,T 〉
= 0. (4.60)

The vector vt,T =
(
〈vt,T ,e1〉, 〈vt,T ,e2〉, . . . , 〈vt,T ,en 〉

)
incor-263

porates the extra information obtained from the observations264

between t and T . Computing dynamics for v can be diffi-265

cult [18], [19]. However, by exploiting a special identity be-266

tween the forward dynamics and the corresponding backward,267

process v, one can directly compute robust dynamics for the268

process v. What we must do is consider the process v, such that269

the following identity holds270

〈qt , vt,T 〉 = 〈Γ−1
t qt ,Γtvt,T 〉 = 〈qt , vt,T 〉,

for all t ∈ [0, T ]. (4.61)

That is, vt,T
∆= Γtvt,T . Using (4.60), one can show that271

dvt,T

dt
= −ΓtA

′Γ−1
t vt,T , vT ,T = vT ,T = 1 (4.62)

so that272

vt,T = 1 +
∫ T

t

ΓuA′Γ−1
u vt,T du. (4.63)

Further, using the time discretization of (3.40)273

vk−1,T = vk,T +
∫ tk

tk −1

ΓuA′Γ−1
u vu,T du

≈ vk,T + ΓkA′Γ−1
k vk,T ∆(k−1,k) , (4.64)

so, our suboptimal estimator v̂ ≈ v has dynamics274

v̂k−1,T
∆= Γ−1

k−1Γk

[
I + ∆(k−1,k)A

′]v̂k ,T . (4.65)

B. Smoothers for the Quantities Ni
t , Ji

t , and Gi
t275

Following the same strategy as before, we consider the276

identity277

〈σ(Gi
t Xt), vt,T 〉 = 〈Γ−1

t σ(Gi
t Xt),Γtvt,T 〉

= 〈σ(Gi
t Xt), vt,T 〉. (4.66)

Now, define278

σ̃(Gi
t Xt)

∆=σ(Gi
t Xt) − 〈qt ,ei〉Nt ei . (4.67)

Then279

d σ̃(Gi
t Xt) = Γ−1

t AΓtσ(Gi
t Xt) dt

− Nt〈Γ−1
t AΓtqt ,ei〉ei dt. (4.68)

Now, 280

〈σ(Gi
t Xt), vt,T 〉 = 〈σ̃(Gi

t Xt), vt,T 〉 + Nt〈qt ,ei〉〈vt,T ,ei〉
(4.69)

and 281

Nt〈qt ,ei〉〈vt,T ,ei〉 = Nt〈qt ,ei〉〈vt,T ,ei〉. (4.70)

From the dynamics of σ̃(Gi
tXt), we have 282

d〈σ̃(Gi
t Xt), vt,T 〉

= 〈Γ−1
t AΓtσ(Gi

t Xt), vt,T 〉 dt

− Nt〈Γ−1
t AΓtqt ,ei〉〈ei , vt,T 〉 dt

− 〈σ̃(Gi
t Xt),ΓtAΓ−1

t vt,T 〉 dt

= 〈Γ−1
t AΓtσ(Gi

t Xt), vt,T 〉 dt

− Nt〈Γ−1
t AΓtqt ,ei〉〈ei , vt,T 〉 dt

− 〈σ(Gi
t Xt)−〈qt ,ei〉Nt ei ,ΓtA

′Γ−1
t vt,T 〉 dt

= −Nt〈Γ−1
t AΓtqt ,ei〉〈ei , vt,T 〉 dt

+ Nt〈qt ,ei〉〈Γ−1
t AΓtei , vt,T 〉 dt (4.71)

i.e., 283

〈σ̃(Gi
T XT ), vT ,T 〉

= −
∫ T

0
Nu 〈Γ−1

u AΓuqu ,ei〉〈ei , vu,T 〉du

+
∫ T

0
Nu 〈qu ,ei〉〈Γ−1

u AΓuei , vu,T 〉du. (4.72)

Therefore, 284

〈σ(Gi
T XT ), vT ,T 〉 = 〈σ(Gi

T XT ), vT 〉
= 〈σ̃(Gi

T XT ), vT 〉 + NT 〈qT ,ei〉〈vT ,ei〉

= −
∫ T

0
Nu 〈Γ−1

u AΓuqu ,ei〉〈ei , vu,T 〉du

+
∫ T

0
Nu 〈qu ,ei〉〈Γ−1

u AΓuei , vu,T 〉du

+ NT 〈qT ,ei〉〈vT ,T ,ei〉

= −
∫ T

0
Nu 〈Aqu ,ei〉〈ei , vu,T 〉du

+
∫ T

0
Nu 〈qu ,ei〉〈ei , A

′vu,T 〉du

+ NT 〈qT ,ei〉〈vT ,T ,ei〉. (4.73)

By using similar calculations, one can also show that 285

〈σ(Ji
T XT ), vT ,T 〉 =

∫ T

0
〈qu ,ei〉〈vu,T ,ei〉dt (4.74)

and 286

〈σ(N (j,i)
T XT ), vT ,T 〉 =

∫ T

0
〈Aei ,ej 〉〈qu ,ei〉〈vu,T ,ej 〉du.

(4.75)
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C. Smoother-Based EM Algorithm287

Recalling (3.20) and (3.21), our smoother-based update equa-288

tions are289

[Âτ +1](i,j ) = [Âτ ](i,j )

∫ T

0 〈qu ,ei〉〈vu,T ,ej 〉du∫ T

0 〈qu ,ei〉〈vu,T ,ei〉du
(4.76)

and290

〈λ̂τ +1 ,ei〉 =

∫ T

0 Nu 〈qu ,ei〉〈ei , A
′vu,T 〉du∫ T

0 〈qu ,ei〉〈vu,T ,ei〉du

−
∫ T

0 Nu 〈Aqu ,ei〉〈ei , vu,T 〉du∫ T

0 〈qu ,ei〉〈vu,T ,ei〉du

+
NT 〈qT ,ei〉〈vT ,T ,ei〉∫ T

0 〈qu ,ei〉〈vu,T ,ei〉du
. (4.77)

V. DISCRETE-TIME SMOOTHERS291

A. Discrete-Time Smoother Formulas292

Suppose that one observes data on the set [0, T ] and parameter293

estimates are computed by using these data. Further, suppose294

one receives a subsequent observation data on the set [T, T ′],295

where T ′ > T . What we would like to do is incorporate the new296

data on [T, T ′] so as to reestimate the model parameters, but297

without complete recalculation from the origin. To utilize the298

information on [T, T ′], we consider a time discretization on the299

total interval [0, T ] ∪ [T, T ′], that is,300

0 = t0 < t1 · · · < tK = T < t′0 < t′1 · · · < t
K̃

= T ′.

Here, we denote this augmented partition by Π(K )
[0,T ] ∪ Π(K̃ )

[T ,T ′] ,301

where K̃ ∈ N and302

Π(K̃ )
[T ,T ′]

∆=
{
T = t′0 , t

′
1 , . . . , t

′
K̃

= T ′}. (5.78)

Recalling the discrete-time, (backward) recursion for the esti-303

mator v̂, we see304

v̂k−1,T = Γ−1
k−1Γk

[
I + ∆(k−1,k)A

′]Γ−1
k−1Γk v̂k,T

= Γ−1
k−1Γk

[
I+∆(k−1,k)A

′]Γ−1
k Γk+1

[
I+∆(k,k+1)A

′]
, . . . ,Γ−1

K−1ΓK

[
I + ∆(k−1,k)A

′]v̂T ,T . (5.79)

Recall here that K = tK = T .305

Write306

Ψk−1,T
∆= Γ−1

k−1Γk

[
I + ∆(k−1,k)A

′]Γ−1
k Γk+1

×
[
I + ∆(k,k+1)A

′], . . . Γ−1
K−1ΓK

[
I + ∆(k−1,k)A

′]
∈ R

n×n . (5.80)

Further, for two epochs T and T ′, where T < T ′, it follows that307

Ψk−1,T ′ = Ψk−1,T ΨT ,T ′ , k ∈
{
0, 1, 2, . . . , T

}
. (5.81)

At a boundary T ′, we set ΨT ′,T ′
∆= diag

{
1, 1, . . . , 1

}
∈ R

n×n .308

Remarks 2: The transitivity property for Ψ shown by equation309

(5.82) is critical in our development of data-recursive smoother310

update formulas.311

Using the matrix Ψ, the backward recursion for vk−1,T may 312

be written in the following compact form: 313

vk−1,T = Ψk−1,T 1, 1 = (1, 1, . . . , 1)′ ∈ R
n . (5.82)

Equation (5.82) and the transitivity property of Ψ can be ex- 314

ploited to compute a data-recursive smoother, that is, a smoother 315

that does not require complete recalculation from the origin upon 316

the arrival of new observation data. Since Ψ is an n × n ma- 317

trix, it can be easily stored in memory. It is immediate from 318

the dynamics at (5.82) that the boundary T , upon which vk−1,T 319

depends, is only “fixed” by the action of multiplication on the 320

right-hand side by the vector 1. To extend this boundary upon 321

the arrival of subsequent data, the n × n matrix Ψk−1,T can 322

be recalled from memory and the updated quantity vk−1,T ′ is 323

calculated by the recursion 324

vk−1,T ′ = Ψk−1,T ΨT ,T ′1, 1 = (1, 1, . . . , 1)′ ∈ R
n . (5.83)

Consider, for example, the following smoothing problem. Sup- 325

pose one first observes data on [0, T ] and computes the smoothed 326

estimate P (Xt = ei |Y0,T ) for some t ∈ [0, T ]. Using Ψ, this 327

estimation can be written as 328

P (Xt = ei |Y0,T ) =
〈qt ,ei〉〈vt,T ,ei〉∑n
�=1〈qt ,e�〉〈vt,T ,e�〉

=
〈qt ,ei〉

(
e′

�Ψt,T

)
1{ ∑n

�=1〈qt ,e�〉
(
e′

�Ψt,T

)}
1

. (5.84)

Now, suppose subsequent data are received on [T, T ′] and we 329

wish to compute P (Xt = ei |Y0,T ′). Using ΨT ,T ′ , this estimate 330

may be computed by 331

P (Xt = ei |Y0,T ′) =
〈qt ,ei〉〈vt,T ′ ,ei〉∑n
�=1〈qt ,e�〉〈vt,T ′ ,e�〉

=
〈qt ,ei〉

(
e′

�Ψt,T

)
ΨT , T ′1{∑n

�=1〈qt ,e�〉
(
e′

�Ψt,T

)}
ΨT ,T ′1

.

(5.85)

Equation (5.85) shows that the smoother probability can be com- 332

puted without the recalculation of v from the origin, provided 333

the n × n matrix Ψt,T has been stored in memory. 334

B. Discrete-Time Smoother-Based EM Algorithm 335

To compute discrete-time approximations of update formulas 336

(4.76) and (4.77), we approximate the integrals in these estima- 337

tors by the Trapezoidal rule. These approximations can also be 338

written in a data-recursive form. To approximate [Âτ +1](i,j ) on 339

the interval [0, T ], we write (5.86), as shown at the bottom the 340

next page. 341

Similarly, (5.87) as shown at the bottom of the next page. 342

Consider again the scenario of new observation data and the 343

two time intervals [0, T ] and [T, T ′]. For brevity, we write the
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normalization constant as
344

MT ′
∆=

∫ T ′

0
〈qu ,ei〉〈vu,T ,ej 〉du

≈
{

K∑
�=1

1
2
∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

iΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

iΨ�,T

)}
ΨT ,T ′1

+

{
K̃∑

�=K +1

1
2
∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

iΨ�−1,T ′
)

+ 〈q̂� ,ei〉
(
e′

iΨ�,T ′
))}

1. (5.88)

The update formulas incorporating the information on [T, T ′] in345

the estimates (4.76) and (4.77) are, respectively,346

[Âτ +1](i,j ) = [Âτ ](i,j )

×
{

K∑
�=1

1
2
∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

jΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

jΨ�,T

))}
ΨT ,T ′1

/
MT ′

+ [Âτ ](i,j )

{
K̃∑

�=K +1

1
2
∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

jΨ�−1,T ′
)

+ 〈q̂� ,ei〉
(
e′

jΨ�,T ′
))}

1

/
MT ′ (5.89)

and 347

〈λ̂τ +1 ,ei〉 ={
K∑

�=1

1
2
∆(�−1,�)

(
N�−1〈q̂�−1 ,ei〉

(
e′

iA
′Ψ�−1,T

)

+ N�〈q̂� ,ei〉
(
e′

iA
′Ψ�,T

))}
ΨT ,T ′1

/
MT ′

+

{
K +K̃∑

�=K +1

1
2
∆(�−1,�)

(
N�−1〈q̂�−1 ,ei〉

(
e′

iA
′Ψ�−1,T ′

)

+ N�〈q̂� ,ei〉
(
e′

iA
′Ψ�,T ′

))}
1

/
MT ′

−
{

K∑
�=1

1
2
∆(�−1,�)

(
N�−1〈Aq̂�−1 ,ei〉

(
e′

iΨ�−1,T

)

+ N�〈Aq̂�,ei〉
(
e′

iΨ�,T

))}
ΨT ,T ′1

/
MT ′

−
{

K +K̃∑
�=K +1

1
2
∆(�−1,�)

(
N�−1〈Aq̂�−1 ,ei〉

(
e′

iΨ�−1,T ′
)

+ N�〈Aq̂�,ei〉
(
e′

iΨ�,T ′
))}

1

/
MT ′

+ NT ′ 〈q̂T ′ ,ei〉〈v̂T ′,T ′ ,ei〉
/

MT ′ (5.90)

[Âτ +1](i,j ) = [Âτ ](i,j )

∫ T

0 〈qu ,ei〉〈vu,T ,ej 〉du∫ T

0 〈qu ,ei〉〈vu,T ,ei〉du

≈ [Âτ ](i,j )

[ ∑K
�=1

1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉〈v̂�−1,T ,ej 〉 + 〈q̂� ,ei〉〈v̂�,T ,ej 〉

)][ ∑K
�=1

1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉〈v̂�−1,T ,ei〉 + 〈q̂� ,ei〉〈v̂�,T ,ei〉

)]

= [Âτ ](i,j )

[ ∑K
�=1

1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

jΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

jΨ�,T

))}
1
]

[ ∑K
�=1

1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

iΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

iΨ�,T

))]
1

. (5.86)

〈λ̂τ +1 ,ei〉

=

[ ∑K
�=1

1
2 ∆(�−1,�)

(
N�−1〈q̂�−1 ,ei〉

(
e′

iA
′Ψ�−1,T

)
+ N�〈q̂� ,ei〉

(
e′

iA
′Ψ�,T

))]
1[ ∑K

�=1
1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

iΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

iΨ�,T

))]
1

−

[ ∑K
�=1

1
2 ∆(�−1,�)

(
N�−1〈Aq̂�−1 ,ei〉

(
e′

iΨ�−1,T

)
+ N�〈Aq̂�,ei〉(e′

iΨ�,T

))]
1[ ∑K

�=1
1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉 ×

(
e′

iΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

iΨ�,T

))]
1

+
NT 〈q̂T ,ei〉〈v̂T ,T ,ei〉[ ∑K

�=1
1
2 ∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

iΨ�−1,T

)
+ 〈q̂� ,ei〉

(
e′

iΨ�,T

))]
1

. (5.87)
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Note that the sums in these two formulas are approximatingQ2 348

integrals and need not be completely recalculated. Write, for349

example,350

B
∆=

{
K∑

�=1

1
2
∆(�−1,�)

(
〈q̂�−1 ,ei〉

(
e′

jΨ�−1,T

)
+〈q̂� ,ei〉

(
e′

jΨ�,T

))}
. (5.91)

This n × n matrix appears in (5.89) and can be stored in mem-351

ory. Upon the arrival of new information on [T, T ′], the matrix B352

can be recalled from memory and multiplied on the right-hand353

side by ΨT ,T ′1. Similarly, the corresponding matrix in (5.90)354

can be stored in memory, avoiding a complete pass through the355

data as in previous algorithms cited in the bibliography.356

APPENDIX I357

PROOF OF LEMMA 1358

Proof: To establish Lemma 1, we first show that M is (P,F)-359

martingale. Since, under P †, the process ΛM has dynamics360

ΛtMt = M0 +
∫ t

0
Λu dMu +

∫ t

0
Mu dΛu (A1)

it follows that ΛM is a P †-martingale. Using the abstract form361

of Bayes’ rule, we see that, for t ≥ s,362

E
[
Mt |Fs

]
=

E†[ΛtMt |Fs ]

E†
[
Λt |Fs

] =
ΛsMs

Λs
= Ms. (A2)

Therefore,363

E
[
Mt − Ms |Fs

]
= 0 ∈ R

n . (A3)

So,364

E
[
Xt − Xs −

∫ t

s

AXu du|Fs ] = 0 ∈ R
n . (A4)

Then,365

Zt
∆=E

[
Xt |Fs

]
= Xs +

∫ t

s

AE
[
Xu |Fu

]
du

= Xs +
∫ t

s

AZu du. (A5)

Therefore,366

Zt = exp
(
A(t − s)

)
Xs = E

[
Xt |Fs

]
= E

[
Xt |Xs

]
. (A6)

Equation (A6) shows that, under the measure P †, the process X367

satisfies the Markov property and that its rate matrix is again A.368

To complete the proof, we note that369

E
[
X0 |

{
Ω, ∅

}]
=

E†
[
Λ−1

0 X0 |
{

Ω, ∅
}]

E†
[
Λ−1

0 |
{

Ω, ∅
}] = E

[
X0

]
= p0 .

(A7)

APPENDIX II 370

DERIVATION OF THE STOCHASTIC INTEGRAL EQUATION (3.12) 371

Proof: We wish to estimate X given the observations Y of 372

N . By Bayes’ rule, 373

E[Xt |Y0,t ] =
E†[Λ0,tXt |Y0,t ]
E†[Λ0,t |Y0,t ]

. (B1)

Note that 〈Xt,1〉 = 1. So, 374

〈E†[Λ0,tXt |Y0,t ],1〉 = E†[Λ0,t〈Xt,1〉|Y0,t ]

= E†[Λ0,t |Y0,t ]. (B2)

That is, if we write 375

qt = E†[Λ0,tXt |Y0,t ] (B3)

then 376

P (Xt = ei)
∆= E[Xt = ei |Y0,t ] =

1
〈qt ,1〉

〈qt ,ei〉. (B4)

To compute the expectation at (B3), we first apply the product 377

rule to determine the decomposition for the process ΛX 378

Λ0,tXt = X0 +
∫ t

0
Λ0,uAXudu +

∫ t

0
Λu−dMu

+
∫ t

0
Xu−

(
〈Xu−, λ〉 − 1

)
Λ0,u−

(
dNu − du

)
= X0 +

∫ t

0
Λ0,uAXudu +

∫ t

0
Λu−dMu

+
n∑

i=1

∫ t

0
〈Xu−,ei〉(〈λ,ei〉 − 1)Λ0,u−(dNu − du)ei .

(B5)

By conditioning both sides of (B5) on Y0,t under the refer- 379

ence probability P †, it then follows that the process q has the 380

dynamics 381

qt = q0 +
∫ t

0
Aqudu

+
∫ t

0
diag

{
〈λ,e�〉 − 1

}
qu−

(
dNu − du

)
.

APPENDIX III 382

PROOF OF THEOREM 3 383

To compute the dynamics of the process σ(GiX), we must 384

evaluate the expectation E†[ΛtG
i
t Xt |Y0,t ]. Using the product 385

rule, we compute the decomposition of the process GXΛ 386

ΛtG
i
tXt

=
∫ t

0
Λu−Xu 〈Xu,ei〉 dNu +

∫ t

0
ΛuGi

sAXudu

+
∫ t

0
ΛuGi

udMu+
∫ t

0
Gi

uXuΛu−
(
〈Xu, λ〉−1

)
(dNu−du)

+
∫ t

0
Xu 〈Xu,ei〉Λu−

(
〈Xu,Λ〉 − 1

)(
dNu − du

)
. (C1)
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The result follows by conditioning both sides of (C1) on Y0,t ,387

using a version of Fubini’s theorem [27] and noting that, under388

the measure P †, the process N is a standard Poisson process.389

Consequently we see that390

E†[ΛtG
i
tXt |Y0,t ]

=
∫ t

0
E†[Λu−Xu 〈Xu,ei〉|Y0,s ]dNu

+
∫ t

0
E†[ΛuGi

uAXu |Y0,s ]du +
∫ t

0
E†[ΛuGi

u |Y0,s ]dMu

+
∫ t

0
E†[Gi

uXuΛu−
(
〈Xu, λ〉 − 1

)
|Y0,s ]

(
dNu − du

)
+

∫ t

0
E†[Xu 〈Xu,ei〉Λu−

(
〈Xu,Λ〉−1

)
|Y0,s ]

(
dNu−du

)
=

∫ t

0
Aσ(Gi

uXu )du

+
∫ t

0
diag

{
〈λ,e�〉 − 1

}
σ(Gi

uXu )
(
dNu − du

)
+

∫ t

0
〈qu ,ei〉〈λ,ei〉dNuei . (C2)
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