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Abstract 

We establish Geisgorin-type theorems for diagonally dominant infinite matrices A 

acting as linear operators in the sequence spaces £, 1 < p < oo. Two methods are 

used; in the first, the results are established using a sequence of infinite matrices 

A that converges to A in the generalized sense as ii -* oo. In the second method, 

the results are established using the continuity in the generalized sense of a family 

of closed operators A(), A E [°, 1]. The first method allows us to approximate the 

eigenvalues and eigenvectors of A by those of A. 

The dependence of the eigenvalues and the eigenvectors of a matrix operator 

upon its perturbation is also discussed. The results are established using the fixed-

point principle for contraction maps. 
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Introduction 

The Gersgorin theory for the localization of eigenvalues of finite matrices is well 

established (see [22] and [2]). Eigenvalue problems for infinite matrices occur 

frequently in mathematics and engineering (see [4] and [31]). An often used method 

for finding eigenvalues is to truncate the system to finite n x n systems and to let 

n. tend to infinity. However, it has been shown that an infinite system may have a 

nonzero eigenvalue although the truncated systems have only the zero eigenvalue 

(see [25]). Therefore it is natural to try and develop Gersgorin theorems for infinite 

matrices, where we consider them as linear operators, acting in the sequence spaces 

£,, 1 < p oo (see examples 3 and 4, page 195 of [9] for the definition of £). An 

interesting paper establishing Gersgorin theorems for diagonally dominant infinite 

matrices was published recently by Shivakumar, Williams and Rudraiah [26], but 

their analysis is restricted to matrix operators acting in tj and £. 

In the paper [6], the authors develop an analogous theory for diagonally domi-

nant matrix operators acting in £,, 1 ≤ p ≤ oo, but using a constructive approach 

involving a sequence {A} of infinite matrix operators that converges to the matrix 

operator A in an appropriate sense (see Section 2 of [6]. Here we take advantage of 

the powerful theory of perturbations developed in the work of Kato [ 15]). There 

are some advantages in having results for the wider range of values of p; in par-

ticular, in the paper [6] the Hubert space properties associated with p = 2 have 

admitted the application of strong results for selfadjoint operators (see Sections 

5 and 6 of that paper). Also, the spectral properties of a given matrix operator 

may depend on the choice of the space 4. For example, Hanani, Netanyahu and 
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Reichaw [ 11] show that a matrix operator A can have zero as an eigenvalue with 

respect to £ while zero is not an eigenvalue of A 'with respect to £. Although the 

analysis given in [6] succeeds in extending the range of p, the results when p = 1, 00 

are just weaker than those of the paper [26]. In the paper [7] we have shown how 

the results of [ 26] can be both strengthened and extended to more general values 

of P. 

In this thesis, we cover the results of the papers [6] and [ 7] through Chap-

ters Two and Five. In Chapter One, some preliminary results are introduced. In 

Chapter Two, we extend Gersgorin theory to infinite matrices with bounded per-

turbations where we show that for a matrix operator A, any set of r Gersgorin 

discs whose union is disjoint from all other Gersgorin discs intersects the. spectrum 

of A in a finite set of eigenvalues of A with total algebraic multiplicity equal to 

r. Chapter Three generalizes and develops the Gersgorin theorems results of the 

paper [26], and Gersgorin theorems are established for diagonally dominant infinite 

matrix operators with relatively bounded perturbations acting in £,,, 1 < p oo. 

In Chapter Four, we use the spectral approximation 'theory described by Chatelin 

[3] and the results of Chapter Two to approximate the eigenvalues and the eigen-

vectors of the matrix operator A by those of the approximating sequence {A} 

introduced in Chapter Two, and take advantage of the Hubert space properties 

of the space £2 in getting stronger results. In Chapter Five, 'we study Mathieu's 

equation (see equation (5.1.1)) and prove that in the case q = 1, the eigenvalues 

corresponding to the eigenfunctions ce 2fl (O, q) of equation (5.1.1) are the eigenval-

ues of a diagonally dominant matrix operator defined in £2. Then we use the results 

of Chapters Two and Four to approximate the eigenvalues of equation (5.1.1). In 
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Chapter Six, we discuss the dependence of the eigenvalues and eigenvectors of an 

operator upon its perturbation. We apply the fixed-point principle for contraction 

maps in obtaining the results. This problem has been discussed in [24], [ 13] and 

[]• Our results generalize and improve the results in [24]. We also use these 

results to approximate the eigenvalues of Mathieu's equation, although it is recog-

nized that sharper estimates for these eigenvalues can be found by other methods 

(see 



Chapter 1 

Preliminaries 

In this chapter, we present some basic definitions and theorems that will be used 

throughout the thesis. 

1.1 Linear Operators in Banach Spaces 

Throughout this thesis, I and  will denote Banach spaces over the field of complex 

numbers C. The norm on I is denoted by II lix. A sequence {x} of points in I 

is said to converge to a point x in I if lim..+11 x,, - x 11= 0. In this case we write 

limn... x = x. If x and x E I for all n E .W, where .A/ denotes the set of positive 

integers, and if lim = x, then we write x = x. 

A linear operator (or simply an operator) A from I into J is a function which 

sends every vector u in a certain linear subspace V (A), called the domain of A, of 

I to a vector v = Au = A(u) E Y and which satisfies the linearity condition: 

.A(c 1ui + a2u2) = aiA(ui) + a2A(u2) 

for all U1, U2 E V(A) and al, a2 E C. The range £(A) of the operator A from I 

into / is defined as the set of all vectors of the form Au with u E V (A). If V (A) is 

dense in I, A is said to be densely defined. If V (A) = I, A is said to be defined 

on I. If I = /, we shall say that A is an operator in I. If ./ = C, A is called a 

linear functional. 

4 



If A and B are operators from I into ,J and a,,8 E C, the operator cA +,8B is 

the operator from I into / with domain D (aA + fiB) = V (A) fl V (B) and which 

satisfies 

(aA + /3B)(x) = aA(x) + ,13B(x), 

for -all x  V(A)flV(B). 

If A is an operator from I into 3J and B is an operator from 3/ into Z, where 

Z is a Banach space over C, then the product BA is the operator from I into Z 

with domain V(BA) = {x E V(A) : Ax E V(B)} and (BA)(x) = B(A(x)) for all 

xEV(BA). 

An operator A from I into 3/ is said to be invertible if there exists an operator, 

denoted by A', from 3/ into I such that 
1. 

V(A 1) = R(A), R(A 1) = 

and 

A-' (Au) = u, A(A'v) = v, 

for all u E V(A), v E R(A). 

The operator A' is called the inverse of A. It can be easily shown that if A 

is an invertible operatorfrom I into 3/, then A' is unique. Also if A and B are 

invertible operators in I, then AB is invertible in I and (AB)' = B'A'. 

An operator A from I into 3/ is called bounded if 

11 A 11= 'sup{Il Au Ii,,: u E V(A), II u IIx≤ '} < °°.  

In this case 11 A 11 is called the norm (or the bound) of A. When there is no cause 

for confusion, we use the same notation for the norms on I and Y. The space of 
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all bounded operators A from X into Y with domains 27(A) = I is denoted by 

£(X,). With the norm 11 A 11 defined in equation ( 1.1.1) for every A E £( X,y), 

£(Xj/) becomes a Banach space. When I = .I, we write £( X) instead ofC(XjJ). 

It can be shown that if A,B E £( X) then AB E £( X) and 11 AB A B 11. 

The operator in £( X) which sends every x E I into itself is called the identity 

operator and is denoted by I. 

Throughout the thesis it will be required to find the inverse of operators of the 

form I — A, where A E L ( X) and 11 A < 1. The formula for (I— A) -' is suggested 

by the geometric se1ies 

1+a+a2+...=(1—a)',O≤a<l. 

THEOREM 1.1.1 Suppose A E £(X) and 11 A jj< 1. Then (I - A)' exists and 

is in £( X). Moreover we have: 

k=O 

and 

11 (1 - A)' jI≤ (1- 11 A l)-' 

where A° = I, A2 = AA, A3 = AA2, etc. 

See Theorem 8.1, page 70 of [9] (which holds true in Banach spaces) for the 

proof. 

An operator which is not bounded is called unbounded. 

An operator A E £(XjJ) is called compact if for every bounded sequence {u} 

of points in I,the sequence {Au} in 3/ has a Cauchy subsequence. The following 

theorem shows that the product of a compact operator by a bounded operator is 

a compact operator. 
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THEOREM 1.1.2 Suppose A E £( X,.y) is compact. If B E £(. J, Z) and C E 

J(Z, X), where Z is a Banach space over C, then BA and AC are compact. 

See Theorem 4.8, page 158 of [ 15] for the proof. 

The following theorem shows that the space of all compact operators in £( X, 3J) 

is a closed subspace ofC(X,/). 

THEOREM 1.1.3 Suppose {K} is a sequence of compact operators in £( X,y) 

and 1im. K - K I I = 0, where K E £(XJJ). Then K is compact. 

See Theorem 4.7, page 158 of [ 15] for the proof. 

REMARK 1.1.4 If K E £(X,y) is of finite rank, that is, dimR(K) is finite, 

where dim R (K) denotes the dimension of R (K) (in general if Z is a subspace of 

X, dim  denotes the dimension of Z), then K is compact. For the proof, see [9], 

page 83. 

The graph of an operator A defined in X is the set 

9(A) = {(u,Au) : u E V(A)}. 

The set 9(A) is a subspace of the product space X x X, which is a Banach space 

with the norm: II (x, y) x + y for all x,y E X (other choices of the norm 

on I x X are possible; for example, 11 (x,y) 11= v'II x 112 + 11 y 11 2 ) An operator 

A in I is called closed if .9(A) is a closed subspace of I x I. It can be easily 

seen that an operator A in I is closed if and only if the conditions lim u = 

where u E V(A) for all n E .W and u E I, and lim AUn = v, where v E I, 

imply that a E V(A) and v = Au. Also it can be shown that if A E £(Z) then 

A is closed if and only if V (A) is closed. The space of all closed operators in I is 
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denoted by C(X). If A is an operator in I, the inverse graph 9'(A) is defined as: 

- {(Au,u) : u E D(A)}. 

It is clear that A is closed if and only if ,9'(A) is a closed subspace of the product 

space X x I. 

If A is an invertible operator in X, then clearly 

.9(A) = 

Thus A is closed if and only if A' is closed. 

EXAMPLE 1.1.5 Let {oj} be a sequence of complex numbers and suppose that 

either limji.+  I ai 1= 0 or lim I ai 1= oo. Let D be the infinite diagonal matrix 

with aj, I E N, on the diagonal (we write D = diag(a,,a2, ... )), and consider 

D as an operator (called a matrix operator) acting in £,, 1 < p < oo. Then D 

is closed in £. From the previous paragraph it is sufficient to prove that D is 

closed in the case 1im, aj I= 0. But this is clear since D E £() (in this case 

11 DII=max{Ja :iE N}). 

The notion of the dual of an operator will be used in the thesis. The space 

£(X, C) is denoted by I'. 

THEOREM 1.1.6 Let T be an operator in X. Consider the points (x') y ') E X'x/' 

satisfying the condition: 

y'(Tx) = x'(x) (1.1.2) 

for all x E V (T). Then x' is determined uniquely by y' if and only if V (T) is dense 

in X. 

See Theorem 1, page 193 of [34] for the proof. 
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DEFINITION 1.1.7 Let T be an operator in I with a dense domain V(T). The 

dual T' of T is defined as follows: the domain V(T') of T' is the totality of those 

Y' E I' such that there exists x' E I' satisfying equation ( 1.1.2). If y' E 

then T'y' E I' such that (T'y')(x) = y'(Tx) for all x E D(T). From Theorem 1.1.6, 

T' is a linear operator in I'. 

The following is due to R.S. Phillips. 

THEOREM 1.1.8 Let T be an operator in I with an inverse and suppose that 

V(T) and R(T) are both dense sets in X.- Then: 

(T') 1 (T')'. 

See Theorem 1, page 224 of [34] for the proof. 

1.2 Resolvents and Spectra 

Let A be an operator in I. A point ç E C is called a regular point of A if A - ci, 

is invertible and we write 

R(c,A) = R(c) = (A—cl)' 

The set of all regular points of an operator A is called the resolvent set of A 

and is denoted by p(A). The operator R(c, A) is called the resolvent operator .of 

A. Thus R(c, A) has domain I and range V(A). The complement ofp(A), that 

is, the set {A E C : A 0 p(A)} is called the spectrum of A and is denoted by a(A). 

The following theorem shows that the spectrum of an operator is a closed set 

in C. 
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THEOREM 1.2.1 Let A be an operator in I. Then the resolvent set p(A) is 

open in C. 

See Theorem 2, page 211 of [34] for the proof. 

In the finite dimensional case, the spectrum of an operator A consists of a 

finite number of points (the eigenvalues of A), but the situation is much more 

complicated in the infinite dimensional case. In this case it is possible that the 

spectrum can be an uncountable set or the empty set as shown from the following 

examples. 

EXAMPLE 1.2.2 Let I = C[a, b] be the space of all complex valued continuous 

functions on the closed interval [a, b]. Define an operator T in I as : D(T) is the 

set of all continuously differentiable functions on [a, b] and Tu(x) = 1 (that is 
dz 

T is the derivative of u with respect to x), for all u E V(T). Then o(T) = C. In 

fact for every A E C, the equation (T - AI)u = jJ.l - Au(x) = 0 has a nontrivial 

solution u(x) = e, which belongs to I. 

Let P1 = {u E P(T) : u(a) = 0}. Define the operator T1 in X as: P(Ti) = V1 

and Tiu(x) %j 1. Then the spectrum a(T1) of T is the empty set. In fact the 

resolvent R1(c) = R(ç, T1) exists for every E C and is given by 

Ri(ç)v(y) = e' faY ezv(x)dx. 

EXAMPLE 1.2.3 Let $ be the operator in 4, 1 < p< oo, defined as: D(51) = 4 

and Sz(x) = Sj(xi,x2,...) = (x2,x3 .... ) for all x = (x1,z2 .... ) E 4. Then u(S1) = 

{A E C :1 A 1≤ i} (see Example 1, page 283 of [28]). The operator S1 is called the 

left shift operator, 

For a compact operator the spectrum is a countable set. More precisely, we 
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have: 

THEOREM 1.2.4 Let K E £( X) be compact and X infinite dimensional. The 

spectrum of K is a countable set Al, A2, .. which includes A = 0. If A1 0, then it 

is an eigenvalue of K. If { A} is an infinite set, then limj. A1 = 0. 

See Theorem 6.1, page 248 of [ 9] for the proof. 

A compact operator and its dual (see Definition 1.1.7) have the same nonzero 

eigenvalues. 

THEOREM 1.2.5 Let K be a compact operator on I. Then any nonzero number 

is an eigenvalue of K if and only if it is an eigenvalue of K'. 

See Theorem 2, page 284 of [34] for the proof. 

The relation between the spectrum of an invertible operator and the spectrum 

of its inverse is given in the following theorem. 

THEOREM 1.2.6 Let A be an invertible operator in X. Then 

(a) Any nonzero complex number A is an eigehvalue of A if and only if A' is 

an eigenvalue of A'. 

(b) Thsets a(A) \ {0} = {z E a(A).: z 54 o} and o(A') \ {o} are mapped 

onto each other by the mapping z -+ z 1. 

Proof. (a) Let A be a nonzero complex number. The result follows from the 

equivalence of the following statements: Ax = Ax , A'(Ax) = A'(Ax) , x = 

A(A'x) , A'x = Ax. 

See Theorem 6.15, page 177 of [ 15] for the proof of part (b). 
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1.3 Stability Theorems 

Let T E C(X) and F be an operator in X. The basic problem in perturbation 

theory for closed operators is to study the relation between the spectral properties 

of T and T + F. The operator F is called the perturbation. 

In this section theorems investigating the stability, under small perturbations, 

of various spectral properties of closed operators in Banach spaces are stated. It 

is necessary to make precise what is meant by "small" perturbation. In this thesis 

we use the concept of the gap between the closed operators S = T + F and T in 

measuring the smallness of the perturbation F. 

DEFINITION 1.3.1 Let T and S be closed operators in X, and let 9(T) and 

9(S) be their graphs, respectively. 

Define 91(T) = {(u,Tu) E 9(T) :J (u,Tu) 11= 1}. 

Set ö(T,S) = sup{dist(w,9(S)) : w E 91(T)}, where dist(w,G(S)) denotes the 

distance between w and the closed set 9(S) in the product space I x I. 

Let S (T, S) = max{5(T, 5), S(S, T)}. Then S (T, S) is called the gap between T 

and S (or between S and T). 

Some properties of the gap between two closed operators are listed in the fol-

lowing theorem. 

THEOREM 1.3.2 Let T and S be closed operators in I. 

(1) If T E £(X) and (S, T) < II2 then S E £( X) and 

5-TII≤  (1 + T II2)S(S, T)  II  
1—/1+ 11 T 
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(2) IfS=T+A and AEf(X),then 

(T±A,T) Il All. 

(3) If A e(X), then 

11 (S+A,T+A) ≤ 2(l+11A112)S(S,T). 

(4) If T and S are invertible,then 

S(5',T') = b (S, T) 

and 

= (S,T). 

(5) If T is invertible with T:1 E £( X) and (S,T) < ( 1 + II T' 112)  then 

S is invertible and 8' E £(X). 

See Theorems 2.13,14,17,20 and 21 in Chapter IV of [ 15] for the proofs of 

(1),(2),(3),(4) and (5), respectively. 

The first spectral property we will discuss is the upper semicontinuity of the 

spectrum. The following theorem shows that th&spectrum of a bounded operator 

is upper semicontinuous. 

THEOREM 1.3.3 (See Remark 3.3, page 208 of [ 15].) If T E £(I), then for 

every e > 0 there is a 8 > 0 such that 

sup{dist(A,a(T)) : A E a(S)} < c, 

if 11 S - T 11< b. 

Proof. Let € > 0 and F = {ç E C : dist(ç,a(T)) ≥ €}. I' is nonempty since a(T) 

is a bounded set (if 1, ç I > 7' then ç E p(T)). Let F and S E £(X). From 
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the equality S - ci = (T - cl)[I + R(c, T)(S - T)] and Theorem 1.1.1, it follows 

that if 11 S - T 11 < 11 R(ç,T) ' then 

ç E P(s). (1.3.1) 

Now we show that the set {11 R(c,T) : c E rj has a positive minimum. 

Since for ç E p(T), 11, R(c,T) j— 0 as ç -+ oo then we can find ç' E I' and a positive 

M > max{I çj 1, 11 T I} such that 

II R(ç, T) II' > II R(c1, T) 11 - 1 (1.3.2) 

if > M. Since 11 R(, T) 11 is continuous in ç, then 11 R(, T) ir-' has a positive 

minimum 6 on the compact set r, = {ç E r :j I< M}. From Equation (1.3.2), we 

have S = min{II R(ç,T) : ç E }. Therefore from Equation (1.3.1), it follows 

that T C p(S) if 11 S - T Il< 8 = min{lI R(ç, T) [ : ç e }. From the definition of 

IF this means that there is a positive S such that sup{dist(A,c(T)) : A E a(S)) < € 

if 11 S - T Il< 5, and this proves the requirement. 

In the latter chapters we will be concerned with the case when the spectrum 

a(T) of a closed operator T contains a bounded part al(T) separated from the rest 

a2(T) by a closed simple curve r consisting of regular points of T. The following 

theorem shows the stability of the separated part a, (T) of the spectrumof T under 

small perturbations. 

THEOREM 1.3.4 Let T E C(X) and suppose that a(T) is separated into two 

parts al(T) and c2(T) by a closed curve r consisting of regular points of T as 

stated above. Then there exists a 8 depending on T and r such that for every 

S E C(X) with (S, T) < 6, a(S) is likewise separated by r into two parts or, (S) 
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and a2(S) (r itself running in p(S)). Also we have: 

dim .R(P(F,T)) = dim.R(P(r,S)) 

where 

P(r, T) =  1 f R(c,T)dc 
27r\/i  

and 

P(r, s) = 27r\/i f   R(c, S) dç. 

See Theorem 3.16,page 212 of [15] for the proof. 

DEFINITION 1.3.5 Let T E C(X) and suppose the spectrum a(T) is separated 

into two parts as stated in Theorem 1.3.4 . If r1(T) = . , A} is a finite set 

of distinct eigenvalues of T then around each Ai construct a small closed curve ri 

consisting of regular points of T and lying in mt r, where mt t' denotes the region 

enclosed by F. Also ri satisfies mt I`j if j z. If .P(r, T) = 2ir..JT fr1 R(ç, T) dç 

for all i = 1,. .. , n, then dim R(P(F, T)) is called the algebraic multiplicity of A1. It 

is clear that if Ij is another closed curve around Ai satisfying the above conditions, 

then dim R(P(1 1,T)) = dim(P(T1,T)). So the algebraic multiplicity of Aj does 

not depend on the choice of the closed curve F1 which satisfies the above properties. 

Also it can be proved that 

P(r1,T)P(F,T) = 
P(121, T) ifj=i 

0 otherwise 

But since P(r, 7') = P(r,, T)+ • +P(F, T), where P(r, T)is defined in Theorem 

1.3.4, then 

dim(P(F, T)) = dim ,(P(r1, T)) + + dim R(P(r, 7')). 
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dim (P(F, T)) is called the total algebraic multiplicity of the eigénvalues A1, . . . , 

of T inside 1'. 

REMARK 1.3.6 If in Theorem 1.3.4, dim(P(r,T)) = m < oo, then al(T) 

consists of a finite system of eigenvalues v'ith the total algebraic multiplicity in. 

1.4 Gersgorin Theorems for Finite Matrices 

/ 
X1 

Let C be the set of all column vectors x = , where z E C for all i= 1, ... ,n.. 

"xn) 

The set of all n x ii matrices with complex entries is denoted by Cnxn. 

A desciiption of regions of the complex plane containing the eigenvalues Ar,.. . , 

of a matrix A E Cn,n is presented in this section. 

REMARK 1.4.1 If A E CflXfl and A E C then the polynomial det(A - Al), 

where det(A - Al) denotes the determinant of A Al, is called the characterstic 

polynomial. It is clear that the eigenvalues , A, of A are the solutions of 

det(A - Al) = 0. Hence we have 

(—,)n det(A - Al) = II(A - A) = (A - A1) ... (A -  

It can be proved that the algebraic multiplicity of the eigenvalue A1, i E { i,. .. , n} 

of A defined in Definition 1.3.5 is equal to the number of times the factor A - A1 

appears in equation (1.4.1). 

The following theorem shows that the zeros of a polynomial depend continu-

ously on its coefficients. 
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THEOREM 1.4.2 Let ii ≥ 1 and let 

p(x) = aaf + - a1x + a0, 

a 0, be a polynomial with complex coefficients. Then, for every c > 0, there is 

a 6 > 0 such that for any polynomial 

q(x) = bx'2 + + b1z + b0, 

satisfying bn 0 0 and 

max{Ia — b1I:Oi≤n}< 6, 

there is a permutation r of 1,.. . , n with 

max{lAi — T(I)I: 1≤i≤n}<, 

where ),... , An are the zeros of p(x) and Al ,... , are the zeros of q(x) in some 

order, counting multiplicities. 

See Appendix D of [ 12] for the proof. 

We now prove one of the most useful and easily applied theorems that give 

bounds for the eigenvalues of finite matrices. This is known as the Gersgorin 

Theorem and was first published as recently as 1931. 

THEOREM 1.4.3 (See Theorem 1, page 371 of [ 16].) If A E CflXfl and aij denotes 

the elements of A, i,j= 1,. .. In and 

n  

Pi = E  I aij , 

j=1 

where denotes the sum from j = 1 to j = n excluding j = i, then every 

eigenvalue of A lies in at least one of the discs 

{zC:zLaiipi}, 
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i= 1,. .. , n, in the complex plane. 

Furthermore, a set of r discs whose union is disjoint from the remaining n. - r 

discs contains r arid only r eigenvalues ( counting their multiplicities ) of A. 

Proof. Let A be an eigenvalue of A with the associated eigenvector x. Then 

Ax = Ax or, .vriting this relation out as .n scalar equations, 

where x1,.. . , x72 are the entries of the column vector x. Let I x max{l x i = 

I,— , n}; then the pth equation in the above system gives: 

fl 72$ 

A — a H xp 1=1 E apjx5 1≤ E I apj I Jxj I ≤ 1 x I>lapj 1. 

I 1=1 

Since x 54 0 it must be that I x, 154 0, and so we have 

72' 

A — app I≤Pp>lapIl. 
j=1 

This proves the first part. 

To prove the second part it is sufficient to prove if 

r 
Sr = U {z E C: I z - aNN I ≤ PNJ , 

i=1 

where NiE {i,.. , n.} for all I = 1,. . . , r, is a connected set disjoint from the 

remaining n - r discs, then 9r contains precisely r eigenvalues of A (counting their 

multiplicities). 

Let A = D ± F, where D = diag(a11 ,. .. , a7272 ), and define A(t) = D + tF for all 

t E [0, 1]. From the first part, the eigenvalues of A(t), t E [0, 1], lie in the set 

72 

U{z E C : I z - as:l< tp}, 
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which is a subset of U 1{z E C :1 z— a1 I≤ p}. At t = 0, the eigenvalues- of A(0) = 

D are a11 ,. . . , a. Since the eigenvalues of a matrix are continuous functions of 

the entries of that matrix (this follows from Theorem 1.4.2), then the eigenvalues of 

A(t) are continuous functions of t, t E [0, 1].Thus each aii, I E {i,. .. , n}, is joined 

to an eigenvalue of A, denoted by Ai = Ai(l), by a continuous curve in the complex 

plane consisting of eigenvalues of A(t). Denote such a curve by { A(t) : 0 < t < 1}. 

Now we prove )s.j E 9, for all i E {N1,. Nil — ,,  NJ. If there were k E {N1,.. . , Nr} 

such that ) k 9,., then from the first part' Ak is in one of the Gersgorin discs 

{z E C z - a11 p} where i E {i,. . . , n} \ {N1,. . . , NJ. Now the intermediate 

value theorem can be applied to the continuous curve {Ak(t) 0 ≤ t < 1) defined 

on the connected set [0, 1] to deduce that there is a t,k E (0, 1) such that Ak(tk) 

U 1{z E C :1 z - a11 pi}, which is impossible. Thus 9r contains at least r 

eigenvalues of A. Similarly the intermediate value theorem can be used to prove 

that A1 9r for all I E { 1,...,n} \ {N1,. .. ,N,.}. Hence 9,. contains precisely r 

eigenvalues of A (counting their multiplicities since we may have A1(1) = A(1) for 

i,jE {N1,...,N,.} and ij). 



Chapter 2 

Gersgorin Theory for Diagonally Dominant 

Infinite Matrices with Bounded Perturbations 

In this chapter we extend Gersgorin theory applied to the set of all finite square 

matrices (see Theorem 1.4.3) to a set of diagonally dominant infinite matrices with 

bounded perturbations. - 

Let 4 = (a1) be a matrix operator defined in £,, 1 < p ≤ 00. 

.A is called row diagonally dominant if for all i E )I, 

oo 

> E I a 
j=1 

where >' I aij denotes aij D- aii 

A is called colmun diagonally dominant if for all j E .W, 

> I a 

where V'00 aij I denotes aj I) - 

2.1 Notations and Preliminary Results 

For a given matrix operator A = (a) in £,, 1 < p < oo, and x E V(A), the ith 

component of the vector Ax is denoted by (Ax). We define the row and column 

sums ofA: 
CO 1 00 1 

P1=>I Iai,I,Qi=I Iad  
:1=1 j=1 

20 
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and the corresponding Gersgorin discs (where they exist): 

Ri = {z E C :1 z -  aii  I≤ P}, Ci = {z E C : 1 z -  aii  l≤ Q}. (2.1.2) 

The following lemma gives the relation between the norm of a bounded matrix 

operator written in a block matrix form and the norms of its submatrices. 

LEMMA 2.1.1 Let F be a matrix operator in £,, 1 < p oo, and suppose that 

F is written in the block matrix form: 

/ 
F11 F12 

F21 F22 ) 
where F11 is the (n x ri) leading submatrix of F. 

Then FE £(t) if and only if F12 E F21 E £(C,) and F22 E £(t). 

Moreover if F is bounded, then 

2 

11 1' jj≤ L 11 F 11 
id=1 

for all i,j = 1, 2. 

Proof. Suppose F12 E £(, C'), F21 E .C(C'2,4) and F22 E £(). Let x E 

2;1 
£,. Writing x , where x1 E,Cn,we find from the assumption that 

X2 

F11x1 + F12x2 E C' and F21x1 + F22x2 E t. Since Fx = I F11x1 + F12x2 then 

F21x1 + F22x2 

Fx E £. Thus V (F) £,. Hence F can be written in the form: 

/ \ / 
F11 0 00 0 F1 00' 

F= + + + (2.1.3) 
O O F21   00 0 F 2 

where each block matrix in the right hand side of equation (2.1.3) has domain 

£.(We did not distinguish between the zero operators written above though they 
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do not have necessarily the same domains or ranges.) From the assumption and 

equation (2.1.3) , it follows that F E £( e,,) 'and 11 F F11 1 + I! F12 Jj + 1 F21 11 + 

1 F22 11-

Now suppose F E £(4).The submatrices of F can be written as 

F11 

F21 

F12 = 

F22 

/ 
F11 F12 

F22 j • Oooxn ) 

F11 F12 Inxn 

F21 F22 ,, Oooxn 

F11 F12 Onxoo 

F21 F22 

/ 
F11 F12 Onxoo 

F21 F22 

F21 

/ 

(2.1.4) 

(2.1.5) 

(2.1.6) 

(2.1.7) 

The indices under the submatrices of the block matrices to the right and to the 

left of F in each eqution of the above four equations indicate the size of these 

submatrices. For example, Onxoo is the zero matrix operator from 4 into C. 

Since in each equation of the above four equations the block matrices to the right 

and to the left of F are bounded (the norm of each one is equal to one), then 

the boundedness of F implies the boundedness of each submatrix Fij and that 

II F 11 , i,j = 1,2. This completes the proof of the lemma. 0 

DEFINITION 2.1.2 The Kronecker delta öij is defined by: 

5ij = 
1 0 otherwise. 

The following theorem will be used in the proof of Theorem 2.4.1. 

1 ifj=i 
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THEOREM 2.1.3 Let A = (a) be a matrix operator in £, 1 < p < co, D = 

diag(aii ,a22 ,...) and assume that 

(1)ajOfora11iE N and laj1 I—ooasi--*oo. 

(2) For every i E N there exists cr [0, 1) such that 

P=>. I aii  
2=1 

(3) The matrix operator F ((1 - 6)a) is in £(e). 

(4) Either the matrix operator I + FD' has a bounded inverse on £,, or the 

matrix operator I + D'F has a bounded inverse on 

Then if A is written in the block matrix form: 

- Al2 A ( A) ()\ 

(n) (n) 
A21 A22 

(2.1.8) 

where is the leading n x n submatrix of A, has a bounded inverse for 

every ii E N, and there exists M > 0 such that 11 (A)' 1$ M for all n E N 

(that is, (A11 )' is uniformly bounded in n). 

Proof. We consider the case (I + D'F)' E £(t). The other case (see 

hypothesis (4)) has no new features. Suppose A is written in the matrix form given 

in equation (2.1.8). From Gersgorin's theorem for finite matrices (Theorem 1.4.3), 

(n) 
the eigenvalues of A11 lie in the Gersgorin discs {z E C :1 z -  aii  I≤ 

i = 1,. . . , n. Since each one of these discs does not contain the origin (thig follows 

from hypothesis(2)), then 0 is not an eigenvalue of But since every point of 11 

the spectrum of a finite matrix is an eigenvalue of this matrix, then 0 is a regular 

point of Thus (A)' exists. For every n E N, write = Dil + Fil 
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where = diag(a11 ,. 

be a matrix operator in 

we get: 

Therefore, 

I+EF= 

For every n E .W, let 

' S 

0 

0 0 

£,. Then by writing F in the block matrix form 

F 

E F= ( (D)-'F11 11 12 

/  F11 (n) F12( n) 

F (n) 
21 F22 

I + (D)'F (D)'F ) 

I 

where I, denotes the n x n identity matrix. 

Now I + EF = I + D 1F - (D 1 - E)F, or by hypothesis(4), En 

 11 nn 

(2.1.9) 

I + EF = [I - (D' - E)F(I+ D'F)'j (I + D 1F); (2.1.10) 

00 
Since D' where n n+D' = diag(a1+1,a2 
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for all n ≥ n1. Thus from Theorem 1.1.1, the operator I—(D-'--E)F(I + 

has a bounded inverse on ep and 

11 (I - (D' - E4F(I + D'F)')' 11 
1 

- 1— - F Jill (I + D-' F)-1 II 
≤ 1±F 11 

for all n > n1. Hence I + EF has a bounded inverse on £ and 

11 (I + EF)' II (1+ 11 F ) 11 (I + D-'F)-1 II 

for all ii > n1. From equation (2.1.9), we have: 

(I+EF)'= 
+ (D )-1 F)' Y 

11  

0 I ) 

(2.1.12) 

where Y —(D))F(I + (D))_1 Fj'j  (notice that for all n E .A/, I + 

(n) 
(D1)'F 11 has an inverse on C, since A11 = D)(I+(D)'F) and (A)_ 1 

exists). Hence from Lemma 2.1.1 and inequality (2.1.12), we have 

II (I.+ (D11 ≤ (1+11 F ) (I + D'F)1 II (2.1.13) 

for all n ≥ n1. Thus from = D11 (I + (Dj) 'F), n E V and inequality 

(2.1.13), it follows that 

II (A II≤ (1+11 F II) Ii ('+ D-'F)' II 

for all n ≥ n. Now the proof is completed by taking 

M = max{ (1+ 11 F II) 11 (1+ D1F)' 1111 D' 11, max{lI (Au) ' II:1 <i < ni-11 }. 

0 

REMARK 2.1.4 If hypothesis (2) in Theorem 2.1.3 i§ replaced by column diag-

onal dominance, the same result follows. 
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2.2 Generalized Convergence 

A sequence of closed operators {T} in a Banach space X is said to converge to 

the operator T E C(X) in the generalized sense if 6(TT) -* 0 as it -* oo (see 

Definition 1.3.1 for the definition of the gap between two closed operators). In 

this case we write T -4 T. Some of the properties that connect the convergence 

in the generalized sense with bounded operators and their norms are listed in the 

following theorem. 

THEOREM 2.2.1 (See Theorem 2.23, page 206 of [ 15].) Let T, T, E C(X),n 

1,2..... 

(1) If T' exists and is in i(X) , then T, -4 T if and only if T; exists and is 

in £( Z) for sufficiently large it and T;' - T' I-- 0 as it -+ oo. 

(2)IfT-4T and ifFE(X), then T+F-T+F.. 

Proof. (1) Suppose T 1 exists and is in £( X). Assume that the sequence 

{T, } converges to T in the generalized sense. Then there exists it1 E JV such that 

(T., T) ≤ (1 + 11 T' II2h12 for all it ≥ n1. Hence from Theorem 1.3.2 part(5), it 

follows that T' exists and is in £(X) for all n > it1. To prove II T;' - 11 - 4 0 

as it - oo we first notice from Theorem 1. 3.2 part (4) that 8(T', T) = 6(T;', T') ≤ 

(1 + U T' I2)_112 for all it > it1. Hence fiom Theorem 1.3.2 part(1), we have for 

all n ≥ r 

- T' jj<  (1+11 T' 112) b(T;', T') (2.2.1) 

- 1 - (1 + 11 T 112)1/2 S(T-1, T 1) 

But since 6(T,T) = ö(T;',T') (by Theorem 1.3.2 part(4)) and 8(T,T) ≤ 

T), then the right hand side of inequality (2.2. 1) converges to zero as it - 00 

and this proves the "if" part of ( 1). To prove the "only if" part assume that there 
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exists i?.1 E )I such that for all n ≥ ri1, T;' exists and is in £( X) and suppose 

II T;' - T' -* 0 as ii. - oo. Writing T;' = T' ± (T;' - T'), n. ≥ n1, we find 

from Theorem 1.3.2 part(2) that 

= + (T 1 - T'), T-1):511 T' - T' 11. 

But since 11 T'— T 1 -* 0 as n - oo, then from Theorem 1.3.2 part(4) it follows 

that (T, T) —+ 0 as n. - oo. This completes the proof of part(1). 

(2) Let TN -4 T and F E £(t). Then from Theorem 1.3.2 part(3) we have: , 

+ FT + F) ≤ 2(1 + 11 F 2)(T,T). 

Now the result follows since 2(1 + 11 F 112)(T,T) -+ 0 as ii -+ 00. 0 

2.3 The Dual of a Matrix Operator 

In Section 1.1 we have defined the dual of an operator with dense domain (see 

Definition 1.1.7). In this section we show that for a matrix operator T in £, 1 < 

p < oo, with domain containing the unit coordinate vectors e1, e2,..., the dual T' 

in £ and the transpose Ttr in tq, where 1/p + 1/q = 1, have the same eigenvalues. 

First we need the following theorem. 

THEOREM 2.3.1 Given f E t,, 1 ≤ p < oo, there exists a unique li = (ii', liz .... ) E 

£q,1/p+1/q1,(qoo when p1), such that for all (ci,z,...)Ep, 

00 

f() = •07k- (2.3.1) 
k=1 

Moreover, f and li = (f(ei), 1(ez), ..) (the ith component of ej is one 

and all of its other components are zeros, for every i E A!). 
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Conversly, given (p1, 772)...) E tq, equation(2.3.1) defines an f E 

See Theorem 5.2, page 143 of [28] for the proof. 

REMARK 2.3.2 For every f E £,, 1 < p < oo, set 

J(f) = (f(ej),f(e2),...). 

Then from Theorem 2.3.1, it is clear that J is a linear operator on t mapping £ 

onto tq, 1/p + 1/q = 1, and 11 J(f) 11=11 f II for all I E t. 

THEOREM 2.3.3 Let T = (t) be a matrix operator in £,, 1 < p < oo, with 

domain V(T) containing the unit coordinate vectors e1, e2, Then D exists and 

for every y' E £, y' E V(T') if and only if J(y') = Y E V(Tr) ( T1ris an operator 

in tq ). In this case we have 

J(T'y') = Thy. 

Proof. Since ej E V(T) for all i E V and span{ei,e2 .. .. } is dense in £,, then 

V(T) is dense in £. Thus by Theorem 1.1.6, T' exists. 

Let y' E V(T') and z = (z1,z2 .... ) E V(T). Define for all n E .1V, = 

(zi). .. 'Zn , 0,0,...). Since E span{e1,. . . , en} , then E V(T) and 

(T'y')(z(')) = (2.3.2) 

If J(y') = y = (y1,y2, ... ) then from equation (2.3.2) and Theorem 2.3.1, we have 

(T'y')(z()) = y'(Tz) = = (2.3.3) 
i1 j=1 j=1 i=i 

Since T'y' is a continuous linear functional on £ (that is, if Un u as n -4 00 

in £,, then (T'y')u -* (T'y')u as ii —* oo ) and - z as n — 4 00, then from 

equation (2.3.3), we have: 

(T'y')(z) = 
00 00 

lim (T'y')(z()) = 
j=1 i=1 

(2.3.4) 



29 

From Theorem 2.3.1, J(T'y') = ((Ty) (el), (T'y')(e2),...) E tq• But from equa-

tion(2.3.4), for all k E .W we have: 

Co 

(T'y')(ek) = > tjkYj. 

Hence J(T'y') = (Z?01 Z= t1y,'1 t12y1,...) E tq• This proves that J(y') = y E 

l(Tt1) and J(T'y') = Tty. 

Now let y = (yr, Y2,...) E V (T) To complete the proof of the theorem, we 

should prove y' = J-1(y) E P(T'). Let x' = J_l(Tt'y). Then x' E t. For all 

Z = (zi,z2 .... ) E V(T), define the linear functional 

00 Y (z) = > Yi (Tz). 

Then from Cauchy-Schwartz inequality, it follows that for all z = (z1, z2,...) 

V(T) and n E M we have: 

Co 1/p 

YTI  - YTI  1≤ II y 11,(E I (Tz) - (Tz) I) 
i=1 

E 

(2.3.5) 

where = (z1,.. . , z,, 0,0,.. .). Let Tm, m E .W, be the matrix operator in £ 

whose first in rows coincide with the first m rows of T and all other elements of 

Tm are zeros. We have: 

11 Tz.— Tz 1 < II Tz - TmZ 1p + II Tm(Z - z) II + II (Tm - T)z II• 

By choosing i and n large enough, the right hand side of the above inequality can 

be arbitrary small and hence from inequality (2.3.5) it follows that 
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Now for all z = (zi,z2 .... ) E 27(T), we have: 

00 fl 00 

x'(z) = > z(Ty) = urn Y z- (Y' tj) = 
i=1 

n—+ 
oo—  liM y(z()) 

This proves that y' E 27(T') and x' = T'y'. This completes the proof of the theorem. 

Now we show that with the hypotheses of Theorem 2.3.3, the dual T' of an 

operator T and its transpose Ttr have the same eigenvalues. 

COROLLARY 2.3.4 Let T be a matrix operator in 4, 1 ≤ p < oo, with domain 

27(T) containing the unit vectors e1, e2..... Then T' and T (as a matrix operator 

in £q, 1/p + 1/q = 1) have the same eigenvalues. 

Proof. Let A E C be an eigenvalue of T'. Hence there exists a nonzero element 

y' in £, such that T'y' = Ay'. Let J(y') = y. We have y 0 0 since y' 54 0 and J is 

one-to-one (this follows from 1 J(f) 11=11 f 11 for all f E £). From Theorem 2.3.3, 

E.V(T) and J(T'y') = Ttry. But since J(T'y') = J(Ay') = AJ(y') = Ay and J 

is one-to one, then Ttry = Ay and this proves that A is an eigenvalue of Tb'. 

Similarly it can be proved using the inverse J' of J (J is invertible since it 

is one-to-one linear operator mapping £ onto £q) that if A is an eigenvalue of T, 

then A is an eigenvalue of T. 0 

2.4 The Main Theorem 

In this section we extend Gersgorin theory (see Theorem 1.4.3) to row diagonally 

dominant infinite matrices with bounded perturbations.. 

First we need the following lemma. 
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LEMMA 2.4.1 Let A = (a5) be a matrix operator in £, 1 < p < oo such that 

Ofor all iE ii, and let D = diag(a11 ,a22 ,...). 

(i) If the domain of the matrix operator F = ((1 - Sj)a 5) contains the domain 

of A, thenA can be written in the form: A = (I+F1)D, where F1 = (( 1'—.515)a 1a5). 

(2) If I aii 1> 1 for all but a finite number of indices i, then A can be written in 

the form: A = D(I + F2), where F2 = ((1 - Sjj)a'a 5). 

Proof. (1) Suppose V(F) D V(A). Let x E D(A). Then x E V(F). Since 

aiixi = (Ax) - (Fx)1, where xi is the ith component of x, then for p < 00, 

00 00 CO 

(E I aiixi l') 'IP ≤ (E I (Ax) 1P)1/P + (E I (Fx) P)'/P < 00 
i=1 1=1 i=1 

and for p = oo, i E .W we have: 

I≤ sup{I (Ax)5 J: j E )I} + sup{I (Fx)5 I: j E )f} < co 

This proves that x E V(D). Also we have: 

00 

((I + F1)(Dx)) = + (1 - S5)a/a 5)a55x5 
1=' 

Hence x E V((I + F1) D) and 

Ax = (I + Fi)Dx. (2.4.1) 

Conversly, if x E V((I + F1)D) then ((I + Fi)(Dx)) = a5x5 = (Ax)i and 

hence x E V(A). This proves 1(A) = 19 ((1 + F1) D) and from equation (2.4.1), the 

result follows. 
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(2) Suppose I aij I ≥ 1 for all but afinite number of indices i. If x  D(D(I±F2)), 

then ((I + F2)x)1 = x1 + 0=1la l a lJ x 5, and so (D (I + F 2)x )1 = a11x1 + =I ajjXj 

(Ax)1. This proves x E V(A) and 

D(I + F2)x = Ax. (2.4.2) 

On the other hand, if x E V(A) then (Ax)1 = a15x5 = a11 a 'a5x 

a11 ((I + F2))1. So ((I + F2)x)1 = (Ax)1, and since a1 J> 1 for all i ≥ no for 

aiisome no E N, then x E D(I+F2). Now (D(I+F2)x) i = a11((I+F2)x)1 = (Ax)1 and 

this proves x E D(D(I+F2)). Hence V(A) = V(D(I+F2) and from equation (2.4.2), 

the result follows. 0 

Now we state and prove the main theorem. 

THEOREM 2.4.2 Let A = (a15) be a matrix operator in 4, 1 < p < 00, and 

assume that - 

(1) a11 0 O for all iE N and lajj l_*oo asi-+oo. 

(2) There exists a a E [0, 1) such that for all i E N: 

00 

Pj=IajjI=ajIa11I,a1E[O,c]. 
5=1 

(3) Either the matrix operator I + F1, where F1 = ((i - 6j5)a, 1a15 ), has a 

bounded inverse on. 4 and the domain of the. matrix operator F = ((1 - 

contains the domain of A, or the matrix operator I+F2, Where F2 = (( 1-6j5)a'a15 ), 

has a bounded inverse on 4. - 

Then A is a closed operator with a compact inverse and any point of the spec-

trum a(A) of A is an isolated eigenvalue of A that lies in the set U 1 R1. 

Furthermore, if F = ((1-S1J)alJ) E £(4) then any set of r Gersgorin discs whose 
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union is disjoint from all other discs intersects o(A) in a finite set of eigenvalues of 

A with total algebraic multiplicity equal to r. 

Proof. Let D = diag(a,,, a22,.. .). We consider the case (I + F2)-' E 

(From hypothesis ( 1), there is no E .W such that I ann j≥ 1 for all n ≥ no. Hence 

from Lemma 2.4.1, A = D(I + F2).) The other case (see hypothesis (3)) has no 

new features (the additional condition V(F) D D(A) is only made to ensure that 

A = (I + F,)D, see Lemma 2.4.1). The theorem will be established in five steps. 

The proof of step[3] can be found in Theorem 1 of [26]. 

Step [ 1] A is a closed operator with a compact inverse. 

The operators En = diag(aj,1 . .. ,a,O,O,...), n  .,V, are ompact on £, since 

dim R(E) < 00 for all n E .AI (see Remark 1.1.4). But since .D'—E 

0, then from Theorem 1.1.3, D 1 is compact on £,. But since A = D(I+F2), then 

from hypothesis (3) and Theorem 1.1.2, it follows that A' = (I+F2)'D' exists 

and is compact on £,. As A' is closed (D (A-') is the whole space £,), so is A. 

Step [2] If A E or(A) then A is an isolated eigenvalue of A. 

Since A' E £(t) (see step [ 1]), then 0 E p(A). Thus if A is in a(A) then 

A. 0 and, from Theorem 1.2.6 part(b), we have A' E a(A'). Then from 

the compactness of A' and Theorem 1.2.4, A' is an eigenvalue of A'. Thus 

from Theorem 1.2.6 part(a), A is an eigenvalue of A. If A were not isolated then 

there would be a sequence of distinct eigenvalues of A 1 converging to the nonzero 

eigenvalue A' of A' which is impossible by the compactness of A'. 

Step [3] If A is an eigenvalue of A then A E U, )j (the union of the discs 

defined by the row sums of A). 

As A is an eigenvalue of A, there is a nonzero vector x E £, such that Ax = Ax. 
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Writing x = (x1,x2 .... ), we have a5 = Ax, for all I E N. This implies that, 

for all I E N, 
00 

IA — aiiIIxil≤ E aij  (2.4.3) 
5=1 

Now consider the cases p < oo and p = 00 separately. 

Case (i) If p < oo, let N be an integer for which I ZN 1= max{I x I E N}. 

We have ZN 0 0, since x 0 0. Setting i = N in inequality (2.4.3) we get: 

00' 00 1 

and hence 

IA — aNNIIxNI< IaNiIIxaI<IxNI ( jay I) 
5=1 5=1 

A—aNNI< aNjI=PN. 
j=1 

Thus A E RN and so A E U 1 R. 

Case (ii) If p = oo, for any e > 0, define 

R(€) ={ZEC:lz—ajj P(1+€)}. 

We first prove that A E U 1 R1(E). Let e E (0, 1). Then there exists an m = m(E) E 

N, depending on c, such that 

IZnI>IIZIIo(1 ) 

Thus from inequality (2.4.3), with I = m, we get: 

amm 11 xm j< PrnjZmI  
(1 -  26) 

and hence I A - amm 1< Pn,(i + €). Thus A E Rm(€) and so A 

is E (0, 1), and hence for all € > 0. 

E U R(€) for 
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Now let a 0 0 be the constant of hypothesis (2), and let S E (0, (1 - c)Jc). 

Then a(1 + 8) < 1, and if z E Rk(S), 

I  >1 akk I —Pk(1+S) ≥ Iakk I (i—a(1+8)). 

But the right hand side diverges to infinity as k -+ oo. It follows that each disc of 

{(S)} has nonempty intersection with only finitely many discs of the sequence. 

That is, there is a finite nonempty subset of positive integers, say 10, such that 

A E R(6) if and only if 1 E. fo (For future reference, we note that this step of the 

argument holds for all p, 1 < p oo.) Hence for any € 6 (0, b), A 6 UEIO R(€) and 

in the limit as e - 0, we obtain A E U,,0 Ri C U 1 R. 

This establishes the first part of the theorem. Now suppose F 6 

Step [4j There exists a sequence of compact operators converging in norm to 

A 1. 

Write 

A= 

(  A1 (n) Al2 (n) 

J I (n) (n) 
A21 A22 

where is the n x n leading submatrix of A. Let D be the diagonal of 22 

and define 

An All (2.4.4) 

21 D 

for all n 6 Al. Let £ and b% e the Gersgorin discs and radii of i%  = 

1,. . . , n. From Theorem 2.1.3, 11 is invertible for each ii 6 Al. Hence An is 

invertible for each n E Al. Hence An is invertible for every ii 6 ).l and 

(A)' 0. 

_D'A(A))_' D;' 
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(n) 
Since A21 is the submatrix ( Oooxn 

\. 000xfl ) 

then from Lemma 2.1.1 it follows that E £(C,t) and II< F for 21 

all n E N. Hence every submatrix of A' is bounded and, from Lemma 2.1.1, it 

follows that A' E £(). Now we have: 

of  and FE £(), 

— An  ' = A-' (An — A) An  

0 —A) (A))' 0 

0 Snn D;1Aj(A'}) ,, 
=A' 

where S = D - A22 (n) .Sn is bounded in £, and 11 Snn II≤II F 11 for all n € N, 

since it is the restriction of the submatrix 

` 22 = (o00><, 100 x oo• ) 
of F (see Lemma 2.1.1) to the subspace V(A) and FM E .C(e,), F22 ) F 11 

(see Lemma 2.1.1). Also E £(t,Cr) and II≤ F for all n E N since it 

is the submatrix 

( F I 0flX00 
00 ) 

of the bounded operator F E £(t) (see Lemma 2.1.1). We obtain 

A — fiA1 A 1 
A n' I 

AD'A(A)' —AD' 12 n 21 11 12 n 

—SnnD;'A(Ay' SD;' 

But since (A)_1 is uniformly bounded in ri (Theorem 2.1.3) and D n IH 0 

as ii —* oo, then each of the matrices in the block matrix operator in the right 



37 

hand side of the above inequality converges to zero in norm as ii — 00. Since 

A' E £(t), it follows that A' —* A' as n —* 00. To complete the proof 

of this step it remains to show that A' is compact for every n. E M. Since 

dim R((A)') < 00 then (A11 )' is compact (see Remark 1.1.4), and from The-

orem 1.1.2, D'A(A)' is compact. The sequence n 21 11 

is a sequence of compact operators, since the range of every operator in the se-

quence is of finite dimension. Hence from Theorem 1.1.3, D;1 is compact since 

.. converges to D' in norm as m -+ oo. Thus 

every matrix in the block matrix operator A' is compact. Let K, = (A)', 

K2 = —D;'A21 (A)' and K3 .= D', and suppose {x()} is a sequence of 

bounded vectors in £,. Write 

where x is a vector in C n for all rn E N. We have 

(in) 

K2x +K34m) 

From the compactness of K1, there is a subsequence {rn'} of {m} such that 

{ K,x"'} converges. From the compactness of K2, there is a subsequence {m"} 

of {m'} such that {K2xmh')} converges. Finally from the compactness of K3 there 

a subsquence {m"} of {m"} such that {K34mh")} converges. It i clear that the 

sequence {A1x(m ... )} converges and this proves the compactness of A'. 



Step [5] Let S = U 1 Rk, k1 < < k,., be disjoint from the other Gersgorin 

discs. Then the spectrum of A in S is a finite set of eigenvalues of A with total 

algebraic multiplicity equal to r. 

From step [3], there exists a <5 > 0 such that each disc in the sequence { R,(<5)} 

has a nonempty intersection with only finitely many discs of the sequence. Hence 

a Jordan closed curve r can be drawn so that S = U 1 £ k is a proper subset of U, 

where U is the interior of the set bounded by r, and U fl £ = 0 (= the empty set) 

if j {k1,. . . , kr} (Ui denotes the closure of U ). Let be the Gersgorin discs of 

A for all i,n E .W, where A are given by equation (2.4.4). Since R C R , then 

the set = U 1 R is a proper subset of U and Ui fl R$ =0 if j 0 {k1,... k,}. 

If m is an integer in [k,., oo), then the Gersgorin theorem for finite matrices applied 

to implies that the eigenvalues of in Ui lie in R" = ui j' and their 

total algebraic multiplicity is equal to r. Hence dim R(P(r,A)) = r, where 

'P(r,4)) —1  
2Tfr u11m) 

(2.4.5) 

and 'm is the m x in identity matrix operator. Since the eigenvalues of Am are 

the eigenvalues of together with ≥ m + 1, and from the compactness of 

A;' every point in the spectrum of Am is an eigenvalue of Am, then r consists of 

regular points of Am. Similarly F consists of regular points of Am, where 

(A ) o 

0 Dmj 

Since (Dm) fl Ui = O then for every z E £ it is clear that (Dm - c1) -'z is differ-

entiable in ç on U and continuous in ç on F. Then from Theorem 19.2 of [ 1], we 
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have 

1 (Dm - c1) -'z d = 0. (2.4.6) 
Jr 

From the inequality 

- .An-' A 1 - A' 11+1 A n ' 

and step [4], it follows that 

limoo ILA' -•A' 0. 

Thus from Theorem 2.2.1 part ( 1), A -4 A. Hence from Theorem 1.3.4, there 

exists a positive integer m0 ≥ kr such.that for all m ≥ m0, 

where 

and 

But since for all x = 

dim (P(F,A)) = dim R(P(r,iL)), (2.4.7) 

• P(r,Am) 
—1  

2r 

?(r,A) =  

—1 f  

I (') 
E £,, where (') E Ctm, 

x() 

-1 fr2r/i 

—1  frr 
27r/ 

/ (A - ci) ' 0 

0 (Din - 

(A(,tm) - ci) (') 

(Dm - cI) 1x(2) 

dç, 
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hence from equation (2.4.6) it follows that for all in ≥ kr, 

dim R(P(F, A)) = dim R(P(r, A))). 

Therefore from equations (2.4.7) and (2.4.8), we have 

dim R(P(F,A)) = dim (P(r,A)) = r 

(2.4.8) 

for all m ≥ m0. So the spectrum of A in U is a finite set of eigenvalues of A with 

total algebraic multiplicity equal to r. Now the result follows since every eigenvalue 

ofAinUisinS. D 

REMARK 2.4.3 It is clear that we have used hypotheses ( 1) and (2) only in the 

proof of step [3] of Theorem 2.4.2 

REMARK 2.4.4 At p = , hypotheses (1) and (2) of Theorem 2.4.2 imply 

hypothesis (3). In this case the matric operator F2 is bounded on £ and 11 F2 11< 1, 

and so I+ F2 has a bounded inverse on t (see Theorem 1.1.1). The boundedness of 

F2 follows from the fact that a matrix operator T = (t) defined in 4, is bounded 

on £ if and only if 
00 

M=sup{>t 5 I:IE E}<oo. 
j=1 

In this case M = 11 T Moo (see [8]). 

REMARK 2.4.5 From step [5], it is clear that for a matrix operator A satisfying 

all the hypotheses of Theorem 2.4.2, if r Gersgorin discs of A are disjoint from the 

remaining Gersgorin discs then the spectrum of A is nonempty. 

When all the Gersgorin discs are disjoint we obtain: 

COROLLARY 2.4.6 Let A = (a11) be a matrix operator in, 1 ≤ p ≤ oo, and 

assume that 
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(1) aO for all iEE and ja—*ooasi--*oo. 

(2) .There exists a a E [0, 1) such that for all i E )I 

00 

P1 = >1 I aij I= ai I a1 1, ui E [0,a). 
j1 

(3) The matrix operator F = ((1 - 6j1)a 1) E £(t9) and either (I + FD')' 

exists with (I+FD')' E £(t) or (I+D 1F) 1 exists with (I+D'F)' E £(t). 

(4) Ia—akk I> P,+Pk for all i,kE 

Then the spectrum a(A) of the closed operator A is nonempty and consists of 

a countable set of eigenvalues {A}. For every i E V , Ai E Rj and Ai is a simple 

eigenvalue of A. Moreover if A is real (that is, aij are real numbers for all i, j E 

so are the ),. 

Proof. It is clear that, with the exception of the last statement, all the conclu-

sions of the coro11ry follow from Theorem 2.4.2. This follows from the fact that, 

if A is real then any eigenvalues arise in conjugate pairs, or they are real. Since 

the discs are symmetric with respect to the real line and each contains precisely 

one eigenvalue, conjugate pairs can not arise. 0 

2.5 The Dual Theorem 

In this section, we consider the case of column diagonally dominant infinite matrices 

with bounded perturbations, and develop Gersgorin theory for such matrices. 

If p ≥ 1 in Theorem 2.4.2, then the following theorem can be considered as 

a dual of Theorem 2.4.2 where the row diagonal dominance (hypothesis (2)) is 

replaced by column diagonal dominance. Recall the definitions of equations (2.1.1) 

and (2.1.2). (There is a corresponding dual statement for Corollary 2.4.6.) 
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THEOREM 2.5.1 Let A = (a1) be a matrix operator in 4, 1 < p < oo, and 

assume that 

(1) a5 O for all jE M, Ia oo as j 00. 

(2) There exists a a E [0, 1) such that 

00' 

= aij I= ci aj , a E [O,cr]. 

(3) Either the matrix operator I + F,, where F, = ((1 - Sj)a 'a), has a 

bounded inverse on 4 and the domain of the matrix operator F = ((1 - 

contains the domain of A, or the matrix operator I+F2, where F2 = ((1-8j)a'a), 

has a bounded inverse on 4. 

Then A is a closed operator with a compact inverse and any point in the 

spectrum a(A) of A is an isolated eigenvalue of A that lies in the set U 1 C. 

Furthermore, if F = (( 1—Sj)a 1) E £ (4) then any set of r Gersgorin discs whose 

union is disjoint from all other discs intersects c(A) in a finite set of eigenvalues of 

A with total algebraic multiplicity equal to r. 

The proof of Theorem 2.5.1 is the same as that of Theorem 2.4.2, except in 

step [3], so we confine our discussion to that step. Namely: 

If A is an eigenvalue of A then A E U, C (the union of the discs defined by 

the colmun sums of A). 

Since Qj < co for all j E )'I, then the unit coordinate vectors e1 E V(A) for all 

j E )I. So V(A) is dense in 4 (as p < oo) and using Theorem 1.1.6, it follows that 

the dual A' of A exists. As in step .[ 1] of Theorem 2.4.2, A-' is compact on 4. 

The boundedness of A-' implies A 0 0 and, from Theorem 1.2.6 part (a); )c' is an 

eigenvalue of A-'. Now we may use Theorem 1.2.5 to deduce from the compactness 
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of A' that A-' is an eigenvalue of (A-')' ((A-')' exists since V(A-') = 4). But 

since (A) = V(A1) = 4 and P(A) is dense in 4, then from .Theorem 1.1.8, 

(A')' exists and (A')-' 1)_ = (A')'. Hence A-' is an eigenvalue of (A') 1 . So from 

Theorem 1.2.6 part(a), it follows that A is an eigenvalue of A'. Thus from Corollary 

2.3.4, A is an eigenvalue of the, transpose A of A, where Atr is an operator in tq, 

It is easily seen that AtI. satisfies hypotheses ( 1) and (2) of Theorem 2.4.2 on 

tq• Using the same proof given in step [3] of Theorem 2.4.2 one can prove that A 

belongs to the Gersgorin discs defined by the rows of A and the result follows. 

(As mentioned in Remark 2.4.3, we used hypotheses ( 1) and (2) only of Theorem 

2.4.2 in proving step [3] of that theorem.) 1j 

A similar result on £ to that given in Theorem 2.5.1 is introduced in the 

following theorem. 

THEOREM 2.5.2 Let A = (a1) be a matrix operator in £o,, and assume that 

(1) aj 54 Ofor all jE .W andagj — oo asj -+oo. 

(?) There exists a or E [0, 1) such that for all j 

00' 

Qi = E Ia 3 I= aj I a11 1, oj E [0, a]. 

(3) Either the matrix operator I + F,, where F1 = ((i - Sj5)a7/a1), has a 

bounded inverse on 4 and the domain of the matrix operator F = ((1 - 

contains the domain of A, or the matrix operator I+F2, where F2 = ((1—öj1)a'a 1), 

has a bounded inverse on £. 

(4) Every row of F is in ti. 

Then A is a closed operator with a compact inverse and every point' of the 
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spectrum c(A) of A is an isolated eigenvalue of A that lies in the set U, C. 

Furthermore, if F = ((1 - öj)a) E £(&) then any set of r Gersgorin discs 

whose union is disjoint from the other Gersgorin discs intersects a(A) in a finite 

set of eigenvalues of A with total algebraic multiplicity equal to r. 

The proof of Theorem 2.5.2 is the same as that of Theorem 2.4.2, except in 

step 131, so we confine our discussion to that step. Namely: 

If A is an eigenvalue of A then A E U, C. 

Let S = At' acting in 4. From hypothesis (4), every column of S is in 4 and 

so ei E V(S) for all i E R. Thus V(S) is dense in 4, and from Theorem 1. 1.6 the 

dual S' of S exists. Now since A' E £(t,) then from Theorem 2.3.1, (S')' exists 

and is in £(4) ; in fact for all y' E 4, 

(5') 'y' = J'(A'(J (,1))), 

where J is the bijective map defined in Remark 2.3.2. Hence from Lemma 1, page 

224 of [34], n(S) is dense in 4. But since S' exists (this follows from Theorem 

2, page 225 of [34]), then from Theorem 1.1.8 we have (5')' = (S')'. Also 

from Theorem 2.3.1, the compactness of A' implies the compactness of (81)-i (if 

{y} 1 is a bounded sequence of points in 4 then {J(y)}, is a bounded sequence 

of points in £ and so there exists a subsequence {Yk}°1 of {y}, and a vector 

Yo E £ such that A '(J(y k)) - Yo as k -+ oo. Thus J'(A'(J(y k))) - 

as k - f oo. Hence (S')' is also compact ). Then from (S')' = (S')', we have 

(S')' is compact on 4. Thus from Schauder's Theorem, page 282 of [341, it follows 

that 5' is compact. 

Now let A be an eigenvalue of A. Then from Corollary 2.3.4, A is an eigenvalue 
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of S'. But since (S')' E £() then ) 0, and from Theorem 1.2.6 part (a), A 

is an eigenvalue of (S')' = (S 1)'. Now we may use Theorem 1.2.5 to 'deduce 

from the compactness of S' and the fact that )C is an eigenvalue of (8')' that 

A' is an eigenvalue of S'. So from Theorem 1.2.6 part (a), it follows that A is 

an eigenvalue of S = A. It is easily seen that A satisfies hypotheses ( 1) and (2) 

of Theorem 2.4.2 on £. Using the same proof given in step [3] of Theorem 2.4.2 

one can prove that A belongs to the Gersgorin discs defined by the row sums of Atr 

and the result follows. E 



Chapter 3 

Gersgorin Theory for Diagonally Dominant 

Infinite Matrices with Relatively Bounded • 

Perturbations 

In, this chapter, it is shown how the Gersgorin theorem results introduced in the 

paper [ 26], which are restricted to the spaces £j and &, can be both strengthened 

and extended to the sequence spaces £, 1 < p < oo. 

3.1 Definitions and Remarks 

A matrix operator A = (a) in £, 1 < p < oo, is said to have relatively bounded 

perturbation if either the matrix operator F1 = ((i - 5jj)aJajj) E £(e) or the 

matrix operator'F2 = ((1 - 6j)a'a) e 

As stated in Section 2.1, the symbol i' denotes the sum from one to infinity 

excluding the index j = i. Recall the definitions of equations (2.1.1) and (2.1.2). 

DEFINITION 3.1.1 Let A() be an operator valued function (in j) from [0,1] 

into C(X). A() is said to be continuous in the generalized sense at go E [0,1] if 

given an E E (0, oo), there is a S E (0, co) such that if E [0,11 and I tz - /,to 1< 6 

then the gap (A(), A( 0)) between A(!L) and A(j o) satisfies (A(p, A(/Lo)) < €. 

REMARK 3.1.2 Let T() E C(X) for all p E [0,1] and let /Lo E [0, 11. In a 

similar way to the proof of Theorem 2.2.1 part ( 1), we can prove that if T 1(to) 

46 
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exists and is in £( X), then T(p) is continuous in the generalized sense at po if 

and only if T"(p) exists and is in £( X) for p in a small neighbourhood of /,to and 

II T-1(p) - T-'(1-to) 11=0. 

3.2 Row Diagonally Dominant Matrices 

In this section we extend Gersgorin theory (see Theorem 1.4.3) to row diagonally 

dominant infinite matrices with relatively bounded perturbations. 

THEOREM 3.2.1 Let A = (ci) be a matrix operator in £,, 1 < p < oo,,and 

assume that 

(1)aj0 for all iE N and lajj l—*ooasi---*oo. 

(2) There exists a a E [0, 1) such that for all i E N: 

00? 

= >11 aij 1= ci I aii , ci E [0,a]. 
j=1 

(3) Either F1 = ((1 - S1)a'a 1) E £(t), I + pF1 has a bounded inverse on tp 

for all p E (0, 1] and the domain of F = ((1 - &)a5) contains the domain of A, 

or F2 = (( 1. - Sj1)a 'a1) E £(t) and I + pF2 has a bounded inverse on £, for all 

p E (0, 1]. 

Then A is a closed operatof with a compact inverse and any-point of the spec-

trum a(A) of A is an isolated eigenvalue of A that lies in the set U 1 R. 

Furthermore, any set of r Gersgorin discs whose union is. disjoint from all other 

Gersgorin discs intersects a(A) in a finite set of eigenvalues of A with total algebraic 

multiplicity equal to r. 

Proof. Let D = diag(a1j,,a22 ,...). We consider the case in which F2 E £(4) 

and (I+ pF2)' E £(,) for all p E [0,1]. ( From' hypothesis ( 1) there is no E N 
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such that I a ≥ 1 for all n. > no. Hence from Lemma 2.4.1, A(p) = D(I ± pF2), 

where A(p) = (6ja + ( 1. - 6j)pa).) The other case (see hypothesis (3)) has no 

new features (the additional condition V (F) V (A) is only made to ensure that 

• A(p) = (I + pFi)D, see Lemma 2.4.1). The theorem will be established in five 

steps. 

Step [ 1] For every p E [0, 1], A(p) is a closed operator with a compact inverse. 

Let p E [U, 1]. Since A(p) = D(I + pF2) and D' is compact (see step [ 1] 

of Theorem 2.4.2), then from hypothesis (3) and Theorem 1.1.2, it follows that 

A` (/-4) = (I + pF2)'D' exists and is compact on £, for every p e [U, 1]. As 

A'(p) is closed (V(A'(p)) = £, ), so is A(/.t). Since A = 11 A' 11 is in the 

spectrum of A', then a(A) is nonempty. 

Step [2] For every p E [0, 1], the spectrum c(A(p)) of A(p) consists of isolated 

elgenvalues. 

Since A'(p) E £(t) (see step [ 1]), then U E p(A(p)). Thus if A E ü(A(p)) then 

A 54 0 and from Theorem 1.2.6 part (b), we have A' E a(A'(p)). Then from the 

compactness of A'(p) and Theorem 1.2.4, A' is an eigenvalue of A'(p). Thus 

from Theorem 1.2.6 part (a), A is an eigenvalue of A(A). If A were not isolated 

then there would be a sequence of distinct eigenvalues of A' (p) converging to 

the nonzero eigenvalue A' of A' (p) which is impossible by the compactness of 

A'(p). 

Step [3] If A is an eigenvalue of A(p) and p E [U, 11, then A E {z E C :1 z - 

As in step [3] of Theorem 2.4.2, this result follows from hypotheses (1) and (2). 

Step [4] The operator valued function A(p) is a continuous function in the 



49 

generalized sense at every 10 E [0, 1]. 

Let ,a0 E [0, 1]. From Remark 3.1.2, it is sufficient to prove that 

urn - 11= 0. 

We have: 

A'(/2) — A'(/20) = ((I+F2 ' - (I+ 0F2)')D 1. 

But since F2 E £(t) (see hypothesis (3)), then 

- A'(p o) = (I + ,2F2)-'((l + 0F2) - (I + p.F2))(I + oF2)'D' 

= - o)(I + F2)'F2(I + 0F2)'D' 

and so 

A'(i) - A'(o) = —(p. - izo)((I + p.0F2) + (/2 - /20)F2)'F2(I + p.0F2)1D'. 

If I /2— /2o 1< Si = (i+ 11 F2 I)'iI (I+p.0F2)' J', then the operator 1+ (p.— 

p.o) (I + p.0F2)1 F2 has a bounded inverse on £, and from Theorem 1.1.1 we have: 

(I+(p. — /Lo)(I+p0F2)'F2) ' lI≤2. 

Therefore if I p. - /.to 1< bi, 

11 A' (p.) - A' (go) 11< 21 A - Ao III F2 1111 (1+ p.0F' 11211 II. 

Let e be a positive number. If S is a positive number such that 

(3.2.1) 

= min{ 
2 11 6 11(1+11 F2 11)11 (1+ p.0F2)' Il2 2(1+11 F2 11)11 ('+ p.0F2)' 11 1 

then from equation (3.2.1), we have 

- A'(p.0) 11<6 
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for all A E [0, 1] such that I A 
- o 1< 8 and this proves 1im,.j 0 11 A'() - 

A'(0) 11= 0. 

Step [5] Let S = U Rk1, k1 < •• < ks., be disjoint from all other Gersgorin 

discs. Then the spectrum of A in S is a finite set of eigenvalues of A with total 

algebraic multiplicity equal to r. 

From step [3] (see the proof of step [3] of Theorem 2.4.2), there exists a real 

5 > 0 such that each disc of the sequence { R(S)} has a nonempty intersection 

with only finitely many discs of the sequence. Since S is disjoint from the other 

discs, then a closed Jordan curve r can be drawn so that (a) $ is a proper subset 

of U, where U is the interior of the set bounded by r, and (b) a n Rj = 0 if 

j {k1,.. . ,kr}. Thus from steps [2] and [3], it is clear that r consists of regular 

points of A(A) for all t E (0, 1]. Let P(It) be the Riesz projector for A(4u) and r 

for every i E [0,1], that is, 

—1  
P() =  

At jL = 0, o(A()) consists of the eigenvalues a1 with corresponding eigenvectors 

e, i E N, where e.i are the unit coordinate vectors in £,. Hence from properties (a) 

and (b), it is easily seen that dim (P(0)) = r. From step [4] and Theorem 1.3.4, 

there exists a bi E (0,1] such that dim(P() = r for all E [0,5k]. 

Define '5o to be: 

So = sup{6 E (0,1] : dim R(P(/2)) = r, p E [0,5]}. 

Then 6o E (0, 1] and,in fact, we are to prove 5o = I. Since r consists of reg-

ular points of A(So), then we may use Theorem 1.3.4 and step [4] to show that 
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if dim(P(So)) 0 r, we can find a S E (O,S) close enough to 5o such that 

dim R(P(S)) Or, which is impossible -by the definition of 8. Hence dim R(P(50)) = 

r. 

If 6o < 1, then from the fact that dim E(P(80)) = r and the definition of 6, it 

follows that for any 6' E (S,1) there is a it' E (S,'6'] such that dim(P([t')) 0 r. 

But from the fact that dim R(P(60)) = r and step [4], we may use Theorem 1.3.4 

to find a 5 E (60,1}such that dim R(P(1i)) = r for all it E [6o,6], a contradiction. 

Therefore we must have 6o = 1, and from dimR(P(60)) = r, the result follows. 

This completes the proof of the theorem. 0 

3.3 Column Diagonally Dominant Matrices 

In this section we 'extend Gersgorin theory (see Theorem 1.4.3) to column diago-

nally dominant infinite matrices with relatively bounded perturbations. 

If p> 1 in Theorem 3.2.1, the following theorem can be considered as the dual 

of that theorem. 

THEOREM 3.3.1 Let A = (a) be a matrix operator in 4, 1 p < oo, and 

assume that - 

(1) ajj 54 O for all jE ),I and ja5 j—+oo as J— co. 

(2) There exists a a E [0, 1) such that for all j E E 

00 

aij 1= °'a ajj 1, o- E [O, a]. 
i=1 

(3) Either F1 = ((1 - Sj5)a 1 a11) E £(e), I ± ,uF1 has a bounded inverse on 4 

for all ji E (0, 1] and the domain of F = ((1 - 511)a15) contains the domain of A, 
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or F2 = ((1 - Sj1)a'a) E J() and I + /2F2 has a bounded inverse on £, for all 

/2 E (0, 11. 

Then 'A is a closed operator with a compact inverse and any point of the spec-

trum a(A) of A is an isolated eigenvalue of A that lies in the set U 1 C. 

Furthermore, any set of r Gersgorin discs whose union is disjoint from all other 

Gersgorin discs intersects a(A) in a finite set of eigenvalues of A with total algebraic 

multiplicity equal to r. 

The proof of Theorem 3.3.1 is the same as that of Theorem 3.2.1, except in 

step [3]. The proof of step [3] in Theorem 3.3.1 is exactly the same as that of step 

[3] in Theorem 2.5.1. 

A result on £ similar to, and complementing that given in Theorem 3.3.1 is 

introduced in the following theorem. 

THEOREM 3.3.2 Let A = (a) be a matrix operator in £ and assume that 

(1) ajj 0 0for all jE 1V and Ia 1 -- oo asj — 00. 

(2) There exists a cr E [0, 1) such that for all j E .W 

00' 

Qj = J= ai I ajj 1, OIj E [0,o]. 
i=1 

(3) Either F1 = ((1 - E £(t), I+ /2F1 has abounded inverse on 

for all E (0, 1] and the domain of F = ((1 - Sj)a) contains the domain of A, 

or F2 = ((1 - öj)a'a) E £(4) and I 1- jiF2 has a bounded inverse on £ for all 

/2.E (0, 1]. 

(4) Every row of F = ((1 - S5)a) is in £. 

Then A is a closed operator with a compact inverse and any point of the spec-

trum or(A) of A is an isolated eigenvalue of A that lies in the set U 1 C5. 
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Furthermore, any set of r Gersgorin discs whose union is disjoint from all other 

Gersgorin discs intersects a (A) in a finite set of eigenvalues of A with total algebraic 

multiplicity equal to r. 

NOTE. If F2 E £(4), then from Remark 2.4.4 and the condition aii 0 0 for all 

i E . V, it is clear that 
00 

a'I Iaj<ljFzII<oo. 
i=1 

Hence for every i E V, >°' aij J< oo. Thus every row of F is in £j. 

Proof. As in Theorem 2.5.2, we prove that if A is an eigenvalue of A then 

A E U 1 C3. The rest of the proof is the same as that of Theorem 3.2.1. 0 

3.4 Almost Disjoint Discs 

In this section we make a hypothesis on the geometry of the Gersgorin discs (see 

hypothesis (4) of Theorem 3.4.2 below) that can be loosely described as almost 

disjoint discs. At the same time we are to weaken the condition of diagonal domi-

nance somewhat (see hypothesis (2) of Theorem 3.4.2 below). In this respect (and 

in the action on 4, of course) this theorem generalizes Theorem 5 of [261. First we 

need the following lemma. 

LEMMA 3.4.1 Suppose the matrix operator A = (a5) in 4, 1 < p 00, satisfies 

the following hypotheses: 

(1) ajd —  ooasi ---- oo. 

If the disc S = {z E C :1 z - a I≤ r}, r E [0,00) and a E C, is disjoint from 

U 1 R, then there is a real S > 0 such that the disc {z E C :1 z - a r + S} is 
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also disjoint from U 1 £. 

NOTE. It is clear that for every n E 

dist(S,R) = min{dist(u,)Z) : u E S} 

min{min{ I u - v I: v E RJ : u E S} 

>o. 

This is clear since the function .R - defined by /'(v) =1 u - v I,u E S is 

continuous on the compact set R and attains positive values (u iZ )Zn ). So it has 

a positive minimum. Hence the function 4: S - p R defined by 

q5(u) = min{I u - v I: v E R} = dist(u,R) 

attains positive values. Also 0 is continuous on the compact set S, and hence it 

must have a positive minimum. 

Proof. Suppose the contrary. Then for every n E )/, there is a positive integer • 

k such that 

1 
0 < dist(S, )Zk) < -. (3.4.1) 

Since I akk -* oo as n - oo, then from inequality (3.4.1) it follows that Pk - cc 

as n -* cc. Now it follows from the compactness of S that there are two different 

positive integers km and k, such that 0 <1 ak,,km akrkr 1< P + Pkr which is 

impossible by hypothesis (2). D 

THEOREM 3.4.2 Let A = (a1) be a matrix operator in 4, 1 < p < cc, and 

assume that 

(1) a1 0 for all iE JV and Ja 1 —* co as oo. 
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(2) For every i E N, 

Pi = j aij cT1 I aii , ai E [o,]. 
j=1 

(3) Either F1 = ((1 - 5j1)a /a) E £(4), I + 1jF1 has a bounded inverse on 4 

for all IL E (0, 1] and the domain of F = ((1 - 5j)a) contains the domain of A, 

or F2 = ((f— 6)a'a1) E £(t) and f+iiF2 has a bounded inverse on 4 for all 

IL E (0, 1]. 

(4) Ia— a > P+Pj for all i,jE N,ij. 

Then the spectrum o(A) of A consists of a discrete, countable set of nonzero 

eigenvalues { A : I E N}, and for every i E N, Ai E £ j. 

Furthermore, if strict inequality obtains in (4) for a fixed i and all j i, then 

Ai is a simple eigenvalue. 

NOTE. From hypotheses (2) and (4), it is clear that there are two different 

positive integers n1 and n2 such that 0 0 £j if I E N \ {ni, n2}. 

Proof. Let D = diag(a11 ,a22 ,...). We consider the case in which F2 E £(4) 

and (I + ILF2)-' E £(4) for all IL E [0, 1]. From hypothesis ( 1) there is no E N 

such that I ann I> 1 for all n ≥ no. Hence from Lemma 2.4.1, the matrix operator 

A(IL) = (i5jaj + (1 - Sij)ILaij) can be written in the form A(IL) = D(I + /LF2). 

The other case (see hypothesis (3)) has no new features ( the additional condition 

V(F) D V(A) is only made to ensure that A(IL) can be written in the form A(IL) = 

(I +,4F,) D,  see Lemma 2.4.1). The theorem will be established in eight steps. The 

proofs of steps [ 1],[2],[3} and [4] are the same as those of steps [ 1],[2],[3] and [4] of 

Theorem 3.2.1, respectively. 

Step [ 1] For every IL E [0, 1], A(IL) is a closed operator with a compact inverse. 



56 

Step [2] For every 4u E [0, 1], the spectrum a(A()) of A(p) consists of isolated 

eigenvalues. 

Step 131 If A is an eigenvalue of A(a) and iz E [0, 1), then 
00 

AEU{zEC:Iz—ajj I<P}. 
i=1 - 

Step 14] The operator A() is a continuous function in the generalized 'sense at 

every A E [0, 1]. 

Step [5] If A is an eigenvalue of A, then A E U 1 R. 

Suppose the contrary. Then there is an eigenvalue A of A such that A 0 U1 R. 

From step [2] (A is an isolated eigenvalue of A) and Lemma 3.4.1 there is a disc V 

with centre A and a positive radius such that P fl o.(A) = {A} and V fl(U1 )z) = 0 

(= the empty set). Let P(i) be the Riesz projector for A(i), tZ E [0, 1], and the 

boundary of V, that is, 

P(p) =   I (A - çI)' dç Jo!, 

where 3D denotes the boundary of V. Since dim(P(1)) zA 0, then from step [4] 

and Theorem 1.3.4 there is a /.to E [0,1) such that dim R(P(ito)) = dim.R(P(1)) 54 

0, which is impossible since by steps [2] and [3], the spectrum of A(jto) is a subset 

of the set U 1 R2. 

Step [6] Let i E .W and /2 E [0, 1), then we have: 

(a) The set £ j contains one and only one eigenvalue of A(/2); if P > 0 then this 

eigenvalue of A(/2) is simple and is in the interior of R. 

(b) The set ) j contains at least one eigenvalue of A. 

Let i E V and it E [0, 1). If P = 0, then .Rj = {a} and aii is an eigenvalue of 

A(/2) with a corresponding eigenvector e:., 
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Now consider the case P1 > 0. Since A(A) satisfies the hypotheses of Theorem 

3.2.1 and the Gersgorin disc {z E C :1 z - a11 P1} of A() is disjoint from the 

other Gersgorin discs of A(ji), then from Theorem 3.2.1, it follows that the disc 

{ z E C :1 z - a1 I≤ ItPil contains one and -only one simple eigenvalue of A(). 

Hence from hypothesis (4) and the fact that the eigenvalues of A(A) lie in the set 

U7,{z E C :1 z— a5 I≤ P} (see Theorem 3.2.1), the disc Rj = {z E C :1 z— a11 

P1} cdntains in its interior one and only one simple eigenvalue of A(). Denote 

this eigenvalue by Aj(). This proves part (a). 

If P1 > 0 then from Theorem 1.3.4, step [4] and part (a), it follows that R1 

must contain at least one eigenvalue of A. If P1 = 0, then R1 = {a11} and a11 is an 

eigenvalue of A with a corresponding eigenvector c. This proves part (b). 

Step [7] The set of the eigenvalues of A is a countable set { A : I E .V}, and for 

every i E N, A, E £. 

Let j E N. From step [4] and Remark 3.1.2, it follows that 1im,...1- 11 A-'(/j,) - 

A' 11= 0. Hence from Theorem 1.3.3, we have 1im,- dist(A7'(i),c(A 1)) = 0 

(see step [6] for the definition of A() ). This implies that if z E o(A) fl £, then 

I A) - z I = I A() - A'(L) II z Ho 

as ji -+ i. Hence lim, +,_dist(A(i), a(A)flj) = 0. Hence by part (b) of step 

(6), there is an eigenvalue Aj of A in R.j such that lim +,- Aj(jt) = A. This proves 

that o(A) contains the countable set {A1 : 1 e N} of eigenvalues of A, where A1 E R1 

for every i E N. Now we prove o(A) = {A1 : I E N}. 

Now let A E c(A). From the condition I a1 H oo as i - oo (each diagonal 

element aii of A, I E N, is repeated finitely many times along the diagonal), 
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step [5] and hypothesis (4) there is a finite nonempty subset NA of N such that 

A E R if and only if n E N. Hence from step 121 ( A is isolated in a(A) 

and Lemma 3.4.1, it follows that there is a positive real S such that the disc 

= {z E C :] z - A I < 6} satisfies 

V(A,S)flR1= 0, 

if i N , and 

V(A,&.()fla(A) = {A}. 

If A 0 { A : i E ii), then there is no i E 1V with lim,.1- A() = A. Hence there is 

a positive S < S and a strictly increasing sequence of points in (0, i) such 

that -* 1- and the disc P(A,SA) = {z E C :1 z—A l≤ 8A} consists of regular points 

of A(p) for all ii E N (here we use the fact that Jj flo(A(i)) = {A()} for all 

i,n E N, see step [6] part (a)). Let P(A) be the Riesz projector for A(/1), A E [0, 1], 

and the boundary av of V(A, S), that is, 

—1  f (A()—çI)'dç. 
P() = Jay 

Since dim(P(1)) 54 0, then from Theorem 1.3.4 and step [4] there is an no E N 

such that dim(P(/2)) = dim(P(1)) 0 for all n ≥ no, which is impossible 

since dim(P(ii)) = 0 for all n E N. This proves the requirement. 

Step [8] If k E N is such that I akk -  ajj  > Pk + P5 for all j 0 k, then Ak is a 

simple eigenvalue of A. 

From the assumption and step 17], it follows that a(A) n)zk = {Ak}, and by 

Lemma 3.4.1, a closed Jordan curve I7k can be drawn so that Rkis a proper subset 

of ilk, where ilk is the interior of the set bounded by rk, and Uk fl Rj = 0 if j 0 k. 
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From steps [2], 131 and [5], it is clear that rk consists of regular points of A(p.;) for 

every E [0, 1]. From step [4], step [6] part (a) and Theorem 1.3.4 it is easily seen 

that Ak is a simple eigenvalue. This completes the proof of the theorem. Li 

REMARK 3.4.3 If p > 1 in Theorem 3.4.2, then there is a dual theorem on 

+ = 1, where the row diagonal dominance (see hypothesis (2) of Theorem 

3.4.2) is replaced by column diagonal dominance. 

3.5 General Remarks 

In this section we show the advantages of Theorem 3.4.2 over Theorem 5 of [26]. 

(1) When p = oo and sup{Tj : I E .,V} < 1, then the condition aii =A 0 for 

all i E E and hypothesis (2) imply hypothesis (3). In this case, F2 E £(4) and 

11 F2 11< 1 since 

11 
00 f 

F2II=sup{Ia'I aij  
2=1 

(see Remark 2.4.4). Hence Theorem 3.4.2 includes Theorem 5 of [26]. 

(2) In Theorem 5 of [26] it is assumed that every column of the matrix operator 

A is in to,,, while in Theorem 3.4.2 we do not require such a hypothesis. We give 

an example to illustrate this point. Define a matrix operator A = (a5) on by: . 

1 
all =1,a12 =  - 

2 

and 
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Theorem 5 of 126] does not apply to this matrix operator, since the first column of A 

is not in £. However, it is clear that A satisfies hypotheses ( 1) and (4) of Theorem 

3.4.2. Also A satisfies hypothesis (2) of this theorem, since .P < 1 1 aii I for all 

i E .V. Since 11 F2 sup{, , ,. . .} = < 1, then A satisfies hypothesis (3) of 

Theorem 3.4.2. So a(A) = : I E )I} where I A1-1 I≤ and I A1—i(i+i) l≤ i—i 

for all i ≥ 2. 

(3) Matrix operators that would satisfy the hypotheses o. Theorem 3.4.2 (and 

specially hypothesis (2)) and would not be included in Theorem 5 of [26] can be 

constructed as follows: 

Let the matrix operator A = (a) have diagonal entries defined by all = 2, and 

(21-1)(i+1)  
a1 = a 1,_1, i = 2,3,... 

and it is assumed that —1 is not an eigenvalue of F2. The off-diagonal elements 

may then be chosen in any way consistent with the condition that 

= I E k. 



Chapter 4 

Spectral Approximation of Diagonally Dominant 

Infinite Matrices 

Our proofs of the Gersgorin-type theorems in Chapter Two are constructive in 

the sense that we have an explicit sequence of matrix operators {A} with the 

property that A -4 A. Furthermore, because of the block-triangular form of 

A (see equation (2.4.4)), the spectral properties of A are tractable. Our next 

step is therefore to draw conclusions concerning the relationship of eigenvalues and 

eigenvectors of A to those of A. For this purpose we apply some results on the 

- "stable approximation" of closed operatrs. 

4.1 Stable Approximation of Closed Operators 

Let X be a separable Banach space, A E C(I) and let {A} be a sequence of 

operators in C(X). We suppose that V(A) D V(A) for all n E R. 

DEFINITION 4.1.1 We say that {A} is an approximation of A if Ax -* Ax as 

n - oo for all x E P(A), and we write A -4 A on 

Now let A be an isolated eigenvalue of A, of finite algebraic multiplicity m. The 

point A is isolated by the closed Jordan curve r, the interior of which defines the 

domain L. 

61 
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DEFINITION 4.1.2 The spectrum of {A} in L converges to X if 

urn (a(A) fl z)  
n.-oo 

DEFINITION 4.1.3 The approximation {A} of A is called stable at z E p(A) 

if there exists a positive integer N(z) (depending on z ) and a positive real M(z) 

(depending on z ) such that, for all n ≥ N(z), z E p(A) and 

11 R,(z) 11=11 (A, - zl)' 11 < M(z). 

The following proposition gives the relation between the stability and the con-

vergence of the spectrum for an approximating sequence {A} ( An E C(X) for all 

n E .W ) of the closed operator A. 

PROPOSITION 4.1.4 If the approximation {A} of A is stable in A \ {A} (that 

is, stable at every z E A \ {A} ), then lim 0(o(A) fl)  

See Proposition 2.2 of [3] for the proof. 

We now introduce the notion of strong stability. 

DEFINITION 4.1.5 An approximation {A} of A stable in i {A}, is said to 

be strongly stable in A \ {A} if dimPl = dimPX for all n large enough where 

P 

P = 2fr —1 - zl)' dz, = 2Jr (A - zl)' dz. 

We shall apply results using strong stability in the following form. Recall that 

). is an isolated eigenvalue of A, of finite algebraic multiplicity m, and r and A are 

as defined above. 

LEMMA 4.1.6 Let 0 , the closure of A. Suppose A' exists and is compact. 

Let {A} bean approximation of A for which A;1 exists and is in £(X) for all n E 
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M. If 11 A' - A-' 0 as n - oo, then {A} is a strongly stable approximation 

of A in L \ {X}. 

We need the following lemma (see page 4 of [10]) for the proof. We note that 

Theorem 1.3.3 can be deduced from this lemma. 

LEMMA 4.1.7 Let T E £(X) and fyi be a closed set in C. If .M c p(T), the 

resolvent set of T, then there exists a S > 0 such that .M C p(S) for all S E £( X) 

with 11 S - T 11< 6. 

Proof of Lemma 4.1.6. 

Since A' is compact, then any point z E \ {A} is a regular point of A. If 

z E \{A}, then z 0,z E p(A) and from Theorem 1.2.6 part(b), z 1 E p(A'). So 

from Lemma 4.1.7 it follows that there exists an N,(z) E .V such that E p(A 1) 

for all n ≥ N,(z). Since A' E £(Z) and z 0, we have z E p(A) for all 

n ≥ N, (z). Also, for all n. ≥ N, (z) 

11 (A, - zl)' 11<11 (A - zl)' 11 + 11 (A, - zl)' - (A - zl)' 11 . (4.1.1) 

Since 11 A' - A-' 0 as n -4 oo, then from Theorem 2.2.1 part(1) we have 

An -4 A and so by using Theorem 2.2.1 part(2), A - zl -4 A - zl. Then we may 

use Theorem 2.2.1 part(1) again to deduce 1im. (A, - zl)' - (A - zl)' 

0. Using this conclusion in inequality (4.1.1) and the fact that II (A - zl)' 1< 00, 

we find that there exists an N(z) E .A/ such that N(z) > N, (z) and there existh a 

positive real M(z) such that, for all ii ≥ N(z), - 

II R(z) 11=11 (A - zl)' jj< M(z) < oo. 

This proves that the approximation {A} of A is stable at every z E A\ Using 
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Theorem 1.3.4 and the fact that An -4 A, we find dim PX = dim Pl for n large 

enough and this completes the proof of the lemma. Li 

Now suppose lim.,0(a(A) fl z) = {Al. Let ) be an eigenvalue of An for all 

n E E such that lim.,0 An = A. For each An there exists a normalized eigenvector, 

that is, there exists a y, E V(A) such that Ay , = Ay , and 1. 

DEFINITION 4.1.8 The eigenvectors of A, associated with a(A) nA are said to 

be convergent if any sequence of normalized eigenvectors {y} 1 associated with 

{ contains a subsequence {yr } converging to some normalized eigenvec-

tor of A associated with A. 

PROPOSITION 4.1.9 If {A} is a strongly stable approximation of A in z \ {Al, 

then the eigenvectors of {A} associated with u(An) nA are convergent. 

See Proposition 2.3 part(iii) of [] for the proof. 

4.2 Approximation of Eigënvalues and Elgenvectors 

The results of Chapter Two and Section 4.1 are now combined to show that the 

eigenvalues and the eigenvectors of infinite diagonally dominant matrices can be 

approximated by those of approximating matrices of the form (2.4.4). We state the 

results for row diagonal dominance only. There are exactly parallel statements in 

the case of column diagonal dominance. The matrices are assumed to act in £ with 

1 < p < oo. The case p = 00 is excluded because our proofs require separability of 

the underlying space, and £ does not enjoy this property (see Example 3, page 

200 of [91) 
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COROLLARY 4.2.1 Suppose the matrix operator A satisfies the hypotheses of 

Corollary 2.4.6 and assume 1 ≤ p < 00, then the sequence of closed matrix op-

erators {A} defined by equation (2.4.4) is a strongly stable approximation of A 

in R.j \ {A} where Ai is the only eigenvalue of A in .R.j (see equations (2.1.1) and 

(2.1.2) for the definition of ) j ). 

Proof. From Lemma 3.4.1, given i E N there is a positive real öj such that the 

disc zSi = {z E C : 1 z - P+S1} satisfies iflj = 0 if  0 i. Also the disc 

,Si is chosen so that 0 L (notice that from hypothesis (2) of Corollary 2.4.6, 

0 0 R ). Hence for every i E N, Ai is isolated by the boundary ri of Lj, where 

r1 C P(A). We see from Corollary 2.4.6 that A' exists and is compact, A;1 exists 

and is in £(t) for every ii E N, and 1 A;' - A' 0 as n -+ co. Therefore 

the hypotheses of Lemma 4.1.6 are satisfied if we can show A,x - p Ax as ii - 00 

/ \ 

for every x = X2 E P(A) (we have V(A) D(A) for all n. E N, since the 

perturbation operator F = ((1— öj)a) ). To see this, write x = 

where = 

Xn 

I 
xn+1 

(n) 
and x2 = 

I '\ • 1 

( 0 12 I ()\ 

Then 

Ax - Ax = - 
(n) (n) 

0 Sflfl J X2 Sx2 

I 
A(?2) (n) 
12 -'2 
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where A = 
.12A() A() 
11 "12 

A(') ,j(fl) 

21 "22 

and Snn = D - A22(n) (see equation (2.4.4)). Since 

F E £( e), then and S, are bounded uniformly with respect to n. (see step [4] 

of Theorem 2.4.2). Also since x E £, then lim_+ x = 0. So 1im_• A)z = 0 

and lim = 0. This proves that {A} is an approximation of A. Now 

the result follows by applying Lemma 4.1.6. D 

Combining this corollary with propositions 4.1.4 and 4.1.9 we obtain: 

THEOREM 4.2.2 Suppose that the matrix operator A satisfies the hypotheses 

of Corollary 2.4.6, and suppose 1 < p < oo. Define matrix operators A in £ as in 

equation (2.4.4). Denote the simple eigenvalue of A (of A) in R1 by A1 (by )). 

Then for 1 ≤ i < 00, lim_ A$ = A1 and the associated sequence of normal-

ized eigenvectors {y}1 contains a subsequence converging to the normalized 

eigenvector of A associated with A1. 

We remark that, when A is a banded matrix, the eigenvectors of A (see 

equation (2.4.4)) have only finitely many nonzero terms. If An has an eigenvalue 

for some i E )./ then with an obvious partition of the elgenvector, 

I liz1 / \ / (n) ) A 1 (n) 

D (n) = (n) 
n) X2 

(n) (n) 
Thus x1 is the corresponding eigenvector of A11 and 

(n) (n) (n) 
= (An] 21 D,) -'A 

When • A is banded, is strictly upper triangular and the number of nonzero 

entries in x does not exceed the number of sub-diagonal bands of A. 
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Now consider bounded matrix operators E £(e), FW E £( q) which are 

defined by the same infinite matrix F ( A = (a2 ), F = ((1 - as usual). It 

is clear from our construction that the eigenvalues of the approximating sequence 

{A} will not depend on the choice of the space £, or tq Thus their limits are the 

same, and we can conclude that if 1 < p, q < oo, then AM = D(I + D'F(P)) and 

= D(I + D_1F()), where D = diag(a11, a22, . . .), have the same spectrum. A 

similar remark applies for the eigenvectors. So we have: 

THEOREM 4.2.3 Let the matrix operator A = (a) satisfy the hypotheses of 

Cor'ollary 2.4.6 and assume that the matrix operator F = ((1 - 5)a) is in £(e) 

and ixi £(tq), p 0 q, 1 < p,q < oo. Then A defines closed operators (P),() with 

domains in £, tq, respectively, whose spectra and elgenvectors coincide. 

4.3 Selfadjoint Matrix Operators 

For a matrix operator A acting in £2 there is a possibility of obtaining stronger 

conclusions for the spectral properties using the Hubert space structure of £ 2. To 

illustrate this point, weknow, for example, that in Theorem 4.2.2 the convergence 

of the sequence {} Oo  to Ai for each i E .W depends on estimates for the norm 

of the resolvent of the matrix operator A, which are not necessarily available. 

However for a matrix operator A acting in £2, such estimates are available if A is 

selfadjoint (see equation (3.16), page 272 of ( 15]). 

The following theorem shows that, in principle, the ith eigenvalue of a self-

adjoint matrix operator A = (a) acting in £2 and satisfying the hypotheses of 

Corollary 2.4.6 can be approximated to any prescribed accuracy € > 0 by trun-
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cation to the leading N x N submatrix of A, where the dependence of N on c 

is given below (see equation (4.3.2)). Before introducing the theorem we notice 

that for such a matrix operator A the Gersgorin discs Rj, i E ..V, are disjoint (see 

hypothesis (4) of Corollary 2.4.6) and hence from Lemma 3.4.1, it follows that for 

every i E .iV the number 

bi =inf{ aii  — (Pi +Pi) : j54 i} 

is, a. positive real number. For brevity, we introduce the following symbols: 

and 

ci = 
Si  

2(1 aii I +)Uaii I +P±S)' iE N 

K Il (1+ II F II) II (I + D'F)1 1 

where D = diag(a11, a22 ,...) and F = ((1 - Sj1)a 1) (we consider the case (I + 

D-'F) -'. E £(t2); see hypothesis (3) of Corollary 2.4.6). If I is a subset of C not 

including zero then we define the set = {z E C : z 1 E I}. 

THEOREM 4.3.1 Assume the hypotheses of Corollary 2.4.6, let p = 2 (the case 

(I + D. 1F) -1 E £(i2) is considered here; the case (I + FD')' E £(t2)has a 

similar statement) and assume that A is selfadjoint. Let i E .1V, c E (0, ci) and also 

c <11 D' 1111 A' 11. If 

k = II A' 11(1+ K)(1+ II F 11)2 

is a constant depending only on A, and N is an integer for which 

ann J> kc'(1+ I a +P) 2 

(4.3.1) 

(4.3.2) 
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whenever n≥ N, then (N) - ) 1< c ( Ac) is the unique eigenvalue of AN in the 

Cersgorin disc , j, see equation (2.4.4) for the definition of AN ). 

Proof. Let T = A' and T = A;' for all n. E .W. Fix i E )I and let I'1 be the 

boundary of the set R1 and Tj be the boundary of the set £.j {zE C :1 z- aii I≤ 

P + 6}. Since inf{dist(z,I' 1) : z E I'j9} = Sj then for all z E L1 and z' E r2 we 

have: 

1. 1 Iz' —zl '5i 
> 

z 

If aii =1 aii I eV'0, then 

1 1 z— zol  
= 2ei 

ZO zo, zolIzl 

where z0 = (Iaii I -j-P1)&J° andz = (I a +P + o)eV'0. Thus we have 

inf{dist(ç, 1) : ç E '} = 

Choose E E (O,€) and also E < 11 D' A-' 11 . Then from equation (3.16), page 

272 of [ 15], we have 

max{ll R(,T) II: E ' j} = (1+ I.aii +P1) 2/E, 

where 

={çERi ' :1 ci I≥ €(l+Iajjl+P) 2} 

and ç = Ai  '. From Theorem 2.1.3 we know that if we choose N1 E E such that 

I a;' < 1W 11 for all n ≥ N,, then (A11 )1 II≤ K for all ii Ni. Now we choose 

N E )./ such that for all ii ≥ N, 

Ia; < mm 1 11 D-1 II} 
1k(i+ a +P1)2' K 
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Since € 4 D' Jill A' lI then from equation (4.3.1) the above inequality is 

equivalent to equation (4.3.2). Hence from step [4] of Theorem 2.4.2 and Lemma 

2.1.1, it follows that 11 T, - T ll < E(i+ I aii I±P) 2 for all n ≥ N (the matrix 

operator D;' satisfies 11 D' 1k k(1+IaI+P)2 for all 

n ≥ N ). So for all ç E Lj and n > N, 11 R(c,T) Hi Tn - T 11< 1 and hene 

E p(T). But since R' contains a unique eigenvalue of T, namely ç = 

then - 1< €( i-i- I aii I+P) 2 for all n ≥ N. Thus we get 

I - =1 fl) ( ç - ç)A < (I ajj +P) 2€  
% - (1+ I aii I+P1)2 

for all n > N and this proves the requirement. E 



Chapter 5 

Mathieu's Equation 

The main result of this chapter is Theorem 5.4.1 which shows that the eigenvalues 

of the Mathieu differential operator and of a certain infinite matrix operator are 

the same. This is a result that is frequently used implicitly in the literature but, 

to the author's knowledge, is proved here for the first time. To establish this result 

some facts on the solution of 'infinite systems of linear equations are introduced in 

Section 5.3. 

5.1 Introduction 

We will be concerned with Mathieu's differential equation 

d2 
+ (a - 2q cos 29)y = 0 (5.1.1) 

and we will concentrate on solutions which are even with period 7r, denoted usually 

by ce2 (O, q). For a given q, the problem will be to find the eigenvalues a. 

Mathieu's equation is a special case of Hill's equation 

d  

where g(0) is a periodic function with periodicity ir. Titchmarsh in [29] and [30] 

discussed the dependence of the eigenvalues and the eigenvectors of the perturbed 

equation 

d2y 
+(a—g(0) — w(0))y=O 

71 
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C L 

Figure 5.1: L - C circuit. 

upon e, assuming that the spectrum of the unperturbed equation is discrete. He 

considered two cases ; the first when the spectrum of the perturbed system is 

discrete, and the second when the spectrum of the perturbed system is continuous. 

Mathieu's equation appears in many applications. One example is the "Direct 

Capacitance Modulation" shown below (for more examples see Chapter XV of [ 18]). 

EXAMPLE 5.1.1 Consider the electric circuit shown schematically in Figure 1, 

where an inductance L is in series with a capacitance C, which varies with time t, so 

we can write C = 0(t). If Q denotes the quantity of electricity in the capacitance 

then from Kirchhoff's second law (see page 23 of [ 19]), the circuital differential 

equation is 

d2Q Q - 

+ LC (t) = 0. 

We shall assume that C(t) = C0(1+ €cos 2w1t), Co being constant and 0 < € << 1 

(that is, € is a very small positive number compared with one). Using the binomial 

expansion of (1+ E cos 2w1t)', equation (5.1.2) becomes: 

+ (1 - €cos2w1t + 62co522w1t - E3cos32w1t + . . .)Q = 0. 
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Omitting the terms in c2, €,... in the above equation as a first approximation, we 

obtain 

d2Q 1 
dt2 ± - c cos 2w1t)Q = 0. (5.1.3) 

Writing 0 = w1t and y = Q in equation (5.1.3) we are led to Mathieu's equation 

where a = 1 and q = C. WIL 2 

d2y 
dO2 + (a - 2q cos 20)y = 0 

5.2 The Space £2[— , ] 

This space of functions will play an important role in finding the eigenvalues of 

Mathieu's equation. 

DEFINITION 5.2.1 Let £ 2[ - , ] be the vector space of all complex valued 

Lebesgue measurable functions f defined on the interval [-f, ] with the property 

that I 1 12 is Lebesgue integrable. If we identify functions which are equal almost 

everywhere, then 
r/2 (f, g) 

= f(9)(0) dO, 

where .(0) denotes the complex conjugate of g(0), defines an inner product on 

r 

REMARK 5.2.2 Since for k,j E N, 

j cos 2(k - 1)0 Cos 2(j - 1)O do = 
-ir/2 

0 ifkj 

7/2 ifk=j1 

'r ifk=j=1 

(5.2.1) 
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and 

I ir/2 I 0 j sin 2k0 sin 2j9d0 = if  

.1 /2 if  = 

ir/2 fcos 2(k - 1)0 sin 2j0d0 = 0, 
r/2 

(5.2.2) 

(5.2.3) 

then by giving a similar argument to that given in page 29 of [9], one can prove 

that the countable collection 

7r 7r cos 2m0 : n E }  { V•2 sin : n E R} 
is an orthonormal basis for £ 2[ — , ] (see page 26 of [9] for the definition of an 

orthonoimal .basis for a Hubert space). 

One of the properties that connect the Hubert spaces £2 and £ 2[ — , ] is stated 

in the following theorem. 

THEOREM 5.2.3 (See Theorem 11.2 part(iii), page 25 of [9].) If Xk E C for all 

k E )./ then the vector x = (x1, x2,...) is in £2 if and only if the series 

00 

zk cos 2(k - 1)0 
k=1 

converges in £ 2[—, ]. 

NOTE. The series x cos 2(k - 1)0 converges in £ 2[—, ] if there ex-

ists a function y E £ 2[— , ] such that the sequence {yn}1 defined by Yn = 
rn 

X/ cos 2(k - 1)0, n E )I, converges to y as n - oo. The function y is written 

as lxk cos 2(k - 1)0. 

Proof. For all n E ),I, let Y*n = E n  ix cos 2(k - 1)0 and s = >_ I Xj 12. Then 

from equation (5.2.1) it follows that for n> in, 

n n 
II Yn 

- Y. II 2 = ( E xk Cos 2(k - 1)0, E x Cos 2(j - 1)0) 
km+1 jm+1 
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12 ir/2 

k-i L,2 cos 2(k - 1)8 

n 
2 

2_.. I2kI 
' k=,n+1 

- .Sm. 

12 

cos 2(j - 1)odO 

Thus {y} is a Cauchy sequence if and only if {s12} is a Cauchy sequence. Therefore 

{ Yn} converges if and only if {.s} converges, and this proves the requirement. 0 

In the next sections we will use the following lemma which shows the continuity 

of the inner product on a Hubert space. 

LEMMA 5.2.4 Let X be a Hilbert space over C. If {x12} is a sequence of points 

in E converging to x E E, and if y  E then (x,, y) — (x, y) as n -+ oo, where (, ) 

denotes the inner product on N. 

See Lemma 11.1, page 25 of [9] for the proof. 

5.3 -Linear Systems and Truncation 

In this section some basic results about the solution of infinite linear systems, 

which will be used in the next section, are introduced. Linear equations with 

infinite matrices occur in various topics of mathematics, for example, interpolation 

[5], sequence spaces [4), and summability [32]. 

Let A = (a) be a matrix operator in £,, 1 < p < oo, and y = (yi,y  .... ) E £. 

We define the truncations A(n) and y(n) by 

A(n) 
0 0 ) 
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where is the leading n x n submatrix of A (see Section 2.1), and the ith 

component (y(fl))j of the vector y(n) E £ is 

(y (n)) = yi 

0 if 1> n. 

For 1 (rz) (n) i,j ≤ ii, the cofactor of the element in A11 is denoted by (a ). We tj 

define lim (a.. ) 
(n) 

, provided the limit exists. If (A) ' exists then we detA =  det A11 

define the matrix Al(n) to be the infinite matrix for which 

= 
) { ((A'')' ii if 1 < i,j 

0 ifi,j≥n+1. 

Now we consider the linear systems 

and 

Ax = y (5.3.1) 

A(rt)(n) = y(n), (5.3.2) 

where the ith component (i (n)) of i(n) is zero for i > n. 

THEOREM 5.3.1 Let A = (a) be a matrix operator in £, 1 < p < oo, D = 

diag(a11, a22 ,...) and assume that 

(1) The diagonal elements aii satisfy aii =A 0 for all i E V and I ajj 00 as 

n - 00. 

(2) For every i E .V there exists a a1 E [0, 1) such that 

00' 

P1= 
i=1 

(3) The matrix operator F = ((1 - S1 )a11) E £(4). 
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(4) Either the matrix operator I + FD' has a bounded inverse on tp or the 

matrix operator I + D'F has a bounded inverse on 

Then for every y = (yl,y2,.. .) E £, the linear systems (5.3. 1) and (5.3.2) have 

unique solutions x = (x1, x2,...)E £, and ?7 (n) = (lh, 172,...) E £, respectively, 

and lim. +00 11 x - 17(n) 11P = 0. 

Furthermore, the ith component of x is given by 

00 I 

det  

Proof. We consider the case (I + D'F) 1 .E £(,). The other case (see hy-

pothesis (4)) has no new features. Let y = (y1,y2 .... ) E £,. Then from Theorems 

2.4.2 and 2.1.3, the matrix operators A and n E V, have bounded inverses on 

£, and C', respectively. Hence the systems (5.3.1) and (5.3.2) have unique solutions 

x = A 1y and 17(n) = A'(n)y(n). To prove lim..., 00 11 x - i(n) 11P = 0, we consider 

the following two cases: 

(i) The case p < oo. Since 11 x - n(n) 11=11 A'y - A-1(n)y(n) , it follows that 

11 X — 17(m) < A 1 - A'(n) 1111 y 11 + 11 ) 1() 1111 y  - y(n) 1. 

Also from step [4] of Theorem 2.4.2, we have 

11 A' - A'(n) j≤ 11 A' - 'Ai ' 11+ n 

( 0' 0 

—D-1A(-) (A )' D' 1 \ 21 11 n 

(5.3.3) 

(5.3.4) 

Then from inequalities (5.3.3),(5.3.4) and the fact 11 24'(n) 11=11 (A)' 1 (see 

the definition ofA'(n) ), it follows that 

X - c(n) II < A' - 

P2 IHIlI+ 
0 -D-'A(-)(A(- 

(n) 
21 (A11 ) 1 

0 

D;' 
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+ 11 (A' ' 11 .' 1111 y - y(n) (5.3.5) 

From step [4] of Theorem 2.4.2, lim, 11 A-' - A' 11= 0 and from Theorem 2.1.3, 

there is a positive real M such that 11 (A)) 1 IL≤ M for all n E M. Also since 

D'  0 as n -+ oo then from Lemma 2.1.1, the norm of the block-matrix in the 

right hand side of inequality (5.3.5) tends to zero as n'--+ oo. Thus the right hand 

side of inequality (5.3.5) tends to zero as ii -+ oo and this proves 11 x - i(n) 0 

as n -+ 00. 

(ii) The case p = oo. From hypothesis (3) and Remark 2.4.4, there exists a 

positive real M such that 

sup{P : i E N} < M. 

Hence from hypothesis ( 1), oj = Pi - 0 as i - co. ThI.is the matrix operator A 

satisfies hypotheses (5.1) and (5.2) .(with lim. 00 ai = 0) of Theorem 7 in [26], and 

using the proof of that theorem it follows that x - (n) = 0. (Note 

that their hypothesis (5.4) is not required in this argument.) 

Now fix jE.AJ and let nE),I,nj. Then, for 1≤in and y=e1,wehave 

00 

(77(n)) = (A'(n)y(n)) = (A ' (m)) k (y(n)) k 

k=1 

and from the definition of A'(n), we get 

Similarly, 

Thus, 

(n) 
-1 (a )  

(i(n.)) = ((A) det All 

xi = (A'y) = (A'). 

(n) 

lim   = lim (77(n)) = = (A') ii n-00 det n-°° 



79 

exists and hence, (A-').. - — detA 

For a general y = (yl,y2 .... ) E £ and i E .V, we have 

00 

Xi = (A'y)1 = >2 (A')5y = >2 

and this completes the proof of the theorem. E 

REMARK 5.3.2 Let p = oo in Theorem 5.3.1. From the proof of this theorem, 

there is a positive real M such that 

sup{P : i E V} <M. 

Also from hypothesis ( 1) there exists a positive integer io such that I aii 

for all i> 1• Thus from hypothesis (2), we get 

sup{ Pi :iE)/}<1. 

- 1 
M+1 

So D'F E C(&) and 11 D'F jj < 1. Thus hypotheses (1),(2) and (3) of Theorem 

5.3.1 imply hypothesis (4) in the case p = 00. 

REMARK 5.3.3 Let p = oo in Theorem 5.3.1. It is clear that hypotheses (1),(2) 

and (3) of Theorem 5.3.1 are equivalent to conditions (H.1),(1.2) and (11.2) in [27]. 

Thus from Remark 5.3.2, Theorem 5.3.1 generalizes Theorem 2 of [27]. It also 

develops it since we do not assume in Theorem 5.3.1 the condition (11.3) of Theorem 

2 in [27]. On the other hand, Theorem 7 in [26) is more general than Theorem 

5.3.1 at the case p = oo. This can be seen from the fact that the boundedness of 

F together with hypothesis ( 1) of Theorem 5.3.1 imply the condition aj - 0 as 

i - oo, while this condition does not necessarily imply the boundedness of F. 

LEMMA 5.3.4 (See Lemma 5 of [26].) Suppose A (a) is a matrix operator 

in £,, 1 p ≤ oo, that satisfies hypotheses (1),(2),(3) and (4) of Theorem 5.3.1. 
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Then, for i,j E N 

(a) < (an)  

det A - det A 

and 

(I aij I +P1)1 (au)  '<( aii P)' 
det A 1 

Proof. Fix i,j and ii E N with n > i and n > j. It follows from inequalities 

(13) and ( 10) in [21] that the above inequalities are valid for From Theorem 
(n) 

5.3.1, 1flfl_OO detA = exists and the lemma is proved. Li 

For tridiagonal matrices we have the following interesting result. 

THEOREM 5.3.5 Let A = (a) be a matrix operator in £, 1 < p < co, that 

satisfies hypotheses ( 1),(2),(3) and (4) of Corollary 2.4.6 and assume that: 

(5) The diagonal elements aji satisfy aii < a1+i1+i for all i E N. 

(6) a+,, are nonzero real numbers for all i E N. 

(7) a12 = 0 if li — i 1> 2. 

Fix N E N. If A is the elgenvalue of A in RN (see Corollary 2.4.6) and x = 

(z1, x2,...) is an eigenvector of A corresponding to A, then there exist no E N and 

a positive real r such that for all n ≥ 

Zn 1< rc. 

Proof. We consider the case (I+ D'F)' E £(e). The other case (see hy-

pothesis (3) of Corollary 2.4.6) has no new features. Because of hypothesis (5), the 

hypothesis 

au — akkl>Pi+Pk 

for all i, k E N, i k (see hypothesis (4) of Corollary (2.4.6)) is equivalent to 

a:: + P1 < a - F3, i <j. (5.3.6) 
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Also since I A - aNN 1≤ Pv and A is real, then 

aNN — PN<A<aNN+PN. (5.3.7) 

(This means, by hypothesis (2), that A is a positive real.) Choose ii1 E .W such 

that n1≥N and 

IIDII 1 (1+ A) (1+ II F II)' (5.3.8) 

where D 1 = diag(afl11fl1+1 ,afl1+2,fl1+2) ... ) and F = ((1 - 6j)a). Define the 

matrix operator E = (ejj) by: 

e5 = 

- A if j = i, i ≥ 1 

if j =i+1,i≥ 1 

anl+i,nl+j if i = i - 1,i ≥ 2 

0 otherwise. 

Thus the system (A - AI)x = 0 implies 

E 

/ 
xnl+1 

Xnj+3 

— a 1+i 1 xn1 

0 

0 

(5.3.9) 

(5.3.10) 

•1 \ . J 

Let .F = ((1 - öj5)e) and D = D 1 - Al. We show that E satisfies the hypotheses 

of Theorem 5.3.1. 

Since aii - oo as i —p oo, then eii 1=1 - A -+ co as i —p oo. Also 

from inequalities (5.3.7),(5.3.6) and hypothesis (2), we have 

A≤aNN+PN <a33 —P2 < a3, 
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for j ≥ N + 1. Therefore, since n1 ≥ N, we have ci 5 - A > 0 for all j ≥ n1 + 1. 

Heilce E satisfies hypothesis ( 1) of Theorem 5.3.1. 

For i ≥ n.1 + , 

00 

- 

j=nl+' 

= (a1--A)—Pi 

≥ (aii  

≥ (a,+i,, 1+ + .P1+1) - (a 1+i 1+i - P1+1) 

2P 1+i 

>0. 

(Notice that we used inequalities (5.3.7) and (5.3.6) in the first and second in-

qualities of the above system, respectively, and we used hypothesis (6) in the last 

inequality.) 

For i = 2.i + 1, 

00 

IeiiI— E = (a1+i,1+i - A)— I afl1+1fl1+2 

a,1+i1+i - (aNN + PN) — I i+1,ni+2 

≥ ani+1.ni+1 - (a1+in1+i - F1+1) — I ani+lni+2 I 

= I 

>0. (5.3.11) 

Therefore, E satisfies hypothesis (2) of Theorem 5.3.1. (Notice that we used 

=1 a 1+i 1 + I afl1 1,fl142 in the second equality of equation (5.3.11) 

and used hypothesis (6) in the last inequality of the equation.) 

Since F E £(t) we see from Lemma 2.1.1 that fr E £(t) and 11 .fr Il≤II F 11. 

Thus E satisfies hypothesis (3) of Theorem 5.3.1. 
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Finally, from .0 - AD,j, inequality (5.3.8) and Theorem 1.1.1, it 

follows that .0 has a bounded inverse on £ and, 

1 II (I—AD1')' 

- 1 AID,1JI 
<  D nil  

1+IIFII 

Hence from 11 .' F 11 , we have 

iiiiii b' jj< (1+ 11  II) 11 ni D-1 ii: 

But since 11 D;' I< 141F11, we obtain 1 D' 11< 1. Thus from Theorem 1.1. 1, 

(I + b_1fr) has a bounded inverse on £,. Therefore, E satisfies hypothesis (4) of 

Theorem 5.3.1. Then from the system (5.3.10) and Theorem 5.3.1, we have for 

2. > ni + 1, 

xi = —(ei1)(detE)'a1+i,x1. (5.3.12) 

If pi eij e1j 1, I E .W, then from equation (5.3.12) and Lemma 5.3.4 

we have for 1, 

I xi p 1 (e11) II detE I' I an1+1n1 II 

≤ P1-ni (I ell - I afl,+1,fl1+2 1)_u I a1+i, 1 11 Xrtj 

= Pi_ni(ani+i,ni+i - A— I ani+1,ni+2 1)_i 

≤ P1ni I I a,+i,1 II Xnj I 

(Notice that we used Lemma 5.3.4 to get the second inequality of the above system 

and used equation (5.3.11) to get the last one.) Thus for i ≥ ni -j- 1, 

I xi I≤ P1-nj I x1 (5.3.13) 
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Since pj.. = - A)' for all i ≥ ni + 2, P = ui I aii (see hypothesis (2) of 

Corollary 2.4.6) and linj. = 1, we have lim Pi—; 1 = 1. Let r0 E ( 1, oo) 
aii-A ai 

and r = ro I x,, . Then there exists no E N such that pj_nja' < ro for all i ≥ no. 

Choose no ≥ n1 + 2. Hence from inequality (5.3.13) we have for all i ≥ no, 

I i I≤ P- 1 I x7 1 < o'r0 or, 

and this proves the requirement. 0 

5.4 The Eig,envalues of Mathieu's Equation 

In this section we show that, in the case q = 1, the eigenvalues corresponding to 

the eigenfunctions ce2n of Mathicu's equation (equation (5.1.1)) are the eigenvalues 

of a matrix operator defined in £2. 

First we rewrite equation (5.1.1), in the form 

d2 
(- +2q cos 20)y = ay. 

Thus (- + 2q cos 20) will define an operator if a (suitable) space of functions is 

chosen. 

Let £ be the space of all even complex valued functions on [-i, ] such that the 

second derivative y" (0) of y(0)E £ exists and is piecewise continuous on (-i, )• 

Then £ is a subspace of £ 2[—, ]. Let T = - + 2 cos 20 be acting on L. Then 

T is a linear operator from £ into £ 2[ — , ]. The following theorem relates the 

eigenvalues of T to those of a matrix operator in £2. 

THEOREM 5.4.1 Let B = (b) be a matrix operator, in £2 defined by 

b12 = b23 = 1, b21 = 2 
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and 

bij = 4(i - 1) 2 

0 

if j = i± 1,i ≥ 3 

if j = 1,1 ≥ 1 

otherwise. 

Then the matrix operator B and the differential operator T have the same eigen-

values. 

Proof. Let a be an eigenva131e of T with a corresponding eigenvector y(0). Since 

y(0) is an even function in £ 2[-, J, we have 

00 Y(0) = xk cos 2(k - 1)0, (5.4.1) 

where the convergence is in £ 2[ - , ]. Multiplying both sides of equation (5.4.1) 

by cos 2(j - 1)0, j E .W, , integrating both sides from - to 1 and using Lemma 

5.2.4, we get 

r/2 ir/2 00 

f-Ir/2 
y(0)c0s2(j - 1)0d9 = L,2cos2i_ 1)0(xkèos2(k— 1)9) do 

00 ir/2 

= xk f-V/2 cos2(.j-1)0cos2(k-1)0d0. 
k=1 

Thus from equation (5.2.1), the coefficients Xk, k E .A/, in equation (5.4.1) are given 

by 

1 r/2 2  
xi=- I y(0) d0, Xk -w/2 y(0) cos 2(k- 1)0d0, k≥2. 

1i J-ir/2 R  

Also since y'(0) E £ 2[ - , ], we have 
00 00 

(5.4.2) 

y'(0) = E  ak cos 2(k - 1)0 + E 8k sin 2(k - 1)0, 1 (5.4.3) 
k=1 k=2 

where ak,Bk E C for all k E V. (The convergence in equation (5.4.3) is in 

£2[-, i .W ].) Multiplying both sides of equation (5.4.3) by cos 2(j - 1)0, j E , 
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integrating both sides from - to and using Lemma 5.2.4, we get 

r/2 

y'(0) cos 2(j - 1)0 dO = 

00 

akf Cos 2(j-1)0 Cos 2(k-1)OdO + 
A:=1  

00 r/2 

f-7?r'/ 2 cos 2(i — 1)0 sin 2(k - 1)odO.(5.4.4) 

From equations (5.2.1) and (5.2.3), equation (5.4.4) gives 

1 rir/2 
ai=_j y'(0)dOO 

71 -ir/2 

(y(0) is an even function) and for all k ≥ 2, 

2 f 
ir/2 

ak =—  y' cos 2(k-1)0dO. 
ir 

(5.4.5) 

Integrating the above integral by parts and using the fact that y(0) is an even 

function, we get for all k ≥ 2, 

ak = 0- 5.4.6) 

To determine the coefficients 13k in equation (5.4.3), we multiply both sides of 

equation (5.4.3) by sin2(j— 1)0,5 E )/\{ i}, then integrate from - to 1 and use 

Lemma 5.2.4 to get for all k > 2, 

— 
r' y'(0) sin 2 (k - 1)0 dO. 

7r TrJ2 

Integrating the above integral by parts and using equation (5.4.2), we get for all 

k ≥ 2, 

4(k - 1) ir/2 

f- 7r y(0) cos 2(k-1)OdO= —2(k-1)xk. (5.4.7) 

From equations (5.4.5),(5.4.6) and (5.4.7), 'y'(0) in equation (5.4.3) takes the form 

00 

yl = —2 E xk sin 2(k - 1)0. (5.4.8) 
k=2 
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From Ty(0) = ay(0), we have y"(0) = (2cos20 - a)y(0) and hence y"(0) E 

£2[ - , ]. Using a similar argument to that given for determining the coefficients 

ak and fik in equation (5.4.3), we can show that 

00 

y"(0) = — > 4(k — 1) 2xk cos 2(k - 1)0, (5.4.9) 
k=2 

where the convergence is in £ 2[---, ]. Since the series representation of y(0) in 

equation (5.4.1) holds in the space £2[-, ], from Theorem 5.2.3 x = (x1,x2, ... ) e 

£2. Thus from Theorem 5.2.3, the series > Xk cos 2k0 and the series k=l Xk cos 2(k-

2)0 both converge in .C2[—, }. So from the equality 

2 (cos 20) cos 2(k - 1)0 = cos 2k0+ cos 2(k-2)0, 

where k E .W, and from equation (5.4.1), it follows that 

00 CO 

2(cos 20) y(0) = E Xk cos 2k0 + > Xf cos 2(k - 2)0, (5.4.10) 
k=1 k=1 

where the convergence holds in £2[, ]. Therefore from equations (5.4.9) and 

(5.4.10), the equation Ty(0) = ay(0) gives 

00 00 
4(k-1)2xk cos 2(k— 1)0+xk cos 2k0 

k=2 k=1 

00 00 

= a>xk cos 2(k— 1)0 - xk cos 2(k - 2)0. 
k=1 k=1 

Thus, 

00 

X2 + (2x1 + 4(2 - 1)2x2 + x3) cos 20 + >(xk_1 + 4(k - 1) 2Xk + xk+1) cos 2(k - 1)0. 
k=3 

00 

= a>xk cos 2(k - 1)0 
k=1 

(5.4.11) 
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Integrating both sides of equation (5.4.11) from - to E and using Lemma 5.2.4, 

we get 

irx2 + (2x1 + 4(2 - .1)2 X2+xs) cos 20d0 = 
f ir/2 

00 

a>xkj cos 2(k— 1)0d9— 
k=1 -ir/2 

00 /2 

- 1)2xk -- xk+1) I r cos2(k— 1)o do. 
k=3 - J-ir/2 

Using equation (5.2.1), the above equation gives 

Z2 = ax1. (5.4.12) 

If we multiply both sides of equation (5.4.11) by cos 20, then integrate both sides 

from - to and use Lemma 5.2.4, we get 

rir/ 7/2  
X2 2 J -ir/2 

cos 20 dO + (2x1 + 4(2 - 1) 2x2 + x3) J Cos 220 dO 
-ir/2  

00 f-',x r/2axk (c0s20)c0s2(k-1)0d0— 
k=1 /2 

00 

>(x_i+4(k— 1)2 + xk+1)J ir/2 (cos 20) cos 2(k - 1)o do. 
- 

Using equation (5.2.1), we get 

2x1 + 4(2 - 1) 2x2 + x3= ax2. - (5.4.13) 

Similarly if we multiply both sides of equation (5.4.11) by cos 2(j - 1)0, j is an 

integer greater than 2, then integrate both sides of the equation from - to E and 

use Lemma 5.2.4 and equation (5.2.1), we get for all k ≥ 3, 

xkl + 4(k - 1)2xk + Xk+1 = axk. (5.4.14) 
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Equations (5.4.12),(5.4.13) and (5.4.14) giveBx = ax, where x = (x1,x2,...) E £2. 

Hence a is an eigenvalue of B with a corresponding eigenvector x ( x 0 0; for if 

x = 0 then from equation (5.4.2), J2 y(0) cos 2(k - 1)0 dO = 0 for all k E N. 

But since fff 2y(0) sin 2k0d0 = 0 for all k E N and{*}U{lJT cos 2m0 n E 

.A/} U{\/sin2nO : n E N} is an orthonormal basis for £ 2[—, ], then by Lemma 

5.2.4 it follows that f 2 y(0)f(0) dO = 0 for any f E £ 2[—, . In particular we 

have f2 y(0) 2 dO = 0. So y = 0 almost everywhere, which is impossible since 

y 0 0 and y is continuous). 

Now suppose that a is an eigenvalue of B = (b) with a corresponding eigen-

vector i = (x1,x2) ...:) E £2. If  = diag(/, 1, 1,.. .), then SBS' = B, where 

the entries kj of B are given by b12 = 621 = \/2 and = bij for all other indices 

i and j. Hence a is an eigenvalue of B with the corresponding eigenvector x. If 

A = B + 21, that is, A = (a1) is the matrix operator defined by 

2 / o 000 

6 1 0 0 0 

0 1 18 1 0 0 , (5.4.15) 

0 0 1 38 1 0 

then a + 2 is an eigenvalue of A with the corresponding eigenvector x. We show 

that A satisfies the hypotheses of Theorem 5.3.5 at p = 2. Define 

D = diag(a11, a22 ,...), F = ((i - (5.4.16) 
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as usual. It is clear that F E £(t2). Also since 

I 

D'F = 

o //20 0O... 

//6 0 1/6 0 0 

o 1/18 0 1/18 0 

then II D'F 11 ,=   and 11 D'F - (see [8]). But since D'F oo 2 

l[ DF 11111 D'F 11. (see page 366 in [ 16]'), then 

11 D'F 112 < (18 + )h12   <1. 
6 

(5.4.17) 

Thus from Theorem 1.1.1, (I + D_1F)1 E £(t2), and hence A satisfies hypothesis 

(3) of Theorem 5.3.5. It is clear that A satisfies all other hypotheses of this theorem. 

Hence there exists no E )I and a positive real r such that for all n ≥ 

I x, 1< rca. (5.4.18) 

Since c = I ann IE' I ank 2 
4(n-1)2+2 for all n ≥ 3, then if we choose no ≥ 3, 

inequality (5.4.18) gives 

00 00 

IZI≤r 
n=no n=no 

2 

4(n - 1)2 + 2 < 00, 

where the convergence of the series follows from the fact n=1 n2 =  1•11. Hence 
V'00 Xn 1< oo and this means that x = (x1, x2,...) E £. Then the series 

0= xk cos 2(k - 1)0 converges for every 0 E 1, ]. So we can define a function 

y(0) by 
00 

(0) = E Xk cos 2(k - 1)0, 
k=1 
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where the convergence is pointwise in C. 

Also from x'E £, it follows that the power series has a radius of 

convergence equal to oo. For z E C, define the function 

From the equality 

00 1 f(z) = i_xkzkl . 

cos 2(k - 1)0 = (e2(c_1)v'T0 + e_2_1)\/0), 
2 

(5.4.20) 

it follows that for all 0 E [- i, 

Y (0) = f(z) + f(z2), (5.4.21) 

where z1 = e2V'8 and z2 e_ 2V'9. From Theorem 7.1, page 76 of [ 17], the first 

and second derivatives of f(z) exist for all z E C and 

f'(z) = - 1)xkz 2, f"(z) = - 1)(k - 2)Xk 00 1 Z 3. (5.4.22) 

From equations (5.4.21) and (5.4.22), it follows that y'(0) exists for every 0 

and 

, 

y'(0) = f(z1) dz1-- + f(z2) dz2 -- 

00 

= > —2(k - 1)xksin2(k - 1)0. (5.4.23) 
k=2 

Similarly from equations (5.4.22) and (5.4.23), it follows that y"(0) exists for every 

0E(—f,)and 
00 

y"(0) = E —4(k - 1) 2xk cos 2(k - 1)0. (5.4.24) 
k=2 
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Since the third derivative of 1(z), f ... (z), exists (this implies that y"(0) is continuous 

on (-f, ) ), from equation (5.4.19) (y(0) is even) and equation (5.4.24 ), it follows 

that y = y(0) e L. 

The equation Bx = ax gives equations (5.4.12),(5.4.13) and (5.4.14). Hence 

from the convergence of the series cos 2(k - 1)0, we have 

00 

X2 + (2x1 + 4(2 - 1) 2x2 + x3) cos 20 + E (xk_1+ 4(k - l) 2xk + xk+1) cos 2(k - 1)0 

00 

= axk cos 2(k - 1)0, 
k=1 

where the convergence is in C and 0 E [- j, • Thus from the convergence of the 

series Ek...3 Xk_1 cos 2(k— 1)0, xk+1 cos 2(k-1)0 and 4(k - 1) 2Xk cos 2(k-

1)0 (see equation (5.4.24)), we get the equality 

00 00 00 

4(k— 1)2xk cos 2(k - 1)0 + E xk cos 2k0 + E xj cos 2(k - 2)0 
k=2 kF1 k=1 

00 

= azk cos 2(k— 1)0 = ay(0), 
k=1 

where the convergence is in C and 0 E [- , ]. Therefore, from the equality 

2(cos 20) cos 2(k - 1)0= cos 2k0 + cos 2(k - 2)0 

and equation (5.4.24), we have for all 0 E (-, 2)1-

Y" (0) + 2 (cos 20)y(0) = ay (0) 

or 

Ty(0) = ay(0). 

Hence a is an eigenvalue of T with the corresponding eigenvector y = y(0) (since 

Y(0) = > 0 and y is continuous, there is an interval .M containing zero 
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such that y(0) 0 for all 0 E M. Thus y 0 0 ). This completes the proof of the 

theorem. U 

5.5 A Numerical Estimation 

In this section we use the results of Section 4.3 to approximate the eigenvalues of 

Mathieu's equation in the case of q = 1. 

We have shown in the previous section that in the case q = 1, ,a is an eigenvalue 

of Mathieu's equation with a corresponding eigenvector ce2 , n E .W, if and only 

if a + 2 is an eigenvalue of the matrix operator A -defined by equation (5.4.15). 

Therefore,. in order to approximate the eigenvalues corresponding to the eigenfunc-

tions ce2n of Mathieu's equation it is sufficient to approximate the eigenvalues of 

A. Since A is selfadjoint, Theorem 5.4.1 show that A satisfies the hypotheses 

of Theorem 4.3.1. So the eigenvalues of A can be approximated to any degree of 

accuracy provided the constant K = 11(1+ II F II) II (I + D'F) 1 11 , where 

D 'and F are defined by equation (5.4.16), and the constant k defined by equation 

(4.3.1) are estimated. - 

First we evaluate the norm of F. For any y = (y, Y2,...) E £2 with 11 y 11= 1, 

we have 

IIFyI2 = 

2 
≤ 2Iy2l2+(2Iy1 2+y3I2+ly2I2+Iy4 +ly3I+Iy5l+",) 

+2(Iyi IiY3I+IY2IIY4I+IY3UY5I+") 

= IY2I+2(IY1j+1Y2I+IY3l+".) 

+2(/jyi IIY3I+IY2 ftY4j+IY3IjY5 +•.•) 
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1Y2 12+2+2 ( I yil,l Y2 Il ya la...) liii (I Y3 I,IY4 I ) II 
2 

= 2+1y212+2[(21y112+1y212+1y312+...)(1y312+1y41 

2+1y212+2[(1+1y112)(1—lyll2 1Y212)] 1/2 

= 2 +ly2l2+2[(1Iy1l4)—ly2I2(1+lyll 2 )] 1/2 

2 + I Y2 I2+2[1- 1y2 2]V2, 

but since the function () = 2+ + 2(1 - 77 2)1/2 is a continuous function on [0, 11, 

has a negative derivative on (0, 1) and 1'(0) = 4, 2 + I 112 2 + 2[1 I 112 I] 1/2  < 4 

Thus for any 11 = (yr, Y2,...) E t2 with 11 y 11= 1, we have Fy II≤ 2, and hence 

IF 2. (5.5. 1) 

On the other hand, the, sequence f X(k) 100 0 of vectors in £2, where the ith component 

(x(Ic)) of X(C) is given by 

satisfies 

0 ifi≥k+4 

11 
x 1,2 = k+3 ,  II Fx 112 = 4k + II Fx° 2sup 

for all k = 0, 1,2.....Hence, 

flFx) II  
k=0,1,2,3,...=2. 

II (k ) II 

From equations (5.5.1) and (5.5.2), we get 

IF 11= 2. 

From equation (5.4.17) and Theorem 1.1.1, we have 

11 (I + D'F)' 11≤ 3.765. (5.5.4) 

(5.5.2) 

(5.5.3) 
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Hence from equations (5.5.3) and (5.5.4), we get 

K < ()(3)(3.765) < 5.648. 

Also from inquality (5.5.4), we have 

11 A' D' 1111 (I + D1F)' l≤ ()(3.765) < 1.883. 

Thus from equations (5.5.3),(5.5.5) and (5.5.6), we have 

(5.5.5) 

(5.5.6) 

k < (4) (1.883) (6.648) (9) < 451. (5.5.7) 

Using the notations introduced before Theorem 4.3.1 in Section 4.3, we have at 

3— 2  
5=3—v2, 2(2+)(2++3—) < 0.008 

and (1+ I all +P1)2 = (3 +v')2. Then equations (4.3.2) and (5.5.7) show, for 

example, that to guarantee an error of not more. than 0.005 in the first eigenvalue 

(which is the. elgenvalue of A in the Gersgorin disc £ 1 = {z E C :1 z - 2  

wecan truncate A to the leading submatrix of size 664. 

REMARK 5.5.1 Determining the eigenvalues in £2 of the matrix operator A = 

(ajj) defined by equation (5.4.15) is equivalent to solving 

Kx=0, 

where x is a nonzero vector in £2 and K = (k1) is defined by 

(a - A)/ajj if j = i 

aij/aii otherwise 
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where ). E C. In contrast with our method of approximating the eigenvalues of A, 

Mennicken and Schmidt [20] estb1ished similar results based on the concept of the 

vanishing of det K. The determinant det K is defined as 

detK = lim det K, 

where K, n E .W, are the leading n x n submatrices of K. The existence of the 

above limit has been proved by Poincaré [23]. 



Chapter 6 

Perturbation of Linear Operators in Banach 

Spaces 

In this chapter we discuss the dependence of the eigenvalues and the eigenvectors 

of the perturbed system upon the perturbation provided it is small enough, and 

use this result to approximate the eigenvalues of Mathieu's equation (see Chapter 

Five). First we state the fixed-point theorem. 

6.1 The Fixed-Point Principle 

Consider a complete metric space X with a metric p and a closed subset f of X. 

Assume that there is a mapping P defined on fl that maps f into itself. 

DEFINITIONS 6.1.1 

(1) A point x E 1 is called a fixed point of P if x = P(x*). 

Thus the fixed points of P are the solutions of the equation 

X = P(x). 

(2) P is a contraction map if there exists an a E [0, 1) such that 

p(P(x),P(x')) ≤ ap(x,x') 

for all x, x' E Q. 

If P is a contraction map, one can guarantee the existence, and even uniqueness, 

of a fixed point. 

97 
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THEOREM 6.1.2 If P is  contraction map on ci; then there is a unique solution 

x in fl for equation (6.1.1). 

Moreover, x' can be obtained as the limit of the sequence {x}, where 

zn+i = P(x) 

for all n = 0, 1,2,..., and where z0 is an arbitrary point in Q. 

See Theorem 1, page 474 of [ 14] for the proof. 

6.2 1 The Elgenvalues and Elgenvectors of the Perturbed 

System 

In this section we show under certain conditions (see Theorem 6.2.1 below) that 

if the unperturbed system has an eigenvalue Ao with a corresponding eigenvector 

x0, then an upper bound for the perturbation (in norm) can be given to guarantee 

that the perturbed system has an eigenvalue with a corresponding eigenvector that 

are both close to Ao and x0, respectively. Such a problem has been discussed in 

[24] and [33]. 

THEOREM 6.2.1 Let D be a closed operator defined in a Banach space I such 

that V(D) is dense in I and assume that 

(1) The point Ao is an eigenvalue of both D and D' (the dual of D ) with 

corresponding eigenvectors x0 and x, respectively. The vector x0 satisfies 11 xo 

1. 

(2) The restriction of the operator (D - A01) to the space X1 = {x E V (D) 

x(x) = o} has a bounded inverse R mapping Ii into itself. 
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(3) The vector x satisfies x(x0) = 1. 

Then for any r E (0, (IIzj 1RIl)'/2) and F E 9r {U E £(X) U S}, where 
OIIII 

r 

II x Jill  + (II x IlliR I+ uS lDr+ IISM 

and 

S=R(I—x0r4), 

the system of equations 

Ax = (D + F)x = Ax, x'0(z) = 1 (6.2.1) 

has a unique solution (x, A) in the set { E V(D) :11 z - xo II≤ r} x C. (Concerning 

the location of A in C see Remark 6.2.2.) 

Proof. Define P = I - xox. Hence S = HP. 

)1I2) and F E r• Writing x = x0 + y and A = A0 + , and Fix r E (0, (11.01111   

substituting into equation (6.2.1), we find it is required to solve 

(D—A0I)y=,i(xo+y) — F(xo+y), (6.2.2) 

where y E Y = I fl{z E I : 11 z ll≤ r}. From the second hypothesis, the left hand 

side of equation (6.2.2) is in I, and so acting on both sides of the equation by x'0 

we get 

77 = tx(xo + y) = x(.F(xo + y)). 

Therefore it is required to solve in jj the equation 

(D - AoI)y = x(F(xo + y))(x0+ y) - F(xo + y). 

(6.2.3) 

(6.2.4) 
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From the definition of P, it is easy to see that solving equation (6.2.4) in J is 

equivalent to solving 

(D - AoI)y = x'c(F(xo + y))y - PF(xo + y) (6.2.5) 

in Y. Now we may use hypothesis (2) and act on both sides of equation (6.2.5) by 

the operator R to deduce that the equation 

yx(F(xo+y))Ry — SF(xo+y) 

has the same solution set in / as equation (6.2.5) has. 

Define the map QF on the closed set / by 

QF(Y) = x(F(xo + y))Ry - SF(zo + y) 

(6.2.6) 

for all y E Y. We prove that QF is a contraction map mapping Y into itself. 

Let Y E Y. Since P maps I onto Ii (for x E I, we have x(Px) = x(x) - 

x(x)x(x0) = x(x)—x(x) = 0, by the third hypothesis), we have PF(xo+y) E X. 

Hence from the second hypothesis both of SF(xo + y) and Ry are in X. Thus 

QF (y) E X. Also using the triangular inequality and the fact that 11 xo 11= 1 and 

11 y r, we get 

II QF (Y) II≤ ( II X' F 1111 R F II)1+r). 

But since F IJ≤ r R r2 + (I X,  R 11+11 S I)r+ Iwe have QF (Y) I≤ 
r, and this proves that QF maps 3J into itself. 

Now let y' and Y2 be in Y. We have 

II QF (yr) - QF (Y2) II II F (2 II III R R + II S II) II - Y2 II 

R R + S 11h1 ' 11. 
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Hence we have 

II QF (Y1) - QF (Y2) lI≤ allyi - Y2 II, 

2lIxllllRllr+IIxlJlJRlJ+IlSll  where a = . But since 

II liii R 1111 R 11+11 S Ii 
r 

I  IISII  \ 1/2 

0<r< llxllIIRIl) 

then a E (0, 1) and this completes the proof that QF is a contraction map mapping 

into itself. Thus from Theorem 6.1.2, QF has a unique fixed point y = QF(y*) E 

Y. Hence from the definition of QF it follows that equation (6.2.6) has the unique 

solution y in Y. But since the two equations (6.2.4) and (6.2.6) have the same 

solution set in Y, then equation (6.2.2) has a unique solution (y*, 77*) in Y x C 

where y is the unique solution of equation (6.2.4) and is given by 

77* = x(F(xo + 

Thus the system (6.2.1) has the unique solution (x,A) E {z E C :11 z— x0 ll≤ r}x C, 

where x = x0 + y and A = A0 + . This completes the proof of the theorem. 

REMARK 6.2.2 In Theorem 6.2.1, by choosing r and S small enough, the solution 

(x) A) of the system (6.2. 1) can come close to xo, Ao to any degree of accuracy. To 

explain this point, let e > 0. If we let r 'rary in the interval (0, (llI )h/2 ), then 

ll II R r2 + (II X01 R 11+ 11 S Il)r+ 11 S 11 

is a function of r. This function has a greatest lower bound equal to zero, and is 

increasing since the derivative 

Sll - llxllllRllr2  
(!l X0 1111 R 11 r2 + ( x jjj RI + 11S ll)r+ 11S 11)2 > 0 
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1/2 

for all r E (0, ( Iz'JlIIRII) ). So if we choose r < c such that 

o = 8(r) < 
II (1+r)' 

C 

the unique solution (x, A) of the system (6.2. 1) in the product space {z e 12(D) :11 

z - x0 II≤ r} x C satisfies 

and 

II x — xoll<€ 

A — A0 x 11(1+1 ID F 11< 11(1+11 Y II)  
II II(1+r) C. 

REMARK 6.2.3 In Theorem 6.2.1, we have improved the upper bound for the 

norm of the perturbation given in [24] which is 

r 

2 III r ( x R .+. II S Dr-f- S 11 

6.3 Approximation of the Eigenvalues of Mathieu's Equa-

tion 

In Theorem 5.4.1, we proved that the eigenvalues of Mathieu's equation (5.1.1), 

with q = 1, are the eigenvalues of the infinite matrix operator B = (bj) defined in 

£2 by 

and 

b12 = b21 = b23 = 1 

1 ifj=i±1,i>3 

4(i-1)2 ifj=i,i>1. 

0 otherwise 
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and that the eigenvalues of B tie in the Gersgorin discs (defined by the row sums) 

of B. Each Gersgorin disc contains one and only one simple eigenvalue of B. 

In Section 5.5, we have shown that the matrix operator F = (( i,- 5)b) is in 

£(t2) and 11 F 11= 2. Hence we can write B = D+F, where D = diag(0, 4,16,36 .. . 

Now we show that D satisfies the hypotheses of Theorem 6.2.1. It is clear that 

di = 4(i - 1)2, i E .W, are the eigenvalues of D with corresponding eigenvectors 

Xi = e, where ei are the unit coordinate vectors. Also since V(D) is dense in £2, 

the dual D' of D exists, and from Corollary 2.3.4, it follows that for every i E .V, 

di is an eigenvalue of D' with a corresponding eigenvector x = J'(e), where J is 

the map defined in Remark 2.3.2. 

Now fix i E JV. Let X {x E £2 : x(x) = O}. From Theorem 2.3.1, it is clear 

that e5 E Xi for all j 54 i and x(e) = 1. Hence from the continuity of x, it follows 

that Xi is the closure of the set span{ej : j E 1V \ {i}}. Therefore the restriction of 

the operator (D - dI) to the space Xi has an inverse R i (r) mapping Xi into 
Ik 

itself and is given by 

if  =j= i 

(1/4)((j_)z_(j_)2yl ifk=ji 

0 otherwise 

and c is a complex number. Thus and R1 11= 4(2i— 3) for all 

i = 2,3,4.....Also the operator Si= R, (I - ex), where I is the identity operator, 

has the same norm as Ri has. To prove this; let z = E I, then since 

(I - ex)(z) = z, we have 

II 'R (6.3.1) 
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On the other hand let x = E•o ajej E £2 and 11 x Il< 1. We have 

00 

(I—ex)(x) = x—x(>ajej)ej 
i=1 

00 

= 

.1=1 

00 

= 

i 1 

= x — ae 
00 

= ajej -  

which is an element in X; denote it by 1. From Theorem 4.1, page 10 of [9], we 

have 11 ff I≤ 1. Therefore 11 Six 11=11 R1 INZM Ri 11 . Hence we have 

Si11 jj≤Jj R (6.3.2) 

Equations (6.3.1) and (6.3.2) prove 11 Si 11=11 Ri 11 . Thus D satisfies the hypotheses 

of Theorem 6.2.1. 

Now for every integer i ≥ 3, we solve the equation 

2= (r+2r+1) 11  i F 

Substituting from 11 Ri 11= 4(211 3) into equation (6.3.3), we get 

r +4(2 —i)r+ 1 = 0, (6.3.4) 

Ti 
(6.3.3) 

where i ≥ 3 (for I = 1, 2, equation (6.3.3) does not have a real solution). Now for 

all I ≥ 3 choose ri to be the smaller root of equation (6.3.4),that is, for all I ≥ 3 

choose ri to be 

ri = 2(i - 2) - /4(i - 2) 2 - 1. (6.3.5) 
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It is clear that ri E (0, 1) for all i ≥ 3. Since 11 F 11= 2, 11=11 e1 11= 1 (see 

Theorem 2.3.1) and 11 Si 11=11 Ri 11 for all i E )I, then from Theorem 6.2.1 (where 

we take S = 11 F 11= 2 ), the system of equations 

(D+F) (xi +y1)=A1 (xi +y1), x(x1+y1)=i 

where i ≥ 3, has a unique solution (x1 + y1, A1) in the set {z E V(D) :11 z - z1 

r1} x C, where r1 is given by equation (6.3.5). Also we have for all i ≥ 3, 

- d1 = x(F(e1 + y)). (6.3.6) 

Since Fe1 E span{ej_1, ei} and x(e) = bij for all i ≥ 3 and 5 E .W, then -  di = 

x(F(y1). Thus we have 

)tj—d1I<IIFIIyjlI<2r1<1 

for all i ≥ 3. Thus for all i ≥ 3, Ai is the simple elgenvalue of A in the Gersgorin 

disc R1 of A. Since linj. ri = 0, then 1im, I Ai - 4(i - 1)2 1= 0. For example, 

for = 3: 

hence I A3 - 16 j< 0.536 

for i = 4: 

hence I A4 - 36 j< 0.2542 

for i = 10: 

hence I A10 - 324 j< 0.064. 

= 2 - <0.268 

= 4 - <0.1271 

rio = 16 - <0.032 
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