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ABSTRACT 

The original University of Calgary single difference 

GPS data processing package, ASTRO, was developed and tested 

using only simulated orbit and phase data. The first 

objective of this thesis was to make the program work with 

observed data. The second objective was to determine if the 

use of the single difference observable is a viable approach 

to precise GPS positioning. To fulfill the second objective, 

a series of model enhancements had to be implemented to 

improve the performance of the ASTRO program. The 

enhancements are mainly to the receiver clock model. 

To make the program run with observed data, a method of 

determining the six Keplerian initial conditions from the 

broadcast ephemeris had to be developed. The initial 

conditions are used in the numerical integration routines 

which compute the satellite positions. A difference of less 

than two metres between the broadcast ephemeris and 

integrated orbit has been obtained. 

Adjustments with the original version of the ASTRO 

program gave rather poor results. A large systematic trend 

in the residuals, representing unmodelled receiver clock 

biases, is a major contributor to the poor results. An 
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inherent instability in the single difference model has also 

been identified. 

A first-order Gauss-Markov process has been implemented 

to absorb the systematic trend. In addition, the receiver 

clock model has been revised to account for time-tag errors 

and the facility to treat the ambiguities as weighted 

parameters has been added. Baseline length errors of under a 

few parts per million have been obtained but only when the 

ambiguities are held fixed and short correlation times (120 

seconds) are used in the random process. If longer 

correlation times are used, interaction between the receiver 

clock polynomials and the random process prevents proper 

convergence of the adjustment. Treating the ambiguities as 

weighted parameters, both with and without incorporating the 

Markov process, also produces convergence problems. This 

instability problem has not been successfully resolved. 

The requirement of accurate a priori knowledge of the 

ambiguities is a significant constraint on the usefulness of 

the program. In addition, it is felt that the receiver clock 

models currently implemented are not the optimal solution to 

the clock problem. At present, the single difference models 

investigated in this thesis cannot be considered as a viable 

alternative to double difference adjustments. 
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CHAPTER 1 

INTRODUCTION 

Over the past decade, the development and utilization 

of GPS positioning techniques for the precise measurement of 

geodetic baselines and geodynamic studies has been an active 

area of research. Baseline measurement accuracies of a few 

parts per million are currently being achieved using single 

frequency receivers and processing software with no orbit 

improvement capabilities , see e.g. Lachapelle and Cannon, 

1986; Langley et al., 1986; Jones and Larden, 1987; 

McArthur, 1987. Accuracies of 0.1 ppm or better, required 

for geodynamic studies (Hothem and Williams, 1985; Pointon 

et al., 1987) have been demonstrated on longer lines with 

improved modelling of the major error sources and dual 

frequency receivers, see e.g. Bock et al., 1986; Beutler et 

al., 1987a. Efforts are in progress to achieve accuracies in 

the 108 range. This requires carefully designed experiments 

on networks of widely spaced observing stations with special 

efforts to reduce orbital errors, high performance dual 

frequency GE'S receivers with stable atomic clocks and 

reliable atmospheric information. 
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Most of these results have been achieved using double 

difference techniques for the carrier phase. These 

techniques have major advantages in terms of economy and 

stability of the numerical process. They have, however, 

drawbacks in reducing the information content of the data. 

Forming double differences cancels the common orbit errors 

and the receiver clock errors which are explicitly modelled 

in the single difference observation equation. Cancelling 

the biases is undesirable when orbit improvement is to be 

carried out since the observation will be less sensitive to 

orbital errors (Langley et al., 1984; Nakiboglu et al., 

1985) . Also, the receiver clock errors are in fact only 

partially removed by differencing. The remaining clock 

errors must be further modelled, otherwise the effect will 

be absorbed in the estimates of the other parameters. 

The research group at The University of Calgary 

developed a program package to provide GPS positioning at 

the 0.1 ppm level using single differences. It was used to 

evaluate permanent tracking station locations for a regional 

network extending over the Canadian territory using 

simulated data. The results of this analysis can be found in 

Buffett (1985), Nakiboglu et al., (1985) and Wanless (1985). 

Further research has gone into developing the concept of a 

network of permanent tracking stations, known as the Active 
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Control System in Canada (Delikaraoglou et-al., 1986), and 

as the fiducial oncept in The United States (Davidson et 

al., 1986). 

The University of Calgary program package, originally 

known as ASTRO, provided for the simultaneous adjustment of 

ground station coordinates for a network of observing 

stations plus orbital improvement. Common biases such as 

orbital errors, unaccounted for tropospheric refraction and 

receiver clock biases are explicitly modelled. Single 

difference observations (between stations) are chosen as the 

basib observational unit; thus, satellite clock errors and 

the common part of the atmospheric biases and orbital errors 

are differenced away. Modelling of the remaining biases 

allows for tuning of the a priori variance information to 

provide an optimal solution. This package provides an 

interesting alternative to the existing double difference 

programs because it has potential advantages in model 

identification and covariance estimation. It was therefore 

of interest to compare this approach to the existing ones 

using a common data set. 

1.1 Objectives and Outline of the Thesis  

The original version of ASTRO was developed and tested 

using simulated GPS orbital information and phase data 
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(Wanless, 1985). The objective of this thesis is to use the 

ASTRO program package with observed GPS data to improve the 

existing single difference model and to determine whether 

the use of single differences is a viable approach to 

precise GPS positioning. 

Single differences will contain more information about 

the orbital variations and the receiver clock errors than 

the double difference observations more commonly in use. 

Since orbital errors are one of the major limiting factors 

in precise GPS positioning (Beutler et al., 1987a), 

developing a workable single difference processing scheme 

could improve the overall positioning accuracy of the 

system. 

A data set, observed with TRIMBLE 4000SX receivers on a 

set of well determined control points, was obtained from the 

Canadian Geodetic Survey (CGS). The test network and data 

set is discussed in section 1.2. To use this data set, The 

University of Calgary GPS data preprocessing package was 

modified to handle the data from all five observed 

satellites (see section 1.3) . A number of other improvements 

to the ASTRO program were required to make it run with 

observed data. The major ones are the development of a 

method of computing the six initial Keplerian elements from 

the broadcast ephemeris parameters and the improvement of 
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bias modelling in the adjustment package, in particular, the 

modelling of receiver clock errors. The model and its 

improvements plus an analysis of the achieved results are 

discussed in this thesis. 

A discussion of the mathematical formulation used in 

the adjustment and in the orbit prediction and improvement 

routines of the ASTRO program package is presented in 

Chapter 2. The observation equations and a brief review of 

the effects of improperly modelled biases is also presented. 

The derivation of the method of computing the Keplerian 

initial conditions from the broadcast ephemeris is presented 

in Chapter 3. The satellite positions are determined for use 

in the adjustment package by integrating the equations of 

motion subject to the Keplerian initial conditions. A 

comparison of these satellite positions with those obtained 

directly from the broadcast ephemeris algorithm is 

presented. 

Prior to implementing modifications of the original 

bias models, a number of adjustments were performed to 

assess the performance of the adjustment package. Results of 

these adjustments are presented in Chapter 4. Analysis of 

the results' yields a number of alternative methods of 

revising the bias modelling, especially the clock model. 
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Results obtained from adjustments with the bias 

modelling changes implemented are presented in Chapter 5. 

Results of double difference adjustments, formulated to be 

compatible with ASTRO, plus the usual double difference 

formulation are introduced in Chapter 6. An analysis of the 

results along with recommendations for further research is 

presented in Chapter 7. 

1.2 Layout of the Test Network 

The data used for this analysis is a subset of the data 

used by the Geodetic Survey of Canada to evaluate the 

performance of the TRIMBLE 4000SX receivers and the TRIMVEC 

double difference GPS data processing program package. 

Baselines determined with the TRIMBLE/TRIMVEC system are 

accurate to within a few parts per million. The results of 

the complete test are presented in McArthur (1987). 

The subset of the data, which is used for this study, 

consists of single frequency phase observations at three 

stations on November 14, 1986. The layout of the network is 

shown in Figure 1.1. The bulk of the analysis is performed 

on the baseline from station ROOF to station CATA. 



7 

0 

r€ To 

CATA 

7, 

Figure 1.1: Layout of the Test Network 

The data for baseline ROOF to CATA spans 4800 seconds, 

beginning at 488040 seconds from the Saturday midnight 

reference epoch of the broadcast ephemeris (about 11:00 AN 

local time) . During the first 1000 seconds, five satellites 

were available while for the next 3600 seconds only four 

satellites were visible. The remaining 200 seconds of data 

has observations to only three satellites. A plot of the 
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GDOP values throughout the observation session is shown in 

Figure 1.2. 

CL 
C 
C 

488000 489250 490500 491750 493000 

Time Since Saturday Midnight (sec) 

Figure 1.2: GDOP Throughout the Observation Session 

Due to variations in the tracking start and stop times 

at each receiver, the other two baselines exhibit slightly 

different data spans. Both baselines ROOF to METC and METC 

to CATA start 450 seconds later. This reduces the five 

satellite coverage on METC to CATA to 550 seconds. The five 

satellite coverage on the baseline ROOF to METC lasts 400 
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seconds longer, thus removing the worst of the peak in the 

GDOP curve. 

1.3 Data Preprocessor and Cycle Slip Correction Programs  

The basic function of the preprocessor program is to 

correct cycle slips, identify and remove poor sections of 

data and produce the input files for use in the ASTRO 

program package. A Data Flow Diagram of the process is shown 

in Figure 1.3. 

The raw data from the receiver is first converted to 

ASCII format and transferred to the mainframe computer. 

Cycle slip detection and correction is then performed on the 

raw observation files. Manual editing of poor sections of 

data is also performed at this step. 

The cycle slip detection and correction routines are 

based on the method of Hula (1986), slightly modified to 

handle the TRIMBLE 4000SX measurements (Tziavos, 1987). The 

entire algorithm can be divided into two main parts. In the 

first part, the larger cycle slips are identified with an 

algorithm which compares predicted and observed second 

differences of the carrier phase. In the second section, 

examination of first differences formed from the residuals 
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Figure 1.3: Preprocessor Data Flow Diagram 
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of a double difference adjustment identifies the remaining 

smaller cycle slips. A flowchart of the process is presented 

in Figure 1.4. 

A first difference is defined as 

FDIFFj = P j - P_ 1 (1.1) 

where Pk is the residual or carrier phase at epoch k, either 

predicted or observed. A second difference is defined as 

SDIFF+i = FDIFF+i - FDIFF 

SDIFF ±1 = - 2P + 
(1.2) 

In the first part of the algorithm, the second 

differences of the predicted and observed carrier phases are 

compared by computing the delta second difference 

DSD = SDIFF - SDIFF° , (1.3) 

where SDIFFP is the second difference formed from the 

predicted phase measurements and SDIFF° is formed from the 

observed phase measurements. The predicted phase measurement 

is determined from the range based on the estimated position 

of the observing station and the satellite position computed 

from the broadcast ephemeris. 
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.Figure 1.4: Cycle Slip Removal Flow Chart 
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The location of a cycle slip is identified when the DSD 

exceeds a certaii tolerance level. The magnitude of the 

tolerance level is dependent on the accuracy of the 

estimated position of the observing station. The initial 

estimate of the station position needs only to be kndwn to 

within ten kilometres. Once the larger cycle slips are 

removed, a point positioning algorithm is used to improve 

the estimate of the station position. This process is 

iterated until no further significant improvement is 

achieved in the station position. At this time, cycle slips 

greater than about five cycles will have been removed. 

The remaining smaller cycle slips are corrected in the 

second stage. Data from a second station is introduced and a 
1 

double difference adjustment is performed. Forming the first 

differences from the adjustment residuals shows the location 

of the remaining cycle slips. The first differences will be 

under one cycle if no cycle slip is present. A first 

difference greater than one cycle indicates a cycle slip of 

the same magnitude. These cycle slips are corrected and the 

final, clean phase data files are formed. The adjustment 

residuals may show further small cycle slips which can be 

removed from the data files at that time. 

In the data from the test network, all observations 

with a large number of cycle slips at the beginning or end 
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of the data files were deleted. Between stations single 

difference phase observation files were then prepared from 

the cleaned phase observations of each satellite pass. The 

separate observation files are then combined to provide the 

final observation file for use in the ASTRO program package. 

The current formulation of ASTRO requires that the 

satellite transmission times are identical for both of the 

one-way phase measurements that make up the single 

difference observation. In general, the signal transmit 

times only match to within one millisecond. The data are 

reduced to a common transmit time by interpolating the data 

at the free station end of the baseline, using the recorded 

phase velocity and time difference. All data which exhibited 

a transmit time difference of greater than one millisecond 

was deleted from the observation files. 

The other input files shown in Figure 1.3 are entered 

manually. The station data file contains the initial station 

coordinates and clock coefficients. The gravity data file 

contains the harmonic coefficients of the gravity field, 

Cl,m and Sl,m. The process of determining the Keplerian 

initial conditions for use in the ASTRO program package is 

described in Chapter 3. 



CHAPTER 2 

BIAS MODELLING 

Only a brief overview of the mathematical formulation 

•used in ASTRO will be presented in this section. A complete 

discussion of the adjustment equations plus the orbit 

modelling techniques used in the original version of ASTRO 

can be found in Buffett (1985), Nakiboglu et al. (1985), and 

Wanless (1985). A review of the phase observation equations, 

receiver clock errors and atmospheric bias modelling used in 

ASTRO and other GPS data processing packages is also 

presented in this chapter. 

The approach to GPS positioning used in ASTRO is to 

treat all of the data from a network of observing stations 

together in one solution for station position, nuisance 

parameters and orbit improvement. The choice of observable, 

for this study, is the between receiver single difference 

phase measurement. The single difference observable allows 

common biases such as receiver clock errors plus the 

remaining orbit errors and atmospheric propagation errors to 

be explicitly modelled. The price to be payed for explicitly 

modelling the biases is the large number of nuisance 

15 



16 

parameters that must be solved for. The danger of 

overparameterizing the solution is therefore always present. 

In the double and triple difference approaches, the 

common biases are cancelled. The higher differenced 

observables are used in several current GPS data processing 

program packages such as DIPOP (Vanicek, et al., 1985), 

NOVAS (Wanless and Lachapelle, 1988) and the Bernese 

Software (Beutler et al., 1987a), all of which have been 

very successful. Their main shortcoming is the insensitivity 

of double differences to the remaining systematic errors in 

the observations. 

2.1 A Review of the Phase Observation Equations 

Detailed discussions, of the GPS phase observation 

equations can be found in the literature on the subject, see 

e.g. Remondi, 1984; Wei, 1986; Wells et al., 1986. The 

development of the equations will not be discussed here. 

Only a short overview, following the treatment of Wells et 

al. (1986) will be presented. 

The one-way phase observation equation is 

= p+ c(dt - dT) + AN - d0 + dtrop 1 (2.1) 
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where ' is the carrier beat phase measurement in length 

units, p is the range, c is the speed of light, dt and dT 

are the clock offsets from GPS time for the satellite and 

receiver respectively, Xis the carrier wavelength, N is the 

unknown ambiguity term, d 0 and dtr0p are the ionospheric 

and tropospheric delays, respectively. Measurement noise, 

inherent •in all observations, is not shown in equation 

(2.1). 

The between receiver single difference (SD) observation 

equation is obtained by subtracting measurements from two 

receivers to the same satellite at identical epochs, i.e. 

Mi' = Lp - cMT + XN - Ld 0 + dtrop * (2.2) 

This observable greatly reduces the effects of satellite 

clock errors. Orbital and atmospheric errors are also 

reduced for baselines that are short in comparison to the 

altitude of the satellite. 

The satellite clock error is only completely removed if 

the signal transmit time is identical for both carrier phase 

measurements. This is the approach adopted in the ASTRO 

program package. Only one satellite position is computed at 

each observation epoch; therefore both one-way phase 

measurements must be reduced at the same transmission time. 

This model allows more efficient use of the orbit 
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improvement facilities. The effects of this model 

formulation are ftirther discussed in section 2.2. 

An approach taken in other single difference processing. 

packages, e.g. Remondi (1984), is to formulate the problem 

on the basis of the observations being quasi-simultaneous at 

the received time. A term describing the change in the 

satellite clock error over the difference in transmit times 

should now appear in equation (2.2) . In view of the 

stability of the cesium clocks used on the satellites, this 

term can be considered negligible (Delikaraoglou, 1987). 

In equation (2.2) the differenced receiver clock offset 

(dT) is often solved for at each observation epoch unless 

further modelling is implemented, e.g. see Wei (1985); 

Remondi (1984). The clock offsets are modelled in the ASTRO 

program package with two second-order polynomials. The 

differenced cycle ambiguity term AN is constant throughout 

the observation session, provided cycle slips do not occur. 

Wei (1985) has found it necessary to fix the receiver clock 

offset at the first observation epoch to avoid the 

singularity problem caused by very high correlations between 

the receiver clock offset and the ambiguities. 

The receiver-satellite double difference (DD) 

observation equation, as shown below, is determined by 
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subtracting two simultaneous single differences, each to a 

different satellite; namely: 

= iVp+ ?VN - LWd10 + LWdtrop • (2.5) 

In addition to the errors removed by SD, DD also 

significantly reduces errors resulting from the differences 

between the two receiver clock offsets. Lindlohr and Wells 

(1985) have shown that these receiver specific biases are 

much more significant than the satellite specific biases. 

This feature is the main reason for the popularity of DD as 

the basic observable in GPS phase data processing software. 

The receiver clock terms are only completely removed if 

all four one-way phase observations have identical received 

times. This will not normally be the case but the effects of 

the remaining receiver clock errors are reduced by a factor 

of 10 5 as compared to single differences. Even for precision 

applications, a linear clock model has proved sufficient for 

double difference observations (Beutler et al., 1987a). 

2.2 Receiver Clock Modelling 

GPS tracking data is based on the one-way signal 

travel-time. Therefore, errors due to the receiver and 

satellite clocks are inherent to the measurements. The 

carrier phase observations must be obtained simultaneously 
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because one of the most important sources of error results 

from fluctuations of the satellite and receiver reference 

oscillators. Forming differenced observations, or 

equivalently, modelling the variations greatly reduces the 

effects of the oscillator instabilities (Bock et al., 

1986b). The degree by which the observations are not 

simultaneous will affect the ability to remove the errors. 

The stability of an oscillator is usually described by 

the Allan variance or two sample variance. The Allan 

variance is a measure of the scatter of the second time 

derivative of a process (Skrumeda and Stephens, 1987). High 

quality quartz oscillators, used in most receivers, 

typically exhibit Allan variances of 5x10 12 over time spans 

of one second, increasing to 1011 at one hundred seconds 

(see Brown and Sturza, 1985; Clynch and Coco, 1986). The 

Allan variance of the cesium clocks used on board the GPS 

satellites is about 10 -12 at 100 seconds, decreasing to 10 -13 

at 10 5 seconds (Swift, 1985) 

The nondeterministic behaviour of the oscillator, as 

described by the Allan variance, has two effects on the 

phase measurements. First, the receiver reference phase will 

be in error since it is derived from the receiver 

oscillator. Second, the instabilities result in errors in 

the measurement time tags. The time tag errors are smaller 
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and can only be removed by modelling. The receiver reference 

phase error can be removed by modelling or by forming double 

differences (Clynch and Coco, 1986). The magnitude of the 

oscillator errors is independent of the distance between the 

observing stations (Bock et al., 1986b). 

The ASTRO program package is based on a simultaneous 

transmit time model. The difficulty that arises from this 

formulation is that the two receiver clock offsets that are 

differenced to form the ASTRO SD are not measured at the 

same epoch. The differenced receiver clock offset term DdT 

will now contain a systematic component due to changes in 

the difference between the received times of the two 

signals. The clock offset term in equation (2.2) should now 

be written 

zdT = dT 2 (T2) - dT 1 (T 1) (2.3) 

-where dT 2 (T2) is the second receiver's clock offset at epoch 

T2 and dT 1 (T 1) is the first receiver's clock offset at epoch 

T1. The magnitude of the systematic component will vary with 

changes in the satellite geometry with respect to the 

orientation of the baseline. The effect will reach a maximum 

when the observed satellite has traversed from horizon to 

horizon with rise and set points directly in line with the 

orientation of the baseline. The actual magnitude of the 

effect will be smoothly changing and is dependant on 
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baseline length. The effect can be reduced by modelling the 

receiver clock offsets by a polynomial, solving for them as 

a discrete white noise process or reducing the offsets to a 

common epoch by rewriting equation (2.3) as shown below 

LdT = dT 2 (T2) - dT 1 (T2) - &IT 1 

1dT idT - 6dT 1 
(2.4) 

where 8dTl is the difference in the first receivers clock 

offset from epoch T1 to T2. This clock drift can be obtained 

by fitting a first order polynomial to the receiver clock 

offsets determined from a pseudorange solution. 

The data set output by the TRIMBLE receivers contains 

the clock offsets as derived, from the pseudorange solution. 

The drift of the receiver clock at station CATA, determined 

from this data, is -0.021 cycles per second. Since the 

difference between the two received times is under one 

millisecond, the 6dT 1 correction will be a maximum of 

2.1x10 5 cycles. The correction is less than the measurement 

noise, therefore it has been neglected. 

The most common method of removing the clock biases is 

through forming double difference observations. For SD 

observations, a separate receiver clock bias is often solved 

for at each measurement epoch. This is equivalent to clock 

modelling by a discrete white noise process. The ability of 
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this method to properly resolve each clock bias is strongly 

dependent on satellite geometry (Delikaraoglou, 1987). 

In order to increase the degrees of freedom in a single 

difference adjustment, a quadratic polynomial clock model is 

sometimes assumed. This is the approach adopted in the 

original version of ASTRO. A quadratic polynomial has proven 

adequate for modelling the residual clock bias effects for a 

double difference adjustment (Beutler, et al., 1987a) or 

where a very stable oscillator such as a cesium clock is 

used to supplement the receiver oscillator. A simple 

polynomial is generally not adequate for describing the 

behaviour of a quartz oscillator (see Remondi, 1984; 

Lindlohr and Wells, 1985) 

The original ASTRO receiver clock model attempts to 

split the total clock errors into two equal components, each 

modelling one of the receiver clocks. The two polynomials 

are computed as follows: 

dT 1 = A01 f1 + A11 f1(t-t0) +A21 f1(t-t0)2, 

LdT2 = -A02 f1 - Al2 f1(t-t 0) - A22 f1(t-t 0)2, 
(2.6) 

where A1 is the i-th order polynomial coefficient at the j-

th station. The L1 carrier frequency is represented by f1, t 

is the observation epoch and to is the initial epoch. 
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The two clock polynomials in equations (2.6) are 

differenced while forming the misciosures, thus modelling 

the entire receiver clock offset as, effectively, a single 

polynomial. The problem with this type of formulation is 

that the corresponding clock coefficients will be linearly 

dependent; see Chapter 5 for details. The two receiver 

clocks are separate instruments, therefore, there should be 

no physical reason for this dependence. 

The simple polynomial clock model does not account for 

time-tag errors in the measurements. This effect can be 

compensated for by adopting the single difference 

formulation given in Remondi (1984). 

'P {P2P1 + (fR2 -fR1)}x± - {c - (P2 +P1)/ 2 }di 

+ 2LN - dion + Ldtrop . (2.7) 

Here, the. clock error has been split into a common clock 

error, x1, and a clock difference, d1. The rate of change of 

the range is pi while fR2 and fRj are-the frequencies of the 

receiver oscillators. The term fR2 - R1 can be determined 

from the relative clock drift computed from' the pseudorange 

clock offsets logged in the data set. 

The receiver oscillators normally agree to within 3 Hz 

and x1 is less than one millisecond (Remondi, 1984) 

Therefore, the term with the receiver clock frequencies is 
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negligible. The difference between the range rates is 

approximately one Hz per kilometre of baseline length 

(Remondi, 1984), therefore, this term is negligible for 

short baselines. Baselines less than 30 kilometres will 

produce errors less than the measurement noise. The range 

rate has a maximum value of 800 m s. Since the receiver 

clock difference can be several milliseconds the term with 

the sum of the range rates can not be considered negligible. 

Results of the adjustments performed with the full 

clock model given by equation (2.7) are presented in Chapter 

5. In the new formulation, the two clock terms are modelled 

by separate second-order polynomials. In view of the 

different coefficients, the polynomials will no longer be 

completely linearly dependent. 

Solving for clock biases as a white noise process 

disregards the fact that the biases are correlated from one 

epoch to another. By estimating the clock biases as a 

stochastic process, the correlations can be exploited and 

the time varying behaviour accounted for (Skrumeda and 

Stephens, 1987). Jones and Tryon (1987) have shown that the 

cesium clocks on the GPS satellites are well modelled by the 

sum of a i-andom walk plus an integrated random walk process. 

A random walk process can adequately describe the behaviour 

of a cesium, rubidium or hydrogen maser. Random walk and 
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Gauss-Markov processes have not been successfully used for 

describing the behaviour of a quartz oscillator. Only a 

discrete white noise process has provided adequate results 

(Skrumeda and Stephens, 1987). 

2.3 Atmospheric Propagation Delay Modelling 

The atmospheric propagation delays are eliminated in 

the ASTRO program package by applying the corrections 

directly to the observations themselves. The tropospheric 

delay is modelled by applying the Hopfield Model (Hopfield, 

1971). A scale factor to account for unmodelled tropospheric. 

refraction is also solved for in the estimation model as 

discussed in section 2.4. The ionospheric delay model 

available in the GPS broadcast message is applied to each 

observation during the preprocessing stage. 

The tropospheric delay is composed of a wet and a dry 

component, with the dry component accounting for about 90% 

of the total correction (Tralli, et al., 1988) . The Hopfield 

Model is capable of removing 95 to 98% of the effect of the 

dry component (Remondi, 1984). The wet component is much 

less uniform and cannot be determined accurately from 

surface meteorological measurements. 3eutler et al. (1987b) 

have shown that errors in the tropospheric correction for 

single differences result in a height bias plus a baseline 
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scale error. The height bias is independent of the baseline 

length, hence the relative error decreases as the baseline 

length increases. The tropospheric delay induced scale error 

is given a maximum value of 0.1 ppm, resulting in measured 

baseline lengths greater than the true length. Experimental 

results obtained by Tralli et al. (1988) indicate that 

simple atmospheric models result in baseline errors of up to 

0.4 ppm in humid areas. The baseline error is reduced to a 

maximum of 0.1 ppm when a stochastic component is added to 

the tropospheric model and to about 0.08 ppm when WVR data 

is used to calibrate the tropospheric delay. 

The ionospheric delay correction given in the broadcast 

message accounts for only about 50% of the actual delay 

(Kiobuchar, 1982). Kleusberg (1986) computed the single 

difference of the ionospheric delays for a 40 km baseline 

and found high frequency noise at the one centimeter level 

plus a total variation of 20 cm over the two hours of data. 

The undifferenced data showed a total variation of 2.5 m. 

During a solar activity maximum, the total variation may 

approach 10 in with a similar increase in the high frequency 

noise (Campbell et al. 1986) . Signals from satellites, 

observed at stations separated by more than 100 km, will 

generally pass through different and uncorrelated sections 

of the atmosphere yielding greater errors in the differenced 

delay (Delikaraoglou, 1987) 
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The effect of incorrectly modelling the ionospheric 

delay is to shorien the computed baseline length resulting 

in a scale error. Beutler et al. (1987b) have shown that the 

scale factor will be between 0.35 and 3.5 ppm for L1 

observations, depending on the ion content of the 

atmosphere. Experimental results of Georgiadou and Kleusberg 

(1988) show a scale error that varies from 0.4 ppm to 0.7 

ppm for fixed ambiguity, double difference solutions for 

baselines of 10 to 30 km. If ambiguities are solved for in 

the adjustment, a scale error of 0 ppm to 0.6 ppm results. 

The authors comment that the difference between the results 

is due to the unknown ambiguities absorbing a portion of the 

ionospheric delay. 

The effects of the ionospheric delay can be further 

reduced for single frequency GPS users by incorporating a 

more descriptive model see e.g. Campbell et al. 1986; 

Georgiadou and Kleusberg, 1988. Unfortunately, these methods 

require additional information from nearby dual frequency 

monitoring stations which was not available for the data set 

used in this study. 

2.4 ASTRO Adjustment Software 

The estimation model used in ASTRO consists of two 

implicit models, f1 and f2, namely (Wanless, 1985) 
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f1 (X, X', 1) = 0 ; C, C1, and 

f2 (X', Z0) = 0 ; C, 

(2.8) 

where X is the vector of ground station Cartesian 

coordinates, X' are the satellite coordinates and solar 

radiation pressure scale factor, Z0 are the six initial 

state Keplerian elements (a, e, 0), i, 0, M) and 1 is the 

vector of observables. The vector X also includes nuisance 

parameters corresponding to: 

- tropospheric refraction scale factor, 

- cycle ambiguities, 

- second order polynomial coefficients to model 

receiver clock biases. 

The satellite position is determined by integrating the 

equations of motion, subject to the six initial state 

Keplerian elements. 

The function f1 is a pure geometric mode model while 

21 the orbit improvement model, is defined from a force 

model relating the satellite initial conditions and the 

satellite position coordinates at an arbitrary epoch. That 

is, f2 is the solution of the equations of motion in terms 

of the initial conditions. 
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The linearized form of the function f1 is 

AxX+AxtöX' +w=r, (2.9) 

where AX and AXI are the design matrices, w is the 

misclosure vector, 8X, 6X' and r are corrections to the 

unknowns and observations respectively. The linearized form 

of the second model f2 is 

X' = BZ0, (2.10) 

or in differential form 

6X' = BZ 0, (2.11) 

where 

B B1 B21 

8x' (t) 
B1 =   

6z (t) 
B2 = 

Z (t) 

6z0 
(2.12) 

Equations (2.12) describe the variations of the 

Keplerian orbital elements resulting from the variations of 

the initial state vector 6Z0. The B2 matrix propagates 6z0 

forward in time to the current observation epoch, t. The 

resulting changes in the osculating Keplerian elements Z(t) 

are then propagated into the satellite Cartesian coordinates 

by the B, matrix. Equation (2.12) is also used in the 

process to determine the value of the Keplerian initial 

state vector from the broadcast ephemeris as is discussed in 
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Chapter 3. The explicit form of the B, and B2 matrices can 

be found in Buffett (1985) or Nakiboglu et al. (1985) 

The forgoing method of accounting for the variation of 

the Keplerian orbital elements has been shown to be accurate 

and computationally efficient. Errors in the initial 

conditions of up to 200 metres can be propagated with a 

nonlinearity of under one metre for orbital arcs of up to 

four hours duration (Nakiboglu et al., 1985). 

Substitution of equation (2.12) into (2.9) yields the 

estimation model used in ASTRO, namely: 

A6X + AiB6Z0 + w = r (2.13) 

with a priori covariance information C, C 0 and C1. Using 

Equation (2.13), the estimation process has proven to be 

computationally efficient. On the first iteration, satellite 

coordinates are computed by integrating the equations of 

motion in terms of the six initial state Kepleri'an elements 

by Cowell's method (Conte, 1963). On subsequent iterations, 

orbit improvement is determined by analytical computations 

based on equations (2.11) and (2.12) . 



CHAPTER 3 

COMPUTATION OF THE KEPLERLN INITIAL CONDITIONS 
FROM THE BROADCAST EPHEMERIS 

As noted in previous chapters, the ASTRO program 

package was written to handle only simulated data. During 

the initial studies conducted by Buffett (1985) and Wanless 

(1985) the Keplerian initial conditions were established 

from specifications for the GPS constellation. To use the 

ASTRO program package with observed data, a method of 

estimating the Keplerian initial conditions from the 

broadcast ephemeris is required. The remainder of this 

chapter is devoted to discussing the broadcast ephemeris and 

the method of obtaining the Keplerian initial state vector. 

The underlying reasons for determining the satellite 

positions by numerical integration rather than directly from 

the broadcast ephemeris are threefold. First, integrated 

orbits allow the use of orbit improvement techniques. 

Second, the orbit will be smoother. Since the broadcast 

ephemeris has only a one and a half hour period of 

applicability, longer observation sessions will require the 

use of two or more ephemeris blocks. A jump in the satellite 

32 
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positions is comm6n when changing from one block to another. 

Finally, the accuracy of the orbit can be tuned by varying 

the force model and a priori variances of the Keplerian 

initial conditions. 

3.1 Review of the Broadcast Ephemeris  

The current broadcast ephemeris can be in error by up 

to 50 metres (Delikaraoglou, 1987). A precise ephemeris is 

also being computed by the Naval Surface Weapons Centre. The 

accuracy of the precise ephemeris is not well known but an 

evaluation by Swift (1985) indicates errors of as much as 6, 

43 and 25 metres in the radial, along-track and across-track 

directions respectively. When the operational constellation 

is in place, the accuracy of the broadcast ephemeris is 

expected to be of the order of 1.5 metres in the radial 

direction (Van Dierendonck et al., 1980). Wells, et al. 

(1986) indicate that the actual errors are more likely in 

the five metre range. 

The broadcast ephemeris is readily available in the 

navigation message modulated on the GPS signal. The position 

of the satellite is defined by a set of parameters similar 

to Keplerian ,orbital elements, which describe a smooth 

elliptical orbit. There is also an additional set of 
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parameters which model perturbations about the elliptical 

orbit. The additional parameters primarily account for the 

effects of the non-sphericity of the earth plus smaller 

perturbations resulting from luni-solar gravitation and 

solar radiation pressure (King et al., 1985). 

The broadcast ephemeris parameters are the result of a 

curve-fit extrapolated into the future. They are intended 

for use only in the one and a half hour period of 

applicability. They do not adequately describe the orbit 

perturbations over long periods of time (Van Dierendonck, 

1980; King et al., 1985). 

3.2 Method of Computing the Keplerian Initial Conditions  

The algorithm to compute the earth centered/earth fixed 

Cartesian coordinates of the satellite from the broadcast 

ephemeris parameters can be found in several publications, 

for example Van Dierendonck (1980); King et al. (1985) or 

Wells et al., (1986) . In addition, the three Cartesian 

velocities are required. These six parameters are then 

transformed into the six Keplerian initial conditions. 

This subsection is devoted to first developing the 

equations to compute the satellite Cartesian velocities from 



35 

the broadcast ephemeris parameters. Next, the transformation 

from Cartesian to Keplerian orbital elements is discussed. 

The Conventional Terrestrial (CT) System coordinates of 

the satellite at the k-th epoch, Xk, are given by 

Xk = (3.1) 

where R are rotation matrices, 2k is the longitude of the 

ascending node, k is the inclination, Uk is the argument of 

latitude and rk = [rk 0 0]T is the orbital radius vector. 

The argument of latitude is the angular distance from the 

ascending node to the satellite position. The orbital radius 

vector is the vector from the geocentre to the satellite. 

The parameters in Equation (3.1) are computed from the 

existing broadcast ephemeris algorithm as shown below: 

Uk = U) + k + CCos[wf] + C 8S±n[wf], (3.2) 

rk = a( 1-eCosEk) + CrcCoslwf] + CrcSin[wf], (3.3) 

ik = i0 + it + C±Cos [wf] + C 5Sin[wfJ, (3.4) 

kk K20 + ( - 0)e)tk - U)etoe, (3.5) 

wf = 2(U) + k) , (3.6) 

where a is the semi-major axis and e the eccentricity of the 

orbit, Ek is the eccentric anomaly, CO is the argument of 

perigee, fk is the true anomaly, ≤ and ) are the right 

ascension of the ascending node and its time derivative and 

Co. is the rotation rate of the earth. The coefficients Cjc 
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and Cj are the amplitudes of the cosine and sine harmonic 

perturbations of the j-th element. 

The Cartesian satellite velocities, Xk, are obtained by 

differentiating equation (3.1) with respect to time 

dR3( -?k) dXk 
Xk 

dXk dt 

dRl(-'k) dik 
- R3 ( k) - R3 (-uk) rk 

dik dt 

- R3 (-?k) 

R1( - ik) R3( - uk) 

R1 (-1k) 
dR3( -uk) duk 

duk 

+ R3 (-?k) R1( - ik) R3( -uk) 

dt 

drk 

dt 

rk 

(3.7) 

where, by differentiating equations (3.2) to (3.6) with 

respect to time 

dXk/dt = 2, from the broadcast ephemeris, 

dik/dt = I + 2 k{ -C CSin[wf] + C15Cos[wfj}, 

duk/dt = k{1 - 2CSin{wf] + 2CCos{wf]}, 

drk/dt = [ drk/dt o o ]T 

drk/dt aekSin(Ek)_ 24{Crcsin[wf]+CrsC.os[wf]}. (3.12) 

The values of all parameters in Equations (3.2) to (3.12) 

are either given in the broadcast ephemeris or computed in 

the initial steps of the algorithm. The only exceptions are 
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n 

t k 

kk 

and 

1 - eCosEk 

- n(1 + eCosfk) 2 

e2)3/2 
, 

(3.13) 

(3.14) 

where n is the mean motion and Ek is the eccentric anomaly. 

Equations (3.13) and (3.14) are derived from the equations 

for an unperturbed orbital ellipse (see Danby, 1962). 

In equations (3.7) to (3.12), the effects of a, 4, Ct) 

and 0e and of the harmonic term time derivatives have been 

neglected. To evaluate the effects of this approximation, 

the long term perturbation of the orbit due to the most 

prominent force, C20 can be computed. They are 

a =0, e = 0, i = 0, 

3nC20 ae2 
Co = (1 - 5Cos 2i) (3.15) 

4(1 - e2)2a2 

where ae is the semi-major axis of the earth (Arden, 1987). 

The magnitude of CO is approximately 2x10 10 rad 5 1 

which is negligible over the time frames considered. 

Superimposed on the long term perturbations are shorter term 

effects which can be significant over several hours (see 

Buffett, 1985). The change in the rotation rate of the earth 

also consists of a long term trend with shorter term effects 
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superimposed. The mean, value of 6e, given in Moritz and 

Mueller (1976) 'is -1.23 ms cy 1, which is clearly 

negligible. The shorter term effects have periods of a few 

days and longer, thus they can also be considered 

negligible. 

The CT system coordinates and velocities are rotated 

into the inertial coordinate system used by the orbit 

prediction section of ASTRO (see 3uffett, 1985) by 

= R3(-e)x (3.16) 

where x and X are the inertial and CT system coordinates or 

velocities respectively and e is the Greenwich Apparent 

Sidereal Time (Wells, 1986) 

The equations for the transformation of the inertial 

coordinates and velocities to the Keplerian elements 

describing the instantaneous orbital ellipse are given in 

Kaula (1966, pg 22-23) . Note that these equations are 

developed from the equations for an unperturbed orbit. This 

algorithm exhibits a difficulty in separating CO and M due 

to their similarity and the poor definition of the point of 

perigee for low eccentricity orbital ellipses. 
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3.3 Comparison of the Satellite coordinates from the 

Broadcast Ephemeris and the Estimated Initial Conditions  

The orbit prediction section of the ASTRO program 

integrates the equations of motion subject to the Keplerian 

initial conditions to compute the satellite Cartesian 

coordinates in the inertial system. The inertial coordinates 

are then rotated into the CT system for use in the 

adjustment package. 

Figure 3.1 shows the difference between the satellite 

positions computed from the broadcast ephemeris and those 

computed by the orbit integration section of the ASTRO 

program package, using the original estimate of the initial 

condition. A summary of the mean coordinate and velocity 

differences for each of the observed satellites is presented 

in Table 3.1, denoted run 1. The estimate of the Keplerian 

initial conditions is presented in Tables 3.2 to 3.4 for 

each of the three satellites shown in Figure 3.1. 

Figure 3.1 shows that the error in the satellite 

position grows in time to an unacceptable level indicating 

that the original estimate of the initial conditions is in 

error. These errors arise for several reasons. First, there 

are approximations used in deriving the equations for the 

satellite Cartesian velocities. Also, the broadcast 
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Table 3.1: Mean Coordinate and 

Sat. 
PRN 

Run 1 
Coord. Vel. 
Diff. Diff. 

(m) (m/s) 

Sat 13 91.89 

Sat 12 679.55 

Sat 11 1160.00 

Sat 9 1273.50 

Sat 6 39.71 

0.016 

0.120 

0.204 

0.225 

0.004 

Table 3.2: Estimates 

Element Run 1 

a(m) 26560628.8 

e(rad) 0.00316501 

CO(rad) -0.25142011 

i(rad) 1.09289968 

≤(rad) 2.24349483 

M(rad) 0.82124513 

Velocity 

Run 2 
Coord. Vel. 
Diff. Diff. 

(m) (m/s) 

3.39 

53.67 

146.94 

172.63 

9.79 

0.040 

0.290 

0.492 

0.570 

0.076 

Differences 

Run 3 
Coord. Vel. 
Diff. Diff. 

(m) (m/s) 

of the Keplerian Initial 
Satellite PRN 13 

Run 2 

26561168.3 

0.00317866 

-0.24669206 

1.09289956 

2.24349474 

0.81651742 

Note: An angular change 

displacement of 250 metres. 

Run 3 

26561168.4 

0.00317869 

-0.24670937 

1.09289956 

2.24349473 

0.81653476 

0.24 

0.84 

0.27 

0.93 

0.10 

0.040 

0.290 

0.498 

0.562 

0.076 

Conditions; 

Run 3-Run 1 

539.6 

0.00001368 

0.00471074 

-1. 14x10 

-9. 8x10 8 

-0.00471037 

of io rad corresponds to a 



Table 3.3: Estimates of the Keplerian Initial 
Satellite PRN 12 

Element Run 1 

a(m) 26553936.8 

e(rad) 0.00890364 

Run 2 

26557866.6 

0.00876877 

O(rad) -1.01655128 -1.00936802 

i (rad) 

(rad) 

M(rad) 

1.10799321 

0.13544303 

2.69738703 

Table 3.4: Estimates 

Element 

a (m) 

e (rad) 

CO (rad) 

± (rad) 

c≥(rad) 

M(rad) 

Run 1 

26553171.2 

0.01199147 

1.16225268 

1.11667209 

0.13091861 

1.31761920 

1.10799323 

0.13544297 

2.69020277 

Run 3 

26557879.7 

0.00876858 

-1.00923340 

1.10799323 

0.13544297 

2.69006814 

of the Keplerian Initial 
Satellite PRN 9 

Run 2 

26560929.8 

0. 0120 6013 

1.18587438 

1.11667244 

0.13091840 

1.29399791 

ephemeris parameters are 

extrapolated into the 

Run 3 

26560926.0 

0.01206344 

1.18571327 

1.11667244 

0.13091840 

1.29415907 

a result 
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Conditions; 

Run 3-Run 1 

3942 .9 

-0-00013506 

0.00731788 

1.90X10 -8  

-5. 9x10 8 

-0.00731889 

Conditions; 

Run 3-Run 1 

7754.8 

0.00007197 

0.02346059 

3. 42x10 

-2 . 11x10 7 

-0.02346013 

of a curve-fit 

future. They describe the satellite 

position over the one and 

applicability but they do not 

(Van Dierendonck, 1980). 

a half 

describe 

hour period of 

the entire orbit 
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A closer match between the satellite coordinates is 

obtained by performing an adjustment of the Keplerian 

initial conditions using the equations to propagate errors 

in the initial conditions over time. Combining equations 

(2.5) and (2.6) 

= B1 B2 Z0 , (3.7) 

where 6x' is the vector of satellite coordinate errors, 6z0 

is the error in the Keplerian initial conditions to be 

solved for, while B1 and B2 are the propagation matrices. 

The vector 6x' has three elements for each epoch' while the 

31B2 matrix consists of a three by six block for each epoch. 

A plot of the errors in the satellite positions, 

computed using the adjusted Keplerian initial conditions is 

presented in Figure 3.2, denoted as run 2. Most of the large 

drifts evident in Figure 3.1 have now been removed. The mean 

coordinate and velocity differences have been reduced, as 

shown in Table 3.1, although the difference is still too 

large. The estimate of the new Keplerian initial conditions 

is shown in Tables 3.2 to 3.4. 

The remaining error in the satellite positions is a 

result of the modelling used to produce the B2 matrix. This 

matrix is based on linear perturbation theory using only the 

effects of C20 in the force model. This formulation allows 
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Figure 3.2: Satellite Position Errors; Second Estimate 
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errors in the initial conditions of approximately 200 metres 

to be propagated with a nonlinearity of under 1 metre for 

orbital arcs of up to 4 hours duration (Buffett, 1985; 

Nakiboglu et al., 1985) . The errors in the original initial 

conditions exceeded 200 metres, hence, the B2 matrix does 

not properly model the required change. 

To remove the remaining error, the adjustment is 

repeated using the second set of position differences, in 

the 8XI vector. Recomputing the satellite positions with the 

third estimate of the Keplerian initial conditions yields 

the satellite position differences shown in Figure 3.3. The 

mean coordinate and velocity differences are presented in 

Table 3.1. The difference between the two sets of satellite 

positions are now under two metres, clearly acceptable given 

the accuracy of the broadcast ephemeris. 

The final estimate of the Keplerian initial conditions 

is presented in Tables 3.2 to 3.4 along with the difference 

between the initial and final estimates. The primary changes 

are in the elements defining the size of the orbital 

ellipse, a and e, which was to be expected since the 

prediction was determined at a single point. Also note that 

the corrections to the argument of perigee, Co and the mean 

anomaly M nearly cancel each other. As previously noted, the 

algorithm used to transform the satellite Cartesian 
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Figure 3.3: Satellite Position Errors; Final Estimate 
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coordinates and velocities into the Keplerian elements has 

difficulty separating these two components. The incorrect 

value of M contributed to the satellite position error 

growing in time, primarily in the along-track direction. 

Comparing Figures 3.1 and 3.3 shows that the satellite 

position at the first epoch, where the initial conditions 

were predicted, has changed by less than two metres. This 

indicates that the original estimate represented the initial 

satellite position accurately but not the velocities. The 

final estimate of the initial conditions represents both the 

satellite position and the velocities more accurately. 

The remaining systematic trend is a result of 

differences between the algorithms used to predict the 

orbit. Neglected effects in both orbit representations will 

also contribute to the systematic trend. 

The ultimate accuracy of the satellite positions is now 

dependent upon the accuracy of the original ephemeris. This 

is important only if a single baseline is being processed 

since orbit improvement capabilities can then not be 

utilized. If data from a network of stations is being 

processed in one adjustment, the orbit improvement 

capabilities can be utilized and a further improvement of 

the orbit can be expected (see Wanless, 1985) 



CHAPTER 4 

POSITIONING RESULTS WITHOUT MODEL REFINEMENTS 

This chapter presents the results of processing the 

test data with the original version of ASTRO without model 

refinements implemented. The analysis of these results 

points out a number of model weaknesses, thus laying the 

groundwork for implementing improvements to the bias 

modelling. The Keplerian initial conditions, determined in 

Chapter 3, were used to define the orbit. Each baseline was 

processed separately while holding the orbit fixed. To 

utilize ASTRO's orbit improvement capabilities, a minimum of 

three observing stations in a network with a spatial extent 

of a few hundred kilometres or more is required. 

As noted in chapter 3, the orbit computed by ASTRO 

matches the broadcast ephemeris orbit to within two. metres. 

The broadcast ephemeris itself may be in error by up to 50 

metres hence some error is expected in the baseline 

computations. A conservative estimate of this effect can be 

determined from the rule of thumb given by Beutler et. al., 

(1984) -

48 
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dB dr 

B r 

where B and dB are the baseline length and its corresponding 

error respectively, r is the average topocentric range to 

the satellite and dr is the orbit error. The rule of thumb 

implies that baseline errors of up to two ppm may result 

from satellite position errors in the broadcast ephemeris. 

4.1 Initial Results on All Baselines  

The ASTRO program solves for the unknown station 

coordinates directly. The error in the computed station 

coordinates (computed minus GSC published values) for each 

baseline is given in Table 4.1. The numbers given in 

brackets are the errors in parts per million. Baseline ROOF 

to CATA is denoted run 4.1, ROOF to METC corresponds to run 

4.2, while METC to CATA is denoted run 4.3. Appendix A also 

gives a brief description of each adjustment. Station ROOF 

is held fixed at the GSC published values in both baselines 

containing this station. Station METC is fixed in baseline 

METC to CATA. Unknown station coordinates are treated as 

weighted parameters with an a priori variance of 25 m2 in 

each- component. Published coordinates are entered as the 

initial estimate. Ambiguities were solved for as free 

parameters. 
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The variance applied to the station coordinates 

reflects a conservative estimate of the accuracy of the 

initial position. In a production survey situation, where 

the station coordinates are obtained from the double 

difference adjustment in the preprocessor, the variance will 

be lower. In the current study, the variance was kept high 

so as not to unduly influence the results. 

Each receiver clock was modelled by separate second 

order polynomials as discussed in chapter 2. A value of zero 

was entered as the initial estimate of the coefficients. 

Although the a priori knowledge was limited to the 

assumption that the coefficients would be close to zero, a 

relatively low variance was used. Entering a higher variance 

resulted in singular normal equations. An observation 

variance of one metre2 was also used to prevent 

singularities in the normal equations. The a posteriori 

variance factor for each of the adjustments was 1.134, 

23.284 and 15.862 for runs 4.1 to 4.3 respectively, 

indicating modelling problems. 

The results for runs 4.2 and 4.3, shown in Table 4.1, 

are clearly unacceptable. Atmospheric delay and orbital 

errors should contribute only a few parts per million to the 

baseline error, l±hus they can not be the major error source. 

Improper modelling of the receiver clock difference, poor 
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orbital geometry and instabilities in the adjustment 

equations are the remaining possible error sources. 

Table 4.1: Baseline Errors from Initial Runs 

Run 
Number X 

Errors in m and (ppm) 
Y Z Pos. Length 

4.1 -0.380 -0.113 0.043 0.399 0.173 
R-C (8.4) (1.1) (0.5) (2.8) (1.2) 

4.2 1.436 -3.189 -0.746 3.576 2.444 
R-M (65.9) (437.) (60.4) (137.) (93.7) 

4.3 2.234 -2.700 0.859 3.608 0.304 
M-C (33.3) (28.1) (11.1) (25.7) (2.2) 

The adjustment residuals from three of the satellites 

in each of runs 4.1 to 4.3 are shown in Figures 4.1 to 4.3. 

The similarity of the residual curves from each satellite 

further strengthens the assumption that the error arises 

from a receiver or baseline specific source such as the 

receiver clock model. In view of the different signal paths 

from each of the satellites, atmospheric delay errors should 

not produce such high correlations. 

The peak in the residual curves in -Figure 4.1 at 

approximately 489300 occurs at the point where the actual 

tracking of satellite 6 ceases. A large number of cycle 

slips and missing observations occur in the final 250 
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seconds of satellite 6 phase observations. This data was 

therefore deleted from the observation files for this study. 

In addition, satellite 11 crosses from the west to east side 

of the baseline ROOF to CATA at about 489100 seconds. 
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Figure 4.1: Residuals from the Adjustment of Baseline 
ROOF to CATA 

The pattern of the residuals near 489300 seconds 

suggests that the receivers are changing the clock offset 

based on differences in the observational data. Variations 
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of this nature will not be well modelled by a second order 

polynomial. The focal low at approximately 491250 does not 

occur near changes in satellite tracking or significant 

losses of lock. The only explanation that can be offered for 

its occurrence is that satellite 12 reaches the point of 

closest approach at this time. 

R
E
S
I
D
U
A
L
S
 

U; 
14, 

0 

L() 

0 

0 
0) 

488000 489250 490500 491750 

TIME SINCE SATURDAY MIDNIGHT (Sec) 

SV 13   SV 12 x x 

493000 

(SV 9 

Figure 4.2: Residuals from the Adjustment of Baseline 
ROOF to METC 
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Figure 4.3: Residuals from the Adjustment of Baseline 
TC to CATA 

The excessive magnitude of the residuals on two of the 

baselines suggests that the receiver at station METC is not 

performing well. This is also reflected in the results for 

the station coordinates. Results of the double difference 

adjustments from the TRIMBLE/TRIMVEC test (McArthur, 1987) 

show no major problems on these baselines. As a first 

approximation, the double difference residuals will be the 
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difference between each of the residual curves. Double 

difference adjustments will be investigated further in 

Chapter 6. 

The degree of statistical interdependence of the 

unknown parameters can be estimated by computing the 

correlation coefficient from the covariance matrix of the 

adjustment. The correlation coefficient, pij is given by 

Pij  

a 
(4.2) 

where is the covariance between the unknowns, i and j. 

The terms Gi and aj are the standard deviations of the 

parameters (Vanicek and Krakiwsky, 1986) 

The upper diagonal of the correlation coefficient 

matrix for run 4.1 (baseline ROOF to CATA) is given in Table 

4.3. Linear dependence is exhibited between clock polynomial 

coefficients of the same order. The linear dependence arises 

from the fact that the receiver clock offset is split into 

two polynomials with coefficients of equal magnitude but 

opposite sign. Very high correlation is also present between 

all ambiguity terms. The low correlation between the 

receiver clock coefficients, ambiguities and the station 

coordinates reflects the initial weighting of the 
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Table 4.2: Correlation Coefficient Matrix 
for Run 4.1, Baseline ROOF to CATA 

X Y Z a0 1 all a2 1 a0 2 

X 1.00 -0.89 -0.39 0.00 0.00 0.00 -0.00 

Y 1.00 -0.21 -0.00 -0.02 -0.00 0.00 

Z 1.00 0.00 -0.00 -0.00 -0.00 

a01 1.00 -0.00 0.00 0.11 

all 1.00 -0.00 0.00 

a2 1 1.00 -0.00 

a02 1.00 

X 

y 

z 

a01 

all 

a12 

a0 2 

a12 

a22 

N13 

N12 

N11 

N09 

N06 

a12 a22 N13 N12 N11 N09 N06 

-0.00 -Ô.00 -0.02 -0.03 0.02 0.01 0.03 

0.00 0.00 0.01 0.03 -0.02 -0.01 -0.03 

0.00 0.00 0.02 0.02 0.00 0.00 -0.01 

0.00 -0.00 -0.67 -0.67 -0.67 -0.67 -0.67 

1.00 0.00 -0.00 -0.00 0.00 0.00 0.00 

0.00 1.00 -0.00 -0.00 0.00 0.00 0.00 

-0.00 0.00 0.67 0.67 0.67 0.67 0.67 

1.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 

1.00 0.00 0.00 -0.00 -0.00 -0.00 

1.00 0.99 0.99 0.99 0.99 

1.00 0.99 0.99 0.99 

1.00 0.99 0.99 

1.00 0.99 

1.00 
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polynomials not the true correlation between these terms. 

Note the high cdrrelation between the zeroth-order clock 

coefficients and the ambiguities. Since these terms are very' 

similar, the high correlation is expected. The almost 

perfect correlation between the ambiguities indicates that 

the adjustment does not separate the terms well. 

The modification of the polynomial receiver clock' 

model, as discussed in section 2.2 will reduce the high 

correlations between the coefficients and reduce the 

singularity problem. More reasonable a priori weights • can 

then be applied to the receiver clock polynomials. 

Adjustments with the new receiver clock model are presented 

in the next chapter. 



CHAPTER 5 

POSITIONING RESULTS WITH MODEL VARIATIONS 

Section 2.2 proposed a modification of the receiver 

clock polynomials to account for time-tag errors. In view of 

the smoothly changing nature of this model, the systematic 

trend in the residuals will not be completely removed. A 

first-order Gauss-Markov model will be added to the new 

polynomial clock model to remove the systematic trend. 

5.1 Revised Polynomial Receiver Clock Model 

The correlation coefficient matrix presented in Table 

4.3 shows fairly high correlations between the ambiguity 

terms and the zeroth-order clock polynomial coefficients. 

The effects of time-tag errors are also not accounted for in 

the original receiver clock model. The receiver clock model 

presented in section 2.2 will reduce the effects of these 

time-tag errors. Correlations between the corresponding 

polynomial coefficients will also be reduced. 

58 
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Results of the adjustments with the new clock model 

implemented are presented in Table 5.1. Run 5.1 corresponds 

to baseline ROOF to CATA, Run 5.2 is ROOF to METC and Run 

5.3 is METC to CATA. The initial weighting of the unknowns 

was kept the same as runs 4.1 to 4.3 to allow a comparison 

between the correlation coefficient matrices. In each of the 

adjustments, the GSC published coordinates were entered as 

the initial estimate of the station coordinates. 

The results of the ROOF to CATA adjustment are 

essentially the same as run 4.1. ROOF to METC shows a 

significant improvement while a significant decrease in the 

accuracy of baseline METC to CATA has been obtained. The 

common clock error determined in the adjustments is 

approximately 10 - 12 seconds with a drift of 1012 seconds 

per second. The clock difference has a constant term of 

approximately i011 seconds with a drift of 1010 seconds 

per second. These clock offsets are smaller than expected. 

Normally they are in the microsecond range with milliseconds 

being possible. Part of the receiver clock offset is likely 

being absorbed in the estimate of the ambiguities and the 

station coordinates. The difference between the results of 

these adjustments and those presented in chapter 4 are also 

much larger than can be predicted from time-tag corrections 

of this magnitude. 
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Table 5.1: Baseline Errors from Adjustments With 
An Updated Polynomial Receiver Clock Model 

Run Errors in m and (ppm) 
Number X Y Z Pos. Length 

5.1 -0.379 -0.114 0.044 0.398 0.173 
R-C (8.4) (1.1) (0.5) (2.8) (1.2) 

5.2 0.711 -2.356 -0.569 2.526 1.522 
R-M (32.6) (323.) (46.1) (96.8) (58.3) 

5.3 2.905 -3.482 
M-C (43.3) (36.3) 

Close 

5.4 

5.5 

3.995 
(29.8) 

-0.019 
(0.4) 

-0.379 
(8.4) 

5.6 0.021 
(0.5) 

-5.724 
(27.7) 

-0.105 
(1.0) 

-0.114 
(1.1) 

-0.479 
(4.6) 

0.707 
(9.1) 

0.092 
(0.5) 

0.071 
(0.8) 

0.044 
(0.5) 

0.035 
(0.4) 

4.589 
(32.7) 

6.981 
(22.5) 

-0.602 
(4.3) 

0.747 
(2.4) 

0.128 0.037 
(0.9) (0.3) 

0.398 0.173 
(2.8) (1.2) 

0.481 0.315 
(3.3) (2.2) 

The residuals from runs 5.1 to 5.3 are nearly identical 

to those of runs 4.1 to 4.3. The difference in the results 

is due to changes in the estimated ambiguities, clock 

polynomials and accounting for the time tag errors. 

The misclosure obtained on the triangle ROOF-METC-CA'rA.--

ROOF is shown in Table 5.1. The misclosure on the baseline 

length is good but the components and overall position error 

are unacceptable. 
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The correlation coefficient matrix for run 5.1 is 

presented in Table 5.2. The coefficients of the common clock 

error and clock difference are represented by xj and 

respectively. The subscript indicates the order of the 

coefficient. The correlation between the two polynomials has 

been significantly reduced. Correlation between the zeroth-

order coefficient of the clock difference polynomial and the 

ambiguities is now much higher. The zeroth-order common 

clock error does not show the same problem. 

The very high correlation between the zeroth-order 

clock difference polynomial and the ambiguities can be 

reduced by fixing the ambiguities or treating them as 

weighted parameters. Fixing the zeroth-order term will 

completely remoye the problem. Treating the ambiguities as 

weighted parameters has the benefit of providing a good 

starting value for the random process while allowing for 

estimation errors. Normally, the ambiguities can be 

estimated by performing an adjustment with both stations 

held fixed. The coordinates for one of the stations will be 

determined from the double difference adjustment in the 

preprocessor, hence some error is to be expected in the 

estimated values of the ambiguities. The almost perfect 

correlation between the ambiguities also indicates that they 

cannot be separated by the adjustment. 
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Table 5.2: Correlation Coefficient Matrix 
for Run 5.1, Baseline ROOF to CATA 

Y Z x0 x1 x2 d0 

X 1.00 -0.89 -0.39 0.00 0.00 0.00 0.00 

y 1.00 0.21 -0.00 -0.00 -0.01 -0.01 

z 1.00 0.00 -0.00 -0.01 0.01 

xol 1.00 -0.00 -0.00 -0.00 

xli 1.00 -0.00 0.00 

1.00 0.00 

d0 2 1.00 

d1 d2 N13 N12 N11 N0 9 N06 

X 0.41 0.19 -0.04 -0.0,6 0.03 0.01 0.06 

Y -0.40 -0.16 0.03 0.05 -0.03 -0.02 -0.06 

Z -0.21 -0.08 0.03 0.03 0.00 0.00 -0.03 

0.00 0.00 -0.00 -0.00 0.00 -0.00 0.00 

xi 0.00, -0.00 -0.00 -0.00 0.00 0.00 0.00 

0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 

d0 -0.00 0.00 -0.99 -0.99 -0.99 -0.99 -0.99 

d1 1.00 -0.78 -0.02 -0.03 0.01 0.00 0.03 

d2 1.00 -0.00 -0.01 0.01 0.00 0.01 

N13 1.00 0.99 0.99 0.99 0.99 

N12 1.00 0.99 0.99 0.99 

N11 1.00 0.99 0.99 

N09 1.00 0.99 

N06 1.00 
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Adjustments of each of the baselines, with both 

stations held fixed were run to determine good estimates of 

the ambiguities and the clock polynomial coefficients. The 

GSC published values of the station coordinates were entered 

for both stations. Therefore, the estimates of the unknowns 

will be of good accuracy. 

To determine the possible extent by which the station 

coordinate errors can be improved by adding ambiguity 

a priori information, the baseline ROOF to CATA was 

readjusted with the new ambiguities held fixed. The new 

estimates of the receiver clock polynomial coefficients were 

also entered with reduced initial variances. Results of this 

adjustment are listed in Table 5.1, denoted run 5.4. These 

results are very good but much of the input information was 

from well known station positions. 

Fixing the constant term of the clock difference 

polynomial will correct the problem of the high correlation 

with the ambiguities. The d0 term should be fixed at the 

value determined in the adjustment with both stations held 

fixed. The time-tag errors resulting from this clock offset 

can therefore be accounted for. 

Results of an adjustment of the baseline ROOF to CATA, 

with the d0 term fixed are shown in Table 5. 1, denoted run 
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5.5. The station coordinate errors are identical to those of 

run 5.1. Fixing the d0 term has no adverse affect on the 

adjustment if an initial estimate of the term is supplied 

and the ambiguities are solved for as free parameters. 

The correlation coefficient matrix from run 5.5 is 

presented in Table 5.3. The correlations between the 

ambiguities have been significantly reduced. Correlations 

between the ambiguities and the station coordinates are now 

in the range expected. Adding weights to the a priori 

estimates of the ambiguities will reduce these correlations. 

The discussion in chapter 4 suggested that poor 

satellite geometry in the later part of the data set could 

be part of the cause of the poor results. To test this 

theory, the baseline ROOF to CATA was readjusted with only 

the first 1000 seconds of data. This section of data has 

five satellite coverage and a GDOP of 4.5. Results of this 

adjustment are shown in Table 5. 1, denoted run 5.6. The 

station coordinate errors are slightly larger than those of 

run 5.1. Therefore, poor satellite geometry cannot be the 

major contributor to the poor results. 

The residuals from run 5.6 are plotted in Figure 5.1. 

Comparing Figures 5.1 and 4.1 shows that the residuals from 

the shorter data set are the higher frequency fluctuations 
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Table 5.3: Correlation Coefficient Matrix 
for Run 5.5, Baseline ROOF to CATA 

X Y Z x0 x1 

X 1.00 -0.89 -0.39 0.00 0.00 0.00 

y 1.00 0.21 -0.00 -0.00 -0.01 

z 1.00 0.00 -0.00 -0.01 

X01 1.00 -0.00 -0.00 

1.00 -0.00 

1.00 

dl d2 N13 N12 N11 N0 9 N06 

X 0.41 0.18 -0.80 -0.93 0.77 0.29 0.84 

Y -0.40 -0.16 0.52 0.75 -0.84 -0.67 -0.98 

Z -0.21 -0.08 0.76 0.67 0.23 0.29 -0.26 

0.00 0.00 -0.00 -0.00 0.00 -0.00 0.00 

x1 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 

0.00 -0.00 0.00 -0.00 -0.00 0.01 0.01 

d1 1.00 -0.78 -0.47 -0.49 0.15 -0.02 0.34 

d2 1.00 -0.03 -0.08 0.27 0.21 0.20 

N13 1.00 0.94 -0.26 0.24 -0.49 

N12 1.00 -0.49 -0.53 -0.73 

N11 1.00 0.64 0.78 

N09 1.00 0.69 

N06 1.00 
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in the residual curve of the longer data set. The satellite 

geometry is essentially constant in the shorter data set; 

therefore, the receiver's estimate of the clock offset is 

affected only by oscillator drift and noise. In the longer 

data set, the satellite geometry changes; therefore, the 

receiver's estimate of the clock offset is changing. This 

gives rise to the systematic trend in the residuals. 
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Figure 5.1: Residuals from the Adjustment of 
Baseline ROOF to CATA, Run 5.6 

493000 



67 

In summary, the analysis up to this point has shown 

that: 

1) the adjustment can be improved by adding a priori 

information about the magnitude of the ambiguities, 

2) the very high correlation between the ambiguities 

and the constant term of the clock difference 

polynomial can be removed by fixing the d0 

coefficient at the a priori determined value, 

3) receiver clock errors are not well modelled by the 

second-order polynomials, 

4) and the section of poor satellite geometry is not a 

major contributor to the poor positioning results. 

Adjustments with weighted ambiguities are investigated 

in section 5.2. The large systematic trend in the residuals 

will be reduced by incorporating a first-order Gauss-Markov 

process. Results of adjustments with a Gauss-Markov process 

implemented are presented in section 5.3. 

5.2 Adjustments with Weighted Ambiguities  

The analysis in the previous section showed that the 

results of the adjustments can be improved if an initial 

estimate of the ambiguities is supplied. In a production 

survey, the ambiguities can be determined from double or 

triple difference adjustments or from holding both stations 
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fixed in a single difference adjustment. Treating the 

ambiguities as weighted parameters will account for errors 

in the estimated values. 

The first attempt at adjusting the data from the 

baseline ROOF to CATA with weighted ambiguities was 

unsuccessful. No convergence was achieved in 35 iterations 

with the station coordinate convergence tolerance set at 

0.002 m. The adjustment was approaching convergence but very 

slowly. The clock polynomial coefficients were also 

converging very slowly. 

In this adjustment, an initial variance of two cycles 

squared was applied to each ambiguity. Covariance between 

the ambiguities was neglected. The two cycles squared 

variance assumes that the station positions were accurate to 

better than 0.5 m in the adjustment to determine the 

ambiguities; The initial estimates of the clock polynomial 

coefficients were obtained from the adjustment with both 

stations held fixed. The d0 clock term was also held fixed. 

Raising the station coordinate convergence tolerance to 

0.004 m and repeating the adjustment produces the results 

shown in Table 5.4, denoted run 5.7. Convergence was 

achieved in 17 iterations. The position errors have improved 

over those of run 5.1 but a convergence problem has now 
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appeared. The adjustment is attempting to reach the solution 

of run 5.1 but weighting of the ambiguities is only allowing 

small movements in each iteration step. The station 

coordinates are highly correlated with the ambiguities, 

therefore the station position cannot move substantially in 

each iteration, since the ambiguities are constrained. 

Table 5.4: Baseline Errors from Adjustments 
With Weighted Ambiguities 

Run 
Number 

5.7 

5.8 

x 

-0.260 
(5.7) 

-0.273 
(6.0) 

Errors in m and (ppm) 
Y Z Pos. Length 

-0 . 124 
(1.2) 

-0.235 
(2.3) 

0.036 0.290 
(0.4) 

0.026 
(0.3) 

(2.0) 

0.361 
(2.5) 

0.193 
(1.3) 

0.238 
(1.6) 

Weighting the ambiguities reduces the correlation with 

the zeroth-order clock difference polynomial coefficient. 

Reintroducing this term into the adjustment to absorb some 

of the error in the ambiguities slightly alleviates the 

convergence problem. Unfortunately, the results of this 

adjustment are slightly inferior to those of run 5.7 (see 

Table 5.4, Run 5.8). 

The initial convergence tolerance of one or two 

millimetres may be too low given the noise inherent in the 

observations and model uncertainties. Implementing the 
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Gauss-Markov receiver clock model may reduce this problem in 

addition to removing the systematic trend seen in the 

residuals. The next section discusses Gauss-Markov models 

and presents results of adjustments with the random process 

incorporated. 

5.3 Gauss-Markov Receiver Clock Model 

A Gauss-Markov process is a special case of a random 

process which can be produced by applying white noise to a 

linear feedback system. It fits a large number of physical 

processes with reasonable accuracy while the mathematical 

description is relatively simple (Brown, 1983) 

Markov processes are affected by the preceding events 

but the effect of these events on the current state 

diminishes in time until they are forgotten (Davis, 1986). A 

process is first-order Markov if the probability 

distribution of the process X(tk) is dependent only on the 

last data value. A first-order Markov process is also 

referred to as a first-order autoregressive (AR) process 

(Jenkins and Watts, 1968). The process is called Gauss-

Markov if the probability distribution functions of the 

white noise W and the series X are also Gaussian 

(Gelb, 1974). Specifying the autocorrelation function 

completely describes the statistics of a stationary Gauss-
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Markov process (Brown, 1983). The next section will present 

a brief outline of AR processes. 

5.3.1 Discussion of the Autocorrelation Function And Gauss-

Markov Processes  

The autocovariance function (acvf) of a stationary 

process X with zero mean is defined as 

C(u) = Cov[ X, ], (5.1) 

where Cov[] indicates the covariance between the values of 

the series, u points apart. The displacement u is called the 

lag. The acvf depends on the scale of the series X therefore 

the. autocorrelation function (acf), defined as 

C (u) 
R. (u) 

C(0) 
(5.2) 

allows comparison of two series with different scales of 

measurement. Both the acf and acvf are functions of the lag 

only (Jenkins and Watts, 1968). The acvf and acf will be 

denoted CU and RU respectively. 

An unbiased estimate of the acvf for a discrete time 

series with zero mean may be computed from 



72 

1 
Cu xt xt_, (5.3) 

or alternately, a biased estimate of the acvf may be 

computed from 

1 N-u 
C =- Z x 

t=1 
-u' (5.4) 

where N is the number of data points in the series. The 

benefit of using equation (5.4) over (5.3) is that the error 

in the estimate is reduced for larger lags. As u approaches 

N, the variance of the biased estimator approaches zero 

while the variance of the unbiased estimator approaches 

infinity (Jenkins and Watts, 1968). 

The p-th order AR model of a discrete process X may be 

written (Box and Jenkins, 1970) 

Xt = Fl Xt.l + P2 X_2 + ... + P X_ + W, (5.5) 

where W is the input white noise and the AR parameters, P, 

represent a finite set of weights. Multiplying equation 

(5.5) by X_ and taking expected values yields 

Ru = P1 Re_i + P2 -u-2 + " + Pp u>0. (5.6) 

The acf obeys the same difference equation as the series. 
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The values of the AR parameters are determined by 

forming a set of linear equations from (5.6) that are known 

as the Yule-Walker Equations (Box and Jenkins, 1970) 

P 

where 

P 

= (AT A) -' AT R, 

A = 

P1 

Pp 

1 
R1 

RN-2 
RN-1 

R1 R2 
1 R1 

1 

RN-3 
RN-2 

R 

RN-4 
RN-3 

R1 
R2 

RN 

1 

Rp2 
R 3 

RN-p-1 
RN_p 

(5.7) 

(5.8) 

In the foregoing, the Yule-Walker equations have been 

extended to allow for redundant information. Equations (5.8) 

utilize the properties of the autocorrelation and 

autocovariance functions; R(0)=1 and R(-u) = R(u). 

From equation (5.5), the first order Gauss-Markov 

process is given by 

xt =P,Xt_L+Wt, (5.9) 
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where -1<P 1<1 if the process is stationary. The acf can be 

expressed as 

RU = P1 Rn_i . (5.10) 

With R0 = 1, equation (5.10) has the solution RU = P1U. This 

autocorrelation function decays exponentially to zero if P1 

is positive (Box and Jenkins, 1970) . The acf of a first 

order Gauss-Markov process can therefore be expressed in the 

form given by Gelb, (1974) 

Ru = exp( -f3u ) (5.11) 

where exp(-13u) is the exponential function with an exponent 

of (-13u), 1/13 is the correlation time (1/e point). The value 

of the correlation time can be determined by performing an 

adjustment of equation (5.11) with RU computed from either 

equation (5.3) or (5.4). The discrete version of the 

prediction equation is now written 

Xk = Xk_1 exp[ -13 (tk - tk_1)] + Wk . (5.12) 

Equations (5.11) and (5.12) are implemented in the 

adjustment software package to model the receiver clock 

offset. The receiver clock polynomial now forms the 

deterministic part of the clock model while the Gauss-

Markov process forms the stochastic part. 
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The residual computed from the first observation to 

each satellite is used as the starting value of the series. 

The first observations to each satellite are not summed into 

the normal equations. Equation (5.12) is used with the 

initial value to estimate the bias for the next observation. 

The esiimated bias is removed from the observation during 

the computation of the m15c1osure. The current value of the 

series is then updated based on the actual measurement. 

5.3.2 Initial Baseline Results with a Gauss-Markov Clock 

Model Implemented  

The acf obtained with the unbiased estimator from the 

satellite PRN 13 residuals of the fixed stations adjustment 

of baseline ROOF to CATA is shown in Figure 5.2 along with 

the 95% confidence limits (dashed lines). The confidence 

limits are computed from the large N approximation; 

VarfR] = 1/(N - u), given in Yule and Kendall (1950). Only 

the autocorrelations with a magnitude greater than zero were 

used to estimate the correlation time. Performing the 

adjustment using equation (5.11) as the mathematical model 

yields a correlation time of 553.8 seconds. The correlation 

time for baseline ROOF to METC was 372.5 seconds and 357.8 

seconds for baseline METC to CATA. 
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Figure 5.2: Autocorrelation Function of Satellite 13 
Residuals, ROOF to CATA Fixed Stations Adjustment 

The first attempt to readjust the data from the 

baseline ROOF to CATA with a first order Gauss-Markov model 

implemented was unsuccessful. In this adjustment, the 

ambiguities were solved for as free parameters and the 

station coordinates were given a variance of 25 m2. In view 

of the results in section 5.2, the zeroth-order term of the 

clock difference polynomial was held fixed. The estimate of 
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the d0 term was obtained from the fixed stations adjustment. 

The initial values of the other polynomial coefficients were 

also obtained from the fixed station adjustment. No 

convergence was obtained at the 0.020 m level for the 

station coordinates. It also appears that the estimates of 

the receiver clock coefficients are converging much slower 

than in previous runs. The coefficients have become 

insensitive to changes as a result of incorporating the 

Gauss-Markov process. This is a direct result of estimating 

the Gauss-Markov predictions in each iteration. 

Treating the ambiguities as weighted parameters with a 

variance 

Entering 

starting 

problems 

of two cycles squared resulted in similar problems. 

an etimate of the ambiguities provides better 

values for the predictor but the convergence 

have been compounded. 

Once again, the clock parameters also exhibited 

convergence problems. Convergence of the adjustment was 

obtained by modifying the input information and convergence 

tolerance. The weights applied to the clock polynomial 

coefficients were increased and the convergence tolerance 

was set at 0.020 m Convergence was obtained in 21 

iterations. The results for this adjustment (Run 5.9) are 

presented in Table 5.5. The derived station position of Run 
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5.9 is of lower accuracy than previous adjustments, although 

the convergence is better. 

The interaction between the Gauss-Markov process and 

the two polynomial clock models is creating an unstable 

adjustment. To remove the interaction, the adjustment was 

rerun with all of the clock polynomial coefficients held 

fixed. Errors in the station position from this adjustment 

are shown in Table 5.5, designated Run 5.10. The convergence 

problem has been further aggravated. The adjustment required 

eleven iterations to converge at the 0.040 m level. No 

convergence was obtained at the 0.020 m level in 35 

iterations. Comparing the results of runs 5.9 and 5.10 also 

shows a significant difference. 

A plot of the residuals from three of the satellites in 

run 5.9 is presented in Figure 5.3. The correlation 

coefficient is shown in Table 5.6. The first order Gauss-

Narkov process has reduced the maximum size of the residuals 

by almost an order of magnitude although a long-term 

systematic trend still exists. Superimposed on this trend is 

high frequency noise. Reducing the correlation time of the 

Gauss-Markov process will reduce the level of the high 

frequency noise but increase the amplitude of the systematic 

trend. In addition, interaction between the random process 
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and the receiver clock polynomial will be reduced. Thus, 

part of the convergence problem can be alleviated. 

Table 5.5: Baseline Errors from Adjustments with a 
Gauss-Markov Process Implemented 

Run Errors in m and (ppm) 
Number X Y Z Pos. Length 

5.9 0.253 0.514 0.097 0.581 -0.508 
(5.6) (5.0) (1.1) (4.0) (3.5) 

5.10 -0.026 -0.169 0.552 0.549 -0.196 
(0.6) (1.6) (5.8) (3.8) (1.4) 

5.11 -0.035 0.046 0.226 0.233 -0.163 
(0.8) (0.4) (2.5) (1.6) (1.1) 

5.12 0.039 0.169 -0.112 0.206 -0.063 
(0.9) (1.6) (1.2) (1.4) (0.4) 

5.13 0.010 -0.052 0.087 0.102 -0.020 
R-C (0.2) (0.5) (1.0) (0.7) (0.1) 

5.14 0.174 -0.055 0.185 0.260 0.073 
R-M (8.0) (7.5) (15.0) (10.0) (2.8) 

5.15 -0.134 -0.163 -0.053 0.218 0.205 
M-C (2.0) (1.7) (0.7) (1.5) (1.5) 

Close 0.030 -0.166 0.045 0.175 0.298 
(0.2) (0.8) (0.3) (0.6) (1.0) 

Tr/Trim -0.189 -0.053 -0.306 0.364 0.093 
R - C (4.2) (0.5) (3.4) (2.5) .. (0.6) 

Tr/Trim -0010 0.134 0.083 0.158 -0.085 
R - M (0.5) (18.4) (6.7) (6.1) (3.3) 

Tr/Trim -0.178 -0.178 0.222 0.336 0.084 
M - C (2.7) (1.9) (2.9) (2.4) (0.6) 
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Table 5.6: Correlation Coefficient Matrix 
for Run 5.9, Baseline ROOF toCATA 

X Y Z X0 xi 

X 1.00 -0.5]. 0.16 -0.00 -0.00 -0.01 

Y 1.00 -0.18 -0.00 -0.00 -0.00 

z 1.00 0.00 -0.00 -0.01 

X01 1.00 -0.00 -0.00 

xli 1.00 -0.00 

1.00 

d1 d2 N13 N12 N11 N09 N06 

X -0.05 0.12 T°49 -0.60 0.68 -0.10 0.21 

Y -0.40 0.28 0.07 0.39 -0.37 -0.52 -0.57 

Z -0.44 -0.38 0.34 0.32 0.57 -0.06 -0.14 

X0 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 

X1 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 

X2 -0.00 0.00 0.01 -0.01 -0.01 0.00 0.00 

d1 1.00 -0.96 -0.03 -0.11 -0.06 -0.05 0.06 

d2 1.00 -0.03 0.03 0.09 0.05 -0.01 

N13 1.00 0.66 0.05 0.36 -0.04 

N12 1.00 -0.04 0.14 -0.24 

N11 1.00 0.07 0.09 

N09 1.00 0.40 

N06 1.00 
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Figure 5.3: Residuals from the Adjustment of Baseline 
ROOF to CATA with a Gauss-Markov Clock Model 

Arbitrarily choosing a correlation time of twice the 

data rate, i.e. 120 seconds, and readjusting the data from 

baseline ROOF to CATA yields the results shown in Table 5.5, 

run 5.11. The ambiguities were solved for as weighted 

parameters with an a priori variance of two cycles squared. 

Coefficients for both the receiver clock polynomials were 

solved for, except the zeroth order clock difference term 



82 

which was held fixed. Convergence at the 0.010 m level was 

achieved in 21 it'erations. The shorter correlation time has 

removed much of the convergence problem but not completely 

corrected it. No convergence was obtained at the 0.002 m 

level in 35 iterations. 

Station position errors from run 5.11 are now very 

good. Residuals from this adjustment are shown in Figure 

5.4. The shorter correlation time has removed much of the 

high frequency noise but the amplitude of the long-term 

trend has increased. Additional terms can be added in the 

polynomial clock model to remove this trend but this is 

likely to further aggravate the convergence problems. 

Typically, the receiver clocks exhibit behaviour that can be 

described by an offset from true GPS time and a linear 

drift. A small quadratic trend may also be superimposed on 

the linear trend (Remondi, 1984). Therefore, the higher 

order trends are difficult to justify physically. 

Estimating the clock offsets as a white noise process 

should remove the majority of clock trend but significantly 

increase the number of unknowns. Alternatively, the receiver 

clock offsets can be determined from a single point 

pseudorange solution. The estimated clock offsets can then 

be removed for the carrier beat phase observables prior to 

forming the single differences. This -technique will add a 
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high degree of noise to the observations but it may 

successfully remove the large systematic trend. 
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Figure 5.4: Residuals from the Run 5.11 
Adjustment 

Treating the ambiguities as weighted parameters has 

resulted in convergence problems throughout the preceding 

analysis. Treating the ambiguities as fixed parameters will 

reduce the convergence problems. To test this theory, run 

5.10 was repeated with the ambiguities held fixed. The clock 
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polynomial coefficients, excluding d0, were also solved for. 

Convergence was obtained at the 0.002 m level in eight 

iterations. The results, shown in Table 5.5 (Run 5.12) are 

very good and the convergence problem has been significantly 

reduced. 

Since both the ambiguities and the d0 term are fixed, 

any unmodelled constant clock effects are likely absorbed in 

the estimates of the station coordinates. In an attempt to 

further improve the results, the adjustment was repeated 

while solving for the entire clock polynomial. The station 

position errors show a further increase in accuracy, see Run 

5.13, Table 5.5. 

The data from the other baselines was also readjusted 

with fixed ambiguities and solving for the full polynomial 

clock model. The results are presented in Table 5.5. Run 

5.14 corresponds to baseline ROOF to METC, while baseline 

METC to CATA corresponds to run 5.15. The coordinate errors 

on each of these baselines show a significant improvement 

over that of Runs 5.1 to 5.3. The position errors are now 

acceptable for each of the baselines. The closure of the 

triangle, shown in Table 5.5 is also within an acceptable 

range. Table 5.5 also shows the results obtained in the 

TRIMBLE/TRIMVEC test (McArthur, 1987) for comparison. 
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It should be noted that the ambiguities used in Runs 

5.13 to 5.15 were determined from an adjustment with both 

stations held fixed at their published values. They were 

also not rounded to the nearest integer value. In a 

production survey, the initial estimate of the ambiguities 

cannot be determined to this accuracy. As an alternative, 

the estimated ambiguities can be rounded to integer values 

while allowing the clock polynomials and random process to 

absorb the constant part of the receiver clock offset. An 

integer ambiguity search can then be performed to determine 

the correct values. 

In summary, good results can be obtained with the 

program package but an accurate knowledge of the ambiguities 

is required. A reasonable estimate of the clock polynomial 

coefficients is also required. Treating the ambiguities as 

free parameters results in large position errors while 

entering the ambiguities as weighted parameters produces 

convergence problems. The convergence problems may be due to 

model uncertainties and measurement noise. 

Only short correlation times can be chosen for the 

Gauss-Markov receiver clock model. Longer correlation times 

produce convergence problems although the magnitude of the 

systematic trend in the 'residuals is greatly reduced. 
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Part of the model uncertainties that produce the 

convergence problems may be due to the simultaneous transmit 

time formulation. As noted in Chapter 2, the clock offset 

errors contributed by the dissimilar received times should 

be negligible. This bias error should be removed by the 

clock polynomial and random process. 'In the following 

chapter, two double difference adjustments are used to test 

the effects of the simultaneous received time model. One 

adjustment is formulated on the basis of simultaneous 

transmit times while the other uses simultaneous received 

times. 



CHAPTER 6 

DOULE DIFFERENCE ADJUSTMENTS 

Double differenced observations remove most of the 

effect of the receiver clock errors. In theory, the entire 

clock error is removed only if all four carrier beat phase 

observations have identical received times. Forming double 

difference observations from the single differences that are 

used in ASTRO will not completely remove the clock errors 

since the four signals are no longer received at identical 

epochs. Two of the observations will be nearly simultaneous 

while the remaining two will have different arrival times 

which are a function of the satellite geometry and baseline 

orientation. The clock error that remains will contain the 

effects of the differericed clock bias during the interval 

between the arrival times. 

Two different double difference adjustment programs 

have been written to determine the effect of the remaining 

errors on determining the station coordinates. In the first 

version, the double differences are formed from two of 

ASTRO's single difference observations. In the second 

version, the double differences are formed from four one-way 
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phase observations which have nearly simultaneous received 

times. In both cases, the correlations between the 

observations have been properly accounted for. 

The following sections present results from adjustments 

of the data from baseline ROOF to CATA. In all of the 

forthcoming adjustments, the coordinates of station ROOF 

have been held fixed. The published coordinates of station 

CATA were entered as the initial estimate. The convergence 

criteria for all adjustments was one millimetre for the 

station coordinates and 0.1 cycles for the ambiguities. 

6.1 Double Difference Adjustment Results, Version 1  

In this version, the double differences are formed from 

two of the single differences used in ASTRO. Comparing plots 

of the adjustment residuals with those of the previous 

chapters will show the extent of the receiver clock errors 

that are removed by forming the double differences. 

Comparison of the results with those obtained from the 

second version and published results of the TRIMBLE/TRIMvFjC 

test (McArthur, 1987) shows the suitability of the model. 

Initially, only the station coordinates and ambiguities 

were solved for. In the first adjustment, all the parameters 



89 

were treated as true unknowns. The results are presented in 

Table 6.1, listed as run 6.1. •The correlation coefficient 

matrix is shown in Table 6.2. Residuals for three of the 

satellite combinations are plotted in Figure 6.1. This 

figure shows that the majority of the receiver clock errors 

exhibited by the SD residuals have been removed (also see 

Figure 4.1). A small satellite specific trend is now 

identifiable in the residual curves. This trend is due to 

the unmodelled receiver clock errors. 

The station coordinate errors do not show an 

improvement over the single difference results (run 5.1) but 

they are still reasonable. A large percentage of this error 

can, be attributed to the fact that the two single 

differences have slightly different received times. 

Table 6.1: Baseline Errors from Version 1 
Double Difference Adjustments 

Run 
Number 

6.1 

X 

-0.034 
(0.8) 

Errors in m and (ppm) 
Y Z Pos. Length 

-0.765 0.028 0.776 0.541 
(7.4) (0.3) (5.4) (3.7) 

The correlation coefficient matrix, Table 6.2, still 

shows very high correlation between the ambiguities 

themselves and the station coordinates, similar to the 
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single difference adjustments. The ability to correctly 

determine the integer value of the ambiguities and fixthem 

will thus greatly strengthen the adjustment. 
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Figure 6.1: Residuals from the Double Difference Adjustment 
of Baseline ROOF to CATA, Run 6.1 

The single difference adjustments became unstable when 

/ the estimated ambiguities were treated as weighted 

parameters. Applying the same two cycle squared variance to 
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the ambiguities obtained from Run 6.1 and readjusting the 

data does not produce the same instability. Both Run 6.1 and 

the weighted ambiguity adjustment converged in two 

iterations with no change in the convergence tolerance. As 

expected, the results of the weighted ambiguity adjustment 

and Run 6.1 show no significant difference. 

Table 6.2: Correlation Coefficient Matrix 
for Run 6.1, Baseline ROOF to CATA 

X Y Z N13_12 N13 ... 11 N13_9 N13 .... 6 

X 1.00 -0.91 -0.39 -0.89 0.99 0.94 0.96 

Y 1.00 0.23 0.95 -0.89 -0.95 -0.93 

Z 1.00 0.30 -0.35 -0.47 -0.51 

N13 ... 12 1.00 -0.85 -0.91 -0.91 

N13_11 1.00 0.92 0.94 

N13_09 1.00 0.98 

N13_06 1.00 

In an attempt to remove the remaining receiver clock 

errors, four second order polynomials were added as nuisance 

parameters. Anticipating that the ambiguities will absorb 

the constant part of each clock offset, only the linear and 

quadratic coefficients are solved for. The performance of 

this adjustment is strongly influenced by the initial 

weights applied to the parameters. In all cases, convergence 
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is very slow as a result of the highly correlated polynomial 

coefficients. The adjustment required 39 iterations to 

converge and resulted in a significant reduction in the 

accuracy of the estimated station position. The poor results 

and convergence problems are a result of high correlations 

between the polynomial  coefficients which indicates an 

overparameterization of the solution. 

6.2 Double Difference Adjustment Results, Version 2  

in this version, double differences are formed from 

four one-way phase observations with nearly simultaneous 

received times. All DD observations with received times 

differing by more than 0.7 milliseconds were rejected. This 

is the most commonly implemented formulation for double 

difference adjustments (Delikaraoglou, 1987) . This 

formulation should remove a greater portion of the receiver 

clock errors than the previous version. 

The mathematical model implemented corresponds to that 

given in Remondi (1984), similar to the final single 

difference model. Parameters are included for the station 

coordinates, ambiguities, unmodelled tropospheric delay 

scale factor and residual receiver clock error. The receiver 

clock error is modelled by two second-order polynomials, one 

for the common clock error and the other for the difference 
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between the receiver clocks. Time-tag errors are accounted 

for in the formulation of the clock model. 

Initially, only the station coordinates and ambiguities 

are solved for as true unknowns. The results of this 

adjustment are listed in Table 6.3, denoted Run 6.2. Fixing 

the ambiguities at their real values or adding weights of 

two cycles squared to the ambiguity estimates does not 

change the coordinate errors or rate of convergence. The 

results are in approximately the same range as the results 

of the TRIMBLE/TRIMVEC test (McArthur, 1987) shown in Table 

6.4. The results from the version 2 adjustments will likely 

improve with additional modelling of the error sources, 

primarily the receiver clock errors. 

Table 6.3: Baseline Errors from Version 2 
Double Difference Adjustments 

Run 
Number X 

Errors in m and 
Y z 

(ppm) 
Pos. Length 

6.2 0.038 -0.867 -0.015 0.869 0.618 
(0.8) (8.4) (0.2) (6.0) (4.3) 

TRIMBLE -0.189 -0.053 -0.306 0.364 0.093 
TRIMVEC (4.2) (0.5) (3.4) (2.5) (0.6) 

6.3 -0.356 -0.170 -0.481 0.622 0.533 
(7.9) (1.6) (5.3) (4.3) (3.7) 
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The residuals from three of the satellite combinations 

of Run 6.6 are presented in Figure 6.2. Note the large 

number of satellite 13-12 observations that were deleted due 

to differences in the received times exceeding 0.7 

milliseconds. Deleting these observations significantly 

increases the GDOP in the earlier section of the data set. 

The less favourable satellite geometry is likely the cause 
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Figure 6.2: Residuals from Double Difference Adjustment of 
Baseline ROOF to CATA, Run 6.2 
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of the slight increase in the position errors. Comparing the 

residuals in Figure 6.1 and 6.2 shows a decrease in the 

magnitude from the version 2 adjustment. The simultaneous 

received time formulation is removing more of the clock 

errors. 

To further explore the effects of the receiver clock 

errors, the version 2 adjustment was repeated with both 

clock polynomials and the tropospheric delay scale factor 

included as nuisance parameters. Once again, this adjustment 

is affec1ed by the weights of the initial estimates although 

not to the same degree as the version 1 adjustment. 

The results are listed in Table 6.4, denoted Run 6.3. A 

comparison of the residuals from Runs 6.2 and 6.3 for 

satellite combination 13-11 is shown in Figure 6.3. The 

residuals from Run 6.2 are shown with the solid line while 

the dashed line corresponds to Run 6.3. 

The magnitude of the residuals does not change 

significantly between the two adjustments but the station 

coordinate errors change dramatically. Obviously, the 

unmodelled receiver clock errors are being absorbed in the 

estimate of the station coordinates in Run 6.2. Since double 

difference adjustments are relatively insensitive to 



96 

receiver clock errors, the effect must be magnified in a 

single difference adjustment. 
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Utilizing polynomials to model the receiver clock error 

significantly weakens a double difference adjustment 

(Beutler et al., 1987) . A preferred method, is to solve for 
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the clock offsets at each epoch with a single difference or 

single point adjustment. These corrections are then applied 

directly to the observations prior to performing the double 

difference adjustment (Beutler et a'l., 1987; Wei, 1986). 

This approach has not been attempted in this study but it is 

anticipated that this process will bring the results more in 

line with the TRIMBLE/TRIMVEC test results. 

The results obtained from the two double difference 

versions are very similar. The simultaneous transmit time 

formulation of the ASTRO program package is therefore not a 

major contributing factor to the positioning errors. 

Weighted ambiguity double difference adjustments do not 

exhibit the same instability as the single difference 

adjustments. The convergence problem encountered in weighted 

ambiguity adjustments must be attributed to the single 

difference model. 



CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

The method of computing the Keplerian initial 

conditions directly from the broadcast ephemeris parameters 

has provided good results. Satellite positions determined by 

integrating the force model subject to the Keplerian initial 

conditions are within two metres of the satellite positions 

determined from the broadcast ephemeris. Preliminary 

estimates of the Keplerian initial conditions, derived 

directly from the broadcast ephemeris parameters, are 

improved by performing a least squares adjustment that fits 

the integrated orbit to the broadcast ephemeris orbit. No 

attempt is made to improve the estimate of the satellite 

positions at this time. If a more precise ephemeris is used 

to predict and correct the initial Keplerian elements, 

improvements in the estimated satellite positions can be 

expected. 

An accurate initial estimate of the orbit is of prime 

importance if only a single baseline is being processed. The 

orbit improvement capabilities can only be utilized if data 

from a network of three or more stations with a spatial 
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extent of a few hundred kilometres or more is being 

processed. A network adjustment utilizing the orbit 

improvement capabilities of ASTRO should improve the 

satellite position accuracies. 

The use of actual data in the original ASTRO program 

'gave rather poor results. Large amplitude systematic trends 

are evident in plots of the residuals from adjustments which 

utilized only a polynomial receiver clock model. The 

systematic trend has been attributed to variations in the 

receiver clock offsets determined by the internal software 

of the receiver. Changes in the number of satellites tracked 

and satellite geometry give rise to the variations in the 

internally derived clock offsets. The instability of the 

quartz oscillator, used in the receiver, is shown in the 

residual plots by high frequency fluctuations superimposed 

on the systematic trend. 

Remondi (1984) states that the receiver clock offsets 

must be known br modelled to an accuracy of less than one 

nanosecond in single difference adjustments. The amplitude 

of the systematic trend remaining in the residuals suggests 

that the initial versions of the ASTRO program package are 

not achieving this criterion. 
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Adding a first-order Gauss-Markov process to the 

polynomial clock model to remove the systematic trend has 

been only partially successful. Good adjustment results have 

been obtained only when the ambiguities are held fixed and 

short correlation times (120 seconds) are used in the Markov 

process. The correlation time derived from the 

autocorrelation function of the adjustment residuals lies 

within the range of 350 to 550 seconds. Adjustments using 

these longer correlation times removed most of the 

systematic trend but left a high frequency component, 

attributed to the oscillator fluctuations. Unfortunately, 

interaction between the Gauss-Markov process and the 

receiver clock polynomials prevents proper convergence of 

these adjustments. Reducing the correlation time to 

alleviate the interaction problem and absorb the higher 

frequency variations improves the convergence problems but 

does not completely correct them. 

Entering an a priori estimate of the ambiguities 

provides a good initial starting value for the Markov 

process predictor. Treating the ambiguities as weighted 

parameters, to account for errors in their estimated values, 

results in adjustments that converge very slowly. The 

convergence problems occur on adjustments both with and 

without the Markov process incorporated. 
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Good adjustment results that are free of convergence 

problems have been obtained only when the ambiguities are 

held fixed and short correlation times (120 seconds) are 

used for the Markov process. The systematic trend still 

exists in the residuals but the amplitude is reduced from 

that of the initial adjustments. 

Results from the two double difference adjustment 

programs indicate that the simultaneous transmit time and 

simultaneous received time models are essentially 

equivalent. As noted in Chapter ? measuring the receiver 

clock offset at slightly different epochs should contribute 

only a negligible error to the bias modelling. The 

simultaneous transmit model will provide better results for 

orbit improvement. Both of the carrier phase observations 

used to form the single difference refer to the same 

satellite transmit time thus orbit improvement algorithms 

are more efficient. 

The study seems to indicate that there is some inherent 

instability in the single difference model and that the 

methods implemented in this thesis have not successfully 

resolved it. The requirement of accurate a priori knowledge 

of the ambiguities significantly affects the usefulness of 

the processing scheme developed. In addition, it is felt 

that the receiver clock models currently implemented are not 
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the optimal solution to the clock problem. At present, the 

single differences models investigated in this thesis cannot 

be considered as a viable 'alternative to double difference 

adjustments. 

Several additional methods of treating the receiver 

clock offsets have been proposed. The methods include: 

1) Adding higher order terms to the receiver clock 

polynomial, 

2) Utilizing piecewise continuous polynomials, 

3) Removing predetermined values of the clock biases 

directly from the observations, and 

4) Solving for the clock biases as a white noise 

process. 

The first two methods attempt to reduce the magnitude 

of the systematic trend seen in the residuals. In the first 

method, higher order terms and/or cyclic components are 

added to the clock polynomials. In the second method, the 

length of piecewise continuous polynomials can be chosen to 

fit the pattern of the residuals. Both of these methods are 

difficult to justify physically. They are arbitrarily 

fitting functions to the observed pattern and do not deal 

with the physics of the problem. In addition, problems with 
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the interaction between the Markov process and the 

polynomials are likely to be aggravated. 

The final two methods attempt to remove the actual 

receiver clock offset. In the third method, the clock biases 

can be determined at each epoch from a single point 

pseudorange solution. In view of the variability of 

pseudorange adjustments, this method will add a high degree 

of noise to the observations but the systematic trend will 

be removed. A Gauss-Markov process with short correlation 

times, in the single difference adjustments, may 

successfully reduce the noise level. Removing the clock 

offsets from the observations has proven successful in 

double difference adjustments where the noise level is 

reduced by forming the difference across satellites (Beutler 

et al., 1987a). 

Solving for the receiver clock biases at each epoch 

will absorb the large systematic trend seen in the 

adjustment residuals. The neglected effect that arises from 

measuring the clock biases at each receiver at slightly 

different times should also be absorbed. The significant 

increase in the number of unknowns is a major disadvantage 

of this method, especially when simultaneously processing 

observations from a network of stations. With future 
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increases in computing power anticipated, this drawback may 

not be as significant in the future as it is right now. 

Further research in this area is required to solve the 

receiver clock modelling problem and overcome the model 

instabilities. 
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APPENDIX A 

The following table gives a brief description of each 

adjustment along with the page numbers of the table that 

lists the station coordinate errors. Unless otherwise noted, 

the adjustments refer to the baseline ROOF to CATA. 

Run # Page Description 

4.1 51 Baseline ROOF to CATA, full data set, 60 
second spacing, station (stn) coordinate 
(coord) convergence (cony) 0.001 m in 3 
iterations, stn variance (var): 25 m2, 
ambiguities (amb): free. 

4.2 51 Baseline ROOF to METC, same as run 4.1. 

4.3 5]. Baseline METC to CATA, same as run 4.1. 

5.1 59 Baseline ROOF to CATA with updated clock 
model. 

5.2 59 Baseline ROOF to METC with updated clock 
model. 

5.3 59 Baseline METC to CATA with updated clock 
model. 

5.4 59 Repeat run 5.1 with fixed ambiguities. 

5.5 59 Repeat run 5.1 with the constant term of the 
receiver clock polynomial (d0) fixed. 

5.6 59 Baseline ROOF to CATA, adjusting only the 
data with five satellite coverage. 
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5.7 69 Repeat run 5.5 with weighted ambiguities, 
convergence at 0.004 m in 17 iterations. 

5.8 69 Repeat run 5.7 while solving for the d0 term. 

5.9 79 Repeat i'un 5.7 with a Gauss-Markov process 
model incorporated. A priori weighted of 
clock polynomial coefficients increased. 
Convergence at 0.020 m in 21 iterations. 

5.10 79 Repeat run 5.8 with a Gauss-Markov process 
and increased weights of clock polynomila 
coefficients. Cony, at 0.040 m in 11 iter. 

79 Repeat run 5.9 with correlation time reduced 
to 120 sec. Cony, at 0.010 m in 21 iter. 

79 

79 

.79 

Repeat run 5.11 with fixed amb. Cony, at 
0.002 m in 8 iter. 

Repeat run 5.12 while solving for the d0 
term. 

Baseline ROOF to METC 
process and fixed amb. 
5.13. 

5.14 79 Baseline METC to 
process and fixed 
5.13. 

6.1 83 Version 
solving 
0.001 m 

with Gauss-Markov 
Equivalent to run 

METC with Gauss-Markov 
amb. Equivalent to run 

1 double difference adjustment 
for stn coord and amb only. Cony: 
in 2 iterations. 

6.2 89 Version 2 double difference adjustment 
solving for stn coord and amb as free 
parameters. Cony: 0.001 m in 3 iterations. 

6.3 89 Repeat run 6.6 with poly to model receiver 
clock errors and tropospheric scale factor 
incorporated. Cony: 0.001 m in 4 iterations. 


