
Weak Memory Consistency Models

Part I: De�nitions and Comparisons
�y

Lisa Higham, Jalal Kawash, and Nathaly Verwaal

Department of Computer Science, The University of Calgary, Alberta, Canada T2N 1N4

email:<last name>@cpsc.ucalgary.ca

Abstract

Modern multiprocessors incorporate sophisticated memory structures in order to enhance performance.

These structures allow processes to have inconsistent views of memory, which can, in turn, result in un-

expected program outcomes. A memory consistency model is a set of guarantees that imposes constraints

on the possible outcomes of sequences of interleaved and simultaneous operations in a multiprocessor. This

paper presents a unifying framework to describe, compare and reason about memory consistency models.

The framework is then used to give rigorous de�nitions of several widely used consistency models. These

de�nitions are also shown to correspond to simple machine architectures. For each pair of models discussed,

it is determined whether one is strictly stronger than the other or whether the two are incomparable.

1 Introduction

To enhance performance, multiprocessors incorporate sophisticated memory structures. These memories

are either distributed-shared [31], replicate data through constructs such as caches and write bu�ers, or

use advanced interconnection patterns including multiple buses. Any of these architectural features allow

processes to have inconsistent views of memory, which, in turn, can result in unexpected program outcomes.

A memory consistency model is a set of guarantees describing constraints on the outcome of sequences

of interleaved and simultaneous operations. Fewer guarantees allow more performance optimizations but

yield complex machines that are di�cult to program. Hence multiprocessor programmers need a precise

description of the memory model of the underlying machine in order to construct correct and e�cient

programs.

Several memory consistency models have been described in the literature. Lamport's seminal work,

beginning in 1978 [25, 26, 27], launched investigations into relaxations of sequential consistency, which was

previously generally assumed. Dubois, Scheurich and Briggs were the �rst to actually propose a consistency

model weaker than sequential consistency, namely weak ordering [9]. Their work di�erentiated between

ordinary and synchronization operations. Synchronization operations are guaranteed to be sequentially

consistent with respect to each other; however, ordinary operation may be re-ordered in a way that best suits

performance. Later, the Stanford team built on weak ordering when developing the DASH multiprocessor

with the memory model release consistency [12, 11]. Lipton and Sandberg de�ned and implemented a

machine with quite di�erent memory behavior, which they de�ned to be the Pipelined-RAM memory model

[28]. Goodman, in 1989, was the �rst to explicitly state the notion of coherence or cache consistency [16],

which is generally accepted as a minimum memory consistency requirement. He was also the �rst to de�ne

processor consistency. Currently, there are several distinct variants that use the same name [22, 33, 12, 5].

Herlihy and Wing de�ned the strongest memory consistency model, linearizability, which is often assumed

by researchers in design and analysis of distributed algorithms [17].

�This research was supported by a trust fund and a post-graduate scholarship from the Natural Sciences and Engineering
Research Council of Canada and by a research grant from The University of Calgary.

yParts of this paper appeared an earlier conference paper [19].

A di�erent programmer-oriented approach to the problem of non-sequentially-consistent memory was

investigated independently at Stanford [12, 11] and Wisconsin-Madison [1, 2, 4], and lead to the notions

of Properly Labeled (PL) and Data Race Free (DRF), respectively. PL constitutes a constrained style

programming for a speci�c architecture. DRF develops a programming style and then suggests how to tailor

the hardware to support it. These two teams later collaborated to combine their approaches [10].

Attiya, Chaudhuri, and Friedman have taken a complementary approach to DRF, which �rst speci�es

the memory consistency model and then develops a programming style [7].

Yet another approach is that of executable speci�cations for analyzing and verifying memory models.

The formal veri�cation laboratory at Stanford developed Mur� as a description language and a veri�cation

system for �nite state concurrent systems [8]. Mur� was used to verify the SPARC v9 Relaxed Memory

Order [30].

These memory consistency models arise from a wide variety of sources including architecture, system,

and database designers, application programmers, and theoreticians. The descriptions of memory behavior

use di�erent types and degrees of formalism. De�nitions range from precise and complicated axiomatic

speci�cations to informal and sometimes ambiguous natural language descriptions. This makes the many

di�erent memory consistencies di�cult to reason about or to compare. Programming for these models

becomes ine�cient when a new descriptive style must �rst be mastered for each change of model. A single

uni�ed formalization is needed that can specify any memory model addressed in the literature or provided

by existing and future machines.

A few research groups have proposed such unifying frameworks to describe the operation of distributed

shared memories. Gibbons and Merrit proposed an automata-based framework [14]. They start with a

speci�c automaton to represent basic architectural assumptions. Then they de�ne a memory consistency

model as an automaton that is obtained by restricting the actions of the base automaton. They used their

formalism to model release consistency and to prove that, as long as a program is properly labeled, release

consistency is equivalent to sequential consistency [13]. At Xerox's Palo Alto Research Center, Sindhu,

Frailong, and Cekleov [32] proposed an axiomatic framework that is based on three sets: memory operations,

partial orders de�ned on memory operations, and axioms which are concerned with the legality of orders. A

team at Georgia Tech developed another framework, which is based on partial orders [24, 5, 6].

This paper also presents a unifying framework that facilitates the description, analysis, and comparison of

memory consistency models. Precision is essential for providing an unambiguous view of the logical behavior

of a memory system. Uni�cation provides a common basis with which memory consistency models can be

compared. Our framework achieves both of these goals while remaining simple. It is based on the partial

order ideas of Ahamad el al. [6] and has bene�ted from all the previous research just reviewed.

The framework is used to formally de�ne several memory consistency models both from the literature

and from existing machines. For each formal model 1, a corresponding distributed system architecture is

described and proved equivalent to that model. Furthermore, the formalism is exploited to compare the

various memory models and determine the relationship between each pair.

Our framework is further exploited in a companion paper [21] in which process coordination problems

have been re-addressed in the context of weak memory consistency models.

The framework is presented in Section 2. Sections 3 and 4 are concerned respectively with pure memory

models| those that do not make any di�erentiation between ordinary and synchronization operations and

hybrid models| those that make this di�erentiation. Section 5 summarizes the contributions of the paper.

2 The Framework

Our aim is to provide a framework that is capable of describing the exact behavior of the memory of any

distributed system of processes whether message-passing or shared-memory or any hybrid of the two. We

model a multiprocessor system as a collection of processes operating on a collection of shared data objects,

as is shown in �gure 1.

One way to de�ne a data object is to describe the object's initial state, the operations that can be applied

to the object and the change of state that results from each applicable operation. For our model it su�ces to

1With the exception of Goodman's Procssor Consistency which inherits features from two other memory models.

2

set

sequence of invocations
sequence of responses

...

of

objects
p

p

p
1

2

n

Figure 1: A multiprocessor system

de�ne a data object to be the set of all sequences of allowable operations together with their results (similar

to that of Herlihy and Wing [17]) as follows. An action is a 4-tuple (op, obj, in, out) where \op" is an

operation, \obj" is an object name, and \in" and \out" are sequences of parameters. The action (op, obj, in,

out) means that the operation \op" with input parameters \in" is applied to the object \obj" yielding the

output parameters \out". A (sequential data) object is speci�ed by a set of sequences of actions. A sequence

of actions is valid for object x if and only if it is in the speci�cation of x. For example, we specify a shared

atomic read-write register by the set of all sequences (o1; o2; :::) such that 1) each oi is either a read action,

denoted by a four-tuple (read; x; �; (v))2, that returns the value v of register x, or a write action, denoted

(write; x; (v); �), that assigns a value v to register x, and 2) for every read action, the value returned is the

same as the value written by the most recent preceding write action in the sequence.

An action o = (op, obj, in, out) can be decomposed into the two matching components, (op, obj, in),

called the action-invocation and denoted invoc(o), and (op, obj, out), called the matching action-response

and denoted resp(o). Let (e1; e2; :::) be a sequence consisting of action-invocations and action-responses.

Then ej follows ei if and only if i < j and ej immediately follows ei if and only if i = j � 1.

A timed-action on an object is a 6-tuple (op, obj, in, invoc-time, out, resp-time) obtained by augmenting

an action with the process's local time for the invocation and the response of the action. For a timed-

action o, time(invoc(o)) (respectively, time(resp(o))) denotes the invoc-time (respectively, resp-time) of the

timed-action.

Informally, a process interacts with data objects by issuing a stream of invocations to some subset of

them and receiving a stream of responses that are interleaved with its invocations. This is formalized as

follows. A process is a sequence of action-invocations. A process execution is a (possibly in�nite) sequence of

action-invocations and action-responses such that each response follows its matching invocation. A process

execution is blocking if, for each action that has a non-empty output, the response of that action immediately

follows its matching invocation.

Whether blocking or non-blocking, the natural notion of the computation of a process is the sequence

of actions that arises as its invocations are processed. Therefore, a process computation is the sequence of

actions created from a process execution by augmenting each invocation in the process sequence with its

matching response.

A (multiprocess) system, (P; J), is a collection P of processes and a collection J of objects, such that each

action-invocation of each process p in P is applied to an object in J . A (multiprocess) system execution for

a system (P; J), is a collection of process executions, one for each p in P . Similarly, a system computation is

a collection of process computations, one for each p in P .

Let (P; J) be a multiprocess system, and O be all the actions in a computation of this system. Ojp

denotes all the actions o that are in the process computation of p in P . Ojx are all the actions that are

applied to object x in J .

We de�ne two partial orders3 on the actions of a system. Action o1 program-precedes o2, denoted o1
prog
�!o2,

if and only if invoc(o2) follows invoc(o1) in the de�nition of p (equivalently, o2 follows o1 in the computation

of p). The partial order (O;
prog
�!) is called the program order. Observe that for each process p in P , the

program order is a total order on Ojp. Let o1 and o2 be timed-actions in O. A timed-action o1 time-precedes

action o2, denoted o1
time
�!o2, if and only if time(invoc(o2)) > time(resp(o1)). The partial order (O;

time
�!) is

2� denotes the empty sequence.
3A partial order is a antisymmetric, transitive relation on a set. We denote a partial order by a pair (S;R) where S is a set

and R � S � S. The notation s1Rs2 means (s1; s2) 2 R. When the set S is understood, R denotes the partial order. If S0 � S

then (S0; R) denotes the relation (S;R \ (S0 � S0)).

3

called the time order.

For the de�nition of some memory consistency models it is necessary to distinguish the actions that

change (write) a shared object from those that only inspect (read) a shared object. Let Ow denote that

subset of O consisting of those actions in O that update a shared object, and Or denote that subset consisting

of the actions that only inspect a shared object. There are also some consistency models that provide other

classes of actions. These are de�ned when needed.

Given any collection of actions O on a set of objects J , a linearization of O is a linear order4 (O;<L)

such that for each object x in J , the subsequence (Ojx;<L) of (O;<L) is valid for x.

A (memory) consistency condition is a set of constraints on system computations. A computation C

satis�es some consistency condition D if the computation meets all the constraints of D. A system provides

memory consistencyD if every computation that can arise from the system satis�es the consistency condition

D.

The preceding de�nitions allow us to formalize memory consistency models in terms of constraints on

computations. An additional goal is to associate common consistency conditions with machine architectures.

A (multiprocessor) machine is a collection of processors together with various memory components. A

machine implements an action by proceeding through a sequence of events that depend on the particular

machine and that occur at the various components of the machine. A processor of a machine implements

a process by implementing the actions corresponding to the action-invocations of the process, where these

action implementations are initiated in program order. A multiprocessor machine implements a system (P; J)

by having each processor implement a process in P . A machine execution is described by the sequence of

resulting machine events.5

Each section in the remainder of this paper provides a de�nition of a memory consistency condition D

and a description of a machine M . In each case we show that M and D correspond by establishing that

every computation that can arise from an execution of M satis�es D and every computation that satis�es

D could have been the result of an execution on M .

3 Pure Models

The literature describes many consistency conditions that may be considered \natural". The strongest,

linearizability, is usually assumed by theoreticians designing distributed algorithms. One of the weakest,

coherence, is typically assumed to be a necessary requirement of any reasonable machine. Numerous others

fall between these two extremes and are often incomparable. We have chosen a selection of the most common

to illustrate the appropriateness and
exibility of our framework.

In the following example computations, w(x)v denotes a write action of value v to variable x. Similarly,

r(x)v denotes a read action from x returning v. We write the process identi�er as a pre�x for its own

computation or computation pre�x. The notation wp(x)v or rp(x)v is used to emphasize that these operations

are performed by process p.

3.1 Sequential Consistency

Sequential consistency (henceforth abbreviated SC), de�ned by Lamport [26], is the most widely used memory

consistency model. According to Lamport, a multiprocessor is said to be SC if: \the result of any execution is

the same as if the operations of all the processors were executed in some sequential order, and the operations

of each individual processor appear in this sequence in the order speci�ed by its program."

Several other papers [5, 17, 16, 29] describe SC; some use a di�erent name or a di�erent, but equivalent,

de�nition.

De�nition 3.1 Let O be all the actions of a computation C of the multiprocess system (P; J). Then C is

SC if there is a linearization (O;<L) such that (O;
prog
�!) � (O;<L).

4A linear order is an irre
exive partial order (S;R) such that 8x; y 2 S x 6= y, either xRy or yRx.
5Events in a multiprocessor can be simultaneous. For example, two di�erent caches may be simultaneously updated. However,

because the same outcome would arise if these simultaneous events were ordered one after the other in arbitrary order, we can

assume that the outcome of a machine computation arises from a sequence of events.

4

Dubois, Scheurich and Briggs de�ne strong ordering as a su�cient condition for SC [9] and Goodman

states that \A system that adheres to this level of consistency is said to be a strongly ordered system" [16].

However, Adve and Hill show that strong ordering and SC are similar, but are not equivalent [3].

p p p
2 n1 ...

Memory

Figure 2: MSC , a machine that implements SC

Figure 2 depicts a simple machine, MSC , where each process is connected through bi-directional First-

In-First-Out (bi-FIFO) channels to a switch, which is connected to memory via a single bi-FIFO channel.

MSC implements a read action (read, x, �, v) by process p, with the ordered events 1) processor p sends a

processor-read-request(x), and 2) memory sends a memory-read-reply(x; v). A write action (write, x, v, �)

is implemented with the ordered events 1) processor p sends a processor-write-request(x; v), and 2) memory

performs a memory-update(x; v). For any computation C arising from an execution of MSC , construct a

sequence S of the actions of C by placing the actions in the order in which the corresponding memory events

occurred. Sequence S must be in program order since the memory only services one action at a time, and

the channels are FIFO. Moreover, it must be valid since each memory-read-reply will return the value of

the last memory-update of the same cell. Thus S is a linearization that satis�es De�nition 3.1. A simple

argument in reverse can be used to show that any SC computation could have been executed on MSC , thus

establishing the following claim.

Claim 3.2 MSC implements exactly SC.

An even stronger memory model, linearizability, was proposed by Herlihy and Wing [17]. For this model it

is necessary to know the invocation and response time of each action. Mosberger calls linearizability dynamic

atomic consistency [29]. An execution is linearizable if there is an assignment of each timed action o to one

distinct point after time(invoc(o)) and before time(resp(o)) such that the resulting sequential computation

is valid for each object. Herlihy and Wing require that each process's execution is blocking; De�nition 3.3

extends to non-blocking executions while agreeing with the de�nition of Herlihy and Wing when an execution

is blocking.

De�nition 3.3 Let O be all the timed actions of a computation C of the multiprocess system (P; J). Then

C is linearizable if there is a linearization (O;<L) satisfying: 1) (O;
prog
�!) � (O;<L), and 2) (O;

time
�!) �

(O;<L).

p: w(x)1 w(x)2

r(x)2q: w(x)3

r(x)3

Figure 3: Linearizable sequence of actions

Figure 3 shows an execution of the system with P = fp; qg and J = fxg that is linearizable. Because the

time interval of r(x)2 overlaps that of both w(x)1 and w(x)2 other total orderings may be considered but

only the one indicated (by the projected dashed lines) is valid for object x (assuming x 6= 2 initially).

Figure 4 shows a computation that is SC, but not linearizable. It is SC because there is a valid ordering

of all actions, which maintains program order. It is not linearizable, since no such ordering can also maintain

time order.

5

p: w(x)1 w(x)2

r(x)2q:

r(x)3

w(x)3

Figure 4: A SC but not linearizable computation

3.2 Coherence

Coherence, also called cache consistency [16], is among the weakest consistency conditions. Goodman states

that coherence \only guarantees that accesses to a given memory location are strongly ordered" [16]. Mos-

berger indicates that \Coherence only requires that accesses are SC on a per-location basis" [29].

De�nition 3.4 Let O be all the actions of a computation C of the multiprocess system (P; J). Then C is

coherent if for each object x 2 J there is some linearization (Ojx;<Lx) satisfying (Ojx;
prog
�!) � (Ojx;<Lx).

Computation 1 is coherent but not SC. The linearizations for objects x and y are <Lx = w(x)0 r(x)0

w(x)1 and <Ly = w(y)0 r(y)0 w(y)1. However, there is no single linearization of all these actions that

maintains program order.

Computation 1

�
p : w(x)0 w(x)1 r(y)0

q : w(y)0 w(y)1 r(x)0

Coherence has been described as a system where \all writes to the same location are serialized in some or-

der and are performed in that order with respect to any processor" [12] (similarly in [2, 12, 24]). Furthermore,

it is implicit in these informal descriptions that program order is maintained.

De�nition 3.5 Let O be all the actions of a computation C of some system (P; J). Then C is coherent-var1

if for each process p 2 P there is a linearization (Ojp [Ow; <Lp) satisfying 1) (Ojp;
prog
�!) = (Ojp;<Lp), and

2) 8q 2 P and 8x 2 J (Ow jx;<Lp) = (Ow jx;<Lq).

Claim 3.6 A computation is coherent if and only if it is coherent-var1 [33].

Proof: Consider a coherent computation of a system (P; J). For each p 2 P , we construct a sequence of

actions �p from the total order (Ojp;
prog
�!) and from all the linearizations (Ojx;<Lx) that satisfy De�nition

3.4. Initially �p = (Ojp;
prog
�!). Consider each x 2 J in turn. All actions, say fo1; o2; :::; okg, in (Ojp)jx appear

in (Ojx;<Lx) in program order; hence they partition the sequence (Ojx;<Lx) into segments Sx0 ; S
x
1 ; :::; S

x
k

such that Sx0 ; o1; S
x
1 ; o2; :::; ok; S

x
k = (Ojx;<Lx). Insert each sub-segment Sxiw consisting of the sequence of

writes in Sxi into �p anywhere between oi and oi+1 (maintaining the order of S
x
iw
). In a similar way, we can

show that �p is a linearization for process p which satis�es the de�nition of coherent-var1.

Now consider a coherent-var1 computation of a system (P; J), and any x 2 J . For each p 2 P , let

(Ojp[Ow ; <Lp) be the linearization satisfying De�nition 3.5. By part 2 of De�nition 3.5, all processors have

the same ordering of writes to x and by part 1 this ordering satis�es program order. Let �x be this sequence

of writes. Let r be any read of x by some process q. Suppose, in the linearization ((Ojq [Ow)jx;<Lq), the

closest write preceding r is w(x)i, and the closest write succeeding r is w(x)i+1. Note that the sequence of

writes in ((Ojq[Ow))jx;<Lp) is exactly �x. Therefore, w(x)i and w(x)i+1 are adjacent writes in �x and r can

be inserted between them while preserving validity and program order. In this way, every r 2 Orjx can be

inserted into �x yielding a linearization of Ojx that preserves program order, and satis�es the requirements

of De�nition 3.4.

There is also a third possible de�nition of coherence, which arises because there are no restrictions on

the ordering of actions to di�erent objects.

De�nition 3.7 Let O be all the actions of a computation E of some system (P; J). Then E is coherent-var2

if there is some linearization (O;<L) such that 8x 2 J (Ojx;
prog
�!) � (Ojx;<L).

Claim 3.8 A computation is coherent if and only if it is coherent-var2 [33].

6

Proof: For any coherent computation, create one sequence by placing the object linearizations, which

satisfy De�nition 3.4, one after the other. The result is a linearization that satis�es De�nition 3.7 since it

orders all the actions in the execution, such that program order on a per object basis is maintained. For any

computation that satis�es De�nition 3.7, and for each object x, set (Ojx;<Lx) equal to (Ojx;<L). Then

(Ojx;<Lx) is valid and maintains program order so it satis�es the requirements of De�nition 3.4.

Since coherence, coherence-var1 and coherence-var2 are all equivalent, henceforth only the term coherence

is used.

p
1

pn...

om...
1o

Figure 5: MC , a machine that implements coherence

In the machine,MC , in Figure 5, there is one switch for each object, and each processor is connected by a

bi-FIFO channel to each switch. MC implements a read action (read, x, �, v) by process p, with the ordered

events 1) a processor-read-request is placed on the channel connecting p to x, and 2) an objectx-read-reply(v)

is placed on the channel from x to p. A write action (write, x, v, �) by p is implemented with the ordered

events 1) a processor-write-request(v) is placed on the channel connecting p to x, and 2) objectx-update(v)

is performed by memory.

Claim 3.9 The machine MC, with non-blocking reads, implements exactly coherence.

Proof: For any computation C arising from an execution of MC , and for each object x, construct a

sequence Sx of the actions of C on x by placing these actions in the order in which the corresponding object

events occurred. It is easy to check that Sx is a linearization satisfying De�nition 3.4.

Now, for any computation C that satis�es De�nition 3.7, construct a sequence S of events that re
ects

how C could have arisen from an execution of MC as follows. First, for each process p, construct a sequence

Sp of processor-request events that corresponds to p. That is, the ith event of Sp is a processor-read-

request (respectively, processor-write-request) placed on the channel from p to x, if and only if the ith

action-invocation in process p is a read of (respectively, write to) object x. Also, from the linearization L

that satis�es De�nition 3.7 construct a sequence Q consisting of object-read-reply events and object-update

events by setting the ith event in Q to be the object event that corresponds to the ith action in L. Now

form S by concatenating the Sp's for each p (in any order) followed by Q.

3.3 Pipelined{RAM

Lipton and Sandberg [28] described the Pipelined Random Access Machine (P-RAM) with an architecture

as shown in Figure 6. Each processor p has its own copy, �p, of the shared memory, and a FIFO channel

connects every processor to every other processor's copy of memory. According to Lipton and Sandberg,

read and write actions by process p are implemented in this machine as follows:

� Processor p implements a read(i) \by performing a normal read from location i" of �p.

� Processor p implements a write(i; v) \by performing a local action and initializing a global action.

Locally, it does a normal write to [�p] at location i with value v. Globally, it sends a message < i; v >

to all the other processors."

They emphasize that, upon a write, a processor does not wait for the update to take e�ect in the copies

of memory at other processors. What is not completely clear from this description, however, is whether or

not reads and/or \local" writes are blocking; although the use of \performing" (as opposed to \initializing")

seems to indicate a blocking activity. It is also unclear whether a processor �rst completes the update of

7

Memory

pn

2

Memory

p
i

Memory

p
1

p

Memory

Figure 6: MPRAM , a machine that implements P-RAM

its own copy of memory and then initiates the updates of other copies, or whether these events can happen

in arbitrary order. Di�erent memory models arise depending upon what assumptions are made concerning

both of these issues.

Ahamed et al. [5] formalized one version of this machine, which, in our framework, becomes the following

widely quoted de�nition of P-RAM:

De�nition 3.10 Let O be all the actions of a computation C of the multiprocess system (P; J). Then C is

P-RAM-A if for each process p 2 P there is a linearization (Ojp [Ow; <Lp) satisfying (Ojp [Ow;
prog
�!) �

(Ojp [Ow; <Lp).

Any computation of any version of the machine in Figure 6 sati�es the conditions of P-RAM-A. However,

it is insu�cient to describe the computation of any variant that is blocking on reads, or that has updates

take e�ect at the writing processor's memory before they take e�ect at remote copies of memory.

Computation 2

�
p : w(y)0 r(y)1 w(x)1

q : w(x)0 r(x)1 w(y)1

In Computation 2, process p observes q's write w(y)1, before it executes its own write w(x)1, and q

observes p's write w(x)1 before it executes w(y)1. This requires that the reads be non-blocking. But notice

that the linearizations <Lp = wp(y)0 wq(x)0 wq(y)1 rp(y)1 wp(x)1 and <Lq = wq(x)0 wp(y)0 wp(x)1 rq(x)1

wq(y)1 satisfy the conditions of P-RAM-A.

In contrast to Ahamed et al., Mosberger assumed that, upon a write-request, a processor �rst updates

its own memory and subsequently broadcasts this update to all other processors [29]. In addition, after a

read-request, a processor blocks until it receives the read-reply. Thus, if p observed a write, wq , by some

other process q before its own write wp, then q must also observe wq before wp. That is, in the linearizations

(Ojp [Ow; <Lp) that capture processes' views of the computation, wq<Lpwp) wq<Lqwp. Furthermore, if

p observed that wq occurred before wp and some other process r observed wp before its own write wr, then

q must also observe that wq occurred before wr. That is wq<Lpwp <Lr wr) wq<Lqwr. In general, the

antecedent of this implication can be any �nite length.

De�nition 3.11 Let O be all the actions of a computation C of the multiprocess system (P; J). Then C is

P-RAM if for each process p 2 P there is a linearization (Ojp [Ow; <Lp) satisfying 1) (Ojp [Ow;
prog
�!) �

(Ojp [Ow; <Lp), and 2) for any m � 1 and for all wp0 ; wp1 ; : : : ; wpm 2 Ow, where wpi is a write by some

process pi 2 P , if wp0 <Lp1
wp1 <Lp2

wp2 <Lp3
: : : <Lpm

wpm then wp0 <Lp0
wpm .

Let MPRAM be the machine in Figure 6, together with the assumptions that reads are blocking and

that any update occurs at the writer's copy of memory before it occurs at another processor's memory.

In MPRAM , a read action (read, x, �, v) of p is implemented by processor p sending a processor-read-

request(x) to �p, denoted p-read-request(x), and then blocking until it receives a memory-read-reply(v)

from �p, denoted �p-read-reply(x,v). A write action (write, x, v, �) by p is implemented with the ordered

events (1) processor p sends processor-update-request(x; v) to �p, denoted p-update-request(x,v), (2) memory

8

�p applies a memory-update(x; v), (3) p sends a p-update-request(x,v) to �q for every q 6= p, and (4) for

every q 6= p, in arbitrary order, memory �q applies memory-update(x; v), denoted by �q-update-by-p(x,v).

Claim 3.12 MPRAM implements exactly P-RAM.

Proof: Any execution E of MPRAM can be described as a sequence (in time order) of events of the types:

p-read-request(x), �p-read-reply(x,v), p-update-request(x,v), and �q-update-by-p(x,v). Let a ! b denote

that event a precedes event b in E. The design of MPRAM implies that the sequence E must satisfy the

conditions: 1) p-read-request(x) immediately followed by �p-read-reply(x,v) for matching reads; 2) p-update-

request(x,v) ! �q-update-by-p(x,v) for matching updates and for any p and q; 3) �p-update-by-p(x,v) !

�q-update-by-p(x,v) for matching memory updates; 4) the order of request events by p is the same as the

order of the matching reply/update events at �p; 5) if p-update-request(x,v) ! p-update-request(y,w) then,

for every q, the matching updates at �q , satisfy �q-update-by-p(x,v) ! �q-update-by-p(y,w). Recall that

the sequence of request events for each processor p is the same as the order of the corresponding action-

invocations in the process p.

From an execution E resulting in computation C, construct a subsequence for each process p by including

only the \view of p's memory". That is, for each processor p, construct a sequence of the actions by p and

all write actions in C in the same order in which the corresponding �p events occured in E. Then <Lp

clearly satis�es program order (by conditions 4 and 5 of the sequence E) and consists of exactly Ojp [Ow

(by construction) and is valid (by the property of memory). To show that the collection of sequences <Lp

also satisfy condition 2 of P-RAM, assume that there exist m � 1, and wp0 ; wp1 ; : : : ; wpm 2 Ow, where wpi
is a write by process pi such that wp0 <Lp1

wp1 <Lp2
wp2 <Lp3

: : : <Lpm
wpm . Then in E, �p1 -update-

by-p0 ! �p1 -update-by-p1 and �p2 -update-by-p1 ! �p2 -update-by-p2 and : : : and �pm-update-by-pm�1 !

�pm -update-by-pm. By condition 3 of E, �p0-update-by-p0 ! �p1-update-by-p0 ! �p1-update-by-p1 ! �p2-

update-by-p1 ! �p2 -update-by-p2 ! . . .! �pm -update-by-pm�1 ! �pm -update-by-pm! �p0 -update-by-pm.

That is �p0 -update-by-p0 ! �p0 -update-by-pm. Hence, by our construction, wp0 <Lp0
wpm .

Now consider any computation, C, that satis�es De�nition 3.11. Construct a corresponding sequence

of events E for MPRAM from an n-way merge of the n linearizations (Ojp [Ow; <Lp) = o
p
1
; o
p
2
; : : : ; o

p
k as

follows. Initially, E = � and Lp = (Ojp [Ow; <Lp) for each p. Consider the �rst remaining action o
p
i of

each sequence Lp in turn (the �rst time this will be action o
p
1
for each process p). If o

p
i 2 Ojp, append to

E the corresponding p and �p events in that order and remove o
p
i from <Lp . If the corresponding memory-

update �q-update-by-q is already in E, then append �p-update-by-q to E, and remove the action o
p
i from Lp.

Otherwise, o
p
i 2 Ojq \Ow, leave Lp unchanged and consider the �rst remaining action of the next sequence

Lp0 . It is straightforward to check that the sequence E so constructed satis�es conditions 1 through 5,

provided that this construction exhausts each Lp.

So it remains to verify that all events associated with the execution are necessarily added to E. Assume

instead that at some point in the construction of E, each sequence Lp begins with a write o
p
i 2 Owjq for some

q 6= p and the corresponding processor-update-request is not yet in E. Then there must be a cyclic sequence

p�1 ; p�2 ; :::p�k of processes such that Lp�i begins with a write by process p�i+1 labeled w�i+1 and Lpk begins

with a write by process p�1 . Also, w�i must be in L�i since otherwise the construction could proceed. But

this contradicts condition 2 of P-RAM. Hence the construction of E completes, and E describes an execution

on MPRAM of C.

We complete this section with comparisons between P-RAM, P-RAM-A and the other consistency con-

ditions previously de�ned.

Coherence and P-RAM-A are non-comparable. Computation 1 is P-RAM-A as well as coherent.

Computation 3

�
p : w(x)0 r(x)1

q : w(x)1 r(x)0

The linearizations <Lp = w(x)0 w(x)1 r(x)1 and <Lq = w(x)1 w(x)0 r(x)0 show that Computation 3 is P-

RAM-A since they maintain program order. However, it is not coherent because is not possible to construct

a linearization of all the actions to location x that maintains program order.

Computation 4

�
p : w(x)0 w(x)1 w(y)2

q : r(y)2 r(x)0

9

In Computation 4, let the linearization for the objects be: <Lx = w(x)0 r(x)0 w(x)1 and <Ly = w(y)2

r(y)2. Both these linearizations maintain program order and thus the computation is coherent. Since it

is not possible to construct a linearization for the actions by q together with the writes by p that extends

program order, the computation is not P-RAM-A.

Finally, any execution that is P-RAM is also P-RAM-A. Computation 3 is coherent but not P-RAM-A

(and thus not P-RAM) and Computation 4 is P-RAM but not coherent. Hence, P-RAM and coherence are

non-comparable.

3.4 Processor Consistency

The term processor consistency was �rst used by Goodman [16] to capture a consistency condition that is

stronger than coherence but weaker than SC. Many others [5, 12, 24, 29, 11] have used the same term to

de�ne memory consistency models that have in common Goodman's original intentions, but that di�er in

subtle ways. A paper that reveals the relations and di�erences between these di�erent versions of processor

consistency is in preparation [22]. Here, our discussion is limited to the original de�nition by Goodman

(henceforth PC-G). In addition to coherence, Goodman6 required that [16]: \ the order in which writes from

two processes occur, as observed by themselves or a third process need not be identical, but writes issuing

from any process may not be observed in any order other than that in which they are issued."

Goodman allows the interleaving of writes by two di�erent processes to be viewed di�erently by each

process, as long as program order and coherence is maintained. The following de�nition is based in the

interpretation of Ahamed et al. [5].

De�nition 3.13 Let O be all the actions of a computation C of a multiprocess system (P; J). Then C is

PC-G if for each process p 2 P there is a linearization (Ojp [Ow; <Lp) satisfying 1) (Ojp [Ow;
prog
�!) �

(Ojp [Ow; <Lp), and 2) 8q 2 P and 8x 2 J (Owjx;<Lp) = (Owjx;<Lq).

By comparing De�nition 3.13 with De�nition 3.5 it is easily con�rmed that PC-G implies coherence [33].

Computations 2 and 5 illustrate that PC-G and P-RAM are not comparable. Computation 2 is not P-RAM;

however, the linearizations <Lp = wp(y)0 wq(x)0 wq(y)1 rp(y)1 wp(x)1, and <Lq = wq(x)0 wp(y)0 wp(x)1

rq(x)1 wq(y)1 satisfy the PC-G conditions.

Computation 5

�
p : w(x)1 w(y)1 r(y)0

q : w(y)0 w(x)0 r(x)1

Computation 5 is not PC-G because it is not possible to build the required linearizations for p and q that

preserve program-order and agree on the ordering of write actions to the same location. The linearizations

<Lp = wp(x)1 wp(y)1 wq(y)0 rp(y)0 wq(x)0 and <Lq = wq(y)0 wq(x)0 wp(x)1 rq(x)1 wp(y)1 however, show

that Computation 5 is P-RAM.

The �rst condition of PC-G is exactly the de�nition of P-RAM-A. Furthermore, since Computation 5 is

P-RAM, PC-G is strictly stronger than P-RAM-A. Although PC-G implies both P-RAM-A and coherence,

an execution that is both coherent and P-RAM-A is not necessarily PC-G, contrary to some previous claims

(see [23] for example). Computation 5 illustrates this since the linearizations <Lx = wq(x)0 wp(x)1 rq(x)1

and <Ly = wp(y)1 wq(y)0 rp(y)0 satisfy coherence. Finally, computation 1 is PC-G, establishing that PC-G

is strictly weaker than SC.

4 Hybrid Models

Hybrid models classify operations as special or ordinary according to their function. Further classi�cation

has also been proposed [10]. These models aim at utilizing system optimizations while still appearing SC

to the programmer. In this section, we describe three hybrid models: weak ordering, SPARC's total store

ordering and partial store ordering. More hybrid models, such as release consistency [12, 11] and Java

consistency [18, 15], have been proposed and can also be described using our framework.

6Goodman uses the term weak ordering instead of coherence. In the literature, weak ordering usually refers to a di�erent

consistency model. See Section 4.1.

10

The formal de�nitions of some hybrid models might seem overly complex, especially compared to more

informal de�nitions. However, the subtle problems that a programmer encounters in systems that imple-

ment a hybrid memory model are underlined by these formal de�nitions, and obscured by more informal

descriptions.

4.1 Weak Ordering

Dubois, Scheurich and Briggs were the �rst to propose weak ordering (WO) [9] (Gharachorloo et al. call

it weak consistency [12]). A WO system distinguishes between ordinary and synchronization actions, and

guarantees minimum constraints for each class. The synchronization actions must satisfy SC, and all pro-

cesses must view an ordinary action before (respectively after) a synchronization action if program order

places it before (respectively after) the synchronization action. Dubois, Scheurich and Briggs also state that

actions to the same object must remain in program order.

In a WO system, program order for ordinary actions can sometimes be violated. De�ne weak program

order, denoted
weak�prog
�! , by o1

weak�prog
�! o2 if o1

prog
�!o2 and either 1) at least one of fo1; o2g is a synchronization

action, or 2) 9o0 such that o0 is a synchronization action and o1
prog
�!o0

prog
�!o2, or 3) o1 and o2 are to the same

object.

De�nition 4.1 Let O be all the actions of a computation C of a multiprocess system (P; J). Then C is WO

if for each process p 2 P there is some linearization (Ojp [Ow; <Lp) satisfying 1) (Ojp [Ow;
weak�prog
�!) �

(Ojp [Ow; <Lp), and 2) 8q 2 P (Ow \ Osynch; <Lp) = (Ow \Osynch; <Lq).

Without any synchronization actions, WO is weaker even than P-RAM. Condition 1 of De�nition 4.1

only guarantees weak program order, whereas P-RAM computations must maintain program order. Weak

ordering is also weaker than coherence. Even though WO ensures that program order on a per object

basis is maintained, not all processes necessarily see writes to the same object in the same order, as is

required in coherent systems. Dubois, Scheurich and Briggs however, seem to imply that a system should

be coherent and satisfy the conditions of WO simultaneously [9]. The following de�nes a weakly-ordered-

coherent (WOcoherent). Note that, WOcoherent system is equivalent to coherence if no synchronization is

used.

De�nition 4.2 Let O be all the actions of a computation C of a multiprocess system (P; J). Then C is

WOcoherent if for each process p 2 P there is some linearization (Ojp[Ow ; <Lp) satisfying the two conditions

of De�nition 4.1 and 8q 2 P and 8x 2 J (Owjx;<Lp) = (Ow jx;<Lq).

Memory

p1

r

w

r

w

WB

Memory
r

r

w

WB

wp2 pn
w

Memory

r

r
WB

w

...

Figure 7: a machine that implements WO

The machine in Figure 7 has n processors where each has its own copy of the shared memory and a write

bu�er. These processors are connected by a complete network of FIFO channels. A write is placed in the

write bu�er and sent to every other processor in the system. A write received from another processor is

also placed in the write bu�er. The write bu�er sends the writes to the memory, but FIFO order is only

guaranteed on a per object basis. A read �rst checks the write bu�er. If there is a write to the same object,

the value of the last such write is sent back to the processor, otherwise the read is sent to the memory.

11

o1 o2 om...

p
1

...

...

pn

o1 o2 ... om

Figure 8: MWO, a machine that implements WO

We could also view the write bu�er and the memory together as one unit. Since the write bu�er is only

guaranteed to empty in FIFO manner on a per object basis, it is as if there is a separate FIFO channel for

each object in the memory as depicted in Figure 8. In MWO, a processor p has a bi-FIFO read-write channel

(represented by solid lines) to each object in its own copy of memory, �p. Furthermore, each processor p has

a FIFO write channel (represented by dashed lines) to each object in each other copy of �q of memory, where

p 6= q. In MWO , a read action (read, x, �, v) by p is implemented by the ordered sequence of events (1)

processor p sends a processor-read-request to x in �p and (2) object x of �p sends the matching �p-objectx-

read-reply(v) to p. A write action (write, x, v, �) by p is implemented by the ordered events (1) processor p

sends processor-update-request(v) to each copy of object x (2) each process q's copy of object x applies the

matching �q-objectx-update(v).

Claim 4.3 MWO implements exactly WO.

Proof: For any computation C arising from an execution of MWO, and for each processor p, construct

a sequence Sp of the actions of C by p and all writes by placing these actions in the order in which the

corresponding �p events occurred. Since each object services only one request at a time, and the channels

are FIFO, Sp must satisfy program order on a per object basis. Also, Sp must be valid since each �p-objectx-

read-reply will return the value of the last �p-objectx-update. Thus for each p, Sp is a linearization that

satis�es De�nition 4.1.

Now consider any computation that satis�es De�nition 4.1. Construct a corresponding sequence of events

E forMWO from an n-way merge of the n linearizations (Ojp[Ow ; <Lp) = o
p
1
; o
p
2
; : : : ; o

p
k as follows. Initially,

E = �, Lp = (Ojp[Ow; <Lp) for each p and Pp = (Ojp;
prog
�!) for each p. Consider the �rst remaining action

o
p
i 2 (Ojq \ Ojx) for some object x and some process q of each sequence Lp in turn (the �rst time this will

be action o
p
1
for each process p). If the processor event corresponding to o

p
i is already in E then append to

E the �p event corresponding to the action o
p
i and remove opi from Lp. If the processor event corresponding

to o
p
i is not in E yet then consider Pq . Append the processor events corresponding with each action ordered

before o
p
i in Pq in the same order as the corresponding actions are ordered in Pq , and remove all these actions

from Pq . Now append to E the processor and �p events corresponding to the action o
p
i and remove o

p
i from

Pq and Lp.

All events associated with the computation C are obviously added to E. By construction, all processor

events are in the same order as the action invocations of each process. When considering the events at �p's

copy of some object x, these must be in processor order, since the linearization (Ojp[Ow ; <Lp) is in program

order with respect to object x, and could thus have been send along the FIFO channels connected to �p's

copy of x. And thus E could have been executed on MWO.

4.2 SPARC

Figure 4.2 shows the SPARC [34] architecture. There is one store bu�er associated with each processor in the

system and a main memory, which is single ported with a non-deterministic switch providing one memory

access at a time. Three actions that access memory are supported: write, read, and swap-atomic. A write

action (write, l, v, �) by process p is implemented by 1) a p-buf-str(l; v) event adds (l; v) to processor p's

store bu�er; 2) a matching p-mem-update(l; v) event commits the pending store to main memory. Writes

are non-blocking; p can invoke its next action as soon as the p-buf-str(l; v) event completes. A read action

12

p p p
2 n1 ...

Memory

2 nSB SBSB1

Figure 9: The SPARC machine

(read, l, �, v) by process p is implemented by 1) a p-read-req(l) is sent by processor p to its write bu�er; 2) If

there is a store to location l pending in p's store bu�er, then the matching p-read-reply(l; v) event returns to

p the value v of the latest such store to l. Otherwise, the matching p-read-reply(l; v) event returns to p the

value of l in main memory. Reads are blocking; p cannot invoke its next action until the matching p-read-

reply(l) completes. A swap-atomic action (sa, l, v, w) by process p has both read and write semantics and

is implemented as the single event p-swap(l; v; w), which has the same e�ect as the indivisible concatenation

of p-buf-str(l; v), p-mem-reply(l; w), and p-mem-update(l; v)7. The swap-atomic is blocking.

The SPARC [34] architecture implements, selectively, Total Store Ordering (TSO) and Partial Store

Ordering (PSO). The order in which p-mem-update(;) events commit values to main memory di�erentiates

between them. If the bu�ers behave as FIFO queues, the model is called TSO. The model is PSO, if it is

only guaranteed that stores performed to the same location are sent to main memory in FIFO order. The

FIFO queue and the atomicity of the swap-atomic together imply that, for TSO, swap-atomic
ushes the

entire store bu�er.

LetMTSO denote the SPARC under TSO control. An execution of MTSO can be described as a sequence

of the types of events previously described. Because reads are blocking, however, any execution will produce

the same computation as one in which each p-read-req(l) is moved to immediately before its matching p-read-

reply(l; v). These reads can then be combined to one event denoted, p-read(l; v). Call any such execution

with this form a collapsed execution. Let a ! b denote that a precedes b in sequence E. Any collapsed

execution E must satisfy the conditions: 1) p-buf-str(l; v) ! p-mem-update(l; v) for matching events; 2) if

p-buf-str(l; v) ! p-buf-str(h;w) then p-mem-update(l; v) ! p-mem-update(h;w). 3) For a given event e =

p-read(l; v), let ê be the most recent q-mem-update(l; w) event that precedes e. If there is no p-buf-str(l; x)

between ê and e, then v = w. Otherwise, v = x where p-buf-str(l; x) is the latest such event between ê

and e. 4) A p-swap(l; v; w) can be replaced by the indivisible concatenation of p-read(l; w), p-buf-str(l; v),

p-mem-update(l; v) and properties 1 through 3 must still hold.

Some observations facilitate modelling the execution of MTSO by constraints on computations. Besides

it own events, each processor can \see" only another processor q's q-mem-update(;) events. A store by p is

visible to p (as p-buf-str(;)) before it is visible to other processors. If p-buf-str(l; v) ! q-mem-update(l; v0)

! p-mem-update(l; v), then the write by q to l is invisible to p.

In the following, (A]B) denotes the disjoint union of A and B, and if x 2 A\B then the copy of x in A

is denoted xA and the copy of x in B is denoted xB . Let Oa denote all the swap atomic actions; Ow denote

all actions that update objects (writes and swap-atomics) and Or denote all actions that inspect objects

(reads and swap-atomics).

De�nition 4.4 Let O be all the actions of a computation C of the multiprocess system (P; J). Then C is

TSO if there exists a total order (Ow;
writes
�!) such that (Ow;

prog
�!) � (Ow;

writes
�!) and 8p 2 P there is a total

order (Ojp] Ow;
mergep
�!), satisfying:

1. (Ojp;
prog
�!) = (Ojp;

mergep
�!), and

2. (Ow;
writes
�!) = (Ow ;

mergep
�!), and

7Actually, the swap-atomic may proceed concurrently with other events by other processors, and hence not be strictly

indivisible, but the outcome of any execution of a swap-atomic is identical to one in which the three component pieces happen

without any intervening events.

13

3. if w 2 (Ojp \Ow) then wOjp

mergep
�! wOw , and

4. ((Ojp] Ow)n(Oinvisiblep [Omemwritesp);
mergep
�!) is a linearization, where

Oinvisiblep = fw j w 2 (OwnOjp) \ Ojx ^ 9w0 2 Ojx \ Ojp \ Ow ^w0

Ojp

mergep
�! w

mergep
�! w0

Ow
g

Omemwritesp = fwOw j w 2 Ojp \Owg, and

5. let w 2 (Ojp \Ow) and a 2 (Ojp \ Oa), if w
prog
�!a, then wOw

mergep
�! a, and if a

prog
�!w, then a

mergep
�! wOjp

Theorem 4.5 MTSO implements exactly TSO.

Proof: Let E be a collapsed execution onMTSO of some multiprocessor system (P; J). For any subsequence

Ê of E, let S(Ê) denote the sequence obtained from E by replacing each p-read(l; v) by p's corresponding

action (read,l,�,v); each p-buf-str(l; v) or p-mem-update(l; v) by p's corresponding action (write,l,v,�); and

each p-swap(l; v; w) by p's corresponding action (sa,l,v,w). Let Ewrites be the subsequence of E containing

all q-mem-update(;) and q-swap(;) events for all q 2 P . By condition 2 for E, S(Ewrites) is a total order on

Ow satisfying program order. For each process p 2 P , let Ep be the subsequence of E containing Ewrites

together with all p-buf-str(;) and p-read(;) events. Form E0

p from Ep by duplicating each p-swap(;). Then

S(E0

p) is a total order on Ojp] Ow, where Ojp is the set of actions corresponding to the p-buf-str(;) and

p-read(;) events, and the �rst copy of each p-swap(;) event; and Ow is the set of actions corresponding to

those in Ewrites. It is easily checked that S(E0

p) satis�es properties 1, 2, 3, and 5 of TSO. To establish

property 4 of TSO, notice that the actions in Omemwritesp correspond to the events p-mem-update(;) and

the second copy of each p-swap(;); and those in Oinvisiblep correspond to those q-mem-update(;) events

satisfying p-buf-str(l;) ! q-mem-update(l;) ! p-mem-update(l;) and q 6= p. By condition 3, removing from

Ojp] Ow the actions corresponding to these events, leaves a sequence that is valid for every object. Thus

((Ojp] Ow) n (Oinvisiblep [Omemwritesp);
mergep
�!) is a linearization.

Let C be a computation satisfying TSO. From the sequences (Ojp] Ow;
mergep
�!) construct sequences Ep

by replacing each (read,l; �; v) in Ojp with the event p-read(l; v); each (write,l; v; �) in Ojp (respectively, Ow)

with p-buf-str(l; v) (respectively, p-mem-update(l; v)). Finally, remove each (sa,l; v; w) in Ojp and replace

each (sa,l; v; w) in Ow with p-swap(l; v; w). Property 2 and 5 of TSO, ensures that it is possible to form a

sequence E by merging the Ep while identifying all the matching p-mem-update(;) and p-swap(;) events for

every p. Combine the segments of each Ep that are between the ith and i+1st p-mem-update(;) events with

an arbitrary merge. Properties 1, 2, and 3 ensure that any such merge will satisfy the conditions 1, 2, and

4 required of E. Condition 3 follows from property 4 of TSO.

Denote the SPARC machine with PSO control by MPSO . MPSO provides fewer guarantees than the

MTSO; speci�cally, condition 2 of executions on MTSO is weakened to apply only to update events on the

same object. Therefore, a swap-atomic action will only
ush those writes that are to the same location.

For this reason, PSO also provides a store-barrier instruction, which does not access memory but imposes

additional constraints on the order in which memory updates leave the store bu�er. Speci�cally, no store

invoked after a store-barrier is allowed to complete before any store that is invoked before the store-barrier.

A (collapsed) execution E of MPSO can, therefore, be described as a sequence of events of the types

p-read(l), p-buf-str(l; v), p-mem-update(l; v), p-swap(l; v; w), and p-barrier. Execution E must satisfy the

conditions 1, 3, and 4 of MTSO and the condition 2' given by: 2') if p-buf-str(l; v) ! p-buf-str(l; w) then

p-mem-update(l; v) ! p-mem-update(l; w). Furthermore, the p-barrier events impose the condition: 5) if

p-buf-str(l; v) ! p-barrier ! p-buf-str(h;w) then p-mem-update(l; v) ! p-mem-update(h;w).

Let Osb denote all the store barrier actions in O.

De�nition 4.6 Let O be all the actions resulting from an execution E of the multiprocess system (P; J).

Then E is PSO if there exists a total order (Ow;
writes
�!) such that 8x, (Ow \ Ojx;

prog
�!) � (Ow \ Ojx;

writes
�!)

and 8p 2 P there is a total order (Ojp] Ow;
mergep
�!), satisfying items 1 through 4 of TSO and (5) if sb 2

(Ojp \ Osb) and w, u 2 (Ojp \Ow) and w
prog
�! sb and sb

prog
�! u, then wOw

mergep
�! uOw .

The proof that the PSO consistency condition corresponds to the SPARC machine under PSO control is

similar to the proof of Theorem 4.5; details can be found elsewhere [20].

14

Theorem 4.7 MPSO implements exactly PSO.

Clearly, any TSO execution is PSO. Computation 4 is PSO as shown by the writes orderwp(y)2
writes
�! wp(x)0

writes
�! wp(x)1.

But it is not TSO because the required linearization for q does not exist. Hence, TSO is strictly stronger

than PSO.

To compare TSO and PSO with the other models we assume Oa = ;.

Computation 6

�
p : w(x)0 r(y)1 r(y)2 r(y)3 r(x)0

q : w(y)1 w(y)2 w(x)6 w(y)3

It can be shown [20] that Computation 6 is TSO but not P-RAM-A. Hence TSO (or PSO) does not imply

P-RAM-A or P-RAM or PC-G or SC. Any TSO (PSO) execution is coherent however [20].

Computation 7

8>><
>>:

p : w(x)1

q : w(y)1

r : w(x)0 r(x)1 r(y)0

s : w(y)0 r(y)1 r(x)0

Finally, Computation 7 is coherent and PC-G but not PSO [20]. Thus neither coherence nor PC-G implies

even PSO.

5 Conclusion

We have presented a unifying formal framework to describe memory consistency models. This formalism

was exploited to reveal substantial di�erences between models. We further exploit this formalism to study

process coordination problems in the context of weak memory models in a companion paper [21].

When no explicit synchronization primitives are used, the models described yield the relationships de-

picted in Figure 10. An arrow from some memory consistency model A to another memory model B, indicates

that any system satisfying the constraints of model A will also satisfy the constraints of model B.

Table 1 summarizes the relationships between computations and models presented in this paper.

Linearizability

SC

PCGTSO P-RAM

PSO

Coherence = WO coherent

WO

P-RAM-A

Figure 10: Relationships between memory consistency models

References

[1] S. V. Adve. Using information from the programmer to implement system optimizations without vi-

olating sequential consistency. Technical Report ECE 9603, Department of Electrical and Computer

Engineering, Rice University, March 1996.

15

Table 1: Model-computation relationships
linearizability SC coherence P-RAM-A P-RAM PC-G WO TSO PSO

Figure 3
p p p p p p p p p

Figure 4
p p p p p p p p

Computation 1
p p p p p p p

Computation 3
p p p

Computation 4
p p p

Computation 2
p p p p

Computation 5
p p p p p

Computation 6
p p p p

Computation 7
p p p p p

[2] S. V. Adve and M. D. Hill. Implementing sequential consistency in cache-based systems. 1990 Int'l

Conf. on Parallel Processing, pages I47{I50, August 1990.

[3] S. V. Adve and M. D. Hill. Weak ordering - a new de�nition. In Proc. of the 17th Annual Int'l Symp.

on Computer Architecture, pages 2{14, May 1990.

[4] S. V. Adve and M. D. Hill. A uni�ed formalization of four shared-memory models. IEEE Trans. on

Parallel and Distributed Systems, 4(6):613{624, 1993.

[5] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consistency. In Proc.

5th ACM Symp. on Parallel Algorithms and Architectures, pages 251{260, June 1993. Also available as

College of Computing, Georgia Institute of Technology technical report GIT-CC-92/34.

[6] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: De�nitions, implementations,

and programming. Distributed Computing, 9:37{49, 1995.

[7] H. Attiya, S. Chaudhuri, R. Friedman, and J. Welch. Shared memory consistency conditions for non-

sequential execution: De�nitions and programming strategies. In Proc. 5th ACM Symp. on Parallel

Algorithms and Architectures, pages 241{250, 1993.

[8] D. L. Dill, S. Park, and A. G. Nowatzyk. Formal speci�cations of abstract memory models. In Proc. of

the 1993 Int'l Symp. on Research on Integrated Systems, March 1993.

[9] M. Dubois, C. Scheurich, and F. Briggs. Memory access bu�ering in multiprocessors. Proc. of the 13th

Annual Int'l Symp. on Computer Architecture, pages 434{442, June 1986.

[10] K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M. Hill. Programming for di�erent memory

consistency models. Journal of Parallel and Distributed Computing, 15(4):399{407, August 1992.

[11] K. Gharachorloo, A. Gupta, and J. Hennessy. Revision to memory consistency and event ordering in

scalable shared-memory multiprocessors. Technical Report CSL-TR-93-568, Computer Systems Labo-

ratory, Stanford University, April 1993.

[12] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency

and event ordering in scalable shared-memory multiprocessors. In Proc. of the 17th Int'l Symp. on

Computer Architecture, pages 15{26, May 1990.

[13] P. B. Gibbons and M. Merritt. Specifying nonblocking shared memories. In Proc. 4th ACM Symp. on

Parallel Algorithms and Architectures, pages 306{315, 1992.

[14] P. B. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential consistency of high-performance

shared memories. Symp. on Parallel Algorithms and Architectures, pages 292{303, July 1991.

[15] A. Gontmakher and A. Schuster. Java consistency: Non-operational characterizations of Java memory

behavior. Technical Report CS0922, Computer Science Department, Technion, November 1997.

16

[16] J. Goodman. Cache consistency and sequential consistency. Technical Report 61, IEEE Scalable Co-

herent Interface Working Group, March 1989.

[17] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.

on Programming Languages and Systems, 12(3):463{492, July 1990.

[18] L. Higham and J. Kawash. Java: Memory consistency and process coordination (extended abstract).

In Proc. of the 12th Int'l Symp. on Distributed Computing, pages 201{215, September 1998.

[19] L. Higham, J. Kawash, and N. Verwaal. De�ning and comparing memory consistency models. In Proc.

of the 10th Int'l Conf. on Parallel and Distributed Computing Systems, pages 349{356, October 1997.

[20] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part I: De�nitions and

comparisons. Technical Report 98/612/03, Department of Computer Science, The University of Calgary,

January 1998.

[21] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part II: Process coordination

problems. Technical Report 98/613/04, Department of Computer Science, The University of Calgary,

January 1998.

[22] L. Higham and N. Verwaal. Processor consistency. In Preparation.

[23] J. James and A. Singh. The impact of hardware models on shared memory consistency conditions.

Lecture Notes in Computer Science, 1119:719{734, 1996.

[24] P. Kohli, G. Neiger, and M. Ahamad. A characterization of scalable shared memories. In Proc. of the

1993 Int'l Conf. on Parallel Processing, August 1993.

[25] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communication of the

ACM, 21(7):558{565, July 1978.

[26] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Trans. on Computers, C-28(9):690{691, September 1979.

[27] L. Lamport. On interprocess communication (parts I and II). Distributed Computing, 1(2):77{85 and

86{101, 1986.

[28] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical Report 180-88, Depart-

ment of Computer Science, Princeton University, September 1988.

[29] D. Mosberger. Memory consistency models. ACM Operating Systems Review, 27(1):18{26, January

1993.

[30] S. Park and D. L. Dill. An executable speci�cation, analyzer and veri�er for RMO (relaxed memory

order). In Proc. of the 7th ACM Symp. on Parallel Algorithms and Architectures, July 1995.

[31] J. Protic, M. Tomasevic, and V. Milutinovic, editors. Distributed Shared Memory Concepts and Systems.

IEEE CS Press, 1998.

[32] P. Sindhu, J.-M. Frailong, and M. Cekleov. Formal speci�cation of memory models. Technical Report

CSL-91-11, XEROX Corporation Palo Alto Research Center, December 1991.

[33] N. Verwaal. Ambiguous memory consistency models. M.Sc. Thesis, Department of Computer Science,

The University of Calgary, 1998.

[34] D. L. Weaver and T. Germond, editors. The SPARC Architecture Manual version 9. Prentice-Hall,

1994.

17

