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Abstract 

Nonparametric methods are used in this paper to investigate the per capita personal 

income distribution and how it evolved over the period 1950 - 2000 across the 59 

provinces and states in the U.S. and Canada. A nonparametric Silverman test is 

applied to examine whether multi-modality is present in the income distributions. 

Multi-modality is a significant feature of the per capita personal income distribution 

Across the provinces and states in the U.S. and Canada. 

Both nonparametric stochastic kernel and Markov transition probability matrix are used 

to analyze the long run income distribution dynamics of the per capita personal income 

across the provinces and states in the U.S. and Canada. Signs of convergence and 

mobility are found in the 1950-1970 period, evidence in favor of convergence and 

mobility is weak in the 1971-1990 period, and a nearly perfect immobility is found in the 

1990's. The income distribution for entire study period (1950 —2000) shows a form of 

club convergence. 
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A Nonparametric Analysis of the Personal Income Distribution across 

the Provinces and States in the U.S. and Canada1 

1. Introduction 

In recent years there has been an increasing literature on income distribution analysis that 

makes use of nonparametric methods. 

By estimating non-parametrically the cross-country income data, Bianchi (1997), Jones 

(1997) and Quah (1997) tested the growth convergence 2 and convergence clubs 3 

hypothesis. They found evidence of "twin peaks" (bimodality) in the world relative 

income distribution via a thorough analysis of the changes in the shape of the income 

distribution. 

Applying a tree-clustering algorithm on cross-country data, Durlauf and Johnson (1995) 

divide the countries into four different groups with different growth behavior. Multiple 

steady states (multi-modality) in cross-country growth behavior were found in their 

1 The author would like to thank John Boyce for his helpful suggestions and comments. The usual disclaimer may 
apply. 

2 Convergence is defined as the phenomenon of income levels in poor regions catching up in relative terms with those 
in the rich. 

Baumol (1986) and Quah (1993) have all been strong proponents of the idea of grouping similar countries or 
economies into different convergence clubs, such as the rich country club, the poor country club etc. While overall 
convergence may not exist, countries within a convergence club may show signs of convergence (club 
convergence). 
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regression results. 

From the above one may realize that the test of multi-modality can be very useful in the 

research of income distributions. As indicated by Zhu (2002) important hypotheses such 

as income convergence, polarization, poverty traps and "vanishing middle class" can' be 

formulated as a question of multi-modality. 

In this paper, several nonparametric approaches, specifically, an adaptive kernel density 

estimator, one mode 4 testing procedures, stochastic kernel and Markov transition 

probability matrix were used to investigate convergence issues and analyze distribution 

dynamics of the personal income distribution across the 59 provinces and states in the US 

and Canada. 

The non-parametric approach used in this paper is different from a conventional one. No 

particular functional form is imposed on the underlying density as in parametric approach. 

The empirical results of this work indicate that over the study period 1950-2000, multi-

modality is a significant feature of the regional personal income distribution across the 

U.S. and Canada. Convergence (unimodality) is found over the 1950s and most of the 

1960s. Evidence in favor of bimodality is found during the 1970's and the 1980's. In the 

1990s, there is a strong indication that the number of the poor regions increased 

dramatically. 

A mode is defined as a point at which the gradient of the density changes from positive to negative. 
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The rest of the paper is outlined as follows. Section II provides a review of the 

conventional parametric estimation methods of the convergence of income distribution 

and a reasonable critique of these classic methods. Section III gives a detailed description 

of the kernel methodology used in this study. Section N briefly discusses the source and 

quality of our income data. In section V a nonparametric bootstrap test (Silverman test) is 

performed with results reported. Section VI gives a brief introduction of DIP test. Section 

VII stochastic kernel and Markov transition probability matrix are used to analyze the 

income distribution dynamics. Section VIII concludes and gives future research 

suggestions. 

2. Convergence: Classical Parametric Approach and Critics 

Convergence, as stated by Abramovitz (1986), implies a long-run tendency towards the 

equalization of per capita income or product levels. In other words, convergence 

addresses the important question of whether poor countries, as measured by low per 

capita incomes, display faster growth rates in per capita income than rich countries with 

higher per capita incomes. 

Numerous attempts have been made to provide a precise description of the convergence 

of income. There re three major classical convergence concepts: 1) Absolute convergence 2) 2) Conditional fl-convergence 3) Sigma (o)-convergence. 

In terms of methodology, there are three primary kinds of classical methods: (a) Cross-
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section approach (b) Time Series approach (c) Panel-data approach. 

2.1 The Cross-section Approach 

1) The absolute /3-Convergence 

The absolute /3-Convergence approach, developed mainly by Baumol (1986) and Barro 

and Sala-i-Martin (1991, 1992), is to estimate cross-section growth rates on initial levels 

of income as follows: 

log(y11 /y1)IT = a + ,8log(y1 )+ e, (1) 

where log(yll+T )i T is economy i's growth rate of per capita income between t and 

t+T, log(y11) is the logarithm of economy i's per capita income at time t, T is the length 

of time over which the growth of per capita income is measured, and s is a stochastic 

error term, a is a constant term representing the steady-state point of convergence which 

is the same for all economies and /3 is the convergence coefficient. According to the 

neo-classicists, a negative sign of the /3 coefficient indicates that the growth rates in per 

capita incomes over the T year period were negatively correlated with starting incomes, 

or in other words the initially poor regions grow faster than the initially richer ones. This 

is the idea of absolute /3 -convergence where all economies are assumed to converge to 

the same steady state represented by the coefficient a (Sala-i-Martin, 1994). 

Absolute /3-convergence has been widely tested for the U.S. regional convergence Sala-

i-Martin (1991, 1992) found evidence in favor of absolute /3-convergence in both the per 
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capita personal income and per capita gross state product with an estimated convergence 

speed at about 2% per annum for the period 1963-1986. 

The same tests for Canada have been done by Coulombe and Lee (1995), who found 

evidence of absolute /3-convergence in six different measures of incomes across 

Canadian provinces for the period 1961-1991. Their findings also indicate that direct 

taxes and transfers may play crucial roles in increasing convergence speeds. 

Sala-i-Martin (1996) pointed out that the convergence of all economies to the same 

steady state predicted by the neoclassical model relies heavily on the assumptions that 

the only difference across countries lies in their initial levels of capital. In reality, 

however, economies may differ in levels of technology, propensities to save, or 

population growth rates. With these differences in levels of technology and preferences, 

different economies most likely will have different steady states and the absolute  

convergence will be flawed by imposing the restriction that they are the same. 

2) Conditional /3-Convergence 

To overcome the obvious flaw in the absolute fl-estimation of the classical growth theory, 

authors such as Barro and Sala-i-Martin (1992), Mankiw, Romer and Weil (1992) and 

Durlauf (1996) among others, developed the idea of conditional fl-convergence. 

Since this paper is concerned with regional convergence within the U.S. and Canada, only previous literature relevant to the U.S. 
and Canada is cited here. 
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Conditional fl-convergence argues that economies converge to different steady-state 

points of growth since they have different economic structures. Convergence is 

conditional on the steady-state growth path which is a function of the differences in 

technology levels, human capital, investment and saving rates, among other structural 

variables. 

To test the hypothesis of conditional fl-convergence one has to extend equation (1) of the 

absolute fl-convergence to incorporate some structural variables, such as the investment 

ratio, human capital, innovative activity, public expenditure, population growth, trade, 

and so on. In other words, instead of estimating (1) one estimates 

iog(y11 iy)ir = a +,6 log(y,,J+  it'X + (2) 

In equation (2), all the variables are the same as in equation (1), and X is a vector of 

structural variables (as proxies for the steady state) that affect the steady state of 

economy i. If the estimate of fi is negative once XH is held constant, then the data set is 

said to exhibit conditional fi -convergence. 

Conditional fl-convergence has also been extensively tested for the U.S. regional 

convergence. S ala-i-Martin (1992) included sector shift parameters as well as regional 

dummies to hold constant possible shocks and found evidence of conditional fl-

convergence at a rate of about 2% per annum in per capita gross state product for the 
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period 1963-1986. Sala-i-Martin claimed that there is no significant difference between 

absolute fl-convergence and conditional fl-convergence rate for the same study period. 

A number of econometric problems have been identified with conditional fl-convergence 

analysis. The initial level of technology, which should be included in a conditional fi-

convergence specification, is not observed. Since it is also correlated with other 

regressors (such as initial income), the conditional fl-convergence studies suffer from an 

omitted variable bias. 

3) Sigma (o-)-Convergence. 

One of th6 drawbacks of conditional convergence is that it cannot tell if overall 

convergence among all economies exists or not. It can only tell if economies with similar 

characteristics are converging or not. This leads to another popular approach in 

measuring convergence across economies: sigma-convergence6. The concept of sigma-

convergence is primarily developed by Easterlin (1960), Baumol (1986), Dowrick and 

Nguyen (1989), Barro and Sala-i-Martin (1991, 1992). The central idea is that if the 

standard deviations of per capita incomes across groups of economies exhibit a 

decreasing trend over time, then there is sigma-convergence. Formally, following Sala-i-

Martin (1996), sigma-convergence occurs if 

o.t+T< 0.1., 

6 This terminology was first introduced by Sala-i-Martin (1990). 
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where at is the time t standard deviation of log(y11) across i and Tis the time period 

over which the standard deviation is observed. 

The o -convergence has been extensively tested for the U.S. case. Mitchener and 

McLean (1999) studied the US state personal income for 1880-1980 and found different 

sigma-convergence rates with different choices of series (nominal income, price adjusted 

income or labor productivity). They also showed that the West and the South play crucial 

roles in regional convergence at different times. Barro and Sala-i-Martin (1995) showed 

that the standard deviations of per capita personal income for 48 states declined from 

1880 to 1920, rose in 1930, fell again from 1940 to mid-1970s, then increased from 1980 

to 1988, and decreased from the end of 1980s to 1992. They attributed the fluctuations of 

the standard deviation to an agriculture price shock in 1920s and to oil shocks in 1970s. 

As argued by Quah (1996), the main flaw of cr-convergence is that when at is constant 

over a study period, thus signaling no convergence or divergence, the underlying 

economies may actually still be moving within an invariant distribution frame. For 

example, ci -convergence could not inform if clusters are forming within the cross 

section or if transitions occur within the distribution. Hence inter- and intra-distributional 

dynamics could not be uncovered by ci -convergence. 

2.2 Time Series Approach 
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The idea to apply time-series approach to test convergence was mainly due to Bernard 

and Durlauf (1995, 1996), Durlauf (1989) and Quah (1992). Bernard and Durlauf (1996) 

defined time series convergence between two series X1 and Y1 as: 

limE(Y+k - I I) = 0, 
k-+co 

where I is information set at time t. In words, series Y and X converge if the long run 

forecasts for both series are equal at time 1. 

In practice, researchers use unit root tests and cointegration tests to investigate if time 

series convergence exists across all economies or for a specific pair of economies. 

Failure to reject unit root is equivalent to failure to find evidence of convergence. 

A number of previous studies have used time series methods to test income convergence 

across countries. One interesting study was made by St Aubyn (1999). Using time series 

methods (augmented Dickey-Fuller (ADF) test and Kalman filter test), St Aubyn did not 

find evidence of convergence in per capita GDP between the U.S. and Canada through 

the post-war period 1947-1989 in either ADF test or Kalman filter test. St Aubyn 

attributed this result to the low power of time series method. 

Brown, Coulson, and Engle (1990) found no time-series convergence across a number of 

U.S. states. Carlino and Mills (1993) incorporated trend breaks in their regression and 

could reject the unit root null in three out of eight US census regions for period 1929-
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1990. Using the same data as Carlino and Mills, Loewy and Papell (1996) endogenized 

both the break date and the lag length and could reject the unit root in seven out of eight 

US regions for the same study period. 

One criticism of time series approach to convergence was raised by Bernard and Durlauf 

(1996) who argued that the time series approach relies on the assumption that the per 

capita income differences between different economies are constant with zero mean, 

which contradicts the reality. 

Moreover, in the time series approach convergence is based on different definitions from 

that of cross sections. As a result, time series often have different findings on the same 

dataset from its counterpart of cross-section approach. 

2.3 The Panel Data Approach 

Islam (1995) extends the cross-section regression to the panel case by formulating a 

dynamic panel data model as follows: 

1n y, = ylny, 1 +fl1nx1, +1u1+ii +v1, (4) 

where ,u, represents economy-specific effects (time invariant), q, stands for time-specific 

effects (region invariant), v1 is an error term that varies across regions and time periods 

and has mean zero and, Xjj consists of variables such as saving rate, population growth 
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rate, capital depreciation rate, technological growth rate and trade openness etc. 

The major advantage of the panel data approach over the cross-section fl-convergence 

approach is that the panel data specification allows one to control for differences in the 

initial level of technology, which could be captured by the region-specific fixed effects 

represented by the term 1a1. Thus the panel data approach makes it possible for one to 

correct the omitted-variable bias mentioned in the conditional fl-convergence in section 

2.1. 

A panel unit root test is to test the null hypothesis that each series in the panel contains a 

unit root, i.e. H0: y = 1 against the alternative hypothesis that all individual series in the 

panel are stationary and display convergence, i.e. Hi: y < 1. 

The panel unit root technique has been applied to study regional convergence in Canada 

by Wakerly (2002) who rejected the null hypothesis of unit root. 

However, the panel-data analysis could be problematic when it is applied to growth 

convergence analysis. Note that the major difference between equation (4) and equation 

(1) or (2) is that the constant a in equation (1) or (2) has been decomposed into 

economy-specific and time-specific effects p, and i: 

a = + 77, 

11 
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This decomposition is considered an advantage of the panel-data approach over the 

cross-section approach. However, for convergence analysis, this decomposition of 

a could result in problems. 

Durlauf and Quah (1999) pointed out that there are at least two major problems with the 

panel data regression. First, equation (1) implies that the initial level of technology (and 

thus a through u) forms part of the long run convergence path of the given economies. 

In case of absolute fl-convergence, one could conclude that convergence occurs precisely 

when the poor catch up with the rich. Hence, a convergence finding could be 

transparently translated into a statement about catching up. On the contrary, when the 

initial level of technology is allowed to vary across economies, finding convergence to an 

underlying steady state could not be simply interpreted as catching up occurs between 

poor and rich. If instead the differences in initial level of technology are not modeled as 

functions of right-hand side variables, the question whether poor economies are catching 

up with rich ones would be left unanswered. Therefore panel-data approach makes it 

even more difficult to explain convergence results in terms of catching up from poor to 

rich. 

Second, one of the traditional problems in the panel data regression like equation (4) is 

that the /i 's may be correlated with some of the right hand side variables, thus causing 

inconsistency estimates (Nickell (1981), pp. 417-26). One solution to the inconsistency 

problem is to transform equation (4) to eliminate ,u1. Without 1u, a researcher is left 
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with only one choice to analyze a left-hand side variable without its long-run variations 

which he originally intends to investigate. 

Chamberlain (1984) also argued that the solution provided by panel-data techniques in 

eliminating the correlation between individual effects and right-hand side variables ends 

up severely limiting its power in explaining patterns of cross-country growth and 

convergence. 

The above classic approaches are frequently used to analyze the regional income 

distributions, which involve functions of the parameters of interest. Unfortunately, all the 

classic approaches explained so far are with defects in some ways. 

3. Non-parametric Density7 Estimation 

Unlike the parametric approach, nonparametric density estimation allows one to draw a 

complete picture and hence provides full information on the entire income distribution. 

Nonparametric estimation approach allows one to analyze data at hand without any a 

priori assumptions on the form of the underlying density of the data. The only 

requirement about the data, if any, is perhaps that the underlying density of the data 

should be smooth enough for meaningful analysis. 

This is the univariate case. 
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Although researchers such as Jones (1997), Bianchi (1997) and Quah (1997) have 

extensively used the nonparametric kernel estimator withfixed window width (explained 

in Section 3.1) to analyze the world income distribution and growth convergence, few 

studies were found to use the kernel estimator with variable window width to make 

relevant researches. Zhu (2002) pioneered in applying an adaptive kernel estimator to 

analyze the personal income distributions in the U.S. However, an in-depth analysis of 

the per capita personal income across provinces (states) in both the U.S. and Canada 

based on adaptive kernel density estimation (explained in Section 3.2) has not yet been 

found in the previous studies on income distribution dynamics. 

Fixed kernel estimates are locally insensitive to the detail changes in the data. An 

adaptive kernel estimator has the advantage over the fixed kernel in that it allows the 

smoothing parameter to vary according to the local density of data. 

This paper uses the adaptive kernel estimator, mainly due to two reasons. First, it is 

simple to calculate. Second, as Zhu (2002) argued when testing mode, due to the relative 

sparseness of data in the tails and abundance of data in the center, false modes in the tails 

may be reported well before true modes in the center could be detected. Local smoothing 

allows one to obtain a reasonably robust estimate of income density. 

3.1 Fixed Kernel Estimator 

14 



There are a variety of ways of non-parametrically computing a density estimate8. The 

kernel estimator is one of the most popular estimators due to its simplicity to calculate 

and interpret. 

Letf=f (x) denote the continuous density function of a random variable X at a point x, 

and let Xj, ..., x,1 be the observations fromf. 

Rosenblatt (1956) defined a kernel function K as: 

fK(yi)dei =1. 

where K(i') ≥ 0. 

The general kernel estimator(x) off (x) is defined by: 

1 11 xi — X) = i ?I 
](x) 

nh j•j , ( h nh 1=1 

(3.1) 

(3.2) 

where yi = h1(x1 - n is the number of observations in the sample, h is the window-

width (bandwidth) which is a function of the sample size and goes to zero as n —> Co. 

The above kernel is known as thefixed window width kernel estimator since the window 

width does not vary with the density. 

8 Density estimation is one of the most fundamental problems in statistics. Consider a univariate continuous random 
variable X distributed according to a probability densityf. This means that for any interesting set B of real numbers 

we can find the probability that X belongs to this set by the formula P(X (E B) = 'B f(x)dx. For instance, for B=[a, 

b] we get P(a ≤ X ≤ b) .= J, f(x)dx. Then one observes n independent realizations X1, X .....X,, of X, and the aim 

is to find an estimate f(x) , based on these observations, that fits the underlyingf(x). 
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3.2 Adaptive Kernel Estimator 

Breiman et al. (1977) and Abramson (1982) developed adaptive kernel estimator (AKE) 

which makes the window width vary inversely with the density. Formally the adaptive 

kernel estimator is defined as 

1 11 1 j K' (x)=—— n j=1 hid t\ h,,1 )' (3.3) 

The AKE is essentially (3.2) with h,,1 = hS,,,, h is the overall window width and 5 1,1 is the 

local, bandwidth parameter defined by 

911i = [7(Xi) - 
G 

(3.4) 

where G is the geometric mean of some preliminary estimator of the density f(x1) over 

all x1, i.e. 

G= (F1 ..' 1/u i 

f(x1) 
I  

(3.5) 

o <)t ≤ 1 is a sensitivity parameter, and f(x1) could be any convenient initial estimator. 

If A = 0, the AKE is reduced to the fixed bandwidth case (3.2). Abramson (1982) and 

others suggest that 2 should be set to 0.5, which reduces bias significantly compared to 

its fixed-width counterpart. In this study 2 is set to 0.5 accordingly. 

16 



3.3 Kernel Estimator Properties and Choice of Bandwidth h 

Pagan and Ullah (1999) indicated that the kernel K is a symmetric function around zero 

satisfying 

(1) JK(yi)dv=1 

(2) fr2K(y,I)dyjm#0 

(3) JK2(,1r)d u<co. 

Devroye(1983) and Devroye and Gyorfi (1985) showed that the kernel estimator f is 

asymptotically unbiased and consistent.9 

Hardle (1990), Silverman (1986) and others argued that the choice of kernel is not crucial 

to analysis since any kernel could be optimal for large enough samples. In contrast the 

selection of the window width h is critical. The window width determines the degree of 

smoothing of the estimated density. There is always a trade-off between bias and 

variance when choosing window width h. On the one hand, a very small h may result in 

an under-smoothed density estimate since there may not be enough points for smoothing. 

Under-smoothing may reduce the bias of the estimator but increase its variance. A large 

h, on the other hand, could result in an over-smoothed density because a large number of 

points are used in forming an estimate. Over-smoothing reduces variances but increases 

The proof of this can also be found in Pagan and Ullah (1999): pp 33-34. 
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bias, besides missing important details about the distribution. Hence great caution should 

be executed in selecting the window width h. 

One has to have some criterion in order to make the optimal choice of h. So far the most 

popular method (originally introduced by Rosenblatt (1956)) has been to minimize 

Elf [I(x) - f(x)]2dxJ, the mean integrated squared error (MISE). 

MISE() = EJ[I(x) - f(x)J2dx= J{E?(x) - f(x)]2 dx + jVar(?(x))dx 

= (Bias j)2 + var(?)]czx 

AMISE 1° (Asymptotic MISE) is used to approximate MISE which is difficult to 

calculate. 

MISE(1) AMISE(J) h4 J(f(2) (x))2 dx + 4 P2 (nh)' Jf(x)dx JK2 (v)di' 

= h 4 2 J(f(2)(x))2dx + (nh)' JK2()d 
4 a2 

Silverman (1986) showed that the value of h that minimizes AMISE is 

h = O.9[min(6,R/l.34)]n", 

10 Proof of this can be found in Pagan and Ullah (1999): pp 22-24 
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where R stands for the inter-quartile range and & is the sample standard deviation. 

In the AKE case, the local bandwidth parameter S, allows the window width to be 

adjusted according to the local density of the data. Therefore bandwidth chosen by the 

adaptive method gives a more accurate estimate. The Gaussian kernel 11 is chosen in this 

paper mainly due to the reason that the Gaussian kernel has 95.1% efficiency relative to 

the Epanechnikov kernel in minimizing MISE as shown by Fox (1990). 

4. Data: Sources, Transformation and Sub-periods Division 

Fifty states in the U.S. and nine provinces in Canada are included in this study12. The 

per-capita personal income over the period 1950 - 2000 for the 59 regions in the U.S. and 

Canada is used to analyze the regional income distribution in this paper. 

The data of the regional per capita personal income in the U.S. is taken from the well-

known and widely used Bureau of Economic Analysis Regional Accounts Data (1929 - 

2001) and the data of the provincial per-capita personal income in Canada is extracted 

from CANSIM (Canadian Socio-Economic Information Management System) 13 

CANSIM is the Statistics Canada's computerized database of time series covering a wide 

variety of social and economic aspects of Canadian life. 

The Gaussian Kernel is defined as: K(x) = 1 ._. e-05x2 
,f 27r 

12 See appendix TableA.l for detailed list of the provinces and states. 

13 CANSIM is Statistics Canada's computerized database and information retrieval service. Data before 1990 are from 
CANSIM II SERIES V501122, data after 1990 are from CANSIM II SERIES v691825. 
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The per-capita personal income in each year for each region is normalized by the average 

per-capita personal income for the total 59 economies in that year (with the average 

taking a value of 1.00). 

Since one of the purposes of this study is to compare per capita personal income across 

years, incomes are reported in 1982-84 prices by correcting for inflation using the 

consumption price index (CPI) 14. 

In order to make the provincial personal income in Canada comparable to that in the U.S., 

the personal incomes in Canada, are converted to U.S. dollars as per average exchange 

rate in each year's. 

In this paper the period 1950 to 2000 is divided into three sub-periods: 1950-1970, 1971-

1990 and 1991-2000. 

5. A Preliminary Look at the Income Distribution 

Figure 1 presents the entire distribution of per capita personal income (all relative to the 

North American average, excluding Mexico) across 9 Canadian provinces and 50 U.S. 

14 The Canada CPI and the U.S. CPI are from CANSIM Series P10000 and D19805 respectively. 
15 There are some disputes among economic researchers as to whether exchange rate or PPP should be used as a 

conversion factor. PPP is based on the assumption that if goods are priced differently in different countries, then 
consumers would simply switch to buying the cheaper good, thereby moving the exchange rate towards PPP. In 
reality, transactions costs plus customs regulations usually prevent such switching taking place. The response of 
trade to movements in real exchange rates is limited, contradicting the simple notion of arbitrage embodied in PPP. 
Further future research could be done as to compare the empirical results from these two methods of conversions. 
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states for the period 1950 —2000. 

The North American average is indicated by one on the vertical (Z) axis marked Relative 

Income in Figure 1. Time periods are sequentially marked along the X-axis of Year. 

Different provinces and regions are represented along the Y-axis marked States and 

Provinces. 16 

The Canadian provinces are indicated by vertical lines along the Y-axis at 1.0 (Prince 

Edward Island), 2.0 (New Brunswick), 3.0 (Nova Scotia), 4.0 (Saskatchewan), 5.0 

(Quebec), 8.0 (Alberta), 9.0 (Manitoba), 14.0 (Ontario) and 15.0 (British Columbia) 

respectively. It can be noted that in 1950 the relative incomes in all the Canadian 

provinces are below the North American average. 

From Figure 1, it is clear that the pure use of either cross-sectional distribution or time-

series distribution would fail to provide complete intra-distribution information. Since 

Figure 1 does not give a clear view on how the relative personal incomes across the nine 

Canadian provinces evolve over the whole study period 1950 —2000, the relative incomes 

of the nine Canadian provinces were presented in Figure 2. 

16 Provinces and states are ordered from the lowest per capita income to the highest per capita income in 1950 as 
shown in the appendix Table Al. 
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Figure 1. Relative incomes across 59 Provinces and States 

in the U.S. and Canada for 1950-2000 
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Figure 2. Relative incomes in Canadian provinces for 1950 -2000 
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From Figure 2, one may notice that the income levels in the Canadian provinces 

experienced a slow convergence to the North American average from 1950 to 1970, but 

became approximately stagnated between 1970 and 1990, then diverged from the North 

American average over the 1990's. It is also interesting to note that Ontario, British 

Columbia and Alberta have almost always been the three highest income provinces over 

this whole study period and all experienced income levels higher than the North 

American average for some years between 1970 and 1990. 

5.1 The Shapes of the Distributions 

As described in Section 3, the adaptive kernel estimator is preferred to the fixed kernel 

estimator in that it allows window width vary according to the local density of data. The 

merit of adaptive kernel estimator is more apparent when estimating long-tailed or multi-

modality income distributions. Adaptive kernel estimator can reduce the variance of the 

estimates in regions with low density of data and decrease the bias of the estimates in 

regions with high density of data while a fixed bandwidth approach may result in under-

smoothing in areas with few observations while over-smoothing in others. 
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Year 1970 

Figure 3. Fixed and Adaptive Kernel Density Estimates of the Personal Income in 1970 

Figure 3 gives an example of the fixed and adaptive kernel density estimates of the per 

capita personal income distribution in 1970. It can be clearly seen that the adaptive 

kernel estimate successfully detects the bimodality in the distribution while the fixed 

kernel fails to do so. In this example, the fixed bandwidth over-smoothed the middle of 

the distribution and under-smoothed the tails of the distribution. On the contrary, the 

adaptive kernel estimate gave a proper estimate in the central distribution (with high 

density of data) and smoothed out the obvious left and right bumps in the left and right 

tail (with low density of data). 
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Due to the obvious advantages of adaptive kernel estimate, the study in this paper 

pertains to the use of adaptive kernel approach in density estimates. Figure 4 presents the 

non-parametric adaptive kernel density estimates of relative per capita personal incomes 

in 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995 and 2000. 

The shapes of the income distributions estimated for the provinces and states have 

changed significantly for different years. In the density estimates of 1950, 1955, 1960 

and 1965, there are no signs of multi-modality. In the density estimate of the 1970, there 

is strong evidence of bimodality with one peak at 1.0 and another peak at 0.8. The 

density estimates of 1975 and 1980 seem to be bi-modal too; however the two modes are 

very close. There is no sign of multi-modality in the density estimate of 1985. No multi-

modality is detected in the density estimate of 2000, but there is a bump in the lower left 

tail though not very strong. 

In order to effectively capture the changes of densities over 1950's, adaptive kernel 

density estimates of income distributions in 1950, 1955 and 1960 are presented in the 

upper left panel of Figure 5. Though the densities of all of these three years are unimodal, 

the shapes have changed a lot. By comparing the densities, a clear process of 

convergence can be observed, since the central mass of the density has increased 

substantially from 1950 to 1955 and from 1955 to 1960 as indicated by the height of the 

central peak which has increased from 1.1 in 1950 to about 1.4 in 1955 and to 1.5 in 

1960. This figure shows that the strong convergence that occurred during this period is 

mainly caused by the noticeable decrease in the density of the left tail (poor regions 
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Figure 4. Adaptive Kernel Density (Gaussian) of the relative per capita Income 

for Provinces and States in Canada and the U.S. over 1950 -2000 
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becoming better off) as well as the decrease in the density of the right tail (rich regions 

becoming relatively poorer). It is also worth mentioning that the regional incomes 

converge to 0.9 instead of the average 1.0 as indicated by the shift of the mode from 1.0 

in 1950 to 0.9 in 1955 and in 1960. 

Compared with the density of 1960, the density of 1965 does not change much though 

the mode has shifted back to 1.0 in 1965 from 0.8 in 1960. However, bimodality is 

clearly present in the density estimate of 1970. One may also notice that the process of 

convergence that occurred in 1950's still goes on because there is a clear right shift in the 

left tail and a decrease in the right tail in the density of 1970 compared with that of 1965. 

The densities of 1966, 1967, 1968 and 1969 17 are also bimodal by visual inspection. 

Therefore, a process of club convergence seems to emerge in the late 1960's. 

In 1975 there were further decreases in both the density of the left tail and the density of 

the right tail, indicating the number of poor regions have decreased by becoming 

relatively better off while the number of rich regions further decrease by becoming 

relatively poorer. But the density of the right shoulder has increased, indicating there is 

an increase in the number of upper middle income regions which may be due to the fact 

some rich regions have decreased by becoming relatively poorer and moving to upper-

middle income ranks. The bimodality in the density of 1975 is ambiguous. In 1980 a sign 

of divergence emerges since there are increases in both the density of left tail and the 

density of right tail, which result in a decrease in the central mass of density. Visual 

17 See Figure A2 in appendix. 
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inspection of the densities in 1970'5 18 indicates that the density in 1971, 1974, 1977 and 

1978 are bimodal too. In sum, there are both signs of convergence and divergence in 

1970's. 

The density of 1985 is clearly unimodal without any ambiguity of bimodality as shown 

in the density of 1980. A notable feature in the density of 1990 is that there is a clear left 

shift of the density mass and the central mode has shifted to the left to about 0.9 in 1985, 

indicating a large number of middle-income regions became relatively poorer than 

before. There is a slight right shift of the left tail of the 1980 density, signaling the poor 

regions become relatively richer than before. Visual inspection of the densities in the 

1980's19 indicates the density estimates of 1981, 1982 and 1989 are bimodal. In sum, 

same as in 1970's, both signs of convergence and divergence are present in the density 

estimates of 1980's. 

In 1995 two modes are present: a major mode around 0.9 and another around 0.7. There 

is a significant increase in both the density of the left tail and the mass of the right 

shoulder of the 1995 density, indicating a large number of poor regions have actually 

become relatively poorer than before and some middle income regions have become 

relatively richer and moved to upper-middle income ranks. The lower-middle income 

peak around 0.7 exhibited in the central mass of the 1995 density has completely 

disappeared in 2000, implying that the lower-middle income regions are vanishing. The 

central peak moved back to 1.0 in 2000 from 0.9 in 1995, signaling that a larger number 

18 See Figure A3 in appendix. 

19 See Figure A4 in appendix. 
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of middle-income regions have become relatively richer than before. The number of 

upper-middle income regions has decreased as indicated by the decrease in the density of 

the right shoulder of the 2000 density. The increase in the density of right tail is not 

significant, implying that the number of rich regions does not increase much. 

Furthermore, the increase in the central mass of 2000 may be partially due to the fact that 

quite a significant number of lower-middle income regions disappeared by becoming 

either poorer or richer as well as partially due to a large decrease in the upper-middle 

income regions. The number of the poor has increased as indicated by the appearing of a 

significant bump in the left tail of the density. An examination of the income data in 

2000 indicates that the low-income group (less than 60% of the average income in 2000) 

consists of six Canadian provinces: Prince Edward Island, New Brunswick, Nova Scotia, 

Saskatchewan, Quebec and Manitoba. This indicates that at the end of 1990's Canadian 

provinces lag further behind their U.S. counterparts. The densities of 1992, 1994 and 

199520 are bimodal by visual inspection. In sum, in the 1990's there is a strong indication 

that the number of the poor increased dramatically and a mode of the low-income group 

is likely to emerge. 

The presence of multi-modality in the income distributions will be more thoroughly 

investigated in the next few sections. 

20 See Figure AS in appendix. 
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Fig. 5. Change of the density shapes over different time periods 
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6. Multi-modality Tests 

Multi-modality test for a density estimate usually involves two steps: estimating the 

density and rejecting the null hypothesis of uni-modality. In many previous empirical 

studies, however, it is a quite common practice that a density is taken as bimodal as long 

as it displays two peaks. But showing multi-modality in a density estimate is one thing, 

and proving it is multi-modal is quite another. 

There exist numerous parametric methods of testing for multi-modality which, however, 

require parameters that need a priori assumptions. To avoid these a priori assumptions, 

nonparametric methods are applied to determine whether a density function is actually 

multi-modal. 

6.1 Silverman Test for Multi-modality 

The Silverman test for multi-modality was developed by Silverman (198 1) on the basis 

of bootstrapping to test the null hypothesis H0 that the densityf has n modes, against the 

alternative H1 thatf has more than n modes (n = 1, 2,.. .). Following Silverman (1981), 

the number of modes of densityf can be defined as: 

Mode(f) = # {x E R, If'(x) =0 and f"(x) <o} 

Silverman (1981) defined the n-th critical bandwidth h,,11O1 as: 
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Jill critical = inf Jh I Mode(f,) ≤ n} 

where 3 is an adaptive kernel density estimate off with overall bandwidth h. 

The statistic to be used is Mode(f,). Critical bandwidth is one of the key concepts in 

non-parametric bootstrap modality tests. Since the degree of smoothness depends on h, it 

follows that as h increases the number of modes will not increase. As an example, in 

Figure 6 the number of modes in the kernel density estimate of per capita personal 

income in 2000 is plotted against the window size h. It can be clearly seen that the 

number of modes either increases or remains unchanged when the window size h 

increases. 

Suppose the true underlying density has two modes. To test the null hypothesis H0 that 

the underlying density f has 1 mode against the alternative H1 that f has more than 1 

mode, h needs to be larger than h2,rjgjci because a considerable amount of smoothing is 

required in order to obtain a unimodal density estimate from a bimodal density. This 

suggests that ",critical can be used as a statistic to test the null hypothesis H0 thatj(x) has 

n modes versus the alternative H1 that J(x) has more than n modes. A large value of 

k,,criticai indicates more than n modes, thus rejecting the null. 
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Figure 6. Number of modes in the kernel density estimate as a function of 

window size h (year 2000) 

Silverman (198 1) developed the multi-modality test on the basis of the following 

theorem: 

Theorem21: Given any fixed X1, ..., X,,, let f,, be a kernel density estimate off with 

bandwidth h and the Gaussian kernel function K(.) . Then, Mode() is a right 

continuous decreasing function of h. 

21 Proof of this theorem could be found in Silverman (1981), Journal of Royal Statistical Society, Series B., Vol. 43, 
No. 1, page 98. 
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It follows immediately from this theorem, Mode(f,)> n if and only if h < hnrigjcai As 

per this theorem either h,1 critical or Mode(f1) could be used as a test statistic. 

Following Silverman (1981), Efron and Tibshirani (1993), Davison and Hinkley (1997) 

and Zhu (2002), the significance of h,jcrjtjcaj could be estimated from the data against its 

bootstrap distribution. The multi-modality bootstrap test procedure can be described as 

follows: 

1. For a data set (Y, , -  .., }, randomly draw with replacement B bootstrap samples 

of size n Ivb vbB 
1;LI )b=I 

2. Obtain B smooth bootstrap22 samples {x,. .., x } by computing 

= f b + (1+ k2 / &2)1/2 (yb - 7b + ?Icrilicali) 
a, critical 

where f  the mean of yb yb ,••, , and e, is assumed to be distributed 

(6.1.1) 

standard normal. The scaling factor I 1 + hcriticai /a 2 Y a2)112  scales the variance of the 11, 

bootstrap samples 2 so that it has the same variance as that of the original data; 

3. For b = 1, ..., B, obtain bootstrap estimates f j,bcrjt with the critical bandwidth 

ha critical computed as per adaptive kernel method. For each bootstrap sample, 

22 This is, rather than sampling with replacement from the data, a sampling from a smooth estimate of the population. 
For this reason it is called smooth bootstrap. 
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compute the n-th critical bandwidth it, critical 

4. Compute the achieved significance level (ASL)23 as: 

ALbOOf -#{ >1 JIB - i:, critical - n, critical 

5. Reject the null hypothesis of n modes in the underlying density whenever 

ALLbOOI is smaller than standard levels of significance. 

(6.1.2) 

In Table 1 the critical bandwidths and the p-values of the nonparametric bootstrap test 

are presented for each year from 1950 to 2000. In 1950 and 2000 the bootstrap test fails 

to reject the null of unimodality even at the 10 per cent significance level. In 1970 and 

1992 the unimodality hypothesis can be rejected at the 10% and 5% significance level 

respectively. Specifically, in 1992 only as few as 23 times hicriticai is greater than lll crjtjcal 

out of 500 bootstrap samples giving an achieved significance level of 0.046; in 1970 the 

ASLb00/ is 0.09. 

The null of unimodality can also be rejected at 10% significance level in 1951, 1967, 

1978, 1989, and 1994 and at 5% significance level in 1966, 1974 and1969. In total, 

unimodality is rejected in ten years out of the sample of 51 years. 

L 
23 The ASL orp-value of the test is: ASL boo1 Pr obfr )iz b n,critical > h,i,critical 

)1 
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Table 1. Nonparametric Bootstrap test for n-modality: critical bandwidth and the p values 

Year ,n=1 nz=2 m=3 

1950 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

0.0991 
(0.738) 
0.1120 
(0.078)* 

0.1463 
(0.306) 
0.0793 
(0.336) 
0.1028 
(0.138) 
0.0879 
(0.71) 
0.0697 
(0.354) 
0.0667 
(0.87) 
0.0846 
(0.472) 
0.0783 
(0.204) 
0.0808 
(0.164) 
0.0968 
(0.508) 
0.0796 
(0.736) 
0.0906 
(0.118) 
0.098 
(0.52) 
0.0992 
(0.458) 
0.1018 

(0.022)** 

0.0965 
(0.058)* 

0.1127 
(0.282) 
0.0983 

(0.034)** 

0.0791 
(0.09)* 

0.0851 
(0.386) 
0.0514 
(0.418) 
0.0534 
(0.370) 
0.0722 

(0.036)** 

0.0926 
(0.278) 
0.0662 
(0.316) 
0.0560 
(0.416) 
0.0709 
(0.092) 
0.0611 
(0.328) 
0.0655 
(0.172) 
0.0628 
(0.564) 
0.062 
(0.136) 
0.06 

(0.514) 
0.0647 
(0.428) 
0.0747 
(0.23) 
0.0815 
(0.212) 
0.0684 
(0.47) 
0.0646 
(0.476) 
0.0755 
(0.31) 
0.0645 
(0.106) 
0.0514 
(0.742) 
0.0606 
(0.472) 
0.0655 
(0.392) 
0.0584 
(0.55) 
0.0508 
(0.328) 
0.0546 
(0.122) 
0.0467 
(0.598) 
0.0530 
(0.074) 
0.0421 
(0.556) 

0.0508 
(0.550) 
0.0540 
(0.678) 
0.0445 
(0.43) 
0.0678 
(0.144) 
0.0552 
(0.152) 
0.0645 
(0.204) 
0.0540 
(0.106) 
0.0499 
(0.496) 
0.0591 
(0.17) 
0.0465 
(0.588) 
0.0653 
(0.136) 
0.0724 
(0.002) 
0.058 
(0.28) 
0.0555 
(0.358) 
0.07 

(0.008) 
0.0612 
(0.178) 
0.0485 
(0.178) 
0.0336 
(0.76) 
0.0357 
(0.574) 
0.0452 
(0.562) 
0.0506 
(0.088) 
0.0371 
(0.774) 
0.0359 
(0.326) 
0.0449 
(0.026) 
0.0309 
(0.406) 

Year rn=1 m=2 m=3 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

0.0658 
(0.592) 
0.0548 
(0.802) 
0.0832 
(0.294) 
0.0635 
(0.082)* 

0.0568 
(0.698) 
0.0797 
(0.398) 
0.0756 
(0.37) 
0.0776 
(0.358) 
0.0665 
(0.49) 
0.0547 
(0.144) 
0.0593 
(0.67) 
0.0636 
(0.554) 
0.0623 
(0.126) 
0.0742 
(0.458) 
0.071 

(0.066)* 

0.0576 
(0.138) 
0.0572 
(0.586) 
0.063 

(0.046)** 

0.08 15 
(0.324) 
0.0679 
(0.066)* 

0.0775 
(0.448) 
0.055 1 
(0.344) 
0.0711 
(0.114) 
0.0657 
(0.21) 
0.0687 
(0.61) 
0.0708 
(0.190) 

0.0512 
(0.124) 
0.0293 
(0.59) 
0.048 
(0.124) 
0.0387 
(0.748) 
0.0402 
(0.698) 
0.0351 
(0.644) 
0.0345 
(0.582) 
0.04 11 
(0.67) 
0.0372 
(0.72) 
0.0431 
(0.13) 
0.0519 
(0.028) 
0.0459 
(0.548) 
0.0349 
(0.876) 
0.0337 
(0.926) 
0.048 
(0.436) 
0.0573 
(0.176) 
0.0534 
(0.014) 
0.033 
(0.426) 
0.0451 
(0.358) 
0.0477 
(0.456) 
0.0521 
(0.398) 
0.0495 
(0.13) 
0.0485 
(0.596) 
0.06 
(0.08) 
0.0634 
(0.072) 
0.0515 
(0.614) 

0.0436 
(0.056) 
0.0274 
(0.688) 
0.0452 
(0.196) 
0.0244 
(0.702) 
0.034 
(0.63) 
0.031 
(0.598) 
0.0336 
(0.296) 
0.0396 
(0.368) 
0.0216 
(0.828) 
0.0319 
(0.294) 
0.0379 
(0.094) 
0.0351 
(0.542) 
0.0344 
(0.2) 
0.0331 
(0.21) 
0.0361 
(0.484) 
0.0347 
(0.44) 
0.0317 
(0.148) 
0.028 
(0.686) 
0.0368 
(0.366) 
0.0334 
(0.702) 
0.0403 
(0.118) 
0.0407 
(0.386) 
0.047 
(0.046) 
0.0438 
(0.486) 
0.0432 
(0.184) 
0.0467 
(0.422) 

Note: Numbers without bracket represent critical bandwdths, numbers in bracket stands for p-values and in indicates 
the number of modes, * indicates unimodality is rejected at the 10% significance level and ** indicates the 
unimodality is rejected at 5% significance level. 
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The conservatism of Silverman test is reflected by the fact some density estimates 

showing multi-modality could not be detected by the Silverman test. Silverman (1983) 

acknowledged that his test might be conservative and suffers from low power in that it 

could fail to reject the null hypothesis when it is false, thus underestimating the number 

of modes. But a merit of this is that this test is unlikely to falsely reject a null hypothesis 

when it is true. 

It can also be noted that there seems two groupings of bimodality distributions: one 

around 1966 - 1970 period and the other one around 1989 - 1994 period. This suggests 

that bimodality distributions tend to move continuously over a period of time. 

This paper chooses to use a combination of Silverman test plus visual inspections of the 

density estimates to determine the number of modes in a distribution. Since the 

Silverman test indicates that income distributions in 1951, 1966, 1967, 1969, 1970, 1974, 

1978, 1989, 1992 and 1994 are multi-modal, and a visual inspection of the density 

estimates in these years also confirms the results from the Silverman test, it can be safely 

concluded that bimodality exists in the income distributions of these years. 

6.2 Dip Test of Unimodality 

It is worth mentioning that another way to test multi-modality is the DIP test developed 

by J. A. Hartigan and P. M. Hartigan (1985) who defined the DIP as the maximum 

difference between the empirical distribution function and the unimodal distribution 
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function that minimizes this maximum difference. 

Let {xj, ... ,x,1 } be a data set from a densityf(x), and F(x) be the empirical cumulative 

distribution function of the data. DIP test could be utilized to test iff(x) is unimodal. 

Following Hartigan and Hartigan (1985), the DIP of  is defined as 

D = D(F,U) suplF(x) - U(x)I 
x 

where U is the best fitted unimodal cumulative distribution function to F. 

However, the DIP test is designed to test the null of unimodality against the alternative of 

multi-modality. Thus DIP could not be used to test the exact number of modes once the 

null is rejected. In addition, the DIP test is difficult to implement and rather conservative. 

The Silverman test, on the other hand, has the advantage of being able to test the null of 

exactly n modes against the alternative of more than n modes. Moreover, the Silverman 

test has much higher power than the DIP test. Therefore, the DIP test is not applied in 

this paper. 

7. Income Distribution Dynamics 

Figure 7 tracks the evolution of the distribution of the relative per capita personal income 

across the 59 US-Canada regions through the period 1950 - 2000. The middle line shows 

the 50th percentile (median) of the relative income distribution in each year. The top and 
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bottom lines show, respectively the 75th and 25th percentiles of the relative income 

distribution. The distance between .75th percentile line and the 2s Ih percentile line 

indicates the inter-quartile range (IQR). The IQR is defined as 

IQR =Q- Q 

where Q indicates the 75 Ih percentile and Qj represents the 25th percentile. 

From 1950 to 1970, the 25th percentile group experienced a significant increase in its 

relative income while the 75th percentile and the 50th percentile remained approximately 

unchanged. Over the following period 1971-1990, the relative incomes of the 

percentile group and the 5O percentile group were fairly stable without significant 

change while the relative income of the 25th percentile group became stable after a sharp 

increase in the beginning of this period. In the 1990's, the 25th and the 50th percentile 

group experienced some decreases and the 75th percentile group was rising. 

Another fact derived from Figure 7 is that the cross-sectional distribution of income is 

quite tight, centered on approximately 0.9. The distance of the lines from each other also 

provides important information about the income gap. The closer are the lines, the lower 

is the income gap. Figure 7 suggests personal income gap in the U.S. and Canada 

experienced a period of rapid decrease from the 1950's to the 1970's, but slow increase 

in the 1990's. This finding is consistent with the previous findings in Section 5. 
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Figure 7. Evolution of Relative Income 
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7.1. Three-Dimensional Representations: The Stochastic Kernel24 

Quah (1996) argued that a stochastic kernel (as well as its contour) is a graphical 

representation of the transition probabilities with the advantage that it gives estimates for 

continuous states of transition probabilities. 

Let {x,, ... , x,1} be a set of income data at time t from densityj (x), and after period k 

the income changes to {yj, ... , y,} and its corresponding density evolves toj+k(y). Then 

24 The stochastic kernel is a conditional density function. Estimation of the kernel is carried out by first estimating the 
joint density function of the process at time t and 1+ k and then normalizing it by the marginal in 1. See Quah 
(1996a). 
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the relation between these two densities can be described by25: 

1+k (Y) = f Tk (Y Ix)f(x)dx 

where Tk(ylx) is the stochastic kernel (transition probability) that could be used to 

describe the income distribution from time t to time t+k. 

(7.1) 

Following Quah (1997), a stochastic kernel conveys important information on income 

distributions. In this paper, the relative incomes in period t and t+ k are respectively 

represented along the t axis and the t+ k axis. The 45-degree diagonal line represents 

constant income. Thus, points lying along the 45-degree line indicate that relative 

incomes remain unchanged, while points to the left (right) of the diagonal signal a rise 

(decrease) in relative incomes between any two periods studied. Unimodality in a 

stochastic kernel indicates convergence while multi-modality may indicate club 

convergence or divergence. 

Furthermore, the tendency to convergence is also indicated if most of the stochastic 

kernel mass becomes more parallel to the t axis by making a clock-wise movement 

around the center of the 45-degree line while the tendency to divergence is implied if 

most of the stochastic kernel mass becomes more vertical to the t + k axis by making a 

counter-clockwise movement around the center of the 45-degree line. 

7.2. Empirical Evidence from the Stochastic Kernel 

25 First order Markov process is assumed here. 
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Figure 8 Figure 15 present the stochastic kernel and contour plots for the 59 regions in 

each of the three sub-periods: 1950 - 1970, 1971 - 1990, 1991 - 2000 and the entire 

study period (1950 - 2000)26. 

The stochastic kernel for the 1950-1970 period is characterized by multi-modality. Two 

central peaks are present: one clear middle-income mode at about 1.0 and another less 

clear lower-middle income mode at about 0.8. Most mass of the stochastic kernel does 

not run parallel to the 45-degree line, thus intra-distributional mobility in regional 

income rankings is rather active throughout this period. Though most mass of the two 

central peaks sits on the 45-degree line, neither the high-income mode nor the low-

income mode is centered on the 45-degree line, instead both exhibit clockwise movement, 

thus signaling a strong tendency of convergence: the rich becomes relatively poorer and 

the poor becomes relatively richer over the six year horizon. In sum, mobility and 

convergence are strongly indicated by the stochastic kernel of this period. The evidence 

of convergence exhibited by the stochastic kernel of this period is consistent with the 

previous results in section 5.2 and 5.3. 

In the 1971-1990 period, the middle-income mode once clearly presented in the 1950-

1970 stochastic kernel has disappeared while the lower-middle income mode becomes 

significant and clear. Though most of the central mass of the stochastic kernel is 

approximately on the 45-degree diagonal (actually some portion of it is below the 

diagonal), most of the low-income peak is above the 45-degree line and actually located 

26 The stochastic kernels are of transitions of 6 years, 6 years, 3 years and 15 years respectively for each study period. 
Transition of years can be set at other numbers and will give similar results. 
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to the left of the diagonal. Most poor regions were becoming richer and caught up with 

the lower-middle income regions while most middle-income regions remained 

unchanged and a small number of them even fell back in their income ranks. As a result 

of this middle-income regions and low-income regions tend to converge to the lower-

middle income peak. The high-income group is splitting (since while most portion of it is 

below the 45-degree diagonal a small portion of it is above the diagonal), most of them 

become poorer than before while only a small portion may become richer than before. 

The underlying converging force is not powerful as that in 1950-1970 but still evident. 

Since most of the middle-income peak is on the 45-degree line, mobility is not very 

significant. In sum, the 1971-1990 period shows less mobility and convergence than the 

1950-1970 period. 

The most striking feature exhibited by the stochastic kernel in the 1991-2000 period is 

immobility as the whole mass of the stochastic kernel is nearly perfectly symmetric on 

the 45-degree line. However, the obvious immobility in the New Age is not a complete 

picture. A little noise to the nearly perfect symmetric picture is that the poor income 

cluster is not on the 45-degree line, instead it is below the diagonal and exhibits a clear 

counter-clockwise movement. This indicates that while most regions remain where they 

are in their income ranks the poor regions are actually becoming even poorer. Thus the 

income gap between the average and the poor regions is actually increasing - an evidence 

of divergence. Another noticeable feature is that the low-middle-income peak exhibited 

in the 1971-1990 period has disappeared in this period, and a middle-income peak 

emerges again. This may be due to a significant number of the lower-middle income 
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regions vanishing by becoming either poorer or richer. 

The fact that the poor regions become even poorer in the 1990's is somewhat surprising 

and contradictory to the conventional wisdom that suggests income level for every region 

should increase due to the remarkable economic expansion caused in part by the 

extensive application of IT technology everywhere through this period. This may be 

partially due to the fact that the poor regions are unable to make sufficient IT investments 

or attract highly skilled IT professionals due to their financial resource limitations. 
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Figure 10. Stochastic Kernel 1971-1990 
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Figure 12. Stochastic Kernel 1991-2000 
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At this point, one would like to know how the stochastic kernel of the whole study period 

1950-2000 looks like. Figure 14 and figure 15 shows the stochastic kernel of the relative 

income distribution between 1950 and 2000. There are two distinct features in the 

stochastic kernel of the entire period: twin peaks (bimodality) - the average income peak 

at 1.0 and the low-middle income peak at about 0.8. Since most mass of the stochastic 

kernel is on the 45-degree line, one can conclude mobility of income distributions is not 

very strong throughout the whole study period. It seems regions tend to converge to 

different steady states and exhibit a form of club-convergence in the long run. 

7.3. Markov Transition Probability Matrix (MTPM) 

Another traditional nonparametric way to describe income distribution dynamics is 

transition probability matrix, which is actually the discrete version of the stochastic 

kernel. 

A simple first order Markov chain can be described as 

xI+1 = 

where X is a vector giving the number of economies in each income state at time t and 

X+ is a vector a period later. If the probabilities of the economies moving between 

different income states from period t to t+1 can be described by M.1-1, then M,+1 is a 

transition probability matrix. In practice, a transition probability matrix is estimated by 

using discrete states of income distributions. 

49 



Following Quah (1993), the first column in a transition probability matrix table gives the 

total numbers of observations in a specific state in a study period, the first row provides 

the upper points of the corresponding cells. Each row i gives the estimated probabilities 

of staying in that state i and of moving from state i to other states. The last row presents 

the ergodic distribution. Numbers along the diagonal indicate the level of immobility 

while off-diagonal numbers imply the degree of mobility. 

7.4 Results from MTPM 

Table 2 presents one-year horizon transition probabilities between different income states 

for the period 1950 - 2000. 

The values in the main diagonal of Table 2 for the one-year transition are around 90%, 

indicating a high degree of immobility during this period of study. This finding is 

consistent with the previous results: the stochastic kernel for the period 1950 - 2000 

indeed exhibits a low degree of mobility. 

Mobility is considerably higher in the second state than in other states of the income 

distribution. It shows that a region in state 2 has 10% probability to move to the lower 

state and 11% probability to move to the higher state 3. This indicates that there is a 

strong tendency for the upper-low-middle income regions to move out of their initial 

income states. 
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Table 2. Markov Transition Probability Matrix, 1-Year Horizon (1950 - 2000) 

Number 
Upper endpoint 

0.85 0.95 1.1 1.6 

(931) 0.94 0.06 

(536) 0.10 0.79 0.11 

(855) 0.07 0.90 0.03 

(563) 0.06 0.94 

Ergodic 0.292 0.191 0.325 0.193 

Table 3. Markov Transition Probability Matrix, 5-Year Horizon (1950 - 2000) 

Number 
Upper endpoint 

0.85 0.95 1.1 1.6 

(873) 0.83 0.15 0.02 

(536) 0.17 0.57 0.25 

(855) 0.02 0.12 0.77 0.09 

(563) 0.01 0.14 0.85 

Ergodic 0.233 0.185 0.356 0.226 

The ergodic distribution was reported in the last row of the table. The ergodic 

distribution indicates the long run tendency of an economy staying in a given state 

regardless of its initial state. The results indicate that over the long run, the probability of 

an economy staying in the 3' state is the highest, a little over 32% and the probability of 

landing in the 1st state is the second highest, nearly 30%. This is encouraging as it 
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indicates that overall the middle-income regions are stable in the long term in the U.S 

and Canada despite a seeming form of club convergence. 

Similar results are presented in Table 3 which gives a five-year horizon transition 

probability between different income states for the same period. It shows that the degree 

of mobility is higher over a five-year transition period. The results for the second state 

group are still noticeable in that they show a probability of a region moving out of its 

own initial state is much higher than that of any other regions. 

It is noteworthy that Table 3 shows the probability that an economy in the fourth state 

has a one percent probability to move to the first sate. An examination of the data shows 

that it is most likely that Montana, which started as a high-income region in 1950, has 

suffered from one of the worst economic contractions and experienced a constant 

decrease in per capita personal income from 1960's and fell into the low-income group 

by the end of 1990's. 

In sum, the results from Markov transition probability confirm the previous findings in 

section 7.2. 

8. Conclusions and Suggestions for Future Research 

Several nonparametric methods, namely kernel density, Silverman test, stochastic kernel 

and Markov chain, have been used to examine the per capita personal state (provincial) 
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income distribution in the U.S and Canada in this paper. 

The Silverman test shows that the state (provincial) personal income distribution across 

the province and states in the U.S. and Canada has been bimodal in 1970 and 1992 and 

unimodal in 1950 and 2000. 

Both stochastic kernel and Markov transition probability matrix are applied to examine 

the long run state income distribution dynamics, such as convergence and mobility across 

the provinces and states in the U.S. and Canada over the period 1950-2000. 

There are evidence of convergence and mobility for the period 1950 - 1970. Multi-

modality has characterized the 1971-1990 period, the 1991-2000 period and the entire 

study period (1950 —2000). The 1971-1990 period shows weak sign of convergence and 

mobility. New Ages exhibits almost perfect immobility. The entire study period shows a 

form of club convergence. 

Income gap experienced a rapid decrease in the 1950-1970 period and kept almost 

unchanged in the 1971-1990 period. An obvious reversal to this general trend is in 1991-

2000, a decade marked with remarkable economic expansion and the advent of a "New 

Economy"; most poor regions become even poorer than before. 

This paper shows the merits of several nonparametric methods in analyzing income 

distributions when multi-modality is present. Most states or provincial governments 
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make polices to eliminate regional income disparities on the basis of results from 

classical parametric methods, but this may be inappropriate because, for example, a mean 

value (first moment), such as of income, from a bimodality density distribution does not 

provide the same inferences as that from a unimodality density distribution. 

One limitation of this paper is that it does not provide economic rationales as why 

bimodality may or may not occur in different periods. The goal of further research will 

be to apply the nonparametric methods employed in this paper to analyze the per capita 

personal income distribution conditional on variables (such as saving rates, population 

growth rates, trade openness, physical neighbors and taxation levels etc.) that can provide 

additional information on income distributions. 
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Appendix 

Table Al. Provinces and States in Canada and the U.S.27 

Region Code 

Prince Edward 1 
Island 

New Brunswick 2 

Nova Scotia 3 

Saskatchewan 4 

Quebec 5 

Mississippi 6 
Arkansas 7 
Alberta 8 

Manitoba 9 

Alabama 10 
South Carolina 11 

Kentucky 12 
Tennessee 13 
Ontario 14 

British Columbia 15 

West Virginia 16 
Georgia 17 

North Carolina 18 
Louisiana 19 
Oklahoma 20 
Vermont 21 
Maine 22 

New Mexico 23 
Virginia 24 

South Dakota 25 
Florida 26 
Idaho 27 

New Hampshire 28 
Utah 29 

Region Code 

North Dakota 

Texas 31 

Arizona 32 

Missouri 33 

Hawaii 34 

Minnesota 35 
Kansas 36 

Wisconsin 37 

Colorado 38 

Indiana 39 

Iowa 40 
Pennsylvania 41 
Rhode Island 42 

Nebraska 43 

Ohio 44 

Maryland 45 
Montana 46 

Massachusetts 47 
Oregon 48 
Michigan 49 
Wyoming 50 
Washington 51 
New Jersey 52 

Illinois 53 
New York 54 
California 55 
Connecticut 56 
Nevada 57 
Delaware 58 
Alaska 59 

30 

27 Canadian provinces are in bold letters. Canadian province Newfoundland is not included in this paper as 
Newfoundland joined Canada in 1950, it has long been isolated from the main Canada economy and its data may 
suffer from major structure changes and are unreliable. 
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Figure A2 
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Figure A3 
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Figure A4 
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Figure A5 
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Computer Code 

>> Silverman Test 

---code starts here----

# This set of S-Plus functions is for testing significance 
# for multimodality 
# using the algorithm described by Efron & Tibshirani 1993. 
# It is still under development; please report bugs and 
# suggestions for improvement to Aaron Ellison 
# (aellison@mtholyoke.edu). 
# Written for S-Plus version 3.x, 4.x, 2000 for Windows 
# Copyright (c) 1997, 2000 by Aaron M. Ellison 

bootmode <- function(y, nm, nboot) 

{ 
# Computes Achieved Significance Level of bootstrap test 
# statistic for multimodality 
# Algorithm 16.3 of Efron & Tibshirani 1993 (An 
# introduction to the bootstrap) 
# Requires as input data vector y, number of modes to test 
# for nm, and number of bootstraps nboot 
# Calls function critmode to calculate critical value of 
# window size hk 
# Calls function smoothboot to implement equation 16.22 of 
# Efron & Tibshirani 
# Calls function nummodes, a modification of Tibshirani's 
44 nmodes, that returns only the number of modes 

ystar <- matrix(sample(y, size = length(y) * nboot, replace 
= T), 
nrow = nboot) 

hk <- critmode(y, nm) 
xstar <- smoothboot(y, ystar, hk) 
modelist <- apply(xstar, 1, nummodes, hk) 
omode <- nummodes(y, hk) 
asi <- sum(modelist - omode)/nboot 
return (asi) 

} 

critmode <- function(y, modenum) 

{ 
#calculates critical window size hk for a given data vector 
44 y and requested number of modes modenum. Based on 
# windows of .5 to .01 of data width 
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# 
start <— 
imodes < 
for(i in 
start <— 
imodes < 

} 

NULL 
- NULL 

1:99) { 
c(start, ((max(y) - min(y))/(i + 1))) 

- c(imodes, nummodes(y, start[i])) 

#start is set of window values for nummodes 
#imodes is set of modes returned from nummodes for each 
#value of start 

hk <— min(start[imodes == modenum]) 
return (hk) 

} 

smoothboot <-function(y, ystar, hk) 

{ 
# 

44: 

# 

does a smoothed bootstrap, a la Efron & Tibshirani 1993, 
eqn. 16.22 requires as input data vector y, bootstrapped 
matrix ystar, and window size hk 

vardata <— var(y) 
lendata <— length(y) 
xstar <— mean(ystar) + sqrt(1 + hkA2/vardata) * 

(ystar — mean(ystar) + hk * rnorm(lendata)) 
return (xstar) 

} 

nummodes <— function(y, h, w = rep (1, length (y))) 

finds number of modes- Bradley Efronts method 
modified from code (function nmodes) supplied by Rob 
Tibshirini to return only number of modes and to 
accommodate generic histogram range 
calls function kdens takes as arguments data vector y and 
window size h 

a cz— min (y) 
b <— (max(y) — min(y))/40 
xx <— a + (0:40) * b 
temp <— kdens(y, h, xx = 

junk <— temp$y 
xx <— temp$x 
n <— length(junk) 
mcount <- 0 
P05 <- NULL 
for(i in 1:39) { 
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if( (junk [i + 1] > junk [±]) & (junk[i + 1] > junk [± 

} 

mcount <- mcount + 1 
pos <- c(pos, xx[i]) 

} 
} 
return (mcount) 

kdens <- function(x, h, w = rep(1, length(x)), xx = NULL) 

{ 
# returns gaussian kernel at np points 
# code written by Rob Tibshirani 

if(!is.null(xx)) { 
np <- length(xx) 

} 
if(is.null(xx)) 
np <- 100 
xx <- seq(min(x) - 3 * h, max(x) + 3 * h, length = 

np) 

} 
y <- rep(0, length(xx)) 
n <- length(x) 
for(i in 1:np) 
y[i] <- (l/(n * h)) * sum(w * dnorm((xx[i] - x)/h)) 

} 
return(x = xx, y) 

} 

---code ends here---

63 



The following S-Plus\R procedure is used to do the 
Silverman test in thesis. 
## S-plus is a commercial statistical software while R 
## statistic software is available at 
## http://cran.stat . ucla.edu/  
## Copyright © Yibing Wang (2003) 
## Contact wang_yibing@yahoo.com for permission to use this 
## program 
## Program starts here 

nbmodes <- function (x, k) 
## Function to calculate the number of modes 
#44: 

{ 
zl=seq(min(x) ,max(x) ,length=2*length(x)) 
modes <- akj(x,zl,h=k) 
## Calculates the adaptive kernel 
## Use package quantreg available at 
#44: http://cran.ucla.edu/ 
modes <- diff (diff (modes$dens) / abs (diff 

(modes$dens))) 
modes <- rep(l, length(modes)) [modes==-2] 
modes <- sum (modes) 
return (modes) 

} 

hcrit <- function (x, n, e=.0001) 
## Function to calculate the critical bandwidth 

{ 
minb <- mm (abs (diff (x))) 
maxb <- (max (x) - mm (x))/2 
hb <- maxb 
lb <- minb 
while (abs(hb-lb)>e) 

{ 
modes <- nbmodes (x, lb) 
lb <- hb 
if (modes > n) 

{ 
mm <- hb 
hb <- (hb + maxb)/2 

} 
else 

{ 
maxb <- hb 
hb <- (hb - minb)/2 

} 
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} 
return (hb) 

} 
smoothboot <-function(y, ystar, hk) 

#44 Function to make smoothboot 
#44 Use Aaron Ellison's methods 

{ 
vardata <- var(y) 

lendata <- length(y) 
xstar <- mean(ystar) + sqrt(1 + hkA2/vardata) * 

(ystar - mean(ystar) + hk * rnorm(lendata)) 

return (xstar) 

} 

bootmode <- function(y, n, nboot) 

## Function to calculate ASL value 
#44 Use Aaron Ellison's methods 

{ 
ystar <- matrix (sample (y, size = length(y) * nboot, 

replace = T), nrow = nboot) 

hk <- hcrit(y, n, e=.000l) 

xstar <- smoothboot(y, ystar, hk) 

modelist <- apply(xstar, 1, nbmodes, hk) 

omode <- nbmodes(y, hk) 

asi <- sum(modelist > omode)/nboot 

## Corrections are made here 
return (asi) 

} 

## Program ends here 

>> Stochastic Kernel 3-D Procedure 

@The following GAUSS procedure, NPSK © Yibing Wang 

estimates stochastic kernels@ 

@ Contact wangyibing@yahoo.com for permission to 

program@ 

@ This program is used to draw 3-ID Figure 8 15@ 

@Program starts here@ 

library pgraph; 

load data[119,2] = GoldenAgelO.txt; 
@Load data@ 

y = data[2:119,.]; 

yi = reshape(y, rows(y), 2); 

yl=seqa(O.3,O.03,45) 

@ Create grids@ 

(2003) 

use this 
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y2=seqa(0.3,0.03,45) 

h=0.08510.067; 

@ Bandwidth® 

pl=pdfn((yl-yi[. ,11 ') ./h[1]) 

p2=pdfn( (y2-yi [. ,2] ') ./h[2J') 
f21= (pl*p2') . /sumc (p1 I) 

@ Calculates conditional probability® 

@ Gratitude is given to Mark Trede for his advice on how to 

calculate f21® 

f22=f21/0 .067; 

ndpclex; 

graphset; 

pdate=""; 

_paxht=0 .2; 

_pnumht=0 . 15; 

_pframe={0, 0}; 
xlabel(T1Re1ative Income in t"); 

ylabel("Relative Income in t+6"); 
ziabel (Tistochastic Kernel") 

surface (yl' , y2, f22'); 

@ Draw a 3-D figure® 

end; 

© Program ends here® 

>> Stochastic Kernel Contour Procedure 

©The following GAUSS procedure, NPCT © Yibing Wang (2003), 

estimates contours of stochastic kernels® 

@Contact wangyibing@yahoo.com for permission to use this 

program® 

@This program is used to draw the corresponding contours in 

Figure 8 15@ 

@Program starts here® 

library pgraph; 

load data[119,2] = GoldenAgelo.txt; 

®Load data@ 

y = data[2:119,.]; 

yi = reshape(y, rows(y), 2); 

yl=seqa(0.3,0.03,45) 

y2=seqa(0.3,0.03,45) 

h=0.08510.067; 

pl=pdfn( (yl-yi [. 111 ') . /h[1I ) ; 
p2=pdfn( (y2-yi [. ,2] ') ./h[2]) ; 

f21= (pl*p2') . /sumc (p1'); 

f22=f21/0 .067; 
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ndpclex; 

graphset; 

begwind; 

makewind(6.5,6.5,1.3, 0.1,1); 

@Create windows® 

makewind(6.5,6.5,1.3,0.l,1); 

setwind(l); 

_pdate=" 

_paxht=0 .2; 

_pnumht=0 .15; 

ztics(1,4,0.5,O) 
xlabel("Relative Income in t"); 
ylabel(TtRelative Income in t+6"); 

contour (yl' ,y2, f22') ; 
@Draw contours® 

setwind(2); 

_pltype={6}; 

xy(yl,yl) 

®Draw diagonal® 

endwind; 

@Program ends here® 

>> Markov Transition Probability Matrix Procedure 

The following procedure estimates Markov transition probability matrix by using tsrf 
(available at http://econ.lse.ac,ulci-dquah/tsrf.html) from D. Quah. 

"Program starts here 
tsrf[1]->> dataFile -n suc4rr.dtl; 
** Read file name 
tsrff 2]->> calendar -f 1; 
** Calendar the data 
tsrf[3]->> crsuSmpl 1 to 59; 
** Cross-section dimension of the data 
tsrf[4]->> timeSmpl 1950:1 to 2000:1; 
** Time dimension of the data 
tsrf[5]->> readData -rf -k 1 -n th -names -verbose; 
** Load data 
tsrf[ 6]->> timeSmpl 1951:1 to 1999:1 
** Time sample 
tsrf[7]->> transProb -rf-stationary -nth -nStates 4 -lag 1 -gridSpecify (0, 0.5, 0.7, 0.9, 
1.1, 1.5) 
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>> Adaptive Kernel Density Procedure 

## The following R procedure is used to draw four kernel 
diagrams within a panel. 

## Program starts here. 

TRUE, sep = 

## Load data 
attach(z) 
xl = sort (y1950) 

x2 = sort (y1970) 

x3 = sort (y1992) 

x4 = sort (y2000) 
bi = seq(0.4,l.6,length=2*length(xl)) 

## Creates grids 
b2 = seq(O.4,l.6,length=2*length(x2)) 

b3 = seq(0.4,l.6,length=2*length(x3)) 

W = seq(0.4,1.6,length=2*length(x4)) 

library (quantreg) 

## Package quantreg is available at 
## http://cran.stat.ucla.edu/  
xdl <- akj (xl,bl) 

xd2 <- akj (x2, b2) 

xd3 <- akj (x3, b3) 

xd4 <- akj (x4, W) 

par(mf row = c(2,2)) 

plot(bl,xdl$dens,type="l", xlim=range(min=0.3, max=1.7), 
ylim=range(min=0, max=2.4) , xlab=" ", ylab=" ", main=" ") 

lines(b2, xd2$dens, lty=5) 

legend(1.2, 2.3, c("1950", "1970"), lty=c(1,5)) 
plot(b2,xd2$dens,type="l", xlim=range(min=0.3, max=1.7), 
ylim=range(min=0, max=2.4), xlab=" ", ylab=" main=" It) 

lines(b3, xd3$dens, lty=5) 

legend(l.2, 2.3, c("1970", "1992"), lty=c(1,5)) 

plot(b3 ,xd3$dens,type="l", xlim=range(min=0.3, max=1.7), 
ylim=range(min=0, max=2.4) , xlab=" ", ylab=" ", main=" II) 

lines(b4, xd4$d.ens, lty=5) 

legend(1.2, 2.3, c("1992", "2000"), lty=c(1,5)) 

plot(bl,xdl$dens,type="l", xlim=range(min=0.3, max=1.7), 
ylim=range(min=0, max=2.4), xlab=" ", ylab=" 11 main=" II) 

lines(b4, xd4$dens, lty=5) 

legend(1.2, 2.3, c("1950", "2000"), lty=c(1,5)) 

z = read.csv("C:\\Temp\\lJSCAmobilityComplete.csv", header 
quote="\"", dec=".", fill = TRUE) 

## Program ends here. 
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