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Abstract 

In this thesis we study the union of two tools of computation: quantum information 

and non-determinism. We begin by showing that the class of languages QMA, which 

characterizes bounded error non-deterministic quantum polynomial time, is robust 

in a stronger sense, and we present some applications of this result. Second we will 

show how the quantifier characterization of non-determinism can be extended into 

the quantum realm, by treating both classical and quantum non-determinism. To 

make this extension we will shift our focus to promise problems instead of the stan-

dard decision problems. In order to characterize quantum non-determinism we will 

introduce the concept of quantum sets, an analogue of classical languages. Finally 

we will show new oracle separations regarding the quantum non-deterministic classes 

that we consider. 
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Chapter 1 

Introduction 

The science of computing is necessarily a study of models of computation, whether 

the model sits on your desk, or has an infinite quantum tape. We study what these 

models can do and we try to figure out if there is anything they can not do in an 

attempt to determine what makes the best model. The discovery of the halting 

problem and the set of computable languages led to the Church-Turing thesis which 

states that, at least by this measure, all models were created equal. However there 

exist vastly more measures that can be applied to determine the best model, and 

complexity theory is rich with subclasses of the computable languages, each defined 

by its own specific model of computation. We consider models that are limited by 

space or time, or number of gates, or depth of circuit. We consider models that have 

access to infinite look up tables, and all knowing confessors. Each of these models 

selects a specific class of languages and each of these classes illustrate the power 

of the computational models that define it. Models that select a larger subset of 

the computable languages can be considered more powerful than those that select 

smaller sets, and we can identify different hierarchies of models of ever increasing 

power. 

Sometimes we discover that two different models of computation select the same 

set of languages. We find that concepts like "non-determinism" and "classical ran-

domness" can be defined in numerous ways and still select the same class of lan-

guages. Discovering that there are numerous ways to define a particular class is 
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useful not only for using the class in future research, but also grants a legitimacy 

to the model being studied. For instance, the fact that non-deterministic classes 

generally have a number of definitions suggests that non-determinism is a unique 

property of models of computation that deserves understanding. Also by having 

an array of identified definitions for an abstract tool of computation we can speak 

about that tool without reference to a specific model which allows us to compare 

these abstract tools at a higher level than on the specific class to class basis. Thus 

we can compare the power of randomness to the power of non-determinism and form 

judgments like "Unbounded classical randomness is at least as powerful as error free 

non-determinism." 

Quantum information added another layer to the classes that already existed. 

Almost every classical class has a potential quantum analogue, so long as the model 

used to define that class has a quantum variant. Thanks in part to excitement 

generated by Shor's polynomial time algorithm for factoring integers, these classes 

have started being studied in earnest. Quantum is another abstract tool of com-

putation, characterized primarily by quantum circuits, but also characterized by 

quantum Turing machines. The majority of complexity classes are defined using the 

Turing machine as the base model of computation, subject to various restrictions, 

and potentially with added functionality. By changing the base model to quantum 

Turing machines, but leaving all other concerns unchanged, we create a new level of 

quantum complexity classes, that is not known to collapse to the classical level. In 

the remainder of this Chapter we define a number of primary classes that are de-

fined by the Turing machine and its variants, under restrictions of polynomial time 

computation. We consider the tools of non-determinism as well as bounded error 
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and exact computation in combination and in comparison to the quantum models. 

These tools combine to create five classical complexity classes and their five quantum 

analogues. 

We begin our study with the quantum class QMA, which characterizes bounded-

error non-deterministic quantum polynomial time. Bounded error classes commonly 

have a property known as robustness that means the specific bound on the error is 

flexible within a range. It is already known that QMA is a robust bounded error 

class, but the current proof of this fact makes a small concession that links the length 

of the proof to the probability of error. In Chapter 2 we will present a new proof of 

robustness that does not rely on this concession. 

Our study-continues with an exploration of how the quantifier characterization of 

non-determinism can be expanded for use with the quantum models of computation. 

While it is not surprising that this characterization can be applied in the quantum 

world, it is interesting to notice that the introduction of quantum information makes 

the application non-trivial, and necessitates a minor change of perspective due to 

the continuous nature of quantum information which characterizes one of the pri-

mary differences between quantum and classical models. This change of perspective 

highlights the idea of promise problems, or rather problems defined on a restricted 

domain. We introduce and study promise problems in Chapter 3 also in which we 

introduce the concept of quantum languages, or sets of quantum superpositions, and 

we find that it is again natural to consider these quantum languages as promise 

problems to make up for the continuous nature of quantum information. 

We conclude with a look at the non-deterministic quantum classes in the rela-

tivized world. Relativized separations fill a unique void in complexity theory, where 
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unrelativized separations are the Golden Fleece of every theorist. Though the field is 

undecided on the benefit of relativized separations, it has become a common practice 

to consider the relativized relationships of any new classes. We will add to the list 

new relativized separations concerning the non-deterministic quantum classes that 

we study in Chapter 4. 

In the final Chapter we will consider what relationships our explorations have 

uncovered and what these discoveries mean for the bigger picture. We will compare 

the tools of quantum information, classical randomness, and non-determinism on an 

abstract level in light of the current state of the art. 

1.1 Complexity Theory 

The primary topic of our project is complexity theory, and for a more thorough review 

than we will present please see [5] and [6]. To begin we will look at the paradigmatic 

classical complexity classes, P and NP, and the equally critical probabilistic class, 

BPP. These classes form the backbone of complexity theory and have been studied 

from many angles since they were first defined. The Turing machine, in its various 

forms, is the primary model of computation used to define these classes. A Turing 

machine is a finite state machine equipped with an infinite tape upon which the 

machine may compute by reading and writing information. It was shown by Turing 

that this machine characterizes the computable languages. To define complexity 

classes we restrict the resources of the machine, in our case we will look at machines 

restricted to polynomial time computation, but we will also consider restrictions 

placed on the acceptable error of the machine as well as expand the power of the 
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Turing machine to take advantage of other tools of computation. 

Below we state common definitions for these classes using the standard alphabet 

= {O, 1}. For the classes we look at the definitions will contain a deciding machine 

of a specific type (in this project we will look at Turing machine variants and circuit 

variants), as well as two propositions that describe the accepting and rejecting con-

ditions of the decider. We will borrow the terms "completeness" and "soundness" 

to refer to the accepting and rejection conditions respectively. Furthermore, if M is 

a decider of a particular type, then we write M(x) to mean the result of the decider 

M run on input x. This value will always be 0 or 1, but in some case it may be a 

probabilistic or even quantum combination of the two, in which cases the bias of the 

mixture becomes important. 

Definition 1 A language, L C E*, is in the class P (deterministic polynomial time) 

if and only if there exists a polynomial time deterministic Turing machine, M, for 

which 

1. (Completeness) x E L = M(x) = 1 

2. (Soundness) x 0 £ M(x) = 0 

The class NP makes use of the concept of non-determinism. This concept has 

been studied in great depth and serves to identify a property in common among most 

of the classes we will discuss. There are many characterizations of this property. One 

characterization proposes the non-deterministic creation of a string, called a proof, 

witness, or certificate, prior to computation that is then used by a deterministic 

Turing machine to decide acceptance or rejection. In this characterization we think 

of the non-deterministic function as interference by an all knowing being, whose 
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primary motivation is to cause the deterministic Turing machine to accept. Thus 

the being will always be able to find a proof of acceptance if one exists, but we design 

the Turing machine to never be tricked should the input really be rejected. 

Another characterization depicts the computation of a non-deterministic Turing 

machine as a computation tree, where at each node the Turing machine can choose 

non-deterministically to follow either the right or left branch out of the node. In this 

case we say that an input is accepted if there is any path in the tree that leads to an 

accepting configuration. It is not difficult to show that these characterizations are 

equivalent, that is that they select the same class of languages, and we shall more 

often consider the first when discussing non-determinism in later sections. We can 

define the class of languages NP below using the idea of a non-deterministic Turing 

machine. 

Definition 2 A language, L C E', is in the class NP (non-deterministic polynomial 

time) if and only if there exists a polynomial time non-deterministic Turing machine, 

M. for which: 

1. (Completeness) x E L = EI, : M(x, y) = 1 

2. (Soundness) xL=V:M(x,y)=O 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 

The probabilistic Turing machine is sometimes compared to the non-deterministic 

Turing machine because the models have identifiable similarities. Consider the non-

deterministic computation tree described earlier. The choice of which branch to take 
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is made by some all knowing power, but an obvious modification, given that such an 

all knowing power is generally hard to find, is to randomly choose a branch by flipping 

a coin. This characterizes a probabilistic Turing machine, one that combines the 

deterministic Turing machine with the power to make a truly random and unbiased 

choice. We find that this power is of no use if we do not allow the machine to 

make some error so often the ideas of randomness and (bounded or unbounded) 

error prone computation are considered to be inseparable. Sometimes we allow the 

error to be unbounded, that is we will say that the machine accepts if even the 

slightest majority of computation paths are accepting. We find that in practice this 

type of model makes too many errors and so primarily we study models that err 

only with some acceptably bounded probability. We can characterize this model 

by restricting the error to below a constant strictly less than 1, but we find that 

this model can allow error even polynomially close to 1 without altering the class of 

languages that it selects. This property is called robustness and is common in most 

bounded error classes. Unfortunately we find that classically there is no source of 

true randomness but due to the successful use of pseudo-random number generators 

and the extensive research into derandomization most people consider BPP, defined 

below, to characterize the efficiently computable problems. 

Definition 3 A language, .L C E*, is in the class BPP (bounded error probabilistic 

polynomial time) if and only if there exists a polynomial time probabilistic Turing 

machine, M, for which: 

1. (Completeness) x € L ==> Pr[M(x) = 1] ≥ 

. (Soundness) x 0 L = Pr[M(x) = 1] < 
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Because the choice of constant is arbitrary, commonly BPP is defined using the 

error bound of 1. The study of probabilistic computation leads to another open 

problem, second in fame likely only to the P = NP question. That is, is P equal to 

BPP? There are many theorists attempting to "derandomize" BBP or rather show 

that P = BPP, and it is more widely believed that a solution to this problem is in 

the foreseeable future. We note that there is also a much larger complexity class 

associated with randomness that is characterised by unbounded probabilistic Turing 

machines. We state the definition below. 

Definition 4 A language, L C E*, is in the class PP (unbounded error probabilistic 
polynomial time) if and only if there exists a polynomial time probabilistic Turing 

machine, M, for which: 

.1. (Completeness) x E L = Pr[M(x) = 1] ≥ 

. (Soundness) x 0 L Pr[M(x) = 1] < 

As the study of these seminal classes became widespread, interest was garnered 

as to the combination of the tools of randomness and non-determinism. As above, 

this meant we had to allow some error into our computations so that we could, take 

advantage of randomness. Babai [3] first introduced these classes as characterized 

by a game between two players, the all knowing wizard Merlin, and the young King 

Arthur, who, though intelligent himself, is limited by bounded error polynomial 

time computation. The game acts much in the same way as our non-determinism was 

described above. The games that Arthur and Merlin play consist of turns. In Merlin's 

turn Merlin is allowed to send a message to Arthur, limited only in that it must be 

polynomial in the length of the input string. In Arthur's turn Arthur is allowed to 
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flip coins and compute deterministically (so long as he takes only polynomial time) 

and provided there is another turn for Merlin, he sends the results of any coin flips 

to Merlin. The goal of the game for Merlin is to convince Arthur to accept the input 

string regardless of whether it is a member of the language. The goal for Arthur is to 

answer correctly, that is he must catch Merlin if Merlin is trying to convince him to 

accept if the input string should be rejected. We say that a language has a Merlin-

Arthur protocol if for every input in the language Merlin has a sequence of moves 

in the protocol that convinces Arthur to accept with bounded error probability, and 

for every input not in the language, no matter Merlin's moves Arthur will reject 

with bounded error. The length of the games and who gets to take their turn first 

determines a whole hierarchy of complexity classes. We find though that in the 

classical setting this hierarchy collapses to two turn games. We note that the class 

M (or rather the class where only Merlin gets a turn and Arthur is not allowed to 

flip coins) is another characterization of NP, and that A (no Merlin turn, so only 

Arthur and his coins) is another characterization of BPP. Below we define the two 

classes characterized by two message games. 

Definition 5 A language, L C E, is in the class MA (Merlin-Arthur) if and only 
if there exists a polynomial tim Merlin-Arthur game, M, for which: 

1. (Completeness) x E L Pr[M(x, y) = 1] ≥ 

. (Soundness) x 0 L = V : Pr[M(x, y) = 1] < 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 
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Figure 1.1: The classical class structure. 

At its core is the same standard model of computation, the Turing riachine, but 

the machine is aided by both non-determinism (Merlin) and classical bounded error 

randomness (Arthur). In a way we can think of this as adding non-determinism 

to an already probabilistic Turing machine. This analogy will become much more 

obvious when we begin discussing quantifiers. The other possibility is adding classical 

randomness to an already non-deterministic Turing machine. This case we find is 

characterized by the other type of two round Merlin-Arthur games in which Arthur is 

allowed to play first. In the definition below the probability is taken over the choice 

of string y. 

Definition 6 A language, L C E*, is in the class AM (Arthur-Merlin) if and only 

if there exists a polynomial time Arthur-Merlin game, M, for which: 
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1. (Completeness) x E L = : M(x, y) = 1] ≥ 

2. (Soundness) x 0 L = Pr[ : M(x, y) = 1] < 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 

Though it is not immediately obvious, MA is contained in AM. One way to show 

this relies on the fact that all 3 round games or longer select the same languages 

as AM. Thus the class AMA = AM and we can also note that MA C AMA. It is 

not known if AM collapses to MA, but it is widely believed that it does not. MA 

is also known to be contained in PP, whereas AM is only known to be contained in 

PSPACE. Both are also contained in the second level of the polynomial hierarchy. 

The first figure presents the relationships among these classical complexity classes. 

In the figure the lines represent containment, with the lower class contained in the 

higher class. The relationship between BPP and NP remains unknown. 

1.2 Quantum Computing 

The area of quantum complexity has grown on the apparent advantage quantum 

information has in the polynomial time solution to the integer factoring problem 

[17]. For an indepth look at the field please see [15]. Many quantum classes have 

been defined and studied to accommodate the new field and now there is quite a 

family of quantum complexity classes, some of which are defined below. Of interest 

to this project are the classes that are commonly thought of as quantum analogues of 

the five classical classes discussed above. One of the first quantum classes introduced 
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and studied was BQP, or bounded error quantum polynomial time [9]. This class 

contains the quantum factoring problem and is the quantum analogue of BPP. 

To define quantum classes we must make reference to a method of manipulating 

quantum information. One such model that was studied early in quantum complexity 

[9] was the quantum Turing machine. This model is not easily programmed since 

quantum superpositions are far from intuitive. As a result the quantum Turing 

machine becomes a tool only of the complexity theorist while most who are concerned 

with actually programming with quantum information prefer another model: the 

quantum circuit. 

In the circuit model we are concerned with the number of universal gates that 

are in the circuit as comparable to the time measure on Turing machine. We will use 

a common universal set that includes the Tolfoli gate, the Hadamard gate, and an 

i-shift gate. Furthermore, since a particular circuit has a fixed size it will only work 

on a given input size, so we consider circuit families or sets of circuits, one for each 

input length, that are generated by a uniform function, required to be polynomial 

time computable. 

Definition 7 A set of circuits Q = {Qi, Q2, ...} is a uniformly generated polynomial 

sized circuit family if 

1. Qj is a circuit that takes input of length i 

2. There exists a polynomial time computable function f such that f(1Th) = (QTh) 

where (QTh) is an encoding of the circuit QTh. 

We restrict the function to polynomial time computable so that it does not have 

enough time to solve the language itself (unless the language is polynomial time 
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computable already) and return the trivial solution: the circuit that just accepts 

or rejects. Further, the polynomial time restriction will ensure that the circuit has 

polynomial size, since it does not have the time to write down a larger circuit. We call 

these families "uniformly generated polynomial sized circuit families", but sometimes 

the "uniformly generated" is dropped since we will not consider families that are not 

uniformly generated. We use circuit families to define the classes below but we note 

that the quantum Turing machine can also be used to characterize these quantum 

classes. For a circuit family Q we will write Q(x) to mean Q(x) for x of length n. 

Definition 8 A language, L , is in the class BQP (bounded error quantum 

polynomial time) if and only if there exists a uniformly generated polynomial sized 

quantum circuit family, Q, for which: 

I. (Completeness) x E L Pr[Q(x) = 1] ≥ 

2. (Soundness) x 0 L Pr{Q(x) = 1] < 

In the definition of BQP, as in definitions to follow, bounded error is used in the 

same way that it is used in the class BPP, that is, bounded away from 1 by a constant. 

As was natural in the classical case, but somewhat unnatural in the quantum case 

where the probability, and error, seem built in, we can consider circuits with no error. 

The natural quantum analogue of P is EQP, sometimes called QP, defined below. 

Definition 9 A language, L C E, is in the class EQP (exact quantum polynomial 

time) if and only if there exists a uniformly generated polynomial sized quantum 

circuit family, Q, for which: 

.1. (Completeness) x E L =- Q(x) = 1 
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. (Soundness) x 0 L Q(x) = 0 

It was not long before non-determinism was also studied in the world of quantum 

information. The natural quantum non-deterministic class is QMA or the quantum 

analogue of MA. This class has seen much study as well [18, 2]. The model underlying 

the definition of this class is the same protocol of interaction between the prover, 

Merlin, and the verifier, Arthur, who is now limited to bounded error polynomial 

sized quantum circuits. The interaction in this class is only one message, passed 

from Merlin to Arthur, and can be any quantum state limited only in that it must 

be polynomial in length of the input size. We usually call a protocol of this nature a 

quantum verification procedure, sometimes indicating the number of messages, and 

we measure its size in the number of gates in the verifier's circuit. 

A quantum verification procedure Q is a uniformly generated quantum circuit 

family {QTh : n > 0}, where each circuit QTh acts on n + lc(n) + m(n) qubits for 

k(n) ≥ 0, where n is the input size and m and k are polynomials. The function 

in specifies the length of the quantum certificate, while the function Ic specifies the 

number of work qubits used by the circuit. When the input x has been fixed or is 

understood, we will write m and Ic to mean m(n) and k(n), respectively, in order 

to simplify our notation. When we want to emphasize the length of the quantum 

certificate, we will refer to Q as an m-qubit quantum verification procedure. 

Suppose we are given a string x E E* and a quantum state I) on m(n) qubits, 

and we perform the following process: 

1. Run the circuit Qn on the state I x) I 'b) I 0k). 

2. Measure the last qubit of the resulting state in the {I0), 11) 1  basis, interpreting 
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the outcome of the measurement as accept or reject, accordingly. 

We use the quantum verification procedure to characterise a class of languages 

analagous to the classical Merlin-Arthur games. In the definition below we will write 

Q(x, b)) to express the outcome of the appropriately sized member of the quantum 

circuit family Q run on the input x and J1') (0 if it rejects 1 if it accepts). 

Definition 10 A language, L is in the class QMA (quantum Merlin-Arthur) 

if and only if there exists a uniformly generated polynomial sized one message quan-

tum verification procedure, Q, for which: 

1. (Completeness) x E L = : Pr[Q(x, I?i)) = 1] ≥ 

2. (Soundness) x 0 L = : Pr{Q(x, Ib)) = 1] ≤ 

Here we call ) the proof or certificate and is assumed to be polynomial in the 

length of x. 

Also studied is the quantum class QAM which characterizes the class with two 

messages, first from Arthur to Merlin, then back from Merlin to Arthur. Arthur is 

still limited by polynomial sized quantum circuits to decide his answer based only 

on the communication and the input. We note that in the definition of QAM that 

we consider, Arthur is only allowed to compute classically until the last turn. Thus 

any messages sent by Arthur will consist only of classical coin flips as in the classical 

class AM. 

Definition 11 A language, L is in the class QAM (quantum Arthur-Merlin) 

if and only if there exists a uniformly generated polynomial sized two message quan-

tum verification procedure, Q, for which: 
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1. (Completeness) x E L = Pr{i,,,> : Q(x, ,)) = 1] ≥ 

. (Soundness) x ØL Pr[2 11p) Q(x,jb))= 1] ≤ 

Here we call JIJI') the proof or certificate and is assumed to be polynomial in the 

length of x. 

Notice here that the source of the probability is no longer only classical coin flips 

made by Arthur prior to Merlin's turn but also his measurements afterward, in the 

final step. Thus the error bound is a bound on the sum of acceptance probabilities 

over all possible classical coin flips where the maximally accepting proof is assumed. 

As would be expected, QMA is contained in QAM. QMA is also known to be con-

tained in PP, by an unpublished result of Watrous and Kitaev. QAM however is only 

known to be contained in PSPACE. We do note, though it is beyond the scope of 

this thesis, that Watrous has shown that QMAM is equal to QIP and thus contains 

PSPACE. 

We can also consider the exact setting with respect to non-deterministic quantum 

computing. The protocol for quantum non-determinism is the same as above, though 

no error is permitted for the class QNP. 

Definition 12 A language, L C E*, is in the class QNP (quantum non-deterministic 
polynomial time) if and only if there exists a uniformly generated polynomial sized 

one message quantum verification procedure, Q, for which: 

1. (Completeness) x E L = 2I) : Q(x, J'i)) = 1 

. (Soundness) x 0 L = V1,) : Q(x, Ib)) = 0 

Here we call I) the proof or certificate and is assumed to be polynomial in the 

length of x. 
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The non-determinism in these three classes can be considered quantum non-

determinism, since the proof can be quantum information. We can consider quantum 

classes where the non-deterministic parts are limited to classical information only. 

This restriction leads to another trio of classes that are quite similar to those just 

discussed. 

Definition 13 A languages, L C E*, is in the class QCMA (quantum Merlin-Arthur 

with classical non-determinism) if and only if there exists a uniformly generated poly-

nomial sized one classical message quantum verification procedure, Q, for which: 

1. (Completeness) x E L = EI, : P'r[Q(x,y) = 1] ≥ 

. (Soundness) x 0 L = V Pr[Q(x, y) = 1] ≤ 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 

Definition 14. A language, L C E", is in the class QCAM (quantum Arthur-Merlin 

with classical non-determinism) if and only if there exists a uniformly generated poly-

nomial sized two classical message quantum verification procedure, Q, for which: 

1. (Completeness) x E L = Pr[ 3y  Q(x, y) = 1] ≥ 

2. (Soundness) x L = Pr{2 : Q(x,y) = 1] < 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 

Definition 15 A language, L C E", is in the class QCNP (classically non-deterministic 

quantum polynomial time) if and only if there exists a uniformly generated polynomial 

sized classical one message quantum verification procedure, Q, for which: 
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I. (Completeness) x E L : Q(x, y) = 1 

2. (Soundness) x 0 L Q(x, y) = 0 

Here we call y the proof or certificate and is assumed to be polynomial in the length 

of X. 

We have introduced the quantum classes to help us study the power of quantum 

information. The quantum classes we have looked at already are all thought of as 

natural analogues to the classical classes because the quantum element is added to 

the characteristic computation model of the particular class. As would be expected 

the quantum classes have a predictable structure with respect to each other, and 

the quantum world contains the classical in a strong sense. Below we state these 

relationships. 

Proposition 1 The following containments hold: 

1. PEQP 

2. BPP C BQP 

3. NP C QCNP C QNP 

. MA C QCMA C QMA 

5. AM C QCAM C QAM 

This proposition is quite easy to prove. The quantum models of computation can 

easily simulate classical algorithms by not using the quantum elements, so all the 

classical classes are contained within the quantum analogue. For the second pair of 

containments we can see that for the same reason classical proofs can be simulated 
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Figure 1.2: The quantum and classical class structure. 

with quantum proofs, and thus classical message non-determinism is contained within 

quantum message non-determinism. 

Furthermore relations can be established among the quantum classes in analogous 

ways to their classical parallels. For instance the relations between the functions of 

non-determinism and determinism remain constant when moving to the quantum 

model. 

Proposition 2 The following relationships hold: 

1. EQP C QNP 
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. EQP C BQP 

3. EQP=co — EQP 

. BQP=co — BQP 

5. BQPCQMAflco—QMA 

6. QNP C QMA 

Again these relationships are not difficult to prove, since the proofs for the clas-

sical relationships will work with minor modification. The second figure shows all 

these relationships, though we leave out the QC-classes to avoid unneccesary clutter. 



Chapter 2 

Strong Robustness for QMA 

The complexity class QMA characterizes the languages that can be decided in poly-

nomial time by bounded error quantum verification procedures. These procedures 

have a simple structure that was introduced in the last Chapter. The prover, Mer-

lin, and the verifier, Arthur, begin with access to the input string. The prover then 

prepares a message for the verifier that may be any quantum state of polynomial 

size. The verifier is limited to using polynomial sized quantum circuits to act on the 

input string and the message when deciding whether to accept or reject the input. 

Another restriction is placed on the verifier. Accepting inputs must be accepted 

with probability at least 2 and rejecting inputs must be accepted with probability 

less than . 

Kitaev first demonstrated that QMA is a robust class [12]. This means that choice 

of constants above is arbitrary. That QMA is robust is not surprising since robustness 

is a property of most bounded error classes, including QMA's classical namesake 

MA. The procedure used to prove the robustness by Kitaev was a simple adaptation 

of the proof for MA, and used the standard amplification procedure of repetition 

and majority vote. The quantum nature of the class forced a small concession for 

this adaptation to work. Since quantum information cannot be copied and because 

the verifier's computation is potentially destructive to the message prepared by the 

prover, there is no guarantee that the proof can be used again after the first run. To 

overcome this the verifier must ask for multiple copies of the same proof to repeat 
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the computation the necessary number of times. Since the size of the proof only 

increases by a polynomial to achieve exponentially small error, the proof of classical 

robustness adapts. 

Though the concession was small it limits the use of this fact to cases where 

the cost of increasing proof length can be ignored. An example where this is not 

the case is with respect to the QMA subclass characterized by procedures limited 

to logarithmic length proofs. In the classical setting it is known that logarithmic 

length proofs are no more powerful than no proof at all. The proof of this fact relies 

on the robustness of the class MA so that a procedure is guaranteed to exist with 

insignificant error. In the quantum extension of this result, using the amplification 

procedure above, the length of the proof will expand to polylogarithmic lengths, 

which ruins the attempt to merely adapt the classical proof. In other cases, using 

the amplification procedure from above may require additional complexity in any 

demonstrations that rely on it, since the researcher must account for the increasing 

proof size. 

In the next section we present an amplification procedure for quantum verifi-

cation procedures that reuses the quantum information provided by the prover to 

achieve exponentially small error. The amplification procedure uses a technique that 

tries to repair any damage caused to the initial message during observations in the 

verification step. Though a recreation of the proof is only a possibility, it turns out 

that even when the proof is not recreated there remains enough information in the 

quantum state that further trials can be run. In the second section we apply our new 

robustness technique to the problem of logarithmic length proofs mentioned above. 
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2.1 Amplification 

Now we state a more specific definition of the quantum class QMA that emphasizes 

the variability of both the probability of error and the length of the proof. 

Definition 16 A language, L C E, is in the class QMAm (a, b) (quantum Merlin-

Arthur) if and only if there exists a uniformly generated polynomial sized one message 

quantum verification procedure, Q, for which: 

1. (Completeness) x E L = : Pr{Q(x, Ib)) = 1] ≥ a 

2. (Soundneis) x 0 L = V1,) : Pr[Q(x, '1')) = 1] < b 

Here we call ) the proof or certificate and it has length m. 

It is known that QMA = QMA,,,,,is robust with respect to error bounds in the 

following sense. 

Theorem 1 Let q be any positive polynomial and let a > b be constants in (0, 1). 

Then QMA(a, b) = QMA(, ) = QMA(1 - 2- q, 2- q). 

A proof of this theorem appears in Section 14.2 of Kitaev, Shen, and Vyalyi[12]. 

A downside of this proof is that the size of the quantum certificate grows as the 

error decreases. In the case above the growth is only polynomial and so the resulting 

certificate is still polynomial in size, but if the function m(n) is sub-polynomial then 

the increase in size is substantial. In this section we give a different procedure for 

reducing error that does not require the size of the certificate to grow. This result was 

achieved by the present author and John Watrous and is currently unpublished [14]. 
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Theorem 2 (Marriott and Watrous) Let q be any positive polynomial, let a> b 

be constants E (0, 1), and let m, : N —+ N be any polynomial-time computable function. 

Then QMAm (a, b) = QMAm (, ) QMAm (1 — 2', 2-a) 

Proof. Assume L E QMAm (a, b), and V is a verification procedure that witnesses 

this fact. We will describe a new m-qubit verification procedure W with exponen-

tially small completeness and soundness error. 

It will simplify matters to assume hereafter that the input x is fixed. (It will 

be clear that the new verification procedure W is polynomial-time uniform.) We 

will write V to denote the unitary operator 1/s, which acts on n + m + k qubits. 

Let t11 = 'n+m+k-1 ® l)(lj and flo = 'n+m+k-1 ® l0X0 1 denote the projections 

onto the spaces for which the output qubit (of V) is set to 1 and 0, respectively. (In 

general we will write It to denote the identity operator acting on 1 qubits.) Also define 

projections i and Ao as follows: L1 = I X)(XI(&Im ®j01)(0kJ and Ao = 

The projection A, is the projection onto the space for which the k ancilla qubits of 

V are all set to their initial state I 0"), and the n input bits still hold the input 

x, and L0 is the projection onto the orthogonal complement of this space. We may 

therefore view the projections {z 0, A,} as describing a measurement whose outcome 

is 1 when the ancilla qubits of V are initialized to all zeros and the input has not 

been changed, and whose outcome is 0 otherwise. 

The new verification procedure W takes an n qubit input string and an m qubit 

certificate as input and uses some number of work qubits as well. These work qubits 

will be viewed as consisting of the work qubits of V along with some additional 

work qubits. We will view the qubits comprising the input string and the certificate 
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Given input Ix) and certificate '). Assume the first n qubit of X contain the 
input and the next m qubits of X contain b) and the remaining k qubits of X are 
set to the state I O'). 

Set ro +- 1 and i +- 1. 

Repeat 
Apply V to X and measure X with respect to the measurement described by 
{ITI0, II}. 
Let ri denote the outcome, and set i •- i + 1. 

Apply Vt to X and measure X with respect to the measurement described 
by {zo,All. 
Let ri denote the outcome, and set i +- i + 1. 

Until i ≥ N (where N is chosen depending on the desired error bound). 

1 ifr=r_1 
For each i = 1,. . . , N set s { if 
reject otherwise. 

Accept if >I s ≥ N - 
2' 

Figure 2.1: Specification of verification procedure W. 

together with the work qubits of V collectively as a single n + rn + k qubit register 

X. The procedure is described in Figure 2.1. 

Figure 2.2 gives a quantum circuit illustrating this procedure for the case N = 

5. (In this figure, S represents the computation described in the last step of the 

description of W. This step is assumed to be performed reversibly.) 

First, suppose that Ic) = x)l'b)IO') is an eigenvector of the operator A = 

L1Vtfl1VL 1 with eigenvalue p. Notice that if k") were given as a certificate to 

V for the input x it would be accepted with probability p, since the probability of 

acceptance is 

IIu1VI)II2 = IIll1Vi)II2 = =p. 
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We claim that the probability associated with obtaining the sequence (s1,. . . , SN) is 

precisely 

pw(s)(1 - p )N_w(8) 

where w(s) = s. By standard use of Chernoff-type bounds this will imply 

that W has exponentially small error for an appropriately chosen value of N. This 

is straightforward if p = 0 or p = 1, so assume 0 <p < 1. Define unit vectors  

fry), I8o), and IS1) as follows: 

17o)= H V/iIcb)  
I7i) = IIfliViI)lI' 

z1Vfl1j71)  

6) = IIiVfliI7i)Il 

Note that I Jj) = q5), which follows from the fact that q5) is an eigenvector of A. We 

will show that 

VjJO) = /I7o) + \/1— p171) 

viol) = 

(2.1) 

We have iIrliViIc5)Il = /j5 and thus iIHoVL1l)Ii = \/1—p. This implies that 

+ /I7') = floViIq5)+ lliVL 1 çb) = V 1 0) = VA). 

Similarly, 

ii1Vtll1V1I)iI = P = VP 
VrP-iJ1VtH1I71)ii = ilH1Vz1i)Ii 
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k) { 
V V V 

Figure 2.2: Example circuit diagram for verification procedure W. 

and thus jjAoVtIIjI'yi)II = - p. This implies that 

V'l - p ôo) + = LoVtfliI'yi) + 1VtrIifry1) = Vtr1171) = VtIyi). 

This equation implies that ('yilVlJo) = - p, so we have ybJo) = \/1 -- p 171) + I) 

for some vector I j.t) of length /5 that is orthogonal to 'y'). Since V I 8) is orthogonal 

to VI51), which we already know is %/1 - 70) + ../j5 fry'), we must have that ) = 

v' fro) We have therefore shown (2.1). It will be convenient to also write these 

equations as follows: 

Vty0) —\/l6o)+\/1—pI6l) 

Vtl 71) = \/1—pI60)+/l61). 

With the above equations in hand, it is not difficult to determine the probability 

associated with each sequence of measurement outcomes. We begin in state J q5) = 

61) and apply V. After the measurement described by {llo, ll} the (renormalized) 
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. . . 

. . . 

Figure 2.3: Transition probabilities for verification procedure M. 

state of register X becomes I'yo) or 'yi) according to whether the outcome is 0 or 1, 

with associated probabilities 1 - p and p, respectively. If instead we were to start 

in state Jo), the renormalized states after measurement would be the same, but 

the probabilities are reversed: we have probability p associated with outcome 0 and 

probability 1 - p with outcome 1. For the second step of the loop the situation 

is similar: if the register X is in state I 'yi), the transformation Vt is applied, and 

the state is measured via the measurement {L o, All, the renormalized state after 

measurement will be either I 5) or löo), with associated probabilities p and 1 - 

and if instead the initial state is "> rather than 'y) the renormalized states after 

the measurement are again the same, but the probabilities Pare reversed. These 

transition probabilities are illustrated in Figure 2.3. In all cases we see that the 

probability of obtaining the same outcome as for the previous measurement is p, and 

the probability of the opposite outcome is 1 - p. (We set r0 = 1 to include the first 

measurement outcome in this pattern, since the process starts in state I6).) The 

probability associated with a given sequence s = (s1,. . . , SN) is pw(s) (1 - p)N_w(s) as 

claimed, since each si is 1 if the measurement outcomes r_1 and ri are equal, and is 
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o otherwise. 

The above pattern forms only if we are provided with a certificate that makes 

Ic) an eigenvector of A L1Vtll1V/ 1. We can use this pattern that forms with 

eigenvectors to show that the soundness and completeness conditions hold for W with 

exponentially small error. First we note that since the operator A is Hermitian, then 

by the Raleigh-Ritz theorem, the maximally accepting certificate I'cbmax) will make 

I qr) an eigenvector of the operator A. Let this maximally accepting eigenvector 

have eigenvalue Prnaa Then every other eigenvector of A has eigenvalue less than 

or equal to Pma. Every eigenvector exhibits the pattern recognized above, and so 

every eigenvector will cause W to accept with probability less than or equal to the 

acceptance probability of I cbmax ). 

Now consider quantum states written using the eigenvectors as a basis. In general 

we will consider the state 1W) = F j aj'j), where the ajs meet the standard require-

ment and where each I'') is an eigenvector. Now assume that ) has eigenvalue 

pi and assume the eigenvectors are ordered such that Pi ≥ P2.. ≥ P2m, where 2m is 

the number of eigenvectors. Then if this state is input to V it will be accepted with 

probability Ej laii2pi ≤ pm, with equality only when the vectors with non-zero 

amplitude all have eigenvalue Pmaa• Since this case is trivial to solve we will only 

consider when this is not so. We note now that both eigenvectors exist as one state 

in a set of four that parallel the states above I6), 'y), 'yf), where ') = jôf). 

When we apply the first step of our circuit W we see that we get the pattern we 
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expect from both eigenvectors, weighted by a. 

VIW) = 

i=1 

i=1 

(vv + \/1— Pil'Y)) 

The observation made at this point to determine acceptance will select the same out-

come for each eigenvector and the state will collapse. When the state is normalized 

the weightings ai will change depending on the outcome. Whatever the outcome, 

the readjusted weightings will favor the eigenvectors for which the outcome happens 

with greater probability. So if the outcome is an accept then the new weightings will 

see the greatest rise for the maximally accepting eigenvector and the greatest fall for 

the minimally accepting eigenvector, and vice versa. The accepting case is displayed 

below without the normalizing factor. 

nivK) = 
2 

i=1 

Note that since p, is the greatest, the weight of the first vector is increased the 

most. If we now consider the next step of the algorithm with a new set of ojs we will 

see the observation at the next step behaves the same. So with each observation the 

bias of the proof shifts to one end of the spectrum or the other. What is important 

to note is that a combination of this type can not be used to increase the acceptance 

of W beyond that achieved by k1'rnax ). For even if the bias of the mixture can 

eventually be shifted onto the set of four vectors with maximal acceptance (that is 

to the set containing I bmax )) then the remaining cycles of the algorithm will continue 
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as though kU'rnax) were given in the first place. Since the initial steps of the loop will 

have evolved with lesser probability with the mixture than with the pure I 'bmax) 

then the mixture will be accepted by W with probability less than that of Imax) 

So kt'max) is the maximally accepting vector for both V and W. We can restrict our 

analysis of the soundness and completeness conditions to this maximally accepting 

certificate. 

Now consider the case that the input is in the language. In this case we know 

that there exists a quantum certificate that will cause V to accept with probability 

greater than a, and so Pma > a. Since I q) is an eigenvector the above analysis 

shows that this proof will achieve exponentially small error if provided to the new 

procedure W. Again, if kbrnax) is the maximally accepting certificate for V and it is 

provided as a certificate for W then the error is exponentially small for some choice 

of N that is polynomial in n. So the completeness condition holds. 

Consider also the case where the input is not in the language. In this case we know 

that all quantum states are poor certificates, or more specifically that all quantum 

states will cause acceptance in V with probability less than b. This obviously includes 

I qma). Since we know this state is an eigenvector it will have exponentially small 

error, and thus exponentially small probability of acceptance. Again, if k1'rnax) is the 

maximally accepting certificate for V and it is provided as a certificate for W then it 

will accept with the highest probability and for some choice of N that is polynomial 

in n this probability is exponentially small. So the soundness condition also holds. 

We will choose the larger value of N from these two cases for our new procedure 

W and we note that W witnesses that L is in QMAm(1 - 2-q 2-q) 
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2.2 Logarithmic Length Proofs 

We will now consider quantum verification procedures that are restricted to logarith-

mic length proofs. We can describe the length of the proof as a function in the input 

size, and we will say that a procedure has a logarithmic length proof if this function 

grows slower than c - log(n) for some constant c. We will call the classes of languages 

that can be decided by these procedures QMA109 (a, b) = u 1 QMAj.!Og() (a, b). The 

robustness demonstrated in the last section means that as long as a and b satisfy 

the conditions of the last theorem, any a and b will do. We will choose the common 

values of a = 2 and b -. So we will denote QMAZO9 (, -) = QMA109. 

3 3Classically we find that logarithmic length proofs are of no use since the proof is so 

short that you can try all the possible proofs in polynomial time. One can construct 

a quantum argument that parallels this one by trying all possible proofs in tandem. 

The argument, however, hinges on the fact that QMA is a robust class, and with only 

the weak proof of robustness the argument is squashed since amplifying also implies 

increasing the size of the proof. With the strong proof of the last section we can 

construct the argument. For this theorem we use the operator BQTIME to generate 

a class of problems such that BQTIME(f(n)) is the class of languages solvable by 

bounded error quantum circuits with size f(n). BQTIME(poly(n)) is equal to BQP 

where poly(n) is the class of all polynomial time computable functions. 

Theorem 3 (Marriott) Let m(n) be a polynomial-time computable function. Then 

QMAm(n) c IBQTIME(2m(m) poly(n)). 

Proof: Assume L E QMAm(n) and V is a verification procedure that witnesses this 

fact with error less than 22- 1n; and let q be a polynomial that bounds the size of 
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Given input lx). Assume that Ix) is in register X and that there are two more 
registers each of length m initialized to 101 ), called Y0 and Y1. 

Set i *- 1. 

Repeat 
Apply m Hadamard gates to register Y0. 
Use controlled-not gates from Yo to Y1 to create m copies of 100) + Ill). 

Run the verification procedure V using register X as the input and register 
YO as the certificate. 
Let ri be the outcome and set i +- i + 1 

Until i ≥ N (where N is O(2m(Th))) 

Accept if E N I ri ≥ N   reject otherwise. 

Figure 2.4: Specification of quantum circuit W for log length proof simulation. 

V. Here it is important that we use the strong robustness from above so that we 

can ensure that the length of the proof remains m(n). If we use the weak robustness 

instead we find that to ensure that the verification procedure has the error we desire 

will cause the proof to expand in length, which will frustrate the final argument of 

the proof for some choices of m(n). Figure 2.4 describes a new quantum circuit, W, 

that decides L. 

W first constructs a totally mixed state over a number of qubits equal to the 

length of the proof then simulates the procedure V using this state in place of the 

proof and accepts as V. 

Fix the input x and let k1'rnax) be the maximally accepting proof for the input. 

I ?I)max) is of length m(n) so the dimension of the space in which it resides is 2m(n). So 

I bmax) is a member of set of vectors, of size 2m(m), that span this space. The totally 

mixed state can be written as a uniform linear combination of any set of spanning 
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vectors, including the set described above 

1 2m(n) -1 

P 2'(n) E  j''j) ('b 
i=O 

The totally mixed state can also be written using the computational basis as 

which shows how we can construct this state in time O(m(n)). The first step in 

the loop creates this state in register Yo if we trace out the contents of register Y1. 

After the controlled-not gates in this step we can discard of the qubits in register 

1'. Describing this state as a uniform mixture corresponds to. the second equation 

above, though as stated both equations above characterize the totally mixed state. 

Consider now when the input x is in the language L. We know that V would 

accept bmax) with probability greater than 1 22.rnn so the probability of aácepting 

the totally mixed state is greater than 1 (1 22.rn(n) ≥ n) 2m(+1 Next consider when 

the input is not in L. Now we know that every proof will accept with probability 

less than 22.rnm and this includes the totally mixed state. The gap between these 

probabilities is greater than 2m+2• We need to amplify this gap to greater than 1/3 

to be considered bounded error. The number of repetitions necessary to amplify such 

a gap is inversely proportional to the size of the gap using the standard procedure 

of repetition and majority vote (this is a basic application of Chernoff type bounds). 

Thus, N, the bound on the loop is O(2m(m)) to achieve a constant error bound. 

Every step of W is polynomial time except for the number of repetitions which may 
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be exponential for some choices of m(n). W takes time O(q. 2m(n)). So W witnesses 

that L is in BQTIME(2m() poly(n)). 

The immediate corollary for logarithmic length proofs follows: 

Corollary 1 QMA109 = BQP 



Chapter 3 

Quantum Quantifiers 

Logical quantifiers were first introduced as an alternate definition of non-determinism, 

see [19] for an overview of their application. This characterization was an obvious 

extension if one recognized the logical significance of the difference in the soundness 

and completeness conditions for non-deterministic classes given in the first chapter. 

Recall the definition of NP. For input in the language there exists a certificate that 

will cause acceptance, and for input not in the language all certificates cause rejec-

tion. This observation led to a more general picture of non-determinism in terms of 

an operator that could be applied to a base class. 

The way this worked was to first choose a base class, in the simplest case this class 

was P. The completeness condition of the class P states that the solving machine 

must accept. The soundness condition states that the solving machine must reject. 

If we wish to apply a logical quantifier to this class we apply the quantifier to the 

completeness condition and the logical negation of the quantifier to the soundness 

condition. Applying the exists quantifier to the base class P yields the following 

soundness and completeness conditions. If x is the input, then if x E £ there must 

exists some string y such that the solving machine must accept (x, y), and if x 0 £ 

for all strings y the solving machine must reject (x, y). This new class defined by 

a•P is NP, and the other possibility V.P is co-NP. 

Other base classes could be chosen. For instance one could use BPP instead of 

P. Then one would expect that as P = NP so should a.BPP = MA. This turns 

36 
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out to be an open question however. The bounded error property of the base class 

BPP ends up fudging the adaptation of the proof for the 2•P = NP case. In this 

chapter we will explore an expansion of the quantifiers that allows us to address this 

open question, if not answer it, as well as redefine all of the quantum classes we have 

already introduced. 

3.1 Quantifiers in the Classical Setting 

Three primary quantifiers will be studied: 2, V, and 2. It is assumed that most 

readers are familiar with the 3 and V quantifiers and their definitions but the 3 

may be new to some. This quantifier can often be read as "for the overwhelming 

majority of", where overwhelming is a vague statement implying that the majority 

is bounded away from by a constant in the same way as we have used it in the 

previous chapters. So the logical predicate 3 : P(y) is true if and only if P(y) is 

true for at least 1 + e of the possible values of y for some 0 < 6 < . Below we define 

what it means for these quantifiers to be applied to a complexity class. 

Definition 17 A language, L , is said to be in the class 3 . C if and only if: 

X E L 2yEEP(I1) : (x, y) E A 

x L = VVEEp(II) : (x, y) A 

for some polynomial p and some language A E C. 
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Definition 18 A language, L C E*, is said to be in the class V C if and only if: 

x E L : (x, y) E A 

x 0 L 2yEEP(IxI) (x) y) 0 A 

for some polynomial p and some language A E C. 

Definition 19 A language, L C E*, is said to be in the class 2 C if and only if: 

x E £ aVEEP(lI) : (x, y) E A 

x 0 L yEEP(II) : (x, y) 0 A 

for some polynomial  and some language A EC. 

In all of these definition we note that the length of the quantified string is re-

stricted to be polynomial in the length of the input string. This is a common re-

striction and one we will adopt in later sections to describe our modified quantifiers. 

Sometimes we will omit this restriction in the notation, but that is not to suggest 

that the restriction is not there, but rather it is intended to make the statements 

easier to read due to less clutter. 

We apply these definitions to the obvious class, P, and state the following theorem. 

Theorem 4 The following all hold: 

1. NP=3•P 

. co-NP =V•P 
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8. BPP=Ei•P 

These quantifiers became the building blocks of infinite complexity classes that 

are formed by repeatedly applying these quantifiers to P or in the general case 

any complexity class. When using P as the derivative class we discover that this 

formulation already matches up with two well studied hierarchies. Alternating 2 

and V quantifiers characterize the various levels of the polynomial time hierarchy, 

PH. Furthermore when the 2+ quantifier is added to the mix we can characterize the 

Arthur-Merlin classes of Babai. Below the number of alternating quantifiers is equal 

to the level of the hierarchy. 

Theorem 5 .1. MA = . JD 

2. AM=2•P=223.P 

S. AMA ... = .. .P = AM 

4.MAM ... =22...P=AM 

We will note that the used in the notation is meant to emphasize an important 

property when stacking these quantifiers. Treating the 2 quantifier as an operator on 

complexity classes we might write 2(P) to define NP, and 2(P) to define BPP. We 

could try 2(2(P)) for MA but would run into trouble since 3(2(P)) = 2(BPP), 

and as stated above this is an open question. However it is known that MA = 

33+(P) when the two quantifiers are taken together as one operator. We use the 

• to emphasize that the entire string of quantifiers taken together is applied as an 

operator to the base class. It turns out that for the new quantifiers defined later 
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that this distinction is unnecessary since all interpretations are equal, but for now 

the has a role. 

We return to the observation that the class 3•BPP is not known to be equal to 

MA. When attempting to prove such an equality by straightforward simulation we 

find that we have problems showing that MA C EI•BPP because we must show that 
the new machine runs with bounded error even when an incorrect proof is given. 

This problem also exists if attempting to show that •MA = AM. 

It is desirable to attempt to extend the quantifier results to the quantum case, 

and it is interesting to note that this is not a trivial task. The natural randomness 

,built into quantum mechanics causes problems for the straightforward extension of 

these results in the same way the bounded error was a problem classically. Consider 

the task of demonstrating that 2.BQP = QCMA (an obvious extension of the results 

above). It is easy to show that any language from 2.BQP is contained in QCMA, 

that is E.BQP C QCMA. However the other direction poses an interesting problem. 

It is not hard to show that the verification part of the procedure runs with bounded 

error when the maximally accepting proofs are provided, but we must also show that 

it works with bounded error for any proof. There is no reason to believe that the 

machine works with bounded error for every proof, and in fact this seems likely false. 

So the desire to extend the quantifier results requires us to look at quantifiers in a 

slightly different setting, one that will eliminate this problem. 

Furthermore, it is desirable to characterize the more interesting quantum non-

deterministic classes like QMA and QAM. However for these classes we will have 

to consider a quantum quantifier, or rather a logical quantifier over quantum states, 

rather than over classical strings. The next section outlines some of the novel changes 
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we must make to the study of quantifiers so that we can extend these results into 

the burgeoning quantum world. 

3.2 Promise Problems 

Since the problem we encountered with our attempt to apply the quantifiers to the 

quantum classes was a problem with the certificates that were not important in 

determining the acceptance or rejection criteria it was hypothesized that switching 

from languages to promise problems would allow us to ignore the problematic cases. 

Another way that we can view this change of perspective is that we allow the char-

acteristic function of a language to be a partial functions, or rather defined on any 

subset of E*. In fact this change will allow us to solve our problem and this will 

be demonstrated in the following section. Promise problems are a way to shrink 

the domain of possible members of a problem from all of E* to one of its subsets. 

This idea has been studied in the past by Even, Selman, and Yacobi [11]. Below we 

show two equivalent definitions for promise problems and even these differ from the 

definition in [11], though remain equivalent. We will adopt the second definition for 

our study. 

Definition 20 A promise problem is a pair of sets (A, B) such that A C B C 

Equivalently we can define a promise problem a second way: 

Definition 21 A promise problem is a pair of disjoint subsets of , (Ayes, A 0) 

In this case we can think of Ayes and An, as sets of yes-instances and no-instances 

of this problem. We can see that the promise set B = Ayes U A 0 and it is clear that 
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Ayes A C B and An, = B\A. 

We can then define classes of promise problems based on the power of the circuits 

that compute them in a way similar to regular complexity classes. We shall do this 

following the lead of Even, Selman and Yacobi who defined the class NPP as a natural 

extension of the class NP. We will adopt a different notation by adding "promise-" 

to the beginning of any standard complexity class that we wish to extend to promise 

problems. Using this notation the class NPP is equivalent to promise-NP. 

The primary difference between the criteria of membership in a standard complex-

ity class and its promise problem extension is that the acceptance/rejection criteria 

of the standard complexity class need only be met within the sets Ayes and A 0. We 

will say that a Turing machine or circuit is C-consistent with a given promise prob-

lem if the machine (circuit) meets the acceptance/rejection criteria of the complexity 

class C for all members of the promise set. This is of course an informal idea of "con-

sistence" although we can define a more precise idea with respect to the classes we 

have already looked at. Below we make use of the fact that we have defined all the 

complexity classes from the first chapter with explicit soundness and completeness 

predicates. Predicates of this type take as input a machine and an input string, and 

are true or false given the relationship between the machine and the input. 

Definition 22 Let C be any class with an explicit completeness predicate, P, and 

soundness predicate, Ps, and let (Ayes, A 0) be a promise problem. Then we will say 

that a Turing machine (or circuit family), M, is C-consistent with (Ayes, A 0) if and 

only if: 

1. (Completeness) x E Ayes Pc(x, M) = 1 
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2. (Soundness) x E An, = Ps(x, M) = 1 

We can look back at the classes defined in the first chapter and we notice that 

each has been stated with these predicates made explicit. We now show how this 

idea of consistence can be used with respect to the classes BPP, EQP, and BQP. 

Definition 23 A Turing machine, M, is BPP-consistent with respect to a promise 

problem, (Ayes) A 0), 

the promise set and 

if and only if M runs in polynomial time for all inputs from 

1. (Completeness) x E A 5 = Pr[M(x) = 1] ≥ 

2. (Soundness) x E An, => Pr[M(x) = 1] < 

Definition 24 A circuit family, Q, is EQP-consistent with respect to a promise 

problem, (A 3) A 0), if and only if Q is a uniformly generated polynomial sized quan-

tum circuit family and 

.1. (Completeness) x E Ayes Q(x) = 1 

2. (Soundness) x E A 0 = Q(x) = 0 

Definition 25 A circuit family, Q, is BQP-consistent with respect to a promise 

problem, (A 5) A 0), if and only if Q is a uniformly generated polynomial sized quan-

tum circuit family and 

1. (Completeness) x € Ayes ==> Pr[Q(x) = 1] ≥ 

2. (Soundness) x E An, = Pr[Q(x) = 1] ≤ 
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It should be clear that the constants 1 and 1 can be replaced with + e and —e 

3 3for any 0 < e < 1 in the definition of promise-BPP and promise-BQP. These promise 

classes inherit their robustness from their related complexity classes. Using these def-

initions we can define the classes of promise problems, promise-BPP, promise-EQP, 

and promise-BQP, which will be used throughout, as well as any other extensions of 

complexity class where a notion of C-consistency can be naturally defined. 

Definition 26 Let (Ayes) A 0) be a promise problem. (Ayes, A 0) e promise-C if and 

only if there is some Turing machine (or circuit family) Q, such that Q is C-consistent 

with respect to (Ayes) Ano). 

We can note that if Iiyes E C then for all sets L 0 disjoint from L 5 it is true 

that (L 3, L 0) E promise-C. From this fact we can see that C C promise-C or more 

formally, Lye, E C (Lyes) ) E promise-C. We can use this fact to characterize 

a relationship between regular complexity classes and their promise class analogues 

that will allow us to prove properties of one class and have them be equally true for 

the other class. For instance the proposition below demonstrates another way that 

these classes are linked. 

Proposition 3 Let C and V be classes with explicit soundness and completeness 

predicates. Then promise-C = promise-V #> C = V 

Proof: If the promise classes are the same then since the complexity classes represent 

a specifically defined subsets (namely all promise problems where the union of the 

"yes" and "no" sets is E*) of the promise class the complexity classes must be equal. 

Now assume that the promise classes are different; promise-C 0 promise-V. We 

may assume, without loss of generality, that (Ayes) A 0) is a promise problem in 
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promise-C and not in promise-V. Since (Ayes) A 0) is in promise-C there must exists 

a set B E C such that Ayes 9 B and A 0 9 B. B cannot be a member of V or else 

(Ayes, A 0) would be in promise-V. So C V. 

We note that though complexity classes and promise classes have many similari-

ties these classes should not be considered equal since promise-C contains many more 

promise problems than just those that are also in C. For any language L, (L, 0) E 

promise-C. These facts bring to light the importance of the "no" set. In promise 

problems the "no" set is as important to the problem as the "yes" set, since changing 

either set can change whether a problem is in a given promise class. 

It will be desirable to discuss the complement of a promise class, which requires 

the notion of the complement of a promise problem. The natural extension of the 

complement of a language is to take the complement of the problem set with respect 

to the domain of the promise problem. This leads to the next two definitions. 

Definition 27 The complement of a promise problem (Ayes) A 0) is the promise 

problem (A 0, Ayes ). 

Definition 28 (Ayes) A 0) E co-promise-C (A ) Ayes) E promise-C. 

We notice then that the complement class of a promise class is formed by swapping 

the soundness and completeness predicates in the definition of the base class. We 

will say that a promise class is closed under complement if for every (Ayes) A 0) E 

promise-C, (A 0) Ayes) E promise-C. The proposition below follows immediately from 

the proposition above. 
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Proposition 4 Let C be a class with explicit soundness and completeness predicates. 

Then promise-C is closed under complement if and only if C is closed under comple-

ment. 

3.3 Quantifiers and Promise Classes 

We will now extend the idea of quantifiers to operating on promise classes. Below 

we have the definitions for the 2, 3+, and V quantifiers. We take 3 to mean "for the 

overwhelming majority of strings y", or rather for some number of strings y greater 

than plus a constant. Commonly the number is used, though any other constant 

bounded away from I and 1 will do. 

Definition 29 We will say that a promise problem, (Lyes, L 0), is in 3promise-C if 

and only if: 

X E Lyes ='- 3yEEP(1x1) : (x) y) E Ayes 

x E L0 = 'yEEP(1xI) (x) y) E A 0 

for some (Ayes) A 0) E promise-C and some polynomial p. 

Definition 30 We will say that a promise problem, (Lyes) L 0), is in 3• promise-C 

if and only if: 

x E Lyes = 3yEEP(IxI) : (x) y) E Ayes 

x E L0 3yEEP(1I) : (x, y) E A0 
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for some (Ayes) A 0) E promise-C and some polynomial p. 

Definition 31 We will say that a promise problem, (Eyes, L 0), is in Vpromise-C if 

and only if: 

X E .L1 = ''yEEP(IxI) : (x) y) E Ayes 

X E L 0 yEEP(IxI) : (x) y) E A 0 

for some (Ayes) A 0) E promise-C and some polynomial p. 

In all three cases the quantifiers place specific restrictions on the promise prob-

lem in question. This restriction is made in both the soundness and completeness 

restrictions of each definition by choosing "yes" -  and "no" -instances of a particular 

problem that must be included in the promise. This differs from the quantifiers 

considered earlier in that before the "yes" set completely determined the "no" set, 

whereas now each is defined independently. 

Let us begin by showing a simple relationship between promise classes defined 

with these quantifiers. As is the case with the quantifiers used on standard complex-

ity classes, the D and V quantifiers exist as complements. To prove this we use the 

fact that 3 and V are logically complementary and an assumption that the base class 

is closed under complement. 

Proposition 5 co-.promise-C = V•promise-C for any C that is closed under com-

plement. 

Proof: Let (L, E) E •promise-C. Let (Ayes, A 0) e promise-C be the implied 

promise problem associated with (Eyes) L 0) and let Q be a circuit family (or Turing 
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machine) that is C-consistent with (A 3, A 0). We will show that (L 0, Lyes) E 

Vpromise-C. Let ;U be the circuit family that answers the opposite of Q. Then since 

C is closed under complement Q is C-consistent with (A 0, Ayes). So (A 0) Ayes) 

promise-C. Now 

X  L 0 = V: (x, y) E An, 

X E Eyes 3y: (x) y) E Ayes 

E 

50 (L 0, Eyes) E V•promise-C. 

For the other direction we can show that co-V.promise-C C 2.promise-C which 

follows by an identical argument. 

We can also note another similarity to the previously defined quantifiers in that 

stacking similar quantifiers is of no use. That is, two 2 quantifiers reduce to one, 

two V quantifiers reduce to one, and two 2+ quantifiers reduce to one. The proof is 

quite simple. We prove that two 2 quantifiers reduce to one below and note that the 

proof for two V or 9 quantifiers is identical. 

Proposition 6 22• promise-C = 3-promise-C. 

Proof: Let (Lyes) L 0) E 23promise-C. Then there is a circuit family (or Turing 

machine), Q, that is C-consistent with a promise problem (Ayes, A 0) such that 

X E Lyes =' 3yi 3Y2  (x, Yi) Y2) E Ayes 

x E L 0 Vy1Vy2 : (x, Yi, Y2) E A0 
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We can combine the strings Yi and Y2 into one string y, still of polynomial length, 

and make a new machine that begins by splitting the string y into two parts and 

then running Q on the input plus these two parts. We get that 

X E Lves = 2: (x, y) E A,es 

x E L 0 = V: (x, y) E A 0 

for a new promise problem (A,es, A 0) in promise-C. So (Eyes, L 0) E EIpromise-C.. 

Proposition 7 Wpromise-C = V.promise-C 

Proposition 8 22 .promise-C = 3+-promise-C. 

Below we show that some of the classes that we can define using these operators 

coincide with the promise versions of quantum complexity classes that have already 

been studied under different names and different models. The first such relationship 

we will demonstrate is that adding classical non-determinism to a quantum machine 

can be characterized with the 2 quantifier applied to a base class of promise-EQP. 

The proof idea for this theorem is based on the proof of 2•P = NP and relies on 

standard simulation. These proofs only work because we are considering promise 

problems rather than decision problems because we do not need to show how the 

new machines work on the inputs that are not considered by the definitions of the 

problem. The first theorem combines classical non-determinism with exact quantum 

computation. This class is not commonly studied, but the proof of this coincidence 

will form the template for the proofs in the remainder of this chapter. 
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Theorem 6 (Marriott) .promise-EQP = promise-QCNP 

Proof: Let (Lyes) L 0) E .promise-EQP. Then there is some polynomial sized quan-

tum circuit family, Q, that is EQP-consistent with a promise problem (Ayes, A 0) such 

that 

X E Lyes 2y: (X) Y) E Ayes y : Q(x,y) = 1 

X  L 0 - V: (X, Y) E A 0 : Q(x,y) = 0 

We can construct a quantum verification procedure with classical non-determinism, 

M, that takes the classical witness, y, and runs the circuit Q on (x, y). Then if the 

correct y is provided for elements of M will accept with certainty, and for 

elements of L 0 every witness is rejected with certainty. So (L 3) L,) E promise-

QCNP. 

Now let (L ) L 0) E promise-QCNP. Then there is some quantum verification 

procedure for which there exist classical witnesses causing the procedure to accept 

yes-instances with certainty, and every witness will cause rejection for no-instances. 

Call the verifier's part of this procedure Qv and note that it runs on a pair of inputs, 

the input string x and a classical proof, call it y. Then there is a promise problem 

(Ayes, A 0) such that Qv is EQP-consistent with (Ayes) A 0) and where 

X E Lyes 4 (x) y) E Ayes 

x  L 0 Vy: (x, y) E A0 
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O, (Ayes) A 0) E promise-EQP and (Lyes, L 0) E .promise-EQP. 

We will now switch to considering a base class of promise-BQP instead of promise-

EQP. We will apply the quantifiers to promise-BQP to add non-determinism to the 

quantum model. Again the non-determinism considered here is classical, and so the 

classes here are not the most commonly thought of analogues of the classical classes. 

First we consider an extension of MA called QCMA that can be created by adding 

classical non-determinism to bounded error quantum machines. The proof is very 

similar to the one above for promise-QCNP, only with changes to make up for the 

switch from the exact setting to bounded error. 

Theorem 7 (Marriott) 2.promise-BQP = promise-QCMA 

Proof: 

Let (Lyes) L) E .promise...BQP. Then there is some polynomial sized quantum 

circuit family, Q, that is BQP-consistent with a promise problem (Ayes) A 0) such 

that: 

X E Lyes : (x, y) E Ayes : Pr[Q(x, y) = 1]> 
— 3 

E Vy: (x, y) E An, => Vy : Pr[Q(x,y) 1] ≤ 

We can use Q to design a quantum verification procedure with classical messages 

for the promise problem (Lyes) L 0). On input x Merlin will send some string y and 

Arthur will run Q on (x, y) and answer as it does. If X E Lyes then there is a string 

y that will cause Q to accept with probability at least a. If x € Lno then there is no 

string that will cause Q to accept with probability greater than 1. Thus (Lyes, L 0) E 
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promise-QCMA. 

Let (Lyes, L 0) E promise-QCMA. Then there is some polynomial-sized quantum 

verification procedure with classical messages, Q, that is QCMA-consistent with 

(L 5) L 0). Let QA be Arthur's part of the verification procedure that acts on the 

input and a classical string provided by Merlin. Then: 

x E Lyes 2 : Pr[QA(x, y) = lii > - 
— 3 

x  L 0 : Pr[QA(x,y) = 1] 

We can see that QA is BQP-consistent with a promise problem (A 5, A 0). So 

(Ayes) A 0) E promise-BQP, and so (L 3) L) E 2.promise-BQP. 

We will show that that adding 2 to 2.promise-BQP leads us to the anticipated 

promise-QCAM. Again this is done by showing that machines of one kind can be 

used to produce machines of the other kind. However since the probability of error 

can be caused by many factors we must carefully calculate .the error of the new 

machines to ensure that they do in fact decide the same promise problem. 

Theorem 8 (Marriott) 3+3 -BQP = promise-QCAM 

Proof: Let (Lyes) L 0) E .promise-BQP. Then there will be a polynomial sized 

uniformly generated quantum circuit family, Q, that is BQP-consistent with a promise 

problem (Ayes, A 0), with error 6 such that: 
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X E Lyes = 2: (x, y) z) E Ayes 

X E V5: (x,y,z) E A 0 

We will show that (L, L,) E promise-QCAM. Let M be a quantum verification 

procedure that does the following. First, Arthur flips p(x) coins, y, and sends 

them to Merlin. Then Arthur runs Q on the, input (x, y, z) where z is the proof 

returned by Merlin. Below, the first probability is taken with respect to the random 

choice of y and where z is assumed to be Merlin's maximally accepting proof, 

thus it is dependent on the strings x and y. The second probability incorporates the 

probability of error associated with the quantum circuit family Q. 

X E L 3 

x E L 0 

= Pr[(x,y,z,) E Ayes] ≥ 

Pr[M(x) = 1] ≥ (1— +j) ≥ + 5-6 

= Pr{(x, Y, E Ayes] - 5 

• Pr[M(x)=1}≤ —5+€(+5) .- 8± 

We can reduce the error in Q so that e < 5, so (Lyes) L 0) E promise-QCAM. 

Let (L ) L 0) E promise-QCAM. We will show that (Lyes, L 0) E '3•promise-

BQP. Let Q be a quantum verification procedure that is QCAM-consistent with 

(L 3, L 0) with error 6. We will create M a quantum circuit family that runs on 

input (x, y, z). M will treat the input as though x is the input, y is a random string, 

and z is a potential witness and it will run the final verification stage of Q on input 
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(x) y, z) and answer as it does. Consider M when run on (x, y, z) where zx,y is the 

maximally accepting proof based on x and y, where x is any string and y is a random 

string. 

X E Lyes Pr[Qt(x, y, 1] ≥ 1 - 

= Pr{M(x,y,z,)=1]≥1—€ 

= Pr[M(x, y, = 1] ≥ (1 - 6)2(1x1) 
yEE(II) 

We want to know for how many strings y that Pr[M(x, y, z,)] > 1 +5. This number 

is maximized when every y for which this holds does so with probability 1 and the rest 

do not with probability exactly 1 +5. This is at least  2P(Ial) ≥2 16  ( 1) + 5') 2P(1x1)2 

values of y when 0 < € 2 (1 - 5). 

x Pr[QA(x,y,zx,y) = 11 ≤ 

•. Pr[M(x,y,z,) = 1]≤ 

='- Pr[M(x, y, = 1] ≤ p(IxI) 
yEEP(Ix1) 

We now want to know how many values of y for which Pr[M(x, y, z,)] < 1 - J. 

So for values of y that fail this we will use as little probability as necessary to 

underestimate this number. For at most < ( - 5') 2P(1x1) values of y this 

fact fails if 0 < < 
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We choose e so both of the conditions above hold. This means that there are 

at least 1 + S' values of y that are good (for which there exists a proof) when the 

input is in Lyes and there are at most - 8' bad (for which the proof may not be 

bad) values of y if the input is in L 0. We conclude that M is BQP-consistent with 

a promise problem (Ayes, A 0) such that: 

X E L 5 = (XI y,z) E Ayes 

xEL 0=V (x,y,z)EA 0 V 

SO (Lyes, L 0) E 3+3 -BQP. 

3.4 Quantum Sets 

Let us now turn our discussion to an extension of classical languages that takes 

advantage of quantum information. A classical language is often spoken of as a (po-

tentially infinite) set of finite classical strings. The obvious extension of this concept 

is a quantum language or a (potentially infinite) set of finite quantum superpositions. 

To make the idea of a quantum language meaningful we consider the superpositions 

to be over elements of E* but any given superposition is limited in that it must only 

be a superposition over strings of the same length. This idea is defined below. 

Definition 32 A quantum set is a set of superpositions of states of where each 

superposition has a specific length. Furthermore we will say a quantum set is com-

putable if there exists some quantum circuit that accepts elements of the set with 
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probability at least 11 and accepts non-elements with probability less than . 

We can build classes of quantum sets similar to classical complexity classes by 

restricting the power of the quantum circuits that compute them. As a first step 

we may wish to define the class of quantum sets BQP by only considering quantum 

sets that have polynomial sized circuits that compute the set with bounded error. 

This restriction works as expected for classical sets, but for quantum sets there is an 

interesting side effect. We note that for a given set, if that set has any input length 

with some superpositions of that length in the set and some not in the set then the 

set is not in this class because the bounded error restriction can not be met. 

To see this consider two superpositions J'çIS) and IO). If kl-'yes) is a member 

of the quantum set then it is accepted by some quantum circuit with error greater 

than 2. If k') is not a member of the quantum set then it is rejected by the same 

quantum circuit with error greater than 2. Now consider a linear combination (or 

rather superposition) of these two states al,) + ,8kbnO ). We can choose values 

of a and /3 so that the quantum circuit when run on this superposition will accept 

with probability exactly 1 and so the quantum circuit could not decide the quantum 

set with bounded error. This side effect is due to the coiitinuous nature of quantum 

superpositions in contrast to the discrete nature of classical strings. 

However, because of this interesting side effect, when considering quantum sets 

it is natural to consider quantum promise problems. A quantum promise problem 

is defined in an analogous way to promise problems already considered. If we have 

two disjoint quantum sets, Ayes and A 0, then we can say that (Ayes) A 0) is a quan-

tum promise problem. As in the classical study of promise problems the alternate 
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definition is equivalent. 

We note that by considering the class promise-BQP of quantum sets we avoid 

the side effect we encountered when we considered the class BQP of quantum sets 

because we need not consider the problematic superpositions that exist between 

members of the set and strictly defined non-members. However we encounter a 

second problem when considering quantum sets and bounded error computation. 

The quantum nature of the input poses a problem similar to the one studied in 

the last section when considering quantum certificates. Bounded error classes of 

quantum sets do not share the robustness feature of their classical counterparts. 

It should be clear that the standard amplification by repetition is ruled out be-

cause quantum information cannot be copied. The procedure used in the last section 

will also not be sufficient, since it works because we are only interested in the perfor-

mance of the maximally accepting input. Consider a promise problem L3 = f 1 

the first bit of ) is 1 with probability greater than 2 } and L0 = { I ') I the first 

bit of k') is 1 with probability less than 11. There exists a simple circuit that 

decides this promise problem with error bound 1 by observing the first bit and 

answering what is seen. The error of this circuit cannot be amplified to be expo-

nentially small because that would mean developing a procedure to distinguish the 

two states I) = 11) + *10) and 102) = 1) + 10) with probability greater 

than II 'L") ('u" I - I '2) (''2 II Itr. This value is a constant so we are assured that this 

language cannot be decided with arbitrary precision. So when considering classes of 

quantum sets with bounded error we recognize that we have a hierarchy of classes 

corresponding to different error bounds. We will be careful to note this fact as it 

becomes important in the discussions of the next section. 
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Some may wish to distinguish between the complexity classes or promise classes 

that only contain classical sets, and those that contain quantum sets. However, to 

avoid cluttering the next section with extra notation we will use the same names. 

This will be unimportant except when considering bounded error classes, and then 

we will take extra care everything works as expected. 

3.5 Quantum Quantifiers 

To link classical languages to quantum sets we can consider a quantum quantifier 

with characteristics similar, to the classical quantifiers. We will define a quantum 

quantifier 2c that is an operator that is applied to class of quantum promise prob-

lems. Quantum quantifiers will be shown to characterize quantum non-determinism. 

A quantum quantifier is taken with respect to polynomial sized quantum states rather 

than polynomial length classical states or rather strings. These quantifiers are the 

obvious extension of the classical quantifiers and their application to base classes 

characterized by quantum models of computation lead to natural classes. Of course 

we see that if these quantifiers are applied to classical classes there is no benefit 

beyond the classical quantifiers. 

Definition 33 We will say that (Lyes) L 0) E 2Q.promise..0 if and only if: 

X E Lyes 
=' : (x, Ib)) E Ayes 

xEL 0=V1> : (X, IV))) EA 0 

for quantum states ) of polynomial length in x, and for some promise problem 
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A) E promise-C. 

Definition 34 We will say that (Eyes) L 0) E VQ•promise-C if and only if: 

X E Lyes = : (x, b)) E Ayes 

X E L 0 = : (x, kb)) E Ano 

for quantum states II') of polynomial length in x, and for some promise problem 

(Ayes) A 0) E promise-C. 

We notice that these quantum quantifiers exist in many of the same relationships 

as their classical brethren. Below we prove this for the relationships considered 

previously. 

Theorem 9 (Marriott) co- Q promise-C = VQ promise-C for any C that is closed 

under complement. 

Proof: Let (Eyes, L 0) E 3Q.promise-C. Let (Ayes, B 0) E promise-C be the implied 

quantum promise problem associated with (Eyes) L 0) and let Q be a circuit family 

that is C-consistent with (Ayes) A 0). We will show that (L 0) Lyes) E VQpromise-

C. Let be the circuit family that runs Q then answers the opposite. Then since 

C is closed under complement ZY is C-consistent with (A 0, Ayes ). So (A 0, Ayes) E 

promise-C. Now: 

XEL 0=VIW):(x,jW)) EA 0 

X E Eyes : (x, 1W)) E Ayes 
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SO (L 0, Lycs) E VQ.promise-C. 

For the other direction we can show that co-VQ•promise-C C 2Q promise-C which 

follows by an identical argument. 

Now we will apply the new quantum quantifiers in the same way that we have 

applied the classical quantifiers. These will lead to the complete quantum analogues 

of the classical classes, where not only is quantum information processing allowed, 

but now the non-determinism is quantum as well. First we will look at the exact 

setting and apply our quantum quantifier to the base class of promise-EQP and show 

that this characterizes quantum non-determinism. The proof follows the familiar 

pattern, and is similar to the ones above except for changes made to accommodate the 

quantum sets and the quantum non-determinism. We also note here that promise-

EQP with quantum sets can be thought of as a special member of the bounded error 

promise-BQP hierarchy. 

Theorem 10 (Marriott) 2Q.promise-EQP = promise-QNP 

Proof: Let (L 5, L 0) E 3Q.promise-EQP. Then there is some polynomial sized 

quantum circuit family, Q, that is EQP-consistent with a quantum promise problem 

(A 5, A 0) such that: 

E L5 =- •Ijfl : (x, 1W)) e A5 = : Q(x, 1W)) = 1 

x EL 0 V1 IF) : (x,IW)) E An, V1 IF) : Q(x,IW)=0 
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We can construct a quantum verification procedure with quantum non-determinism, 

M, that takes the quantum witness, 1W), and runs the circuit Q on (x, 1W)). Then 

if the correct I W) is provided for elements of Lyes M will accept with certainty, 

and for elements of L 0 every witness is rejected with certainty. So (L 8) L 0) E 

promise- QNP. 

Now let (L 88) L 0) E promise-QNP. Then there is some quantum verification 

procedure for which there exist quantum witnesses causing the procedure to ac-

cept "yes"-instances with certainty, and every witness will cause rejection for "no"-

instances. Call the verifier's part of this procedure Qv. Then there is a quantum 

promise problem (A 3, A) such that Qv is EQP-consistent with (Ayes, A 0) and 

where: 

x E L 8 ' 31 IF) : (x, 1W)) E Ayes 

x E L 0 : (x, 1W)) E A 0 

So, (Ayes, A) E promise-EQP and (Lyes, L 0) € 3Q.promise.EQP. 

We now consider the remainder of the bounded error cases. We will apply the 

new quantum existential quantifier to the base class of promise-BQP with quantum 

promise problems and show that it characterizes the class promise-QMA. This can be 

considered from two angles, and our proof will demonstrate them both. First if the 

quantum promise problems are only considered in the base class promise-BQP, and 

Q.promise.BQP and promise-QMA are considered as classical promise classes only, 

then it does not matter what error bound we choose for the base class promise-BQP 

since the classical promise classes are robust themselves. Secondly we can consider 
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when quantum sets are allowed in all the classes considered. In this case it will be 

clear from the proof that the error bound must be chosen to be the same for all 

classes if the theorem is to be true. The proof is identical to the one above regarding 

promise-QNP with modifications only to make up for the bounded error, for which 

we use the bound 1 arbitrarily. 

Theorem 11 (Marriott) 3Q.promise-BQP = promise-QMA 

Proof: 

Let (L 8, L 0) E 3Q.promise-BQP. Then there is some polynomial sized quantum 

circuit family, Q, that is BQP-consistent with a quantum promise problem (Ayes, A 0) 

such that: 

X E Lyes l) : (x, I)) E A 58 

Iw) :Pr[Q(x,I))=1]≥ 

xEL 0 

= V1w> :Pr[Q(x,IW))=1]≤ 

We can use Q to design a quantum verification procedure with quantum messages 

for the promise problem (L 5, L 0). On input x Merlin will send some quantum state 

W) and Arthur will run Q on (x, I ')) and answer as it does. If x E Lyes then there 

is a quantum state j) that will cause Q to accept with probability at least . If 

x E L 0 then there is no quantum state that will cause Q to accept with probability 

greater than 1. Thus (Lyes, L 0) E promise-QMA. 
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Let (Lyes) E promise-QMA. Then there is some polynomial-sized quantum 

verification procedure with quantum messages, Q, that is QMA-consistent with 

(Lyes) L 0). Let QA be Arthur's part of the verification procedure that acts on the 

input and a quantum state provided by Merlin. Then: 

X E Lyes 21W) : Pr[QA(x, 1W)) = 1] ≥ 

X ELno V1) :Pr[QA(x,IW))=1]< 

We can see that QA is BQP-consistent with a quantum promise problem (Ayes, 

A 0). So (Ayes) A,) E promise-BQP, and so (Lyes) L 0) E 3Q'promise-BQP. U 

Our final theorem of this section is perhaps the one of greatest interest because 

in it we combine the classical quantifiers with the new quantum quantifiers to char-

acterize another well studied class. The class promise-QAM can be characterized by 

adding only classical randomness to the base class promise-QMA. Again this proof 

is similar to one from earlier in the section dealing only with classical quantifiers. 

Again we must consider that the base class promise-BQP is not robust. As above 

if we only considered the quantum sets in the base class then the choice of error bound 

is not relevant and we use e arbitrarily. Different from above however, the proof below 

does not imply that the hierarchy of bounded error classes coincides if quantum 

promise problems are considered for all classes. This is because the robustness is 

an important part of the following proof. Thus the alternate interpretation of this 

theorem, where quantum promise problems are considered remains open. 

Theorem 12 (Marriott) 2Q .promiseBQP = promise- QAM 
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Proof: Let (L ) L 0) E a2Q.promise-BQP. Then there will be a polynomial sized 

uniformly generated quantum circuit family, Q, that is BQP-consistent (error ) with 

a quantum promise problem (Ayes) A 0) such that: 

X E Lyes = : (x, y, W)) E Ayes 

X  : (x,y,IP)) € A, 

We will show that (Eyes, L) E promise-QAM. Let M be a quantum verification 

procedure that does the following. First Arthur flips p(IxI) coins, y, and sends 

them to Merlin. Then Arthur runs Q on the input (x, y, where IWX,Q,) is the 

quantum proof provided by Merlin. Below, the first probabilitr is taken with respect 

to the random choice of y and where I is assumed to be Merlin's maximally 

accepting proof, thus it is dependent on the strings x and y, which is indicated by 

the subscripts. The later probability incorporates the probability of error associated 

with the quantum circuit family Q. 

x E Eyes 

X E Lno 

Pr[(x,y, W,)) E Ayes] ≥ +J 

Pr[M(x)-1]≥(1—E)(+5)> +S — f 

Pr[(x, y, l')) E Ayes] ≤ —8 

Pr[M(x)=1]< —8+€(+o)< —8+ 

Since 8 is chosen arbitrarily, (Eyes) L 0) E promise-QAM. 
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Let (Lyes) L 0) E promise-QAM. We will show that (L, E Q•promise-

BQP. Let Q be a quantum verification procedure that is QAM-consistent with 

(Lyes) L 0) with error J. We will create M a quantum circuit family that runs on the 

quantum input (x, y) 1W)). M will treat the input as though x is the input, y is a 

random classical string, and 1W) is a potential quantum witness and it will run the 

verification stage of Q, call it QA, on input (x, y; W)) and answer as it does. 

x E .PT[QA(X, Y, IW,)) = 1] ≥ 1 - 8 

P'r[M(x,y, IW,)) = 1] ≥ 1-8 

Pr[M(x,y, IW,)) = 1] ≥ (1— 8)2P(IxI) 

yEE(lI) 

We want to know for how many strings y that Pr{M(x, y, IW))J > 1 - C. This 

number is maximized when every y for which this holds does so with probability 

1 and the rest do not with probability exactly 1 - . This is at least 2P(II) ≥ 

( + 8') 2P(1x1) values of y for 0 <6 < 

X E = Pr[QA(x,y,jW,)) = 1] ≤ 6 

= Pr[M(x,y, IW,)) = 1] ≤ 6 

= Pr[M(x,y, lW,)) = 1] ≤ 52P(1x1) 
yEEP(lxI) 

We now want to know how many values of y for which Pr[M(x, y, IQ,))] < 6. 

So for values of y that fail this we will use as little probability as necessary to 

underestimate this number. For at most 2P(1x1) < ( - 6') 2P(1x1) values of y this fact 
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holds if 0<5< 6. 

Since the error S can be made smaller than any constant we can conclude that 

M is BQP-consistent (error 6) with a promise problem (A 3, A 0) such that: 

E Lyes : (X, Y, W)) E Ayes 

x  L 0 2V1) : (x)y,JW)) E A 0 

50 (L 5, L) E 2Q.promise-BQP. 



Chapter 4 

Quantum Oracle Separations 

We now turn our attention to relativised separation, in an attempt to see if these 

relationships as well are inherited from the classical classes. Relativised separation 

is a weak type of separation used by complexity theorists in the stead of strong 

separation proofs that are notoriously difficult to come by except in a few rare cases. 

In fact the study of relativised separation was first used to better understand the 

relationship between the paradigmatic classes P and NP. 

A relativised separation, or oracle separation, is a separation that is true when 

all machines are given access to the same oracles. It was soon recognized that oracle 

separations were a weaker separation when it was discovered that not only was there 

an oracle that would separate P from NP, but also one that made them equal. Despite 

not solving the famous problem, oracle results, are often pursued because they are 

some indication of the difficulty of proving their equality. When two classes can be 

separated by an oracle it means that "black box" attempts at simulation will not 

be successful, and a new strategy that does not "relativise" must be found. In the 

absence of the new strategy the oracle separation can be interpreted as "proving 

these classes are equal requires a novel approach." Oracle separations are proved by 

constructing, step by step, an oracle that will fool one class of oracle machines, but 

be solvable by another. This requires defining an oracle dependent problem with 

the specific structure to separate the powers of the two classes. Sometimes these 

problems are simple, we will use common problems like OR and MAJORITY, and 
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some are exceedingly complex. 

4.1 Prior Work in Oracle Separations 

Below we state known oracle separations for the classical classes we are studying. 

We use the notations CA to denote the class C relative to an oracle A. 

Theorem 13 (Baker, Gill, Solovay[4]) For each of the following relations there 

exists an oracle, A, relative to which the relation holds: 

1. PA.NPA 

2. PACNPA 

3. NPco_NPA 

Following this paper, many theorists explored what other results could be demon-

strated through the use of relativization. Later the probabilistic complexity classes 

were studied by Rackoff [16] as well as many others. The following relationships 

between the probabilistic classes were demonstrated. 

Theorem 14 There exists an oracle, A, relative to which the all of these relations 

holds: 

1. co _R4 NPA 

2. BPPA NPA 

3. R/ co— RA 
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Here R is the one-sided probabilistic class and is used because it is a subset of 

BPP and will generate corollaries for all of its super-classes, like the last two relations 

in this theorem. The proof of the first result provides an oracle dependent language 

and an oracle where the language is in the class co-RA but is not in the class NPA. 

The first corollary follows since co-R C BPP. The second corollary follows from the 

fact that the set that is in co-RA is not in NPA and since RA is in NPA the set must 

not be in RA either. Furthermore other corollaries can be shown. 

Corollary 2 There exists an oracle, A, relative to which both of the following hold 

1. PACRACBPPA 

2. pA co RA BPPA 

To complete the study of these simple classes the following relationship was also 

demonstrated. 

Theorem 15 There exists an oracle, A, relative to which NPA BPPA. 

It is worth noting that the combination of these two oracle results provide worlds 

in which there are sets in BPPA that are not in NPA and.vice versa. These theorems 

and their respective corollaries settle all the relativized pairwise inclusion relation-

ships that are consistent with known inclusions among the classes, P, R, co-R, NP, 

and BPP. Of course more complex relationships can and have been established deal-

ing with the classes discussed. For a simple presentation of these theorems and their 

proofs see Balcazar, Diaz, and Gabarro [6]. 

Moving into the realm of quantum complexity theory one would be motivated to 

ask what relationships can be shown regarding the most commonly discussed classes 
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EQP and BQP. These classes have also been studied extensively in the relativized 

setting. 

Theorem 16 For each separation below it has been demonstrated that there exists 

an oracle, A, relative to which the separation holds: 

1. pA EQPA 

2. BPPA BQPA 

The first separation in this theorem comes via an adaptation of the Deutsch-Josza 

problem cast as an oracle dependent language by Berthiume and Brassard [10]. The 

second separation was first demonstrated by Berstein and Vazarani [9] and used a 

complex problem called the recursive Fourier sampling problem. Since then simpler 

proofs of this result have emerged. Regarding further the class BQP we can note 

that another corollary can be added to the list provided above. 

Corollary 3 There exists an oracle, A, relative to which BQPA NPA. 

This can be combined with a result of Bennett, Brassard, Bernstein, and Vazirani 

[8] to complete the comparison of BQP and NP. 

Theorem 17 (Bennett, Brassard, Bernstein, Vazirani) There exists an ora-

cle, A, relative to which NPA BQPA. 

This result is actually extended in the paper to provide a separation between 

NP fl co-NP and BQP. We can again notice that the same relationship that was 

identified between BPP and NP can be identified here with respect to the classes 

BQP and NP. 
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Some have begun to study the classes representing the combination of non-

determinism and quantum machines. Watrous[18] has established the following sep-

arations. 

Theorem 18 For each separation below it has been demonstrated that there exists 

an oracle, A, relative to which the separation holds: 

.1. MA  C  QMAA 

2. BQPA MA  

This final separation is also a corollary of a stronger claim, namely that EQP 

is not contained in MA relative to an oracle, which was claimed by Berstein and 

Vazarani, yet for which no proof was provided. 

4.2 New Oracle Separations 

We will now turn our attention back to standard complexity classes to extend and 

add results to the known oracle results in the field to better complete the picture the 

quantum classes are beginning to form. First let us revisit the concept of oracles. 

Below we will also consider an oracle, A, to be a set of indexes, A C E*. We can see 

that if the oracle is a sequence of bits, then we can say that a particular index is in 

the oracle if the bit that it indexes is 1. Likewise if the bit is 0 then we can say that 

the index is not in the oracle. This way we can easily discuss concepts like the empty 

oracle, the oracle with all Os, or adding (removing) indices to an oracle by changing 

the corresponding bits from 0 to 1 (1 to 0). It is also common to write the indices 

as binary integers although one might also use the decimal values when convenient. 
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We will switch now from the quantum circuit model to the quantum Turing 

machine model because some of the earlier result we draw upon use this model. We 

will also notice that the difficulties associated with programming a quantum Turing 

machine will not pose a problem for us in this section since we will not have to provide 

complex programs. An important property of quantum oracle Turing machines is 

that they can enter the query state with a superposition of indices written on the 

query tape. This will allow the machine to query many places of the oracle in one 

query, although the bits queried will also be in superposition and must either be 

carefully manipulated to retrieved the desired information, or can be observed to 

provide a bit chosen at random from the queried set. See [9] and [8] for a discussion 

of how quantum oracle Turing machines still evolve unitarily and thus obey the 

properties of quantum mechanics. 

A concept regarding the error of an oracle quantum Turing machine will be useful 

for a number of the results below. Let M be a quantum oracle Turing machine, A 

an oracle, and x a word. We will say that M is an €-error machine under A on x 

when the error probability of M operating with oracle A on word x is bounded by 

6 < 1/2. To say that M is an 6-error machine under A is to say that it is an 6-error 

machine under A for every word x. It should be noticed that this definition is oracle 

dependent. A machine that is 6-error under an oracle A may have unbounded error 

if even one word is added to or removed from A, and in fact this is an important 

property that enables the proofs in the next section. Since the classes we consider 

are robust the choice of 6 is arbitrary in the range 0 < 6 < 

We also note that the set of quantum oracle Turing machines is enumerable. A 

quantum oracle Turing machine is defined by a triplet (E, Q, 6) where E is a finite 
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alphabet with an identified blank symbol, Q is a finite set of internal states with 

identified states q0 (the initial state), qf (the final state), qq (the query state), and 

q (the answer query state), no two of which are the same, and 8 is the quantum 

transition function 

8: Q X E -+ ExQx{L,R} 

Here C is an appropriately chosen set of a E C that are sufficient for quantum com-

putation. For our purposes we must limit the chosen amplitudes to those that are ef-

ficiently computable. We will note that it has been shown that the set {O, ±, ±, IT 

is sufficient[1]. The number of transition functions 8 is enumerable and so the number 

of quantum oracle Turing machines is enumerable. 

We can restrict our discussion to clocked quantum oracle Turing machines without 

loss of generality, which will allow us to consider an enumeration that is in increasing 

running time which is utilized by our proofs below. The dovetailing lemma in [9] can 

be used to construct a clocked quantum oracle Turing machine out of any quantum 

oracle Turing machine and any time constructible function expressing the running 

time of that machine. 

The lemmas that are provided in this section are used to argue that a particular 

set of words exists that can be sufficiently hidden in an oracle for the purpose of 

diagonalizing against a set of machines. The arguments used to demonstrate these 

lemmas rely on results of Beals, Buhrman, Cleve, Mosca, and de Wolf [7]. In this 

paper the authors demonstrate lower bounds on the number of queries required to 

compute particular symmetric bpolean functions of variables stored in an oracle. The 

important facts that we will use regard the symmetric boolean functions OR and 



74 

MAJORITY. In both cases the lower bound of the number of queries required was 

polynomial in the number of variables. Since we will be concerned with computing 

these functions over exponential sized domains the number of queries required will 

also be exponential. More precise results are demonstrated in the paper and are used 

below. 

Once we have the lemma to rely upon we will use a standard proof technique to 

demonstrate our first oracle separation. The technique used begins by defining an 

oracle dependent problem that has the unique properties necessary to separate the 

classes considered. Once the problem is chosen we will step by step construct an 

oracle that will diagonalize against every machine of a particular model, by forcing 

each machine to err on at least one input. Thus with respect to this oracle the oracle 

dependent language will be in one class and not the other, effectively separating 

them. 

Lemma 1. Let M be a quantum oracle machine with running time p(n) a polynomial. 

Let no be chosen so that p(no) < Let A be an oracle with no words of length 

no. If M is an exact (0-error) machine with respect to A and the input O'° and 

if M accepts input Or" with oracle A, then there exists a non-empty set of words 

B C 1 . Efo-', such that M is either not an exact (0-error) machine with respect to 

the oracle A U B and the input O'' or M accepts input Ono with oracle A U B. 

Proof: Assume for the sake of a contradiction that there does not exist such a B. 

Then for every such B the machine M is an exact machine and it rejects O'°. If 

this is the case then we can construct an exact quantum oracle machine that can 

compute the bitwise or of 2'°' oracle entries with fewer than p(no) < 2fb  queries 
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to the oracle. Beals et. al. [7] have demonstrated that this is not possible. Therefore 

there must exist at least one set B such that M is either not an exact machine with 

respect to the oracle A U B and the input O' or M accepts input 0fl0 with oracle 

AuB. . 

The result presented below shows that one of the common properties of non-

determinism carries over into the quantum setting. That is, the question of whether 

NP is closed under complement is almost as primary as the question of whether P = 

NP. Since there is an oracle that separates NP from its complement we believe that 

demonstration of this particular closure to be very difficult. We extend those oracle 

results to the quantum non-deterministic classes to show that this relationship is 

constant in the new quantum model as well. 

Theorem 19 (Marriott) There exists an oracle, A, such that QNPA co QNPA. 

Proof: Consider the oracle dependent language 

L(A) = A(w) = 

The language L(A) E NPA C QNPA for all oracles A. We will construct an 

oracle A such that L(A) ØcoEQNPA or equivalently L(A) 0 QNPA. 

Consider the construction given in Figure 4.1. First we must demonstrate that 

the construction can indeed be performed. First we should note that in step n there 

always exists a k(n) that meets the conditions. Secondly the lemma assures us that 

the set of words B (n) exists if needed. 

Now we argue that the construction provides us with an oracle, A, for which 
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Step 0: 

1. k(0) = 0 

2. A=O 

Step n: 

1. let k(n) be the smallest number such that p(k(n)) < 2 and p 1(k(n - 

1)) <k(n) 

2. if E L(M, A) then 

(a) fix a computation of M on and A that accepts 

(b) let B(n) be the set of words guaranteed by the Lemma and let A = 
AUB(n) 

else A=A 

where M is the nth polynomial time exact non-deterministic quantum oracle ma-
chine in the standard enumeration where pn(i) ≤ pn+i(i) for all i and n. 

Figure 4.1: Construction of an oracle A for Theorem 19 
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no polynomial time exact non-deterministic quantum oracle machine decides the 

language L(A). The construction is designed to diagonalize against the ith poly-

nomial time exact non-deterministic quantum oracle machine showing that L(A) 

L (Mi, A). If the "then" branch is taken then M is either not an exact machine with 

respect to oracle A U B (i) and input 01(j) or the computation that is fixed in the con-

struction at step i will accept the input, thus showing that L(A) 0 L(M, A). If the 

"else" branch is taken then L(A) =A L(M, A) is already true. Every such machine is 

ruled out by the construction so the resulting oracle A is such that L(A) 0 L(M, A) 

for any i. Therefore L(A) Øco QNPA. 

We have shown that non-determinism acts as suspected in the quantum model 

for the exact setting. Now we do the same for the bounded error setting. We utilize 

the same strategy and the proofs of the following lemma and theorem are closely 

related to the last two presented. 

Lemma 2 Let M be a quantum oracle machine with running time p(n) a polynomial. 

Let no be chosen so that p(no) < Let A be an oracle that contains no words 

of length no. If M is an c-error machine with respect to A and the input 0flO and 

if M accepts input 010 with oracle A, then there exists a non-empty set of words 

B ç 1 Ez0l, such that M is either not an c-error machine with respect to the 

oracle A U B and the input Ono or M accepts input O0 with oracle A U B. 

Proof: Assume for the sake of a contradiction that there does not exist such a B. 

Then for every such B the machine M is an c-error machine and it rejects Ono. If 

this is the case then we can construct an c-error quantum oracle machine that can 

compute the bitwise or of 2Th1 oracle entries with fewer than p(no) < 2°2  queries 
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Step 0: 

1. k(0) = 0 

2. A= 

Step n: 

1. let k(n) be the smallest number such that p(k(n)) < 2''2 and p_1(k(n - 

1)) <k(n) 

2. if 0k(m) E L(MTh, A) then 

(a) fix a computation of Mn on 0k(m) and A that accepts 

(b) let B(n) be the set of words guaranteed by the Lemma and let A = 
AUB(n) 

else A=A 

where M is the nth polynomial time &-error non-deterministic quantum oracle ma-
chine in the standard enumeration where Pm (i) ≤ Pn+i (i) for all i and n. 

Figure 4.2: Construction of an oracle A for Theorem 20 

to the oracle. Beals et. al. [7] have demonstrated that this is not possible. Therefore 

there must exist at least one set B such that M is either not an 6-error machine with 

respect to the oracle A U B and the input 0 or M accepts input 010 with oracle 

AuB. 

Theorem 20 (Marriott) There exists an oracle, A, such that QMAA co - 

QMAA. 

Proof: Consider the oracle dependent language 

L(A)= 0'3 w,w1,A(w)=1} 1 I  
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The language L(A) E NPA C QMAA for all oracles A. We will construct an 

oracle A such that L(A) 0 co - QMAA or equivalently L(A) 0 QMAA. 

Consider the construction given in Figure 4.2. First we must demonstrate that 

the construction can indeed be performed. First we should note that in step n there 

always exists a k(n) that meets the conditions. Secondly the lemma assures us that 

the set of words B(n) exists if needed. 

Now we argue that the construction provides us with an oracle, A, for which 

no polynomial time €-error non-deterministic quantum oracle machine decides the 

language L(A). The construction is designed to diagonalize against the ith polyno-

mial time 6-error non-deterministic quantum oracle machine showing that L(A) 

L(M, A). If the "then" branch is taken then M is either not an 6-error machine with 

respect to oracle Au B(i) and input 01(j) or the computation that is fixed in the con-

struction at step i will accept the input, thus showing that L(A) 0 L(M, A). If the 

"else" branch is taken then L(A) 0 L(M1, A) is already true. Every such machine is 

ruled out by the construction so the resulting oracle A is such that L(A) L(M, A) 

for any i. Therefore L(A) 0 Co - QMAA. 

Finally we will switch gears a little to show that the quantum classes are still 

properly contained by the largest of the polynomial time probabilistic classes in 

the weak sense. We use a similar method as the other proofs in this section, but 

we change our choice of oracle dependent problem. Now we consider the problem 

MAJORITY and apply it to the various lengths in the oracle. 

Lemma 3 Let M be a quantum oracle machine with running time p(n) a polynomial. 

Let no be chosen so that p(no) < 2 2 Let A be an oracle that contains no words 
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of length no. If M is an 6-error machine with respect to A and the input O0 and 

if M rejects input 0'° with oracle A, then there exists a non-empty set of words 

B c 1 Eno—', such that M is either not an c-error machine with respect to the oracle 
A U B and the input 0° or M accepts input 0' with oracle A U B and IBJ < 2f0_2 

or M rejects input 00 with oracle A U B and JBJ > 20_2. 

Proof: Assume for the sake of a contradiction that there does not exist such a 

B. Then for every such B the machine M is an c-error machine and it rejects Ono if 

IBI < 2f0_2 and it accepts 0" if IBI > 20_2. If this is the case then we can construct 

an c-error quantum oracle machine that can compute the majority function of 2"° 

oracle entries with fewer than p(no) < 2r queries to the oracle. Beals et. al. [7] 

have demonstrated that this is not possible. Therefore there must exist at least one 

set B such that M is either not an c-error machine with respect to the oracle A U B 

and the input 0° or M accepts input Ono with oracle A U B and IBI ≤ 2f0_2 or M 

rejects input Onowith oracle A U B and JBI > 2n0_2. 

Theorem 21 (Marriott) There exist an oracle, A, such that QMAA C ppA 

Proof: Consider the oracle dependent language 

A(w) > 

IwI=n 

The language L(A) E ppA for all oracles A. We will construct an oracle A such 

that L(A) 0 QMAA. 

Consider the construction given in Figure 4.3. First we must demonstrate that 

the construction can indeed be performed. First we should note that in step n there 
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Step 0: 

1. k(0) = 0 

2.A= 

Step n: 

1. let k(n) be the smallest number such that p(k(n)) < 2' 2 and p_1(k(n - 

1)) <k(n) 

2. if 0k(n) E L(MTh, A) then A = A 

else 

(a) fix a computation of M on 0k(n) and A that accepts 

(b) let B(n) be the set of words guaranteed by the Lemma and let A = 
AUB(n) 

where M is the nth polynomial time &.error non-dterministic quantum oracle ma-
chine in the standard enumeration where p (i) ≤ Pn+i (i) for all i and n. 

Figure 4.3: Construction of an oracle A for Theorem 21 
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always exists a k(n) that meets the conditions. Secondly the lemma assures us that 

the set of words B(n) exists if needed. 

Now we argue that the construction provides us with an oracle, A, for which 

no polynomial time 6-error non-deterministic quantum oracle machine decides the 

language L(A). The construction is designed to diagonalize against the ith polyno-

mial time 6-error non-deterministic quantum oracle machine showing that L(A) 

L(M, A). If the "then" branch is taken then L(A) 54 L(M, A) is already true. If 

the "else" branch is taken then M is either not an 6-error machine with respect to 

oracle A U B and input Ono or the computation of M that is fixed at step i accepts 

input O' with oracle A U B and IBI ≤ 2f0_2 or rejects input O' with oracle A U B 

and IBI > 2f0_2, thus showing that L(A) 0 L(M, A). Every such machine is ruled 

out by the construction so the resulting oracle A is such that L(A) L(M, A) for 

A any i. Therefore L(A) 0 QMA. 



Chapter 5 

Discussion and Open Questions 

The characterization of non-determinism by quantifiers is one of the favored charac-

terizations in complexity theory because of its ease of use. Despite the fact that this 

characterization works well when applying these quantifiers to exact classes, we find 

that the characterization is questionable when we try to apply these quantifiers to 

bounded error classes. This problem is demonstrated by the problem of proving that 

.BPP = MA. Though intuitively MA is considered a non-deterministic extension of 

BPP and so it would seem that this relationship should hold, the quantifiers as they 

are currently used are not known to characterize non-determinism in these cases. 

In the previous sections we discussed how we can extend the study of these 

quantifiers into the realm of promise problems and their associated promise classes. 

In effect we have defined a new set of quantifiers that not only succeed where the 

old ones succeeded, but also where they failed. We note that in the realm of promise 

classes, promise-MA = .promiseBPP = 2.promise-P. This result shows that this 

extension is not susceptible to the same problems as its successor, and as such is a 

more precise characterization of non-determinism. Currently it is not known if this 

characterization fails when applied to any promise class, but it seems to succeed in 

all the cases that we have considered in this project. 

As was noted in earlier sections the coincidence of promise classes implies the 

coincidence of the related complexity classes. Thus in the previous sections when 

we demonstrate that the quantifier definition of non-determinism in the promise 
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class setting results in identical classes, we have also shown that using this definition 

of non-determinism works for the standard complexity classes as well. Thus we 

can consider an upgrade to the current theory of quantifiers. Below we suggest a 

redefinition of what it means to apply these quantifiers to a complexity class. Though 

notationally these quantifiers will be identical to the quantifiers used in prior work we 

stress that results using this definition imply nothing about the previous definition. 

Definition 35 Let Q be a quantifier, classical or quantum. We will say that a 

language, I, C E', is in the class Q . C if and only if (L, L) € Q'promise-C. 

We will note that' if a language is in a class defined with the old quantifiers then 

it will necessarily be in the class defined with the new quantifiers. This property can 

be thought of as a type of containment. The new quantifiers work whenever the old 

ones did, but they also work in other cases as well. Below we state and prove this 

property. 

Proposition 9 Let Q be a quantifier, classical or quantum, and let Q be its com-

plement. If L E Q C then (L, Y) € Q.promise-C. 

Proof: Let L be in Q 'C. Then there is a machine, M, which operates under the 

model defining the class C for which: 

x €L Q, : M accepts (X, Y) 

x ØL QY M rejects (x, y) 

We can use the same machine M for the promise problem (L, L) and we see that we 
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get: 

x EL = Q, : M accepts (X, Y) 

X EL=Q : M rejects (x, y) 

Clearly we can see that M is C-consistent with the implied promise problem (Ayes, A 0) 

and thus (L, t) E Q.promise-C.D 

Using this new definition of what it means to apply a quantifier to a complexity 

class we can now eliminate the problematic cases encountered with the originals. 

Below we state the known results regarding this new definition that are collected 

from a number of sources via the proposition above and from work earlier in this 

project. First in the classical setting we have: 

Theorem 22 1. NP = . 

. BPP=2.P 

S. MA=2.BPP=9•P 

. 

We have also found that the original definitions of the quantifiers when applied 

to the quantum classes with error either bounded or disallowed do not lead to the 

expected classes, due to the inherent randomness in quantum mechanics. The new 

definitions of these quantifiers allows us to overcome these problems and extend these 

results into the quantum domain. 

Theorem 23 1. QCNP = El • EQP 

2. QCMA=.BQP 

3. QCAM - • QCMA - BQP 
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We note that it is not known how to reduce the last two of these results further 

to the class EQP as was done in the classical setting. Several questions can be raised 

with respect to this that may have connections to derandomization. First we can 

ask if BQP 3+.EQp, or if these classes can be separated by an oracle. If it turns 

out that these classes can be separated by an oracle then perhaps there is another 

quantifier that can be defined, related to the 3 quantifier for which this is true, 

or even such that Q.P = BQP. We will note that the obvious extension of 3 into 

the quantum world, that is for most superpositions, is potentially powerless over 

the classical quantifier since it seems it could be simulated by constructing a purely 

mixed state. Thus it is an open question is if bounded error quantum computation 

can be reduced to deterministic quantum computation or even deterministic classical 

computation via an appropriately defined quantifier. Next we show the known results 

using the new quantum quantifiers defined in the previous sections. 

Theorem 24 .1. QNP = IQ • EQP 

. QMA=3Q .BQP 

3. QAM =3+ QMA = 3+3 . BQP 

The obvious overlap between these two definitions for quantifiers is due to the 

fact that a shift from languages to promise problems is minor, but in this case we find 

that it has made the difference. Since quantum information's infancy we have seen 

several significant results that have depended on a notion of promise problems, in a 

way because of the nature of quantum mechanics. However promise problems have 

been also studied in the classical setting prior to these motivations. It seems not 

altogether shocking that they should once again prove useful to both quantum and 
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classical complexity theory. Upon which with our discussion of quantum sets we note 

that standard bounded error complexity classes are largely inferior to their promise 

class counterparts. Further study of these classes may lead to other breakthroughs in 

the field. The vast similarities of the classes C, C with quantum sets, and promise-C, 

invite an abuse of notation by calling all the classes, or rather their union, by the 

name C. We find that in this case we already know much about the world of these 

unions. 

Now regarding the quantum Arthur-Merlin hierarchies, it has been shown by 

Kitaev and Watrous[13] that the quantum message hierarchy collapses to the third 

level, unlike the strictly classical hierarchy that collapses to the second level. Cur-

rently it is not known if this result can be improved upon. Two primary questions 

arise from these results. First, it has not been determined to which level the classi-

cal message quantum hierarchy collapses. It seems logical to conclude that it must 

collapse to either the second or third level, but the level to which it does collapse 

will shed another revealing fact concerning these models. The second question is 

whether the results of this project in the application of the quantifiers can be used 

to demonstrate the collapse of these hierarchies as the original quantifiers were used 

for the classical Arthur-Merlin hierarchy. 

Furthermore we have verified that all the basic oracle separations in the quantum 

world exist in the same way as the classical world. This comes perhaps as expected 

as the quantum world has a great tendency to act classically which is evident in the 

nature of how the theory evolved. However, as is also the case with the quantum 

world this vast similarity comes with a twist. A uniqueness of the quantum world 

is the apparent benefit of quantum computation in the exact setting. Classical 
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randomness provides no benefit to a deterministic algorithm in the exact setting; 

however, there is evidence to suggest that quantum properties do provide such a 

benefit. As such we have an added layer to the error hierarchy in the quantum 

world. These classes exists between the classical classes P and NP, and the bounded 

error quantum classes BQP and QMA, in an area vacant with respect to classical 

randomness. An open question is whether BQP is contained in PH, or perhaps easier, 

a well defined QPH. 
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