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Abstract 

A general theory of electrode polarization for planar electrode systems is developed 

to account for ionic shielding of the electrodes at low fi.equency in an electrolyte soIutioe 

A general model is derived based on the balancing of forces acting on the ions in 

solution- A variational theorem, based on the normal modes of the system of differential 

equations obtained fiom the model, is used to calculate an optimal approximate solution. 

These analytic variational solutions are used to account for the ionic shielding of the 

electrodes for a large variety of planar electrode arrays. 
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Chapter 1 

Introduction 

One of the most useful, and least intrusive, methods of investigating the physical 

characteristics of biological cells and microscopic particles is dielectrophoresis. 

Dielectrophoresis relies upon the movement of polarized particles in a non-uniform 

electric field, where the motive force depends on the electric field, the size of the 

particies and the electrical properties of those particles relative to the surrounding 

medium. some dielectrophoretic experiments focus on the electrical properties of the 

particle, and others focus on the size of the particle, al l  studies of this type require that the 

electric field in the vicinity of the particle be known. 

Dielectrophoresis experiments are generally carried out in a mildly conductive 

electrolyte solution, so that at low frequencies ( ~ 1  kHz) of the applied electrical field, the 

ions in solution will shield the electrodes producing the field, altering the potential 

distribution near the particle in some unknown way. The goal of the present analysis is to 

account for this field shielding in dielectrophoretic data by deriving a general theory of 

what is called electrode polarization. 



An elementary textbook on electrochemistry (1) generally shows an eIectmchemical 

cell consisting of an ionic conductor sandwiched between two electronic conductors. The 

tenn electrode is rather loosely applied to the electronic conductor. As has been well 

stated by Oldham and Mylands (2), however, 'St is possible for electricity to cross the 

interface between an electronic and ionic conductor.. .by virtue of an electrochemical 

reaction occurring there. The site of this reaction, the interfacial junction, is known as an 

electrode." For the sake of convenience, the term electrode will be used in its more 

fimiliar sense to imply the electrode conductor and the term "electrode surface" will 

designate its actual physical surface. 

For ac systems, the current may be classified as either conductive or capacitive 

current. Conductive current is the current generated by the movement of charge carriers 

through the circuit. The capacitive current comes about from the apparent movement of 

charge caused by the re-alignment of dipoles (or higher electrical multipoles) in the 

presence of external fields. Such a phenomenon is observed during the char&g of a 

capacitor (Figure 1.1). Though the flow of conductive current is of great importance to 

many branches of physics and chemistry, such as the construction of galvanic and 

electrolytic cells, there are numerous other applications where it is only of secondary 

consideration. For example, the methods of electrophoresis and dielectrophoresis involve 

the generation of electrical fields in chambers containing electroIytes to investigate the 



Figure 1.1 - Capacitive current. a) In a capacitor, the dielectric is pictured as an array of randomly oriented 
dipoles. b) If an external electrical potential is placed across the two plates of the capacitor, the dipoles will 
align with the field. c) When the potential is removed, the dipoles are redistributed randomly in the 
dielectric. The reorientation of the dipoles appears as  a movement of charge across the capacitor, called the 
capacitive current (or displacement current), though no charge carriers have actually moved through the 
capacitor. 



response of materials to these fields. These devices are most efficiently operated under 

conditions of minimum or, preferably, no conductive current flow. The concept of an 

electrode retains its original meaning, but interest is now focussed on the electrodes in the 

absence of cment flow across the surface (i-e. in the absence of electrochemical 

reactions). 

A class of phenomena descried under the broad category of Electrode Polarization 

plays an important role in understanding the operation of electrodes. This is a process 

whereby a charged electrode immersed in an electrolyte solution attracts an oppositely 

charged ion cloud Such a counter-ion cloud in contact with the electrode d a c e ,  along 

with the surface itself, is collectively called the "double layer." From the perspective of 

an observer within the experimental chamber, containing the electrolyte, the double layer 

appears as a space charge polarization in the medium (Figure 12a). In steady state, the 

charge accumulated in the ion cloud will be of the same magnitude as the charge on the 

electrode surface, though opposite in siga Thus, the electrode will appear completely 

screened to the above observer when located outside the double layer. This fdl screening 

is called complete polarization, or the electrode is said to be completely polarizable, 

provided no charge is directly conducted fiom the medium to the electrode. 

The restriction that there are no electrochemical reactions at the interface implies that 

the charge accumulated in the double layer cannot be dissipated through the electrode. 

This srobZe charge polarization of the ionic medium may be visualised as a rigid "dipole" 



Figure 12 -The representation of the space charge polarization in an ionic medium as the alignment of a 
hypothetical "dipole" with the applied field. a) When an electric field is developed across an electrolytic 
solution, the ions will neukalise the charge on the electrodes by migrating to the surface. b) The situation 

- 

can be represented analogously by imagining the local charge accumulatioas at the surface as the ends of a 
"dipole" aIigned with the field. 



aligned with the electric field Figure 12b). This dipole picture has the advantage of 

being more conducive to electronic circuit modelling than the charge cloud picture. 

Moreover, an electronic circuit model can clarify the study of electrode polarization 

considerably. 

When an ac potential is applied, cment flows even in the absence of electrochernicd 

reactions. This current is due to the "re+rientationY7 of the "dipoles" as they attempt to 

follow the alternating polaxity of the electrodes (Figure 13), and as alluded to above, it is 

called a capacitive current. A certain amount of time, called the relaxation time, is 

associated ivith the re-orientation process. At low frequencies, when the period (period = 

lifkequency) is longer than the relaxation time, the "dipole" will be M y  aligned with the 

alternating field, leading to complete polarization. At frequencies with periods shorter 

than the relaxation time, the dipoles will be unable to follow- the field, and therefore 

unable to provide compiete screening. Thus, the polarization, P, of the medium, falls to 

zero when the period T(T = Y, ; where u = 2x f ) of the applied potential becomes much 

shorter than the relaxation time (Figure 1.4). It follows, therefore, that the magnitude of 

the relaxation time is an important parameter within the context of electrode polarization. 

Calculation of the relaxation time allows the investigator to predict the frequency ranges 

over which the ionic screening of the electrode will be present. Such information is of 

vital importance, since the screening of the electrodes can influence, in an &own 

manner, both the magnitude and frequency dependence of the field within the 

experimental chamber. As a consequence serious errors may result in the computation of 

dielectrophoretic and electrophoretic forces in the chamber. 



Pigure 1.3 - I f  the field alternates in time, then the dynamic migration of the ions can be imagined as the 
flipping of a hypothetical "dipole." 



log w 

Plgure 1.4 - When the field alternates faster than the "dipolen can respond, the ions are unable to 
completely screen the electrode surface. Consequently, the space charge polarization, P, falls off to zero a s  
the frequency of the applied potential, , increases. 



Since there is only a single mechanism of polarization in the above description (i-e. 

the space charge polarization in the ionic medium), there is a single relaxation time 

associated with the process. An electrical circuit consisting of a resistor in series with a 

capacitor (Figure 1.5) can easily model such a single relaxation process. In this view, the 

relaxation time of the system is the RC time constant of the resistor-capacitor circuit, 

Furthennore, the difference between the potential in the bulk (regions outside the double 

layer) compared to the potential applied to the electrode is g e n d y  expressed as a 

voltage drop across the impedance of the double layer. The advantage of the electrical 

circuit model is that it allows the vast storehouse of problem solving mechanisms 

developed in circuit theory to be brought to bear on the study of ionic dielectrics. 

In the context of the resistor-capacitor model, the "dipole" picture is re-cast in a 

manner that allows correspondence with the circuit elements- The resistor in the circuit is 

the resistance (expressed through the drag coefficients of the ions) the "dipoles" must 

experience while moving through the medium. W e  the capacitance is the capacity of 

the "'dipoles" to store charge, a property related to the ability of the 'cdipoles" to align 

themselves with the field. The capacitance lends an explicit fkquency-dependent 

character to the circuit. 

For pure ac stimulation, during a complete cycle both electrodes (assumed to be 

identical) experience symmetrical screening fkom both the positive and negative ends of 

the "dipoles" (cf. Figure 13). More realistically, however, there is some dc bias present 

across the electrodes, generated by either the contact potentials for electrodes of different 



Plgure 1.5 - A schematic drawing, and expression for the impedance, of a resistor and a capacitor in series. 



materials, or some external battery connected to the circuit This dc bias breaks the 

symmetry between the electrodes by creating chemically distinct static double layers 

superposed upon the symmetric dynamic double layer formed by the ac field Chapters 5 

and 6 describe the symmetry breaking in detail, extending the physical interpretations of 

the double layer behaviour from the governing system of equations. 

The ''rigid d.ip~le'~P~electrical circuit" model provides a qualitative description of 

electrode polarization. From an experimental point of view, what is needed is a 

quantitative, predictive mathematical model. Gouy (3), Grahame (4), Chapman (S), Stem 

(6), Debye Hfickel (7) and others developed such a model for dc systems, but new 

methods are required for the most general case: a dc bias offsetting an ac-applied 

potential. The next section will be devoted to highlighting some of the recent work done 

in search of a generalised mathematical description of electrode polarizatio~~ 

1.2 Mathematical Models 

There has been much work done over the past hundred years directed toward 

explaining electrode polarization. The approaches can be loosely divided into two groups: 

those using empirical methods to fit the data and those building &om fimdamental 

principles to generate functions that predict the data. 

The empirical camp has met with great success in the study of general dielectrics (8), 

aqueous dielectrics (9), and the dielectric response of biological membranes. The reader 



is refmed to the reviews by Geddes (LO) and Schmukler (11) for a more detailed 

historical ovemiew of empirical polarization models. A brief highlight of some o f  the 

earlier work will be given nonetheless. 

In brie-f; by postdating di&ion driven processes and examining early polarization 

data, Warburg (12) suggested that the frequency dependence of the resistance and the 

capacitance of an ionic dielectric are equal. Both decaying as the reciprocal of the square 

root of the angular Equency, o (a = 2~ f is the field frequency), of the applied field, 

leading to an expression for the complex permittivity of the medium, E' (o) : 

Later, Fricke (13), using data over a broader frequency range, modified Warburg's 

formulation to a more general equation, abandoning the exponent 0.5. In Fricke's 

formulation the capacitance and resistance are not equal, but related to the freqyency 

through a constant rn, such that the permittivity is given by the following: 

Where, 



Schwan (14) and Onaral (15) have extended the work of Warburg and Fricke by 

suggesting that the parameter rn is itself a fimction of frequency, so that: 

where 7 isthe relaxation time of the ionic dielectric. 

Schwan's permittivity equation was recently derived in a more formal manner by 

Sun, ChareE, Tsao, and Onaral (16) as a cascade of poles and singularities, allowing m 

and T to be empirically calculated within some prescriied error. Yet, for all this 

parameterisation, the hdamental physical processes underlying electrode polanization 

have eluded both experimentalists and theoreticians. Nevertheless, experimentalists have 

remained optimistic that the physical processes will be finally elucidated- To quote Sun et 

al- (16), ". . .succinct mathematical descriptions are.. .worthwhile in organising and 

streamhing experimental data even in the absence of physical interpretation_ Moreover, 

they often hold the potential to yield physical insight at a later time and, in this capacity, 

have predictive value on their own, especially when parameters are reprodutibly and 

strongly W e d  with experimental variables. " 



One of the drawbacks of the empirical approach is that the investigator must postulate 

a fimction to fit the data. The subsequent conciusions are largely detexmined by this 

choice. Classical molecular ionic-dielectric theory predicts a continuous distriiution of 

relaxation times arising f?om stochastic phenomena at the molecular level. Indeed various 

authors have made a variety of empirical choices for the distribution functions and these 

choices characterise the tastes of the individual working in the field (17). Typically, these 

functions result in a distribution of relaxation times about a single mean relaxation time. 

Although the behaviour of homogeneous molecular dielectrics can be modelled as single 

relaxation processes, there is no guarantee that ionic dielectrics can be modelled in this 

fashion. In fact, f h m  consideration of the chemical potential asymmetry in the system, a 

single relaxation model seems altogether inappropriate for describing aqueous ionic 

dielectrics. Theoretical models, based on the balance of forces operating on the ions, have 

begun to provide clearer insight into the relaxation process itser, sugges~g that for a 

symmetric elecbolyte, the data be fit to a dispersion about two relaxation times. . 

In the force balance models, the ionic drift velocity is attributed to a balance of 

electrical and thermodynamic forces. The electrical force, resulting fkom both the applied 

ac field and a dc bias is expressed as the gradient of an eleclrical potential. The 

thermodynamic force, resulting from ionic concentration profiles in solution is expressed ' 

as the gradient of a chemical potential. The resuiting equations, when linearized in the 

applied field, generate a system of second-order differential equations. These equations 

can not be solved analytically at the present. Several workers have attempted to 

approximate the solutions of these equations. To the extent that the system can be solved 



numerically, the behaviour can be simulated. To the extent that numerical solutions are 

replaced by analytic functions, the system can be modeIIed. Ideally, it is the modelling 

approach that allows an understanding of the fundamental physical principles governing 

eIectrode polarization 

DeLacey and White (18) developed the first general model. Using a matrix 

diagonalization technique, they were able to derive an analytic expression for the 

electrical potential in the double layer under pure ac conditions. However, their analysis 

required a numerical algorithm to simdate the inclusion of a dc bias. 

Gunning, Chan and White (19) used a low-frequency perturbation method (similar to 

Newman (20) in the pure dc case) to incorporate the effect of the dc bias. The analysis 

promises a completely analytical solution to the general system of equations, but is 

restricted to the low fkequency domain. Furthermore, the equations are hard to interpret, 

and difficult to implement. 

Scott, Paul, and Kaler (2 I), building on the analytic results of DeLacey and White, 

have used a variational theorem to incorporate the effect of the dc bias. The variational 

approach has the advantage of being completely analytic for typical experimental ' 

conditions and, by making a suitable choice for the trial fbnctions, a close contact with 

the physical processes can be maintained. 



The analytic solutions afforded by the variational method suggest that the time- 

averaged permittivity of the medium will show multiple discrete relaxation times, and not 

a cantimous dispersion about a single mean relaxation time: 

1 3  Summary 

In the absence of electrochemical reactions, the interface between electronic and ionic 

conductors still exhibits complicated behaviour. In particular, electrode polarization, a 

process descriiing the potential drop across the double layer, has been the subject of  

vigorous experimental and theoretical investigation. It is the goal of this investigation to 

approximately solve the governing system of differential equations (Chapter 2) using a 

variational theorem (Chapter 4), then apply these results to uncover hitherto obscured 

aspects of electrode polarization, including a general elucidation of the relaxation 

behaviour of ionic dielectrics (Chapter 6).  



Chapter 2 

Basic Model and Governing Equations 

In the present d s i s  considers a general electrode constructed fkom a planar 

supporting sheet of an insulating substance on one d a c e  of which has been micro- 

machined a system of conducting strips. The geometry of the strips is arbitrary, and may 

comply with several existing forms that have been descnibed in literature (22, 23, 24), 

which include parall;l strips, concentric rings or simply a homogeneous conducting 

coating (Figure 2.1). If the field exists in a regionfiee of ions, then it is assumed that the 

electrical potential distribution Y (x,  y, z, t )  is of the form: 

Where x , y and z are spatial co-ordinates (Figure 22) ,  and t is a time variable. V is the 

amplitude of the applied potential, alternating with angular frequency u The geometry of 

the potential distribution on the d a c e  of the electrode, and the bulk solution, is 

represented by the dimensionless differentiable function g (x,  y, I) - 



Parallel Strips Concentric Rings Homogeneous Plate 

\conducting ( 
"Strips" 

Insulating 
Support 

Figure 2.1 - Examples of various pIanar electrode array geometries. 



Figure 2 2  - The co-ordinate system. 



Most dielectrophoresis, electrorotation, and electrophoresis experiments are 

performed in an ionic medium. A flux will develop due to the applied field, carrying the 

ions to the electrode surface. These ions will create a double layer, screening the 

electrode from the object under experimental study. Thus, the potential will no longer be 

given by eq. [2- 11. A completely general exposition of the effects of the doubIe layer is 

difficult; investigation is therefore focused on a simplified model made with the 

following assumptions: 

1. In the presence of ions in the medium, the potential far from the electrode can be 

expressed by the same mathematical form as eq-[2.1], but with a modified constant, 

called the effective potential V&, that incorporates the role of the double layer, such 

that: 

V, is a complex quantity that will descriie the amplitude and the phase of the 

effective potential. The reason for the complex nature of V, lies in the fact that it is a 

quantity arising from the response of the ionic medium to an alternating field and 

such a response will display a phase that lags behind the excitation. 

2. During the formation of the double layer, the ionic flux will have components both 

normal and tangential to the electrode surface. The present model will only consider 



the n o d  component, enabling the use of a one-dimensional system of equations. In 

view of this approximation, and to keep the appearance of the equations as simple as 

possible, -licit display of the variables y andz will be suppressed 

To determine the extent of screening of the electrode by the electrolyte, a 

dimensionless function y ( x )  is calculated to describe the attenuation of the electrical 

potential by the double layer. The model is constructed by deriving the Poisson's 

equation for y(r) in terms of the ionic density nj (x , t ) ,  and using the equation of 

continuity to determine n (x, t) . The present analysis will be restricted to systems with a 

small-applied potentid V, so that all equations will be linear in V. 

Furthermore, when discussing the ionic density, force or velocity, it is important to 

bear in mind that these are ensemble-averaged quantities. For example, the ionic density 

of the jth species at some point in space and time is the average density calculated if one 

observes that particular point for a very large ensemble of identical systems. 



2.1 The Mathematical Model 

In solution, the motion of ions is mediated by forces arising £kom an unequal 

distri'bution of electrochemical potential throughout the system. Formally, the force of 

motion, F,, , is the negative gradient of the electrochemical potentiaI, pj : 

(Note that although the chemical potential is a general function of x, y, and r, since the 

tangential ionic flux is neglected, the gradient will be treated as a total derivative in one 

dimension.) The electrochemical potential of one mole of species j is: 

Where p; is the chemical potential of an ideal reference state, R is the gas constant, T is 

the absolute temperature, nj is the ionic density of the jih species, NA is Avagadro's 

number, 3 is the valence (including sign) of the$ ionic species, F is Faraday's constant 

and Y is the electrical potential of the system. 

The force acting on an average ion of the$ species is: 



This motion is opposed by a Ectional force, F f i ,  related to the velocity of the ion, vj, 

- 
and the ionic mobility in solution, quantified by the viscous drag coefficient kj, 

Under steady state conditions, ignoring transient effects, the forces balance to yield: 

It is usefbl to redefine the average velocity, in a manner similar to that introduced by 

DeLacey and White (18), as the -pdient of a velocitypotential 8 j .  



Hgure 2 3  - The forces acting on an ion m solution. The ions move due to a motive force, , that is the 
negative gradient of the electrochemical potential. This motion is resisted by a frictional force, , that is 
proportional to the negative gradient of the velocity potential. 



From eq. [2.6], the velocity potential is related to the force of friction, and can 

therefore be v i d s e d  as the energy lost due to fiction when an ion of species j is 

brought to the point x with velocity vj (Figure 23). 

With the substitution of the velocity in terms of the velocity potential, eq. [2.7] is 

formally integrated to determine the ionic density, q: 

This may be interpreted as a Boltzmann distribution, where the energy of an ion of thel& 

species at each point in space and time is r , e ( ~  (x, t)- 5 (x, t)). 

Far fiom the electrode, the random thennal forces in the bulk region wi l l  supersede 

the organising influence of the electrostatic forces, and the ionic density will approach the 

bulk value n;. To define precisely what is meant by the bulk region, an imaginary 

grounded plate is placed halfway between the electrode and its minor image, at a 

distance L fkom the surface (Figure 2.4). Then, 

0 Lirn n (x, t)= n , 
x+L 



Distance from the EIectrode Surface, x 

F'igure 2.4 - The electrical potential distribution in the solution. Though the bulk electrical potential, YB, is 
present throughout, the double layer electrical potentid, Vy; falls off very rapidly close to the surface. The 
area surrounding the imaginary ground pIate at L is called the bulk region. 



As previously mentioned, in an ionic medium the bulk potentid Y,  (x) for a planar 

electrode system is given by: 

The corresponding field will be: 

dg (4 Ed (x) = -v- - 
a5 

The parameter Ed is called the effective farfield, and it is the actual field experienced in 

the bulk region due to the potential applied across the electrodes. The screening of the 

electrodes by the double layer attenuates the applied field, while the dynamics of the 

double layer lends distinct ficequency dependence to this attenuation. In general,-then, the 

effective far field will also be a complex quantity, and will have magnitude and 

fkequency behaviour different fiom that of the applied field due to the iduence of the 

double layer. 

Owing to the applicability of the principle of superposition, the two potentials, 

Y (x, t )  and $ (x, t )  , can be fuaher resolved (25). The electrical potential Y (x, r )  is a 

linear combination of two parts, called the equilibrium and the steudy-state potentials. 

The iirst part, the equilibrium potential Y ' (x )  , is a dc potential distribution that exists in 

the absence of the applied ac potential, and Y * (n) satisfies Poisson's equation: 



Where E, is the permittivity of the medium, and n9 (x) is the equiZibrium ion density 

Furthenno re, 

yo (o)= < [2- 161 

where ( is sometimes called the  eta potential by investigators of electrode polarization. 

The zeta potential represents the dc bias between the electrodes in the absence of the 

applied ac potential. 

The second part of ~ ( x ,  t) is a time-dependent perturbation W(x, t) that comes 

about when the system reaches steady state under the influence of the applied ac field It 

is composed of the electrical potential attenuation in the double layer V V ( X ) ,  and the 

bulk electrical potential YB (x). Thus ( x )  is written explicitly as a hear 

superposition of the equilibrium and steady states (Figure 2.4): 



The velocity potential 5 (& r )  is written in a manner analogous to eq. [2.17]: 

In the absence of the applied field the average velocity must vanish, so the time- 

independent component of the velocity potential, &; (x) ,  is set to zero. The velocity 

potential is written as a sum of the velocity potential within the double layer V@j ( x )  , and 

the bulk electrical potential Y, (x): 

(The introduction of Y, in 5 allows the ionic density nj (x,  t ) , as defined in eq. [2.9], 

to become equal to n; at L.) 

Implicit in the definition of these functions is the assumption that the temporal 

dependence is completely captured by the oscillating exponential @"I, and the potentials 

Y O ,  YB , ly , and #, are functions of position only 



Defining a position-dependent reciprocal Debye screening length b c t i o n  due to the 

Jh - 
j lorn: 

47re2 
bj (x) = -z:nj" ( x )  

E , ~ T  

and retaining terms to first order in V,  Poisson's equation for ~ ( x )  , for N types of ions, is 

At the surface of the electrode, the time-dependent perturbation must be the applied 

potential. Therefore, 

It follows f?om eqs. [2.17] and [2.22], 

Furthermore, fiom eq. [2.1 I], 



The differential equation for ~ ( x )  contains the velociv potential, so an equation 

describing @, ( x )  must be derived before y ( x )  is characterised completely. Starting 

h m  the continuity equation for each ionic species: 

Linearizing eq. [2.9] in V,  the ionic density is given by: 

Substituting eq. [2.26] in eq. [2.25], along with the following definitions: 

a second-order differential equation for #, (x) follows: 



The d a c e  boundary condition is detemined formally by assuring that ions cannot 

penetrate the d a c e  of the electrode, leading to a reff ective boundary condition: 

d -  
Lim-a,  (x,t )  = O  
x" dx 

Combining eq. [2.3 01 with eq. [2.19], 

Furthermore, far from the electrode surface eq. [2.11] requires: 

It remains, now, to solve eqs. [2.2 11 and [2.28] for y and Qlj, subject to their respective 

boundary conditions. Unfortunately, there is currently no method for solving this system 

of equations exactly, so approximate solutions are all that is available. Some of the 

methods employed to solve these, or related systems, will be examined in Chapter 3, 

providing motivation for the present inquiry and context for the results presented in 

Chapter 4. 



Chapter 3 

Methods of Approximation 

We are now in a W c u l t  position: the mathematical model that has been developed 

gives rise to a system of differential equations that carmot be anaIytically solved by any 

known methods. The source of this insolubility is twofold Firsf the coefficients in the 

equations are non-autonomous. That is to say, the coefficients are themselves functions of 

the variable of differentiation (in this case, the position variable x). Typidy ,  the 

solutions to non-autonomous differential equations are not easily found. 

Second, the differential equations are coupled, so that the differential equation 

characterising one function depends on the solution of a subsequent equation, and vice 

versa This interrelation necessitates that the differential equations be solved 

simultaneourly, which is often difficult. The two complicating features presented above 

prohibit the derivation of analytic solutions with cmently available techniques. It will 

turn ouf however, that both of these restrictive features are eliminated if the 5 potential is 

neglected, thereby rendering the system of differential equations autonomous, separable, 

and exactly solvable. Nevertheless, neglect of the 6 potential is done at the expense of 

very interesting physical features that are discussed in Chapters 5 , 6  and 7. 

Given that we cannot expect to h d  the exact solutions of the system of differential 

equations, we must seek approximate solutions instead There are many methods of 



approximation available, and the choice of method will often determine the range of 

applicability of the solutions. Furthennore, not all methods can be used on all differential 

equations. Indeed, the general form of the differential equation will often suggest the 

method of approximation to be employed, or, conversely, the fonn of the differential 

equation may be transformed to accommodate a particular method of approximation. 

Table 3.1 outlines some of the more common approximation methods that will be 

discussed in this Chapter. 

Table 3.1 - Cornparkon of Approximation Methods 

r 

Numerical 

Methods 

Pertur bstion 

Methods 

Disadvantages 

Numerical output 

provides limited 

insight into the 

intrinsic behaviour. 

May also be time 

consuming and 

computationalLy 

intensive. 

The series may not 

converge rapidly 

enough. 

 main Idea 

Wide range of 

choices available, 

but generally the 

equations are 

solved point by 

point along some 

suitable grid, 

The solution is 

expressed as a 

power series in a 

small parameter. 

Advantages 

Often yields nearly 

exact solutions 

without trouble- 

some simplifj.ing 

assumptions. 

Sometimes leads to 

very accurate 

soIutions, with a 

mirimurn of corn- 

putational effort 



-- 

Iterative Methods 

Variational 

Methods 

The differential 

equation is recast as 

an integral. A trial 

solution of the 

integral is 

repeatedly iterated 

until the trial 

estimate converges 

to 'the exact 

so iution. 

Analogous to 

geometrical optimi- 

sation - a solution 

is found In bc t ion  

space based on the 

stationary point of a 

suitable functional. 

1 Similar to pertur- 

bation methods, il 

the process con- 

verges quickly. 

Iteration can 

generate accurate 

solutions. 

Rapidly produces 

often semi-andytic 

hc t ions  that do 

not suffer fiom the 

convergence pro- 

blems of alternate 

techniques. 

The iteration may 

not converge, 

solution depends 

VerY intimately 

upon the choice of 

trial fimction used I 
to restrict function 

space. I 

3.1 Numerical Method 

The most common approach, by far, is the so-called numerical method. In fact, to an 

extent, all the other methods of approximation generally include some aspects that 

require numerical evaluation. Numerical methods, insofar as they return tabular or 



graphical representations of the solution functions, are difficult to interpret in general. 

That is, numerical methods can show how a system behaves, but not why it might behave 

that way. Another way of saying this is that to the extent that a system can be solved 

numerically, it can be simulated; to the extent that a system can be solved analytically, it 

can be modelled Analytic solution hct ions  are often more tangiile, allowing much 

deeper interpretation to be made. The god, then, of any analysis of a system described by 

an insoluble set of equations is to generate approximations with a minimum of numerical 

parameters, 

In the pioneering work of DeLacey and White (18) the dc 6 potential is initially set 

equal to zero, and the governing system of autonomous equations is written in a matrix 

form, that can be solved via a diagonalization method. 

When the dc potential, 5, is set equal to zero, the equations become autonomous: 

Rewriting the solutions as a vector: 



The differential equations in matrix fonn become: 

Further, by d e h i n g  

With, the matrix - Rchosen such, that the system of differential equations are - 

diagonalized, the set of eigenfiuctions {zo , r, , r, , . . . , z, ) satisfy the de-coupled 

equations 



Here, a - is a diagonal matrix of eigenvalues. The components of the vector I will be - 

called the n o d  modes. Detailed discussion of the normal modes will be resenred for 

Chapter 4. 

The complete solution is a linear combination of the normal modes: 

9l (x) = C, R,, cKX +c, q3 efix 13-83 

92 (x) = C, % cGx +c, &A efiX ~3-91 

~ ( x )  = Cl R3, cKS+C2 R3, efix C3.101 

where C, and C2 are &own integration constants determined by the boundary 

conditions. It should be noted that the analysis by DeLacey and Whites as it stands in 

(1 8) uses unphysical boundary conditions, marring the results derived therein, Namely, 

their bulk potential diverges at large x, and x is unbound Placing the ground plate at L 

suitably rectifies the boundary conditions. 

To incorporate the effect of the dc potential, DeLacey and White resort to a purely 

numerical scheme, solving the equation set point by point. They argue that outside the 

double layer, since the equilibrium potential YO (x) , and hence the effects of the 



potential, vanish, the solutions as represented by the above normal modes are adequate. 

Within the double layer, however, they resort to a numerical method of solution, 

It may be helpful at this point to suggest why the 5 potential is so important that so 

much trouble is taken to include its effect in the model. Firstiy, from a strictly theoretical 

point of view, the inclusion of the dc bias brings to the forefront effects that are not seen 

in either the dc or ac cases done. As will be discussed in Chapter 5, the dc bias serves to 

break the symmetry of the oscillating ac double layer via chemical potential barriers at 

the electrode surface. 

Secondly, from a more practical point of view, it may be necessary to model the 

behaviour of an electrode system operating in the presence of some galvanic process 

occurring at the electrode surface, generating non-zero dc biases. As electrode systems 

become smaller and smaller due to micro-machined arrays and lab-on-a-chip type 

technologies, there will be a corresponding decrease in the applied potentids necessary to 

generate useful electric fields. For such systems, even small dc biases will be of 

comparable magnitude to the applied potential, and conespondingly complicate the 

system. 

3.2 Pertuxbation Method 

It would be difficult to overestimate the utility of perturbation methods in 

approximating solutions for a particular type of differential equations. Perturbation 



methods reIy on the existence of a small parameter in the differential equation (26, 27). 

Consider the following second-order Merentid equation, 

where E is a m a l l  (E c 1), positive, unitless parameta. To compute a perturbation 

solution of eq. [3.11], the h c t i o n  y ( x )  is assumed to be a power series in E. 

When the power series is substituted into the original differential equation, eq. [3.11], at 

each power of E, a far simpler set of differential equations is obtained. 



It is a general feature of perturbation expansions that the solution at some early stage 

reappears at higher powers of E, i.e. y, (y,,-,). Notice, too, that in this example instead of 

having to solve a second-order differential equation, by assuming a power saies in E, a 

family of first-order differential equations is solved up to some arbitmy power of E This 

is a decidedly simpler task, and lends general appeal to the perturbation method. 

Nevertheless, at higher powers of E, the solutions become increasingly more 

cumbersome, so that perturbation expansions are only practical for rapidly converging 

series (E c< 1). Thus, perturbation solutions are inherentLy restricted to those conditions 

that ensure rapid convergence of the expansion. 

Gunning, Chan and White (1 9), in an approach similar to Newman (20), compare the 

two disparate length parameters that are implicitly present in the governing differential 

equations: q the reciprocal Debye length, and 3, the typical m i o n  length. Taking a 

quotient of the two, they develop a unitless perturbation parameter, called 6 , that is small 

for large concenhations and low Eequency: 

The system of merentid eqyations are recast in terms of the perturbation parameter, 

then panubation expansions are developed for regions close to the electrode surface, and 

for regions far from the surface. The two families of differential equations are solved up 



to some &own integration constants. The constants are then determined by 'knatching 

the solutions in an intmediate regioa 

Unfortunately, the solutions of the perturbation equations are not trivial. In fact, the 

anaIysis contains so many numerical integrals and complicated arguments that the 

solutions are largely incornprehensiile. Moreover, Gunning, Chan and White use the 

same unphysical boundary conditions discussed in the previous section. 

3.3 Kterative Method 

If a convenient integral form of the differential equations can be found, then iterative 

methods can typically be used to find estimations of the exact solutions- As an example, 

consider the approach used by Yoon (28) to solve the non-linear Poisson-Boltzmann 

equation, 

The non-hear Poisson-Boltzmann equation for the electrical potential Y? in a 

spherical-polar co-ordinate h e  is: 

where v2 is the polar gradient operator, under pafect rotational symmetry, and r is the 

radiaI distance from the origin, 



extending over the domain a 5 r c - , with a as the radius of the electrode. 

where K is the reciprocal Deb ye thickness: 

the Poisson-BoltPnann equation can be rewritten in terms of the functional H [Y] , 

As the potential becomes small, Y + 0 ,  and only the linear term in the exponential is 

retained, the functional H [ Y ]  -t 0, and eq. p.191 becomes the linear Poisson- 

Boltzmann equation solved by Debye and Hiickel, 



When H [ Y ]  is not zero, no analytic solution to the Poisson-BoItanann equation is 

available. Converting the differentid equation into an integral equation, Yoon uses an 

iterative method to approximate the solution. Green's hctions provide an elegant and 

expedient method for converting a differential equation to the analogous integral equation 

(Appendix I). 

Using Green's functions, the integral representation of the h c t i o n  Y is: 

Y ( r )  = - j d ~  ( r ' ) ~ [ y ] ~ ( I r - r l )  
v 

Where G (lr - r l )  is the Green's h c t i o n  of eq. [3.19], given by: 

The expression simplifies to: 



Rewritten as: 

Where, 

Here, Y, is simply the Debye-Hiickel solution of the linearized Poissan-Boltzmann 

equations. The function K (s, r) is called the kernel of the integral equation. It is the size 

of the kernel that ultimately determines the convergence properties o f  the iterative 

expansion. 

The idea behind iterative expansions is that Y, is known, and yet the potential - 

under the integral sign remains unknown. One could replace the d o w n  potential by 

YDH to get a rough estimate of the unknown potential. This rough estimate could be 

M e r  refined by subsequently replacing the unknown potential by the rough estimate, 

and so on. If the kernel is convergent, then after a h i t e  number of steps, estimations of 



this type can be brought arbitrarily close to exact solution of the integral equation, A 

schematic of this process appears below: 

For our system, there is no guarantee that the kernel of our analogous integral 

equations would be convergent. More importantly, the integrals generated in this fashion 

can rarely be solved analytically, so this approach basically amounts to a numerical 

scheme, and thus falls prey to all the limitations of such methods. Namely, the solutions 

lack a generalised "feel"; it is very difficult to interpret the results and make any broad 

conclusions, 

3.4 Variational Method 

Another alternative that can be used for many differential equations is the variational 

method. This method has not been used extensively in electrochemistry, although a 



general discussion can be found in most advanced books on mathematical methods in 

physics, such as the well hewn book by Morse and Feshbach (29). 

The heart of variational analysis lies in constructing a kctional and relating the 

stationary points of this hctional to the desired solution of a differential equation, A 

functional i [ v ]  is defined as a quantity that depends upon some function v ( x ) .  A 

f'unctional is simply a k c t i o n  of a kction.  In our case, we wiu consider an integral 

dependence of 1 on v ( x )  . For example: 

Here, a and b are the limits of the variable x and F [v ( x ) ]  is a hctional of v ( x ) .  Like 

ordinary fimctions, hctionals too, can be differentiated (see Appendix 2). The utility of 

hctionals as a means of solving differential equations comes &om the fact that many 

differential equations can be derived fkom well-defined fimctionals through h c t i o d  

differentiation. 

Consider a differential equation, 

&u ( x )  = 0 



where d is a general differential operator, and u ( x )  is the &own fimction we seek 

A hctional  i [ v ]  is constructed so that when the hctional derivative of i [ v ]  is 

evaluated and set to zero, the resulting equation is the original differential equation: 

This implies that v ( x )  = u ( x )  is a stationary (minimum or maximum) point of the 

functional. The problem of finding a solution to the differential equation now becomes 

one of locating a function v ( x )  that yields a stationary point of the hctional i [ v ] .  In 

practice, it is necessary to limit ones search for a minhkhg function by devising a trial 

function with a certain number of free parameters. The stationary point is then found by 

differentiating with respect to these parameters, setting the result equal to zero and 

solving this set of simultaneous equations. The hc t ion  v ( x )  thus computed is taken to 

be the best variational approximation to the solution u ( x ) .  The advantage of these 

variational solutions is that often the form of the trial hctions can be made such that the 

variational parameters can be given physical meaning, even if they must be determined 

numerically. There are several approaches to a variational solution that are possible for 

the model described in Chapter 2. The first is the least direct, and relies on calculating a 

variational approximation of the Green's b c t i o n  for the operator based on Dyson's 

equation. 



Dyson's equation is a method used in particle physics to obtain variational estimates 

of the Green's h c t i o n  for a given system (see Appendix 1 for more details). For the 

general differential equation 

&u ( x )  = f (x) 

the Green's hc t ion  G (5 x') i s  related to the particular solution of u ( x )  by the integral 

u ( x )  = Idx'~ (x ,  x') f (x') 

where f (x) is called the forcing function. 

For the differential operator .d, the Green's h c t i o n  is defined as: 

PG (x, x') = 6 ( x  - x') [3.32] - 

If the operator can be separated into two parts, the first related to a known Grew's 

hction, and a second part whose contniution to the Green's function is unknown, then 



Dyson's equation can be used to estimate the complete Green's firnction. The operator 

& is thus partitioned: 

where the operator 9 is associated with the known zero-order Green's function 

GO (x, x') . 

Via Dyson's equation, the exact Green's function, G(x, x') , that is associated with 

the full operator .& , can be related to the zero-order Green's fimction GO (x, x') through 

an integral equation that includes the operator & : 

G (x,  x') = GO (x,  x') - dxmGO (n, x") & '(x') G (x", r') 

Clearly, this integral equation has a kemel K (x, xN) given by: 

K (x, x') = GO (x, xa) .,& '(x7 

So i f  K(x, xu) is suitably behaved, then the iterative approach presented in the 

pre~ous  section would be appropriate. Nevertheless, the convergence of K (x, xR) cannot 

be guaranteed in general. It is possible, however, to re-write Dyson's equation a s  a 



h c t i o n d  G~ that obeys a variational theorem describing the optimal estimate of the 

Green's function corresponding to the exact solution. In the functional, the unlmown 

Green's function is replaced by a trial Green's function. By minimizing the variational 

fiulctional with respect to the trial function, an optimal estimate of the exact Green's 

function may be found. That is, at the stationary point of the fimctional, with respect to 

the trial hc t ion ,  the trial function is equaI to the exact Green's fimction: 

6~~ - = 0 Gf (x, x') = G (x, xr ) 
6Gf 

The trouble with this method is that it i s  indirect and cumbersome, We are interested 

in the solution of the differential equations, so the variational Green's hc t i ons  must still 

be integrated to achieve that end. These integrations are not easily done, making the 

e-ction of the solutions &om the Green's functions difficult, 

Moreover, Green's fimctions are most convenient if solutions are sought for a large 

family of forcing functions f ( x )  , so that once the Green's functions for the operator are 

known, the forcing functions can be integrated along with the Green's ~ c t i o n s  to obtain 

the complete solution. In our system, the forcing function is known, so the generality of 

the Green's function becomes more of a liability than an asset. Fortunately, more direct 

variational methods are available. 



3.4.2 Direct Variational Approach 

The Dyson equation is needlessly unwieldy for our particular application, but we can 

develop a set of coupled functionals directly &om our system of differential equations, 

without having to resort to Green's functions. 

In fomdating the functional, the M-order derivatives cause serious difficulties and 

must be eliminated from the operators, which amounts to making the operators on y and 

self-adjoint. To that end, a substitution for qij is made (see Chapter 4): 

@j ((x) = e x j  (x) 

where X, is now the unlmown function, and the operator on xj  is self-adjoint 

The system of functionals, that upon functional differentiation with respect to  and 

xj lead back to the differential equations themselves, is: 



As in the case of the variational functional derived fiom Dyson's equation, the 

unknown hct ions  are replaced by trial functions, and the stationary points of the 

fimctional found with respect to these trial functions. These integrals cannot be evaluated 

symbolically, however, so numerical minimization of the hctionals with respect to the 

trial functions is quite a task: the variational trial functions are complex, so it is 

essentially a numerical optimisation in two dimensions over a grid of unknown size. 

Furthermore, to keep the problem tractable, the trial hctions must be necessarily 

vague since nothing is known of the solution to the differential equations in this form, If 

the Werehtial equations, and therefore the fimctionals, can be recast in the matrix form 

suggested by DeLacey and White, discussed in the numerical section of this Chapter, 

then the known homogeneous solutions can be used as lrial functions. 

3.4.3 Normal-Mode Van'ational Approach 

DeLacey and White have solved the system of differential equations in the absence of 

a dc bias. These solutions, although incorrect as far as the full system of equations is 

concerned, do indeed capture some of the physics and chemistry of the latter. 

Consequently, it is convenient to adopt the forms of these functions as trial solutions in 

which the parameters are variationally calculated fiom the exact system of Lagrangians. 



This improved approach seeks the approximate solutions directly, rather than with the 

Green's function, making use o f  all the information that is available through the normal 

modes. Variational correction o f  the normal modes is the subject of the next Chapter. 



Chapter 4 

Variational Analysis of the Normal Modes 

The system of differential equations presented at the end of Chapter 2: 

can not be analytically solved. h this Chapter, approximate solutions of eqs. 14-11 and 

[4.2] are sought via a variational method- To that end, a system of hctionals, called 

Lagrangians, are found, such that the stationary points of these Lagrangians are the exact 

solutions of the original system of differential equations. The details of the development 

of the Lagrangians, as well as the development of the trial functions used to approximate 

their stationary points, will be discussed at length throughout this Chapter. 

From eq. [4.3], it is evident that the operator 4 ( x )  contains a &-order derivative, 

gJ (x). Unfortunately, it is not possible to find a Lagrangian fkom which such an 

equation can be derived by the variational method to be discussed. The £irst-order 



derivative is removed £kom the operator by making the following substitution for 

#j (x) ( A P P ~ ~ ~ X  3): 

with 

where xj is the new unknown function, and the operator on xi is self-adjoint (30). 

With eq. [4.4], the original system of differential equations becomes 

Where: 



When p = 0, that is, in the absence of the potential (c.f eq. [4-S]), these equations 

collapse to a far more simple system that describes the purely dynamic characteristics of 

the double layer: 

In fact, as was briefly discussed in the numerical section of Chapter 3, these equations 

can be decoupled and solved exactly via a matrix diagonalization method proposed by 

DeLacey and White (18). In the next section, their diagonalization method will be 

described in more detail, and the r e d &  extend, using a variational theorem, to include 

the effects of  an arbitrarily large 6 potential. 



4.1 The Normal-Modes 

Adopting a matrix-vector formalism, the functions xi and I,U are replaced by the 

vector : 

Further, the vector 2 is defined by: 

Here, the matrix R - diagonalizes the system, and the set of eigenfbctions 

{z, , z, , z, , . . . , 2,) satisfies the decoupled equations 

where - a is the diagonal matrix of eigenvalues. The components of the vector 2 are - 

called the normal modes. 



Rearranging the exact differential equations [4.1] and [4.2] in forms that would 

explicitly lead to eqs. 14-12] and [4.13] when p, = 0, by addition and subtraction of 

appropriate terms, yields: 

with 



where K is the reciprocal thickness of the Deb ye double layer. 

For a two-ion system (N = 21, eqs. [4.171 and [4.18] become a system of three 

equations: 

Using a mae-vector formulation, these three equations can be expressed compactly 

as: 



With the eigenvalues of A : 

and the matrix - R : - 

Using eq. [4.15], eq. l4.281 becomes: 

is: is: 1 
- 

is; is: 
is: +a, is: +a, 



Multiplying  om the left by R -' : - - 

With 

Eq. E4.371 produces three equations: 



The off-diagonal elements of the matrix Q represent the coupling, under the 
- - 

influence of the potential, of the n o d  modes (mode-mode coupling), while the 

diagonal elements are coupling of each mode with itself(se1f-coupling). 

4.2 The Variational Functionah 

With the non-constant Q and D coefficients, the differential equations become non- 

autonomous, ensuring that they cannot be solved analytically, so eqs. [4.4 11, r4.421, and 

14-43] are converted into coupled Lagrangians: 

The Lagrangians are constructed so that the stationary points of c4.441, [4.45], and 

[4.46] are exactly the diEerential equations [4.41], c4.421, and [4.43] (Appendix 2): 



The variational hctionals allow the problem to be shifted from that of solving the 

system of coupled differential equations to that of optimising the coupled Lagrangians 

(3 1)- 

We assume that the electrode is completely polarizable, meaning at zero frequency, 

the potential is completely screened by the double layer, and Eg = 0, where E& is the 

bulk field, far fiom the electrode. That is, we assume the electrode chamber behaves as a 

loss-less capacitor, with no current conducted across the interface (i.e- no electrochemical 

reactions). Thus, the constant normal mode z, is ignored, as is all of Lo . This 

assumption need not necessarily be true, and will not affect the predicted frequency 

dependence of the relaxation process. If one wishes to include the constant mode z, , then 

an additional set of boundary conditions will be reguired to characterise w and xj at 

zero frequency. 

Moreover, the D elements of the Lagrangian contain the effective potential, V&. The 

boundary conditions on x j  and y , too, contain V'& . If the so1utions are to be kept hear 

in V', then the boundary conditions forbid the inclusion of the D elements in the 

Lagrangians. 



The Lagrangians { L ~ ,  L, , L, ) become: 

To determine the stationary points of the system of Lagrangians, the final form of the 

solutions is assumed, and a parameter left undefined. The stationary points of the 

hctionals are then found with respect to this variational parameter. Nevertheless, the 

solutions are inevitably coloured by the choice of trial function, so it is essential that the 

choice be as close to the exact solution as one could imagine. For this analysis, the trial 

function is chosen as the DeLacey and White =0 solution, with an exponential 

variational cone~tion, aj: 

In practice, the trial function produces non-linearities in the variational parameter aj, 

therefore the Lagrangians must be linearized in aj to solve for that parameter. 



Having chosen the form of the hc t ions  to explore, the optimisation is no longer 

carried out with respect to the iimctions {r ,  , I, }, but rather with respect to the variational 

parameters {a, , a, }, found by solving the simultaneous equations: 

By the variational approach, the self and mode-mode coupling between the normal 

modes are accounted for without making any assumptions about mal l  c, or low 

fkequency. In fact, no simplifications have been made in the calculation of the variational 

parameters, except that all equations are Iinear in V, and the electrode is completely 

polarizable. 

With eq. [4.15], the general solution for y(x) is 

where C, , C, , and C. are unlmown integration constants determined fkom the boundary 

conditions. 



Collecting the trial fuactioas, eq. [4.52], together with eq. [4-5.551, taking z, = 0, 

From eq. [4.4], then, the complete variational solutions are: 

The eqs. [4.53] and [4.54] are sufficient to calculate the variational parameters over 

any range of eequency and potential, so that eqs. L4.591, [4.60], and [4.61], constitute 

optimal approximations of the exact solutions. In the next Chapter, some general physical 

comments are made about the Lagrangians, the variational parameters and the functions 

themselves. 



Chapter 5 

General Physical Comments on the Variational Solutions 

5.1 Connection between the Lagrangians and the Free-Energy of the System 

In literature (32, 331, it has been shown that the Lagrangian d e t e m h h g  y, with 

qjj = 0 ,  is related to the electrical f?ee energy of the system. The stationary characteristic 

of the Lagrangian at zero frequency is then related to the minimization of the electrostatic 

component of the Gree energy. Our functional representation, however, includes the effkct 

of Ection. This is an apparent contradiction, since by definition £kiction assumes a 

dissipative system, while the Lapngians suggest energy consemation. 

It seems reasonable to propose that the Lagrangians are related to the electrical f?ee 

energy and the fiee energy lost to fiction. In that way, the dissipative characteristics are 

contained within the Lagrangian, and the total energy is conserved, Thus, the stationary 

points of the system of Lagrangians physically correspond to the minimization of the 

total (electrical and 5ctional) fiee energy of the system. 



5.2 The Variational Parameters 

In Chapter 3, it was stated that fiom a modelling point of view, a closed, analytic 

solution set is prefened. With a minimum of numerical parameters, the hctions 

themselves can be investigated and physical properties inferred. The variational solutions 

derived in Chapter 4 still require numerical calculation of the variational parameters a1 

and a?. Yet, the advantage of the variational method is that even evaluated numerically, 

they hold some immediate physical interpretation. From the way the ~ a l  h c t i o n  was 

designed, the variational parameters are corrections to the reciprocal thickness of the 

double layer manifest through the electrical potential in that region. 

For typical dielectrophoretic experiments, the conductivity is kept very low, and no 

artificial dc bias is applied. Restricting investigation to a physically reasonable range of 

concentration ( ~ O ~ M  - lOM), frequency QIHz), and potential (<0.500V), the 

variational solutions become completely analytic. In this range, the fraction containing 

the variational parameter is always very small (Table 5.1): 

So that, 



justifying the linearization in aj and suggesting there is essentially no coupling between 

the normal modes due to the 6 potential. The complete solutions to the governing system 

of equations under these conditions become: 

At low fkequency, the variational parameter a, become comparable in magnitude to 

q , since that eigenvalue vanishes as o + 0 : 

Lima, = r2 
a.3-0 

Although the variational parameter a, ceases to be negligible compared to the 

eigenvdue q, the matrix coefficients R ,  and R,-, also vanish at low frequency, thus 

causing ej to vanish, regardless of the behaviom of the variational parameters. 

That is, since 



the matrix coefficients, will vanish: 

so too will e j :  

It is the disappearance of a, as w -+ 0 that necessitates the inclusion of the 

variational parameter a, at low Eequency. Table 5.1 shows typical values for the 

variational correction at 1 Hz; for fkequencies above 10 Hz, the eigenvalue a, is 
Ja, 

large enough that the correction can be dismissed. Since K~ is very large for al l  practical 

concentrations of electrolyte, a, can be neglected at all frequencies. 



T d f e  5.1 - The absolute values of the variational correction a, relative to the frequency 

dependent eigenvalue & as a fimction of the concentration of KCZ and the 5 potential, 

at a f?equency of o =LHz. For o 2 l O E k ,  the variational correction a, vanishes- The 

correction [A vanishes at aIZfiequencier, with KCl concentration >1 o4 M 

From the table, very high dc biases, along with Low concentrations, will require the 

1I1 calculation of the variational parameters. Nevertheless, for a typical dielectrophoretic 

experiment without an external dc bias, the < potential should be wfliciently low that the 

eqs. [5.3], [5.4], and [5.5] will suffice without amendment. 

The negligibility of the variational parameters occm independently of the boundary 

conditions and independently of the details of the function z )  that descriies the 

precise geometry of the field, since C, and C, are not invoked in the calculation of a! 

and a2- Consequently, for the electrical potential ly, the dc bias is predominantly a 



surface effect, having nothing to do with the spatial decay of the fimction itself. The 

constants C, and C, contain implicit 6 dependence h m  the boundary conditions, but 

they are completely detemined once those boundary conditions are hown. The 

calculation of the precise boundary conditions is not trivial, and a complete discussion is 

resemed for the following Chapter. 

53 Concentration Polarization 

The exponential pre-factor of $, contains some important physical implications. 

Recall kom Chapter 2 that the equilibrium ion density is given by: 

so that the pre-factor can be re-written in tams of ny 

Thus, the exponential that rendered the operator self-adjoint can be equivalently 

viewed as the ratio between the bulk ionic concentration and the concentration at some 

a r b i w  distance from the electrode. This phenomenon, described by the quotient of 

ionic densities, is called concentration polarization (2). 



It is this factor that accounts for the chemical effect of the static doubIe layer. The dc 

bias will attract a doubLe Iayer that is superposed upon the double layer produced by the 

applied ac potential, leading to an asymmetric disixiiution of chemical potential around 

the electrode surfaces (Figure 5.1)- 

The origin of the asymmetry produced by the dc bias lies in the distriiution of the 

charges due to the dc component. The ions influenced by it are shown in outlined 

symbols; the charges due to the ac field and the ions moved by it are shown in bold, If the 

dc bias is not very large, which is the most common situation encountered, then the dc 

charges on the electrodes will be completely neutralised by the outlined ions. Part of the 

assumption that the electrode is completely polarizable, discussed in Chapter 4, implies 

that there will always be  enough ions in solution to fully neutralise the dc potential. 

It might appear that with this charge neutralisation at both electrodes, the motion of 

the bold ions in an ac field would be the same, regardless of the dc field. That is not the 

case since a purely thennodynamic force will come into play. The electrodes with the K+ 

counter-ions will possess a higher chemical potential for K+ ions and hinder the arrival 

of  the bold K' ions. A similar situation arises with respect to the bold CZ- ions. The £kee 

energies of the system will be different during the two half cycles. On the average, the 

"dipoles" will take a longer time to relax to their steady states during the half cycle with 



No dc Bias: One Relaxation Time 

Higher Free Energy Lower Free bnergy 
Due to the diffusive forces arising 
from K-K and C1-Cl interactions, 
and not due to electrostatic effects 

dc Bias, Symmetric Salt: Two Relaxation Times 

Figure 5.1 - The chemical a m e t r y  of the electrodes due to the static double layer. a) In the absence of a 
dc bias, the dynamic double layer responds symmetrically like a charge dipole to the alternating applied 
field, shown in bold. b) When a dc bias is applied across the electrodes, shown in outline, the electrode 
surfaces attract static counter-ion clouds, dso shown in outline. Now the cycling dynamic double layer will 
respond differently depending on the direction of the alternating field due asymmetric chemical forces at the 
surface. 



the higher fkee energy barrier. At a macroscopic level, the time average spectrum will 

display two relaxation times (see Chapter 7). (Clearly the boId and outlined ions are used 

as illustrative features, and there is always some dynamic equili"brium between the two 
* 

types. In reality, the bold and outlined ions are indistinguishable.) 

Another way to imagine the situation is that although the alternating elemical force 

on the dipole is symmetric, through one half of the cycle, the ends must move up a 

concentration gradienf while through the other half cycle, they must move down. With 

the field in one direction, the motion of the dipole is hindered, while with the field in the 

other direction, the motion is aided by the chemical potential gradients at the electrode 

d a c e .  

5.4 Connection to the Debye-Hiickel Potential 

It is reassuring to note that when the frequency of the applied potential goes to zero, 

the Debye-Hiickel potential is recovered from the potential equations: 

With suitable boundary conditions ( C, = 0 , C, = < ), eq. [S. 131 is exactly the Debye- 

Eltickel potential. 



Chapter 6 

The Effective Potential and the Double Layer Impedance 

Typically, dielectrophoresis, electrorotation, and electrophoresis experiments involve 

an examination of particles that are located far &om the electrode surface. Consequently, 

knowledge of the electrical field in the bulk region is of fimdamentd importance, which, - 

in turn requires a computation of the effective potential, V& and the potential distriiution 

in the double layer (Figure 6.1). Much of the work presented in this Chapter will be 

appficable to the general electrodes described Chapter 2, while specific cdculations to 

illustrate some important features of electrode polarization will be done in Chapter 7. 

Using the variational potential functions derived in Chapter 4, along with an integral 

transformation of the mass conservation equation derived below, an expression for the 

effective potential is obtained. Furthennore, from the effective potential, important 

physical parameters, including the relaxation time and the complex permittivity of the 

ionic medium, can be calculated, 



Bulk 
Region 

Double 
Layer 

4 

Distance from the Electrode Surface, x 

Figure 6.1 - The impedance of the double layer produces a voltage drop between the electrode surf'ace and 
the bulk region If we are able m calculate the attenuation of the potential in the double layer, then we can 
calculate V f l  With Ye the potential far f?om the double layer is known. 



6.1 The Effective Potential, VM 

When considering both the static and dynamic characteristics of the double layer, it is 

essential to have a description of the ionic density, and the ionic velocity at any point in 

space and b e ,  for thej species in solution. The variational potential fimctions derived in 

Chapter 4 make that description possible explicitly- The reader is reminded that in 

Chapter 2, the assumption was made that the nonnal component of the flux is dominant 

and that the spatial variables y and z will not be explicitly displayed XJzk shorthand 

does not imply that the y and z variables are notpresent, for they play a very significant 

role in the boundary conditions ofinhomogeneous electrode arrays- 

From Chapter 2, the ionic density, nj (x, t )  , and the velocity, v, (x, t) , to first order in 

the applied potential V , of thel& species are written as: 

The equilibrium ionic density ng (x) ,  present in the absence of the applied potential, 

is: 



where nj' is the bulk ionic density and Y O  (x) is a dc electrical potential that is present in 

the absence of the applied ac field. This potential, as pointed out earlier, has its origins in 

either the naturally present < potential or in an applied dc bias. 

The system of differential equations derived in Chapter 2 descriies the potential and 

velocity po tentids in the double layer, 

The solutions to these equations are subject to the boundary conditions: 

1 
~ i m y ( x ) = ~  - - L i m y B  (x)  
x 4  v ~4 

d 1 Lint d, (bj(x) = -- d Lint - Y B  (x) 
x 4  v x+o dx 



where L is the distance to an imaginary grounded plate between the electrode and its 

image, in the bulk region. As discussed in Chapter 2, eq. C6.71 is a mathematical 

expression of the physical fact that that the ions can not penetrate the electrode material. 

Chapter 4 descriied the derivation of approximate solutions to the governing system 

of differential equations using a variational theorem based on the early work of DeLacey 

and White. Furthennore, it was demonstrated in Chapter 5 that under typical conditions 

the parameter aj/&can be neglected. Using this information, along with the explicit 

form of matrix - R from Chapter 4, the variational solutions are: - 

is; +q 

Although the above set of equations are analytic expressions, they still contain the 

two unknown constants C, and C, that must be evaluated fiom the boundary conditions a t  

the electrode d a c e  ( x  = 0 )  . Eq. [6.6], along with the two equations (j  = I, 2) contained 

in C6.71 are the appropriate boundary conditions. At first glance, the system appears over 

determined with three equations defining two d o w n  constants. However, an 

examination of the boundary conditions shows that they contain the bulk potential Y, , 



which is s t i l l  unknown, since it contains V,. Iu the following section, the calculation of 

the three unknowns C, , C' , and V'& is discussed. 

61.1 - Calcuiatrbn of the Integration Constants C, and C, 

For a general planar electrode system with an imaginary ground plate at L, the bulk 

potential at a point xis given by: 

DeLacey and White (18) suggest that the boundary conditions on #, and be used to 

calculate C, and Cz, while V# be calculated fkom the boundary conditions on W. Eq. 

[6.7] is re-written in terms of V& as follows: 

Implicit in eq. E6.141 is an assumption that the collision process between the ion and the 

electrode d a c e  be treated as a "hard" collision That is, a collision occurring only upon 

contact with the electrode surface. This approximation can be justified only in the 

absence of the potential. In the presence of a 5 potential, a 4 4 ~ ~ f i a "  collision process 

must be envisaged, in which the positively and negatively charged ions are stopped at 



different distances h m  the electrode d a c e .  The distance of closest approach being 

dictated by the concentration prome created by the static double layer, 

To account for the difference in the surface collisions between the cations and anions, 

the h c t i o n  is madej-dependent. In that way, the electrical potential distribution in 

the double layer is made to depend on whether the dynamic double Iayer consists of 

positive or negative ions. The surface boundary conditions become: 

The boundary conditions [6.15] and 16-16] can be used to calculate the &own 

constants C, andC,, while N additional constraining equations will be necessary to 

d e h e  VM, . Fortunately, an integral representation of the j-dependent effective voltage is 

available by considering the equation of continuity. 



The approach follows that proposed by Dukhin and ShiIov (34) in addressing the 

polarization of colloid particles, and extended by Paul and Kaler (25) to the polarization 

of  hemispherical electrode systems. Integrating both sides of  the equation of continuity7 

given in Chapter 2 (c. f. eq. [2.25]) : 

Using eqs. [6.1] and [6.2], the flux of t h e y  species is: 

Using the boundary conditions, and the general fom of Y,, , 

The rate of change in the ionic density when integrated over the "volume" of the 

electrode chamber yields the difference between the rate of change in the ionic density at 

the two boundaries. 



Equating eqs. [6.19] and [6.20], and solving for V#, , 

The voltage V@, isj-dependent due to the chemical potential considerations contained in 

the Boltzmann exponential. The potential actually experienced in the bulk region of the 

electrode system is assumed to be a time-averaged quantity, ( v ~ )  . In a two-ion system, 

each ion will dominate the screening for exactly '/z of a cycle, leading to: 



6 2  The Total Impedance of the Ionic Solution, 2, 

The boundary conditions, eqs. 16-15] and [6.16], contain the effective potential Vg, . 

It will be convenient to make all the VSB) dependence explicit in the functions ly/ and 

# j ,  so that a complete expression for the effective voltage can be arrived a t  To that end, 

it is usefid to introduce two new firnctions, pj and J j ,  themse1ves solutions to the system 

of the differential equations, but with boundary conditions: 

so that, 

Using these new hctions, eqs. 16.251 and [6.2q, along with eq. C6.2 11, it is possible 

obtain a formal expression for V&., 



where C j  ( c , ~ )  is a compiex correction term, dependent on the 6 potential and the 

angular fkequency of the alternating field, CD. Written explicitly: 

It is evident that C (c,o) contains the effect of the double layer on the apparent 

voltage experienced in the bulk region of the chamber. Under steady state conditions, the 

current per unit area, crossing an arbitrary plane parallel to the electrode d a c e  

must be the same irrespective of the location of the plane. Consider such a plane outside 

the double layer, in the bulk region. The complex conductivity, ~ ( o ) ,  in this region is 

given by: 

It follows that the m e n t  flow through the electrolyte is 



From Ohm's law: 

Equivalently, £?om eq. [6.3 11, 

Solving for the total impedance, 

The total impedance is an experimentally accessible parameter. Nevertheless, 

investigators of electrode polarization often speak of the double layer impedance. 

Assuming that the total impedance can be represented as sum of the double layer 

impedance, Z', and the impedance of the solution, taken in series: 



Combining eqs. c6.331 and [6-351, and solving for ZDLj (c, O)  

This equation relates the complex correction tern to the electrode impedance and the 

conductivity of the bulk solution, 

In the Chapter that follows, explicit calculations of the effective potential and the total 

impedance will be made for the simple homogeneous planar case and for more exotic 

non-homogeneous electrode arrays. 



Chapter 7 

Electrode Polarization for Various Array Geometries 

The key result fiom the previous Chapter was the derivation of an expression for the 

effective potential, given by: 

where @ (5,a) is the complex correction term: 

that incorporates the effect of the static and dynamic double layers on the field 

experienced in the b& region. Much usem information can be drawn from the e f f i v e  

potential, and in particular, fkom the correction factor. The electrode impedance and the. 

effective potential were outlined in Chapter 6. But more important, perhaps, fiom an 

experimental point of view is the relaxation time associated with electrode polarization. 

Alternately, an investigator may ask themselves: Above what frequency can electrode 



polarization effects be neglected? The subject of this Chapter is to calculate the relaxation 

time for a variety of practical planar electrode mays. 

7.1 The Homogeneous Planar Electrode 

As a primary example of a spec& application of the methods presented, the case of a 

strictly planar, homogeneous electrode system is examined. This type of electrode has 

been studied previously by White et al (18, 19), and numerous references to their 

investigations have already been made. Most of their work has been either of a numerical 

nature or employing perturbation theory. Now, using the variational results derived in 

Chapters 4 and 6, it is possible to make theoretical predictions that have thus far not been 

possible- 

For a homogeneous planar electrode, the fieId in the bulk region is uniform, and the 

bulk electrical potential given by: 

For which g (x )  is a linear function in x: 



Using eq. f7-41 with q- C7.21, the full form of C ( g y m )  in a planar system is: 

The correction factor, @ (c, o) , is complete and contains no approximations. In 

general, the integrals wilI have to be evaluated numerically, particularly if the equili"brium 

potential 'Po (x) does not have a closed form. Neverthe1ess, once the values of the 

integrals are calculated for a given set o f  parameters, they remain fixed, and can be 

tabulated and used repeatedly for the same system. In the next section, the correction 

factor is investigated in the absence of the < potential, in which case, the integrals can be 

done exactly. 

%I. 1 Zero Potential in the PInnar Case 

In the absence of the 6 potential, the homogeneous planar electrode geometry 

allows considerable simplif5cation o f  eq. [7.5]. In Figure 7.1, the real and 

imaginary parts of eq. [7.5] are displayed for a solution of 1 O"M KCZ, with plates 

separated by 1 mm. As can be seen Eom the plot, the imaginary part shows a 



single relaxation time A general expression for this relaxation time can be derived 

in the following manner. 

FLrst, the double layer is assumed to be much thinner than the dimension of the 

chamber, so that: 

Allowing, 

Second, the ionic drag coefficients of the salts in the solution are ass-ed to be 

similar enough that they can be replaced by an average drag coefficient, X, as per 

G-g, Chan and White (19). The typical drag coefficient for a general salt 

x ~ x ~ - - - x ~  m~ is: 



log cc, 

Figure 7.1 - The complex frequency spectra for Yep normalized to unity at high frequemcy for a 
homogeneous planar electrode. The relaxation peak m the imaginary part of V, corresponds to the f reciprocal of the relaxation time, l/t, predicted by eq. C7.91. Here, the solution is 10- M KC1 between two 
planar electrodes 1 mm apart, 



With these two reasonable simplificauons, the relaxation time for an ionic dielectric 

sandwiched between two planar electrodes separated by a distance I (Z=2L) is: 

Therefore, measurements taken at firequencies above o =x, in a homoeeneous planar 

electrode system will be made in the absence of electrode polarization effects. 

Z l . 2  Non-zero Potential in the Planar Cue 

To account for a dc bias placed across the electrode chamber, an explicit (though 

possibly numerical) form of the equilibrium potential Y (x)  must be given to m y  

define the function pj (x ) ,  and its derivative. To that end, we use the Debye-Hiickel 

potential (35): 

Although limited to low potentials, this form of the equilibrium potential represents an 

initial approximation to more rigorous numerical solutions that one might choose. 

The 6 potential appears in the expression for the effective far field, eq. [7.5], via the 

BolIznam exponential under the integral sign: 



The j-ionic species dependence of the correction term comes chiefly fiom the 

exponential under the integral, related to the < potential. When the potential is 

increased, this exponential corresponds to a sizeable perturbation in the ionic density 

around the electrode (nearx= 0) in the absence of the applied ac potential, and the 

ensuing concentration gradients signiscantly affect the far field if, for instance, the 

electrode carries a positive static charge (c >O), then a negative static counter-ion layer 

will be attracted causing a local increase in the chemical potential of these ions. When an 

ac field is applied, the charges on the electrode will be pernubed differently during the 

two halves of the cycle. First, consider that half of the cycle (to be referred to as thefirst 

halffor convenience) during which the electrode carries an additional amount of positive 

charge. A further quantity of negative ions will be attracted, but these ions must enter a 

region with higher chemical potential. A similar situation prevails at the counter- 

electrode, but with opposite charge. 

Conversely, during the other half of the cycle (referred to as the second half for - 

convenience) all ions are electrostatically attracted to regions of lowered chemical 

potentials. It follows that during the k t  half the system must relax into a state of high& 

free energy than in the second half. The relaxation time of the first half will be longex 

than that of the second half and two relaxation times will be observed. The origin of these 

relaxation times is a thermodynamic rather than an electrostatic one. Looked at fkom 



another perspective, note that the dc bias will create diffient concentration profles for 

the differently charged ions which is responsible for the two relaxation times gredicted in 

the time-averaged far field spectnun for a binary electrolyte like KC2 (Figure 72). 

For a non-zero ( potential, the effective potential is no longer constant through the 

cycling of the applied ac potential, but depends on which half-cycle it is obsmed, The 

field in the bulk region, then, will be a time-averaged quantity- An impedance spectrum 

of the electrolyte solution taken with a fiequency response andyser will likely record a 

weighted average impedance over the whole cycle, favouring the half cycle with the 

1 
lowest impedance. Since Ztol, is proportional to - (f?orn Chapter 6), the lowest 

va 

impedance will arise fkom the low fiequency relaxation peak. 
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Figure 7.2 - The time-averaged kquency spectrum of V&, normalized to unity at high fkequency, with a dc 
bias of 150 mV betxeen the electrodes. Notice the presence of two relaxation peaks m the imaginary part of 
Yep Here again, the solution is 1W5 M KC1 between two planar electrodes I mm apart. 



Our calculations have shown that the cpotential, even though a dc potential, 

significantly alters the dynamics of the double layer. Comparing Figure 7.1 with Figure 

7.2 the dynamicd alterations are most easily seen. 

7.2 Planar Array of Strip Electrodes - Emulating a Pulsating Standing Wave 

Often in dielectrophoretic, and electrophoretic experiments, electrodes of complicated 

geometry are simulated by a planar array of strips (22, 23, 24) that are maintained at 

different applied potentials. To illustrate the versatility of the present technique, an 

expression for the effective potential of an array of strip electrodes descriied by Markx, 

Pethig, and Rousselet (24) in the absence of a 5 potential is derived, comparing the 

theoretical results to their experimental data 

Using the same simplifications descriied above, in section 7.1, the effective potential 

for a generd planar electrode is: 

where the relaxation time of the ionic medium, 7, is given by: 



For a specific array geometry, the function g(x,y,z) is available, enabling the 

computation of the effective potential to be carried out. To illustrate, consider a system of 

parallel electrode strips having width d and separated by a gap of the same distance d 

(Figure 7.3)- 

An oscillating voltage v@" is applied to each alternate strip, while the strip in 

between ismaintained at ground potential. The discrete potential profile along the surface 

of the array can be roughly approximated by a continuous standing wave of length 4d. In 

this continuous approximation, the surface potential along the array lying in the zy-plane, 

where the electrode strips lie normal to the z- axis (see Figure 7 3 ,  is: 

Wang, Wang, Becker and Gascoyne (23) have developed a method using Green's 

hctions to relate the surface potentid d i s t r i ion  along an array7 eq. [7.14], to some 

point above the surface. Using their andysis, the general potential dislriiution above the - 

array is: 



z 
Pulsating Standing Wave 

F'igure 73 - a) A schematic diagram of the electrode system used by Markx et ol. (24) b) Continuous 
approximation of the potential distribution along the d a c e  of the array. 



where B, and B, are integration constants determined fiom the boundary conditions. In 

particular, the constant B, satisfies the boundary conditions on the surface, 

and the constant B, satisfies the boundary conditions at L: 

From the f b t  equation in Chapter 2, eq. C2.11, 

so that, 

Allowing the derivative of g to be evaluated at the end points in a straightforward 

manner. In practice, there is a singularity in the derivative of g located at the 



d a c e .  To avoid this singularity, the d a c e  derivative is evaluated at a distance 

an ion's radius off the surface. 

In the experimental set-up of M a r k  et aL, there is a counter electrode infinitely far 

5om the array. So letting L ++ , calculating g' ( x )  and g'(~) fiom eq. [7.19], V, is 

determined. The imaginary part of the effective potential in an NaCl solution with a 

medium conductivity of 1 1 @/an and a characteristic electrode dimension d = 40prn. is 

shown in Figure 7.4. The predicted polarization behaviour of the system is in agreement 

with the experimental data of Marla, Pethig and Rousselet, as seen in Figure 4 of (24). 

Our theoretical model predicts a relaxation frequency f = ym of about 10 Hz, while 

the data of Markx et al. suggests a relaxation at about 10 32 Hz based on the frequency 

observed for the onset of levitation. 



Rgure 7.4 - The complex fkequency spectra for V# normalized to unity at high frequency, for non- 
homogeneous electrode array used by Mark  et al. (24), with 40 pm strips spaced 40 pm spa The 
relaxation peak occurs at about 10 Hz. The calculations are for an 11 mSlm solution of NaCI. (Notice that 
the x-axis is log fkquency, not log of the angular frrguency, to make comparison with Markx et at. more 
amenable.) 



73 Concentric Array of Ring Electrodes - Emdating a Hemispherical System 

To calculate the polarization in a ring m y ,  the procedure is very similar to the one 

outlined in the previous section dealing with strip electrodes. Due to the rotational 

symmetry in the concentric rings, it is more convenient to adopt a cylindrical form of eq. 

Similarly, the derivative of the function g (x, r, 8 ) is given by: 

where B, is: 

Again, there is a sin,.ularity at the d a c e ,  x = 0 . To avoid the singularity, the 

derivative is evaluated either a distance an ion's diameter above the surface, or, if the 



electrode array is coated in glass, as they often are, then the derivative is evaluated at the 

glass surface ( x  = 3pm). 

A projection on the plane of a potential distriiution arising &om a hemispherical 

electrode of radius a is given roughly by: 

provided L >> a . 

Using eqs. [7.12], C7.131, [7.2 11, and C7.231, the effective potential can be calculated. 

The real and imaginary parts of the frequency spectrum for Vfl in a lo-' M solution of 

NaCZ, with L=0.5 mm, emulating a hemispherical electrode of radius -75 pm, is shown 

in Figure 7.5. 

In the final Chapter, some general comments are made about the analysis, and 

suggestions for fbture work are outlined. 
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Figure 7 5  - The complex kquency spectra for Ve n d e d  m unity at high frequency for a amcentric 
ring array emulating a hemisphericaI electrode with radius 75 p.. Eke, the solution is lo4 M NaCl 
between two planar electrodes 1 mm apart. 



Chapter 8 

Conclusion 

8.1 Conclusions Regarding the Variational Analysis 

The variational approach has provided an expedient method for solving the 

mathematical model of electrode polarization developed in Chapter 2. Incorporating the 

analytic solutions derived in Chapter 4, electrode polarization effects can be predicted in 

a variety of contexts through the effective potential parameter? V& developed in 

Chapters 6 and 7. To complete the study of electrode polarization, however, there are two 

main simplifications made in the present model that must be addressed in future work. 

8.2 Future Work 

There are two areas where ftrture work on electrode polarization should be focussed. 

Fixst, some account must be taken for the tangential components of the ionic flux.. 

Second, the model must accommodate galvanic electrochemical processes taking place at 

the electrode surface, Each of these will be addressed in the following sections. 



8.2.1 Tmgential Ionic Flux 

For systems such as the homogeneous planar electrode, or the concentric ring a w y  

emulating a hemispherical electrode, the tangential ionic flux, that is the flux parallel to 

the electrode surface, plays a minimal role. For more complicated army geometries, for 

example strips emulating a travelling wave, or concentric rings producing a conical field, 

the tangential ion flux must be incorporated- 

The inclusion of the tangential component of the ionic £lux requires that equations 

similar to those derived in Chapter 2 be found in each of the XSI, and z directions. With 

suitable boundary conditions on this augmented system, the solutions should be open to 

variational solution, 

8.2.2 Electrochemical Reactions at the Surface 

Electrochemical reactions at the electrode d a c e  can scarcely be avoided, 

particularly with high dc bias across the electrodes. To account for the electrochemical 

evolution and consumption of ions species at the electrodes will require a carem 

modification of the model. 

The equation of continuity invoked in Chaptu 2 characterising # j ,  will include a 

source term dependent on the rate of electrochemical ionic production at the surface. 



Furthermore, the neglecting electrochemical reactions at the interface allowed for the 

assumption that the electrode was completely polarizable, i-e. that at zero frequency, the 

field in the bulk region disappears. It was this behaviour at zero frequency that 

necessitated the constant normal mode 2, be set to zero in Chapter 4. Clearly, with 

reactions going on at the interface, even at zero frequency, the d a c e  will not be. 

completely polarized. So additional boundary conditions must be found to determine the 

constant normal mode. 

On the whole, the present analysis provides a soluble foundation upon which a more 

inclusive theory of polarization may be built 



Appendix 1 - Green's Functions 

For an excellent discussion of Green's functions and their application in physical 

problem, the reader is directed to the book by Boas (36). This appendix is based in large 

part on section 1 1.8 of that book. 

The Dirac delta function, 6 ( x )  , i s  a distnion with the unusual quality that it is 

zero everywhere, but infinite at the origin. It can be imagined as an impulse at the origin, 

idhiteIy large, but infinitely thin, so that 

In fact, since the Dirac delta function is zero everywhere but at the origin, 

Alternately, as is more commonly done, the origin may be shifted with respect to a 

dummy variable, 

I dx ' f (x ' )6 (x -x ' )=  f ( x )  



Consider a non-homogeneous diffetential equation 

9 u  ( x )  = f (x) 

where is a given operator, and f ( x )  is a known forcing hction. The Green's 

firnction G (x, x') is the response of this system to an impulse centred at x' . That is, the 

Green's fbction solves the differential equation: 

&G (x ,  x') = 6 (x - x') 

This equation is more tractable than the original diEerential equation since it is 

homogeneous everywhere except at x = i . If the Green's bc t ion  can be determined, 

then it can easily be related to the solution of eq. [9.4] via an integral equation: 

u ( x )  = dr'G (x ,  x') f (x') 

If a Green's function can be found for a given operator, then this method provides a 

convenient way of tramfonning differential equations to analogous integral equations. 

Note, too, that no restrictions are placed on f (x), and the forcing function may indeed 



be some non-linear function of u ( x )  , as is the case with the system of Yoon, discussed in 

Chapter 3. 



Appendix 2 - Functional Differentiation 

Consider a general integral equation, 

OD 

c [A] = j dr' A (x') B (x') 
0 

The functional derivative of C with respect to the h c t i o n  A is: 

6 A (x') 
B (x') = I ak'6 ( x  - x') B (x')  

Where 6 (x - x') is the Dirac delta fbnction. 

The stationary points of the hctional  4 (fkom Chapter 4), for instance, can be 

calculated in the foLlo wing manner: 

We take the derivative of 4 with respect to z, , 



Then, setting eq. [10.4] to zero, it is clear that the stationary point corresponds to the 

solution of the original differential equation, 



Appendix 3 - Transformation of A$ to a Self-Adjoint Form 

A Lagrangian cannot be found for the differentid equation of as it stands - the 

first-order differential operator g j  precludes this type of analysis. The original 

differential equation: 

a 
must be altered so that the first-order tenn, -# j ,  does not appear. For brevity, we define 

ax 

two functions: 

Equation [ 1 1 - 11 becomes : 

We rewrite @ as a product of two unknown hctions: 



Equation [I 1-31 becomes, 

Expanding the left-hand side, 

d The &own h c t i o n  a (x )  can be chosen so that -xj  ( x )  is eliminated; such 
dx 

that: 

Leading to: 

Substituting in eq. [11.4], 



When x (x)  replaces @ (x) as the unlmown function, the diffkrential equation [11.3] 

becomes: 

Where 

The operator on x is self-adjoint, and a Lagranpian can be readily determined. 
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