Introduction

The k-means clustering algorithm and its variants are widely used in multivariate data analysis [5],
pattern classification [t1] and digital image processing [1]. Given a certain metric, it partitions
multivariate data by finding a local minimum in the mean squared crror. The algorithm is generally
considered to be one of the faster methods of clustering. IHowever, its computational complexity is still

far too high for large clustering problems.

"This paper proposes a new, fast k-means type clustering method, called the adaptive mean-split
algorithm. Using a divide-and-conquer strategy, it produces K clusters from N multivariate data points
in only O(NlogK) time and O (N) space. Experiments on color image quantization, a large clustering
problem which presents real challenges to clustering algorithms (see [6]), show that the new method can
partition data in the order of minutes when the k-mcans algorithm requires a whole day to converge. The
clustering error shows little deterioration in the resulting clusters. Morcover, if further optimization is
sought, the outcome of the new method can be used to create initial cluster centers for the k-means
algorithm, gaining a very substantial hcad-start on the usual technique of beginning from randomly-

chosen or roughly-sclected initial values.

The structure of the paper is as follows. The first section defines the problem and briefly reviews
the k-means algorithm. Then the adaptive mean-split algorithm is introduced and developed in a way
which emphasizes the compromise it achieves between computational complexity and optimization.
Ifinally the performance of the new algorithm is analyzed by both a probability model and experiments on

color image data, where it is also compared with other algorithms.

Data partitioning and the k-means algorithm

Given N m-variate data q; (7=0,1, -+ N 1), there is a corresponding point sct
S={q49, """ gv.} C R"™, the m-dimensional Buclidean space. lLet P(S,K) denote a partition

i K 1
obtained by dividing S into K subsets S;, S; #d, NS =4, US, =S (2<K<N). P(S,K) can
i =0 i=0

be viewed as a map P: §—1" (the positive integers), where P(g;)=i whenever q; € §;. P takes cach

point of § into the subset to which it belongs.

A good partition will localize the data points by suitable choice of subscts. Throughout this paper

lsuclidean distance is used to measure locality. ach subset is represented by a suitable point in space;

denote the representative of S; by S(i). Then the total squared error for the partition P (S,K) is
N
eP(S,K) = ¥ g -8SPg)) II? Eg-1
i=0

where || || represents Buclidean distance. It is obvious that, whatever the partition, the best choice of
point to represent cach subset is the centroid of all data points which belong to it. This choice will

minimize the squared error for that subset, and conscquently for the partition as a whole.

The aim of multivariate data partitioning is to discover or approximate that partition which
minimizes e [P (S,K)]. The optimal partition is denoted by P,, (S,K). Since there are approaching KN
different partitions (in fact the number can be expressed exactly in closed form as a Stirling number of the

sceond kind [1]), it is clear that exhaustive searching for Pop, is generally out of the question.

The k-means algorithm [8] is a commonly-used method for finding a partitioning P(S,K) that has a
low error. Starting from initial guesses for the K desired cluster centers (perhaps chosen as the first K
data points to be clustered), it assigns each data point to the cluster center closest to it. This produces K
initial clusters. Now a new center is assigned to each cluster by computing the centroid of all points in it.
If all centers remain at the same place, the algorithm terminates; otherwise the data points are reassigned

Lo cluster centers and the procedure is repeated.

While the k-means method is widely used in practice, a gencral proof of convergence appeared only
recently [9]. Morcover, a moment's reflection reveals it does not necessarily converge to the best possible
partition, but merely to a locally optimal configuration. This does not appear to have been a significant
problem in practice; indeed according to [5, p.103] there are some asymptotic results which suggest that

for large sample sizes there will be only a few local optima, differing little from cach other.

Unfortunately the k-means algorithm is far too time-consuming for large clustering problems. Its
computational complexity is O (TmNK) where T represents the number of iterations required for the
algorithm to converge. T will depend on the distribution of the data, and generally increases with the
size of the clustering problem (measured by m, N, and K). For large problems where millions of
multidimensional data points must be structured into dozens of clusters, the k-means algorithm becomes
totally infeasible. IFor example, although in principle quite suitable for color image quantization problems
(where m =3, N=2'®, K ~=2586), its prohibitively high cost forces the use of inferior, heuristic, approaches

6.

The adaptive mean-split algorithm

In this paper we proposc a new algorithm for clustering problems. This aims for Tast exccution,
while sacrificing only a small increase in the total error e [P(S,K)] of the partitions it discovers. It
adopts the basic divide-and-conquer approach which has proven successful for the k-d trec and other
multivariate data partitioning problems [2]. The division is performed on both § and K ; these are called
"spatial” and "quota” divisions respectively. Spatial division is accomplished quickly and approximately.
Any inaccuracy in this is offset by a compensating quota division, by apportioning the number of clusters
between the two data subsets according to their population and spread. This section describes and

motivates the components of the algorithm, and then gives its implementation.

Divide-and-conquer methodology. The algorithm is basically recursive. Instead of trying to find K
clusters in a large data set S at once, it divides the P(S,K) problem into two smaller ones, P(S,,K,)
and P (S, K,). This is done by first splitting the data set S into S, and §,, and then splitting K into
K, and K, according to the populations and spreads of the two parts. This procedure is then repeated
for the partitions P(S,K) and P(S,K,). K, and K, act as quotas of partitions allocated to S, and
S,. A subdivision terminates whenever its quota is 1, or whenever it decreases beyond a certain minimal
size, whichever happens first. In the latter case the excess quota is redistributed between the remaining

partitions. The algorithm terminates with K partitions P (S;,1), t =0,1,...,K -1, whose combination is a

solution of P(S,K).

At cach stage the subdivision could be accomplished by the conventional k-means (in this case, 2-
means) clustering algorithm. This would involve selecting two initial cluster centers; constructing the

diseriminating hyperplane; segregating the data points z of S into two clusters using a test like

m

Yooz +a, 20 Eq-2
[

caleulating the centroid of cach cluster; and iterating until insignificant change took place in the cluster
centers. The diseriminating hyperplane, which constitutes the Voronoi diagram of the two tentative
cluster centers, is defined by the coefficients ¢;. The total cost of this divide-and-conquer 2-means

partitioning is O (tmNlogK), where ¢ is the average number of iterations to convergence over all stages.

This strategy achieves a great reduction in computational complexity over the conventional k-means
algorithm. IMirstly, computation time depends logarithmically rather than linearly on K. Secondly, the
smaller values of N and K which are involved in each subdivision imply that cach 2-mcans iteration
converges much more quickly on average than an overall k-means one would (ic ¢ << T). Thirdly, the
geometrie calculation for 2-means division is much simpler than in the general case because only a single
hyperplane decision is required instead of a full Euclidean distance calculation. Against this, the overall
crror e [P(S,K)| associated with the new algorithm would be greater than for k-means since only two

neighbors are considered at cach stage, and it is not clear how much this would increase e [P (S,K)].

In order to perform as well as k-means, the new algorithm would have to use a complex hypersurface
instead of a hyperplanc to perform the binary discrimination at each stage. This is because the clustering
produced by k-means can be viewed as an m-dimensional Voronoi diagram on the cluster centers in
geometric terms, as a combination of K convex polyhedra. It is clearly impractical to extend the divide-

and-conquer methodology in this way.

Instead, it is extended in a diflerent direction, by compensating for inaccurate spatial division by

appropriate allocation of the quota to the two parts. This self-adapting strategy is sufliciently powerful to

allow further simplification of the subdivision from the general hyperplane discriminant described above,
with concomitant increase in exccution speed. The next subsection describes the spatial subdivision

policy; the following one covers the method of quota allocation.

Spatial division. In common with the k-d tree method of data partioning [3], the problem is simplified
by always aligning the separating hyperplane parallel to the coordinate axis along which the data points
extend furthest. This climinates the dependency of execution time on the dimension m of the data space

by reducing the test of Eg-2 above to z, 2 &, where d is the appropriate coordinate axis.

Now consider the key question: how to determine the cutting point & for a subset @ C S of data
points. Let the optimal cutting position (namely the one which minimizes e [P (£2,2)]) be &,,. This
cutting position could be obtained by iterative 2-means clustering. Ilowever, this is deemed to be too
expensive, and instead it is estimated as follows. Rather than minimizing the overall error, we seck to
minimize the error of the d th marginal distribution. This crude approximation is acceptable because that
marginal distribution is likely to have higher variance than the others, and different cutting axes d will be
used at different levels of subdivision. As shown in Appendix A, the mean p for a continuous univariate

distribution lies between the optimal cutting point fop, and the median &,,. This suggests that ﬁ(,,,, could

be estimated by a lincar combination of the mean and median of the points in

’sopl ~opg + >‘(,ud f:n ‘d) Eq-3a

(subseript d stands for that coordinate axis along which the cut takes place). X is a positive constant
which could be optimized for any specific marginal distribution function. Unfortunately, the
computational effort required to find the median would increase the execution time of the adaptive mean-
is

split algorithm very significantly. A similar and much cheaper estimator of £0P,

Cop g +1leq pa) Eq-3b

where ¢ is the geometric center of the hyperbox tightly bounding 2. 7 is an empirically-determined

constant in the range [0.05,0.25] (the reason for this range is explained later). Eg-3b can be understood

intuitively as saying that the best cutting point is close to the mean; very close in the case when the mean
is ncar the geometric center of the tightest bounding hyperbox. Ilowever, when the mean strays
significantly from the geometrie center, the cutting point moves slightly towards the center. This is
because the outlying point or points at or near the edge of the hyperbox which is opposite the mean will

have a dominating cffect on the mean-square error criterion.

The accuracy of the approximation of Eg-3b has been verified for a number of different data
distributions. 1t will be examined further below in a discussion of the performance of the adaptive mean-

split algorithm, and Eg¢-3a will be reconsidered there also.

Quota division. Whenever a data set S is split into parts §, and S, the quota K allocated to S is
split into K| and K,. The quota subdivision strategy allows the algorithm to adapt to the result of the
current cutting operation and feed this information back into further divisions. This produces remarkably

good performance without the need for expensive geometrie calculations.

The populations N(S,), N(S,) and the volumes V(S,), V(S,) of the tightest bounding hyperboxes
of sets S, and S, comprise the information on which the quota subdivision is based. It would be
preferable to use variances instead of volumes, but this information is expensive to calculate. At first
sight it may scem sufficient to distribute K according to the populations alone; but on reflection it is clear
that the variances (approximated by the hyperbox volumes) will have an effect on the total squared error
of Eg-1. Both cfleets can be incorporated by choosing

r N(S,‘) V(S,’) 1

K= Pweyrnes PO Veor v | G Fe

p € [0,1] is an empirically-determined constant, usually chosen between 0.5 and 0.7.

During carlier levels of division, the quota is relatively large and the quota-distribution procedure
an cffectively compensate for poor choice of cutting point. Little is gained by a more extensive
computation of a better approximation for E,,p, . For example, cutting data sets at the geometric center of

their bounding hyperboxes is usually quite adequate for these early divisions. Later, when the quota is

-3

small, it may be worth expending more effort on choosing better hyperplanes for subdivision:; this does not
impact computation time significantly because the number of data points involved is small. In particular,
when K is down to two it may be worthwhile to use iterative 2-mecans spatial division. At this level it

will have a small cost and will guarantee a reduction in e [P(S,K).

The divide-and-conquer methodology distributes the effort appropriately between spatial division
and quota division at different levels of the trce. This ensures good performance with a small

computational investment.

Implementation of the algorithm. The main parts of the adaptive mean-split algorithm arc shown in
the Pascal psceudo-code given in Figure 1. After briefly explaining this implementation, it will be shown

how it can be made more efficient using a more sophisticated data structure.

The procedure partition(k, n, tag, dataset) divides the data sct into k partitions. It works by
splitting the data set in two and calling itself rceursively for each part. The centroids of the clusters are
stored in a global array and calculated as soon as cach new cluster is created. teg is a number identifying

the current cluster (starting from 0); the next unused cluster number is kept in the global variable newtag.

The body of procedure partition first checks the quota k allocated to this partition, and returns if it
is one. Next it determines if the current partition is less than a pre-specified minimum size. If so, it does
not attempt to further subdivide, but returns the unused quota to a pool for use by other, more necedy,
partitions (this part of the code is not shown). Otherwise, it finds which dimension of the data sct has the
greatest oxtent, using procedure widest_dimension(hyperboz). (The dctails of how the hyperbox

dimensions arc caleulated and stored are not shown.)

The result of this operation is used as a parameter to the procedure divide(cutazis)‘ This estimates
the optimal position to cut along the chosen axis, using Eq-3b. Then it performs the division operation,
segregating the resulting points into arrays subsetl and subset2. Finally it calculates the centroids and
places them in the global array. Note that given the centroid before the partition was divided, and the

centroid of just one part afterwards, the centroid of the second part can be determined directly. This is a

uscful shorteut. divide also places the populations of the two subsets into local variables nl and n2 for

later use by other procedures.

Returning to the main body of partition, function quotal is called next to determine what part of k
should be allocated to the first subset, according to Eg-4. Finally, partition calls itscll twice recursively,

once for cach subsct.

Some technical improvements can easily be made to this basic algorithm. The copying operation
into subset! and subset? is unnccessary, and these arrays consume a large amount of space unless more
sophisticated dynamic memory management is used. Instead, the data points can be shuffled around
within a single array. The basic idea is to repeatedly swap clements of the array until cach cluster's
points are adjacent. Instead of manipulating the actual data points, however, it is better to define a
global veetor labels/1..NJ, containing initially the numbers 1..N and subsequently permutations of that sot,
to track which partition each data point belongs to. These numbers index the actual data points, and

during the divide procedure only the labels need be swapped.

I"igure 2a shows the label array at some intermediate point during clustering. Several clusters have
by now been formed, some of which will be split (and, perhaps, split again) before the procedure is
finished. Iach cluster occupies a contiguous sequence of locations in the label array. Auxiliary arrays
ptr[0..K-1] and nof0..K-1] tell more about the clusters. ptr[17), for example, points to the beginning of
the contiguous sequence representing cluster 17, and no/17/ gives the size of that cluster. Suppose that
the next step involves splitting cluster 17 into a new cluster 17 and a further cluster, to be numbered 33
(this supposes that 32 clusters are represented all told in Figure 2a). The appropriate cutazis and cutplane
will be determined as before. But instcad of copying points into subsetl and subset2, the procedure will
shuflle that part of the label array containing cluster 17 by exchanging elements as appropriate, to build
the data structure of Figure 2b. ptr/17] remains the same but no/17/ is updated, and ptr/33] and no/33/

arc created as shown.

The improved divide procedure is shown in Figure 3. The new data structures arc label/1..NJ,

ptr/1..K]. and no/1..K], and they should be initialized with labelfs/=1, ptr[0]=1, and no[0]=N.

-9-

Performance of the adaptive mean-split algorithm

This scetion discusses the performance of the new algorithm and compares it with others. A number
of cxperiments on large data sets demonstrate that it occupies a new and important place in the
computation/optimality tradeofl: it is excecdingly speedy in comparison with all other methods we know
of for large problems; and its results are close to the local optima discovered by the k-means algorithm.
In addition to these experimental findings, a study of the lincar estimator of fop, (Egq-3b) on a particular

family of probability distributions provides some further encouraging evidence.

E:):perimental results. The adaptive mean-split algorithm has been tested extensively on a set of large
clustering problems. These problems involve color image quantization, in which a good approximation to
an original image is sought within the limitation of K available colors. The chief advantage of this

domain is that the results can be inspected visually.

Pictures with a spatial resolution of 256 X256 pixels are used, each having a color resolution of
8 bits in cach of the three primaries, red, green, and blue. Given a picture, the problem involves selecting
a palette of K colors from the 2% possible oncs, and mapping cach pixel on to its nearest representative
in the palette. Clearly what is required is a clustering P (S,K), where S is the set of pixels in the picture
and contains 2'® 3-dimensional data points. Typical values for K are 16, 64, and 256. This corresponds

to a data reduction from 24 bit/pixel to between 4 and 8 bit/pixel.

Recognized clustering algorithms such as k-means are impractical for such a large problem. A
survey paper [6] discusses the use of various simple and heuristic methods. Later, a new approximate
method was proposed based on recursive space-filling curves [10]. Among all these techniques, median
cutting in the style of the k-d tree method [3] performs best. It and the k-means algorithm will be

compared with the new adaptive mean-split clustering technique developed above.

Table 1 shows the results of these algorithms when clustering each of six test pictures into 64 and
256 clusters. Both the standard deviation of error per pixel and the CPU time are shown. It is clear that

the mean-split algorithm is by far the fastest method. Moreover, it always produces better clusters than

the k-d tree method somctimes with less than half the standard deviation of error of that method. Its
crror performance is around 30% worse than the k-means algorithm on the smaller clustering problems,

and around 25% worse on the larger ones. However, it is two to three orders of magnitude laster.

It is clear that the k-means method, because of its iterative nature and the complexity of each
iteration, will be much slower than the others. Let us consider why mean-split is faster than the k-d tree
method. Finding means is an O (N) procedure, while finding medians requires sorting and is hence (for
most implementations) O (NlogN). The kind of operations, addition versus comparison, will usually take
similar amounts of computer time. The expected complexity of bi-partitioning a sct of N m-variate data
is O(mN) for the new algorithm and O(NlogN) for median cutting (k-d tree). Since logN >>m for
most applications, the mean-split algorithm has overwhelming superiority over median cutting in speed,
and, as Table 1 shows, in performance as well. Morcover, a factor of two speed-up is achieved by
calculating the mean of only one subset of a bi-partition dircetly, and combining it with the overall mean
to find that of the other subset. One caveat should be noted here. If the data type is integer, radix
sorting techniques can be used [7]. This gives median cutting O (N) complexity at the price of larger
working space. liven though the color image data are integers, quicksort was used for the results of

Table 1, for generality.

Another feature of the mecan-split algorithm, which can be seen in Table 1, is that its speed is
almost independent of the input data. Neither median cutting nor the k-means algorithm share this
advantage; the former because the O (N logN) for sorting is only an average figure, and the latter because

its convergence time depends heavily on both the initially-chosen cluster centers and the data distribution.

To give some idea of the effect of the differing performances in practice, test image 1 of Table | was
reproduced using several clustering methods. Figure 4(a) shows the original digitized picture with
256 X 256 pixels, although it is drawn on a 512X 512 grid by replicating cach pixel four times. (This has
the eflect of exaggerating deficiencies in the rendering — jaggies are more prominent since the 2X2 blocks
of pixcels are nearly square.) The picture was digitized with 8-bit resolution in each of red, green, and

blue, giving a potential palette of 2% different colors. However, since there are only 2'® pixels, at most

- 19 -

this number of colors can be represented in the picture (in fact it happens to contain 60224 different
colors). The other four parts of the figure show versions with only 64 diflcrent colors, produced by

partitioning the 2'

points in 3-dimensional color space into 64 clusters. (b) was generated by the k-means
method; (¢) with the adaptive mean-split technique developed in this paper; (d) using the k-d tree as
recommended by Heckbert [6]; and (e) by naively retaining only the top two bits of each color coordinate.
(b) is very similar to the original (a), although close inspection shows some contouring in the flesh toncs
under the chin. The skin tones in (¢) are somewhat inferior; visible contouring is increased and has spread
to the nose and highlighted check. There is significant further deterioration in (d); now the skin tones arc
noticeably artificial. Finally, (e) shows how essential clustering is to get an acceptable rendition.

Considering that version (¢) takes less than one minute to calculate, while (d) takes two hours and (b) half

a day. the new algorithm appears to attain a convincing compromise between quality and speed.

Theoretical analysis. To provide further evidence to support the adaptive mean-split algorithm, the

quality of the approximation to fop, of Eq-3b is studied for a particular class of probability distributions.

During the recursive spatial division, if the current data subset has an obvious distribution into two
clusters, where the separation between the cluster centers exceeds the clusters’ diameters, it is clear that a
split at the mean is adequate. Otherwise, when the distribution appears fairly continuous, perhaps with
one major peak, the choice of cutting position is much more difficult. Figure 5, which shows the three

marginal distributions of test image 3, gives some idea of the problem faced in practice.

In order to model this situation, the Weibull distribution

f(z) = af z7exp(-az?), z>0, o, >0,

is used. It is shown in Figure 6 for different values of @ and (3, and varying these parameters provides a

good approximation to the general shape of the marginal data distributions encountered in practice.

The mean g, median €, and cumulative distribution F (z) of the Weibull distribution are given by

u:a"’l‘[%irl} £, = {—1%2-}” F(z)=1-exp(az’).

To make the distribution finite, we calculate the value of z, for which F(z,)=0.999 and usc only that
part of the distribution between 0 and z,, normalizing it to [0, 1]. Eop can be found from Eg-Al in
Appendix A, Figure 7 shows the position of u, £, and f(,p, , plotted against 3. Surprisingly enough the
graph turns out to be virtually independent of the value of ¢, although the actual error e [P(S,K)]

decreases as « increases and the data set thereby becomes more clustered.

IMigure 7 supports all the conclusions of Appendix A. The relative position of the three curves
indicates that g is a better estimator of £, than &, . Increasing 3 drags the peak of the distribution
toward the center (see Figure 6) so that it becomes more symmetrie. Then g and &, approach 50,,, and
eventually become equal. The greater the departure from symmetry, the further from 60,,, are both p and

&, s however p remains a better estimator than &, .

Next, consider the coeflicient n in Eg-3b and, for comparison, the corresponding coefficient X of Eq-

3a. While the implementation of the algorithm treats n as if it were constant, it can be expressed as a

function of the parameters of the distribution to make FEg-3b ecxact. n(f)=

60/)[H
—, and also
c

Et»pl 1

e
(/) It 6'"

, arc plotted against [in Figure 8. X varics by only 179 over the entire family of Weibull

distributions and should be sct to A\R1.7 if Eq-3a were used. Although (as suggested above) 7 is more
sensitive to the individual distribution, it has a fairly limited range, from 0.05 to 0.25. Experiments show
that choosing n within the above range for Eg-3b gives a noticeable improvement in e [P (S,K)] over

using n=0 and &, =p.

Conclusions

A last algorithm for clustering has been derived, implemented, and analyzed. 1t provides a tool for
large clustering problems which occupies a new and important place in the optimality /complexity tradeoff,

thereby opening up new arecas of application particularly in image processing. The key Lo its success is

- 13-

the use of subdivision in both the spatial and quota domains. Spatial subdivision is achicved rapidly with
a good approximation, but deficiencies arise partly from the use of hyperplancs parallel to a coordinate
axis and partly from approximating the optimal cutting point. These are corrected by appropriate
allocation of the quota between the two parts. While it does not guarantee to find a local optimum, the
new algorithm’s performance in practice is very good indeed. In situations where optimality guarantees

are essential, it provides an excellent and inexpensive starting-point for further iteration.

There is another potential advantage of the adaptive mean-split clustering algorithm. It is simple to
record the successive subdivisions it makes in the form of a tree structure (similar to the k-d tree).
ltowever, a more informative record can be kept by storing with each subdivision a list of neighboring
clusters. This can be done during the clustering process without any calculation of Euclidean distances.
Combined with the technique of m-dimensional Voronoi diagrams, such lists can be used to expedite
nearest-neighbor querics. For example, to implement the k-means algorithm, the new method not only
provides excellent starting cluster centers but also produces a data structure which greatly assists the

ncarest-neighbor calculations required in further iterations. This is the subject of current rescarch.

References

[1] M.R. Anderberg, Cluster analysis for applications. New York: Academic Press, p. 3, 1973.

(2] J.I.. Bentley, "Multidimensional divide-and-conquer,” Communications of the Association for
Computing Machinery, vol. 23, no. 4, pp. 214-229, April 1980.

[3] J.H. Friedman, J.I.. Bentley and R.A, Finkel, "An algorithm for finding best matches in logarithmic
expeeted time,” ACM Trans Mathematical Software, vol. 3, no. 3, pp. 209-226, Scpt. 1977.

(1] 5.1 Hall, Computer image processing and recognition. New York: Academic Press, 1979.

[5] J.A. Hartigan, Clustering algorithms. New York: Wiley, 1975.

[6] P. 1leckbert, "Color image quantization for frame buffer display,” ACM Transactions on Computer
Graphies, vol. 6, no. 3, pp. 297-307, July 1982.

(7] D.15. Knuth, The art of computer programming 8: Sorting and searching. Reading, Massachusetts:

(8]

9

0]

- 14 -

Addison Wesley, 1973.

J.B. MacQuceen, "Some methods for classification and analysis of multivariate obscrvations,” Proc
Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297, 1967.

S.Z. Sclim, and M.A. Ismail, "K-means-type algorithms: a gencralized convergence theorem and
characterization of local optimality,” IEEE Trans on Pattern Analysis and Machine Intelligence, vol.
PAMI-6, no. I, pp. 81-87, Jan. 1984.

R.J. Stevens, A, Lehar and R.I1. Preston, "Manipulation and presentation of multi-dimensional
image data using the Peano scan,” IEEE Trans Pattern Analysis and Machine Intelligence, vol. 5, no.
5, pp. H20-, Sept. 1983.

LT. Tou and R.C. Gonzalcz, Pattern recognition principles. Reading, Massachusetts: Addison-

Wesley, 1974,

Captions for figures

Figure 1 A simple implementation of the adaptive mean-split algorithm
Itigure 2 Use of the labels/l..N/ array to improve the algorithm of Figure 1
(a) Data structures partway through the clustering operation

(b) Updated data structures after cluster 17 has been split

IMigure 3 Improved implementation of the divide procedure

-

Iigure 4 A test picture generated by several partitioning methods

(a) Original 256 X256 picture with 24 bit/pixel color resolution
(b) 64-color version using k-means clustering

(¢) 64-color version using adaptive mean-split clustering

(d) 64-color version using k-d tree clustering

(e) 64-color version using simple truncation

Ifigure 5 Red, green, and blue marginal distributions of test image 3
I'igure 6 The Weibull distribution

Figure 7 Values of g, €,, and £, plotted against §

IMigure 8 Optimal valucs of A and 7 plotted against 3

List of tables

Table I lixperimental clustering results on test images

Appendix A: Rationale for the approximation to the optimal cutting point

Suppose a onc-dimensional data set with continuous probability density f (z) is split at point z =¢.
The centroids (means) of the two parts are

[z
and E(§ = fx
I

The mean squared error e over both partitions is

I3
N

[e E(OPf (z)dz + [[z-EJOFf (2)de .

By

€

The optimal cutting position {=¢,,, is the value which minimizes this cxpression. To find this, consider
the derivative
de .
-z = 2 [(O [E(- ExQ) -
A 2

E()+E,
(E+B(8) 5}.

Since f (2)2>0 and E (§)<E,(&), the optimal cutting point Eopr Must satisly

El(gopf) + E'z(fopl)
60/1/ = 2 .

Eg-A1
It is simple to check that this equation has a unique solution, provided only that the second derivative of
f (z) exists. Notice that mzf,,p, represents the half-plane of the one-dimensional Voronoi diagram of
EI(E”M) and E'_'(fopl)

The proximity of differcnt approximations to £,,; can be measured by the function B (&):

E (6)+E,
B(6) — (E)2 (& e

Because B (€,)=0 and B({) is monotonically decreasing, its sign indicates on which side of £ the
optimal cutting position §,, lics (if B(£)>0 then £>§,, and vice versa). It can be re-cxpressed as

p-E (&)
B = m + E\(§) - &,

where F' is the cumulative distribution of f and g is its mean. For a symmetric density, F(u)=1/2 and
50 &,y =pt because B (p)=0.

Denote by &, the median of f, so that F (£,)=1/2 and
B(f:n) = K- fm'

In the casc of a symmetric distribution, the mean and median are identical and both are the optimal
cutting point. ‘The main result is that for non-symmetric distributions, the mean is a better estimate of
5,}/,, than the median.

Theorem: Ior any continuous f (z), £,, cannot be closcr to Eopr than p.
Proof: Since for any &, p E (£)20, it follows that
It p>¢,, then B(&,,)>0 and F(u)>1/2; hence B (1)>0 and so Eopt > 1
Likewise, if p<<§,,, then £, <p.

Consequently, cither &, 2p>€, or £, <p<E, .

Table 1 Experimental clustering results on test images

image crror (standard deviation) CPU time (hours:minutes:seconds)
mean-split | k-d tree | k-means | mecan-split | k-d tree k-means
64 clusters
1 5.49 8.04 4.24 51 2: 3:52 14:53: 4
2 2.85 6.26 2.29 53 53:36 12:43:11
3 9.03 9.76 7.12 53 20:10 9:19:39
1 8.68 10.87 6.37 1.5 23:28 15:53:34
D 10.11 12.96 7.71 149 28:43 13:39:33
6 10.68 12.63 8.59 52 19:22 8:46: 2
256 clusters
| 2.78 4.47 2.27 1:11 2:10:30 25:45:34
2 1.32 2.71 1.18 1. 8 1: 3: 2 12:33: 0
3 5.33 6.12 4.24 1:19 21:13 23: 4:17
1 4.78 6.21 3.71 1:22 26:46 24:30:32
5 6.16 7.35 4.86 1: 1 30:53 34:18:38
6 6.75 7.73 5.5 1:10 20:21 27:34:38

const K = the number of partitions desired;
N = the number of points in the data set S;
M = the dimensionality of the data set S;
type dimension = 1..M;
vector = array|dimension] of real;
var centroid: array|l1..K] of vector; { centroid vectors for K clusters }
newtag: integer; { the partition number for the next data subset }

{ initialize newtag to 0 and then call partition(K, N, 0, S) with centroid[0] sct to the centroid of S }

procedure partition(k, n, tag: integer; datasct: array(1..N] of vector);
{ k, n, tag are the quota, population and partition number of the datasct }
var nl, n2: integer; { populations of subsetl, subset?2 }
subsetl, subsct2: array(1..N} of vector;

procedure divide(cutaxis: dimension); { cutaxis is the dimension along which to cut }
var i: integer;
begin
cutplane := centroid[tag] + nx(&, - centroid|tag]);

{ determine where to cut, using Eg-3b }
newtag := newtag+1; { allocate a new partition }
centroidnewtag] 1= 0;
nl:=n2:=0,
fori:=1tondo { perform the division into two subsets }

if dataset[i, cutaxis] < cutplane then begin
nl = nl+1;
subset1[nl] := dataset]i];
centroid[newtag] := centroid[newtag]+dataset|i];
end
else begin
n2 ;= n2+1;
subset2{n2] := dataset|i];
end
centroid[newtag] := centroid[newtag)/nl; { calculate new centroid }
centroid[tag) ;= (nxcentroid[tag] - nlxcentroid[newtag])/n2;
end

procedure hyperbox(dataset); { finds the smallest bounding hyperbox of the datasct }
function widest_dimension(hyperbox): dimension; { finds which dimension is widest }
function quotal: integer;

{ computes the quota for subsetl, based on nl, n2, si, s2, k, 3, using Eq-4 }

begin
if k=1 then return;
else if smaller_than_minimum_size(hyperbox(dataset)) then
save extra rations for large subset and return;
else begin
divide(widest_dimension(hyperbox));
ql := quotal; q2 := k- ql; .
partition(ql, nl, newtag, subsetl);
partition(q2, n2, tag, subset2);
end
end

Figure t

(R)

(B)

Figure 2

labels

1

cluster 0| cluster 17 cluster 3
T nof[0] 'T no[17] ﬁ]‘ no[3] 'T
ptrio] ptri17] ptri3]
labels 1
cluster 17

Tno[l ?]'Tn0[33']T

ptri17]

ptri33]

procedure divide(cutaxis: dimension); { cutaxis is the dimension along which to cut }
var pl, p2, t: integer;
begin
cutplanc := centroid|tag] + n*({, -centroid{tag]);
{ determine where to cut, using Eq-3b }

newtag := newtag+1; { allocate a new partition }
centroid[newtag) := 0;

pl := ptr{tag];
p2 := pl+noftag]-1;
while pt < p2 do begin { perform the shuffle into two subsets }
while dataflabel[pl], cutaxis] < cutplane do pt := pl1+1;
while data[label[p2], cutaxis] >= cutplane do begin
centroid[newtag] := centroid[newtag] + data[label[p2]];
p2 = p21;
end
if p1 < p2 then begin
centroid[newtag] := centroid{ncwtag] + datallabel[p1]};
swap(label[pt], label[p2]);

pl = pl+1;
p2 := p2-1;
end
end
ptrinewtag] := pl;
no(newtag] := noltag] - (pl ptritag));
no(tag] :== noltag] no[newtag];
centroid[newtag] := centroid[newtag]/no[newtag];
centroid[tag] ;= (nxcentroid{tag] - no[newtag]*centroid[newtag])/noltag];

end

Figure 3

)

a

(

igure

-
|9

(c)

(b)

(e)

BLUE

GREEN

RED

255

Figure 5

1.5 1 a=2,B=2
a=1,B:=3
1.01
f(x)
0.5-
a=1B=2
a=1,B8=1
0] .
0] 1 2
X

Figure 6

0.8 ;

0.7 |

0.6 1

0.5 ;

0.4

0.3

0.2

0.1

N S

4 5
B
Figure 7

2.0 1
1.9
X 1.8“

1.7/

1.6 -

0.3

0.2

0.1

