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Abstract

We establish Gersgorin-type theérems for diagonally dominant infinite matrices A
acf,ing as linear operators in the sequence spaces £,, 1 < p < co. Two methods are
used; in the first, the results are established using a sequence of infinite matrices
A, that converges to A in the generalized sense as n —— co. In the second method,
the results are established using the continuity in the generalized sense of a family
of ciosed operators A{u), p € [0,1]. The first method allows us to approximate the
eigenvalues and eigenvectors of A by those of A,,.

The dependence of the eigenvalues and the eigenvectors of a matrix operator
upon its perturbation is also discussed. The results are established using the fixed-

point principle for contraction maps.
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Introduction

The Gersgorin theory for the localization of eigenvalues of finite matrices is well
established (see [22] and [2]). Eigenvalue problems for infinite matrices occur
frequently in mathematics and engineering (see [4] and [31]). An often used method
for finding eigenvalues ils to truncate the system to finite n X n systems and to let
n tend to inﬁnity. However, it has been shown that an infinite system may h.:auve a
nonzero eigenvalue although the truncated systems have only the zero eigenvalue
(see [25]). Therefore it is naturai to try and develop Gersgorin theorems for infinite
matrices , where we consider them as linear operators, acting in t};e sequence spaces
£p,1 < p < oo (see examples 3 and 4, page 195 of [9] for the definition of £,). An
interesting paper establishing Gersgorin theorems for diagonally domi.na.nt infinite
matrices was published recently by Shivakumar, Williams and Rudraiah [26], but
their analysis is restricted to matrlx operators acting in £; and £

In the paper [6], the authors develop an analogous theory for diagonally domi-
nant matrix operators acting in £,, 1 < p < oo, but using a constructive approach
involving a sequence {A4,} of infinite matrix operators that converges to the matrix
operator A in an appropriate sense (see Section 2 of [6]. Here we take advantage of
the powerful theory of perturbations developed in the work of Kato [15]). There
are some advantages in having results for the wider range of values of p; in par-
ticular, in the paper [6] the Hilbert space properties associated with p = 2 have
admitted the application of strong results for selfadjoint operators (sée Sections
5 and 6 of that paper). Also, the spectral properties of a given matrix operator

may depend on the choice of the space £,. For example, Hanani, Netanyahu and



Reichaw {11] show that a matrix operator A can have zero as an eigenvalue with
respect to £, while zero is not an eigenvalue of A with respect to £;. Although the
analysis given in [6] succeeds in extending the range of p, the results when p = 1,00
are just weaker than those of the paper [26]. In the paper [7] we have shown how
the results of [26] can be both strengthened and extended to more general values
of p.

In this thesis, we cover the results of the papers [6] and [7] through Chap-
ters Two and Five. In Chapter One, some preliminary results are introduced. In
Chapter Two, we extend Gerégorin theory to infinite matrices with bounded per-
turba,tionslwhere we show that for a matrix operator A, any set of r Gersgorin
discs whose union is disjoint from all other Gersgorin discs inter’sect‘s the spectrum
of A in a finite set of eigenvalues of A with total algebraic multiplicity equal to
r. Chapter Three generalizes and develops the Gersgorin theorems results of the
paper [26], and Gersgorin theorems are established for diagonally dominant infinite
matrix operators with relatively bounded perturbations acting in £,, 1 < p < oo.
In Chapter Four, we use the spectral approximation theory described by Chatelin
[3] and the results of Chapter Two to approximate the eigenvalues and the eigen-
vectors of the matrix opefé,tor A by those of the approximating sequence {4,}
introduced in Chapter Two, and take advantage of the Hilbert space 'properties
of the space £, in getting stronger results. In Chapter Five, we study Mathieu’s
equation (see equation (5.1.1)) and prove that in the case ¢ = 1, the éigenvalues
corresponding to the eigenfunctions cez,(0, g) of equation (5.1.1) are the eigenval-
ues of a-diagonally dominant matrix operator defined in £,. Then we use the results

of Chapters Two and Four to approximate the eigenvalues of equation (5.1.1). In



Chapter Si}g, we discuss the dependence of the eigenvalues and eigenvectors of an
operator upon its perturbation. We apply the fixed-point principle for contraction
maps in obtla,ining the results. This problem has been discussed in [24], [13] and
[33]. Our results generalize and improve the results in [24]. We also use these
-results to approximate the eigenvalueg of Mathieu’s equation, although it is recog-
nized that sharper estimates for these eigenvalues can be found 'by other methods

(see [18])



Chapter 1
Preliminaries

In this chapter, we present some basic definitions and theorems that will be used
throughout the thesis.

-~

1.1 Linear Operators in Banach Spaces

Throughout this thesis, X and Y will denote Banach spaces over the field of complex
numbers C. The norm on X is denoted by || - ||x. A sequence {z,} of points in X
is said to converge to a point z in X if lim,—.o || zn — z ||= 0. In this case we write
limn_.oo. zZp=x. If z and =, € X for all n € N, where N denotes the set of positive
integers, and if limp—o Z,’-;l‘x,- = z, then we write z = Y%, z;.

A linear operator (or simply an operator) A from X into Y is a function which
sends every vector u in a certain linear subspace D(A), called the domain of A, of .

X to a vector v = Au = A(u) € Y and which satisfies the linearity condition:
:A(alul + C!g‘u,g) = alA(‘U,]_) + agA(’U,g)

for all uy,us € D(A) and oy, € C. The range R(A) of the operator A from X
into Y is defined as the set of all vectors of the form Au with u € D(A).r If D(A) is
dense in X, A is said to be densely defined. If D(4) = X, A is said to be defined
on X. If X =Y, we shall say that A is an operatorin X. f Y =C, A is called a

linear functional.



5

If A aﬂd B are operators from X into Y and o, € C, the operator A + B is
the operator from X into Y with domain D(aA + 8B) = D(A)N D(B) and which
satisfies

(¢A + BB)(z) = aA(z) + BB(=z),

for-all z € D(A)ND(B).

If A is an operator from X into Y and B is an operator from VY into Z, where
Z is a Banach space over C, then the product BA is the operator from X into Z
with domain D(BA) = {z € D(4) : Az € D(B)} and (BA)(z) = B(A(x)) for all
z € D(BA).

An o.perator A fro‘m X into Y is said to be invertible if there exists an opérator,

denoted by A~!, from Y into X such that

and
A'Jl(Au) =u, A(A™1) = v,
for all w € D(A), v € R(A). v
The operator A™! is called the inverse of A. It can be easily shown that if 4
is an invertible operator from X into Y, then A™' is unique. Also if A and B are
invertible operators in X, then AB is invertible in X and (AB)'17= B1A°L

An operator A from X into V is called bounded if
| A ||=sup{|| Au |ly: v € D(A),] v ||x< 1} < oo. (1.1.1)

In this case || A || is called the norm (or the bound) of A. When there is no cause

for confusion, we use the same notation for the norms on X and Y. The space of
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all bounded operatoré A from X into Y with domains D(A) = X is denoted by
L(X,Y). With the norm || A || defined in equation (1.1.1) for every A € L(X,Y),
L(X,Y) becomes a Banach space. When X = Y, we write £(X) instead of £(X,Y).
It can be shown that if 4, B € £(X) then AB € £(X) and || AB||< || A ]| B |.
The operator in L£(X) which sends évery z € X into itself is called the identity
operator and is denoted by I.

Throughout the thesis it will be required to find the inverse of operators of the
form I — A, where A € E(Ir) and || 4 ||< 1. The formula for (I — A)~! is suggested

by the geometric series :
l+a+a’+---=(1-a)7},0<a<]1.

THEOREM 1.1.1 Suppose A € L(X) and || A ||< 1. Then (I — A)™! exists and

is in £(X): Moreover we have:

(- a) = 35 4
and
(-4 < - 4l

where A® = J, A? = AA, A% = AA?, etc.

See Theorem 8.1, page 70 of [9] (which holds true in Banrach spaces) for the
proof.

An operator which is not bounded is called unbounded.

An operator A € L(X,Y) is called compact if for every bounded sequence {un}
of points in X ,the sequence {Au,} in Y has a Cauchy subsequence. The following
theorem shows that the product of a compact operator by a bounded operator is

a compact operator.
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THEOREM 1.1.2 Suppose 4 € L(X,Y) ~is compact. If B € L(Y, 2Z) and C €
L(Z,X), where Z is a Banach space over C, then BA and AC are corﬁpact.

See Theorem 4.8, page 158 of [15] for the proof. |

The following theorem shows that the space of all compact operators in L{X, Y)
is a 'closedr subspace of £(X,Y). |

THEOREM 1.1.3 Suppose {K,,} is a sequence of compact operators in L(X,Y)
and lim,— || Kn — K ||= 0, where K € £(X,Y). Then K is compact.

See Theorem 4.7, page 158 of [15] for the proof.

REMARK 1.1.4 i K € L(X,Y) is of finite rank, that is, dim R(K) is finite,
where dim R(K) denotes the dimension of R(K) (in general if Z is a subspace of
X, dim Z denotes the dimension of Z), then K is compact. For the proof, see [9], |
page 83.

The graph of an operator A defined in X is the set

G(4) = {(u, Au) : v € D(4)}.

The set G(A) is a subspace of the product space X x X, which is a Banach space

with the norm: || (z,y) ||=||z || + || y || for all z,y € X (other choices of the norm

on X x X are possible; for example, | (z,9) ||= \/H zl?+|ly|*). An operator
A in X is called closed if G(A) is a closed subspéce of X x X. It can be easily
seen that'a.n operator A in X is closed if and only if the conditions limp—c %, = u,
where u, € D(A) for alln € N and v € X, and li.m,,_‘oo Au, = v, where v € [,
imply that v € D(A) and v = Au. Also it can be shown that if A € £({X) then

A is closed if and only if D(A) is closed. The space of all closed'operators in X is



denoted by C(X). If A is an operator in X, the inverse graph G'(4) is defined as:
- §'(4) = {(Au,u) 1 u € D(4)}.

It is clear that A is closed if and only if §'(A4) is a closed subspace of the prodluct
space X x X. |

If A is an invertible operator in X, then clearly

Thus A is closed if and only if A™! is closed.

EXAMPLE 1.1.5 Let {;} be a sequence of complex numbers and suppose that
either limi_,o0| 04 |= 0 or lim;e | &; |= c0. Let D be the infinite diagonal matrix
with o;, © € N, on the diagonal (we write D = diag(eu, a,...)), and consider
D as an operator (called a matrix operator) acting in £,, 1 < p < co. Then D
is closed in £,. From the previous paragraph it is sufficient to prove that D is
closed in the case limi_oo| & |= 0. But this is clear since D € L(£,) ( in this case
| D ll= max{] a; |: 7 € N}).

The notion of the dual of an operator will be used in the thesis. The space
L(X,C) is denoted by X'.

TﬁEOREM 1.1.6 Let T' be an operator in X'. Consider the points (z',y') € X'x Y’
satisfying the condition: .

y'(Tz) = ='(z) | (1.1.2)

for all z € D(T). Then z' is determined uniquely by y' if and only if D(T) is dense
in X.

See Theorem 1, page 193 of [34] for the proof.



DEFINITION 1.1.7 Let T be an operator in X with a dense domain D(T). The
dual T' of T is defined as follows: the domain D(T") of T" is the totality of those
y' € X' such £hat there exists z' € :I' satisfying equation (1.1.2). If € D(T),
then T"y' € X' such that (T'y')(z) = ¢/(Tz) for all z € D(T). From Theorem 1.1.6,
T' is a linear operator in X'.

The following is due to R.S. Phillips.

THEOREM 1.1.8 Let T' be an operator in X with an inverse and suppose that

D(T) and R(T) are both dense sets in X. Then:
(Tl)—l — (T—l)’.

See Theorem 1, page 224 of [34] for the proof.

1.2 Resolvents and Spectra

Let A be an operator in X. A point ¢ € C is called a regular point of A if A — ¢I.

is invertible and we write
R(¢,A) = R(¢) = (A—¢I)™".

The set of all regular points of an operator A is called the resolvent set of A
~and is denoted by p(A). The operator R(¢, A) is called the resolvent operator.of
A. Thus R(¢, A) has domain X and range D(A4). The co%nplerhent of p(A), that
is, the set {A € C: A ¢ p(4)} is called the spectrum of A4 and is denoted by o(A).

The following theorem shows that the spectrum of an ope;rator is a closed set

in C.
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THEOREM 1.2.1 Let A be an operator in X. Then the resolvent set p(A) is
open in C.

See Theorem 2, page 211 of [34] for the proof.

In the finite dimensional case, the spectrum of an operator A consists of a
finite number of points (the eigenvalues of A), but the sitﬁation is much more
complicated in the infinite dimensional case. In this case it is p:ossible that the
spectrum can be an uncountable set or the empty set as shown from the following
examples.

EXAMPLE 1.2.2' Let X = C[a,b] be the space of all complex valued continuous
functions on the closed interval [a,b]. Define an operator T in X as : D(T) is the
set of all continuously differentiable functions on la,b] and Tu(z) = d—‘;(zﬂ (that is
T is the derivative of u with respect to z), for all w € D(T). Then o(T) = C. In
fact for every A € C, the equation (T — Al)u = d—‘;(fl — Au(z) = O has a nontrivial
solution u(z) = €%, which belongs to X.

Let D = {u € D(T) : u(a) = 0}. Define the operator Ty in X as: D(T3) = D
“and Tiu(z) = i‘;ifl. Then the spectrum o(T}) of 77 is the empty set.. In fact the

resolvent Ry(¢) = R(¢,T1) exists for every ¢ € C and is given by

Ri(e)o(y) = [ &0 (a)da.

a

EXAMPLE 1.2.3 Let §; be the operator in £,, 1 < p < oo, defined as: D(S;) = ¢,
and Sy(z) = Si(zy1,3,...) = (22,2s,...) for all z = (z4,23,...) € £,. Then o(8)) =
{A € C:| X|< 1} (see Example 1, page 283 of [28]). The operator S is called the
left shift operator. .

For a compact operator the spectrum is a countable set. More precisely, we
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have:

THEOREM 1.2.4 Let K € L(X) be compact and X infinite dimensional. The
spectrum of K is a countable set Ay, Ag,:.. which includes A = 0. If A; # 0, then it
is an eigenvélue of K. If {)\;} is an infinite set, then lim;_,o, A; = 0.

See Theorem 6.1, page 248 of (9] for the proof.

© A compact operatof and its dual (see Definition 1.1.7) have the same nonzero
eigenvalues. |

THEOREM 1.2.5 Let K be a compact operator on X. Then any nonzero number
is an eigenvalue of K if and only if it is an eigenvalue of K'.

See Theorem 2, page 284 of [34] for the proof.

The relation between the spectrum of an invertible operator and the spectrum
of its iﬁverse is given in the following theorem.

THEOREM 1.2.6 Let A be an invertible operator in X. Then

(a) Any nonzero complex number ) is an eigenvalue of A if and only if A" is
an eigenvalue of A7

(b) Thé sets o(A4) \ {0} = {z € 6(4).: z # 0} and o(A™!) \ {0} are mapped
onto each other by the mapping z — z71.

Proof. (a) Let A be a nonzero complex number. The result follows from the
equivalence of the following statements: Az = Az , A™}(Az) = A7 }(Az) , z =
MA™iz) , A7z = Az

See Theorem 6.15, page 177 of [15] for the proof of part (b).
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1.3 Stability Theorems

Let T € C(X) and F jbe an operator in X. The basic problem in perturbation
theory for closed operators is to study the relation between the spectral properties
of T and T + F. The operator F is called the perturbation.

In this section theorems investigating the stability, under small perturbations,
of various spectral properties of closed operators in Banach spaces are stated. It
is necessary to make precise what is meant by “small” perturbation. In this thesis
we use the concept of the gap between the closed operators S = T + F and T in
measuring the smallness of the perturbation F.

DEFINITION 1.3.1 Let T and S be closed operators in X, and let §(T) and -
G(S) be their graphs, respectively.

Define G1(T) = {(u,Tu) € §(T) :|| (»,Tu) ||=1}. .

Set §(T, S) = sup{dist(w, §(S)) : w € §1(T)}, where dist(w, G(S)) denotes the
distance between w and the closed set G(S) in the product space X x X.

Let 6(T, S) = max{6(T,S),6(S,T)}. Then §(T, S) is called the gap between T
and S (or between S and T).

Some properties of the gap between two closed operators are listed in the fol-
lowing theorem.

THEOREM 1.3.2 Let T and S be closed operators in X.

‘ 5 S S
(1) T € L(X) and 6(5,T) < o then S € L(X) and

A+ T8(ST)
1-1/1+ | T |°6(S,T)

I$-T|<
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(2)IfS=T+ Aand 4 € L(X), then
ST+AT) <A
(3) If A € £(X), then
DS+ AT +HA) <21+ APE(S,T).
(4) If T and S are invertible,then
§(S7L,T™Y) = 6(8,T)
and
:3(5-1,1‘-1) =§(S,T).

(5) T T is invertible with T-! € £(X) and 8(S,T) < (14| T-* |*)™", then
S is invertible and S~! € L(X).

See Theorems 2.13,14,17,20 and 21 in Chapter IV of [15] for the proc;fs of
(1),(2),(3),(4) and (5), respectively.

The first ;pectral property we will discuss is the upper semicontinuity of the
spectrum. The following theorem shows that thehsp;ectrum of z;, bounded operator
is upper semicontingous.

THEOREM 1.3.3 (See Remark 3.3, page 208 of [15].) If T € £(X), then for

every € > O there is a 6 > 0 such that
sup{dist(A,o(T)) : A € 0(9)} < ¢,

i S —T|l<é.
Proof. Let € >0 and I' = {¢ € C : dist(¢,0(T)) > €}. T is nonempty since o(7T)

is a bounded set (if | ¢ [>|| T"|| then ¢ € p(T)). Let ¢ € T and S € L(X). From



14

the equality S ~ ¢I = (T — ¢I)[I + R(¢,T)(S — T)] and Theorem 1.1.1, it follows
that if || S — T ||< || R(¢,T) || then

¢ € p(S); (1.3.1)

Now we show that the set {|| R(¢,T)||™" : ¢ € T'} has a positive minimum.
Since for ¢ € p(T), || R(¢,T) ||— 0 as ¢ — oo then we can find ¢ € T and a positive
M> max{| ¢1 |,|| T ||} such that

IR, T) 17 > | R(s0, T) |77, (1.3.2)

if | ¢ |> M. Since || R(¢,T) || is continuous in ¢, then || R(¢,T) ||”! has a positive
minimum 6 on the compact set 'y = {¢ € ' ;| ¢ |< M}. From Equation(1.3.2), we
have 6 = min{|| R(¢,T) ||™* : ¢ € T}. Therefore from Equation(1.3.1), it follows
that T' C p(S) if | S =T ||< 6 = min{|| R(s,T) ||} : ¢ € T'}. From the definition of
I' this means that there is a positive § such that sup{dist(X,o(T)) : A € 6(5)} < ¢
if || S — T ||< 6, and this proves the requirement.

In the latter chapters we will be concerned with the case when .the spectrum
‘0(»T) of a closed operator T' contains a bounded part 01(7") separated from the rest
02(T) by a closed simple curve I' consisting of regular points of T. The following
theorem shows the stability of the separated part o1 (T") of the spectrum of T under
small perturbations.

THEOREM 1.3.4 Let T € C(X) and suppose that o(T) is separated into two
parts 01(T") and 03(T) by a closed curve T' consisting of regular points of T as
stated above. Then there exists a 6 depending on T and T' such that for evéry

S € C(X) with §(S,T) < 6, o(8) is likewise separated by T into two parts o1(S)



and o,(S) (T itself running in p(S)). Also we have:
dim R(P(T, T)) = dim R(P(T, S))

where

P(T,T) = 2W\/_/Rg,

and

P9k s

See Theorem 3.16,page 212 of [15] for the proof. .

DEFINITION 1.3.5 Let T € C(X) and suppose the spectrum o(T') is separated
into twc.> parts as stai:ed in Theorem 1.3.4 . If o1(T ) = {A1,...,An} is a finite set
of distinct eigenvalues of T then around each A; construct a small closed curve T;
consisting of regular points-of T and lying in int ', where int ' denotes the region
- enclosed by I'. AlsoT'; satisfies A; & intT; if j # 4. If P(I;,T) = fF R(¢,T)d¢
forallt =1,...,n, then dim R(P(T;,T)) is called the algebraic multiplicity of ;. It
is clear that if fi is another closed curve around A; satisfying the above conditions,
then dim R(P(I;,T)) = dim R(P(T;,T)). So the algebraic multiplicity of. A; does
not depend on the choiceﬂ of t}}e closed curve I'; which satisfies the above properties.

Also it can be proved that

P(T;,T) ifj=1
P(T;,T)P(T;,T) =

0 otherwise

But since P(I',T) = P(I'y,T)+---+P(T'», T), where P(T',T) is defined in Theorem

1.3.4, then

dim R(P(T, T)) = dim R(P(Ty,T)) + - + dimm R(P(To, T)).
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dim R(P(T,T)) is called the total algebraic multiplicity of the eigenvalues Ay,..., A

of T inside I'.
REMARK 1.3.6 If in Theorem 1.3.4, dimR(P(T,T)) = m < oo, then o;(T)

consists of a finite system of eigenvalues with the total algebraic multiplicity m.

1.4 Gersgorin Theorems for Finite Matrices

I

Let C™ be the set of all column vectors z = ¢ |,wherez; € Cforalls =1,...,n.

,zn

The set of all n X n matrices with comi)léx entries is denoted by C™*".
A description of regions of the complex plane containing the eigenvalues Ay, ..., A,
of a matrix A € C™" is presented in this sec/tion.
REMARK 14.1 If A € C™" and A € C then the polynomial det(4 — AI),
where det(A4 — AI) denotes the determinant of A — AI, is called the characterstic
polynomial. It is clear that the eigenvalues Aj,...,A, of A are the solutions of

det(A — AJ) = 0. Hence we have

(—1)"det(4 — AI) = H(/\ - X)) =(A=A)...(A=An). (1.4.1)
=1
It can be proved that the algebraic multiplicity of the eigenvalue A;,7 € {1,...,n}
of A defined in Definition 1.3.5 is equal to the number of times the factor A — \;
appears in equation(1.4.1).

The following theorem shows that the zeros of a polynomial depend continu-

ously on its coefficients.
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THEOREM 1.4.2 Let n > 1 and let
p(z) = apz™ + -+ + a17 + ao,
an # 0, be a polynomial with complex coefficients. Then, for every € > 0, there is
a 6 > 0 such that for any polynomial
g(z) = bpz™ + - -+ 4+ bz + by,
satisfying b,, # 0 and
max{|a; — b; |10 <7< n} <,
there is a permutation 7 6f 1,...,n with
max{l Ai = ki) |1 1! <1< n}<eg,

where Ay,..., A, are the zeros of p(z) and K1,-- ., Mn are the zeros of ¢(z) in some
order, counting multiplicities.

See Appendix D of [12] for the proof.

We now prove one of the most useful ana easily applied theorems that give
bounds for the eigenvalues of finite matrices. This is known as the Gersgorin
Theorem and was first published as recently as 1931.

THEOREM 1.4.3 (See Theorem 1, page 371 of [16].) If A € C™ " and a;; denotes

the elements of A, 7,7 = 1,...,n and

n !
pi=3_ |ayl,
J=1
 where E;-;l' denotes the sum from j = 1 to j = n excluding 7 = 7, then every

eigenvalue of A lies in at least one of the discs’

{z€C:|z=au|Z pi},
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t=1,...,n, in the complex plane.
Furthermore, a set of r discs whose union is disjoint from the remaining n — r

discs contains r and only r eigenvalues ( counting their multiplicities ) of A.
Proof. Let A be an eigenvalue of A with the associated eigenvector z. Then

Az = Az or, writing this relation out as n scalar equations,
n
Za,-]-a:,- = /\IE,‘, 1= 1,...,n,
j=1 )

where z3,...,Z, are the entries of the column vector z. Let | z, |= max{| z; |: i =

1,...,n}; then the pth equation in the above system gives:

n ! n ! nt
|>‘_app”5p|=lzapj$:i|§Z|apj”x:ilslzp|2|apj|‘
j=1 ) Jj=1

Since z # 0 it must be that | z, |# 0, and so we have

nt
| A= app ISPP=Z|%J' |
=1
This proves the first part.

To prove the second part it is sufficient to prove if
.
Ge=U{zeC: | z—ann. | <pon},
_i=1

where N; € {1,.. ;,n} for all 2 = 1,...,r, is a connected set disjoint from the
remaining n —r discs, then G, contains precisely r eigenvalues of A (countiI_lg their
multiplicities).

Let A = D+ F, where D = diag(au, . .. , @nn), 2nd define A(t) = D +tF for all

t € [0,1]. From the first part, the eigenvalues of A(z), t € [0, 1], lie in the set

n

U{ZE C: I Z — ay |S tp,'},

=1
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which is a subset of UL, {z € C :| z—ay |< p;}. At ¢ =0, the eigenvalues of A0) =
D are aj1,...,an,. Since the eigenvalues of a matrix are continuous functions of
the entries of that matrix (this follows from Theorem 1.4.2), then the eigenvalues of
A(t) are continuous functions of ¢, t € [0,1].Thus each ay,¢ € {1,...,n}, is joined
to an eigenvalue of A, denoted by A; = A;(1), by a continuous curve in the complex
plane consistin‘g of eigenvalues of A(t). Denote such a curve by {X;(¢): 0 <t < 1}.
Now we prove A; € G, for all ¢ € {Ny,...,N,}. If there were k € {Ny,...,N,}
such that Ay & ., then from the first part‘ Ar is in one of the Gersgorin discs
{z€C:| z—a;|< pi} where 7 € {1,...,n} \ {Ny,...,N;}. Now the intermediate
value theorem can be applied to the continuous curve {A(t) : 0 < ¢ < 1} defined
on the connected set [0,1] to deduce that there is a ¢ € (0, 1] such that A(t) ¢

r{z e C: z-au |< pi}, w’hic.h is impossible. Thus g, contains at least r
eigenvalues of A. Similarly the intell‘mediate value theorem can be used to prove
that A\; € G, for all + € {1,...,n} \ {Ny,...,N,}. Hence §, contains precisely r
eigenvalues of A (counting their mﬁltiplicities since we may have Ai(1) = A;(1) for

t,j € {N1,...,N,} and ¢ # j).



Chapter 2

Gersgorin Theory for Diagonally Dominant

Infinite Matrices with Bounded Perturbations

In this chapter we extend Gersgorin theory applied to the set of all finite square
_matrices (see Theorem 1.4.3) to a set of diagonally dominant infinite matrices with
bounded perturbations.

Let A = (ai;) be a matrix operator defined in £,, 1 < p < oo.

A is called row diagonally dominant if for all ¢ G N,

o0
laa |> > |ay |

where 392, | ai; | denotes (52, | ai; |)— | @i |.

A is called colmun diagonally dominant if for all j € X, _
oo !
lasi 1> lay |
=1

where 382, | ai; | denotes (X2, | aij [)— | aii |-

2.1 Notations and Preliminary Results

For a given matrix operator A = (ay;) in £,, 1 < p < oo, and z € D(A), the sth
" component of the vector Az is denoted by (Az);. We define the row and column

sums of A : ‘
' oo !

Po=3 lal, Q=3 |a] (2.1.1)

=1 =1

20
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and the corresponding Gersgorin discs (where they exist):
Ri={zeC:z—a; <P}, Ci={z€(C:|z—ay|< Qi} (2.1.2)

. The following lemma gives the relation between the norm of a bounded matrix
operator written in a block matrix form and the norms of its submatrices.
LEMMA 2.1.1 Let F be a matrix operator in £,, 1 < p < co, and suppose that

F is written in the block matrix form :

.F= s F12
Fyy Fo

where Fyj is the (n X n) leading submatrix of F.
Then F € L(¢,) if and only if Fy; € L(£,,C"), Fyy € L(C",¢,) and Fyy € L(,).
Moreover if F is ‘bounded, then
EIEDWEANEEEY
for all 2,7 = 1, 2.
Proof. Suppose Fi; € L(£,,C"), F3 € L(C™,4,) and Fy, € L(£,). Let z €
T1

¢,. Writing z = , where z; € C", we find from the assumption that
1)

. Fiizy + Frazy
Fiuzy + Fiazg € C™ and Fy 4 + Fagze € £,. Since Fz = then
Fo1zy + Fapz,

Fz € £,. Thus D(F) = {,. Hence F can be written in the form:

Fu O 0 o O Fy o o0 |
F= + + + (2.1.3)
0 O Fy O 0 o O F

where each block matrix in the right hand side of equation (2.1.3) has domain

£,.(We did not distinguish between the zero operators written above though they

~ r
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do not have necessarily the same domains or ranges.) From the assumption and
equation (2.1.3) , it follows that F' € L(£,) and || F || < || Fuy ||+ Fiy |+ For ||+
| Faz |-

Now suppose F € L(£,).The submatrices of F' can be written as :

Fll F12 In n

Py = ( L Onxoo ) _ g (2.1.4)
F21 F22 Oooxn
Fy;, Fy Luxn

Fy = (gooxn Loves > ) (2.1.5)

Fy Fy Ocoxn

Fy Fy 0rx
Fiz = <Inxn Opxcoo * (2.1.6)
F21 F22 Iooxoo

Fy, Fp Orxoo
Comm ture ) e
F21 F22 Iooxoo

F22

i

The indices under the submatrices of the block matrices to the right and to the
left of F' in each equation of the above four equations indicate the size of these
submatrices. For example, O,y is the zero matrix operator from ¢, into C™.
Sincg in each equation of the above four‘equations the block matrices to the right
and to the left of F' are bounded (the norm of each one is equal to one), then
the boundedness of F' implies the boundedness of each submatrix Fj; and that
| Fij || <\ FIl, ¢,5 =1,2. This completes the proof of the lemma. [J

DEFINITION 2.1.2 The Kronecker delta §;; is defined by:

1 ifj=1
bij =
0 otherwise.

The following theorem will be used in the proof of Theorem 2.4.1.
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THEOREM 2.1.3 Let A = (a;;) be a matrix operator in 4,, 1 < p < 00, D =
diag(a11, azs,...) and assume that
(1) e #0foralli € N and | a; |[— o0 as 1 — oo.

(2) For every 1 € N there exists o; € [0,1) such that

oo ! _
Pi=) |aj|= o as |.
i=1 '

(3) The matrix operator F = ((1 — 6;)ay;) is in L(4,).
~(4) Either the matrix operator I + FD™* has a bounded inverse on £, or the
matrix operator I + D~!F has a bounded inverse on Z,.

Then if A4 is written in the block matrix form:

A Al |
A= (2.1.8)
AP a4 |
where A( ") is the leading n X n submatrix of A4, Ag'{) has a bounded inverse for
every n € N, and there exists M > 0 such that || (4{7)~! |I< M forallm e N
(that is, (4{P)~! is uniformly bounded in n).

‘Proof. We consider the case (I + D™'F)~! € L(£,). The other case (see
hypothesis (4)) has no new features. Suppose 4 is written in the matrix form given
in equation (2.1.8). From Gersgorin’s theorem for finite matrices (Theorem 1.4.3),
the eigenvalues of A{? lie in the Gersgorin dises {z € C:[ 2z —a [ T7,' | aij |},
1 =1,...,n. Since each one of these discs does not contain the origin (this follows
from hypothesis(2)), then 0 is not an eigenvalue of A( "), But since every point of

the spectrum of a finite matrix is an eigenvalue of this matrix, then 0 is a regular

point of A{Y. ‘Thus (Ag'{))’l exists. For every n € N, write AP = D{® + ")
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where D&';) = diag(ai1,. - - ,@nn). For every n € N let

( n) |

be a matrix operator in £,. Then by writing F in the block matrix form

( (n)

we get:
ppo | PREY (D) FY
0 0
Therefore,
In+ D(n) lF(") D(n) —lF(n)
I+ EF= (DY) ' Fyy’ (Diy) ™ Fy, , (2.1.9)

0 I

where I, denotes the n x n identity matrix.

Now I + E,F = I+ D™'F — (D! — E,)F, or by hypothesis(4),

I+E.,F=[I-(D'~E)F(I+DF)'|(I+D'F). (2.1.10)

0
Since D! — E, = It where D;' = diag(an}y n41s Gntsnezy---), and
0 D

| @yt |— 0 as n — oo (see hypothesis(1)), then D"1—E, € L(¢,) and || D*~E, ||=

max{| a;' |: 4 > n+ 1}. Choose n; € N such that for all n > n; ,
| o [< @+ | F )72 T+ D7HF)™ )72 ©(2.1.11)

From equation (2.1.10) and inequality (2.1.11), it follows that

I F |

D'—E, || F I+D'F) ! |« 2
u I <
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foralln > ny. Thusfrom Theorem 1.1.1, the operator I—(D™'—E,)F(I + D' F)™*
has a bounded inverse on ¢, and

L |
1= [ D=t = E | F ||l (I+ D1F)-1 |
< +H[F

| (- (D™ = E)F(I+D'F)™h1

IA

_forall n > n;. Hence I + E F Ha.s a bounded inverse on £, and
I+ EF) S+ FIDIT+DRA) (2.1.12)

for all n > n;. From equation (2.1.9), we have:

(I +E.F)~! et (D) BT) Y
0 I

where Y = —(D{M)-1FI(I, + (D)L F? )) - (notice that for all n € N, I, +
(D7) "' F{™ has an inverse on C", since A( M = DIV(I,+ (D)1 F) and (A1)
exists). Hence from Lemma 2.1.1 and inequality (2.1.12), we have

| Gt OED) T I @+ I FD I E+D7AT ) (2.119)
for all n > n;. Thus from AR = pi(r1, + (D{)” F(")), n € N and inequality
(2.1.13), it follows that

n -1 ) - -1 -
I ARD) < @+ I F I (2 + D7 F) || D7)

for all n > n;. Nov(r the proof is completed by taking

M = max{(1+ || F ) || (I+l_7"1F) |||| D7 ||, max{]| (AD) " [:1 <4 < m-1}}.

D B
REMARK 2.1.4 If hypothesis (2) in Theorem 2.1.3 i$ replaced by column diag-

onal dbminance, the same result follows.
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2.2 Generalized Convergence

A sequence of closed operators {T,,} in a Banach space X is said to converge to
the operator T' € C(X) in the generalized sense if §(T,,T) — 0 as n — oo (see
Definition 1.3.1 for the definition of the gap between two closed operators). In
this case we write T, > T. Some of the prbperties that connect the convergence
in the generalized sense with bounded operators and their norms are listed in the
following theorem.

THEOREM 2.2.1 (See Theore'm 2.23, page 206 of [15].) Let T,T, € C(X),n =
1,2,...

(1) If T~ exists and is in £(X) , then T, = T if and only if T! exists and is
in L(X) for sufficiently largé nand || T;' =T |- 0asn — oo.

(2 UT,HTandif Fe L(X),then T, +F ST+ F..

Proof. (1) Suppose T™! exists and is in L(X). Assume that the sequence
{T.} converges to T in the generalized sense. Then there exists n; € N such that
5(Ta,T) < (14 T2 ||*)~V/2 for all n > n;. Hence from Theorem 1.3.2 part(5), it
follows that T;;! exists and is in £{X) for all n > n,. To prove | T,;' =T~ || =0
as n — oo we first notice from Theorem 1.3.2 part(4) that §(T},,T) = §(T;1,T1) <
A+ || T )"V for all n > n1 Hence from Theorem 1.3.2 part(1), we have for
@11 n>ng: | |

L+ T %) 8(T 7Y
1= (1 + || T P2 8T, T8

But since 6(T,,T) = 6(T;',T"!) (by Theorem 1.3.2 part(4)) and 6(T,,T) <.

|7 -7 < (2.2.1)

6(T,,T), then the right hand side of inequality (2.2.1) converges to zero as n — oo

and this proves the “if” pért of (1). To prove the “only if” part assume that there
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exists n; € N such that for all n > ny, T,7! exists and is in £(X) and suppose
| TP =T7'|| = 0asn—co. WritingT;'!=T"1+4 (T7' = T"), n > n,, we find

from Theorem 1.3.2 part(2) that
$(7, T = B 4 (T - 17, T < T - T

But since || 7,71 —T~! |- 0 as n — oo, then from Theorem 1.3.2 part(4) it follows
that §(T,T) — 0 as n — co. This completes the proof of part(1).

{(2) Let Tv 2 T and F € L(¢,). Then from Theorem 1.3.2 part(3) we have:
§(Tn + F, T+ F) < 2(1+ || F |")é(Ty, T).

Now the result follows since 2(1 + || F ||*)8(T%,T) — 0 as n — co. O

2.3 The Dual of a Matrix Operator

In Section 1.1 we have defined the dualrof an operator with dense domain (see
Definition 1.1.7). In this section we show that for a matrix operat;>r Tiné,1<
p < 00, with domain containing the unit coordinate vectors ey, ez, ..., the dual T"
in £, and the transpose T* in £,, where 1/p+1/¢ = 1, have the same eigenvalues.
First we need the following theorem.
THEOREM 2.3.1 Given f € £,, 1 < p < oo, there exists a unique n = (n1,7,,...) €

4, 1/p+1/q=1, (g = co when p = 1), such that for all ¢ = (¢1,¢,...) € £,

co

f¢) = 2 G- (2.3.1)

Moreover, || f ||=|| n || and n = (f(e1), f(ez2),-..) (the ith component of e; is one

and all of its other components are zeros, for every 7 € N).
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Conversly, given (11,72,...) € £, equation(2.3.1) defines an f € £,
See Theorem 5.2, page 143 of [28] for the proof.

REMARK 2.3.2 For every f € £, 1 < p < o0, set

I(f) = (F(ea), f(ea)s - )
Then from Theorem 2.3.1', it is clear that J is a linear operator on ¢, mapping ¢,
onto £y, 1/p+1/g =1, and || J(f) ||=| f || for all f € £,.

THEOREM 2.3.3 Let T = (t;;) be a matrix opera,for in £,,1 < p < oo, with
domain D(T') containing the unit coordinate.z vectors ey, ez,.... Then T exists and
for every y' € £, y' € D(T") if and only if J(y') =y € D(T*) ( T* is an operator |
in £, ). In this case we have

J(T'Y) = T™y.

Proof. Since e; € D(T') for all £ € N and span{ej,es,...} is dense in £,, then
D(T) is dense in £,. Thus by Theorem 1.1.6, T" exists.

Let y' € D(T") and z = (21,22,...) € D(T). Define for all n € N, z(’.‘) =

(215.+.52n,0,0,...). Since.z(") € span{ey,...,e,} , then 2(™ € D(T) and
(T'y") (z™) = o/ (T2™). (2.3.2)
If J(¢') =y = (y1,¥2,...) then from equation (2.3.2) and Theorem 2.3.1, we have

(T'y') (2" = o (T2 = Zy, z_:t,]z:, z_j Z:twy, (2.3.3)

Since T'y' is a continuous linear funct1ona1 on £, (that is, if u, — v as n = oo
in £, then (T"y")un — (T"y')u as n — oo ) and 2" — z as n — oo, then from

equation (2.3.3), we have:

(T'Y)(2) = hm (T'y") (") Zz, Zt,,y, (2.3.4)
. ]:1 t=1
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From Theorem 2.3.1, J(T'y') = ((T'Y')(e1), (T'y')(€2)...) € £;. But from equa-

tion(2.3.4), for all £ € N we have:
(T'y')(ex) = ) tirvs.
i=1

Hence J(T'Y') = (T2, ti1¥i, 1osoy tiz¥i,...) € £. This proves that J(y') = y €
D(T*) and J(T'y') = T*y. | 7

Now let y = (y1,¥2,...) € D(T*). | To complete the proof of the theorem, we
should prove y' = J~'(y) € D(T"). Let z' = J™}(T*y). Then z' € £,. For all

z = (21,2s,...) € D(T), define the linear functional

v (2) = iy (T2);.

Then from Cauchy-Schwartz inequality, it follows that for all z = (21,2,,...) €
D(T) and n € N we have:

oo - 1/p

| 9r(2) = 9 (=) IS Ny I, (21 (T2) = (T): 7y (2.3.5)

t=1
where 2(" = (2y,...,2,,0,0,...). Let Ty, m € N, be the matrix operator in £,
whose first m rows coincide with the first m rows of T and all other elements of

T,. are zeros. We have:
| Tz— T2 ||, < || T2 = Tz ||, + | Tm(z = 2) ||, + || (T = T2 | .

By choosing 7 and n large enough, the right hand side of the above inequality can

be arbitrary small and hence from inequality (2.3.5) it follows that

lim y}(z(”)) = yp(2).

n—oo
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Now for all z = (21, 2,,...) € D(T), we have:

[e] n ’ :

= z(T"y); = Z thyz = lim y7(z™) = yz(2).

i=1 j=1 =1
This proves that ¢’ € D(T") and ' = T'y'. This completes the proof of the theorem.
O .

Now vlre show that with the hypotheses of Theorem 2.3.3, the dual 7' of an
operator T and its transpose T have the same eigenvalues.

COROLLARY 2.3.4 ‘Let T be a matrix operator in £,, 1 < p < oo, with domain
D(T) containing the unit vectors e;, ez,.... Then T" and T* (as a matrix operator
inf, 1/p+1/qg=1) ‘have the same eigenvalues.

Proof. Let A € C be an eigenvalue of T". Hence there exists a nonzero element
y' in £, such that T'y' = Ay'. Let J(y') = y. We have y # 0 since 3’ £ 0 and J is
one-to-one (this follows from || J(f) ||=|| f || for all f € £). From Theorem 2.3.3,
y € D(T%) and J(T'y') = T*y. But since J(T'y') = J(Ay') = AJ(¥') = Ay and J
is one-to one, then T"y = Ay and this proves that X is an eigen\;alue of T*.

Similaﬂy it can be proved using the inverse J=! of J (J is invertible since it
is one-to-one linear operator mapping £, onto £,) that if A is an eigenvalue of T,

then A is an eigenvalue of 7. O

2.4 The Main Theorem

In this section we extend Gersgorin theory (see Theorem 1.4.3) to row diagonally
dominant infinite matrices with bounded perturbations.

First we need the following lemma.
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LEMMA 2.4.1 Let A = (a;;) be a matrix operator in £,, 1 < p < oo such that
a;; # 0 for all 7 € N, and let D = diag(a11, as,...).
(1) If the domain of the matrix operator F = ((1 — &;;)a;;) contains the domain
of A, then A can be writte.n in the form: A = (I+F1)D, where F; = ((1— bij)az; ai;).
(2) If | ai; |> 1 for all but a finite number of indices 7, then A can be written in
the form: A = D(I + F3), where F; = ((1 - §; )a Lagg).
Proof. (1) Suppose D(F) D D(A). Let z € D(A). Then z € D(F). Since
ai;z; = (Az); — (Fz);, where z; is the ith component of z, then for p < oo,
‘ ) . ) :
(Zlamlpl/p<z (Az); [P)/P + Z (Fz); P)Y? < oo
i=1 i=1 =

and for p = o0, ¢t € N we have:
| sz |< sup{| (Az); |: j € N} +sup{| (Fz); |: 5 € N} < co.

This proves that z € D(D). Also we have:

Ms

(I+F) (D)) = (6 + (1 - bj)aj; aij)aysz;

o,
1
o

@i T;

I
Ms

1
AIB),’.

fl

Hence z € D((I + F1)D) and
Az = (I + F,)Dx. (2.4.1)

Conversly, if z € D((I + F1)D) then ((I + F1)(Dz)); = T2, ai;z; = (Az); and
hence z € D(A). This proves D(A4) = D((I + F1)D) and from equation (2.4.1), the

result follows.



32

(2) Suppose | ai; |> 1 for all but a finite number of indices 7. If z € D(D(I+F)),

then ((I + F3)z)i = z:4+ 2, a5 ai;z;, and so (D(I + Fy)z); = ayz: + Y e =
(Az);. This proves z € D(A) and

D(I + F)z = Axz. (2.4.2)

On the other hand, if = € D(4) then (Az); = 2, aijz; = ay Z?’;l agla;z; =
aii (I + F3)x)i. So ((I + F2)z); = ;%(Am),-, and since | a; IZ 1 for all ¢ > ng for
some no € N, then z € D(I+ F;). Now (D(I + Fy)z); = aii((I+ F)z); = (Az); and
this proves z € D(D(I+ F;)). Hence D(A) = D(D(I+F3) and from equation(2.4.2),
the result follows. O

Now we state and prove the main theorem.

THEOREM 2.4.2 Let A = (ay;) be a matrix operator in £,, 1 < p < oo, and
assume that

(1) ais #0 for allz € N and | a;; |— o0 as 1 — oo.

- (2) There exists a o € [0,1) such that for all : € N:
‘ 0!
Pi=)_ |ay|=0i]aal, o; €0,0].
i=1

(3) Either the matrix operator I + Fy, where Fi = ((1 — §;)a;}a;;), has a
bounded inverse on £, and the domain of the.matrix operator F = ((1 — §;)a;;)
contains the domain of 'A, or the matrix operator I+ F, where F; = ((1-6;;)a;'ay;),
has a bounded inverse on £,. |

Then A is a closed operator with a compact inverse and any point of the spec-

trum o(A) of A is an isolated eigenvalue of A that lies in the set UL, Ri.

Furthermore, if F = ((1—6;;)as;) € £(£,) then any set of r Gersgorin discs whose
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union is disjoint from all other discs intersects o(A) in a finite set of eigenvalues of
A with total algebraic multiplicity equal to r.

Proof. Let D = diag(ai1,as2,...). Wé consider the case (I + F;)7' € L(¢,).
(From hypothesis (1), there is ng € N such that | @nn |> 1 for all n > ny. Hence
from Lemma 2.4.1, A = D(I + F3).) The other case (see hypothesis (3)) has no
new features (the additional condition D(F) D D(A) is only made to ensure that
A= (I+ F)D, set;, Lemma 2.4.1). The theorem will be established in five steps.
The proof of step[3] can be found in Theorem 1 of [26].

Step [1] A is a closed operator with a compact inverse.

The ope;rat'ors E, = diag(at];...,a;1,0,0,...), n € N, are compact on ¢,, since
dim R(E,) < oo for alln € N (see Remark 1.1.4). But since limy.oo || D1 —E,, ||=
0, then from Theorem 1.1.3, D! is compact on £,. But since A = D(I + F,), then
from hypothesis (3) and Theorem 1.1.2, it follows that A™* = (I + F;)~1 D! exists
and is compact on £,. As A™! is closed (D(A™?) is the whole space £,), so is A.

Step (2] If A € o(A) then X is an isolated eigenvalue of A.

Since A™* € L(¢;) (see step [1]), then 0 € p(4). Thus if A is in ¢(A4) then
A # 0 and, from Theorem 1.2.6 part(b), we have A™* € o(47!). Then %rom
the compactness of A™! and Theorem 1.2.4, A~! is an eigenvalue of A~1. Thus
from Theorem 1.2.6 pfa,rt(a), Ais an eigénva,lue of A. If XA were not isolated then
there would be a sequence of distinct eigenvalues of A~ converging to the nonzero
eigenvalue A~! of A~! which is impossible by the compactness of A™L.

Step [3] If A is an eigenvalue of A4; then A € U, R; (the union of the discs
defined by the row sums of A).

As A is an eigenvalue of A, there is a nonzero vector z € ¢, such that Az = Az.
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Writing z = (24, 22, ...), we have Y721 @ij = Azy, for all 7 € N. This implies that,

forallze N,
A o !

| A —aa ||z |< D |aij || =5 ] (2.4.3)

j=1

~ Now consider the cases p < co and p = oo separately.
Case (i) If p < oo, let N be an integer for which | zy |= max{| z; |: i € N}.

We have zy # 0, since z # 0. Setting ¢ = N in inequality (2.4.3) we get:

oo ! ' oo !
| A—anw [lan (S D2 laws |l =i |<| zn | (X | aw;s |)
. =1 i=1
and hence
oo !
| A—ann <3 | anj |= Pr.
i=t

Thus A € Ry and so A € U2, R;.

Case (ii) If p = oo, for any € > 0, define
Ri(e) ={z€C:|z~ay |< B(1+¢)}.

We first prove that A € Ui2; Ri(e€). Let ¢ € (0,1). Then there exists an m = m(e) €

N, depending on ¢, such that

|z |> |2 (1 - 5)-

Thus from inequality (2.4.3), with 7 = m, we get:

P | zp |
A= G || T |< 2 -
| " (1-%)

and hence | A — @y |< Pn(l +€). Thus X € Rn(€) and so A € Ui21 Ri(e) for

€ € (0,1), and hence for all € > 0.
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" Now let o # 0 be the constant of hypothesis (2), and let 6 € (0, (1 — o) Jo).
Then (1 +6) < 1,and if z € Rx(6), ~ |

[z |>l Ak | —Pk(l +5) ZI arr I (1 —0’(1 +5)).

But the right hand side diverges to infinity as k — co. It follows that each disc of
{R:(6)} has nonempty intersection with only finitely many discs of the sequence.
That is, there is a finite nonempty subset of positive integers, say Iy, such that
A € R;(8) if and only if ¢ € Iy. (For future reference, we note that this step of the
argument holds for all p,1 < p < c0.) Hence for any € € (0,6), A € Usez, Ri(€) and
in the limit as € — 0, we obtain A € U,‘e'jo RiCcU2; R
This establishes the first part of the theorem. Now suppose F' € L(£,).
Step [4] There exists a sequence of compact operators converging in norm to
AL -
Write
i Agflt) A(n)
A(n) Ag'zl)
where A(l'{) is the n X n leading submatrix of A. Let D, be the diagonal of A( )
and define |
A, = Al o (2.4.4)
A(n) D,
for all n € N. Let R{™ and P be the Gersgorin discs and radii of A{D, i =
1,...,n. From Theorem 2.1.3, Ag'{) is invertible for each n € N. Hence 4, is
invertible for each n G‘N . Hence A, is invertible for every n € N and

Al =
~-D; A""(A‘{{’)‘1 D;?
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Inxn

Since A} is the submatrix ( Ocoxn  Tooxes > F of F and F € L(¢,),

Oooxn

then from Lemma 2.1.1 it follows that A{Y € £(C",¢,) and | A |I<|| F || for
all n € N. Hence every submatrix of A;! is bounded and, from Lemma 2.1.1, it

follows that A;! € £(£,). Now we have:

ATV ATY = ATYA, - A) AT

_ |0 A (A{P)-! 0
0 Sm )\ —D'AR(4f)7 Dy

where Sp, = D, — A%, S, is bounded in £, and || Spp ||<|| F || for all n € N,

since it is the restriction of the submatrix

OnXOO

IOOXOO

of F (see Lemma 2.1.1) to the subspace D(4) and F € L(¢,), || FY I<Il F |
(see Lemma 2.1.1). Also A e L(¢,,C") and || AP |I<|| F || for all n € N since it

is the submatrix

. Onxoo
( Inxn OﬂXOO ) F

IOOXOO

of the bounded operator F € L(£,) (see Lemma 2.1.1). We obtain

A(n)D lA("-)(A(")) _A:(lfz'»)D;l
A =AM < 470 | . |
~Sun DA (A S5,,D;
But since (A( =1 is uniformly bounded in n (Theorem 213)and | D' ||— O

as n — oo, then each of the matrices in the block matrix operator in the right
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hand side of the above inequality converges to zero in norm as n — oo. Since
At € L(&), it follows that'A;' — A7 -as n — oco. To complete the proof
of this step it remains to show that A;! is compact for every n € N. Since
dim R ((AP)~1) < oo then (A{Y)~! is conipact (see Remark 1.1.4), and from The-

orem 1.1.2, D72 A{Y (A{)-1 is compact. The sequence

{dia’g(a’r:-illl,n+1’ cre ’a’r:-:.-m,n\+m’ 0’ 0’ n ‘)}z=1

is a sequence of compact operators, since the range of every operator in the se-
quence is of finite dimension. Hence from Theorem 1.1.3, D;! is compact since
diag(antipnprs--- ,a;}_mm_m,0,0,..r.) converges to D! in norm as m — co. Thus
every matrix in the block matrix operator A;! is compact. Let K; = (A{Y)-1,

K, = —D;lAgr{)(Ag'{))'l and K3 = D;!, and suppose {z(™} is a sequence of

- bounded vectors in £,. Write

(m)
- T
z(™) '

:z:gm)

where :v(lm) is a vector in C" for all m € N. We have

(m)
A—-lx(m) = lel

szgm) + stgm)

From the compactness of Kj, there is a subsequence {m'} of {m} such that
{Kl:z:gm')}-‘converges. From the compactness of K, there is a subsequence {m"}
- of {m'} such that {szgm")} converges. Finally from the compactness of K3 there
a subsquence {m"} of {m"} such that {Ksz{™ '} converges. It is clear that the

sequence {A;1z(™")} converges and this proves the compactness of A7l
n n



Step [5] Let § = Ui_; Rk, k1 < -+ < ky, be disjoint from the other Gersgorin
discs. Then the spectrum of A in § is a ﬁn’ite set of eigenvalues of A with total
algebraic multiplicity equal to .

From step (3], there exists a § > 0 such that each disc in the sequence {R;(6)}
has a nonempty intersection with only finitely many discs of the sequence. Hence
a Jordan closed curve I' can be drawn so that S = U]_; Ry, is a proper subset of U,
where U is the interior of the set bounded by T', and UN R; = 0 (= the empty set)
if 7 & {k1,...,k} (U denotes the closure of U ). Let R{™ be the Gersgorin discs of
Ay for all 2,n € N, where A, are given by equation (2.4.4). Since RE") C R; , then
the set R(" = U, RL?) is a proper subset of & and ¥ R;-") =0if5 & {ks,..., k. }.
If m is an integer in [k,, c0), then the Gersgorin theorem for finite matrices applied
to A( ) 1mpl1es that the eigenvalues of A Vin T lie in R(™ = =1 Rg") and their

total algebra.lc multiplicity is equal to r. Hence dim R(P(T, Ag’{‘) )) = r, where

'P(T, AM) = 2\/_/ A — o) de (2.4.5)

and I, is the m x m identity matrix operator. Since the eigenvalues of A,, are
the eigenvalues of A( m) together with a;, ¢+ > m + 1, and from the compactness of
A7l every point in the spectrﬁm of A, is an eigenvalue of A,,, then I' consists of

regular points of A,,. Similarly I’ consists of regular points of ffm, where

) AM o
A, =
0 D,

Since 0(Dy,) NU = @, then for every z € 4, it is clear that (D, — ¢I)~'z is differ-

entiable in ¢ on U and continuous in ¢ on I'. Then from Theorem 19.2 of [1], we
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have
Aﬂ%—@ﬂdz@=o. (2.4.6)
From the inequality

_ A =1 - _ - A =1
FA™ = An i< a7 = AT+ 1A - 4. ||

and step [4], it follows that

lim || A — 4, = 0.

n—oo

Thus from Theorem 2.2.1 part (1), A, % A. Hence from Theorem 1.3.4, there

exists a positive integer mg > k. such.that for all m > my,
dim R(P(T, A)) = dim R(P(T, 4,,)), (2.4.7)

where

P, A) ZJ_/RQ

and

P(T, A) =

2\/_/1%;,

. z(1)
But since for all z = € ¢,, where z e cm,
2(2)

[ (4lm) -1 (1)
. -1 Ay —¢l 0 z
P, A.)z (411 ) \

d¢
0 (D — ¢I)™ z(?)

|
foad
—

(A7 =07 |
= ' $s
2w/ -1 rK (Dm—gf)'lx(z)
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hence from equation (2.4.6) it follows that for all m > k,,
dim R(P(T, Aw)) = dim R(P(T, A{M)). (2.4.8)
Therefore from equations (2.4.7) and (2.4.8), we have
dimR(P(I‘,A)) = dim R(P(T, A™)) = r

for all m > mg. So the spectrum éf A in U is a finite set of eigenvalues of A with
total algebraic multiplicity equal to r. Now the result follows since every eigenvalue
of AinlUisin §. O

REMARK 2.4.3 It is clear that we have used hypotheses (1) and (2) only in the
proof of step 3] of Theorem 2.4.2 .

REMARK 2.4.4 At p = 0o , hypotheses (1) and (2) of Theorem 2.4.2 imply
hypothesis (3). In this case the matrix operator F; is bounded on £o, and || F; ||< 1,
and so I+ F has a bounded inverse on £, (see Theorem 1.1.1). The boundedness of
F, follows from the fact that a matrix operator T = (t;;) defined in £, is bounded
on £ if and only if ‘

M=sup{d_ |ty |: 1€ N} < co.

i=1

In this case M = || T ||, (see-[8]).

REMARK 2.4.5 From step (5], it is clear that for a matrix operator A satisfying
all the hypotheses of Theorem 2.4.2, if r Gersgorin discs of A are disjoint from the
remaining Gersgorin discs then the spectrum of A is nonempty.

When all the Gersgorin discs are disjoint we obtain:

COROLLARY 2.4.6 Let A = (a;;) be a matrix operafbr in £,, 1 < p < oo, and

" assume that
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(1) @i #0 for all 7 € N and | ai; |— 0o as ¢ — oo.

(2) There exists a 0 € [0,1) such that for alli € N :

oo !
Pi=) |ajl=0ila:l, o € [0,0].

j=1

(3) The matrix ol;erator F = ((1 - é;)a:;;) € L(¢,) and either (I + FD™1)7!
exists with (I+FD™1)~t € L(£,) or (I+D~1F)~! exists with (I+D~'F)~! € L(¢£,).

(4) | aii — axk |> P,-‘+ P forallt,k € N, 1 # k.

Then the spectrum o(A) of the closed operator A is nonempty and consists of
a countable set of eigenvalues {)\;}. For every : € N , X\; € R; and J; is a simple
eigenvalue of A. Moreover if A is real (that is, a;; are real numbers for all 7,5 € N),
so are the A;.

Proof. It is clear that, with the exception of the last statement, all the conclu-
sions of the corollary folldw from Theorem 2.4.2. This follows from the fact that,
if A is real then any eigenvélues arise in conjugate pairs, or they are real. Since
the discs are symmetric with respect to the real line and each contaiqs precisely

one eigenvalue, conjugate pairs can not arise. O

2.5 The Dual Theorem

In this section, we consider the case of column diagonally dominant infinite matrices
with bounded perturbationé, and develop Gersgorin theory for such matrices.

If p > 1 in Theorem 2.4.2, then the following theorem can be considered as
a dual of Theorem 2.4.2 where the row diagonal dominance (hypothesis (2)) is
repiacéd by column diagonal dominance. Recall the definitions of equationsr (2.1.1)

and (2.1.2). (There is a corresponding dual statement for Corollary 2.4.6.)"
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THEOREM 2.5.1 Let A = (ai;) be a matrix operator in £,, 1 < p < oo, and
assume that

(1) aj; #Oforall j € N, | aj; |— oo as j — co.

(2) There exists a o € [0, 1) such that

.y
Q; = Z; | aij |= 05 | aj; |, o; €0, 0].
= :

(3) Either the matrix operator I + Fy, where F; = ((1 — 5,-,-)aj‘jla,-,-), has a
bounded inverse on £, and the domain of the matrix operator F = ((1 — é;;)a;;)
contains the domain of A, or the matrix operator I+ Fy, where Fy = ((1—6;;)az;'ay;),
has a bounded inverse on £,.

Then A is a closed operator with a compact inverse and any point in the
spectrum o(A) of A is an isolated eigenvalue of A that lies in the set U2, C;.

Furthermore, if F = ((1—6;;)a:;) € L(£,) then any set of r Gersgorin discs whose
union is disjoint from all other discs intersects o(A) in a finite set of eigenvalues of
A with total algebraic multiplicity equal to r.

The proof of Theorem 2.5.1 is the sa:me as that of Theorem 2.4.2, except in
step [3], so we confine our discussion to that step. Namely:

If A is an eigenvalue of A then A € U2, C; (the union of the discs defined by
the colmun sums of A).

Since @; < oo for all j € N, then the unit coordinate vectors e; € D(A) for all
J € N. So D(A) is dense in £, (as p < co0) and using Theorem 1.1.6, it follows that
_ the dual 4’ of A exists. As in step [1] of Theorem 2.4.2, A™! is compact on £,.
The boundedness of A‘l_ implies A # 0 and, from Theorem 1.2.6 part (a); A™! is an

eigenvalue of A~1. Now we may use Theorem 1.2.5 to deduce from the compactness |
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of A7! that A1 is an eigenvalue of (A7) ((A™Y) exists since D(A™1) = £,). But
since R(4) = D(A™') = £, and D(A) is dense in £,, then from Theorem 1.1.8,
(A)™! exists and (A = (A'i)'. Hence A~! is an eigenvalue of (4')”" . So from
Theorem 1.2.6 part(a), it follows that X is an eigenvalue of A’. Thus fro.m Corollary
2.3.4, A is an eigenvalue of the transpose A*™ of A, where A™ is an operator ‘in £y,
ste=1

It is easily seen that A" satisfies hypotheses (1) and (2) of Theorem 2.4.2 on
¢,. Using the same proof given in step [3] of Theorem 2.4.2 one can prove that A
belongs to the Gersgorin discs defined by the rows of A* and the result follows.
(As mentioned in Remark 2.4.3, we used hypotheses (1) and (2) only of Theorem
2.4.2 in proving step [3] of that theorem.) [J

A similar result on £, to that given in Theorem 2.5.1 is iﬁtroduced in the
following.theorem.

THEOREM 2.5.2 Let A = (a;;) be a matrix operator in £, and assume that

(1) aj; #0for all j € N and | a;; |— oo as j — oo.

(2) There exists a o € [0,1) such that for all y € N:

oo !
Q; = ZE | i |= 0 | aj; |, 0 €[0,0].
i=

(3) Either the matrix operator I + Fi, where Fy = ((1 — §;)a;} ay;), has a

bounded inverse on £, and the domain of the matrix operator F = ((1 — 6;;)a;;)

contains the domain of A, or the matrix operator I+F,, where Fy = ((1—6;;)a;*

iy ),7
has a bounded inverse on 4.
(4) Every row of F is in .

Then A is a closed operator with a compact inverse and every point of the
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spectrum ¢(A) of A is an isolated eigenvalue of A that lies in the set U, C;.

Furthermore, if F = ((1 — §;)ai;) € L(£) then any set of r Gersgorin discs
whose union is disjoint from the other Gersgorin discs intersects ¢(A) in a finite
set of eigenvalues of A with total algebraic multiplicity equal to r.

The proof of Theorem 2.5.2 is the same as that of Theorem 2.4.2, except in
step [3], so we confine our discussion to that step. Namely:

If Ais an eigenvalue of A then A € U2, C;.

Let § = A" acting in 4;. From hypothesis (4), every column of S is in ¢; and
so e; € D(S) for all : € N. Thus D(S) is dense in £;, and from Theorem 1.1.6 the
dual S’ of S exists. Now since A7 € L(4o) tHen from Theorem 2.3.1, (S')~! exists

and is in £(¢}) ; in fact for all y' € £,
(87 = I HATH(I(¥))),

where J is the bijective map defined in Remark 2.3.2. Hence from Lemma 1; page
1224 of [34], R(S) is dense in £;. Btit since S~! exists (this follows from Theorem
2, page 225 of [34]), then from Theorem 1.1.8 we have (S7!)’ = (§')~!. Also
from Theorem 2.3.1, the compactness of A™! implies the compactness of (S')~! ( if
{v.}o>, is a bounded sequence of points in £; then {J(y,)},2, is a bounded sequence
of points in £, and so there exists a subsequence {y,, }}- of {y,},; and a vector

Yo € £oo such that A~ (J(y,,)) — yo as k — oco. Thus J7H(A™H(J (v}, ))) — J (%)
as k — oo. Hence (S')7! is also compact ). Then from (S~!)' = (S')7F, we have
(.S' ~1}" is compact onrﬁ'l. Thus from Schauder’s Theorem, page 282 of [34], it follows
that S~! is compact.

Now let A be an eigenvalue of A. Then from Corollary 2.3.4, X is an eigem}alue
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of S'. But since (S')™' € L(£;) then A # 0, and from Theorem 1.2.6 part (a), A™!
is an eigenvalue of (S')~! = (S~!). Now we may use Theorem 1.2.5 to deduce
from the compactness of S~ and the fact that A~* is an eigenvalue of (S~1)' that
A7lis an eigenvalue of S~ So from Theorem 1.2.6 part (a), it follows that A is
an eigenvalue of S = A¥. It is easily seen that A' satisfies hypotheses (1) and (2)
of Theorem 2.4.2 on ¢;. Using the same proof given in step [3] of Theorerﬁ 2.4.2

one can prove that A belongs to the Gersgorin discs defined by the row sums of A**

. and the result follows. O



Chapter 3

Gersgorin Theory for Diagonally Dominant
Infinite Matrices with Relatively Bounded’

Perturbations

In this chapter, it is shown how the Gersgorin theorem results introduced in the
paper [26], which are restricted to the spaces £, and £, can be both strengthened

and extended to the sequence spaces £,, 1 < p < co.

3.1 Definitions and Remarks

A matrix operator A = (a;;) in £,, 1 < p < oo, is said to have relatively bounded
perturbation if either the matrix operator Fy = ((1 — é;)aj; as;) € L(¢,) or the
matrix operator Fy = ({1 — 6;)a; ai;) € L(£,).

Ag stated in Section 2.1, the symbol E?’;l' denotes the sum from one to infinity
excluding the index 7 = 7. Recall the definitions of equations (2.1.1) and (2.1.2).

DEFINITION 3.1.1 Let A(u) be an operator valued function (in p) from [0,1]'
into C(X). A(u) is said to be continuous in the generalized sense at uo € [0,1] if
given an € € (0,00), there is a § € (0,00) such that if 4 € [0,1) and | p— po |< 6
then the gap 6(A(u), A(uo)) between A(k) and A(uo) satisfies §(A(1), A(uo)) < e

REMARK 3.1.2 Let T'(x) € C(X) for all & € [0,1] and let uo € [0,1]. In a
similar way to the proof of Theorem 2.2.1 part (1), we can prove that if 77(uo)

46



47

exists and is in £(X), then T(u) is continuous in the generalized sense at g if
and only if T7%(u) exists and is in L(X) for p in a small neighbourhood of yo and

imyop, || T7Y(w) — T (ro) ||=0.

3.2 Row Diagonally Dominant Matrices

In this ‘section we extend Gérsgorin t‘;heory (see Theorem 1.4.3) to row diagonally
dominant infinite matrices with relatively bounded perturbations.:

THEOREM 3.2.1 Let A = (ai;) be a matrix operator in 4,, 1 < p < oo,_and-
assume that

(1) a;; #0 for all7 € N and | a;; | = oo as © — oo.

(2) There exists a o € [0,1) such that for all 7 € N:
oo ! 7
Pi=>" |aj|=0i|as|, i €[0,0]
1

j=

(3) Either F; = ((1 — 6,-,-)a;j1a,-j)’ € L(¢,), I + pF; has a bounded inverse on £,
for all u € (0,1] and the domain of F = ({1 — &;)a;;) contains the domain of A,
or Fp = ((1 — 6;)ay a;;) € L£(£,) and I + pF; has a bounded inverse on £, for all
p € (0,1]. ‘

Then A is a closed operator with a compact inverse and any-point of the speé-
trum o(A) of A is an isolated eigenvalue of A that lies in the set U2; R:.

Furthermore, any set of r Gersgorin discs whose union is disjoint from all éther
Gersgorin discs interSect's o(A) in a finite set of eigenvalues of A with total algebraic
.multiplicit'y equal to r. |

Proof. Let D = dia,'g(an,azz,. ..). We consider the case in which F; € L({;)

and (I 4+ pF;)™ € L(g,) for all p € [0,1]. ( From hypothesis (1) there is no € N

[
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such that | a,, [> 1 for all n > ng. Hence from Lemma 2.4.1, A(u) = D(I + uFy),
where A(u) = (S;ja;,- + (1 — &i5)nai;).) The other case (see hypothesis (3)) has no |
new features (the additional condition D(F) > D (A) is only made to ensure that
"A(u) = (I + pF1)D, see Lemma 2.4.1). The theorem will be established in five
steps.

Step [1] For every p € [0,1], A(u) is a closed operator with a compact inverse.

Let » € [0,1]. Since A(p) = D(I + pF;) and D! is compact (see step [1]
of Theorem 2.4.2), then from hypothesis (3) and Theorem 1.1.2, it follows that
AN ) = (I + pF) D! exists and is compact on (i;; for every u € [0,1]. As |
A7) is closed (D(A™(n)) = & ), s§ is A(u). Since A =| A7! | is in the
spectrum of A~!, then o(A4) is nonempty. |

Step [2] For every u € [0, 1], the spectrum o(A(x)) of A(k) consists of isolated
eigenvalues.

Since A™1(1) € L(£,) (see step [1)), then 0 € p(A(un)). Thusif A € o(A(u)) then
A # 0 and from Theorem 1.2.6 part (b), we have A™* € 6(A~*(u)). Then from the
compactness of A™*(u) and Theorem 1.2.4, A™! is an eigenvalue of A~*(x). Thus
from Theorem 1.2.6 part (a), A is an eigenvalue of A(u). If A were not isolated
then there would be a sequence of distinct eigenvalues of A~1(x) converging to
the nonzero eigenvalue A~! of A~!(u) which is impossible by the compactness of
A7 (p).

Step [3] If A is an eigenvalue of A(x) and 4 € [0,1], then A€ {z € C:| z—ay |<
1P}

As in step (3] of Theorem 2.4.2, this result follows from hypotheses (1) and (2).

Step [4] The operator valued function A(k) is a continuous function in the
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generalized sense at every pg € [0, 1].

Let uo € [0,1]. From Remark 3.1.2, it is sufficient to prove that

lim || A™ (k) = A7 (o) [I= .

B pio
We have:
ATHp) = A7 o) = (I + pF) ™t = (I + poF3) ™" )D7™.
But since F € L£(¢,) (see hypothesis (3)), then
ATHp) = AN wo) = (T +pB)"((I 4 uoF) — (I + pF2))(I + poFe) ™' D7

= —(p—po)( +pF) 'E(I + poF,) D!

and so

A7 (u) = A7 (o) = — (1 — o) (I + poF) + (1 — po) F2) ' Fo(I + poFy) 1D

If | p—po |< 8 =31+ || B )Y (I +poF2)™" |7, then the operator I + (u —

o) (I + poFy)™" F; has a bounded inverse on ¢, and from Theorem 1.1.1 we have:
(I + (= ko) (T + 1oF2) ' ) < 2.

Therefore if | u — uo |< 6y,

- - - 2 _
A7 (1) = A7 (o) IS 2l —mo [l B2 I (T +oF) " I I D). (3:2.1)

Let € be a positive number. If § is a positive number such that

€ 1
2(| D1 || (14 || B2 DI (T + woF) =2 I 201+ | 2 1) | ( + o F2) Il}

6 = min{
then from equation (3.2.1), we have

AT () — A7 wo) lI< e
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for all u € [0,1] such that | 4 — po |< & and this proves lim,;, || A7 (x) —
A7 (mo) = 0.

Step [5] Let § = U2, R;, k1 < -+ < k,, be disjoint from all other Gersgorin
discs. Then the spectrum of 4 in § is a finite set of eigenvalues of A with total
algebraic multiplicity equal to 7.

From step [3] (see the proof of step [3] of Theorem 2.4.2), there exists a real
6 > 0 such that each disc of the sequence {R;(6)} has a nonempty intersection
with only finitely many discs of the sequence. Since S is disjoint from the other’
discs, then a closed Jordan curve I' can be drawn so that (a) § is a proper subset
“of U, where U is the interior of the set bounded by T, and (b) UNR; = 0 if :
J & {ki,...,k.}. Thus from steps [2] and [3], it is clear that T consists of regular
points of A(u) for all u € [0,1]. Let P(x) be the Riesz projector for A(p) and T

for every u € [0,1], that is,

P(u) = s [[(AlW) = <) .

At 4 =0, o(A(p)) consists of the eigenvalues a;; with corresponding eigenvectors
€, t € N, where ¢; are the unit coordinate vectors in £,. Hence from properties (a)
and (b), it is easily seen that dim R(P(0)) = r. From step [4] and Theorem 1.3.4,
there exists a 6; € (0,1] such that dim R(P(u) = r for all u € [0,6].

Define 6y to be:
bo = sup{6 € (0,1] : dim R(P(u)) = r, u € [0, 6]}.

Then 6 € (0,1] and,in fact, we are to prove § = I. Since I' consists of reg-

ular points of A(6o), then we may use Theorem 1.3.4 and step [4] to show that
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if dim R(P (b)) # r, we can find a § € (0,6) close enough to & such that
dim R(P(6)) # r, which is impossible by the definition of bo. Hence dim R(P(6)) =
r. |

If é < 1, then from the fact that dim R(P(6)) = r and the definition of 6, it
follows that for any 6’ € (&, 1] there is a u' € (6,6'] such that dim R(P(u')) # r..
But from the fact that dim R(P(6y)) = r and step [4], we may use Theorem 1.3.4
to find a & € (6, 1]such that dim R(P(x)) = r for all 4 € [, &}], a contradiction.
Therefore we must have é = 1, and from dim R(P(é)) = r, the result follows.

This completes the proof of the theorem. O

3.3 Column Diagonally Dominant Matrices

In this section we extend Gersgorin theory (see Theorem 1.4.3) to column diago-
nally' dominant infinite matrices with relatively bounded pert.urbations.
If p> 1 in Theorem 3.2.1, the following theor'em can be considered as the dual
of thatw theorem. .
THEOREM 3.3.1 Let A = {a;;) be a matrix operator in Zp, 1< p<oo,and
assume that |
(1) aj; #O0for all j € N and | aj; | 0o as j — oo.
(2) There exists a o € [0,1) such that for all _7" EN
00!
Q; = Zl | aij |= 0 | aj5 |, 0; € [0,0].
= ,
(3) Either Fy = ((1 — 6;)a; ai;) € L(£,), I + pF; has a bounded inverse on ¢,

for all p € (0,1] and the domain of F = ((1 ~ §;)ay;) contains the domain of A,
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or Fy = ((1 — &;)a;"ai;) € L(¢,) and I + pF; has a bounded inverse on £, for all
r € (0,1).

Then'A is a closed operator with a compact inverse and any point of the spec-
trum o(A) of A is an isolated eigenvalue of A that lies in the set Us2, C;-

Furthermore, any set of r Gersgorin discs whose union is disjoint from all other
Gersgorin discs intersects o(A) in a finite set of eigenvalues of A with total algebraic
multiplicity equal to r.

The proof of Theorem 3.3.1 is the same as that of Theorem 3.2.1, except in
step [3]. The proof of step [3] in Theorem 3.3.1 is exactly the same as that of step
[3] in Theorem 2.5.1.

A result on £, similar to, and complementing that given in Theorem 3.3.1 is
introduced in the following theorem:

THEOREM 3.3.2 Let A = (a;;) be a matrix operator in £, and assume that

(1) aj; # 0 for all j € N and | aj; |- oo as j — oco. |

(2) There exists a o € [0,1) such that for all j € N

ol
Q; = § | aij = o5 | a5 |, 05 € [0, 0].

(3) Either Fy = ((1—&;)a;; ai5) € L(€), I + pFy has a bounded inverse on £,
for all 4 € (0,1] and the domain of F = ((1 — 6{]')0:;']') contains the domain of A4,
or F; = ((1 — &;j)a;tai;) € L(£s) and I+ pF; has a bounded inverse on £, for all
r € (0,1].

(4) Every row of F = ((1 — &;)a;;) is in £;.

Then A is a closed operator with a compact inverse and ;cmny point of the spec-

trum o(A) of 4 is an isolated eigenvalue of A that lies in the set U2, C;.
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Furthermore, any set of r Gersgorin discs whose union is disjoint from all other
Gersgorin discs intersects o(A) in a finite set of eigenvalues of A with total algebraic
multiplicity equal to r.

NOTE. If F; € L(£c), then from Remark 2.4.4 and the condition a; 3 0 for all
t € N, it is clear that

o !
laz* | D | aiy |<]| By ||< oo.
i=t

Hence for every i € N, 92, | @i; |< co. Thus every row of F is in ¢;.
Proof. As in Theorem 2.5.2, we prove that if A is an eigenvalue of 4 then

A € UjZ; Cj. The rest of the proof is the same as that of Theorem 3.2.1. O

3.4 Almost Disjoint Discs

In this section we make a hypothesis on the geometry of the Gersgorin discs (see
hypothesis (4) of Theorem 3.4.2 below) that can be loosely described as almost
disjoint discs. At the same time we are to weaken the condition of diagonal domi-
nance somewhat (see hypothesis (2) of Theorem 3.4.2 below). In this respect (and
in the action on £,, of course) this theorem generalizes Theorem 5 of [26]. First we
need the following lemma.

LEMMA 3.4.1 Suppose the matrix operator A = (a;;) in £,, 1 < p < o0, satisfies
the following hypotheses:

(1) | @i | o0 as © — oo.

(2) | as —aj5 |> P+ Piforalli,j € N, ¢ # j.

If the disc § = {zeC:z—-a|<r},r€[0,00) and a € C, is disjoint.frofn‘

U21 Ri, then there is a real 6 > 0 such that the disc {z€ C:|z2—a [<r+6}is



also disjoint from U2, R;.

NOTE. It is clear that for every n € N,

dist(S,R.) = min{dist{u,R,):uec §}
= min{min{|u—-v|:v € R,}:ue S}

> 0.

This is clear since the function Yy : Rp — R defined by ¢u(v) =|u—v |,ue Sis
continuous on the compact set R, and attains positive values (u ¢ R,, ). So it has

a positive minimum. Hence the function ¢ : § — R defined by
é(u) = min{| v — v |: v € R,.} = dist(u, R,)

attains pos‘itive values. Also ¢ is continuous on the compact set §, and hence it
must have a positive minimum.

Proof. Suppose the contrary. Then for every n € N, there is a positive integer
k, such that \

0 < dist(S, Ry,) < %ﬁ | (3.4.1)

Since | @x,k, |— co0 as n — oo, then from inequality (3.4.1) it follows that P,, — oo
as n — oco. Now it follows from the compactness of § that there are two different

positive integers k,, and k, such that O <| Ak bk — Gk ok,

< Py, + P, which is
impossible by hypothesis (2). O

THEOREM 3.4.2 Let A = (a;;) be a matrix operator in £,, 1 < p < oo, and
assume that |

(1) ai; #0forall ¢ € N and | a;; |— 00 as ¢ — oo.
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(2) For every ¢ € N,
oo !
Pi=) |aj|=0i]aql, 0 €]0,1].
=

(3) Either Fy = ((1 — &;)a; ai;) € L(£,), I + pFy has a bounded inverse on ¢,
for all u Eﬁ(O, 1] and the domain of F = ((1 — &;)a;;) contains the domain of A,
or Fy = ((1' = 6;)az'ai;) € L(&) and I + uF has a bounded inverse on £, for all
p € (0,1].

(4) | ais —aj; |> Pi+ Py foralli,7 € N, 1 # 7.

Then the spectrum o(A) of A consists of a discrete, countable set of nonzero
eigenvalues {); : ¢ € N}, and for every ie N, X € R;.

Furthermore, if strict inequality obtains in (4) for a fixed ¢ and all 5 # 4, then
A; is a simple eigenvalue.

NOTE. From hypotheses (2) and (4), it is clear that there are two different
positive integers n; and n; such that 0 & R; if 1 € N \ {ny,n.}.

Proof. Let D = diag(aii,ass,...). We consider the case in which F, € L(¢,)
and (I + uFp)™' € L(4,) for all 4 € [0,1]. From hypothesis (1) there is no € N -
such that | app |2 1 for all n > no. Hence from Lemma 2.4.1, the matrix operator
A(p) = (8i;ai; + (1 — 6;;)pai;) can be written in the form A(p) = D(I + uF).
The other case (see hypothesis (3)) has no new features ( the additional condition
D(F) D D(A) is only made to ensure that A(u) can be written in the form Ap) =
(I 4 uFy)D, see Lemma 2.4.1). The theorem will be established in eight steps. The
proofs of steps [1],(2],[3] and (4] are the same as those of steps [1],[2],[3] and [4] of
Theorem 3.2.1, respéctively.

Step (1] For every u € [0,1], A(n) is a closed operator with a compact inverse.
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Step [2] For every u € [0,1], the spectrum o(A(u)) of A(u) consists of isolated

eigenvalues.

Step [3] If A is an eigenvalue of A(u) and u € [0,1), then

A € U{Z € C Z| Z2 — Qg3 IS/.LP,}

=1

Step [4] The operator A(u) is a continuous function in the generalized sense at
every u € [0,1].

Step [5] If A is an eigenvalue of 1;1, then A € U2, R:.

Suppose the contrary. Then -there ‘is an eigenvalue A of A such that A & U2, R:.
From step (2] (X is an isolated eigenvalue of A) and Lemma 3.4.1 there is a disc D
with centre A and a positive radius such that DN o(A4) = {A} and DN(UZ, R:) =0 -
(= the empty set)‘. Let P(u) be the Riesz projector for A(u), p € [0,1], and the

boundary of D, that is,
-1
27r\/—1 4D

where 8D denotes the boundary of D. Since dim R(P(1)) # 0, then from step (4]

P(u) =

(A—¢I)™Hdg

and Theorem 1.3.4 there is a po € [0,1) such that dim R(P(uo)) = dim R(P(1)) #
0, which is impossible since by steps [2] and [3], the spectrum of A(po) is a subset
of the set Uf’_‘;l R;. :

Step [6] Let £ € N and p € [0,1), then we have:

(a) The set R; contains one and only one eigenva;lue of A(u); if P; > O then this
eigenvalue of A(u) is simple and is in the interior of R;.

(b) The set R; contains at least one eigenvalue of A.

Leti € Nand p€(0,1). If P, = d, then R; = {a,-,-} and a;; is an eigenvalue of

A(p) with a.corresponding eigenvector e;..
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Now consider the case P; > 0. Since A(u) satisfies the hypotheses of Theorem
3.2.1 and the Gersgorin disc {2z € C :| 2 — a; |[< uP;} of A(u) is disjoint from the
other Gersgorin discs of A(u), then from Theorem 3.2.1, it follows that the disc
{zeC:]z-a;|< r,u,P,-} contains one and only one simple eigenvalue of A(u).
Hence from hypothesis (4) and the fact that the eigenvalues of A(u) lie in the set
U2i{z € C:| 2—a;; |< uP;} (see Theorem 3.2.1), the disc R; = {2z € C :| z—a;; |<
P.} contains in its interior one and only one simple eigenvalue of A(u). Denote
this eigenvalue by Ai(1). This proves part (a).

If P; > 0 then from Theorem 1.3.4, step [4] and part (a), it follows that R;
must contain at least one eigenvalue of A. If P; =0, then R; = {a;} and a;; is an
eigenvalue of A with a corresponding eigenve'ctor e;. This proves part (b).

Step [7] The set of the eigenvalues of A is a countable set {); : ¢ € N}, and for
every 1 € N, A; € }2,

Let j € N. From step {4] and Remark 3.1.2, it follows that lim,_;- || A7 () —
A7! ||= 0. Hence from Theorem 1.3.3, we have lim,,;- dist(A\;'(1),0(47?)) = 0

see step |6] for the definition of A;(¢) ). This implies that if z € 0(A) N R;, then
j j
[ A1) =z =] X () | 277 = X7 () || 2 [— 0

as p — 1. Hence lim,,;- dist();(x), o(4A)NR;) = 0. Hence by part (b) of step
(6), there is an eigenvalue A; of A in ’R,- such that lim, ;- A;(#) = A;. This proves
that o(A) contains the countable set {\; : ¢ € N} of eigenvalues of A, where \; € R;
for every ¢ € N. Now we prove o(A) = {X; : i€ N}

Now let A € o(A). Fromi the condition | a; |— oo as i — oo (each diagonal

element a; of A, 1 € N, is repeated finitely many times along the diagonal),
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step [5] and hypothesis (4) there is a finite nonempty subset N, of N such that
A € R, if and only if n € N,. Hence from step [2] ( A is isolated in o(A) )
and Lemma 3.4.1, it follows that there is a positive real 6, such that the disc

D(X,6)) ={z€ C:|z— X |< 6} satisfies

D(/\,&I\) ﬂR, = 0,

if ¢ € Ny, and
D(X &) (Neo(4) = {A}.

If A {\: : 5 € N}, then there is no i € N with lim, ;- \(u) = . Hence there is
a positive 8, < 8} and a strictly increasing sequence {u,}3%, of points in (0,1) such
that u, — 1~ and the disc D(},8)) = {z € C :| z—X |< 6»} consists of regular points
of A(us) for all n € N (here we use the fact that R; o (A(un)) = {A:(pn)} for all
i,n € N, see step [6] part (2)). Let P(u) be the Riesz projector for A(u), p € [0,1],
and the boundary 8D of D(}, 6y), that is, .

-1

27/ —1 a0

Since dim R‘(P(l)) # 0, then from Theorem 1.3.4 and step [4] there is an no € N

Pu) = (A(p) —¢I)7" ds.

such that dim R(P(u,)) = dimR({P(1)) # 0 for all n > no, which is impossible
- since dim R{P(ur)) = O for all n € N. This proves the requirement.

Step (8] If k € N is such that | axx — a;; |> P + P; for all 7 7# k, then Xy is a
simple eigenvalue of A. |

From the assumption and step (7], it follows that o(4) N Rx = {A:}, and by
Lemma 3.4.1, a closed Jordan curve T’y can be drawn so that R} is a proper subset

of U, where Uy is the interior of the set bounded by Ty, and ULNR;=0ifj #k. -
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From steps (2], [3] and [5], it is clear that T, consists of regular points of A(u) for
| every u € [0,1]. From stép [4], step [6] part (a) and Theorem 1.3.4 it is easily seen
that Ar 1s a simple eigenvalue. This comp.letes the proof of the theorem. O
REMARK 343 Ifp>1in Théorem 3.4.2, then there is a dual theorem on
4y, % ql§= 1, where the row diagonal dominance (see hypothesis (2) of Theorem

3.4.2) is replaced by column diagonal dominance.

3.5 General Remarks

In this section we shqw the advantages of Theorem 3.4.2 over Theorem 5 of [26].

(1) When p = oo and sup{o; : ¢ € N} < 1, then the condition a; # 0 for
all # € N and hypothesis (2) imply hypothesis (3). In this case, F; € L(£) and
|| F2 ||< 1 since ' '

ILBH=mmﬂa$|§%Iaﬁki€N}
i=

(see Remark 2.4.4). Hence Theorem 3.4.2 includes Theorem 5 of [26].

(2) In Theorem 5 of [26] it is assumed that every column of the matrix éperator
- A is in £, while in Theorem 3.4.2 we do ‘not require such a hypothesis. We give

an example to illustrate this point. Define a matrix operator A = (a;;) on £, by:
ann =1,012 = 2

and

i(i+1) ifj=1>2
=1 if5=1,:>2
1 ifj=17+1>3

0 - otherwise.
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Theorem 5' of [26] does not apply to this matrix operator, since the first column of A
is not in £o. However, it is clear that A satisfies hypotheses (1) and (4) of Theorem
3.4.2. Also A satisfies hypothesis (2) of this théorem, since P; < % | @i | for all
~ 1 € N. Since || F; ||= sup{%,%,%,...} = % < 1, then A satisfies hypothesis (3) of
Theorem 3.4.2. So0(A) = {Ai:1 € N} where| A\;—1|< 1 and | A,-—z'(z'-I—l‘) I< i-1
for all > 2. ‘

(3) Matrix operators that would satisfy the hypotheses of Theorem 3.4.2 (and
specially hypothesis (2)) and would not be included in Theorem 5 of [26] can be
constructed as follows:

Let the matrix operator A = (a;;) have diagonal entries defined by a;, = 2, and

21 —1)(z+1 .
aii':( 3( )ai—-l,i—l, 1 =12,3,...

and it is assumed that —1 is not an eigenvalue of F;. The off-diagonal elements

may then be chosen in any way consistent with the condition that

) )
Pi=——-z.+1a;i,zEN.



Chapter 4

Spectral Approximation of Diagonally Dominant

Infinite Matrices

Our proofs of the Gersgorin-type theorems in Chapter Two are construcijive in
the sense that we have an explicit sequence of matrix operators {A4,} with the
property that 4, 5 A. Furt.)hermore, because of the block-triangular form of
A, (see equation (2.4.4)), the spectral properties of A, are tractable. Our next
step is therefore to draw conclusions concerning the relationship of eigenvalues and °
eigenvectors of A to those of A,. For this purpose we apply some results on the

" “stable approximation” of closed operators.

4.1 Stable Approximation of Closed Operators

Let X be a separable Banach space, A € C(X) and let {A,} be a sequence of
operators in C(X). We suppose that D(A,) D D(4) forall n € X.

DEFINITION 4.1.1 We say that {A,} is an approximation of A if A,z — Az as
n — oo for all z € D(4), and we write 4, © 4 on D(4).

Now let A be an isolated eigenvalue of A, of finite algebraic multiplicity m. The
point A is isolated by the closed Jordan curve T, thg interior of which defines the

domain A.

61
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DEFINITION 4.1.2 The spectrum of {A,} in A converges to X if

lim (0(4,) 1 4) = {A),

n-—00

DEFINITION 4.1.3 The approximation {A,} of A is called stable at z € p(A)
if there exists a positive integer N(z) (depending on z ) and a positi%/e real M(z)

(depending on z ) such that, for all n > N(z), z € p(A,) and
I Ba(2) =1l (4n = 2D) 7" < M(2).

The following proposition gives the relation between the stability and the con-
vergence of the spectrum for an approximating sequence {4,} ( An € C(X) for all
‘n € N ') of the closed operator A. |

PROPOSITION 4.1.4 If the approximation {A4,} of A is stable in A\ {A} (that
is, stable at every 2 € A \ {A} ), then limp— (0(An) NA) = {A}.

See Proposition 2.2 of [3] for the proof.

We now introduce the notion of strong stability.

DEFINITION 4.1.5 An approximation {A4,} of 4, stable in A\ {1}, is said to

be strongly stable in A\ {A} if dim PX = dim P, X for all n large enough where

-1 ‘ -1
P=— [(A-2D)'ds, P,=—0nou
omy/—1 (A—2l)de omv/—1Jr

We shall apply results using strong stability in the following form. Recall that

(A, — 2I) "t dz.

) is an isolated eigenvalue of A, of finite algebraic multiplicity m, and T and A are
as defined above.
LEMMA 4.1.6 Let 0 ¢ A, the closure of A. Suppose A~! exists and is compact.

Let {An} be an approximationl of A for which A;?! exists and is in £(X) foralln €
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NI || A;t — A7t ||— 0 as n — oo, then {4,} is a strongly stable approximation
of Ain A\ {A}. |

We need the following lemma (see page 4 of [10]) for the proof. We note that
Theorem 1.3.3 can be deduced from this lemma.

LEMMA 4.1.7 Let T € L(X) and M be a closed set in C. If M C p(T), the
resolvent set of T', then there exists a 6 > 0 such that M C p(S) for all S € L(X)
with | § — T ||< 6. »

Proof of Lemma 4.1.6.

Since A~! is compact, then any point z € A \ {A} is a regular point of 4. If
z € A\{A}, then z # 0,z € p(A) and from Theorem 1.2.6 part(b), 27! € p(4~1). So
from Lemma 4.1.7 it follows that. there exists an N1(2) € N such that 27! € p(4;?)
for all n > Ni(z). Since A;' € L(X) and z # 0, we have z € p(A4,) for all
n > Ni(z). Also, for all n > Ny(2)

I(4n =2 <A =2 [+ ]| (A= 2D)T = (A=2D) "] (4.1.1)

Since || A;* — A7' ||— 0 as » — oo, then from Theorem 2.2.1 part(1) we have
A, % A and so by using Theorem 2.2.1 part(2), A, — 2I £ A — zI. Then we may
use Theorem 2.2.1 part(1l) again to deduce lim,_.o || (An ~2D) M= (A-2D)7 ||=
0. Using this conclusion in inequality (4.1.1) and the fac% that || (4 - 2I)™* ||< oo,
we find that there exists an N(z) € N such that N(z) > Ny(z) and there exists a

positive real M(z) such that, for all n > N(z),
| Ba(2) 1=l (4n = 2D)7* [|< M(2) < o0

This proves that the approximation {A4,} of A is stable at every z € A\ {A}. Using
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Theorem 1.3.4 and the fact that A, > A, we ﬁnd. dim P, X = dim PX for n large
enough and this completes the proof of the lemma. O

Now suppose limn—.e(0(4,) NA) = {A}. Let A, be an eigenvalue of A, for all
n € N such that limp—e An = ). For each Ar there exists a normalized eigenvector,
that is, there exists a y, € D(An) such that Ay, = Apy, and |y, ||= L.

DEFINITION 4.1.8 The eigenvectors of A, associated with o(A,) N A are said to
be convergent if any sequence of normalized eigenvectors {y,}.., associated with
{An}oz; contains a subsequence {yn, };, converging to some normalized eigenvec-
tor of A associated with A.

PROPOSITION 4.1.9 If {A,} is a strongly stable approximation of 4 in A \'{/\},
then the eigenvectors of {A,} associated with o(A4,) N A are convergent.

See Proposition 2.3 part(iii) of [3] for the proof.

4.2 Approximation of Eigenvalues and Eigenvectoi‘s

"The results of Chapter Two and Section 4.1 are now combined to show that the
eigenvalues and the eigenvectors of infinite diagonally dominant matrices can be
approximatéd by those of approximating matrices of the form (2.4.4). We state the
‘results for row diagonal dominance only. There are exactly paral!el statements in
the case of column diagonal (iominance. The matrices are assumed to act in £, with
1 < p < 0o0. The case p = oo is excluded because our proofs require separability of
the underlying space, and £, does. not enjoy this property (see Example 3, page

200 of [9]).
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COROLLARY 4.2.1 Suppose the matrij'( operator A satisfies the hypotheses of
Corollary 2.4.6 and assume 1 < p < oo, then the sequence of clc;sed matrix op-
erators {A,} defined by equation (2.4.4) is a strongly stable approximation of A
in R; \ {A\:;} where A; is the only eigenvalue of 4 in R; (see equations (2.1.1) and
" (2.1.2) for the definition of R; ). “ '

Proof. From Lemma 3.4.1, given 1 € N there is a positive real §; such thaﬁ the
disc A; = {z € C:| 2z — ay |< P; + &)} satisfies A;\R; = 0 if j # 1. Also the disc
A; is chosen so that 0 'Q A; (notice that from hypothesis (2) of Corollary 2.4.6,
0 € R; ). Hence for every ¢ € N, ); is isolated by the boundary T; of A;, where
I'; C p(A). We see from Corollary 2.4.6 that A~! exists and is compact, 42! exists
and is in L({,) for every n € N, and || A7* — A™! ||— 0 as n — co. Therefore

the hypotheses of Lemma 4.1.6 are satisfied if we can show A,z — Az as n — oo
I

for every z = | z, | € D(A) (we have D(A). = D(A,) for all n € N, since the

. ‘. .
perturbation operator F' = ((1—6;;)ai;) € L(4,) ). To see this, write z = : |
. xzn
I1 “Tntl
where 2™ = | : | and z{” = Zpys |- Then
In
‘ 0 A(n) m(”-) A(n)z(")
Az — A= 12 1 _ 12 T2

0 <5 |\ o | | —Suel?
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where 4 = and S, = D, — A{Y (see equation (2:4.4)). Since
i) A |

F e L(¢,), then A{Y and S,, are bounded uniformly with respect to n (see step [4]
of Theorem 2.4.2). Also since z € £, then limy_e0 25 = 0. So limpoe APz =
and limn_‘.oo Sn,;:z;gn) = 0. This proves that {A4,} is an approximation of A. Now
the result follows by applying Lemma 4.1.6. [

Combining this coroflary with propositions 4.1.4 and 4.1.9 we obtain:

THE(.)REM 4.2.2 Suppose that the matrix operator A satisfies the Hypotheses
of Corollarsf 2.4.6, and ‘suppo'se 1 < p < 00. Define matrix operators A,; in £, as in
ezluation (2.4.4). Denote the simple eigenvalue of A (of A4,) in R; by A; (by )\En)). .
"Then for 1 < ¢ < 00, liMp—e )\E") = )\; and the associated sequence of normal-
ized eigenvectérs {y,gn)}:z1 contains a subsequence converging to the normalized
eigenvector of A associated with A;. | |

- We remark that, when A is a banded matrix, the eigenvectdrs of A, (see

equation (2.4.4)) have only finitely many nonzero terms. If A, has an eigenvalue

An F Gpyinti for some ¢ € N then with an obvious partition of the eigenvector,

AR o [0 _ [
A9 b, )\ & )

Thus zg") is the corresponding eigenvector of Ag'{)‘ and
) = (Al = D) AR

When A is banded, Ag'{) is strictly upper triangular and the number of nonzero

entries in :z:g") does not exceed the number of sub-diagonal bands of A.
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Now consider bounded matrix operators F*) € £(¢,), F9) € £(£,) which are
defined by the same infinite matrix F ( A = (ai;), F = ((1 — &;)a;;) as usual). It
is clear from our construction that the eigenvalues of the approximating sequence
{An} will not depend on the choice of the space £, or £,. Thus their limits are the
same, and we can conclude that if 1 < p,g < oo, then A®) = D(I + D1 F)) and
AW = D(I + D-'F9), where D = dia,g(au,aggz, ...}, have the same spectrum. A
similar remark applies for the eigenvectors. So we have:

THEOREM 4.2.3 Let the matrix operator A = (a;;) satisfy the hypotheses of
Corollary 2.4.6 and assume that the matrix operator F = ((1 — §;)a;;) is in L£(¢,)
and in L£(4,), p # ¢,1 S p,q < co. Then A defines closed operators A(P), A(9) with

domains in £,,¢,, respectively, whose spectra and eigenvectors coincide.

4.3 Selfadjoint Matrix Operators

For a matrix operator A acting in ¢, there is a possibility of obtaining stronger
conclusions for the spectral properties using the Hilbert space structure of £;. To
illustrate this point, we know, for example, that in Theorem 4.2.2 the convergence
of the sequence {A,(f‘)}:o:l to A; for each © € N depends on estimates for the norm
of the resolvent of the matrix operator A, which are not necessarily available.
However for a matrix operator A acting in £;, such estimates are available if A is
selfadjoint (see equation (3.16), page 272 of [15]).

The following theorem shows that, in principle, the 7th eigenvalue of a self-
adjoint matrix operator A = (a;;) acting in £, and satisfying the hypotheses of

Corollary 2.4.6 can be appro;_kimated to any prescribed accuracy ¢ > 0 by trun-
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cation to the leading N X N submatrix of 4, where the dépéndence of N on ¢
is given below (see equation (4.352)). Before introducing the theorem we notice
that for such a matrix operator A the Gersgorin discs R;, 7 € N, are disjoint (see
~ hypothesis (4) of (jorollary 2.4.6) and hence from Lemma 3.4.1, it followS that for

every ¢+ € N the number
§ = inf{| @i — a5 | —(Pi + Py) : 5 # 4}

is a positive real number. For brevity, we introduce the following symbols:

6;
2() asi | +P)(| @i | +P; + &)

€ = ,iEN

and

K=|D7 |+ | FI)I Z+DF)7|

where D = diag(ai1,as2,...) and F = ((1 — &;)ai;) (we consider the case (I +
D71F)~1.€ L(£;); see hypothesis (3) of Corollary 2.4.6). If 7 is a subset of C not
including zero then we define the set -1 = {ze(C:2z71 e 7}.

THEOREM 4.3.1 Assume the hypotheses of Corollary 2.4.6, let p = 2 (the case
(I + D7'F)~' € L(£) is considered here; the case (I + FD™1)"1 € L£(f;) has a
similar statement) and assume that A is selfadjoint. Let 7 € N, € € (0,¢;) and also

e<| D A7
E=4||AT" |+ K)Q+ || F ||)2 (4.3.1) .
is a constant depending only on A, and N is an integer for which

| e |> ke 1+ | @i | +PB)° | (4.3.2)
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whenever n > N, then | /\,(-N) —Ai <€ ( A,(-N) is the unique eigenvalue of Ay in the
Gersgorin disc R;, see equation (2.4.4) for the definition of Ay ).

Proof. Let T'= A" and T, = A  for all n € N. Fix : € N and let T;, be the
boundary of the set R; and I';, be the boundary of the set Jé,- ={ze(C:z—ay|<
P; + 6;}. Since inf{dist(2,T;,) : z € T;,} = §; then for all z € T;, and 2’ € T, we

have: ,
lz|| 2| = (|as | +P)( as | +P: + &)

z z

If Qs =| ai; [ e\/j‘ﬁ", then

1 1 |z0 zo|
oz |awlla]

.where zo = (| aii | +P;)eV"% and 2, = (| ai | +P; + 6)eV="%. Thus we have
inf{dist(¢,I';") : ¢ € T;'} = 26;.

Choose ¢ € (0,¢;) and also € <|| D! [||| A~ ||. Then from equation (3.16), page

272 of [15], we have

max{|| R(,T) ||: ¢ € A} = (1+ | @i | +B:)’ /e,
where

Ai={s € R i ¢~ |2 e(l+ | au | +P) 7"}

and ¢ = A;!. From Theorem 2.1.3 we know that if we choose N; € N such that
| a;l|< ILQI-;-U for all » > Nj, then || (Ag'l'))_l |< K for all n > N;. Now we choose
N € N such that for alln > N, .

b
| apn |<min{ : ,” ”}

k(14| ea | +P)* K
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Since ¢ <|| D~ |||| A= ||, then from equation (4.3.1) the above inequality is
equivalent to equation (4.3.2). Hence from step {4] of Theorem 2.4.2 and Lemma
2.1.1, it follows that || T, — T ||< €(1+ | asi | +P;)~* for all n > N (the matrix

-————k(l_l_laf{”},{)g for all

operator D;' = diag(ani1 ni1sGnionts,---) satisfies | D1 ||<
n>N). Soforall¢ € Ayandn > N, || R(s,T) |Il 7. = T ||< 1 and hence

-1

¢ € p(Ty). But since R;! contains a unique eigenvalue of T, namely g,-(n) = ()\,(.")) ,

then | ¢/ — ¢ |< e(14 | @i | +P,) for all n > N. Thus we get

(| ai | +P)%
(1+ | as | +Py)*

R e R CEr i P

for all » > N and this proves the requirement. [



Chapter 5
Mathieu’s Equation

The main result of this chapter is Theorem 5.4.1 wflich shows that the eigenvalues
of the Mathieu differential operator and of a certairn infinite matrix operator are
the same. This is a result that is frequently used implicitly in the literature but,
to the author’s knowledge, is proved here for @he first time. To establish this result
some facts on the solufcion of infinite systems of linear equations are introduced in

Section 5.3.

5.1 Introduction

We will be concerned with Mathieu’s differential equation

&y + (a—2qcos.29)y =0 (5.1.1)

do?
and we will concentrate on solutions which are even with period 7, denoted usually
by cezn(,q). For a given g, the problem will be to find the eigenvalues a.

Mafchieu’s equation is a special case of .Hill"s equation
2 .
2—;2{ +(e—g(f))y =0,

where g¢(f) is a periodic function with periodicity m. Titchmarsh in [29] and (30

discussed the dependence of the eigenvalues and the eigenvectors of the perturbed

equation
d2
5 +(a—g(0) —eo(®)y =0

71
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Figure 5.1: L — C circuit.

upon ¢, assuming that the spectrum of the unperturbed equation is discrete. He ‘
considered two cases ; the first when the spectrum of the perturbed system is
discrete, and the second when the spectrum of the perturbed system is continuous.

Mathieu’s equation appears in many applications. One exa}nple is the “Direct
Capacitance Modulation” shown below (for more examples see Chapter XV of [18]).

EXAMPLE 5.1.1 Consider the electric circuit shown schematically in Figure 1,
where an inductance L is in series with a capacitance C, which varies with time ¢, so
we can wr‘ite C=C(t). If Q denotes the quantity of electricity in the capacitance
then from Kirchhoﬁ’s second law (see page 23 of [19]), the circuital differential

equation is : .

Q. Q , .
F—*_ LC(t) = 0. (0.1.2)

We shall assume that C(t) = Co(1 + ecos 2w;t), Cp being constant and 0 < ¢ <« 1
(that is, € is a very small positive number compared with one). Using the binomial

expansion of (1 + € cos 2w;t) ™}, equation (5.1.2) becomes:

d? .
dtC;? + 7o (1 ecos 2wt + e’cos®2w;t — ’cos®2wit +...)Q = 0.
0
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Omitting the terms in €%, ¢3,... in the above equation as a first approximation, we
obtain

d*Q 1

—7 T E(l — €cos 2w t)@ = 0. (5.1.3)

Writing § = w;t and y = Q in equation (5.1.3) we are led to Mathieu’s equation

dy
gz T (@ —2gcos20)y =0

where a =

1 — €&
S7LC, and ¢ = <.

5.2 The Space L;[-7,%]

This space of functions will play an important role in finding the eigenvalues of
Mathieu’s equation.

" DEFINITION 5.2.1 Let ﬁz[—'%,%] be the vector space of all complex valued

Lebesgue measurable functions f defined on the interval [~%, %] with the property

that | f |2 ‘is Lebesgue integrable. If we identify functions which are equal almost

everywhere, then
‘ /2

oar=[" 5(0)3(6) db,

-r/2

where g(0) denotes the complex conjugate of g(), defines an inner product on
Ly[-%,%)

REMARK 5.2.2 Since for k,7 € N,

0 ifk#g

/2
/ " cos2(k —1)fcos2(j —1)0d0 = /2 ifk=75#1 (, (5.2.1)

i fk=7=1
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/2 0 if k # .7.
/ sin 2k0sin 270 df = ' (5.2.2)
B : w/2 fk=7 '
and
/2
/ / cos2(k — 1)fsin256df = 0, : (5.2.3)
-xf2

. then by giving a similar argument to that given in page 29 of [9], one can prove

that the countable collection

{%}U{\/gcosmw:né N}U{\/gsinZnH:;ze )V}

is an orthonormal basis for £3[—7, %] (see page 26 of [9] for the definition of an
orthonormal basis for a Hilbert space). ’

One of the properties that connect the Hilbert spaces £; and L,[—Z ] is stated

3
in the following theorem.
THEOREM 5.2.3 (See Theorem 11.2 part(iii), page 25 of [9].) If z € C for all

k € N then the vector z = (z1,22,...) is in £, if and only if the series
B w -
> zrcos2(k —1)8
k=1
converges in Lq[—%, 7).

NOTE. The series Y32, zrcos 2(k — 1) converges in Lp[—F,%] if there ex-
ists a function y € Lq[—%,%] such that the sequence {y.},., defined by y, =
Yr=1zecos2(k —1)8, n € N, converges to y as n — co. The function y is written
as E,;“;l zrcos2(k — 1)4.

Proof. Foralln € N, let §p = X7, zycos 2(k—1)0 and s, = X7, | zx |>. Then

from equation (5.2.1) it follows that for n > m,

ln—ym |? = (Y. zrcos2(k—1)8, > z;jcos2(j —1)8)

k=m+1 j=m+1
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n x/2 n
> / , cos2(k—1)6 >  Z;cos2(j—1)0dd
w/2

k=m+1°"" j=m+1
o n

= 3 RN

k=m+1

Sn - Sm.

Thus {y,} is a Cauchy sequence if and only if {s,,} is a Cauchy sequence. Therefore
{yn} converges if anci only if {s,.} converges, and this proves the requirement. O
Iq the next sections we will use the following lemma which shows the continuity
of the inner pfoduct on a Hilbert space.
LEMMA 5.2.4 Let ¥ be a Hilbert space over C. If {z,} is a seqﬁence of points ,

in ¥ converging to z € ¥, and if y € X then (z,,y) — (z,y) as n — oo, where (, )

denotes the inner product on X.

See Lemma 11.1, page 25 of [9] for the proof.

5.3 -Linear Systems and Truncation

In this section some basic results about the solution of infinite linear systems,
which will be used in the next section, are introduced. Linear equations with
infinite matrices occur in various topics of mathematics, for example, interpola;tion
[5]), sequence spaces [4], and summability [32].

Let A = (ai;) be a matrix operator in £,, 1 < p < o0, and y = (y1,¥2,...) € &,.

We define the truncations A(n) and y(n) by



76

where A" is the leading n X n submatrix of A (see Section 2.1), and the ith

component (y(n)); of the vector y(n) € £, is

y; if1<i<n
(y(n)): =

0 ifi>n.

For 1 < 4,7 < n, the cofactor of the element a;; in A({{) is denoted by <a$?)). We
(o))

define {4 — lim, .,
(n)
detAl';

-1
ppr provided the limit exists. If (A(I'I)) exists then we

define the matrix A~!(n) to be the infinite matrix for which

. A1 if1<ij<n
(A_l(n))ij _ (( ir) ),, >L) =
0 ifi,7 >n+1.

Now we consider the linear systems

Az =y (5.3.1)

and
Alm)n(n) = y(n), . (5.3.2)
where the 7th co‘mpénent (n(n)); of n(n) is zero for i > n.
THEOREM 5.3.1 Let A = (a;;) be a matrix operator in £,,1 < p < 00, D =
diag(ay1, @22, ...) and assume that
(1) The diagonal elements a;; satisfy a;; # 0 for all € N and | a; |— oo as
n — oo.

(2) For every 7 € N there exists a 0; € [0,1) such that
o !
Pi=) |ay|=o0i]a].
i=1

(3) The matrix operator F = ((1 — &;)ai;) € L(£,).
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(4) Either the matrix operator I + FD™*! has a bounded inverse on £, or the
matrix operator I + D™!'F has a bounded inverse on £,.

Then for every y = (y1,yz, .. .)'E £y, the linear systems (5.3.1) and (5.3.2) have
unique solutions z = (z1,23,...) € £, and n(n) = (n1,72,...) € ¢,, respectively,
and lims—e ||  —n(n) ||, = 0.

Furthermore, the ¢th component of z is given by

= g

=1

Proof. We consider the case (I + D™'F)™" € L(¢,). The other case (see hy-
pothesis (4)) has no new features. Let y = (y1,¥2,...) € £,. Then from Theorems
2.4.2 and 2.1.3, the matrix operators A and Ag’{), n € N, have bounded inverses on
£, and C", respectively. Hence the systems (5.3.1) and (5.3.2) have unique solutions
z = A~'y and n(n) = A7} (n)y(n). To prove lim,_, || z — n(n) ll, = 0, we consider
the following two cases:

(i) The case p < co. Since || z — n(n) ||=|| A~y — A~1(n)y(n) ||, it follows that

lz—n) <] AT = A7 @) My I+ 1T A7 @) ly-ym) |- (5.3.3)

Also from step [4] of Theorem 2.4.2, we have

1_ -1 -1 -1 o 0
| A7 = A7 (n) [I<| A7 — 427 || + ( 5 (5.3.4)
-D;raA)” Dy
Then from inequalities (5.3.3),(5.3.4) and the fact || A~1(n) ||=|| (A(l'l‘))_1 | (see
the definition of A~1(n) ), it follows that
. ~1_ 4-1 0
fz=n(=) | < A7 -A Iyl + 1 ol
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1A My -v) |- (5.3.5)

From step [4] of Theorem 2.4.2, limp—e || A" — A;! ||= 0 and from Theorem 2.1.3,
there is a positive real M such that || (A(n)) |< M for all n € N. Also since
| D7 ||— 0 asn — oo then from Lemma 2.1.1, the norm of the block-matrix in the
right hand side of inequality (5.3.5) tends to zero as n — co. Thus the right hand
side of inequality (5.3.5) tends to zero as » — oo and this proves || z — n(n) ||— 0
as n — oo.
(ii) The case p = co. From hypothesis (3) and Remark'2.4.4, there exists a
positive real M such that
“sup{P;:i € N} < M.
Hence from hypothesis (1), o; = ﬁj — 0 as ¢ — oo. Thus the matrix operator A |
satisfies hypotheses (5.1) and (5.2) (with lim; ., 0; = 0 ) of Theorem 7 in [26}, and
| using the proof of that theorem it follows that limp—c || z — n(n) ||, = 0. (Note

that their hypothesis (5.4) is not required in this argument.)

Now fix j € N and let n € N, n > j. Then, for 1 <7 < n and y = ¢;, we have

(n(n)); = (A'l(n)y(n))i = > (A_l(n))ik(y(n))k = (z_l(n))ij
Similarly,

Thus,
( (n)

lim = lim (n(n));, = z; = (471),;
n—oo detA(") n—'oo( ( )) ( )J
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exists and hence, (471),; = Q—Z:ﬁ

For a general y = (y1,¥2,...) € {, and ¢ € N, we have

) 1 et tfJ7 et det A J
and this completes the p\roof of the theorem. O
REMARK 5.3.2 Let p = oo in Theorem 5.3.1. From the proof of this theorem,

there is a positive real M such that

sup{P;:1€ N} < M.

™ <

Also from hypothesis (1) there exists a positive integer ¢ such that | a; Fyas)

for all 7 > 1. Thus from hypothesis (2), we get

sup{——:7€ N} < 1.

| |
So D7'F € L(€s) and || D7'F ||< 1. Thus hypotheses (1),(2) and (3) of Theorem

F;
| @i

5.3.1 imply hypothesis (4) in the case p = oo.

REMARK 5.3.3 Let p = oo in Theorem 5.3.1. It is clear that hypotheses (1),(2)
. and (3) of Theorem 5.3.1 are equivalent to conditions (H.1),(1.2) and (H.2) in [27].
Thus from Rerﬁark 5.3.2, Theorem 5.3.1 generalizes Theorem 2 of [27]. It also
develops it since we do not assume in Theorem 5.3.1 the condition (H.3) of Theorem
2 in [27]. On the other hand, Theorem 7 in [26] is more general than Theorem
5.3.1 at the case p = co. This can be seen from the fact that the boundedness of
F together with hypothesis (1) of Theorem 5.3.1 imply the condition o; — 0 as
7 — oo, while this condition does not necessarily imply the boundedness of F.

LEMMA 5.3.4 (See Lemma 5 of [26].) Suppose A = (a;;) is a matrix operator

in £,, 1 < p < o0, that satisfies hypotheses (1),(2),(3) and (4) of Theorem 5.3.1.
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Then, for 7,7 € N
|< >| I( >

det A det A
and ,
(@ii) -1
(e | +P) " <l 3oz 1< (Lo | =P

Proof. Fix 7,7 and n Er N with n > 7 and n > 7. It follows from inequalities
(13) and (10) in [21] that the above inequalities are valid for 4. From Theorem
5.3.1, limp o0 &%; = éetﬁ exists and the lemma is proved. O

For tridiagonal matrices we have the following interesting result.

THEOREM 5.3.5 Let A = (a;;) be a matrix operator in £,, 1 < p < o0, that
satisfies hypotheses (1),(2),(3) and (4) of Corollary 2.4.6 and assume that:

(5) The diagonal elements a;; satisfy ai; < @iq,641 for all1 € N. .

(6) @ijit1,@iv1, a‘re nonzero real numbers for all : € N.

(7) a;j =01if |t — g |> 2.

Fix N € N. If A is the eigenvalue of A in Ry (see Corollary 2.4.6) and z =
(z1,Z2,...) is an eigenveétor of A corresponding to A, then there exist no € N and

a positive real r such that for all n > ny,
| n |< TOR.

Proof. We consider the case (I+ D’"IF)_.1 ‘6 L(¢,). The other case (see hy-
pothesis (3) of Corollary 2.4.6) has no new features. Because of hypothesis (5), the
hypothesis

| @i — ake |> Pi+ Py

for all ¢,k € N, ¢ # k (see hypothesis (4) of Corqllai‘& (2.4.8)) is equivalent to

a; + P < aj;; — Pj, 1 < 7. (5.3.6)
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Also since | A — ayn |< Py and A is real, then
aNN"'PNS A SGNN+PN. . (5.3.7)

(This means, by hypothesis (2), that A is a positive real.) Choose n; € N such

that n; > N and
1
@+0a+ | FI)

| D 1< (5.3.8)

where D,, = diag(@n,+1,n,41,Inj+2,n,425---) and F = ((1 — &;)a;;). Define the

matrix operator E = (e;;) by:

Oy +ing+i — A if ] = l,l Z 1
Any+ing +j if j =1+ 1,'5 >1 )
Uy tiny + fg=1-1,1>2
0 otherwise.
Thus the system (A — AI)z = 0 implies
Tny+1 ~CGni+1,n Tny
Tny+2 0 .
E| ™ | = . (5.3.10)
Tn1+3 0

L A
Let F' = ((1 - &;)e;;) and D = D,, — A\I. We show that E satisfies the hypotheses
of Theorem 5.3.1. :

Since a; — oo as ¢ — 0o, then | ei; |=| Gigny itn, — A | 00 a5 ¢ — co. Also

from inequalities (5.3.7),(5.3.6) and hypothesis (2), we have

z\SaNN+PN<a,~J-—Pj<a,-,-,
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for j > N + 1. Therefore, since n; > N, we have a;; — A > 0 for all § > ny + 1.
Hence E satisfies hypothesis (1) of Theorem 5.3.1.

For i > mny + 2,

fove) 1

I €imnyi-n | - Z I €i-nyi-n, I = (aii - ’\) - FB

j=ni+l

v

(aii — P;) — (anw + Py)

> (@ny+1,my41 + Poyg1) — (@ny 41,0041 = Poyg1)
= 2P, 4

> 0.

:V(Notice that we used inequalities (5.3.7) and (5.3.6) in the first and second in-

qualities of the above system, respectively, and we used hypothesis (6) in the last

inequality.)
Fori=n;+1,
o !
lenn ] = D lerjom | = (@nysim+1 = A)= | @nysing+2 |
J=n1+1

v

3 an1+1,n1+1 - (aNN + PN)_' l Qny+1ny42 |
2 Qnytlng 4l — (an1+1,n1+1 - Pn1+1)— | An)+1,n,42 '

= I Any+1,ny I

> 0. (5.3.11)

Theféfore, E satisfies hypothesis (2) of Theorem 5.3.1. (Notice that we used
Pot1 =| @nys1n, | + | @nys1m42 [ in the second equality of equation (5.3.11)
and used hypothesis (6) in the last inequality of the eqﬁation.) 7‘

Since F € L(¢,) we see from Lemma 2.1.1 that I € £(£,) an;i | <]l F |

Thus E satisfies hypothesis (3) of Theorem 5.3.1.
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Finally, from D = D7 (I — AD,,), inequality (5.3.8) and Theorem 1.1.1, it

follows that D has a bounded inverse on ¢, and’

oA ' —1y—1 _
DM < 1 (I- ADZH) T DRI

. o
= T D]
< o

Hence from || ' ||<|| F ||, we have
FENED™ < =+ 2 I DR -

But since || D7} ||< l—m,‘we obtain || I ||| D! ||< 1. Thus from Theorem 1.1.1,
(I + D™'F) has a bounded inverse on £,. Therefore, E satisfies hypothesis (4) of
Theorem 5.3.1. Then from the system (5.3.10) and Theorem 5.3.1, we have for
1> ny+ 1,

z; = —<€1,'>(det E)_la‘n1+1,n1$n1' (53‘12)

If p; = (52, | e [)/ | e |, ¢ € N, then from equation (5.3.12) and Lemma 5.3.4

we have for 72 > ny + 1,

IA

(5] S piem | (e11) |14t E [ | anyram || 2, |

IN

pi—m(l €11 I - | ny+1,n,+2 |)~1 ’ Cny+1,ny ” Ty l

Pi—n, (an1+1,n1+1 — A= I Ay +1,ny+2 |)_1 l Any+1,ny ” Tn, |

IA

pf-ﬂli Qny+1,ny I—l I Ony+1,ny ” Ty | .

(Notice that we used Lemma 5.3.4 to get the second inequality of the above system

and used equation (5.3.11) to get the last one.) Thus for ¢ > n; + 1,

| zi |< picny | Zny | - (5.3.13)
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Since pi—n, = Pi(ai; — /\)_1 for all > ny + 2, P; = 0; | ai; | (see hypothesis (2) of

Corollary 2.4.6) and lim; a—“ﬁ—; = 1, we have limi_,o =2t = 1. Let rp € (1,00)

g

"1 < ry for all 7 > ng.

and 7 = rq | z,, |. Then there exists no € N such that p;_,,0o;

Choose ng > n; + 2. Hence from inequality (5.3.13) we have for all 7 > ny,
| i [< picny | @ny [< 0ir0 | Tny |= 007,

and this proves the requirement. O

5.4 The Eigenvalues of Mathieu’s Equation

In this section we show that, in the case ¢ = 1, the eigenvalues corresponding to
the eigenfunctions cey, of Mathieu’s equation (equation (5.1.1)) are the eigenvalues
of a matrix operator defined in ;.

First we rewrite equation (5.1.1) in the form
2

('—W + 2gcos 28)y = ay.

Thus (—% + 2qcos 20) will define an operator if a (suitable) space of functions is

chosen.

Let £ be the space of all even complex valued functions on |3, ’2—'] such that the

second derivative y" () of y(f) € L exists and is piecewise continuous on (-7, 7).

Then £ is a subspace of Lo[—%,%]. Let T' = —% + 2 cos 26 be acting on L. Then

T is a linear operator from L into Ez[—%,f . The following theorem relates the
eigenvalues of T' to those of a matrix operator in £,.

THEOREM 5.4.1 Let B = (b;;) be a matrix operator, in £, defined by

big = baz =1, by =2
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and-
1 ifj=¢+1,0>3
bij =19 4(i -1 ifj=40>1
0 otherwise.

Then the matrix operator B and the differential operator T have the same eigen-
values.
Proof. Let a be an eigenvalue of T with a corresponding eigenvector y(6). Since

y(0) is an even function in L3[—%, 7], we have
=Y zxcos2(k — 1)8, (5.4.1)

where the convergence is in Lz[—7, 3] Multiplying both sides of equation (5.4.1)

.

by cos2(y — 1)8, j € N, integrating both sides from —Z to I and using Lemma

5.2.4, we get

/2 /2
/ y(0) cos2(j —1)0d8 = / cos2(y —1)8 Z zrcos2(k — 1)6) df

—r/2 . —x/2

00 /2
- sz/ ,€052(j = 1)8 cos2(k — 10 .
— —-x/2

Thus from equation (5.2.1), the coefficients z;, £ € N, in equation (5.4.1) are given
by

_-——/ /2 6) dé -——-—/ 2 (6)cos2(k—1)0db, k> 2 (5.4.2
T COS . 4,
/2 y Lk /2 y ’ = )

Also since y'(8) € L3[—%, %], we have
") = > apcos2(k —1)0 + > _ Brpsin 2(k — 1)8, . (5.4.3)
where o, 0 € C for all & € N. (The convergence in equation (5.4.3) is in

L3[—%,%].) Multiplying both sides of equation (5.4.3) by cos2(y — 1)9,5 € N,
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integrating both sides from —% to 7 and using Lemma 5.2.4, we get
7/2

/m y'(f) cos2(5 —1)0 dﬁr = i ak/

—x)2 o/ cos2(j —1)0cos2(k —1)0df +

oo x/ )
Zﬁk/ i cos2(y — 1)0sin 2(k — 1)0 4. (5.4.4)

k=1 —“/2

From equations (5.2.1) and (5.2.3), equation (5.4.4) gives

- _/”/2 |  (5.4) |

/2

(y(6) is an even function) uand for all k > 2,

/2
——/ y' cos 2(k — 1)6 df.

x/2
Integrating the above integral by parts and using the fact that y(f) is an even
function, we get for all £ > 2,

ay = 0. (5.4.6)

To determine the coefficients B, in equation (5.4.3), we multiply both sides of
equation (5.4.3) by sin2(j —1)6, s € N \ {1}, then integrate from —% to Z and use
Lemma 5.2.4 to get for all k > 2, .

2 (=2
== 8)sin2(k — 1) d¢.
po== [ y@sin2(k-1)
Integrating the above integral by parts and ﬁsing equation (5.4.2), we get for all

k> 2,

By = _ﬁ;r:}?)_ /:;//22 y(0) cos2(k —1)0df = —2(k —1)z;. (5.4.7)

From equations (5.4.5),(5.4.6) and (5.4.7), ¥'(#) in equation (5.4.3) takes the form

y' = -2 zysin2(k — 1)6. (5.4.8)
k=2
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From Ty(f) = ay(f), we have y"(f) = (2cos20 — a)y(f) and hence y"(§) €
ﬂz[—-’,}, %] Using a similar argument to that given for determining the coefficients
ay and B in equation (5.4.3), we can show that |

y"(0) = = > _ 4(k — 1)’z cos 2(k — 1)0, (5.4.9)

k=2

where the convergence is in L£3{—%,%]. Since the series representation of y(0) in
| equation (5.4.1) holds 'in the space £5[-7Z, %], from Theorem 5.2.3 ¢ = (z1,23,...) €
Z;. Thusfrom Theorem 5.2.3, the series }°i2 ; ) cos 2kf and the series 132, x4 cos 2(k—

2)6 both converge in L;3[—%, Z]. So from the equality
2(cos 26) cos2(k — 1)8 = cos 2k6 + cos 2(k — 2)4,
where k € N, and from equation (5.4.1), it follows that

2(cos 26) y(9) - > zrcos2kf + > zpcos 2(k — 2)4, | (5.4.10)
k=1 k=1

where the convergence holds in L£z[~%,%]. Therefore from equations (5.4.9) and

(5.4.10), the equation Ty(6) = ay(0) gives

Y 4(k —1)*zpcos2(k — 1)8 + > z) cos 2k6
k=2 k=1

=a)_ zpcos2(k — 1) — > zxcos2(k — 2)4.
k=1 k=1 .

Thus,

Ta + (221 + 4(2 — 1)°zs + z3) c0s 20 + > (241 + 4(k — 1) 24 + T4y1) cos 2(k — 1)8.
k=3

=a)_ zpcos2(k —1)0 | (5.4.11)
k=1
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Integrating both sides of equation (5.4.11) from —Z to Z and using Lemma 5.2.4,

we get

2 /2
Ty + (22 +4(2 — 1)z, + 323)/ - cos20df =

—7r/2

© w/2
Z / cos2(k — 1)6 df —

0 /2
Z (24 +4(k — 1)%z4 + xm)/ ., cos2(k —1)0do.
k=3 - J=/2
Using equation (5.2.1), the above equation gives
) Ty = axj. (5412)

If we multiply both sides of equation (5.4.11) by cos 26, then integrate both sides
from —7 to 7 and use Lemma 5.2.4, we get
w/2 9 /2 .
.'132/ ) cos20d0 + (2z; +4(2 — 1)z, +:z;3)/ / cos“20 df =
—r/2 -/2

ad /2
aZxk[ ) (cos 26) cos2(k — 1)6 db —
=1 /2

(o]

. /2
S (zp-1 + 4(k — 1) + zp41) / (cos 26) cos 2(k — 1)8 db.
k=3 -2
Using equation (5.2.1), we get
221 +4(2 — 1)%zy + 25 = azy.  (5.4.13)

Similarly if we multiply both sides of equation (5.4.11) by cos2(j — 1)6, j is an
integer greater than 2, then integrate both sides of the equation from —Z 5 to 7 and

use Lemma 5.2.4 and equation (5.2.1), we get for all k¥ > 3,

Tp-1 + 4k — 1)*z4 + Thy1 = azy (5.4.14)
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Equations (5.4.12),(5.4.13) and (5.4.14) give Bz = az, where z = (21, 2,, .. )€ 22:
Hence a is an eigenvalue of B with a corresponding eigenvector z ( = # 0; for if
z = 0 then from equation (5.4.2), Vﬁz y(8) cos 2(k — 1)8d8 = 0 for all k € N.
But since ffﬁz y(6) sin2k6df = 0 for all k € N and'{\/l;} U{\/gcos 2nd : n €
N} Ut{\/gsin 2n6 : n € N} is an orthonormal basis for £5(—Z, %], then by Lemma
5.2.4 it follows that f’r!r% y(0)f(6) df = O for any f € Ly[-%,%]. In particﬁlar we
have f"ﬁz | y(6) |2 dd = 0. So y = 0 almost everywhere, ‘which is impossible since
y # 0 and y is continuous ).

Now suppose that a is an eigenvalue of B = (b;;) with a corresponding eigen-
vector £ = (z1,%2,...) € €. If § = diag(+/2,1,1,...), then SBS~! = B, where
the entries 5,-_,- of B are givefl by 512 = 521 = 4/2 and I;,-J- = {);,- for all other indices
¢ and 7. Hence a is an eigenvalue of B with the corresponding eigenvector z. If

A= B+2I, that is, A = (ai;) is the matrix operator defined by

2 V2 0 0 0
V2 6 1 0 0
A=] 0 1 18 1 0 , (5.4.15)

60 0 1 381

. © o o o

\

then ¢ + 2 is an elgenvalue of A with the correspondlng eigenvector z. We show

that A satisfies the hypotheses of Theorem 5.3.5 at p = 2. Define

D= dia,é(a,u, a99,.. .), F = ((1 - 5,':,')0,,'_7') (5.4.16)
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as usual. It is clear that F € L£(£;). Also since

0 v2/2 0 0 0
Vv2/6 0 1/6 0 O

0 1/18 0 1/18 0

then || DTIF ||, = 149V% and || DIF ||, = 32@ (see [8] ). But since || D™'F || <

18

| D7YF ||| D7*F ||, (see page 366 in [16] ), then

1/2
18
as+va)"

= (5.4.17)

I D7 F |, <

Thus from Theorem 1.1.1, (I + D™'F)™' € L(£2), and hence A4 satisfies hypothesis
(3) of Theorem 5.3.5. It is clear that A satisfies all other hypotheses of this theorem.

Hence there exists ng € N and a positive real r such that for all n > ny,

| z, |< rO,. | '(5.4.18)
Since 0, = | @nn l-lzz‘;l' | Gn |= m for all n > 3, then if we choose ng > 3,

inequality (5.4.18) gives

> X 2
n‘;no | za |< rn;,o oS
where the convergence of the series follows from the fact };7, ;1; = %. Hence
® | o |< oo and this means that z = (z1,%3,...) € 1. Then the series

Y%, zrcos 2(k — 1)@ converges for everj 0 € [—%,%]. So we can define a function

y(0) by

y(0) = i zcos2(k — 1)4, - (5.4.19)
k=1
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where the convergence is pointwise in C.
Also from z € £y, it follows that the power series %2, %:z:kzk‘l has a radius of

convergence equal to co. For z € C, define the function

)=

= % (5.4.20)
From the equality
cos 2(/9‘— 1)0 = %(ez("‘l)\/‘_l" + 6-2((16—1)\/—_10), :
it follows that for all § € [—Z 55
y(0) = f(z1) + f(z), (5.4.21) -

where z; = e2V-1 and z, = e 2V~Y, From Theorem 7.1, page 76 of [17], the first

and second derivatives of f(z) exist for all z € C and

— 2) 723, (5.4.22)

t\?l)—l

' o
—lcz:kz , Z

t\'JIx--l

From equations (5.4.21) and (5.4.22), it follows that y'(§) exists for every 6 €

(—%, %) and

! d d
Vo) = 1 (zl)g + ()
= > —2(k—1)z;sin2(k — 1)4. (5.4.23)

k=2
Similarly from equations (5.4.22) and (5.4.23), it follows that y"(6) exists for every

0€(~%,%) and
= > —4(k — 1)’z cos 2(k — 1)6. (5.4.24)
. k=2 . .
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Since the third derivative of f(z), f"(z), exists (this implieé that y"(f) is continuous
on (—%,%) ), from equation (5.4.19) ( y(f) is even) and equation ‘(5.4.24), it follows
that y = y(6) € L. '

The equation Bz = az gives equations (5.4.12),(5.4.13) and (5.4.14). Hence

from the convergence of the series 3272, z) cos2(k — 1)6, we have

oo
T2+ (221 +4(2 — 1)* 25 + 23) cos 20 + D _ (21 + 4(k — 1)°zx + Tp41) cos 2(k — 1)0
' k=3

=a Y. zpcos2(k — 1)8,
k=1 .

where the convergence is in C and 6 € [-3, %] Thus from the convergence of the
series Y02, Tp—1 €05 2(k—1)8, T2 5 zy41 cos 2(k—1)8 and 2, 4(k — 1)z cos 2(k —
1) (see equation (5.4.24)), we get the equality

o0 . oo oo}
S 4k —1)*zpcos2(k — 1)8 + > zrcos2kf + > x4 cos 2(k — 2)8
k=2 - k=1 k=1

=a ) zpcos2(k —1)8 = ay(4),

k=1

where the convergence is in C and 0 € |7, %] Therefore, from the equality

2(cos 20) cos 2(k — 1)8'= cos 2k6 + cos 2(k — 2)0
and equation (5.4.2.4), we have for all § € (—%, %),
—y"(0) + 2(cos 26)y(0) = ay(0)

or
Ty(8) = ay(0).
Hence a is an eigenvalue of T with the corresponding eigenvector y = y(0) (since

y(0) = Y32, z, # 0 and y is continuous, there is an interval M containing zero .
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such that y(d) s O for all § € M. Thus y -T" 0 ). This completes the proof of the

theorem. O

5.5 A Numerical Estimation

In this section we use the results ,Of Section 4.3 to approximate the eigenvalues of
Mathieu’s equation in the case of ¢ = 1. 7

We have shown in the previous section that in the case ¢ = 1, a is an eigenvalue
of Mathieu’s equation with a corresponding eigenvector cez,, n € N, if and only
if @ + 2 is an eigenvalue of the matrix operator A -defined by equatioﬁ (5.4.15).
Therefore,. in order' to approximate .the eigenvalues corresponding to the eigenfunc-
tions ces, of Mathieu’s equation it is sufficient to approximate the eigenvalues of
A. Since A is selfadjoint, Theorem 5.4.1 shows that A sat.isﬁes the hypotheses
of Theorem 4.3.1. So the eigenvalues of A can be apﬁroximated to any degree of
accuracy provided the constant K =|| D! || (1+ N F )|l (I+DF)™" ||, where
D and F are defined by equation (5.4.16), and the constant k defined by equation
(4.3.1) are estimated.

First we evaluate the norm of F. For any y = (y1,92,...) € £ with [ y ||= 1,

we have
IFyl? = 20w P+ Vo +us| +lme+us '+ v +us [+
< 2|yz|2+(2ly1|2+|ya|2+lyz|2+Iy4|2;r|y3|2+|ysl2+--:)
+2(vV2 |y |lvs |+ vz llwa |+ lvsllws ]+
= |y2|2+2(|7y1|2+|y2'l2+ly3|2+“')

+2(vV2 |y |lys |+ | v | va |+ |wsllys | +--°)
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S HwlP+2+28 21w llv blus b ) I (ws b lysenn) |l

1/2
= 2+|wl+2A@ul+lwl+luwl+ v+ v+

1/2
= 24|y P2+ D= w P —w )Y

. 2
= 24w P20 = u ) = v PO+ wn )Y

1/2
24|y [P+201— v [

IA

but since the function ¥(7) = 2+n%+2(1 — %)% is a continuous function on [0,1],
has a negative derivative on (0,1) and ¥(0) =4, 2+ |y, |+ 2[1 — | v, ]2]1/2 < 4.

Thus for any y = (y1,y2,..-) € £2 with | v ||=1, we have | Fy ||< 2, and hence

| Fll<2. +(5.5.1)
On the other hand, the sequence {a:(")}zo:o of vectors in £, where the 1th component
(z(®); of z*) is given by

, if1<:<
(:z:(")),-= 1 f1<i<k+3

0 ifi:>k+4
satisfies

I F =k +3, | Fo® |* = 4k + || F2 |
for all £k =0,1,2,.... Hence,
[ Fz® _ |
sup{—m.k—o,l,Z,&... = 2. (552)
From equations (5.5.1) and (5.5.2), we get
| F = 2. (5.5.3)

From equation (5.4.17) and Theorem 1.1.1, we have

| (I+ D F)™"||< 3.765. (5.5.4)
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Hence from equations (5.5.3) and (5.5.4), we get
K< (%)(3)(3.765) < 5.648. | (5.5.5)
Also. from inquality (5.5.4), we have
| A<D NI +DPF) 7 ||< (%)(3.765) < 1.883. | (5.5.6)
Thus from equations (5.5.3),(5.5.5) and (5.5.6), we have

k < (4)(1.883)(6.648)(9) < 451. (5.5.7)

Using the notations introduced before Theorem 4.3.1 in Section 4.3, we have at
1=1,

, 3—+/2
22+ v2)(2+V2Z+3-2)

and (1+ ] ay | +P)? = (8 +‘\/§)2. Then equations (4.3.2) and (5.5.7) show, for

< 0.008

51=3_\/§, €1 =

example, that to guarantee an error of not more. than 0.005 in the first eigenvalue
(which is the eigenvalue of A in the Gersgorin disc R; ={z€ C:|z—-2|< 2} ),
we can truncate A to the leading submatrix of size 664.

REMARK 5.5.1 Determining the eigenvalues in £, of the matrix operator A =

(ai;) defined by equation (5.4.15) is equivalent to solving
Kz =0,

where z is 2 nonzero vector in £; and K = (k;;) is defined by

(a,-,- - A)/a,-,- if ]. =1
]C,'j =

ai; [ ai otherwise
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where A € C. In contrast with our, method of approximating the eigenvalues of A,
Mennicken and Schmidt [20] established similar results based on the concept of the

~ vanishing of det K. The determinant det K is defined as
det K = nlLrglo det K,

where K,, n € N, are the leading n X n submatrices of K. The existence of the

above limit has been proved by Poincaré [23].



Chapter 6

Perturbation of Linear Operators in Banach

Spaces

In this chapter we discuss the dependence of the eigenvalues and the eigenvectors
of the perturbed system upon the perturbation provided it is small enough, and

use this result to approximate the eigenvalues of Mathieu’s equation (see Chapter

Five). First we state the fixed-point theorem.

6.1 The Fixed-Point Principle

Consider a complete metric space X with a metric p and a closed subset £ of X.
Assume that there is a mapping P defined on ) that maps  into itself.

DEFINITIONS 6.1.1

(1) A point z* € Q is called a fixed point of P if z* = P(z*).
Thus the fixed points of P are the solutions of the equation
€ = P(z). (6.1.1)
(2) Pis a cdntraétion map if there exists an o € [0, 1) such that
p(P(z), P(z) < ap(z, )

for all z,z' € Q.
If P is a contraction map, one can guarantee the existence, and even uniqueness,

of a fixed point.

97
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THEOREM 6.1.2 If P is a contraction map on (1, then there is a unique solution
z* in Q for equation (6.1.1).

Moreover, z* can be obtained as the limit of the sequence {z,}, where
Ipty = P(mn)

for all n =0,1,2,..., and where z; is an arbitrary point in (2.

See Theorem 1, page 474 of [14] for the proof.

6.2 The Eigenvalues and Eigenvectors of the Perturbed

System

In this section we show under certain conditions (see Theorem 6.2.1 below) that
if the unperturbed system has an eigenvalue )\ with a corresponding eigenvector
To, then an upper bound for the perturbation (in norm) can be given to guarantee
that the perturbed system has an eigenvalue Witﬁ a corresponding eigenvector that
are both close to A9 and =g, respectively. Such a problem has been discussed in
[24] and [33]. |

THEOREM 6.2.1 Let D be a closed operator defined in a Banach space X such
that D(D) is dense in X and assume that

(1) The point Ao is an eigenvalue of both D and D' (the dual of D ) with
corresponding eigenvectors zo and xj, respectively. The vector z, satisfies || zo ||=
1.

(2) The restriction of the operator (D — XoI) to the space X; = {z € D(D) :

z4(z) = 0} has a bounded inverse R mapping X; into itself.



99

(8) The vector zj, satisfies z{(zo) = 1.
1/2

Then for any r € (0, () ") and Fe 6, = {U e L(X): | U ||IL 6}, where

[E TR

,
Fao Il 211w+l =5 Il B I+ 118 e+ 15|

§ =
and
S = R(I — zozy),

the system of equations
Az = (D + F)z = Az, zp(z) = 1 (6.2.1)

has a unique solution (z, ) in the set {# € D(D) :|| 2 — 20 [|< 7} x C. (Concerning

the location of A in C see Remark 6.2.2.)

Proof. Define P = I — z¢z,. Hence S = RP.

[EATE

substituting into equation (6.2.1), we find it is required to solve

Fix r € (0, (—”i”—)l/z) and F € §,. Writing z = zo+y and A = X\ + 7, and

(D = Xol)y =n(z0 +y) — F(zo +v), (6.2.2)

where y € Y = X1N{z € X :|| z ||< r}. From the second hypothesis, the left hand
side of equation (6.2.2) is in X;, and so acting on both sides of the equation by zg
we get

n = 17\1:6(:1:0 +y) = zo(F(zo + y)). . (6.2.3)

Therefore it is required to solve in Y the equation

(D = o)y = 2(F (20 + ) (m0+ y) — Flzo +3). - (624)
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From the definition of P, it is easy to see that solving equation (6.2.4) inYis

equivalent to solving
(D = oI}y = z4(F(zo + y))y — PF(z0 + 9) (6.2.5)

in Y. Now we may use hypothesis (2) and act on both sides of equation (6.2.5) by

the operator R to deduce that the equation
y = zy(F(zo + y)) Ry — SF(zo + v) - (6.2.6)

has the same solution set in Y as equation (6.2.5) has.

v

Define the map Qr on the closed set Y by
Qr(y) = zo(F(zo + y)) Ry — SF(zo +9)

for all y € Y. We prove that Qp is a conéractiox\l map mapping Y into itself.

Let y € Y. Since P maps X onto X; (for z € X, we have z{(Pz) = z}(z) —
zo(z)zh(zo) = zp(z)—zh(z) = 0, by the third hypotheéis), we have PF(zo+y) € X;.
Hence from the second hypothesis both of SF(zo + y) and Ry are in X;. Thus
Qr(y) € X1. Also using the triangular inequality and the fact that || zo ||= 1 and

| v ||<r, we get

I @r() 1< (Ul o M F 1 BNl v+ 11 S NIl F (L + 7).

But since | F ||< we have || Qr(y) ||<

r
Fzo IR+ = [ RT+TSDr+1TST
r, and this proves that Qr maps Y into itself.

Now let y; and y» be in Y. We have
lRr(w) —Qrl) Il < IFN N BRI+ ol RI+TSDNvr—v] -

2zl Bl v+l zo MBI+ S|
<
T ol IR e+ Iz R+ S |+

v =2l -
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Hence we have

| Qr(v1) — Qr(w2) IS el vr — w2 ||,
2z Il RN r+ = LRI+ AS]

where o = - ElR But since
Fzo lF RN r+ 2o IR+ S+

r

/2

IS )1
O0<r<|v—mrsT
(II zo [[Il B |l

then « € (0, 1) and this completes the proof that Qp is a contraction map mapping
Y into itself. Thus from Theorem 6.1.2, Qr has a unique ﬁxed_point v =Qr(y*) €
Y. Hence from the definition of Qr it follows that equation (6.2.6) has the unique
solution y* in Y. But since the two equations (6.2.4) and (6.2.6) have the same
solution set in Y, then equation (6.2.2) has a unique solution (y*,7*) in ¥ x C

where y* is the unique solution of equation (624) and n* is given by
n* = z5(F(zo + 7).

Thus the system (6.2.1) has the unique solution (z,A) € {z € C || z— = || < r} x C,
where z = zo + y* and A = Ao + n*. This completes the proof of the theorem. O
REMARK 6.2.2 In Theorem 6.2.1, by choosing r and § small enough, the solution

(z,A) of the system (6.2.1) can come close to zg, Ao to any degree of accuracy. To

1/2

explain this point, let € > 0. If we let r Vary in the interval (0, (”—zﬂﬁ]R—") ), then
\ B 0

r

6 =6(r) =
O = TR TS MET+ TS W51

“is a function of r. This function has a greatest lower bound equal to zero, and is
increasing since the derivative

IS A= ll=o llll &1l ~*

§'(r) = L
Mzl BRI+ ol RI+US Dr+ 1l S D

= >0
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for all r € (0, (——“5”—)1/2

iz )- So if we choose r < ¢ such that

€

b= <ETEE

the unique solution (z, A) of the system (6.2.1) in the product space {z € D(D) ||
z — g ||< r} X C satisfies
No-ml<e

and

ellzoll O+l w i)
26 || (1 +7)

REMARK 6.2.3 In Theorem 6.2.1, we have improved the upper bound for the

[ A= 2o |z I O+ [Ty ) I F i<

norm of the perturbation given in [24] which is

,
2|z IR+ = RN+ 1S D+ IS

6.3 Approximation of the Eigenvalues of Mathieu’s Equa-

tion

In Theorem 5.4.1, we proved that the eigenvalues of Mathieu’s equation (5.1.1),
with ¢ = 1, are the.eigenvalues of the infinite matrix operator B= (E,-J-) defined in
£y by
byg = by = V2, bys = 1
and i
1 ifj=it1,6>3
bij=14 4(i—1)* fj=4:>1.

0 otherwise
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and that the eigenvalues of B lie in the Gersgorin discs (defined by the row sums)
of B. Each Gersgorin disc contains o;1e aﬁd only one simple eigenvalue of B.

. In Section 5.5, we have shown that the matrix operator F = ((1 — 6;)b;;) is in
L(£y) and || F ||= 2. Hence we can write B = D+F, where D = diag(0, 4,16, 36,...).
Now we show that D satisfies the hypotheses of Theorem 6.2.1. It is clear tha{:
d; = 4(1 —1)%, i € N, are the eigenvalues of D with corresponding eigenvectors
z; = e;, where ¢; are the unit coordinate vectors. Also since D(D) is dense in £,
the dual D' of D exists, and from Corollary 2.3.4, it follows that for every i € N,
d; is an eigenvalue of D' with a corresponding eigenvéctor z; = J(e;), where J is
the map defined in Remark 2.3.2. 7

Now fix ¢t € N. Let X; = {z € £ : zl(z) = 0}. From Theorem 2.3.1, it is clear
that e; € X; for all j # ¢ and zj(e:) = 1. Hence from the continuity of z!, it follows
that X; is the closure of the set span{e; : € N\ {1}}. Therefore the restriction of
the operator (D — d;I) to the space X; has an inverse R; = (rj(’k)) mapping X; into

itself and is given by

c fk=j=1
=) WA - - G-0) T k=g A
0 ‘ otherwise

4(2:
1 =2,3,4,.... Also the operator S; = R;(I —e;z}), where I is the identity operator,

and ¢ is a complex number. Thus || B; ||= % and || R; ||= 71—_37 for all

has the same norm as R; has. To prove this; let z = Z;’;l'aje,- € X;, then since
(I — e:;z})(2) = 2, we have

IR S. (6.3.1)
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On the other hand let z = Y52, aje; € £; and || z ||< 1. We have

(o]

(I-ez)(z) = z-2(3 ajej)e
i=1
o0

= o3 ajej)es
j=1

= z- (i o,z (e5))e;

= T — ;€
0

= Z O €5 — (€4,
=1

which is an element in X; ; denote it by Z. From Theorem 4.1, page 10 of [9], we

have || Z | < 1. Therefore || Siz ||=|| R:Z ||<|| R: |- Hence we have

IS i<l &« (6-3.2)

Equations (6.3.1) and (6.3.2) prove || S; ||=|| R: ||- Thus D satisfies the hypotheses
of Theorem 6.2.1.

Now for every integer ¢ > 3, we solve the equation

&
2= . ) 6.3.3
Fra D& - (633)

Substituting from | R; [|= ﬂTl—_gj into equation (6.3.3), we get
rP+4(2—d)r+1=0, ' (6.3.4)

where 7 > 3 (for 7 = 1,2, equation (6.3.3) does not have a real solution). Now for

all 7+ > 3 choose r; to be the smaller root of equation (6.3.4),that is, for all ¢ > 3

choose r; to be

ri=2(0-2) -4 —2)* - L. (6.3.5)
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It is clear that ; € (0,1) for all ¢ > 3. Since || F ||= 2, || z! [|=]| & [|= 1 (see ‘.
Theorem 2.3.1) and || S; ||=|| R; || for all ¢ € N, then from Theorem 6.2.1 (where

we take § =|| F ||=2 ), the system of equations
(D + F)(z: +3i) = Xz +91), 2z +w) =1

where ¢ > 3, has a unique solution (z; + y;, A;) in the set {z € D(D) :|| z — =z; ||<

ri} X C, where r; is given by equation (6.3.5). Also we have for all 7 > 3,
A —d; = :z::-(F(e,- + y,-)). (6.3.6)

Since Fe; € span{e;_1, ¢;4+1} and zi(e;) = §;; for alls >3 and j € N, then \; —d; =

zi(F(y:). Thus we have
| di—di <[ F [l v |I€2r: <1

for all z > 3. Thus for all ¢ > 3, A; is the simple eigenvalue of A in the Gersgorin
disc R; of A. Since lim;—o r; = 0, then lim;_,e0 | As — 4(7 — 1)2 |= 0. For example,

 for i =3:

r3 =2 —1/3 < 0.268

hence | A3 — 16 |< 0.536
for : = 4:

ry =4 — V15 < 0.1271

hence | Ay — 36 |< 0.2542
‘for 1 = 10
ri0 = 16 — V255 < 0.032

hence | Ao — 324 |< 0.064.
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