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ABSTRACT 

The research objective is the development, in the Kananaskis area situated in the Canadian 

Rocky Mountains, of a homogenous and accurate gravity field model on the surface of the 

Earth and at elevation above it, as a reference for testing of a gravity-based airborne 

system. Random point gravity data collected from existing sources and by measurement, 

processed in a consistent manner and taking into account digital elevation models, are used 

to predict grids of surface free-air, Bouguer, and isostatic gravity anomalies. The prediction 

methods are least squares collocation and weighted means. Covariance analysis of the 

predicted gravity anomalies indicates that the gravity field can be recovered at 

approximately 1 mGal level if the data spacing is less than 3 km. This precision is achieved 

within an area bounded by latitudes 50°40' and 51°05' and by longitudes 244°38' and 

245°08'. Spatial gravity anomaly fields, at altitude above the topography, are computed 

from two-layer point mass models and by using the Poisson integral with reduced surface 

gravity anomaly data. The results are very sensitive, especially at low altitudes, to the 

method by which the surface data are reduced to a reference surface. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The study of the Earth's gravity field is of interest for geodetic and geophysical 

applications. In geodesy, gravity data is used to address the principal task of geodesy, i.e., 

the determination of the surface of the Earth and its exterior gravity field. In geophysics, 

gravity data on the Earth's surface is an important source of information to determine the 

mass distribution of the interior of the Earth. 

Classical methods of sensing the change in shape of the equipotential surfaces of the 

gravity field use static gravimeters and/or astronomical determination of the deflections of 

the vertical for the acquisition of gravimetric data at discrete points. Although the attainable 

accuracies are high, such methods are time consuming, expensive and difficult to carry out 

in areas not easily accessible. 

The capacity to measure gravity from an aircraft (i.e., airborne gravimetry) can provide 

uniform, dense and high resolution coverage for local gravity field applications regardless 

of access and nature of an area, with cost efficiency. The integration, in an airborne 

platform, of the navigation information (i.e., spatial location, velocity, acceleration) coming 

from Inertial Navigation Systems (INS) and receivers of the Global Positioning System 

(GPS), has been an area of interest for geodesy and geophysics in recent times. LaCoste et 

al. (1982), Hammer (1983), Brozena and Peters (1988), Brozena et al. (1989), Colombo 

(1990), Knickmeyer (1990), Brozena (1991), and Schwarz et al. (1991) have discussed, 

applied and analyzed the measurement of gravity from aircraft for the purpose of charting 

the gravity field. 
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The Department of Geomatics Engineering at The University of Calgary and Canagrav 

Research Ltd. are pursuing research and development for a gravity vector system as part of 

a gravity based airborne system for oil and mineral exploration. The gravity vector system 

should have the capability of achieving a resolution of better than 1 mGal for wavelengths 

ranging between 3 to 10 km. The proposed system will combine the output of GPS 

receivers and INS to achieve the objective (i.e., determine the magnitude and direction of 

the anomalous gravity vector at the necessary level of accuracy and resolution). 

The gravity vector system must be tested under typical operational conditions encountered 

in exploration. For this task, detailed three-dimensional gravity field models are required 

for designated test areas. This requires for dense gravity data coverage and detailed 

elevation models of the topography. Exploratory studies give an indication that the 

Kananaskis area in the Canadian Rocky Mountains meets the requirements (i.e., large 

variations of the anomalous gravity field) needed for testing the gravity vector system in a 

mountainous area (Forsberg, 1986; Schwarz et al., 1990). 

For the purpose stated above, existing gravity data provided by the Department of Energy, 

Mines and Resources (now Department of Natural Resources) are combined with data from 

gravity surveys performed with spring gravimeters for or by The University of Calgary in 

an area bounded by latitudes 50°15' to 51°30' and longitudes 244°15' to 245°30'. Within 

the core region of this area lies part of the Kananaskis area. It is endeavored to have a 

uniform point distribution representative in horizontal position and elevation. The point 

gravity data are subsequently converted to gravity anomalies and archived in a data base 

comprising all the available gravimetric information (i.e., identification source number, 

spatial location, observed gravity, reductions, gravity anomalies, precisions). In order to 

produce a consistent data set, an attempt is made to apply standard procedures and 

recommendations throughout the collection, processing and combination of the available 

gravity data as presented in the scientific literature regarding gravimetric surveys and their 

products. References dealing with these matters include Morelli (1976), Uotila (1978), 

McConnell (1982), Dobrin and Savit (1988), Torge (1989), and LaFehr (1991). 

The wide variety of applications in geodesy and geophysics involving gravity data require, 

in general, the operation of prediction. Of special interest is the prediction from point 

gravity anomalies data of values on a regular pattern (i.e., gridding). Methods used for this 

purpose include least squares surface fitting, simple and least squares plane fitting, 
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minimum curvature surface, solids of revolution, least squares collocation, series 

approximations, splines, and inverse distance weighting. Developments regarding the 

prediction of gravity anomaly data at other random points and/or grids are found in Briggs 

(1974), Kassim (1980), Sünkel (1981b), Merry (1983), Tscheming and Forsberg (1983), 

and Morrison and Douglas (1984). In this investigation, two methods were chosen for 

gridding the point gravity data in the Kananaskis area, namely inverse distance weighting 

and least squares collocation. The performances (i.e., accuracy of prediction, precision 

estimation, computation requirements) of the prediction methods are evaluated. 

The analysis of the information coming from different parts of the spectrum of the gravity 

anomaly field is important for geodetic and geophysical applications. Schwarz (1985) and 

Vassiiou and Schwarz (1987) used a spectral analysis approach regarding the investigation 

of the resolution of the gravity anomaly field for different data distributions. Tscherning 

(1975, 1985) investigated the density of the gravity data distribution using covariance 

functions in order to obtain the required precisions in subsequent gravity anomaly field 

estimations. 

The gravity anomalies on the Earth's surface can be regarded as the effects of buried source 

bodies of different size, shape and density. The complex source bodies can be 

approximated by a series of bodies of regular shape (e.g. points, spheres, cylinders, 

prisms) and of assumed density. Analytical methods for the three-dimensional modelling of 

the gravity anomaly field have been developed in applied geophysics (e.g. Taiwani and 

Ewing, 1960; Cordell and Henderson, 1968; Barnett, 1976; Götze and Lahmeyer, 1988; 

Bhaskara Rao et al., 1990). 

From the different mass models considered as gravity anomaly sources, the point mass 

model has the simplest form. It is both fast (i.e., real-time computations) and flexible (i.e., 

local applications). After a point mass model is derived from existing surface gravity 

anomaly data, the estimation of the gravity anomaly field in the three-dimensional space can 

be easily performed. This aspect is of interest in the present research (i.e., modelling the 

gravity anomaly field at a constant elevation above a reference surface). Details regarding 

point mass modelling of the gravity anomaly field can be found in SUnkel (1981c, 1983), 

Forsberg (1984b), and Vassiliou (1986). 
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The spatial modelling of the gravity anomaly field can also be carried out by upward 

continuation of the surface gravity anomaly data. One method for upward continuation 

modelling is the continuous approach. For this case, the surface gravity anomalies are 

assumed first to be known at every point on the Earth's surface and secondly are referred to 

a level surface. The external gravity anomaly field can be generated by spherical or planar 

approximations using an upward continuation integral. Heiskanen and Moritz (1967) point 

out that the upward continuation operation is basically a local problem and, thus, the 

contribution coming from distant areas is small. Investigations regarding the upward 

continuation method are reported in Moritz (1962), Hirvonen and Moritz (1963), Rapp 

(1966), and Cruz and Laskowski (1984). 

Another method for upward continuation modelling is the discrete approach. Here, the 

surface gravity anomalies are known only at discrete points on the Earth's surface and least 

squares collocation can be utilized. The requirement for data on a level surface is now 

bypassed. However, extensive computational requirements (i.e., large matrix inversion) 

may be perceived as a drawback. The application of the discrete approach is described in 

Rapp (1978), Moritz (1980), SUnkel (1981a), and Cruz (1985). 

Other concerns regarding the modelling of gravimetric data include the evaluation of the 

different frequency parts of the gravity anomaly field and the use of computationally 

efficient algorithms. Tscherning et al. (1983) investigate the role of spherical harmonic 

coefficients of the geopotential to represent the long wavelength component of the gravity 

anomaly field. Models of the geopotential to high degree and order (e.g. Rapp et al., 

1991), are used for the representation of the contribution coming from distant regions. This 

allows for reduced requirements regarding the size of collection areas for data in local 

gravity field applications and for planar approximation in the calculations. 

Topographic heights can be effectively used in local gravity field approximation to model 

the short wavelength component of the gravity anomaly field. They also offer the advantage 

of being more readily available than gravity data. The use of topographic heights as a tool 

in modelling the gravity field is presented in Forsberg and Tscherning (1981b) and 

Forsberg (1984a). The residual gravity field resulting from the subtraction of the long and 

short wavelength components is smoother and better suited for modelling by the various 

algorithms. 
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Sideris (1984) and Schwarz et al. (1990), among others, have shown that the application of 

spectral methods based on the Fast Fourier Transform (FF1) algorithms for the solution of 

problems concerning local gravity field approximation are as accurate as classical methods, 

but are more efficient. 

1.2 Thesis Outline 

The objective of the research carried out in this thesis is to produce a consistent, detailed 

and accurate three-dimensional gravity field model for a mountainous area with rough 

topography and, consequently, with large variations of the gravity field by combining 

terrestrial gravity data with elevation data. The Kananaskis area in the Canadian Rocky 

Mountains was chosen for this task. The terrestrial gravity anomaly data is estimated in 

space (i.e., at different flight elevations over the investigation area) using complementary 

models (i.e., point mass and upward continuation integration) as a reference for testing the 

airborne sensed gravity field. The research is documented in five chapters. 

Chapter 2 addresses, firstly, the aspects regarding local terrestrial gravimetric surveys and 

the calculation of gravity anomalies. Secondly, it is concerned with the collection of the 

already available terrestrial gravity data and digital elevation models and the densification 

gravity survey carried out as part of this research. A consistent data base of point gravity 

data covering the investigation area is compiled and analyzed. 

Chapter 3 deals with the usage of the gravity data contained in the data base to produce a 

regular pattern (i.e., gridding) of surface free-air gravity anomalies. The main method of 

prediction is least squares collocation with a local covariance function for the data. Different 

trend removal procedures are employed. For comparison, the interpolation method based 

on inverse distance weighting is also used. The statistical behavior of the estimated grids of 

free-air, Bouguer and isostatic gravity anomalies for the test area is analyzed using their 

covariance functions. The anomaly degree variances provide information on the resolution 

of the gravity data in the area. 

Chapter 4 investigates the spatial modelling of the gravity field by point masses. A two-

layer (deep and shallow) point mass model is generated from the surface gravity anomalies. 

The point mass model is then used to calculate the spatial gravity anomaly field. The 

computations are carried out in the frequency domain. 



6 

Chapter 5 studies the spatial modelling of the surface gravity anomalies by using the 

upward continuation integration (i.e., Poisson integral) in planar approximation. Specific 

handling of the different wavelengths components of the gravity field lead to direct and 

indirect treatment approaches. Investigations regarding the sensitivity of the models, the 

error aspects and comparisons of results originating from the different methods are 

incorporated. 

Chapter 6 gives conclusions and recommendations following the research. 
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CHAPTER 2 

GRAVIMETRIC SURVEYS 

2.1 General 

Gravimetry (Latin: gravis = heavy; Greek: te'cpc3 = to measure) means the measurement 

of the magnitude (i.e., intensity) of the gravity acceleration vector g on or near the surface 

of the earth. In the following, we will restrict ourselves to terrestrial gravimetry. 

The foundation of gravimetry (or gravity surveying) is Newton's law of gravitation 

("Philosophiae Naturalis Principia Mathematica", 1685-1687), which formulates the force 

of attraction F between two particles of masses ml and m2 with very small dimensions 

with respect to the distance 1 between them. The scalar equivalent of the force F is 

expressed by 

F - Gm1m2 
- 12 

where G is Newton's gravitational constant. 

(2.1) 

Furthermore, the attraction of a spherical, non-rotating, homogeneous Earth of mass M 

and radius R on a small mass m on its surface can be considered. Substituting in equation 

(2.1), the force of attraction (or gravitational attraction) becomes 

G 
F= M  m =mg -.y- (2.2) 
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As force is associated to mass by an acceleration, the term 

GM 
g= (2.3) 

performs that role and represents the magnitude of the gravitational acceleration. For this 

idealized situation, the gravity would be constant all over the Earth's surface. 

If the Earth's rotation is also considered, the result of gravitation (i.e., gravitational 

acceleration) and centrifugal acceleration (due to the Earth's rotation) is the vector of 

gravity acceleration (i.e., has both direction and magnitude). The magnitude of the gravity 

vector is the gravity g. For computational considerations, it is more convenient to define 

the attraction in terms of the work done to move a unit mass within the gravity field (i.e., 

potential). The gravitational potential and the centrifugal potential are respectively 

v= GM 

and 

(D = !2(x2+y2) 
2 

(2.4) 

(2.5) 

where V and 4 are both scalar (i.e., have only magnitude), r is the distance from the 

Earth's centre of mass to the unit mass, and x and y are Cartesian coordinates of the unit 

of mass. The sum of the gravitational potential and the centrifugal potential is the gravity 

potential of the Earth. The first derivative of the gravity potential in any direction 

provides the gravity component in that direction. 

Due to the Earth's ellipsoidal shape, rotation, irregular surface features and internal mass 

distribution, and the effect of extraterrestrial masses, the gravity varies over the Earth's 

surface. For an Earth fixed mass point P. gravity can be expressed as a function 

gp = g[G,o 2;r,p(' );t] (2.6) 
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where the universal gravitational constant G (6.673 x 10-11 m3kg-'s 2) and the square of 

the Earth's rotation angular velocity 0 (7.292 115 x 10-5 rads 1) are scaling factors taken 

as constant parameters. Gravity changes with the point position vector r and is also 

related to the density function p(r' ) of the Earth's masses with the position vector f of the 
mass element dm (= pdv, with p the density and dv the volume element). The term tin 
equation (2.6) indicates the temporal variation of gravity. 

In the Système International d'Unités (SI), the unit of gravity is ms-2. A mean value (i.e., 

global average) of g on the Earth's surface is 9.80 ms-2. For deviations of the gravity 

values from a model, the unit 1 1ms 2 = 10.6 ms-2 (also denoted as the "gravity unit", g. 

u.) is also utilized. In this thesis, an additional unit named after Galilei (1 Gal = 1 cms 2), 

1 mGal = 10 ms-a, will be used. Though this is not an SI unit, it is still widely used in 

geodesy and geophysics. 

The gravity measured on the surface of the Earth, being a function of position (i.e., vector 

L'), contains information about the measurement location (geodetic application). In 

addition, the dependence of gravity on the density function p(r') of the Earth's mass 

elements provides information about the mass distribution in the interior of the Earth 

(geophysical application). 

The main objectives of gravimetry in geodesy are the determination of the Earth's surface 

and gravity potential, the reduction of geodetic observables with orientation in the gravity 

field, and the investigation of vertical crustal movements. The main objective of 

gravimetry in geophysics is to resolve the density distribution within the Earth (i.e., 

terrestrial mass distribution). 

A global reference system of well established gravity stations of high accuracy (i.e., a 

gravimetric datum), providing absolute gravity level and scale, is required to achieve a 

certain level of homogeneity of gravity measurements for geodetic and geophysical 

purposes. The International Gravity Standardization Net 1971 (I.G.S.N.7 1) was 

introduced by a resolution of the International Union of Geodesy and Geophysics 

(I.U.G.G.), (Morelli et al., 1974). It comprises 1854 gravity stations distributed (not 

uniformly) over the Earth and the mean accuracy of the network is ± 0.1 mGal. This 

gravimetric datum replaces the Potsdam Gravity System established in 1909. 
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As gravity is an acceleration, its measurement comprises length and time determination. 

Even with such seemingly basic measurements, the precision and accuracy demands in 

geodesy and geophysics are hard to meet. Absolute gravity measurements require both 

complex instrumentation and long duration of observation. However, the determination 

of the relative change of gravity between sites is comparatively easy and is the 

conventional approach in gravimetric surveys. Absolute gravity values at different 

locations can be determined by relative gravity measurements at the latter and at 

I.G.S.N.7 1 stations. 

A comprehensive reference regarding the science of measuring gravitational acceleration 

(i.e., gravimetry) is Torge (1989). 

2.2 Relative Measurement of Gravity 

2.2.1 Gravity Instrumentation 

The relative measurement of gravity by sensing devices is limited to the observation of 

one of the two primary acceleration elements (i.e., length and time). By sensing these 

quantities over two observation points, the gravity difference between them can be 

determined. 

Instruments capable of readily measuring relative gravity variations are known as 

(relative) gravity meters or gravimeters. These instruments consist essentially of a 

constant mass fixed at the end of a spring. A change in gravity causes a variation in the 

weight of the mass and this leads to a modification of the length of the spring. 

Conversely, a restoring force (realized by the elastic/balance spring) returns the mass to 

equilibrium and allows the determination of the change in gravity. According to Torge 

(1989), a mass m suspended by a vertical (direction z) spring balance of initial length 1 

that changes to a length 1 because of a change in the gravity g, has the equilibrium 

condition equation for the gravity force mg and the spring force k(l - lo) 

mg—k(l--10)=0 (2.7) 
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where k is a proportionality constant according to Hooke's law of elasticity (formulated in 

1678, and relating change in force with change in length). Gravimeters developed based 

on this linear system are known as stable or static gravimeters. 

The gravity values over the Earth's surface vary in a relatively narrow interval of 

approximately 5500 mGal and 0.1 mGal represents about 1 x 10 of the gravity at any 

point on the Earth. In order to detect small changes in gravity between points, the 

sensitivity requirements for gravimeters are high. The dual role of the spring as support 

for the mass m and as a measuring device for the length (1 - l) impeded the sensitivity of 

early gravimeters. 

Figure 2.1 Principle of the gravimeter with horizontal lever and oblique restoring spring 

(a = Om, b = OB, d = OA) 

This problem is overcome in current gravimeters by using a supplementary (amplifying) 

force acting in the same sense as the extension/contraction of the spring. The result is an 

increase of the displacement of the spring due to a change in gravity. Such a system 

consists of a lever (or beam) and a restoring force (realized by the spring balance) that 

returns the beam to the horizontal (or null) position. The equilibrium condition equation 

for this rotating system is (Torge, 1984) 

mga—kbdsina=0 (2.8) 



12 

if 10 = 0 (zero-length spring) is considered; a is the angle of the beam with the vertical, 

and a, b, and d are distances within the component segments of the system (see Figure 

2.1). This causes the restoring force to be proportional to the physical length 1 of the 

spring rather than its incremental length (1 - la). The result is a more sensitive response to 

changes in gravity and a wider measuring range. Gravimeters based on this non-linear 

system are known as unstable or astatic. 

A null instrument indicates changes in gravity by an arbitrary scale. In order to convert 

the scale (or counter) units (C.U.) into gravity units, a calibration function is necessary. 

By design, a linear correspondence is sought between the reading in counter units and 

gravity [i.e., F(z) = g, where z is the reading (in C.U.)]. However, non-linear and periodic 

errors are still present in the transformation function. The manufacturer establishes a 

calibration function in the laboratory (by simulating gravity changes) and/or in the field 

environment (by using points with known gravity or gravity differences). This function 

could be the sum of an approximation by a low degree polynomial (for the linear and 

non-linear parts) and by a Fourier series (for the periodic part). Because the calibration 

function changes with time, repeated checks by the user over a reasonable part of the 

instrument measuring range is warranted. A basic formulation of the calibration function 

F(z) is given by Torge (1989) as 

F(z) = No + F0 (z) + AF(z) (2.9) 

where No is the instrument level, Fo(z) is an approximation of the calibration function, 

and AF(z) is a correction to the approximation. By differencing the readings over two 

points, the term No is eliminated. 

Two of the most widely used gravimeters are the LaCoste-Romberg and Worden 

instruments. The LaCoste-Romberg system (Krieg, 1981) is an astatized metal spring 

instrument and was the first to introduce the zero-length spring. The model G has a 

precision of ±0.004 mGal and an approximate measurement range of 7000 mGal. The 

Worden system (Woollard, 1950) is an astatized quartz spring instrument. Its principle is 

similar to the LaCoste-Romberg system. However, in this case the lever beam is 

supported by two-springs. One is used as a measuring device and the other can alter the 

level of the reading range of the instrument. The Master model of the Worden system has 



13 

a precision of ±0.01 mGal and a measuring range of approximately 200 mGal, and by 

resetting the instrument the range can be extended to approximately 6000 mGal. The 

sensitivity to temperature, pressure, and magnetic field changes is reduced by particular 

manufacturing design features of the two gravimeter systems. 

Information regarding existing gravimeter systems can be found, among others, in 

Parasnis (1979), Torge (1989) and Telford et al. (1990). 

2.2.2 Instrumental Error Sources and Accuracies 

Several interferences can adversely affect the measurement system of spring gravimeters. 

Though their effect is diminished by special provisions in the instrument design, residual 

effects with random and/or systematic attributes still remain. The errors can be 

categorized according to their source as instrument related and external. 

The instrument errors are due to the gravimeter characteristics and comprise reading 

errors, leveling errors, elastic hysteresis, errors in calibration function, and unsteady 

voltage. The external errors come from variations in the atmospheric temperature and 

pressure, magnetic fields, and shocks. 

A systematic error related both to instrumental and external factors is the gravimeter drift. 

This is a gradual variation in time of the null (i.e., zero) reading position. This error is 

exhibited both in stationary and field (i.e., transport) operations, and affects quartz spring 

gravimeters more than metal spring gravimeters. 

The drift of a gravimeter can be modeled as a function of time (Drewes, 1978) with a 

Taylor series expansion of the reading z (in counter units) or F(z) (in gravity units) as 

z(t) = z(t0)+D(t) (2.10) 

where z(t) is the reading at a particular time t, z(to) is the reading at a reference time to, 

and D(t) is the sum of the time dependent higher order terms in the series expansion. The 

drift can be determined by repeated measurements (i.e., station reoccupation) according 

to an appropriate measuring schedule. 
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The accuracy of relative gravity observables can be estimated a priori from an error 

budget of the different error sources, and a posteriori from a least-squares adjustment. 

Torge (1984) estimated standard deviations from the error budget of LaCoste-Romberg 

gravimeters. Gravity differences of less than 100 mGal observed once with average 

measuring conditions can be determined with a model G gravimeter with a standard 

deviation of ±0.017 mGal considering only random error components and with a standard 

deviation of ±0.027 mGal if systematic components are included. Accuracies achievable 

for other gravimeter systems can be found, for example, in Torge (1989). 

2.2.3 Gravity Corrections and Reductions 

Gravity measurements should undergo certain corrections and reductions before their use 

in computations. Two of these corrections (i.e., conversion from counter units to 

acceleration and drift correction) have been introduced in Section 2.2.2. Other reductions 

can minimize the temporal gravity changes and refer the data to a particular point. 

Temporal gravity changes are due mainly to earth tides, polar motion, variations of 

atmospheric pressure, and ground water level and soil moisture. The latter three have 

very small influence and should be considered only for very high accuracy requirements. 

The former which is due to the variation in gravitational attraction of the Moon and the 

Sun, can have a maximum amplitude of up to 0.3 mGal in a period of approximately 12 

hours. The theoretical tidal gravity variations can be calculated by different approaches 

depending on the accuracy requirements. The computation from the expansion of the tidal 

potential after Cartwright-Tayler-Edden (Cartwright and Tayler, 1971; Cartwright and 

Edden, 1973) is indicated by the I.A.G. Recommendation No. 11, 1971. According to 

Nettleton (1976), a simpler formula for the tidal acceleration effects, 6 gtjdal, is 

3GRMM  
= 2D (COS2cXM +!)+ 3GRM5 1 2D (cos 2a + --) 

3 
(2.11) 

where M is the mass, D is the distance from the Earth, o. is the geocentric angle, and the 

subscripts M  and s refer respectively to the values for the Moon and Sun. 

Corrections to the measurements in the horizontal and vertical directions ascribe the data 

to a reference point. The height reductions are made usually with the normal gravity 
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gradient (i.e., 0.3086 mGal/m). Using the same instrument height can alleviate the 

necessity for this correction when the relative gravity change is determined between sites. 

2.3 Gravity Anomalies 

2.3.1 General 

The intensity of gravity over the surface of the Earth depends mainly on latitude, 

elevation, topography of surrounding terrain, and density variations in the subsurface 

including the surrounding terrain. In order to make the gravity measurements more 

amenable for calculations (especially in geodesy) and for interpretations (especially in 

geophysics), certain reductions should be carried out. These reductions produce the most 

important disturbing quantity related to the gravity field, namely the gravity anomaly. 

The gravity anomaly Agp is the difference between the observed gravity gp at point P on a 

geopotential surface and the gravity caused by a particular model for the gravity on a 

spheropotential surface 

Agp = gp YQ (2.12) 

where 'yQ is the normal gravity at point Q which is the projection of point P onto the 
spheropotential surface. 

Gravity varies with latitude due to the Earth's ellipsoidal shape and its rotation; it 

increases from equator to the poles. Heiskanen and Moritz (1967) express the dependency 

of the normal gravity 'yo [or y()] to latitude 0 on a reference ellipsoid with the standard 

equation 

70 = Ye(i+ I3sin2 4, - ii sin  24) (2.13) 

where 'Ye is normal equatorial gravity and 3, P1 are constants related to the characteristics 

of the reference ellipsoid. By differentiation of equation (2.13), the latitude correction for 

the gravity on an ellipsoid (or meridian gravity gradient) is in spherical approximation 

- a-y() - 1 0-1-YO)-  (R) - R 0.8sin2 mGal/km (2.14) 
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and it must be added to y from the equator to the poles. Considering the parameters given 

by Moritz (1984) for the Geodetic Reference System 1980 (GRS8O), the meridian gravity 

gradient is 0.813sin2 mGallkm. 

Examining equation (2.3), gravity varies inversely with the square of the radial distance. 

If no gravitational effect of masses between points at different ellipsoidal heights h is 

taken into account (i.e., free-air), the average rate of change in gravity (or vertical gravity 

gradient) can be obtained by differentiating equation (2.3) (i.e., spherical approximation) 

in a normal gravity field 

ag ag 2GM 2y 
6gfree—afr = = = - R3 = —0.3 mGallm (2.15) 

The minus sign indicates that gravity decreases with increasing elevation. The application 

of this reduction to gravity measurements accounts only for the difference in elevation 

between points (i.e., free-air reduction). The vertical derivative of a series expansion of 

the normal gravity to the order of flattening of the ellipsoid yields at latitude 45° a normal 

vertical gravity gradient of 0.3086 mGaLlm. 

In view of the dependency on latitude and height of the gravity, normal gravity can be 

expressed in the vicinity of the Earth by the series expansion (Heiskanen and Moritz, 

1967) 

'y(4,h) = To +[a1]0h+I   [aa Ioh2+... (2.16) 

Torge (1989) expresses the normal gravity for the GRS8O reference ellipsoid as 

'Y(4 h) = To —0.30877(1 - 0.00142 sin  4)h + 0.75x10 7 h2 mGal (2.17) 

where the ellipsoidal height h is in in. 

The normal gravity calculated with the equation and parameters of the GRS8O contains 

the gravitation of the atmospheric mass. If this equation is used for the computation of 
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gravity anomalies, an atmospheric gravity correction 8gatm has to be added to the 

observed gravity. Torge (1989) gives the following equation for its calculation 

= 0.874 - 0.99x10 4 h + 0.356x10 8 h 8 mGal (2.18) 

where the height h is in m. On the ellipsoid, its value amounts to 0.87 mGal and it 

decreases with increasing height. Values for the atmospheric gravity correction are 

tabulated in Moritz (1984). 

2.3.2 Free-air, Bouguer and Isostatic Gravity Anomalies 

According to the type of reduction, i.e., removal of attraction effect of the visible mass 

anomalies and of the compensating masses, there are several types of gravity anomalies. 

A free-air reduction of gravity measured on the surface of the Earth is obtained by 

applying the vertical component of the gravity gradient combined with the height of the 

point above the geoid, and furthermore by subtracting the normal gravity calculated on 

the reference ellipsoid. The equation for the resulting free-air anomaly Agfree is 

= g ag 7o = g + ögf eeajr 7o 
DH 

(2.19) 

where Dg/DH is the vertical component of the gravity gradient. Usually a1/ah is 

substituted for Dg/DH, and by subtracting from the surface gravity the normal gravity 

evaluated with equation (2.16) or (2.17) the resulting anomaly is the surface free-air 

anomaly. The presence of the point height in the reduction indicates a strong correlation 

between the free-air gravity anomaly and the height. 

The combination of the free-air reduction with a further removal of the gravitational 

attraction of the topographic masses from the surface point down to a reference (usually 

the geoid) is called complete Bouguer reduction. The resulting value is the Bouguer 

gravity anomaly 

'gBouguer = g + Sg_ - topography — 70 = - 6gpography (2.20) 

where Sgtography is the topographic reduction. 
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The Bouguer gravity anomaly can be obtained in a first approximation by taking into 

account only the gravitation of a horizontal plate with infinite radius and thickness equal 

to the height of the computation point. With a standard density p = 2.67 glcm3, the 

attraction of the Bouguer plate is 

Bgpjaw = 2irGph = O.1119h mGal (2.21) 

where G is the gravitational constant and the height h is in m. To account for variations of 

the topography from the idealized Bouguer plate, a terrain correction can be included for 

improved accuracy of the topographic reduction. The terrain correction is always positive 

and can be evaluated by integrating bodies of constant density deviating from the 

Bouguer plate (Hammer, 1939). Moritz (1968) gives a linear approximation equation for 

the terrain correction as 

a 

(2.22) 

where the integration is carried out in a limited area a, hp and h are the heights of the 

computation point and the data points, respectively, and lo = [(Xp - X)2 + (, - )2 112 

is the distance from the computation point to the height data. The evaluation of the terrain 

correction can be performed by efficient spectral domain techniques (Sideris, 1984; 

Forsberg, 1985). By utilizing additional slope information, the accuracy of the terrain 

correction calculation (Blais and Ferland, 1984) can be improved significantly in areas of 

rugged topography. Other work regarding the computation of terrain corrections can be 

found for example in Sideris (1990), Li (1993), Sideris and Li (1993), and Li and Sideris 

(1994). 

The application of the terrain correction to the Bouguer anomaly obtained by considering 

only the attraction of the Bouguer plate, produces the refined Bouguer gravity anomaly. 

Usually in practice, the Bouguer reduction is calculated by applying first the Bouguer 

plate reduction and then the terrain correction. However, the calculation of the two can be 

combined by computing by integration the total effect of the topographic masses as 
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ögtography = 6 piate -  Bgtc (2.23) 

This can be done efficiently by three-dimensional Fast Fourier Transform (Peng, 1994; 

Peng et al., 1994). 

The following remarks can be made about the Bouguer gravity anomalies: are dependent 

on the density value used in computing them; do not depend locally on the topography, 

but over a region they present strong correlations with the topographic features; in 

mountainous areas they have large negative values. An explanation of the latter is that the 

visible topography is compensated to account for a possible mass deficiency under 

mountains according to an isostatic model. Heiskanen and Vening Meinesz (1958) and 

Heiskanen and Moritz (1967) present some of the most common systems for the isostatic 

reduction (i.e., Pratt-Hayford, Airy-Heiskanen, Vening Meinesz). The consideration of 

the attraction of the compensating masses 6gisostatic in gravimetric reductions leads to the 

isostatic gravity anomalies 

igisostatic = g + 6gfree-air - 6gtopography + 6gisostafic - (2.24) 

These anomalies are small, smooth and randomly positive and negative. The former two 

characteristics make the isostatic anomalies better suited for predictions than the other 

anomalies. 

Comprehensive material on gravimetric reductions can be found in Heiskanen and 

Vening Meinesz (1958) and Heiskanen and Moritz (1967). 

2.4 Regional/Local Gravimetric Surveys 

2.4.1 Gravity Survey Considerations and Calculations 

Geodetic and geophysical applications require collection of gravity data by gravimetric 

surveys. Subsequently, the observed point gravity data are reduced to gravity anomalies. 

Usually a homogenous representation is required for the gravity field, and prediction of 

estimates from the discrete data becomes necessary. To assist in the adequate 

representation of the gravity field in an area, a gravity survey should consider the 
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following aspects for the selection of the observation points: size of the area to be 

surveyed; magnitude and variation of the gravity field; representative spatial distribution 

of measurements; accuracy of gravity measurements and of their spatial location; access 

capabilities; time requirements. 

Regional and local gravity surveys are carried out with spring gravimeters. The gravity 

measurements are performed in a controlled manner (i.e., repeated measurements, loops) 

and tied to a control gravity network. The misciosures can then be proportionally 

distributed as a function of time. For a better modelling of the gravity field observations, 

a least-squares adjustment has to be considered. The parametric functional model can use 

as an observable either the calibrated counter reading li at each station i, or the calibrated 

counter reading difference Alj,j between each pair of stations i and j. The former and the 
latter models (Torge, 1989) are given by the equations 

11+v1=g1—N0—i.F(z1)+D(t) (2.25) 

+ vi,j = g - g1 - [AF(z) - i.F(z1)] + [D(t) - D(t)] (2.26) 

where v is the correction to the observation, g is the gravity value, No is the gravimeter 

level unknown, AF(z) is the calibration correction, and D(t) is the drift parameter. The 

precision estimates for measurements and parameters are evaluated as part of a least-

squares adjustment. 

The spatial location of the gravity stations must be established for identification and 

computation of gravity reductions. The methods for horizontal and vertical location 

should be in accordance with the precision requirements for the gravimetric products. 

Available information from existing control points, topographic maps, and aerial 

photographs can be used for spatial location of the gravity points. However, if such 

information is not available, terrestrial and/or space methods of spatial location have to be 

utilized. 

An examination of the equations in Section 2.3.2 and Section 2.3.3 can give an indication 

about the influence of precision of the horizontal and vertical positions for certain 

gravimetric computations. The calculation of the normal gravity on the reference ellipsoid 

varies with the latitude coordinate. According to equation (2.14), the normal gravity value 
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can be calculated at an accuracy level of ±J.05 mGal, if the latitude is determined with a 

precision of approximately ±2" (i.e., ±60 m). This corresponds to ±1.3 mm precision for 

scaling from a 1:50 000 map. However, the requirements for the precision of heights in 

gravimetric reductions are more stringent. Height differentiation of the free-air reduction 

equation (2.19) and of the Bouguer reduction (only the plate reduction) equation (2.20), 

leads respectively to the equations 

'gBgfree—air = ° 3086 h (2.27) 

= O.l967cYh (2.28) 

where ah is the precision of the height measurement, a8gfree-air is the precision of the 

free-air reduction, asgplate is the precision of the Bouguer plate reduction, the coefficient 

0.3086 represents the normal free-air gradient, and the coefficient 0.1967 is the difference 

between the free-air gradient and the Bouguer plate gradient (i.e., 0.1119 for standard 

density p = 2.67 glcm3). If the precision for the free-air and Bouguer plate reductions are 

given in mGal, the resulting height precision is in m. According to the former and the 

latter equations, a precision of ±1 mGal for the free-air and the Bouguer plate reductions 

will be obtained if height precisions of ±3.2 m and ±5.1 m, respectively, are available. 

Aspects on gravity surveys (including field procedure, data reduction and adjustment, 

precision) are treated, among others, in Nilsen (1976), Drewes (1978), Torge (1984), and 

Torge (1989). 

2.4.2 Gravimetric Products and Archival of Data 

The main gravimetric products are point gravity data and point gravity anomalies. These 

quantities can be considered as immediate gravimetric products. The archival of these 

data for further usage is of utmost importance. The information considered useful is 

dictated by the type of gravity survey. Regional and local surveys are less demanding 

regarding the information for each gravity point. However, the following items are 

necessary: station number, geographical or plane coordinates, height, gravity, gravity 

anomaly, associated precisions. This information can be supplemented with photographs, 

sketches, and topographic map extracts. 
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However, for many applications in geodesy and geophysics there is a requirement to 

derive other products originating from the primary gravimetric data. These are mean 

gravity anomalies, maps of isoanomalies, and gravity anomalies on regular grids. 

The large amount of gravity data acquired from gravimetric surveys is usually compiled 

into data bases. The data coming from different sources must undergo quality checks, 

transformations to a unified reference system, and application of standard reductions for 

conversion to gravity anomalies. 

Torge (1989) reviews extensively this topic. Buck and Tanner (1972), Tscherning (1981), 

and McConnell (1982) are references for the related aspects of gravity data bases. 

2.5 Gravity and Elevation Data in the Kananaskis Area 

2.5.1 Existing Gravimetric and Elevation Data 

The Kananaskis area is a provincial recreation area situated in the Canadian Rocky 

Mountains approximately 100 km west of Calgary, Alberta. Due to its high gravity field 

variability, the area is considered suitable for testing the airborne gravity-based system 

over an area with rugged topography. For this purpose, an accurate (i.e., at the level of 

lmGal or better) and high resolution (i.e., gravity points with spacing of 2 km to 4 km) 

gravity field model is required for the, area bounded by latitudes 50°30' to 51°15 and 

longitudes 244°30' to 245°15'. Within this core area of 83.4 km by 52.6 km (i.e., 4388.7 

km2) is the location for the test. Figure 2.2 shows the topographic model for the core area 

at a resolution of 1' x 1' (i.e., 1.9 km x 1.2 km) derived from the 1 km x 1 km digital 

elevation model. The topographic model and the interpolation software was provided by 

the Department of Energy, Mines and Resources Canada 

Because the computations required for the gravity field model on the Earth's surface and 

at elevations above it involve predictions (i.e., interpolation and/or extrapolation) and 

summations (i.e., integration), a larger area is considered for the gravity data collection. 

This extended area is located between the latitudes 50015' and 51°30' and longitudes 

244°15' and 245°30' and the dimensions of the rectangle are 139.0 km and 87.7 km, 

respectively, (i.e., 12190.7 km2). Statistics regarding the 1' x 1' topographic model for the 

extended and the core areas are given in Table 2.1. 
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LONGITUDE (DEGREE) 

Figure 2.2 Topographic model of the Kananaskis core area (Contour interval: 250 m) 

Table 2.1 Statistics of the topographic model of the Kananaskis area (Unit: m) 

Area Minimum Maximum Mean Std. Deviation 

Extended 908.4 3231.1 1842.8 402.3 

Core 1183.0 2985.3 1962.4 373.9 

A major part of the gravimetric data in the Kananaskis area comes from the data base of 

the Department of Energy, Mines and Resources Canada. As of November 1991, there 
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are 150 gravity points in the North America Gravity data base covering the Kananaskis 

area. From these data, 64 gravity points are situated in the core area [see Figure 2.3 (a)]. 

These data provide a relatively uniform coverage with an approximate data spacing of 8 

km to 10 km. The information given for each data point includes: latitude (degree), 

longitude (degree), height (m), Faye anomaly (mGal) corrected for the atmospheric 

attraction, standard deviation (mGal), and terrain correction (mGal). The Faye anomaly is 

a free-air gravity anomaly corrected by a terrain correction (Heiskanen and Vening 

Meinesz, 1958; Torge, 1989). The gravity anomalies were calculated using the 

parameters of the Geodetic Reference System 1980 (Moritz, 1984) for the normal gravity 

formula and for the atmospheric gravity correction as a function of elevation. 

These gravity data have been supplemented by gravity surveys carried out in the 1980's. 

In 1980, nine gravity base stations were established in the core area by the Department of 

Energy, Mines and Resources Canada [see Figure 2.3 (b)]. These stations are part of the 

Canadian National Gravity Net and, thus, refer to the I.G.S.N.71 (Morelli, 1974). The 

locations of two of these stations coincides with those of two geodetic control stations. 

For each station the following information is given: name, location description, latitude 

(degree), longitude (degree), height (m), accuracy factors for spatial location, gravity 

(mGal), identifier number. 

In 1981, the existing gravity data were densified on behalf of The University of Calgary 

by the Department of Energy, Mines and Resources Canada. During this survey, 63 

gravity stations were established within the core area at geodetic control points of a 

network set up by The University of Calgary [see Figure 2.3 (c)]. The information 

available for each gravity station comprises: identifier number, latitude (degree, minute), 

longitude (degree, minute), height (m), gravity (mGal), free-air gravity anomaly (mGal), 

Bouguer gravity anomaly (mGal), and accuracy factors. The gravity data refer to the 

I.G.S.N.71 (Morelli, 1974), the gravity anomalies were calculated with the theoretical 

gravity formula of the Geodetic Reference System 1967 (I.A.G., 1971), the correction for 

the atmospheric attraction was not applied, and the Bouguer gravity anomalies were 

computed using a density of 2.67 glcm3. 
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Figure 2.3 Layout of gravity points in the Kananaskis core area from (a) North America 

Gravity data base and the gravity surveys of (b) 1980, (c) 1981, (d), (e) 1985 

(Unit of latitude 50.5 - 51.25 and longitude 244.5 - 245.25: degree) 

In 1985, two densification gravity surveys were performed by The University of Calgary 

in the core area. The first gravity survey (Forsberg, 1986) was comprised of seven gravity 

points from which five stations were situated on mountain tops [see Figure 2.3 (d)]. The 

information for each station includes: identifier number, name, latitude (degree), 

longitude (degree), height (m), gravity (mGal), free-air gravity anomaly, and Bouguer 

gravity anomaly (mGal). The position of the stations were determined from 1:50 000 
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maps, the heights were measured by barometric levelling, and the gravity anomalies were 

calculated under the same considerations as those used for the gravity survey of 1981. 

The second gravity survey carried out in 1985 (Mime, 1986) added 43 gravity stations 

and was aiming at a more uniform coverage within the core area [see Figure 2.3 (e)]. The 

documentation regarding the gravity stations provides: station number, gravity (mGal), 

latitude (degree, minute, second), longitude (degree, minute, second), height (m) with 

their associated standard deviations, and station description. The positions were 

determined by scaling from 1:50 000 maps and by photogrammetry, and the heights were 

measured by barometric levelling and by photogrammetry. 

Considering the topographic characteristics of the area (i.e., rugged topography), the use 

of digital elevation models play an important role in improving the gravity field 

modelling by taking into account the gravimetric terrain effects. The Department of 

Energy, Mines and Resources Canada has provided a digital elevation model of 1 km x 1 

km covering most of western Canada. However, in mountainous areas the influence of 

the topographic masses in the proximity of gravity stations can have a significant 

influence and a more detailed grid of elevations is necessary for adequate modelling. In 

view of this requirement, The University of Calgary has acquired during 1993 from 

Alberta Forestry, Lands and Wildlife a digital elevation model of 0.1 km x 0.1 km. The 

latter elevation grid covers approximately 68% of the extended area and almost 90% of 

the core area (see Figure 2.4). The parts of the area not covered by the detailed digital 

elevation model are located on the west and south-west sides. Also, investigations of the 

model revealed some inconstancies were present in relation to existing topographic maps 

on its west and south-west sides. 

2.5.2 The 1992 Gravity Densification Survey 

In order to improve the existing gravity coverage in the Kananaskis area, a densification 

gravity survey was carried out in 1992 by the Department of Geomatics Engineering of 

The University of Calgary. A Worden Master gravimeter (number 781) of Texas 

Instruments, Inc., Houston, was provided by the Department of Geology and Geophysics 

of The University of Calgary for this purpose. The instrument features a thermostat, a 

small dial constant of 0.1025 mGalldial division, a direct measurement range of 2200 
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divisions (i.e., 225.6 mGal), a reading precision of 0.01 mGal, and a resetting device that 

allows the instrument range to be extended to more than 600 mGal. 
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Figure 2.4 Coverage of the Kananaskis extended area by the 0.1 km x 0.1 km digital 

elevation model 

During this campaign, 99 new gravity points were occupied with the gravimeter. Out of 

these, 93 points are situated in the core area [see Figure 2.5 (a)]. The access to the points 

was mainly by road vehicle and on foot. A total of 12 gravity points were accessed by 

helicopter. Five of the base stations established by the Department of Energy, Mines and 

Resources Canada in 1980 were used for control in the gravity densification survey. After 

preliminary calibration (i.e., conversion of scale units into gravity units) and reductions 

(i.e., gravimetric tidal reduction; vertical reduction to ground marker), a least-squares 

adjustment was carried out. The estimates in the adjustment are the gravity values at the 

observation points together with drift (one for each day of observation) and instrument 

scale/calibration correction (one for the whole campaign) parameters. Statistics regarding 

the estimated gravity values are given in Table 2.2. The gravimetric tidal reduction 

corrections were in a range between -0.10 mGal to 0.14 mGal. If the latter corrections 

would have been neglected, an evaluation of the instrument drift would not have been 
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possible. The estimated drift varied within a range of -0.06 mGal/hour to 0.05 mGal/hour. 

Because the level of the instrument had to be altered on a few occasions during the 

campaign, to allow measurements at different height ranges, it is not possible to comment 

on the overall drift pattern during the survey. The correction to the scale parameter of the 

gravimeter lowers the scale value by 0.2%. The conclusion that the scale parameter has 

changed with time cannot be made from this survey. There was no information available 

on the standard deviations associated with the gravity stations and of the exact position of 

the actual gravity point. Least-squares adjustment tests were carried out with the standard 

deviations assigned to the gravity control stations ranging from 0.00 mGal to 0.15 mGal. 

No significant differences were produced in the estimated parameters. Eventually, the 

gravity control stations were kept fixed in the adjustment. 
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Figure 2.5 Layout of- gravity points in the Kananaskis core area of the gravity survey of 

1992 with heights determined by (a) barometric levelling, (b) photogrammetry, (c) GPS 

(Unit of latitude 50.5 - 51.25 and longitude 244.5 - 245.25: degree) 

Table 2.2 Statistics of the 1992 gravity densification survey for gravity and its standard 

deviation (Unit: mGal) 

Data Minimum Maximum Mean Std. Deviation 

Gravity 980379.4 980786.7 980657.4 93.2 

Std. Dev. Gravity 0.04 0.12 0.07 0.02 
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For subsequent identification, gravimetric reductions, and utilization of the gravity data 

the spatial locations of the gravity points were determined. The horizontal positions (i.e., 

latitude and longitude) were scaled from 1:50 000 maps with an accuracy at the level of 

0.4 mm; this accuracy corresponds to approximately 20 m on the ground, and considering 

the latitude component it will cause an error of less than 0.02 mGal in the calculation of 

normal gravity. The following maps produced by the Department of Energy, Mines and 

Resources Canada were used: 82/Jib, 82/J/1 1, 821J1141, 82/J/15, 82/0/2 and 82/0/3. To 

provide homogenous and increased accuracy for heights, 3 of the gravity control stations 

were connected by spirit levelling to existing levelling bench marks in the area; one of the 

other gravity control stations used is a geodetic control point. The heights for all gravity 

points were determined by barometric levelling. Additionally, 44 heights were 

determined by photogrammetry and 3 heights by GPS [see Figure 2.5 (b) and (c), 

respectively]. The final height estimates were the result of a parametric least-squares 

adjustment comprising the barometric derived height differences, the photogrammetric, 

and GPS derived heights. 

Table 2.3 Statistics of the 1992 gravity densification survey for height and its standard 

deviation (Unit: m) 

Data Minimum Maximum Mean Std. Deviation 

Height 1244.6 2993.0 1708.4 397.0 

Std. Dev. Height 0.4 8.5 3.5 1.6 

Table 2.4 Statistics of the 1992 gravity densification survey for standard deviation of 

free-air and Bouguer gravity anomaly (Unit: mGal) 

Std. Deviation Minimum Maximum Mean Std. Deviation 

Free-air Anom. 0.1 2.6 1.1 0.5 

Bouguer Anom. 0.1 1.7 0.7 0.3 

Besides the statistics regarding the gravity data of the 1992 gravity densification survey 

in the Kananaskis area, the heights and their effect in the calculation of gravity anomalies 

were also investigated for the assessment of the survey. Table 2.3 gives the statistics of 
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the height data and their standard deviations, and Table 2.4 presents the standard 

deviations of gravity anomalies calculated from the estimated gravity and height data. 

From Table 2.2 and Table 2.3, it can be seen that the gravity field and the topography, 

respectively, have large variations in this area. Table 2.4 indicates that gravity anomalies 

can be calculated with a precision at the level of 1 mGl. The main limiting factor in their 

precision comes from the standard deviation of the height component. 

2.5.3 Reduction to Gravity Anomalies 

It is intended to join together the different data sets and perform gravity reductions of the 

same standard. For each gravity point in the extended area, terrain corrected free-air, 

complete Bouguer, and isostatic gravity anomalies are calculated. Examining the 

information available for the gravity data (i.e., 371 points in the extended area, from 

which 279 points lie in the core area), two sub-sets of data were considered for the 

gravimetric reduction. One sub-set comprises a total of 221 gravity points originating 

from the gravity surveys of 1980, 1981, 1985, and 1992. The other sub-set contains the 

gravity data (i.e., 150 points) of the North America Gravity data base. The formulae used 

for these reductions are those from Section 2.3.2. The methodology employed for the 

calculation of the gravity anomalies of the first sub-set follows. 

The reference normal gravity field considered is that implied by GRS8O. Due to the 

rugged topography, the use of a simplified free-air reduction (i.e., only subtraction of the 

normal gravity evaluated at the height of the point on the Earth's surface) can introduce 

systematic effects. To reduce these adverse effects, additional precautions are taken; 

namely taking into account the atmospheric gravity correction, considering the 

dependence of the vertical gravity gradient on the geodetic latitude, and the inclusion of 

the second order term of the vertical gravity gradient. In the Kananaskis area, the former 

correction varies between 0.6 mGal and 0.8 mGal, and the influence of the latter free-air 

vertical gravity gradient inclusions range between 0.1 mGal and 0.6 mGal. Equations 

(2.17) and (2.18) were used for the calculation of the normal gravity and the atmospheric 

gravity correction at the gravity points, respectively. The surface free-air gravity 

anomalies were calculated with equation (2.12). Due to the rugged topography, the free-

air gravity anomalies are corrected by gravimetric terrain corrections and the resulting 

anomalies are the Faye anomalies (Heiskanen and Vening Meinesz, 1958; Torge, 1989). 
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The terrain corrections were calculated by prism integration for each gravity station. The 

digital elevation models available are used in the following manner: 0.1 km x 0.1 km grid 

up to a radius of 2 km around the gravity station; 1 km x 1 km grid between radii of 2 km 

to 20 km; 5 km x 5 km grid (derived from the 1 km x 1 km grid) between radii of 20 km 

to 170 km. The external radius for each grid (i.e., 2 km, 20 km, 170 km) corresponds 

approximately to the external radii for the Hayford zones F, K, 0 (i.e., 2.3 km, 18.8 km, 

166.7 km, respectively). The 1 km x 1 km elevation grid extends between latitudes 50°05' 

and 51°40' (i.e., 176.1 km) and between longitudes 244° and 245°45' (i.e., 122.8 km). The 

5 km x 5 km elevation grid extends between latitudes 48°45' and 53° (i.e., 472.6 km) and 

between longitudes 241°45' and 248° (i.e., 438.5 km). 

The terrain corrections are computed with the operational computer program documented 

in Forsberg (1984a). The linear approximation formula given by equation (2.22) is 

evaluated with the condensed approximation formula (Forsberg and Tscherning, 1981b) 

X2 Y2 
Zm dxd 

Sg = Gp(z2 - zi)5 (x +y2 + z )312)' 
xl yl 

(2.29) 

where Zm = (z1 + z2)/2, z1 is the elevation of the computation point and z2 is the elevation 

of the data point. The latter two elevations refer to the bottom and top of the prism, 

respectively. To account for the curvature of the Earth, a shift of the prism from the 

tangential plane at the computation point is calculated as Az = 1212R; 1 is the distance from 

the computation point and R is the mean radius of the Earth. For each computation point, 

the digital elevation models were changed to match its height. 

The Bouguer reduction is accomplished by removing the attraction of a plate of constant 

height equal with that of the computation point and assuming the constant mass density p 

= 2.67 g/cm3. The attraction of the Bouguer plate is calculated with equation (2.21). This 

reduction is applied here to the terrain corrected free-air gravity anomalies to produce the 

refined (i.e., terrain corrected) Bouguer gravity anomalies. 

The removal of the attraction of the compensating masses for the topography in the 

isostatic reduction uses the Airy-Heiskanen model with the following parameters: mass 

density p = 2.67 g/cm3 for the attraction of the topography (same as for the Bouguer 
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reduction); normal thickness of the Earth's crust T = 30 km; and density contrast across 

the base of the crust Ap = 0.6 g/cm3. The condition of floating equilibrium for the Airy-

Heiskanen model is 

t=--h=4.45h (2.30) 
Ap 

where h is the topography height and t is the corresponding root. The crustal thickness 

under the mountains is T + h + t. 

The integrations for the estimation of the topographic attraction and for its isostatic 

compensation were performed in the same manner as for the terrain correction 

calculations using the computer program from Forsberg (1984a). 

The information contained in the second sub-set was given in Section 2.5.1. It was 

decided to leave the free-air gravity anomalies and their terrain corrections as they are in 

the data base. The refined Bouguer anomalies and the isostatic anomalies were calculated 

as for the gravity points comprised in the first sub-set. The following reasons were taken 

into account in this decision: gravity values are not given at the points; the normal gravity 

is calculated according to GRS8O and the atmospheric correction is considered; 

approximately 25% of the points lie outside the area covered by the 0.1 km x 0.1 km grid; 

for 5% of the points there are apparent errors in the given point heights and/or the digital 

elevation model and/or topographic maps 1:50 000; a cursory investigation of the gravity 

anomalies shows that they do not present significant differences from those contained in 

the first sub-set of gravity points. 

At this stage, the two sub-sets were analyzed from the point of view of the correlation 

between the gravity anomalies and the elevations. An equation of the form y = a + bx 

(i.e., linear regression), where y and x stand for the gravity anomaly and for the elevation, 

respectively, is used for this task. The strong positive correlation of the free-air gravity 

anomalies with the heights is evident. This is due to the effect caused by the topographic 

masses in the short wavelength range. The Bouguer anomalies obtained by removing the 

influence of the topographic masses, show a negative correlation with the heights. The 

results (i.e., coefficient a in mGal, coefficient b, and correlation coefficient) for the 

gravity anomalies in the Kananaskis extended area are given in Table 2.5 and Figure 2.6. 
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The coefficient b represents the Bouguer plate gradient and, considering equation (2.21) 

and the values given for b in Table 2.5 for the free-air and/or Bouguer gravity anomalies, 

the indication is that the density is equal to 2.64 g/cm3. 

Table 2.5 Regression coefficients (a and b) and correlation coefficient for gravity 

anomalies and elevations (Unit a: mGal) 

Gravity Mom. Coeff. a Coeff. b Correl. Coeff. 

Free-air -149.8 0.1107 0.988 

Bouguer -149.8 -0.0012 -0.068 

Isostatic -7.4 0.0043 0.202 

From the analysis of the gravity anomalies originating from the two sub-sets of 

gravimetric data, a number of gross errors and misleading information are identified. 

Some of the most important problems found will follow. Comparison with existing 

topographic 1:50 000 maps show that five gravity points of the North America Gravity 

data base have heights with errors varying between 120 m to 600 m. From the station 

description and gravity measurements, one of the base (i.e., control) gravity stations 

established by the Department of Energy, Mines and Resources Canada has the horizontal 

position in error by approximately 1.2 km in latitude and 4.1 km in longitude. In the 

gravity survey of 1981, two of the gravity points actually correspond to two of the base 

stations. However, the gravity values differ at the level of 0.5 mGal. Two pairs of other 

stations of the same survey overlap, but the gravity values are basically the same. One 

gravity station of the first gravity survey of 1985 corresponds to a gravity point from the 

North America Gravity data base. Although their heights are within 0.2 m, their gravity 

values differ at the level of 4 mGal. The second gravity survey of 1985 has one station 

with the gravity in error by 30 mGal, two gravity points with wrong horizontal positions, 

and five stations have heights with errors at the level of 10 m to 20 m. The latter survey 

has a common station with the North America Gravity data base. However, the gravity 

values differ at the level of 4 mGal; the heights differ by approximately 7 m. Figure 2.7 

shows the locations were problems in the data were identified. 
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Figure 2.7 Layout of gravity stations in the Kananaskis area with errors and/or 

inconsistencies in the data 

To avoid the adverse effect of using erroneous data in the gravimetric calculations, the 

identified errors were corrected and flagged. The corrections were performed on the basis 

of all gravimetric information available for this investigation so that all data could be 

used in subsequent calculations. 

2.5.4 Gravimetric Data Base 

The gravity information acquired for the 371 gravity points in the Kananaskis extended 

area is stored into a data base for subsequent use and gravimetric related calculations. 

Table 2.6 presents for the Kananaskis area, the source organization [i.e., Department of 

Energy, Mines and Resources Canada (EMR), and The University of Calgary (UOC)] and 

the year when the gravity data became available at The University of Calgary. 

The information contained in the data base for the gravity points is the following: source, 

identification number, latitude, longitude, height, gravity, free-air anomaly, Bouguer 

anomaly, isostatic anomaly, terrain correction, standard deviations respectively for 

longitude/latitude, height, gravity, free-air anomaly, Bouguer anomaly. Only in the case 

of data originating from the North America Gravity data base, are values for the gravity 

and the associated standard deviation not given. 
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Table 2.6 Source and year of availability at The University of Calgary of point gravity 

data in the Kananaskis area 

Organization Year Core Area Extended Area 

EMR 1980 9 9 

EMR 1981 63 63 

UOC 1985 50 50 

EMR 1992 64 150 

UOC 1992 93 99 

Tables 2.7 and 2.8 give for the data base of the Kananaskis extended area statistics of the 

point data and their standard deviations, respectively. 

Table 2.7 Statistics of heights, terrain corrections and gravity anomalies at the gravity 

points of the data base for the Kananaskis extended area (Units: height, m; terrain 

correction and gravity anomaly, mGal) 

Data Minimum Maximum Mean Std. Deviation 

Height 869.3 3266.5 1722.9 409.2 

Terrain Corr. 0.0 74.4 9.4 8.8 

Free-air Anom. -82.4 198.9 40.8 45.9 

Bouguer Anom. -187.3 -129.2 -151.9 7.2 

Isostatic Anom. -33.8 23.5 0.0 8.8 

Table 2.8 Statistics of the standard deviations for spatial location and for gravity-data at 

the gravity points of the data base for the Kananaskis extended area (Units: spatial 

position, m; gravimetric data, mGal) 

Data Minimum Maximum Mean Std. Deviation 

Lat./Long. 0.5 20.0 10.5 7.0 

Height 0.0 12.0 2.9 2.0 

Gravity 0.02 0.25 0.09 0.03 

Free-air Anom. 0.05 3.70 0.97 0.50 

Bouguer Anom. 0.05 2.36 0.65 0.29 
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Figure 2.8 Point gravity data in the Kananaskis extended area 

The standard deviations given in Table 2.8 originate from the information included in the 

documentation of the different sources of gravity data (see Section 2.5.1). For the gravity 

densification survey carried out in 1992, the standard deviations were estimated as part of 

a least-squares adjustment and/or by error propagation. 
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An illustration of the density (i.e., spacing) and coverage of the area by gravity points is 

shown in Figure 2.8; the high concentration of gravity points inside the core area is 

evident. Figure 2.8 also indicates that additional gravity measurements in the south-west 

and south-east parts of the core area can provide a better data density and coverage for the 

Kananaskis core area. Subsequently, the attempt will be made to use all the quantities 

contained in the data base to produce a more homogeneous representation of the gravity 

field for the Kananaskis area. 
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CHAPTER 3 

PREDICTION OF GRAVITY ANOMALIES AND STUDY OF THEIR 

STATISTICAL BEHAVIOUR 

3.1 General Methodology and Data Requirements 

Terrestrial gravity data are acquired at specific observation points, usually not regularly 

distributed. A wide variety of applications in geodesy and geophysics, both with scientific 

and economic significance, require gravity anomaly data to be arranged more 

homogeneously over the area of investigation. For evaluation, interpretation, methodology, 

and computational efficiency purposes, a regular data distribution (i.e., grid) is particularly 

useful. This requires the prediction of gravity anomaly data. The prediction methods are 

based on the premise that the data is single-valued at any point, that the field is continuous 

over the area, and that there is a positive auto-correlation of the data over some distance. 

Heiskanen and Moritz (1967) review general aspects regarding the prediction of gravity 

anomalies. To predict gravity anomalies, information about the gravity anomaly function is 

necessary. The primary source of information are the observed gravity anomaly values. 

Additional knowledge regarding the form of the gravity anomaly function is also required. 

Dense and homogeneous data distribution by gravity anomalies allows for a simpler type of 

prediction, namely a linear prediction. This is dependent only on the relative position of the 

prediction points and the observation points. An easy solution is to assign to the prediction 

point the closest available observed gravity anomaly value. Another simple approach is to 

predict the required gravity anomaly as a function of the distance to the data points, i.e. 

weighted mean. A further improvement to the prediction model is to use least-squares 

adjustment to determine the coefficients of a (low-order) polynomial surface that fits the 

existing data. 
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If additional information provided by the auto-correlation relationship (i.e., covariance 

function) between gravity anomalies is included in the mathematical model, better estimates 

for the prediction values are expected. This is a statistical approach to the prediction of 

gravity anomalies (Rapp, 1964); the gravity anomalies are considered now as statistically 

dependent signals. The inclusion of this aspect in the least-squares adjustment model leads 

to the least-squares collocation technique (Moritz, 1980), where besides parameters, signal 

quantities are also estimated at locations other than the observation points. 

Regardless of the method used to predict gravity anomalies on the Earth's surface, the 

quality of prediction will depend on the data density, the variance of gravity anomalies and 

their correlation characteristics. The best results will be obtained when the data used has 

sma,ll variance and a strong correlation. Adequate terrain reductions (Forsberg, 1984a) will 

improve the smoothness characteristics of the data, making it more suitable for prediction. 

The topographic reduction (i.e., complete Bouguer reduction) computationally removes the 

visible topography. This reduction produces a smooth gravity anomaly field, but there is a 

large negative bias in mountainous areas. The former means a strong correlation and 

indicates that the field is suitable for prediction. 

If the topography compensation at depth is also considered in the reduction scheme (i.e., 

topographic-isostatic reduction), the large biases are removed in the remaining gravity 

anomaly field, and besides smoothness, the data presents a low variance too. The isostatic 

reduction should be global. A terrain reduction that approximates the isostatic reduction 

characteristics is the residual terrain model (RTM) reduction advocated by Forsberg and 

Tscherning (1981b) and Forsberg (1984a). For this reduction, only the short wavelength 

component of the topography is considered in relation to a smooth mean height surface 

over the limited area. The deviations of the topography from this smooth surface are 

computationally taken into account by a remove-restore technique. This reduction may be 

regarded as the difference between two Bouguer reductions where the visible topography is 

removed and the smoothed topography is added. 

If free-air gravity anomalies have to be predicted, the direct use of free-air anomalies at the 

observation points, in the prediction process will not produce good results. This is due to 

the large variance and weak auto-correlation characteristics associated with the data. For 

these reasons, the free-air gravity anomalies are predicted by using an intermediate 
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prediction with Bouguer, isostatic, or residual terrain model gravity anomalies. However, 

if the correlation of the free-air gravity anomaly with its elevation is considered in the 

prediction algorithms, improved estimations are possible. 

Especially in mountainous areas, the free-air gravity anomalies should be terrain corrected. 

The resulting anomalies (i.e. Faye anomalies) are then reduced by using a linear correlation 

model with two parameters (i.e., Ag = a + bh) to account for the height correlation 

component. The parameters a and b are estimated by a least-squares adjustment; 'a' 

represents a mean value and 'b' has the role of the Bouguer gradient. The reduced free-air 

gravity anomalies have now the characteristics of the Bouguer gravity anomalies, but 

without the large bias. The estimated Bouguer gradient tends to have smaller values than 

the standard one (i.e., 0.1119) due to the incomplete modelling (i.e., the horizontal 

positions of the observation points were not taken into account). This problem can be 

rectified by adding new parameters (i.e., polynomial coefficients) that depend on 

observation coordinates. Details regarding the prediction of free-air anomalies can be found 

in-Rapp (1964), Uotila (1967), Lachapelle and Schwarz (1980), SUnkel (1981b), Sunkel 

and Kraiger (1983), and Kearsley et al. (1985). 

The prediction outcome will be dependent on the data density, distribution and 

observational errors. The reduction errors coming from the terrain correction computation, 

the resolution and errors associated with the digital elevation model data, and the 

considered assumptions (e.g. density, etc.) for the chosen model will also bear on the 

gravity anomaly field prediction. Stinkel (1984) investigates the errors contributing td the 

total prediction error of gravity anomalies. 

Methods of prediction were developed and extensively applied in geodesy and geophysics, 

aiming to produce a homogeneous and adequate representation for the gravity anomaly 

data. In geodesy, statistical methods are widely employed. In geophysics, Briggs (1974) 

introduced the minimum curvature algorithm for gridding, which is widely used due to its 

smoothness properties. The method produces a surface having continuous second 

derivatives and minimal total squared curvature. Because of possible large oscillations and 

inflections of the computed surfaces, Smith and Wessel (1990) have improved the method 

by adding tension parameters to the algorithm of the minimum curvature method. 
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The frequency domain approach to optimal gravity anomaly data gridding has gained 

importance (Vermeer, 1992) because of its computational efficiency aspect. 

The current work attempts the prediction of gravity anomalies in an area of rugged 

topography. The methods used are least-squares collocation and weighted means with 

gravity anomalies as input. 

3.2 Two Prediction Methods for Gravity Anomalies 

3.2.1 Least-Squares Collocation 

The method of collocation is extensively used in geodesy for solving boundary value 

problems [i.e., the determination of the Earth physical surface from values of the disturbing 

potential T and of its functionals L(T) given on it]. In statistical collocation, the anomalous 

gravity field is considered a stochastic process and, thus, the solution represents a statistical 

approximation of the field. Least-squares collocation is defined as that collocation method 

which minimizes the variance of the estimated quantities. In this case, functionals of the 

disturbing potential (e.g. gravity anomalies, deflections of the vertical, geoid-ellipsoid 

separations, etc.) and unknown parameters (e.g. spatial coordinates, trend, etc.) are used. 

In least-squares collocation, the observational equations are represented by the 

mathematical model 

l=AX+s+n (3.1) 

where 1 is the vector of observations, A is a matrix (i.e., sensitivity/design matrix) 

expressing the effect of the vector of parameters X on the vector of observations 1, s is the 

vector comprising signals (at the observational and respectively prediction points) 

expressed by the functionals applied to the anomalous potential T, and n is the vector of 

observational errors (i.e., noise). The signal denotes the errorless part of the observation 

and represents the effect of the anomalous gravity field. 

In the least-squares collocation model, the expectations for the signal and the noise are zero 

(i.e., centered quantities) 
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E{s}=0,E{n}=O (3.2) 

The covariance (i.e., second product moment of two quantities about their mean) matrices 

for the random quantities of signal and noise in the equation (3.2) are 

Css =E{ssT} (3.3) 

Cnn = E{flnT} 

respectively. 

(3.4) 

In the equations (3.2), (3.3) and (3.4), the expectation E{ -
} is the mean in the sense of 

both statistical and global average (Moritz, 1980). Because the signal s and the noise n are 

uncorrelated, the covariance matrix of the observations 1 is 

cli = css + Cnn (3.5) 

The formal solution for the mathematical model expressed by the equation (3.1) is obtained 

by using the finite minimum norm principle 

sTC;Is +n TC -1 n  = minimum nn (3.6) 

Equations for the least-squarçs collocation vectors of estimates for the parameters and for 

the signals, together with their associated error covariance matrices, can be found in Moritz 

(1980). Considering the determination of the parameters X as the adjustment, the removal 

of noise n as the filtering, and the computation of the signal s at points other than the 

observation points as the prediction, the model expressed by equation (3.1) combines 

adjustment, filtering and prediction. The least-squares collocation solutions have the 

following characteristics: the result is independent of the number of signal quantities to be 

estimated; the observed and estimated quantities can be heterogeneous; the method is 

invariant with respect to linear transformations of data and results; the solution is optimal 

on the basis of the data and covariance functions used. 

If a non-parametric model (i.e., no systematic part, X = 0) is considered, equation (3.1) 

becomes 
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l=s+n (3.7) 

and the solutions for the estimated signals and for their error matrix, respectively, are 

simplified by setting matrix A =0. 

The method of least-squares collocation is extensively used for the prediction of gravity 

field related quantities (i.e. functionals of the disturbing potential) such as gravity 

anomalies, geoidal heights, deflections of the vertical, etc. Considering the case of 

prediction of gravity anomalies from gravity anomalies (i.e., homogeneous data), the 

vector of observations 1 is comprised of residual gravity anomaly values 

Agf = Ag1 - Ag' (3.8) 

where Ag1 is the observation at point i, Ag' is the calculated/deterministic (i.e., trend) 

part, and Ag is the resulting residual gravity anomaly. For example, the trend can be 

represented by the linear correlation parameters between free-air anomalies and their 

topographic heights and/or a low-order polynomial surface, function of position. The trend 

parameters have to be determined prior to the usage of the least-squares collocation model 

given by equation (3.7). The formal solution of the gravity anomaly signal vector and 

corresponding error covariance matrix is given by 

= CC-'l (3.9) 

Eig = - C1Cjj'C1 

The estimated gravity anomaly at a point P, Agp, is then obtained as 

AA = p + Ag 

(3.10) 

(3.11) 

where sp is the signal part of the gravity anomaly and Agp represents the deterministic 

component. 

If large amounts of data are considered in the prediction least-squares collocation algorithm, 

there will be a substantial computational effort due to the inversion of large and full 
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covariance matrices. A practical approach is to use smaller areas for data collection, having 

thus a manageable number of observations. The size of the collection area can be 

determined in relation to the local characteristics of the anomalous gravity field portrayed by 

the covariance function of the gravity anomalies. 

The formulation and the solution to gravity field related problems by least-squares 

collocation is directly related to covariance functions of signals at the observation and at the 

prediction points. Aspects of their fundamental role, empirical evaluation, essential 

characteristics, and analytical approximation will be addressed in a subsequent section. 

An introduction, a review, and a detailed presentation of the theory and applications of 

least-squares collocation, respectively, are found in Moritz (1972, 1978, 1980). 

3.2.2 Weighted Means 

A simple deterministic method for prediction of gravity anomalies is the based on the 

inverse distance weighted means. In this approach, the gravity anomaly at a prediction 

point is the weighted mean of observations located at arbitrary points. The weights are 

allocated inversely proportional to the distance between prediction point to observation 

points. 

Morrison and Douglas (1984) give the fundamental equation used for prediction with the 

inverse distance weighted means method. Considering a set of functions f(x1, yj) given at i 

= 1, 2, ..., n points with plane coordinates (xi, y), the fundamental equation for the 

prediction of a function f(x, y) is 

n 

f(x1,y1)w(x, xi, y,y1) 

f(x,y) = i=1  
n 

w(x,x1,y,y1) 
i=I 

with 

w(x,x,y,y) =[(x—x)2+(y—y)2i'2 

(3.12) 

(3.13) 
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where i is the power of prediction. A common value for the power of prediction is t = 2. 

Sjoberg (1975) suggested values of approximately 3 to 4 for the parameter p.. However, 

the choice of this parameter seems arbitrary. 

Kassim (1980) has used the inverse distance weighted means approach for estimation of 

gravity anomalies in several areas with particular topographic characteristics (i.e., flat, 

gently rolling, and mountainous). No recommendations were given regarding specific 

power coefficients for different types of terrain. 

The error associated with the prediction of the gravity anomaly at point P, Age, from 

gravity anomalies, ig1, at i =1, 2, ..., n points situated at distances dpi, is a function of the 

standard deviations of the observations and respectively of distances. By propagation of 

variances, associated with the gravity anomaly observations, the variance, a gp of 

the predicted value is 

..(aLP )2 y2 

cYgp DAgj   
(3.14) 

or by substituting the partial derivatives from equation (3.12), equation (3.14) becomes 

n 

(1/ d j)2O gj 

Ggp = i=1  
n 

(1I d) 
i=1 

(3.15) 

The investigations carried out by Sjoberg (1975), Kassim (1980), and Morrison and 

Douglas (1984) with the inverse distance weighted means method to predict gravity 

anomalies, conclude that adequate results are obtained when interpolation is performed. 

However, the method performs poorly when the data coverage is sparse and/or presents 

large variations. 
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3.3 Covariance Functions and Statistical Behaviour of Gravity Anomalies 

The covariance functions, represented in the least-squares collocation solution by 

covariance matrices, play a fundamental role in the estimation process. 

Under the assumption that gravity anomalies are statistical quantities with a mean value of 

zero, the covariance function is defined as the average product of all pairs of gravity 

anomalies Ag1 and Agj that are at a constant distance s apart. The covariance function can 

be written symbolically as 

C(s) = cov(Agi Agi, s) = M(AgjAgj)s (3.16) 

where and M(.) is an averaging operator. If the operator M is homogeneous (i.e., 

independent of position) and isotropic (i.e., independent of azimuth), the covariance 

function C(s) will be only dependent on the distance s between the points i and j. The 
covariance function characterizes the statistical behaviour of the gravity anomaly field (i.e., 

pairs of close gravity anomaly points, due to local disturbances, tend to have similar size 

and sign) and gives information regarding the structure of the gravity field. 

The best approximation to the gravity anomaly field in an area, from a standard error of 

prediction point of view, is obtained when an empirical covariance function determined 

from the available local data is used. In this way, the structure of the gravity anomaly field 

will be portrayed by the local covariance function. It is required, however, to remove the 

long wavelength component (i.e., trend) from the local data before determining the 

covariance function (i.e., the calculations will be performed with residual gravity anomaly 

data). The removal of the long wavelength component is achieved by the subtraction of 

model anomalies calculated from the coefficients of a spherical harmonic series of the 

geopotential and/or a low degree surface polynomial, or by removal of mean of the data. 

When the trend is removed by the former, the local and global covariance functions are 

linked and treatment of heterogeneous data in the least-squares collocation model is 

.possible. If the trend in the local data is removed by one of the latter two, the expected 

values for the data become zero, the frequency spectrum is now changed, and the local and 

global covariance functions are not related anymore. The removal of a geopotential model 

from the local data.improves in general the characteristics of isotropy and homogeneity for 

non-mountainous areas. For mountainous areas the latter characteristics are usually 

improved if the linear height correlation is removed from the data. 
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The empirical covariances between gravity anomaly values Agi and Agj are expressed by 

I flfl 

(3.17) 

k i=lj=1 

where k refers to the class of distances Sk and nk is the number of products in each class. 

The empirical covariance function determined with equation (3.17) has to be approximated 

by an analytical model in order to use its information in the prediction process. For 

computational convenience, this model should have simple form (i.e., characterized only 

by a few parameters). Moritz (1976) has introduced for homogeneous and isotropic 

covariance functions a representation by three essential parameters considered adequate to 

portray the local behaviour of the gravity anomaly field. 

Moritz (1976, 1978, 1980) give the following essential parameters: the variance Co, the 

correlation length X112, the curvature parameter X and/or the gradient variance G0. The 

variance Co is the value of the covariance function C(s) for the argument s= 0 

Co=C(0) (3.18) 

The correlation length X112 is the value for the argument for which C(s) has decreased to 

half of its value at s =0 

C(X112) = I CO (3.19) 

The curvature parameter X is a dimensionless quantity related to the curvature K of the 

covariance curve at s =0 

(3.20) 

The gradient variance Go is the variance of the horizontal gradient of Ag and is related to 

the curvature parameter by 

Go C0iXj,2 (3.21) 
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Covariance functions that have the same essential parameters indicate a similar general 

behaviour of the gravity anomalies. The variance Co plays the role of a scale factor for the 

prediction errors; the correlation length X112 characterizes the covariance function over 

distances of the order of X112 itself; the curvature parameter X is representative for very 

small distances. From an empirical determination point of view it is more convenient to 

work with the horizontal gradient variance Go than with the curvature parameter X. Thus, 
the former is usually the third essential parameter. 

Schwarz and Lachapelle (1980) and Goad et al. (1984) give details on the calculation of 

local empirical covariance functions. The covariances are calculated by forming products 

between all pairs of gravity anomalies in the area and by grouping and averaging the 

products according to the class interval distance. Equation (3.17) is used for this task. For 

the distance equal to zero, the resulting value is the variance Co (units are mGal2). The 

variance of the horizontal gradients, G0, is obtained from the average gradients (i.e., ratio 

of difference in gravity anomalies at two points and the distance separating them); units are 

E2, 1E = 0.1 mGal/km. 

Moritz (1976) states that the choice of the covariance function has a limited effect in 

prediction computations, however the error estimates can be strongly influenced by it. 

Thus, the presence of the homogeneity and isotropy characteristics in the data are essential 

for the estimation of prediction errors. To verify the assumption of anisotropy, a 

comparison of the estimated X112, Go, or X for the meridian and longitudinal empirical 

covariance functions or between extreme values over all the azimuths, can indicate the 

degree of anisotropy in the gravity anomaly data (Lachapelle et al., 1983). Forsberg 

(1984a) and Tscherning (1985) use as a measure of anisotropy the ratio between the 

maximal and the minimal correlation lengths. 

Plane covariance models prove to be quite adequate for homogeneous (e.g. gravity 

anomalies) data prediction. Moritz (1976, 1978, 1980) gives a number of analytical 

expressions that can be used to approximate the local empirical covariance functions. Their 

expressions (they must be positive definite) are the following: 

C(s) = COCA 2s2 (3.22) 
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Co  
C(s) = (1+ B 2.2)m 

Cob  
C(s) = [s2 + (z1 + z + b)2J112 

C(s) = Cob 2(z + z + b) 

[s2 +(zj+z +b)2]312 

C(s) = 

C(s) = C0(1 + 
D 

C(s) = C0[1 + () + (_)le tD 
D 3D 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Equations (3.22) to (3.29) are the Gaussian, Hirvonen (when m = 1), inverse distance, 

Poisson, first-order Markov, second-order Markov, and third-order Markov models, 

respectively. The coefficients A, B, b, D are related to the correlation length essential 

parameter. The equations (3.24) and (3,25) represent an extension of the plane covariance 

of equation (3.23) into the upper half space; zi and Zj are elevations above the horizontal 

plane. Detailed explanations regarding these models (i.e., relations of constants/parameters 

with the essential parameters, specific characteristics, etc.) are found in Moritz (1978, 

1980). 

Even more simple analytical approximations to the empirical covariance functions are 

available (see, for example, Goad et al., 1984). Other approximation procedures regarding 

the covariance functions can also be found in SUnkel (1978, 1979). 

The covariance function associated with the spherical harmonic expansion of degree n of 

the gravity anomalies may be expressed (Heiskanen and Moritz, 1967) as 

C(t) = J cnPn(cosW) 
n=2 

(3.29) 
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where is the spherical distance corresponding to the linear distance s, c are positive 

coefficients, and P (cosV) are Legendre's polynomials. The exclusion of the degrees zero 

and one in equation (3.29) (i.e., summation starts from degree n = 2), indicates that the 

covariance function refers to a geocentric positioned ellipsoid of the same mass as the mass 

of the Earth. The coefficients c (also denoted as a) are called anomaly degree variances. 

They describe the variance of the field for a particular degree of the spherical harmonic 

expansion. 

All covariance functions and their covariance matrices must be positive definite (i.e., the 

spectrum of the function is non-negative). The positive definitness of the covariance 

functions is assured by the non-negativity of all coefficients c. 

Equation (3.29) can be extended outside the sphere r = R (where R is the mean radius of 

the Earth) with the consideration that the covariance function C(i, j) in space must be 
harmonic (i.e., must satisfy Laplace's equation) with respect to both points i and j. A 
rotationally symmetric harmonic covariance function of gravity anomalies in space can be 

expressed in a general form as 

C(i,j) = 
n=2 rirj 

(3.30) 

A global covariance function was estimated (including closed covariance expressions for 

computation) by Tscheming and Rapp (1974) and it has the form 

C(iji) = (3.31) 
n=3 

where A and s are parameters characterizing the model. A third parameter, B, is implicitly 

contained in the coefficients c. The model of Tscherning and Rapp (1974) is a logarithmic 

covariance function. Moritz (1977) and Jekeli (1978) suggest additional parameters to the 

above model, to take care of local characteristics of the gravity anomaly field. Critiques of 

these models are found in Moritz (1978, 1980) and Schwarz and Lachapelle (1980). 
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Empirical local covariance function data (i.e., the essential parameters calculated from a 

certain local field) can be fitted to the model given by equation (3.31). This implies 

changing the parameters (i.e., A, B, s) in equation (3.31) to match the local data (i.e., Co, 

Go, X112). Because B cannot be obtained from local information, only A and s can be 

changed. Schwarz and Lachapelle (1980) present this problem in detail. 

Torge (1989) indicates that the spectral decomposition of equation (3.30) allows the 

computation of anomaly degree variances from a covariance function derived from available 

gravity anomaly data as follows 

2 2n+1 7t 

=  2  fcov(Ag1ig,v)P(coslr)sin'wdqf 
'qi=O 

3.4 Prediction of Gravity Anomalies in the Kananaskis Area 

3.4.1 Least-Squares Collocation 

Empirical Covariance Functions 

(3.32) 

The fundamental role of the covariance function in the least-squares collocation solution 

was pointed out in Section 3.2.1. For local applications, covariance functions estimated by 

considering gravity anomaly values only inside a local area, will lead to an optimum 

solution. Usually the data distribution is not homogeneous and this could lead to an 

inadequate estimation with equation (3.17) of the covariance function values, according to 

the class interval. To estimate a representative covariance function of gravity anomalies for 

an area, a regular data distribution would be needed. This could be achieved by either 

selecting the points according to some criteria in order to have a more even data 

distribution, or by predicting the data on a regular grid. Then, the essential parameters 

characterizing the local empirical covariance function can be estimated. 

Figure 2.8 shows that in the extended Kananaskis area the gravity anomaly data 

distribution is not uniform throughout. The mean data spacing in km can be calculated with 

the equation given by Forsberg and Tscheming (1981a) 
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d = (Al N)"2 (3.33) 

where A is the area size in km2 and N is the number of points. If only the data from the 

North America Gravity data base is taken into account, the mean data spacing in the 

Kananaskis core and extended area is at a level of 8 to 9 km. However, if all the data 

available for this investigation is considered, the mean data spacing is at a level of 4 to 6 

km. The latter numbers can be misleading, since most of the additional data are 

concentrated within the core area. It was decided to select the point data such, that the 

spacing is approximately at the level of 5 to 9 km. With this arbitrary choice, 131 points 

were selected for the determination of empirical covariance functions for the free-air, 

Bouguer and isostatic anomalies (see Figure 3.1). 

51.5 

51.25 — 

51 

P. 50.75 - 

50.5 - 

50.25   

. 

. 

. . 

4 

• 

. 

. . 4 

4 

.. . . 
• .• 
• • 4• 

• •. . 

• 4 

• 4• • 
• 4 •• • 

• 4 4 
•4• 4 • 

• 4 

. 

. . 

• . 

4 

. 

I I I I 

4 

tn 
c'i 

c' 
c..l cl 

LONGITUDE (DEGREE; 

Figure 3.1 Layout of points in the Kananaskis extended area, selected for estimation of 

empirical covariance functions 

Before the gravity anomalies are used to estimate the covariance functions, the trend from 

the data must be removed; thus the resulting residual data will have a mean equal to zero. In 
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this investigation, the trend is removed by subtracting the contribution coming from a low-

order polynomial surface 

Agn(x,y) = .± CijXy 
i=Oj=O 

(3.34) 

where n is the degree of the polynomial, cj are coefficients of the polynomial and (x, y) are 

plane Cartesian coordinates. The local Cartesian coordinates are determined from the 

geographic coordinates (i.e., latitude 4 and longitude X) of the gravity anomaly points, with 

the equations 

x = R(A.—A.0)c0s4 

y =R(- 0) 
(3.35) 

where (o,?o) are mean geographic coordinates for the area (i.e., 50.875° and 244.875°, 

respectively, in the Kananaskis), and R = 6371 km is the mean radius of the Earth. 

The coefficients cj are estimated from a parametric least-squares adjustment. The current 

investigation uses polynomial surfaces of zero (i.e., simple mean), first (i.e., simple 

surface) and second degree, respectively. Because of the strong correlation of the free-air 

gravity anomalies with their corresponding heights, prior to their reduction by the low 

degree polynomial surface given by equation (3.34), their linear correlation with the heights 

has to be removed. The equation used is 

Ag=a+bh (3.36) 

where the coefficient a is the mean gravity anomaly value for the area, b has the role of the 

Bouguer gradient, and h is the height. The coefficients a and b for the Kananaskis area 

were calculated in Chapter 2. 

Using the selected 131 points in the extended Kananaskis area, local empirical covariance 

functions are estimated for the trend reduced Bouguer, isostatic and free-air gravity 

anomalies. A class interval of 3 arcmin was used for the calculation of the covariance 

values; and all points less than 6.5 km apart were used for the calculation of the variance of 

the horizontal gradients. The results (i.e., data statistics and covariance function essential 
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parameters) are presented in Tables 3.1, 3.2 and 3.3, respectively. Figure 3.2 shows the 

local empirical covariance functions estimated from Bouguer gravity anomalies. The 

covariance functions were estimated for the three different types of gravity anomalies, to 

assess the suitability of the data in the prediction process. 

Table 3.1 Statistics of trend reduced Bouguer gravity anomalies and essential parameters 

of the empirical covariance functions 

Trend Minimum Maximum Std. Dev. Co X112 Go 

mGal mGal mGal mGal2 km E2 

Mean -29.6 22.8 9.7 93.0 9.7 31.1 

Polyn. (1st) -16.9 12.1 6.5 42.0 8.1 23.6 

Polyn. (2nd) -20.6 12.2 5.2 27.1 6.1 17.9 

Table 3.2 Statistics of trend reduced isostatic gravity anomalies and essential parameters 

of the empirical covariance functions 

Trend Minimum Maximum Std. Dev. Co X112 Go 

mGal mGal mGal mGal2 km E2 

Mean -27.1 24.8 11.2 123.5 13.8 48.0 

Polyn. (1st) -30.5 15.3 9.5 88.7 8.8 38.3 

Polyn. (2nd) -20.7 9.7 5.2 26.5 5.5 19.6 

Table 3.3 Statistics of trend reduced free-air gravity anomalies and essential parameters of 

the empirical covariance functions 

Trend Minimum Maximum Std. Dev. Co X112 Go 

mGal mGal mGal mGal2 km E2 

Mean -30.6 22.4 9.7 92.8 9.1 30.9 

Polyn. (1st) -18.3 12.0 6.7 44.0 8.2 24.1 

Polyn. (2nd) -21.3 11.5 5.2 27.2 6.1 17.9 

It would have been expected that the prediction characteristics of the isostatic gravity 

anomalies are better than those of the Bouguer gravity anomalies (i.e., lower variance, 
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longer correlation length and lower horizontal gradient variance). There is no mean bias in 

the isostatic gravity anomaly data (i.e., mean equal to zero) and the range of their values is 

the same as that of the Bouguer gravity anomalies. However, only when a second degree 

polynomial surface is used in their reduction, are the characteristics of the covariance 

function similar to those of the corresponding covariance for the Bouguer gravity 

anomalies. An explanation can be that the isostatic system used (i.e., Airy-Heiskanen) 

and/or the choice of parameters (i.e., thickness of the Earth's crust T = 30 km and density 

contrast AP = 0.6 g/cm3) is not appropriate for all of the area. Changes in the parameters 

produce only a shift of the data set (i.e., their range remains the same). Of course, gravity 

anomaly and digital elevation model data errors can also be a cause. Their adverse influence 

can create some residual effects that are eliminated only when information regarding their 

elevation and/or position is included in the reduction. 
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Figure 3.2 Empirical Bouguer gravity anomalies covariance functions for the Kananaskis 

extended area [Trend: (a) mean; (b) first degree polynomial; (c) second degree polynomial] 

Terrain corrected free-air gravity anomalies with linear correlation with height subtracted 

and trend related on position removed produce covariance functions with the essential 

parameters similar to those of the corresponding Bouguer gravity anomalies. Merry (1983) 

used free-air gravity anomalies for prediction, reduced in this manner. Examination of the 

statistics of Tables 3.1 and 3.3 shows that for practical purposes the empirical covariance 

functions of Bouguer gravity anomalies trend reduced by a low degree polynomial surface 
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are the same as those of double reduced (i.e., height correlation and position trend) free-air 

gravity anomalies. 

Analytical Covariance Functions 

To use the information provided by the local empirical covariance functions in the least-

squares solution, their approximation by analytical models is necessary. Because of the 

data distribution pattern in the Kananaskis area, it was considered that the calculation of the 

horizontal gradient of gravity anomalies will not be well determined. The analytical models 

chosen are then only fitted to C(0) and C(X112) (i.e., to the gravity anomaly covajiances at 

zero and respectively correlation length distance). Even if this arbitrary choice is not • 

reasonable regarding the overall fit of the empirical covariance function, Moritz (1976) has 

shown that predicted gravity anomalies will not be affected, and only their standard error 

estimates will. 

To give an indication on the influence in the prediction process of different analytical 

covariance function models, several of them are investigated. Table 3.4 shows the 

empirical covariance values at 5' class interval (i.e., spacing) of Bouguer gravity anomalies 

reduced by the mean, together with their corresponding values derived from six analytical 

models [see equations (3.22) to (3.28)]. With the exception of the Gaussian model, all the 

others lead to similar values. Using the analytical covariance models from Table 3.4, grids 

of 1' x 1' Bouguer gravity anomalies with corresponding estimated standard deviations 

were computed for the area delimited by latitudes 5Øo3Ø and 51°15' and longitudes 244°30' 

and 245° 15' (i.e., Kananasids core area). The statistics of the results are included in Tables 

3.5 and 3.6, respectively. From the data presented, it can be seen that the predicted 

Bouguer gravity anomaly values are more stable than the estimates of their associated 

standard deviations, with change of the analytical covariance function model. 

A further check on the effect of the choice of covariance function was carried out. Using 

the same criteria for data selection, but with a different sequence of the data, 115 points 

were chosen to estimate the empirical local covariance function. The essential parameters 

are: variance, 103.3 mGal2; correlation length, 16.4 km; variance of horizontal gradient, 

32.9 E2. The use of the latter parameters in the prediction process, led to the same 

conclusions as before, i.e., the predicted gravity anomalies are, for practical purposes, the 

same. 
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Table 3.4 Bouguer gravity anomalies empirical covariance function and representation by 

analytical models (Units: distance, arcmin; covariance, mGal2) 

Distance Empirical Gaussian Hirvonen Inv. Dist. Poisson Markov 

(1st) 

Markov 

(2nd) 

0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 

5 47.1 49.2 48.5 48.0 48.7 48.0 48.5 

10 33.5 7.3 19.9 26.8 16.6 24.8 15.7 

15 25.5 0.3 10.0 18.3 6.6 12.8 4.3 

20 18.0 0.0 5.9 13.8 3.1 6.6 1.1 

25 12.5 0.0 3.9 11.1 1.7 3.4 0.3 

30 2.9 0.0 2.7 9.3 1.0 1.8 0.1 

Table 3.5 Statistics of Bouguer gravity anomalies on a 1' x 1' grid in the Kananaskis core 

area, predicted by least-squares collocation (Unit: mGal) 

Analytical Model Minimum Maximum Mean Std. Dev. 

Gaussian -170.7 -136.9 -151.6 6.6 

Hirvonen -169.6 -138.2 -151.7 6.4 

Inv. Dist. -169.4 -139.8 -151.8 6.3 

Poisson -169.8 -137.6 -151.7 6.5 

Markov(lst) -168.5 -140.9 -151.8 6.1 

Markov (2nd) -169.4 -138.7 -151.7 6.4 

Table 3.6 Statistics of standard deviations for Bouguer gravity anomalies on a 1' x i 

grid in the Kananaskis core area, predicted by least-squares collocation (Unit: mGal) 

Analytical Model Minimum Maximum Mean Std. Dev. 

Gaussian 0.2 3.2 0.9 0.6 

Hirvonen 0.2 3.9 1.6 1.0 

Inv. Dist. 0.3 4.2 2.0 1.1 

Poisson 0.2 3.8 1.4 0.9 

Markov(lst) 0.6 4.2 2.8 0.8 

Markov (2nd) 0.3 - 3.8 1.7 0.9 
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Least-Squares Collocation Prediction 

The 1' x 1' (i.e., 1.85 km x 1.17 km) grid of free-air gravity anomalies will be calculated 

via an intermediate stage of Bouguer gravity anomalies prediction. Though the calculations 

are done for the Kananaskis extended area, in this section, the results presented will refer 

only to the core area. 

Three grids of Bouguer gravity anomalies are predicted using the method of least-squares 

collocation with the mean, first degree and second degree polynomial surface trend 

reduction, respectively. At first, all the gravity data points are considered. However, the 

number of points around each prediction point is limited to a radius of 1.5X112 and to 5 

points per quadrant. The number of points selected for the prediction of gravity anomalies 

on the grid covering the Kananaskis core area is determined according to the data reduction 

procedure. Considering the values given for the correlation distance in Table 3.1, 342, 324 

and 310 points, respectively, are used. This translates to an average of 3.2, 3 and 2.9 

points per quadrant, respectively. The standard error associated with each gravity anomaly 

value is given as 0.65 mGal (i.e., the mean of the standard error values within the area). 

Arbitrarily, the second-order Markov equation was chosen to model the local empirical 

covariance functions. Before the data is used in the least-squares collocation solution, the 

trend is removed. After the estimation process, the trend is restored at the estimation points. 

Statistics of the predicted grids of Bouguer gravity anomalies and their corresponding 

standard deviations are given in Tables 3.7 and 3.8, respectively. 

Subsequently, the required grids of free-air gravity anomalies and their associated standard 

deviations are calculated with the equations 

= gBouguer +0.1119h (3.37) 

and 

a4.gfreeair = 11G gouguer + (0.1119Oh)2 11/2 (3.38) 

where h represents the corresponding heights from the digital elevation model of the area. 

The standard deviation for the heights, ah, is considered at the level of ±10 m. 
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Table 3.7 Statistics of Bouguer gravity anomalies on a 1' x 1' grid in the Kananaskis core 

area predicted by least-squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean -169.4 -138.7 -151.7 6.4 

Polyn. (1st) -169.1 -139.4 -151.7 6.3 

Polyn. (2nd) -170.6 -140.3 -151.8 6.3 

Table 3.8 Statistics of standard deviations for Bouguer gravity anomalies on a 1' x 1' 

grid in the Kananaskis core area predicted by least-squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean 0.3 3.8 1.7 0.9 

Polyn. (1st) 0.3 3.0 1.5 0.7 

Polyn. (2nd) 0.3 2.9 1.5 0.7 

The statistics of the calculated corresponding grids of free-air gravity anomalies and of their 

standard deviations are given in Tables 3.9 and 3.10, respectively. The resulting smaller 

standard deviations when the reduction of the data is carried out with a second degree 

polynomial surface, is due to the smaller variance that better scales the errors. As a check, 

the standard deviations for the free-air gravity anomaly grids were estimated from the least-

squares solution of the free-air gravity anomaly data double reduced. The results are given 

in Table 3.11 and they are basically the same as those presented in Table 3.10. To illustrate 

the latter results, Figure 3.3 portrays the contoured standard deviation estimations for the 

grid of free-air gravity anomalies calculated by reducing the position trend by a second 

degree polynomial surface. Within the core area, approximately between latitudes 50°40' 

and 51°05' and between longitudes 244°38' and 245°08', the standard deviations are at a 

level of 1 to 1.5 mGal. In order to test the estimated results (i.e., gravity anomaly values 

and standard deviations), external checks are necessary. This matter will be discussed in 

Section 3.4.3. 
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Table 3.9 Statistics of free-air gravity anomalies on a 1' x i grid in the Kananaskis core 

area predicted by least-squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean -28.2 176.4 67.9 40.2 

Polyn. (1st) -28.3 176.8 67.9 40.2 

Polyn. (2nd) -28.8 175.5 67.8 40.1 

Table 3.10 Statistics of standard deviations for free-air gravity anomalies (derived from 

Bouguer gravity anomalies) on a 1' x 1' grid in the Kananaskis core area predicted by least-

squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean 1.2 4.0 2.1 0.7 

Polyn. (1st) 1.2 3.2 1.9 0.6 

Polyn. (2nd) 1.2 3.1 1.9 0.5 

Table 3.11 Statistics of standard deviations for free-air gravity anomalies (derived from 

double reduced free-air gravity anomalies) on a V x l' grid in the Kananaskis core area 

predicted by least-squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean 1.0 4.1 2.1 0.8 

Polyn. (1st) 0.9 3.2 1.8 0.6 

Polyn. (2nd) - 0.9 3.1 1.9 0.6 
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Figure 3.3 Standard deviations of free-air gravity anomalies on a l' x F grid in the 

Kananaskis core area predicted by least-squares collocation (Contour interval: 0.5 mGal) 

3.4.2 Weighted Means 

To complement the investigations regarding the prediction of gravity anomalies, the 

weighted means method is also applied. The same kind of trend reductions will be 

performed on the data and the same criteria for the number of points used in the prediction 

process at a point will be used to allow for comparisons between the former and the latter 

methods. 
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Equation (3.13) indicates that different powers can be used in the prediction process by the 

weighted means method. To asses the impact of the power coefficient in the prediction of 

gravity anomalies, grids of 1' x 1 Bouguer gravity anomalies are predicted for the 

Kananaskis core area using powers from 1 to 5. The trend in the data was removed by 

subtracting their mean. The statistics of the results are presented in Table 3.12. With the 

exception of j.t. = 1, the differences between the minimum or maximum values for the 

predicted grids are at the level of 1 mGal or less. Also, an inspection of the statistics shown 

in Table 3.7 for the predicted grids by the method of least-squares collocation indicate a 

good agreement between the two methods. 

Table 3.12 Statistics of Bouguer gravity anomalies on a 1' x 1' grid in the Kananaskis 

core area predicted by weighted means (Unit: mGal) 

Power Coeff. Minimum Maximum Mean Std. Dev. 

1 -165.7 -143.1 -152.1 5.7 

2 -168.0 -141.2 -151.9 5.8 

3 -169.2 -140.8 -151.8 5.9 

4 -169.4 -140.7 -151.8 6.0 

5 -169.4 -140.0 -151.8 6.1 

Another test carried out for the method of weighted means is the estimation of the standard 

deviations for a grid of free-air gravity anomalies by error propagation. First, the standard 

deviations for the grid of Bouguer gravity anomalies were calculated with equation (3.15). 

Second, equation (3.38) was used to calculate the standard deviations for a grid of free-air 

gravity anomalies on the grid. The statistics (i.e., minimum, maximum, mean, standard 

deviation) in mGal for the latter grid are 1.1, 3.4, 1.7 and 0.5, respectively. These values 

are at the same level with those estimated by the least-squares collocation method. 

From the results available so far, it can be concluded that the weighted means method 

performs at the same level as the method of least-squares collocation. Additional 

assessment of the method is included in the next section. 
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3.4.3 Performance Evaluation of Methods 

To obtain a better understanding of the capabilities of the two prediction methods employed 

in this study, and to investigate the influence of the trend reduction in the prediction 

process, a number of numerical tests and evaluations are carried out. All the tests use only 

Bouguer gravity anomalies as data. 

In the first group of tests, the trend in the data is reduced by subtracting their mean. The 

tests are: 

(i) Prediction with 131 data points (i.e., points used to estimate the empirical covariance 

function) at the other 240 points in the area. 

(ii) Prediction with 328 data points (i.e., points of the second gravity survey of 1985 are 

not included) at the excluded 43 points. 

(iii) Prediction with 328 data points (i.e., points of the second gravity survey of 1985 are 

not included) of a 1' x l' grid and, subsequent, prediction from the grid at the excluded 43 

points. 

The statistics for the three tests are given in Table 3.13 for the case when the method of 

least-squares collocation is applied, and in Table 3.14 when the method of weighted means 

is used. 

Table 3.13 Statistics of discrepancies in prediction of Bouguer gravity anomalies by 

least-squares collocation (Unit: mGal) 

Prediction Minimum Maximum Mean Std. Dev. 

Test(i) -8.1 14.4 -0.5 2.8 

Test (ii) -8.0 6.6 0.0 3.4 

Test (iii) 5.4 4.6 0.0 2.2 

An inspection of the measured and the predicted gravity anomalies in each test shows, that 

discrepancies larger than twice the root mean square, occur at 9, 1 and 3 points, 

respectively, for each method of prediction. 
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Table 3.14 Statistics of discrepancies in prediction of Bouguer gravity anomalies by 

weighted means (Unit: mGal) 

Prediction Minimum Maximum Mean Std. Dev. 

Test(i) -9.1 14.7 -0.2 2.6 

Test (ii) -7.6 5.2 0.6 2.9 

Test (iii) -5.3 4.5 0.0 2.2 

In the second group of tests, the trend in the data is removed by subtracting a low-order 

polynomial surface of zero (i.e., mean), first (i.e., simple surface) and second degree, 

respectively. All of the available 371 data points are used to predict a l' x 1' grid of 

Bouguer gravity anomalies for the core area. Then the prediction from the grid to the 279 

points within the core area is carried out. 

The statistics for the latter tests are given in Table 3.15 for the method of least-squares 

collocation, and in Table 3.16 for the method of weighted means. 

Table 3.15 Statistics of discrepancies in prediction of Bouguer gravity anomalies (371 

points to l' x V grid to 279 points) by least-squares collocation (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean -4.6 7.1 -0.1 1.2 

Polyn. (1st) -5.0 7.3 -0.1 1.3 

Polyn. (2nd) -4.6 6.9 0.0 1.2 

Table 3.16 Statistics of discrepancies in prediction of Bouguer gravity anomalies (371 

points to 1' x 1' grid to 279 points) by weighted means (Unit: mGal) 

Trend Minimum Maximum Mean Std. Dev. 

Mean -5.1 7.8 0.0 1.3 

Polyn. (1st) -5.1 7.8 0.0 1.3 

Polyn. (2nd) -5.1 -7.8 - 0.0 1.3 
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Upon examination, Tables 3.15 and 3.16 indicate some large discrepancies between the 

predicted and the measured point data, although the mean discrepancy is zero with standard 

deviations of 1.2 to 1.3 mGal. After eliminating two gravity points where large 

discrepancies were present, a 1' x i grid of free-air gravity anomaly errors was predicted 

for the Kananaskis extended area (see Figure 3.4 for the contours in the core area). The 

two discarded gravity points have suspected height errors and have the following 

approximate latitudes and longitudes, respectively: 50.65°, 244.87°; 50.94°, 244.74°. 

I 
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Figure 3.4 Errors of free-air gravity anomalies on a 1' x i grid in the Kananaskis core 

area predicted by least-squares collocation (Contour interval: 0.5 mGal) 
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The statistics (i.e., minimum, maximum, mean, standard deviation) in mGal for the errors 

of the free-air gravity anomalies in the Kananaskis core area are -2.3, 2.2, 0.0 and 0.3, 

respectively. 

A very good measure of the performance of different methods of prediction of gravity 

anomalies, when the same data sets are used, is the root mean square discrepancy statistic 

6 = [!(Ag1 A)2]112 
i=1 

(3.39) 

where ii is the number of observations in the data set, Ag1 denotes the measured gravity 

anomaly value and A j represents the correspondent prediction at point i (Merry, 1983). 

The data provided by the prediction tests presented in Tables 3.15 and 3.16 indicate that 

root mean square discrepancies for the prediction of the Bouguer gravity anomalies by 

least-squares collocation and by weighted means are 1.19 and 1.28 mGal, respectively. 

This infers that the precision estimates for the Bouguer gravity anomalies grids, and 

implicitly for the free-air gravity anomalies grids, are better than the values presented in 

Section 3.4.2. The statistic 6 indicates a slightly better performance of the least-squares 

collocation method over the weighted means method. 

From the evaluation of all the tests, the resulting conclusion is that, for the gravity data 

available in the Kananaskis area, the performances of the least-squares collocation and of 

the weighed means methods are similar and that the accuracy of the predicted 1' x i grid of 

free-air gravity anomalies is at the approximate level of 1 mGal. 

3.4.4 Statistical Behaviour of Free-air, Bouguer and Isostatic Anomalies. 

Statistics of Gridded Gravity Anomalies 

The point gravity anomaly data in the Kananaskis area were used to produce grids of free-

air, Bouguer and isostatic gravity anomalies. The Figures 3.5, 3.6 and 3.7 show the 

respective contour maps of the gridded F x F (i.e, 1.9 km x 1.2 km) data covering the 

Kananaskis core area (i.e., 50.5° ≤ ≤ 51.25', 244.5° ≤ ? ≤ 245.25°). The free-air gravity 
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anomaly contours in Figure 3.5 are very similar with the elevation contours in Figure 2.2. 

This indicates the strong correlation between the former and the latter quantities. 

Because, in the following two chapters the surface terrestrial data will be used to calculate 

the gravity anomaly field at altitude over the Kananaskis core area, a wider coverage will be 

used in calculations. The statistics of the grids of gravity anomalies for the Kananaskis 

extended area are given in Table 3.17. 

Table 3.17 Statistics of gravity anomalies on a 1' x 1' grid in the Kananaskis extended 

area (50.25° ≤ 4) ≤ 51.5°, 244.25° ≤ ?≤ 245.5°) (Unit: mGal) 

Gravity Anom. Minimum Maximum Mean Std. Dev. 

Free-air -80.6 198.0 52.5 45.5 

Bouguer -186.8 -129.4 -153.7 10.4 

Isostatic -37.8 23.7 2.8 11.6 

The data shows for the free-air gravity anomalies that the range (i.e., 278.5 mGal), mean 

and standard deviation of the field are large. The Bouguer gravity anomalies have a smaller 

range (i.e., 57.4 mGal) and standard deviation of the field, but there is a large negative bias 

in the field. The isostatic gravity anomalies have also a smaller range (i.e., 61.6 mGal) and 

a small standard deviation of the field and their bias is only 2.8 mGal. The latter value 

indicates that the area is well compensated isostatically. 

As a test of the influence of the crust density in gravimetric calculations, the density p = 

2.64 g/cm3 (see Section 2.5.3) was also used. The comparison shows that the resulting 

grid of free-air gravity anomalies has a root mean square difference of 0.4 mGal from the 

grid produced from calculations that use the standard density p = 2.67 g/cm3. 

Covariance Functions of Gridded Gravity Anomalies 

The covariance functions characterize the structure of the gravity anomaly field and gives 

information on the internal consistency of the data sets (i.e., in this case the gravity 

anomaly grids of. the Kananaskis extended area). The gridded values are assumed 

stationary (i.e., independent of position). Three sets of empirical covariance functions will 

be estimated according to the gravity anomaly type and to the trend reduction procedure. 
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LONGITUDE (DEGREE) 

Figure 3.5 Free-air gravity anomalies on 1' x 1' grid in the Kananaskis core area 

(Contour interval: 25 mGal) 

For each covariance function, besides the three essential parameters (i.e., variance, 

correlation length, variance of horizontal gradients), the ratio C0/X 112 together with an 

anisotropy index will be calculated. The ratio is a measure of the smoothness of the gravity 

anomaly field (i.e., smaller ratio indicates a smoother field). The anisotropy index 

proposed by Forsberg (1984a) and Tscherning (1985) as the ratio (X 112 maximal I X112 

minimal), gives information regarding the assumption that the field is isotropic (i.e., 

independent of direction; then the anisotropy index is equal to 1). 
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Figure 3.6 Bouguer gravity anomalies on 1' x 1' grid in the Kananaskis core area 

(Contour intervals: 2.5 mGal) 
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Figure 3.7 Isostatic gravity anomalies on 1' x F grid in the Kananaskis core area 

(Contour intervals: 2.5 mGal) 

Table 3.18 presents the parameters related to the free-air gravity anomaly gridded data. 

Three covariance functions were evaluated. The first covariance function was calculated 

from the free-air gravity anomalies with the trend removed by subtracting their mean. The 

second covariance function was calculated from a residual gravity anomaly field obtained 

by subtracting from the data the long and part of the medium wavelength component of the 

gravity anomaly field. The latter reference field, L.goM, was calculated with the spherical 

harmonic coefficients of the geopotential model OSU91A (Rapp et al., 1991) to degree and 
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order 360; this implies a resolution of the field of about 55 km. The third covariance 

function was calculated from a further reduced gravity anomaly field. This data set was 

obtained by attempting to remove from the latter residual field the short wavelength 

component coming from the variation of the local topography from a mean topography 

surface (i.e., residual terrain model, AgRTM). In this investigation, the mean height surface 

was calculated by averaging heights in rectangles of 30'x 30'. 

Table 3.18 Covariance function parameters of free-air gravity anomalies on a 1' x 1' grid 

in the Kananaskis extended area 

Trend Co X112 G0 CO/X1/2 Anisotropy 

mGal2 km E2 mGal2/km 

Mean 2076.1 9.1 1089.1 228.6 1.8 

AgGM 1211.9 4.1 782.5 295.0 1.3 

130.2 18.7 - 54.8 7.0 2.4 

By reducing the grid of free-air gravity anomalies to the field implied by the geopotential 

model OSU91A and then also to the residual terrain model, the mean trend in the data 

reduces from 51.5 mGal to 4.8 mGal and 4.0 mGal, respectively. From Table 3.18 it can 

be seen that the reduction in the variance and in the variance of horizontal gradients is 

significant with each new reduction. Also, the latter residual field is smoother and, thus, 

better suited for prediction. However, the anisotropy index increases. 

An attempt was made also to approximate the local empirical covariance function with a 

modification of the global covariance model proposed by Tscherning and Rapp (1974) [see 

equation (3.31)]. The coefficients were changed following the procedure given by Schwarz 

and Lachapelle (1980). The results are: scaling parameter A = 1882.9 mGal2; and ratio 

parameter s = 0.995255. The latter value indicates a radius for the Bjerhammar sphere, RB 

= 6355.9 km. 

The other two sets of estimated covariance functions are for the grids of Bouguer and 

isostatic anomalies. The trend reduction was performed by subtracting a polynomial 

surfaces of zero (i.e., mean), first and second degree, respectively. Tables 3.19 and 3.20 

give the estimated parameters. It can be seen that the grids of Bouguer and isostatic 

anomalies show smoother characteristics than those implied by the covariance functions 
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given in Section 3.4.1 for the original set of data (i.e., random point data). The trend 

reduction of the gravity anomalies by a second degree polynomial surface produce the same 

characteristics for the Bouguer and isostatic covariance functions (i.e., they nearly 

coincide). The same conclusions have been reached, for example, by Abd-Elmotaal (1992) 

in investigations in the Austrian Alps. 

Table 3.19 Covariance function parameters of Bouguer gravity anomalies on a 1' x 1' 

grid in the Kananaskis extended area 

Trend Co X112 - G0 C)/X 1/2 Anisotropy 

mGal2 km E2 mGal2/km 

Mean 99.1 28.7 23.4 3.5 1.5 

Polyn. (1) 28.8 14.7 12.3 2.0 2.3 

Polyn. (2) 14.1 12.2 7.4 1.2 1.6 

Table 3.20 Covariance function parameters of isostatic gravity anomalies on a 1' x 1' 

grid in the Kananaskis extended area 

Trend Co X112 Go Co/X112 Anisotropy 

mGa12 km E2 mGal2lkm 

Mean 118.4 23.1 36.8 5.1 1.8 

Polyn. (1) 81.8 18.4 29.0 4.4 2.1 

Polyn. (2) 12.7 11.6 6.9 1.1 1.3 

Figure 3.8 shows for the gridded gravity anomalies in the Kananaskis extended area, the 

estimated covariance functions of the free-air, Bouguer and isostatic anomalies with the 

trend reduced by subtracting the mean. To portray the isotropic characteristics of the fields, 

Figure 3.9 presents two-dimensional normalized representations for the respective 

covariance functions of Figure 3.8. 

From the analysis of the data, it can be seen that the Bouguer and the isostatic anomaly 

fields have good prediction characteristics. The gravity anomalies reduced by the residual 

terrain model were expected to have the same characteristics with those of the field of 

isostatic anomalies. The differences observed indicate some trends still existing in the 
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former gravity anomaly field. Additional position related polynomial surface trend removal 

makes their characteristics closer to those of the isostatic gravity anomalies. 
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Figure 3.8 Covariance functions for predicted 1' x 1' grids of (a) free-air, (b) Bouguer, 

(c) isostatic gravity anomalies in the Kananaskis extended area 

(c) 

Figure 3.9 Two-dimensional normalized covariance functions for the predicted 1' x 1' 

grids of (a) free-air, (b) Bouguer, (c) isostatic gravity anomalies in the Kananaskis 

extended area 
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Anomaly Degree Variance of Gridded Gravity Anomalies 

The spectral behaviour of the gravity anomaly field is also indicated by their anomaly 

degree variances (Schwarz, 1985). Assuming isotropic gravity anomaly data, the anomaly 

degree variances were calculated from the estimated covariance functions given above by 

using equation (3.32). Their analysis will give further information regarding the statistical 

characteristics of the medium and short wavelength part of the gravity anomaly field. 

Figure 3.10 shows the anomaly degree variances for the Kananaskis extended area 

corresponding to the covariance functions portrayed in Figure 3.8. It can be seen that the 

anomaly degree variances, a, follow a distinct pattern. Thus, they can be modelled with 

simple parametric equations. Two models were used. The first model is 

Y =a+blog(n) (3.40) 

where a is the intercept of a line segment with the anomaly degree variance axis, b is the 

slope of the line segment and n is the degree. 
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Figure 3.10 Anomaly degree variances for the predicted 1' x V grids of (a) free-air, (b) 

Bouguer, (c) isostatic gravity anomalies in the Kananaskis extended area 
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Vassiiou and Schwarz (1987) used the model according to Kaula 

2— A 
an -i- (3.41) 

where A is a variable scale factor and Xg is an exponent. The scale factor depends on the 

power of the anomaly gravity field. 

Straight line fits were performed for the two models and the estimated parameters are given 

in Table 3.21. The calculations were carried out for the free-air, Bouguer and isostatic 

gravity anomalies reduced by subtracting the mean, and also of the residual gravity field 

obtain by subtracting geopotenüal model gravity anomalies and then a further subtraction of 

the influence coming from the residual terrain model. 

Table 3.21 Model parameters for the anomaly degree variances of gravity anomalies in 

the Kananaskis extended area 

Gravity Mom. a 

mGal2 

b A 

mGal2 

Xg 

AgFA 41.37 -8.74 2540.77 0.67 

Ag A.M 7.15 -1.27 33.10 0.31 

AgM..RTM 4.07 -0.89 897.44 0.83 

AgB 4.47 -0.97 1474.12 0.90 

Ag1 4.39 -0.95 1254.57 0.87 

The analysis of the modelled anomaly degree variances with the parameters given in Table 

3.21 indicates a 1 mGal resolution of the gravity anomaly field in the Kananaskis area if the 

gravity data spacing is at a level of 2.5 km to 3 km (i.e., approximately equivalent to a 

degree of expansion from 13000 to 16000) and if the topographic effects associated with 

the rugged topography are taken into account in the calculations. 
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CHAPTER 4 

POINT MASS MODELLING OF GRAVITY ANOMALIES 

4.1 Spatial Modelling of Gravity Anomalies 

The anomalous gravity field originates from the variations in the density distribution within 

the earth. The gravitational disturbing potential T may be given as an integral over the Earth 

T=G AP 5d (4.1) 

where G is the gravitational constant, ≤≥ is the volume of the source body (i.e., the Earth), r 

is the distance, and Lp is the density anomaly or contrast (i.e., difference between the 

actual density and a normal density distribution). The spatial representation of the 

anomalous gravity field of the Earth can be carried out by mathematical models like integral 

formulas and series of harmonic functions. 

In geophysics, the purpose of modelling gravity anomalies in an area is to acquire 

knowledge regarding the distribution of mass under the Earth's surface. Because there 

could be an infinite number of mass distributions which are accordant with the observed 

anomalous gravity field, use of known geophysical evidence (e.g., density contrast and its 

depth, etc.) is necessary to obtain relevant solutions. Techniques for calculating what 

should be observed according to a particular model (i.e., forward modelling) for three-

dimensional bodies have been developed among others by Talwani and Ewing (1960), 

Barnett (1976), and Bhaskara Rao et al. (1990). 
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A forward modelling approach for the spatial representation of the anomalous gravity field 

that presents a conceptual simplicity and a direct relation to the geophysical reality is the 

mass model approximation by point masses. Sunkel (1981c) analyses the relation of the 

point mass models and the anomalous gravity field and Sünkel (1983) implements 

techniques to generate a point mass model from surface gravity data. 

The gravitational disturbing potential T at a point P generated by a set of point masses fmj} 

is given by 

T(P)=G m1 n (4.2) 

where G is the gravitational constant, l(P, Q) is the spatial distance between the calculation 
point P and the point mass at location Q1. The presence of the reciprocal distance in the 
previous equation gives a global support to the computation from point masses (i.e., all 

data contribute to the calculation of a single quantity). However, the long wavelength 

contribution coming from the remote areas can be represented by a set of spherical 

harmonic coefficients of the geopotential and this can assist in reducing the number of point 

masses used in computation. The residual data field obtained by the subtraction of the 

reference field allows planar approximation (i.e., flat-Earth) to be used in the formulations. 

Other functionals of the disturbing potential can be evaluated by applying appropriate 

operators to equation (4.2). 

The gravity disturbance is the first-order gradient of the anomalous potential in the vertical 

direction and considering equation (4.2) it can be written as 

n 
g(P) = - T(P) = G rp - r Cosvjmi 

Dr i=1 l3(P,Q) 
(4.3) 

where r and V represent the radial distance and the spherical distance, respectively. The 

difference between the gravity disturbance and the gravity anomaly is related to the location 

of the point of calculation of the normal gravity. Because of the large radial distance (e.g. at 

least 6371 km on the reference sphere), it can be considered (Heiskanen and Moritz, 1967) 

that in planar approximation the gravity disturbance approximates the gravity anomaly as 
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(4.4) 

According to the previous two equations, if a set of point masses (i.e., point mass model) 

is given, the gravity anomalies can be calculated in a simple and direct manner. In a local 

Cartesian coordinate system with the axes x, y, z pointing east, north and upward, 

respectively, the gravity anomaly generated from point masses is calculated with the 

equation 

n 
ig(x,y,z) = (z1 - z)m1 

i=1 [(x1 - x)2 + (y - y)2 + (z - z)2]312 
(4.5) 

where the point masses m , i = 1, 2, ..., n have the coordinates (x1, y, z1), respectively. 

The differences (z - z) represents the depths where the point masses are located below the 

reference surface. 

Even with the removal of the remote zone effect calculated from spherical harmonic 

coefficients of the geopotential, to produce a point mass model from surface gravity data 

involves a large number of unknowns determined from a large number of data. Using 

discrete and regular (i.e., grid) data is of importance in the implementation of point mass 

modelling. By using data in this manner, advantage can be taken of the computation 

techniques used by spectral methods. Commencing with gridded gravity anomaly data in an 

area, a point mass model in grid form is generated at an appropriate depth. Subsequently, 

the set of point masses can be used for the spatial calculation of functionals of the 

disturbing potential (e.g. gravity anomalies at elevation above the reference surface). Even 

if the discrete point mass models may not be realistic, they provide a very simple and fast 

representation for the external gravity field. 

Modelling the gravity anomalies by a point masses at the same depth (i.e., single-layer), 

may produce an inadequate representation. SUnkel (1981c) indicates that a better approach 

for this type of modelling is the use multi-layer models. 
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4.2 Relationship Between Covariance Functions and Mass Distributions 

In Chapter 3 it was shown that the statistical behavior of the gravity anomaly field can be 

described by a few parameters, namely the gravity anomaly variance, Co, the correlation 

length, X112, and the variance of the horizontal gravity gradient, Go. SUnkel (1981c) and 

Forsberg (1984b) investigate the dependency existing between the essential parameters of 

the empirical local covariance function and the depth D of the point mass distribution 

generating the covariance function. The covariance function of data at the reference surface 

may be regarded as gravity effects generated by a stationary white noise density layer. The 

covariance function can then be interpreted in terms of the statistical properties of the 

density anomalies generating the anomalous gravity field and thus gives information 

regarding the depths of density anomalies. 

The variance and the correlation length of a gravity anomaly covariance function are less 

affected by local anomalies (i.e., topographical and density), thus they are dependent on 

deeper anomalies. The dependence of these two parameters on the depth of point masses 

generating the gravity anomalies at the reference surface has to be established. 

Consider a local empirical covariance function of residual gravity anomalies. Only gravity 

anomaly data from the given area is used and a reference field representing the information 

larger than the area, expressed through a spherical harmonic expansion of the geopotential, 

is subtracted from the data. In this case, a planar approximation is applicable. A planar type 

of analytical covariance function that allows derived spatial covariances C(s, z, zj), is the 

Poisson covariance function 

C(s) = Co  
[1+ (s/ D' )2]312 

(4.6) 

This function may be regarded as related with a white noise layer of point masses at depth 

D = l/2D'. 

The investigation of Sünkel (1981c) produced empirical approximations expressing the 

relationship between the gravity variance and the correlation length with the depth of the 

white noise layer of point masses. The variance Co resulting from a white noise anomalous 
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mass distribution diminishes with increasing depth D. For D less than 100 km, the variance 

is approximately proportional to D-2 (i.e., decreases with the square of the depth) 

- const.  (4.7) 
D  

The correlation length X112 depends almost linearly on D with a proportionality factor of 

approximately 3/2 

X1/2 3D (4.8) 

When multi-layer modelling is performed by a number of i layers with corresponding mass 

anomaly variances M (i.e., constants), the ratios M / D? must be selected appropriately 

for adequate results. For uncorrelated multi-layers of white noise densities, the total 

covariance function representing the gravity effects is the sum of the individual Poisson 

covariance functions corresponding to each layer. This linear combination can be written as 

(4.9) 

where s the distance argument in the covariance function and r is given by 

ri =[s2+(2D)2]1I2 (4.10) 

The parameters D1 an M1 can be adjusted in order to realize a suitable approximation to the 

empirical covariance function. Forsberg (1984b) has used 3 components to approximate 

residual gravity models. 

The gravity anomaly variances describe the power spectrum of the gravity field distributed 

over all frequencies. The shape of the power spectrum computed for a particular area 

contains information regarding the depth of the generating mass disturbances. A 

logarithmic plot of the power spectrum will show straight line segments portions 

corresponding to various depths for layers of mass anomalies. The respective depths are 

obtained from their slopes. 
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In conclusion, the investigation of the statistical behavior of the gravity anomalies in a local 

area will infer information regarding the parameters to be used for point mass modelling. 

4.3 Spectral Solution to Point Mass Modelling 

The planar approximation formulation, made possible by the use of reference gravity 

anomaly fields (i.e., high degree and order spherical harmonic expansion of the 

geopotential), and the availability of the data in gridded form allow the use of the Fourier 

techniques with their advantageous mathematical simplicity. The efficient Fast Fourier 

Transform (FFT) (Brigham, 1974) algorithm is a very powerful tool. Sideris (1984) and 

Schwarz et al. (1990) have reviewed the mathematics of the Fourier techniques applied to 

gravimetric problems in physical geodesy. 

Modelling the local gravity anomaly field by point masses can use algorithms entirely based 

on Fast Fourier Transform methods. Forsberg (1984b) and Vassiliou (1986) have used this 

approach to spatially model the anomalous gravity field employing point masses on several 

layers at depth, representing different wavelength features. Under the premise of one-to-

one correspondence between the gravity anomaly Ag(xk,yl) sampled on grid on the surface 

of the Earth and point masses m(xj,yj) on a layer at depth D, the relation between the 

former and the latter quantities is given by 

MN D 
Ig(x,y1) = Gm(x1,y)  (4.11) 

i=lj=1 [(Xk —x1)2 +(yi —y)2 +D2]312 

where G is Newton's gravitational constant, and M and N are the number of points in the x 

and y directions, respectively. The above equation is a convolution between a point mass at 

depth and a geometrical kernel. The convolution can be transformed in the frequency 

domain as 

F{tg(k,l)} = 2GF{m(i,j)}e 2 ' (4.12) 

where F{ Eg(k, 1) } and F{ m(i, j) } denote the Fourier transforms applied to the gravity 
anomalies and to the point masses at depth D, respectively, and q is the circular frequency. 

The circular frequency is equal to (u2 + v2)112, where u and v are spatial frequencies in 

cycles per unit distance in the x and y directions, respectively. 
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Conversely from equation (4.12), the spectra of point masses can be computed with the 

equation 

F{m(i,j)} = 1 F{Ag(k,l)}e2" 
2itG 

(4.13) 

Thus the spectrum of the gridded gravity anomalies on the reference surface is modelled by 

the spectrum of gridded point masses at depth D. However, due to the exponential operator 

e2 , some instability is associated with the downward continuation operation in equation 

(4.13). One approach to address this problem is to smooth the data with a low pass filter to 

avoid the amplification of the errors at high frequencies. 

The sequence of computations is thus the following: transform gridded gravity anomalies 

on the reference surface from the space domain to the frequency domain; calculate the 

spectrum of point masses at depth D; apply the inverse Fourier transform to obtain the point 

masses in the spatial domain. Subsequently, the point masses can be used to calculate 

gravity anomalies or other functionals applied to the disturbing potential on the reference 

surface or at elevation above the reference surface. 

Considering the convolution equation for the calculation of gravity anomalies at constant 

elevation h above the reference surface from point masses at depth D as 

MN D+h  

Ag(x,y1) = Gm(x1,y) )2 +(y, - yj)2 +(D + h)2]312 
i=1 {(Xk - Xi 

the correspondent equation for calculation in the spectral domain is 

F{ig(k,l)} = 27tGF{m (i,j)}e_2q(D+h) 

(4.14) 

(4.15) 

Applying the inverse Fourier transform on equation (4.15) will produce the gravity 

anomalies in spatial domain at elevation h above the reference surface. 

The role of the covariance function to provide information regarding the depth of the layer 

on which the generating point masses are situated, was introduced in Section 4.2. The 

covariance function can also be evaluated in the spectral domain as the power spectral 
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density (PSD). The power spectral density of the gravity anomalies at the Earth's surface, 

generated by a stationary white noise distribution of point masses on a layer depth D can be 

written as 

S gtg (u, v) = 4it2G2SMM  (u, v)e_4D (4.16) 

where S (u, v) is the power spectral density of the mass distribution. The slope of the 

straight line approximation to the logarithmic plot of the power spectral density is a measure 

of the depth of the layer of point masses. 

As it was pointed out earlier, multi-layer modelling of statistically independent point masses 

produces better results in generating the gravity anomalies on the reference surface. 

Equations (4.10) to (4.16) can be transformed in synthetic equations of sums 

corresponding to the number of layers used for the model. 

Details regarding the theory and the application of modelling the gravity anomaly field by 

point masses using frequency domain techniques are found in SUnkel (1981c), SUnkel 

(1983), Forsberg (1984b),Vassiliou (1986), and Schwarz et al. (1992). 

4.4 Implementation of Point Mass Modelling in, Kananaskis Area 

The 1' x F grid of surface free-air gravity anomalies predicted in Chapter 3, extending in 

the area between latitudes 50°15' and 510301 and longitudes 244°15' and 245°30', forms the 

basis for the spatial modelling of the local gravity anomaly field by point masses. The free-

air gravity anomalies are terrain corrected (i.e., Faye anomalies). The application of terrain 

corrections to free-air gravity anomalies constitutes a first approximation to the problem of 

downward continuation of the surface values to the geoid [see Moritz (1966) and 

Heiskanen and Moritz (1967)]. 

There are 5776 surface free-air gravity anomaly points in the Kananaskis extended area, 76 

points in each direction. With the mean radius of the Earth, R = 6371 km, and a mean 

latitude for the area, 4 = 50.875°, the grid spacing in the North-South (i.e., dy = Rd4) and 
East-West (i.e., dx = Rcos4dA.) directions are 1.85 km and 1.17 km. respectively. This 

grid spacing appears adequate to resolve the gravity anomalies at the 1 mGal level, in the 

Kananaskis area. However, the predicted gravity field model will have the same 
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smoothness as that of the actual spacing of the observation gravity points within the area. 

Only between latitudes 50°40' and 51°05' and longitudes 244°38' and 245°08' the mean 

data spacing is at a level of better than 3 km. Outside this area the gravity data is more 

sparse and the approximate mean data spacing is at the level of 8 kin. 

The first step of the modelling process, it is attempted to remove from the local gravity 

anomaly data the influence coming from outside the area. Gravity anomalies calculated with 

the spherical harmonic coefficients of the OSU91A geopotential model (Rapp et al., 1991) 

are subtracted from the local surface free-air gravity anomalies. This geopotential model is 

to degree and order 360, which indicates a resolution of about 55 km, representing the long 

wavelength and partially the medium wavelength features of the gravity field. The resulting 

residual field has a smaller variance (i.e., 1211.9 mGal2) and a shorter correlation length 

(i.e., 4.1 km) than the original data, and describes the residual medium and short 

wavelength part of the gravity field. Planar approximation is justified now in the 

computations involving the residual gravity anomaly field. Additionally, the short 

wavelength component in the data coming from the variations of the topography in 

mountainous areas can be taken care of in the reduction process. This matter will be 

addressed in Chapter 5. 

The residual gravity anomaly field will be modelled by point masses on two layers below 

the Earth's surface, at different depths. The point masses situated in the deep and the 

shallow layers cause the remaining medium wavelength and the short wavelength variations 

of the surface gravity anomalies, respectively. Table 4.1 gives information regarding the 

original data used to produce the point mass model. 

Table 4.1 Statistics of gravity anomaly data used in the modelling process in the 

Kananaskis area (Unit: mGal) 

Gravity Mom. Minimum Maximum Mean Std. Deviation 

Surface Free-air -80.6 198.0 52.5 45.5 

OSU91A -20.2 112.8 47.7 24.2 

Residual -99.7 162.0 6.4 35.1 

The power spectral density corresponding to the local gravity anomalies covariance 

function was plotted logarithmically in Figure 4.1. By simple graphical techniques, the 
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variation of the gravity anomaly field can be divided into two parts represented by straight 

line segments. The slope of each one of them is a measure of the depth of the layer 

representing each source. The estimated depths for the deep and shallow layer are 8.5 km 

and 1.5 km, respectively. 

0 

CYCLES/DEGREE 

Figure 4.1 Empirical power spectral density for residual free-air gravity anomalies 

However, the straight line segments are not very well defined and the depths assigned can 

have large uncertainties and should be regarded with caution. An attempt was made to 

approximate the empirical covariance function of the residual gravity anomalies by two 

empirical covariance functions. Arbitrarily, the covariance function portraying gravity 

effects resulting from point masses at a deeper layer was estimated from point gravity 

anomalies calculated by meaning data in 9' x 9' rectangular blocks. The data resulting from 

the subtraction of the mean point gravity data from the residual gravity anomaly field is 

used to estimate the empirical covariance function characteristic for the point masses located 

at a shallow depth. Each empirical covariance function component is then modelled by an 

analytical Poisson covariance function, and the depths are chosen based on their shape. The 

resulting deep and shallow layers are again at approximately 8.5 km and 1.5 km, 

respectively. The empirical gravity anomaly covariance functions are shown in Figure 4.2 
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and their characteristics (i.e., essential parameters) with the corresponding depths are given 

in Table 4.2. 

I I 
'0 0\ ('1 In 

DISTANCE (ARCMIN) 

00 

Figure 4.2 Empirical covariance functions of (a) residual surface gravity anomalies, (b) 

resulting from the point masses on the deep layer, (c) resulting from the point masses on 

the shallow layer 

Table 4.2 Parameters characterizing the surface local empirical covariance function and 

the two components representing the effects of the deep and shallow sources 

Coy. Function Co X112 G0 D 

mGal2 km E2 Ian 

Surface 1211.9 4.1 782.5 

Deep 450.2 13.3 241.4 8.5 

Shallow 654.1 2.6 460.6 1.5 

The operational computer program GRADCO (Schwarz et al., 1992) is used to model the 

surface gravity anomaly field by point masses located on two layers, at deep and shallow 

depths. The high frequencies are cut off and the residual medium frequency range is 
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modelled on the deep layer first. Then the gravity anomaly part corresponding to the 

residual medium frequency range is subtracted from the surface residual gravity anomalies 

and the high frequencies are modelled on the shallow layer. The sum of the gravity 

anomalies corresponding to the estimated point masses on the two layers reproduced the 

original gridded gravity anomaly data exactly, even when the depths of the layers were 

changed at the level of 0.5 km to 1 km. 

The aim was to use the two-layer point mass model to calculate the spatial free-air gravity 

anomaly field at altitudes above the reference surface (i.e., geoid). The area of interest for 

the gravity model at higher altitude is located between latitudes 50'30' and 51°15' and 

between longitudes 244°30' and 245'15'. Two elevations were considered for calculations, 

i.e., 3 km and 4 km. respectively. The spatial gravity anomaly model is the result of the 

sum of gravity anomalies originating at the deep and the shallow layers, respectively, and 

because the contribution to the gravity anomaly field coming from outside the area was 

removed from the original data, its influence must now be restored by adding the spherical 

harmonic gravity anomalies evaluated at altitude. Statistical results for the gravity anomalies 

modelled at altitudes of 3 km and 4 km for the Kananaskis core area are given in Table 4.3 

and Table 4.4, respectively. The data include information coming from the two-layer point 

mass modelling, the contribution from the geopotential model, and the total resulting field 

at elevation. Free-air gravity anomaly field models at 3 km and 4 km are shown in Figure 

4.3 and Figure 4.4, respectively. 

Table 4.3 Statistics of the free-air gravity anomaly field modelled at 3 km elevation above 

the reference surface (Unit: mGal) 

Gravity Anom. Minimum Maximum Mean Std. Deviation 

Residual -33.4 40.2 7.0 18.0 

OSU91A 14.6 78.0 54.3 10.3 

Total -1.0 96.9 61.3 22.7 
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Figure 4.3 Spatial free-air gravity anomaly field at 3 km elevation above the reference, 

from two-layer point mass model (Contour interval: 5 mGal) 

Table 4.4 Statistics of the free-air gravity anomaly field modelled at 4 km elevation above 

the reference surface (Unit: mGal) 

Gravity Anom. Minimum Maximum Mean Std. Deviation 

Residual -28.9 33.9 6.8 16.2 

0SU91A 14.9 76.2 53.0 10.0 

Total 1.1 87.8 59.9 21.0 
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Figure 4.4 Spatial free-air gravity anomaly field at 4 km elevation above the reference, 

from two-layer point mass model (Contour interval: 5 mGal) 

From Table 4. 1, Table 4.3 and Table 4.4 it can be seen that the root mean square variation 

in the gravity anomaly field decreases with elevation, from 69.4 mGal on the reference 

surface, to 65.4 mGal and 63.4 mGal at 3 km and 4 km, respectively. This indicates an 

attenuation in the gravity anomaly field at the level of 3% for 1 km increase, in elevation. 

More aspects regarding the spatial behavior of the gravity anomaly field will be discussed 

in Chapter 5. 
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CHAPTER 5 

UPWARD CONTINUATION OF SURFACE GRAVITY ANOMALIES 

5.1 Upward Continuation Formulation 

The classical approach to the solution of the boundary value problems in physical geodesy 

is to produce an approximation of the disturbing potential outside the boundary surface S 

considering only the data on the surface. The solution is approached either by the use of a 

series expansion into solid harmonics or by integrals. The relation between the disturbing 

potential at the boundary surface and the disturbing potential in the space outside can be 

obtained by solving Dirichiet's problem (i.e., the first boundary value problem of potential 

theory). This problem can always be solved when the boundary surface is a sphere. An 

explicit solution of Dirichiet's problem for the exterior of the sphere is the Poisson integral. 

The following equations cover the main aspects from Heiskanen and Moritz (1967) 

regarding the formulation of the upward continuation of surface gravity anomalies using the 

Poisson integral. 

The anomalous potential T at a point exterior to a sphere of radius R is 

T(r,4,A) = 
n=O r 

(5.1) 

where Tn denotes the surface spherical harmonics of the disturbing potential T on the 

sphere and n is the degree of the harmonic, and (r, , ?.) and (R, 4, ?') are geocentric 
coordinates (i.e., radius, latitude, longitude) in space and on the sphere, respectively. 

According to the fundamental relationship between the disturbing potential T and the 
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gravity anomaly Ag (i.e., Ag = —T / Dr - 2T I R), the spherical harmonic expansion of 

the latter can be expressed in space as 

Ag(rA.) = ! ( Y ' ,, T(R,4' ,A') 
r...0 r 

(5.2) 

By omitting the zero and first order degree harmonics, the gravity anomaly in space is 

given as 

° D 

Ag(r,4,?) = (.'' 2Ag(R,4' ,?') 
n=2 r 

(5.3) 

where Agn are surface spherical harmonics of the gravity anomaly field on the sphere. 

From equation (5.3) it can be seen that the surface harmonics of gravity anomalies attenuate 

as r( 2) in space. The space domain equivalent of equation (5.3) is the Poisson integral. 

This equation is used for the computation of gravity anomalies in space from gravity 

anomaly values given on the surface of a geocentric sphere, and is formulated as 

R2 r2—R2 1 3R 
Ag(r,,?) = -j;;SS(  i r .--cos')Ag(R,4f )da (5.4) 

where the integration of the gravity values corresponding to surface elements R2da, is 

carried out over the whole surface a of the sphere of radius R. The spatial distance 1 and the 

spherical distance Nf from the computation point to the data point are calculated with the 

equations 

1= (r2 +R2 —2Rrcosij!)"2 (5.5) 

cosw = sin  sin 4' + Cos 4 Cos 4' cos(?' -) (5.6) 

respectively. 

By omitting the second and the third terms in the brackets of equation (5.4), (this is related 

to the removal of the zero and first degree harmonics), the equation for the computation of 
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gravity anomalies outside a sphere from gravity anomalies given on the surface of the 

sphere (i.e., upward continuation of gravity anomalies) becomes 

R2(r2 - R2) .15 Ag(R,4' '  

4irr 
a 

(5.7) 

Equation (5.7) requires the gravity anomaly data to be given on the surface of a geocentric 

sphere. By using gravity anomalies referred to the surface of a geocentric ellipsoid, the 

error introduced is of the order of the flattening (i.e., f 0.3%) and can be neglected. This 

is a spherical approximation. Furthermore, the radial distance r can be substituted by (R + 

h) and a geographic latitude can be used instead of the geocentric latitude '. The height h 

of the computation point above the reference sphere of radius R is actually the elevation 

above the ellipsoid (or geoid) and represents the distance through which the data is 

continued upward. 

In the vicinity of the calculation point, the sphere can be considered to coincide with a 

tangent plane. Also, the value of the integral is very small at larger distances from the 

computation point. Taking into account the former and the latter aspects, the upward 

continuation calculations can be performed using planar approximation. Considering a 

rectangular coordinate system (x, y, z) with the x-axis pointing east and the y-axis pointing 

north in the tangent plane, the planar approximation equation of the Poisson integral 

(Hirvonen and Moritz, 1963) is 

h0 Ag(R,4' ' dxdy (5.8) Ag(r,4,A.) = l 

where h0 is the upward continuation distance above the reference surface. The integration is 

carried out over a fixed area A with surface elements R2d = dxdy. The auxiliary 

equations used for the calculation of the distance 10 is 

10 = (x2 + y2 + h2)112 

with 

(5.9) 
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x = Rcos4)' (%'—%) 

y =R(4)'-4)) 
(5.10) 

Equation (5.8) is the flat-Earth space domain upward continuation integral for the 

computation of gravity anomalies above the xy-plane from values of gravity anomalies 

considered to be given on the plane. From computational point of view, equation (5.8) is a 

convolution integral and Fourier transform techniques can be used for the calculation of the 

upward continued gravity anomaly field (Bhattacharyya, 1967). 

Surface spherical harmonic coefficients of the geopotential on a sphere of radius a can be 

used to generate a gravity anomaly field on the surface of the sphere and in space. Rapp 

(1982) gives the expression for the computation of gravity anomalies in space from 

spherical harmonics as 

GM a 
Ag(r, 4), ?) = -- L (n - 1)(_) 2 ( m cos m? + Snm sin mA.) nm (sin 4)) 

a n=2 r m=O 

(5.11) 

where (r, 4), ?) are geocentric coordinates, GM is the product of the gravitational constant 
with the Earth's mass, a is the equatorial radius, C and Snm are fully normalized 

potential coefficients with even-degree zonal reference harmonics subtracted, n and m are 

the degree and order of the expansion, and 15n. are fully normalized Legendre functions. 

The summation is carried out to a finite degree n = nmaximum. The values of a and r 

determine if the calculations with the spherical harmonic coefficients are performed over the 

surface of the ellipsoid, sphere or in space. 

A gravity anomaly field computed from a spherical harmonic expansion of the geopotential 

can be used as a reference to be subtracted from the observed gravity anomalies. This 

allows the integration with the residual gravity anomalies in equations (5.4) and (5.7) to be 

carried out only on a limited portion of the sphere. For equation (5.8), the subtraction of 

the reference field justifies the use of planar approximation for the residual gravity 

anomalies. 

A review of the upward continuation formulation and computation methods can be found in 

Cruz and Laskovsky (1984) and Cruz (1985). The next two sections follow major aspects 

of their work. 
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5.2 Methods of Upward Continuation 

5.2.1 Gravity Anomaly Data 

For computations regarding the external gravity field of the Earth, the anomaly data are 

usually free-air gravity anomalies. The other Theoretically, the gravity anomalies refer to 

the geoid if the gravity gradient Dg I Dh is used in the free-air reduction. However, when 

the normal free-air gradient ?y I Dh ( 0.3086 mGal/m) is used, as is the general practice, 
the gravity anomalies refer to the Earth's surface rather than to the geoid. The surface free-

air gravity anomaly at a point is computed as 

ig(h,4,A) = gp(h,,X) - (E )pH - 'yp. (O,,?) 
(5.12) 

where gp(h,4,A.) is the gravity value at the surface point P with ellipsoidal height h and 

ellipsoidal geographic coordinates (, A.), H is the orthometric height of point P. and 
yp' (0,,A.) is the normal gravity on the ellipsoid at point P' corresponding to point P (i.e., 

they have the same geographic coordinates). 

Using the orthometric height H instead of the normal height H* in equation (5.12) 

introduces a certain error in the calculation of the surface gravity anomaly. This error can be 

expressed as 

= Ag(h,,A.)—Ag(h,4,A.) = _(E )p( * —H) (5.13) 

where itg(h, 4, A.) is the surface gravity anomaly calculated with equation (5.12) using the 
normal height H*. Heiskanen and Moritz (1967) give an approximation in metres for the 

difference (H* - H) as 

(H* - H) = (5.14) 

with the units of mGal and km for the Bouguer gravity anomaly and the orthometric height, 

respectively. With the values available from Chapter 2 and Chapter 3, an approximate mean 

estimate of the error CAg for the Kananaskis area is below 0.1 mGal. 
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To upward continue gravity anomaly data in space using the Poisson integral requires the 

data to refer to the surface of a geocentric sphere. Therefore, an analytical continuation of 

the surface gravity anomalies to a level surface is needed first, and then under spherical or 

planar approximation, produce the upward continued gravity anomaly field using the 

Poisson integral operator. A general approach for analytical continuation of the gravity 

anomalies to a level surface is to use a Taylor series to express the relationship between the 

surface gravity anomalies and level surface gravity anomalies. By applying corrections to 

the surface gravity anomalies, the solution should converge toward the level surface gravity 

anomalies. The equation given by Moritz (1980) expressing this operation can be written as 

aAg * 1a2ig 
Ag (h * p—h)2+... (5.15) 

Dh 

where Ag; is the correspondent on the level surface of the surface gravity anomaly Ag, 

hp and h are their respective heights, and aAg I ah is the vertical gradient of gravity. If 

the gravity anomaly field has large variations (i.e., contains high frequencies), the 

difference between Agr, and Ag; can be significant. Also in areas with rugged topography, 

the downward continuation solution may diverge. Heiskanen and Moritz (1967) give the 

equation for the calculation of the vertical gradient of gravity in terms of the gravity itself as 

= 

Dr 2it 
(5.16) 

where the gravity anomaly Agp refers to the point at which aAgmr is calculated and l 

(=2Rsiniif/2, ir is angular distance) is the spatial distance between the point P and the 

running surface element R2d. The results depend strongly on the density and accuracy of 

the available Ag and this causes difficulties for reliable determinations. Heiskanen and 

Moritz (1967) and Moritz (1980) discuss the role of equation (5.16) in their analytical 

continuation solution to the Molodensky's problem. Additional information regarding the 

downward continuation of free-air anomalies can be found in Wang (1988). 

In order to use the surface gravity anomalies with the Poisson integral, different methods 

attempt to address.the data requirements. 
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5.2.2 Direct Method of Upward Continuation 

The direct method uses the surface free-air gravity anomalies Ag or the terrain corrected 

free-air anomalies (i.e., Faye anomalies) (Ag + 6g) as direct input in the Poisson upward 

continuation integral to calculate the gravity anomaly field in the space outside the Earth's 

surface. According to the planar approximation equation (5.8) of the Poisson integral, the 

respective upward continued fields are 

(Ag) 0 = .1Qf5&dxdy 
2ir A 10 

and 

(g + 8g)0 = h0 jj(Ag5 +  

(5.17) 

(5.18) 

The value of the upward continuation distance h0 depends on the choice of reference 

surface. 

The requirement for the input anomalies in equations (5.17) and (5.18) is that they be close 

to their corresponding values on a level surface. The application of terrain corrections to the 

surface free-air gravity anomalies is a first order approximation to reduce the anomalies to a 

level surface (Moritz, 1966). If no distinction is considered between the resulting anomalies 

and their corresponding values on the geoid, the upward continuation distance is then the 

height measured from the geoid to the upward continuation level. In areas with rugged 

topography and for low upward continuation altitudes, this could lead to unacceptable 

errors. Another choice of reference level could be the average elevation over the area where 

the surface gravity anomalies are located. Keeping in mind that the reference surface 

positioned at the average elevation is not a level surface and considering the variation of the 

topography in the area from the average elevation, the errors introduced in calculations can 

still be significant. 

For high accuracy requirements in areas with rugged topography, data reduction to the 

geoid or to other level surface is in general necessary. However, as indicated in Section 
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5.2.1, the calculation of the gravity gradients to be used in equation (5.15) presents 

difficulties. 

Another aspect that has to be considered is the use of the spherical harmonic coefficients of 

available geopotential models to generate gravity anomalies. The subtraction from the 

gravity anomaly data of gravity anomalies calculated from geopotential expansions makes 

the residual field suitable for planar approximation (i.e., flat-Earth) methods. The 

geopotential models available today have a resolution of 55 km. Thus, by referencing the 

local data to them, a smaller area for integration is needed in the Poisson integral equation. 

The resulting upward continued field will be the sum of the field generated at elevation by 

the Poisson integration with the residual gravity anomaly data, and of the field generated by 

the geopotential model at the upward continuation elevation. Equation (5.11) can be used 

for the latter calculation with (a + h0) instead of r. 

5.2.3 Indirect Method of Upward Continuation 

The indirect method computationally removes from the surface free-air gravity anomaly 

data the gravitational effects caused by shallow topographic masses. These effects have a 

high frequency character, representing the very short wavelength part of the gravity 

anomaly field. As suggested in Section 5.2.3, spherical harmonic expansions of the 

geopotential are used as a reference representing the long and part of the medium 

wavelength component of the gravity anomaly field. 

The vertical attraction on the Earth's surface generated by the topographic masses lying 

between it and the geoid can be expressed as 

gt1 = 2irGph - tc (5.19) 

where 2irGph is the attraction of the Bouguer plate and 8gtc denotes the terrain correction. 

Considering a reference topographic surface of heights hs, the masses between the latter 

surface and the geoid generate a vertical attraction on the reference topography expressed as 

Agt2 = 21rGphS - 6g (5.20) 
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where the terms have the same meaning as those in equation (5.19). For example, the 

reference topographic surface in equations (5.20) and (5.21) can be calculated from a 

spherical harmonic expansion of the topography of the same degree and order as the 

geopotential model. 

Equations (5.19) and (5.20) are equivalent to equation (2.23) in Section 2.3.2; and the two 

terms on their right hand side are given respectively by the equations (2.21) and (2.22). 

The topographic gravity anomaly resulting from the difference of the former and the latter 

vertical attractions is equal to 

jgt = 2itGp(h - hs) - (6g - 6gtc ) (5.21) 

The residual gravity anomaly is obtained by subtracting the spherical harmonic generated 

anomaly ,XgS and by removing the topographic anomaly Agt, as 

Agr = Ag - gS - jgt 

or 

(5.22) 

,gr = Ag - jgS - 2irGp(h - hS) + (6g - Sg) (5.23) 

The resulting gravity anomaly in equation (5.23) is called the residual refined Bouguer 

anomaly. The reduction of the gravity anomalies in this manner (i.e., residual terrain model 

reduction) and their use in the upward continuation of gravity data in a mountainous area 

was suggested by Forsberg (1984a). Cruz and Laskovsky (1984) used this approach for 

upward continuation of surface free-air gravity anomalies. 

The residual refined Bouguer gravity anomalies are very smooth and are assumed to be on 

the reference topographic surface. Before they are input in the Poisson integral for upward 

continuation, they must be terrain corrected on the reference topographic surface (i.e, add 

The upward continued residual gravity anomaly field at the upward continuation h0 tc 

is calculated with the equation 
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(Ag' +g)0 = jj(ig'  
1 

(5.24) 

The total upward continued gravity anomaly field is the sum of the following terms: 

Poisson integration values of the residual refined Bouguer gravity anomalies calculated 

with equation (5.24); spherical harmonic anomalies 1gS calculated with equation (5.11); 

and integration of the gravitational effects of the removed topographic masses with equation 

(2.29), where the elevation of the computation point (i.e., zi) is equal to the upward 

computation distance. 

This study deals with the application of the Poisson integration for the upward continuation 

of surface gravity anomalies. Least-squares collocation is another approach that can be used 

to upward continue surface gravity anomalies. An advantage of the latter method is that 

there is no requirement for the gravity anomaly data to be located on a level surface. 

However, the method requires large matrix inversion. Sünkel (1981a), Rapp (1978) and 

Cruz (1985) have investigated the use of least-squares collocation in the upward 

continuation of surface gravity anomalies. 

5.3 Upward Continuation Error Propagation 

The dominant source of error in the upward continuation procedure are the errors in the 

original random point surface gravity anomaly data and the errors resulting from the 

prediction procedure. These two errors should be considered as limiting factors in the 

quality of the upward continued field. The scale of the original error variances will be 

reflected into the scale of the upward continued variances. The correlation between the 

mean surface gravity anomaly blocks used in the upward continuation calculations is 

directly related to the spacing of the initial point data. Because the correlated errors do not 

attenuate quickly, large correlation lengths of the errors in the gravity anomaly field at the 

reference level will have an adverse effect in the upward continuation procedure. 

Systematic errors present in the surface gravity anomaly data propagate in the upward 

continuation calculation with the Poisson integral (Moritz, 1962) as 
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-ho (x,Y)—f$C(x ,y , dx'dy' ) 
21r  10 

(5.25) 

Moritz (1962) gives as a statistical estimate of the upward continuation procedure, the mean 

square error, formulated as 

m =.._$1 15x I dxdydx'dy' ,y,x,y) 
gh0 4 2 J i 10 1 

xy X. y' 

(5.26) 

where cy(x, y, x', y') = M(&, £) is the error covariance function that statistically 

characterizes the errors E(x, y) in ig and M is a suitable averaging operator (Heiskanen and 

Moritz, 1967; Moritz, 1980). 

The error covariance function of the gravity anomalies can be modelled by a Gaussian 

function [see equation (3.22)], which is dependent only on the distance between data 

points, as 

a(x,y,x' ,y') = Coe_A2S2 = C(s) (5.27) 

with the constant A = Ji7. / X112, where X112 is the correlation length. With the premise 

that the ratio X112/ho is small, Moritz (1962) gives for equation (5.27) a simple form to 

calculate the mean square error present in the upward continued gravity anomaly field, as 

m 2 1 CO 
gj10 8h0 A 

(5.28) 

The above equation can be used as a measure of precision when the flat-Earth (i.e., planar) 

approximation is used. For spherical-Earth approximation, Cruz and Laskovsky (1984) 

have shown that the error propagation through the upward continuation operation is at the 

same level with the former. 

If correlations between the adjoining mean blocks are not taken into account, the mean 

square error of prediction in the upward continued field due to the quality of the original 

data (i.e., error variances m g) can be calculated according to Rapp (1966) as 
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h dxdy 2 
m g0 = ffm 2g ) 

(2ir)2 A 10 

(5.29) 

This should be considered as a relative measure of precision, i.e. only the relative degree of 

attenuation of the errors is relevant. 

Moritz (1962), Sünkel (1981a) and Cruz and Laskovsky (1984) have investigated also the 

effect of the representation error, which is the result of the substitution in the calculations of 

a continuous function by a step function in terms of Ag (i.e., mean blocks). The effect is 

insignificant by comparison with the errors coming from the surface data. 

There is a systematic error component that comes from the extent of the area of integration 

used in the computation of the upward continuation field with the equation (5.8) of the 

Poisson integral. Heiskanen and Moritz (1967) have investigated the average value effect of 

the distant regions in the upward continuation calculations. For an average value of the 

gravity anomalies Ag in areas beyond a distance s0, the effect E is 

(5.30) 

From this equation, it results that the integration area A must be approximately proportional 

to h0 in order to obtain with the Poisson integral [see equation (5.8)] the same error E for 

different upward continuation elevations. 

5.4 Upward Continuation of Surface Free-air Gravity Anomalies in the 

Kananaskis Area 

Investigation Area and Data 

The investigation area in Kananaskis was described in Chapters 2, 3 and 4. The 1' x 

(i.e., 1.9 km x 1.8 km) grid of surface free-air gravity anomalies, terrain corrected, 

bounded by latitudes 500151 and 510301 and by longitudes 2440151 and 245°30' (i.e., 

Kananaskis extended area), constitute the primary data used in the upward continuation 

operation. Grids of the same resolution of gravity anomalies at the reference surface and at 
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higher altitudes were generated from the spherical harmonic coefficients of the geopotential 

model OSU91A to degree and order 360 (Rapp et al., 1991). For the indirect method, 

digital elevation models of the topography and of the mean topography over the Kananaskis 

area were also part of the data. The digital elevation model of mean topographic heights 

was generated by averaging elevations in rectangular blocks of 30'x 30' for each point of 

the grid. 

Using the data mentioned above, upward continued gravity anomaly fields will be 

computed at 3 km and at 4 km, respectively, above the geoid over the area between 

latitudes 50°30' and 51°15' and between longitudes 244°30' and 245015t (i.e., Kananaskis 

core area). 

Direct Method of Upward Continuation 

The gridded surface free-air gravity anomalies (terrain corrected) are reduced to 

geopotential model gravity anomalies. With the residual gravity anomaly data, mean values 

are calculated for each 1' x 1 block of the grid. These data are assumed at the geoid level. 

This assumption can introduce significant distortions in the upward continued gravity field 

in an area with rugged topography. As it was discussed in Section 5.2, there is an 

uncertainty in the upward continuation distance due to the uncertainty in the vertical location 

of the reference surface for the gravity anomaly data. To investigate the sensitivity of the 

upward continuation process in the data, computations were carried out with the residual 

gravity anomalies in the Poisson integral given in planar approximation [i.e., equation 

(5.18)] with upward continuation distances of 1 km, 2 km, 3 km and 4 km, respectively. 

Though the upward continuation is mainly a local calculation (i.e., a radius around the 

computation point 10 times the upward continuation distance is in general sufficient), all the 

data were used in the integration calculation for each point. The gravity anomaly field at 

altitude is obtained by adding to the residual upward continued field, the contribution 

coming from the geopotential model evaluated [i.e., equation (5.11)] at altitude. 

The statistics of the results for the Kananaskis core area are given in Table 5.1. The root 

mean square variation, in mGal, of the gravity anomaly field, decreases for each 1 km 

increase in altitude, by 6.2, 4.6, 2.1 and 1.9, respectively. These numbers indicate that the 

gravity anomaly field attenuates by 8.2%, 6.6%, 3.2% and 2.9%, respectively. The largest 

changes occur at low altitudes. 
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Table 5.1 Statistics of sensitivity of free-air gravity anomalies with change in upward 

continuation distance (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

0km -28.8 175.1 67.0 39.8 78.0 

1km -8.4 139.3 64.5 31.6 71.8 

2km -1.7 108.5 62.5 24.8 67.2 

3km 1.3 96.7 61.2 22.1 65.1 

4km 3.1 89.0 59.9 20.4 63.2 

Figure 5.1 and Figure 5.2 portray the upward continued gravity anomaly fields for the 

upward continuation distances of 3 km and 4 km. respectively. 

Calculations with the Poisson integral were carried out also with the assumption that the 

residual gravity anomalies refer to a surface with the elevation corresponding to the average 

elevation over the area (i.e., 1.84 km for the Kananaskis extended area). In this case, the 

residual gravity anomalies are upward continued from the elevation of the reference surface 

to 3 km and 4 km altitudes from the geoid, respectively. The statistics of the computation 

results are given in Table 5.2 and the contour plans are shown in Figure 5.3 and Figure 

5.4, respectively. 

Table 5.2 Statistics of upward continuation by direct method of free-air gravity anomalies 

(data considered at a mean elevation of 1.84 km) (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. 

3 k -3.0 117.4 63.8 26.6 

4km -0.8 105.9 62.6 24.2 

To assess the direct method, these results will be compared subsequently with the results 

produced by the other methods investigated in this study. 
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Figure 5.1 Upward continued free-air gravity anomalies (reduction to geoid is neglected) 

by the direct method (Contour interval: 5 mGal; upward continuation level: 3 km) 
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Figure 5.2 Upward continued free-air gravity anomalies (reduction to geoid is neglected) 

by the direct method (Contour interval: 5 mGal; upward continuation level: 4 km) 
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Figure 5.3 Upward continued free-air gravity anomalies (data considered at a mean 

elevation of 1.84 km) by the direct method 

(Contour interval: 10 mGal; upward continuation level: 3 1cm) 
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Figure 5.4 Upward continued free-air gravity anomalies (data considered at a mean 

elevation of 1.84 km) by the direct method 

(Contour interval: 10 mGal; upward continuation level: 4 km) 
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Indirect Method of Upward Continuation 

In the indirect method, the residual gravity anomaly data result from the reduction of the 

surface gravity anomalies to the geopotential model and by subtracting the gravitational 

effects caused by topographic masses lying between the surface of the Earth and a smooth 

surface, representing mean elevations over the area. The latter reduction is realized by 

subtracting the result obtained from equation (5.21). The first term on the right hand side is 

obtained by subtracting the two 1' x 1' elevation grids (i.e., digital elevation model of the 

topographic surface and digital elevation model of the average elevations) and multiplying 

with the Bouguer gradient (i.e., 0.1119). The terrain corrections necessary to calculate the 

second term on the right hand side of equation (5.21) were obtained by prism integration 

using equation (2.29) with the computer program given by Forsberg (1984a). The resulting 

residual gravity anomaly field (i.e., residual refined Bouguer gravity anomalies) is very 

smooth and assumed to refer to the average elevation surface. Its statistics (i.e., minimum, 

maximum, mean and standard deviation), in mGal, are -35.9, 33.4, 4.1 and 11.2, 

respectively. Following the procedure given in Section 5.2.3, upward continued gravity 

anomaly fields were computed. The statistics of the results are given in Table 5.3 and the 

contour plans are shown in Figures 5.5 and Figure 5.6, respectively. 

Table 5.3 Statistics of upward continuation by the indirect method of free-air gravity 

anomalies (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. 

3km -5.0 115.4 61.7 26.3 

4km - -2.8 104.1 60.5 24.0 

A cursory examination of the data presented in Tables 5.2 and 5.3 shows that the values in 

the latter table are slightly lower. 

For a better view of the variation of the gravity anomaly field in the upward continuation 

process two profiles were chosen for investigation, one at latitude 50°53', between 

longitudes 244°38' and 245°08' (i.e., 35.1 km); the other at longitude 244°53', between 

latitudes 50°40' and 51°05' (i.e., 46.3 km). These profiles are located in the area where 

there is a high density of point gravity anomaly data, and thus the gravity anomaly model is 

considered more reliable. Also, the variations in topography and the gravity anomaly field 
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are large. For each profile, the statistics considered regard elevations, surface free-air 

gravity anomalies, and upward continued gravity anomalies at 3 km and 4 km altitude. The 

statistics are given in Table 5.4 and Table 5.5 for the latitude and the longitude profiles, 

respectively; and the plots for each profile are given in Figure 5.7 and Figure 5.8, 

respectively. 

50.50-
I I 

244.50 244.75 245.00 
LONGITUDE (DEGREE) 

245.25 

Figure 5.5 Upward continued free-air gravity anomalies by the indirect method 

(Contour interval: 10 mGal; upward continuation level: 3 km) 
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Figure 5.6 Upward continued free-air gravity anomalies by the indirect method 

(Contour interval: 10 mGal; upward continuation level: 4 km) 
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Table 5.4 Statistics of profiles at latitude 50°53' between longitudes 244°38' and 245°08' 

of elevations, surface and upward continued by the indirect method of free-air gravity 

anomalies (Units: elevation, m; gravity anomaly, mGal) 

Profile Minimum Maximum Mean Std. Dev. 

Elevation 1614.0 2489.5 2056.56 271.9 

Surface Anom. 27.9 125.1 79.0 31.4 

Anom. at3km 43.2 96.6 73.9 16.3 

Anom. at4Ian 51.1 89.7 72.2 12.0 

Table 5.5 Statistics of profiles at longitude 244°53' between latitudes 5Øo4Øt and 51°05' 

of elevations, surface and upward continued by the indirect method of free-air gravity 

anomalies (Units: elevation, m; gravity anomaly, mGal) 

Profile Minimum Maximum Mean Std. Dev. 

Elevation 1299.0 2424.1 1790.7 330.9 

Surface Anom. -3.2 117.9 48.8 37.0 

Anom. at3km 19.7 90.7 53.6 19.5 

Anom. at4km 23.8 84.2 55.4 17.5 
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Figure 5.7 Profiles at latitude 500531 of (a) elevation, (b) surface free-air gravity 

anomalies, upward continued anomalies by the indirect method at elevations 

of (c) 3 km and (d) 4 km 
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Figure 5.8 Profiles at longitude 244°53' of (a) elevation, (b) surface free-air gravity 

anomalies, upward continued anomalies by the indirect method at elevations 

of (c) 3 km and (d) 4 km 
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Data Error Propagation 

In order to obtain information regarding the relative magnitude of the propagated standard 

deviations at altitude, calculations with equation (5.26) were carried out. However, no 

correlations were considered in the upward continuation process [see equation (5.29)]. The 

data used were the standard deviations estimated in Section 3.4.1. 

The arbitrary scaling of the standard deviations on the reference surface will cause a 

corresponding scaling of the upward continued standard deviations. Only the degree of 

tapering of the data has a more realistic meaning. The statistics of the results are given in 

Table 5.6 and the contour plans are shown in Figure 5.9. Considering the values given in 

Tables 3.10 and/or 3.11, the root mean square variation in the data reduces by 85% from 

the reference surface to 3 km altitude. From 3 km altitude to 4 km altitude, the root mean 

square variation in the data reduces by 45%. 
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Figure 5.9 Upward continued standard deviations of surface free-air gravity anomalies 

[Contour interval: 0.05 mGal; upward continuation levels: (a) 3 km, (b) 4 km] 
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Table 5.6 Statistics of upward continuation of standard deviations of surface free-air 

gravity anomalies (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. 

3km 

4km 

0.25 

0.16 

0.41 

0.26 

0.30 

0.19 

0.04 

0.03 

In Section 3.4.3, free-air gravity anomaly errors were computed on a 1' x 1' grid for the 

Kananaskis extended area. The errors in the data appear to be weakly correlated and the 

upward continuation shows that these errors attenuate considerably with the altitude. Table 

5.7 and Figure 5.10 present the statistics of the results and the contour plans, respectively. 

50.50-i I I  
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• 
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244.50 244.75 245.00 245.25 

LONGiTUDE (DEGREE) 

(b) 

Figure 5.10 Upward continued errors of surface free-air gravity anomalies 

[Contour interval: 0.25 mGal; upward continuation levels: (a) 3 km, (b) 4 km] 
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Table 5.7 Statistics of upward continuation errors of surface free-air gravity anomalies 

(Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. 

3 k -0.8 0.8 0.0 0.2 

4km - -0.3 0.4 0.0 0.1 

Comparison of Results and Other Studies 

A comparison between the results given from the direct method of upward continuation and 

from point mass modelling (see Section 4.4) under the same assumption (i.e., the gravity 

anomaly values are considered to refer to the geoid), indicate similar results. The root mean 

square variation, in mGal, in the estimated gravity anomaly fields at 3 km and 4 km above 

the geoid are for the point mass model 65.4 and 63.5, respectively, and for the direct 

method, 65.1 and 63.3, respectively. 

Table 5.8 Statistics of the discrepancies between the direct upward continuation method 

and point mass modelling on a 1' x 1' grid in the Kananaskis core area 

(Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

3 k -3.0 3.6 -0.3 0.7 0.8 

4 k -1.5 1.9 -0.1 0.4 0.4 

A clearer indication of the differences in results between the methods is given by examining 

common profiles. The profiles indicated on page 109 (see also Tables 5.4 and 5.5, and 

Figures 57 and 5.8) were used. The statistics of the results are given in Table 5.9 and 

Table 5.10 for the latitude and longitude profile, respectively. Figure 5.11 and Figure 5.12 

show the respective plots. From the examination of this material it is concluded that the two 

methods perform in the same manner. 
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Table 5.9 Statistics of the discrepancies between the direct upward continuation method 

and point mass modelling on a profile at latitude 500531 (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

3 k -1.0 0.2 -0.3 0.3 0.4 

4 k - -0.7 0.3 -0.1 0.3 0.3 

Table 5.10 Statistics of the discrepancies between the direct upward continuation method 

and point mass modelling on a profile at longitude 244°53' (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

3 k -2.5 1.3 -0.1 0.8 0.8 

4km -1.4 0.6 0.0 0.4 0.4 
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Figure 5.11 Profiles at latitude 50°53' of differences between the direct upward 

continuation method and point mass modelling at (a) 3 km and (b) 4 km (Unit: mGal) 
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Figure 5.12 Profiles at longitude 244°53' of differences between the direct upward 

continuation method and point mass modelling at (a) 3 km and (b) 4 km (Unit: mGal) 

The differences between the indirect and direct methods for upward continuation seem 

more pronounced. For the data from Table 5,2 and Table 5.3, the root mean square 

variation, in mGal, for the upward continued gravity anomaly fields at 3 km and 4 km 

above the geoid are for the direct method 69.1 and 67. 1, respectively, and for the indirect 

method 67.1 and 65.1, respectively. The results of the upward continued profiles obtained 

from the direct and indirect methods, show significant discrepancies. The statistics are 

given in Table 5.11 for the latitude profile and in Table 5.12 for the longitude profile. The 

direct method results present a negative bias at the level of -3.5 mGal, and the root mean 

square difference is at the level of 4.4 mGal. Figures 5.13 and 5.14 show the respective 

profile plots. 
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Table 5.11 Statistics of discrepancies between the indirect and direct upward continuation 

methods on a profile at latitude 50°53' (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

3 k -6.6 4.4 -3.4 2.7 4.3 

4km -6.2 3.2 -3.4 2.3 4.1 

Table 5.12 Statistics of discrepancies between the indirect and direct upward continuation 

methods on a profile at longitude 244°53' (Unit: mGal) 

Contin. Dist. Minimum Maximum Mean Std. Dev. RMS 

3km -9.5 2.6 -3.6 2.9 4.6 

4 k -7.7 1.8 -3.7 2.3 4.4 
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Figure 5.13 Profiles at latitude 50°53' of differences between the indirect and direct 

upward continuation methods at (a) 3 km and (b) 4 km (Unit: mGal) 
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Figure 5.14 Profiles at longitude 244°53' of differences between the indirect and direct 

upward continuation methods at (a) 3 km and (b) 4 km (Unit: mGal) 

Comparison of the discrepancy profiles with the respective elevation profiles show a 

negative correlation. This indicates that the reduction of the anomaly data plays a role in the 

upward continuation results. Because the indirect method of upward continuation has taken 

into account the large variations in the gravity field in the computation process, it is 

considered to give better results than the direct method. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

The objective of the research to produce a gravity model for a mountainous area with large 

variations in the gravity field, by combining terrestrial gravity data with elevation data, has 

been accomplished. The area investigated is in the Canadian Rocky Mountains, situated 

between latitudes 5O0l5 and 51°30' and between longitudes 244°15' and 245°30'. The 

gravity model developed covers an area bounded by latitudes 5Øo3Ø and 51°15' and 

longitudes 244°30' and 245° 15'; part of the Kananaskis area lies within these limits. The 

gravity model will be used to test the performance of an airborne system for detailed the 

mapping of the gravity field of the Earth. 

The different aspects treated in order to construct the gravity field model comprise: 

collection of gravity data and of topographic data from existing sources and by 

measurement; unified treatment (i.e., processing) of all the available data to produce point 

terrain corrected free-air, refined Bouguer and isostatic gravity anomalies; prediction of 

regular patterns (i.e., grids) of gravity anomalies from the random point data; spatial (i.e., 

at elevation above the reference surface) computation of gravity anomalies. From the 

geodetic point of view, the gravity model is three-dimensional. The reason is that the 

topographic information is integral part in the terrestrial gravity modelling process and 

because the model was constructed also at altitudes above the Earth. 

The first stage in the investigation dealt with the gravimetric and topographic data 

collection. Because the gravimetric data originated from different sources, an attempt was 

made to eliminate apparent inconsistencies in the data and to apply standard reductions in 

the derivation of free-air, refined Bouguer and isostatic gravity anomalies. The (surface) 

free-air gravity anomalies were calculated by subtracting the normal gravity formulated with 

the parameters of GRS8O. The dependence of the normal vertical gradient on latitude and 
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the inclusion of its second-order term, together with the atmospheric correction was 

considered in the free-air reduction. To account for irregularities of the topography from the 

Bouguer plate, the gravity anomalies were terrain corrected. The terrain corrections were 

calculated by prism integration with different resolutions (i.e., 0.1 km, 1 km, 5 km, 

respectively) for the digital elevation model, according to the distance from the computation 

point. The computations were carried out up to and including the Heyford zone 0. 

Bouguer gravity anomalies were determined from the free-air gravity anomalies by 

eliminating the attraction of the Bouguer plate, calculated with standard density of 2.67 

g/cm3. The resulting anomalies are the refined Bouguer gravity anomalies. Their field is 

smoother than that of the free-air gravity anomalies and thus are more suitable for 

prediction at other locations. 

Isostatic gravity anomalies were calculated in order to investigate their possible use for 

prediction of gravity anomalies. The isostatic reduction was carried out according to the 

Airy-Heiskanen model; with density contrast (i.e., difference) of 0.6 g/cm3 and normal 

thickness of the Earth's crust of 30 km. The computation of the attraction of the topography 

and of its isostatic compensation were computed by prismoidal integration, in the same 

manner as for the terrain corrections. 

The free-air gravity anomalies show a strong correlation with the topographic elevations 

(i.e., correlation coefficient is 0.99) and they vary over a wide range. The estimated 

Bouguer gradient for the entire area is 0.1107 which is only 1% less than the standard 

value of 0.1119. The Bouguer gravity anomalies are smoother but because of the 

mountainous area, show a negative bias and attain large values. They are not correlated 

with the local elevations (i.e., correlation coefficient is -0.07). The isostaic gravity 

anomalies vary in the same range as the Bouguer anomalies, but are small with a mean of 

zero. They show correlation with the elevations (i.e., correlation coefficient is 0.20). 

All the gravimetric data available in the area (i.e., 371 gravity points) were put into a data 

base which contains for each random point the following: identification number; geographic 

latitude and longitude; elevation; gravity (with the exception of the points from the North 

America Gravity data base); free-air, Bouguer and isostatic gravity anomalies; standard 

deviations for the spatial coordinates and for the free-air and Bouguer gravity anomalies. 

The mean standard deviations for the latter two anomalies are 1.0 mGal and 0.7 mGal, 
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respectively. Inconsistencies found in the data were corrected on the basis of the available 

information. 

The random gravity points are distributed reasonably well over the topography elevation 

range within the area. Their horizontal layout is, however, uneven, from data spacing of 

under 1 km within parts of the core area to 9 km in the extended area. The next stage in the 

investigation addressed the problem of creating from the existing random gravity points a 

more homogenous data set of gravity anomalies on a grid of 1' x 1' (i.e., 1.9 km x 1.2 

km). Two methods of prediction are used for this purpose, namely least squares collocation 

and weighted means. 

The least-squares collocation solution formulation is based on the covariance function of 

signals (i.e., in this case gravity anomalies). After a pre-selection of the point gravity 

anomaly data to reflect more objectively the overall data distribution in the area, local 

empirical covariance functions were estimated for each type of anomaly available (i.e., free-

air, Bouguer and isostatic). The trend in the data was removed by the subtracting the mean 

and polynomial surfaces of first and second degree, respectively. For the free-air gravity 

anomalies, their correlation with elevations was eliminated first. The essential parameters 

(i.e., variance of gravity anomalies, correlation length and variance of horizontal gradients) 

of the empirical covariance functions are for practical purposes the same when a second 

degree surface polynomial is used for trend elimination in the data. Also, for this latter, 

case the resulting variance is smaller and the estimated standard deviations for the signals 

are scaled better. 

Several analytical functions were used to model the empirical covariance functions. The 

predicted gravity anomalies appeared not very sensitive to the choice of the analytical 

model. However, the estimated standard deviations were influenced more significantly. 

Arbitrarily, the second-order Markov model was used in the least squares solution. First, a 

grid of Bouguer gravity anomalies were predicted together with their standard deviations. 

The grid of free-air gravity anomalies was calculated by combining the former anomalies 

with the digital elevation model and using the constant 0.1119 for the Bouguer gradient. 

The standard deviation of the gridded free-air gravity anomalies was calculated by error 

propagation from .the estimated standard deviations of Bouguer gravity anomaly and of 

elevation grids. These estimations should be viewed more in a relative sense and external 

comparisons are necessary for a better assessment. However, they can give an indication of 
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the areas were the model is stronger. It appears that in the area bounded by latitudes 5Ø04Ø 

and 51°05' and by longitudes 244°38' and 245°08', the standard deviations of the predicted 

free-air gravity anomalies is at a level of 1 mGal to 1.5 mGal. It would have been expected 

for the model to be stronger in this area, because the largest concentration of irregularly 

distributed gravity points are located here. 

The method of weighted means based on the inverse distance raised to a power was also 

investigated for the prediction of gravity anomalies. It was concluded that, for powers of 

prediction equal or greater than two, there were no significant differences between the 

predicted values. 

Several tests were carried out to compare the performance of the two methods of prediction 

used in this investigation; these involved the use of different data patterns. When all the 

available points are used to predict gridded gravity anomalies, the original data in the 

Kananaskis core area are recovered from the grid at the level of 1.2 mGal and 1.3 mGal, 

when using least-squares collocation and weighted means, respectively. Other statistics, 

namely the root mean square discrepancy and the power of prediction, indicated a slightly 

better performance of the least-squares collocation method. However, for practical 

purposes, with the available data in this investigation, the two methods produce the same 

results. 

Statistics for the predicted grids of free-air, Bouguer and isostatic gravity anomalies were 

calculated. The empirical covariance functions were estimated and their essential parameters 

determined. The latter parameters indicate a smoother field which is expected to result in the 

prediction process. The same conclusions regarding the trend reduction were reached as 

before. For the gridded free-air gravity anomalies, a reduction was carried out by 

subtracting values calculated from spherical harmonic coefficients of the geopotential model 

OSU91A. This produced smaller values for each essential parameter of the empirical 

covariance functions. A further reduction of these gravity anomalies by a residual terrain 

model, removes (or reduces) the influences coming from the short wavelength of the 

topography. The variances are reduced again and the correlation length increases, giving a 

better prediction property to the covariance function. 

Furthermore, the anisotropy characteristics and the resolution of the gravity anomaly field 

were investigated. Two-dimensional covariance functions calculated for all the predicted 
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gravity anomaly grids indicate that they contain a degree of anisotropy. The anomaly degree 

variances calculated from the covariance functions were modeled by parametric logarithmic 

expressions. They indicate that 1 mGal resolution of the gravity anomaly field in the 

Kananaskis area is possible with a 2.5 km to 3 km point gravity anomaly data spacing and 

by taking into account the topographic effects associated with the rugged topography. Even 

with the current existing spacing of 4 km in the Kananaskis core area, the resolution of the 

field is realized at better than 1.5 mGal. 

The last main task of this investigation is to model the terrestrial surface gravity anomalies 

at various elevations. The gravity anomaly model at elevation is required for testing the 

airborne gravity based system. Two approaches were considered, namely spatial modelling 

of gravity anomalies by point masses and upward continuation of the surface gravity 

anomalies with the Poisson integration. 

The terrain corrected surface free-air gravity anomalies were reduced first by gravity 

anomalies calculated from spherical harmonic coefficients of the geopotential model 

OSU91A. The latter anomalies represent the long and part of the medium wavelength of the 

gravity anomaly field, coming from outside the local area. The resulting residual anomaly 

field is modelled by point masses located on two layers. The depth for each layer is 

determined from the power spectral density corresponding to the residual gravity anomalies 

covariance function, when plotted logarithmically. The residual medium wavelength part 

and the short wavelength part of the gravity anomaly field are modelled by the point masses 

on the deep layer and on the shallow layer, respectively. With this two-layer point mass 

model, the gravity anomaly field is calculated spatially at elevations of 3 km and of 4 km 

above the geoid, respectively. The contribution coming from outside of the area, calculated 

now at elevation from the geopotential model, are added to the gravity anomalies modelled 

by the point masses. An attenuation in the field of approximately 3% is estimated from the 

root mean square variation of the gravity anomaly models at 3 km and 4 km, respectively. 

This attenuation becomes less pronounced with the increase in elevation. 

It should be mentioned that, in these computations, the surface free-air gravity anomalies 

were considered equal with anomalies at the geoid level. In areas with high and steep 

mountains this could introduce significant errors in the calculations. Certain aspects 

regarding the influence of the assumptions made-in the manner in which the data is treated 
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are addressed in the upward continuation of free-air gravity anomalies using the Poisson 

integral. 

The upward continuation computation with the Poisson integral was used here in planar 

approximation. Three approaches of treating the gravity anomaly data were investigated: 

terrain corrected surface free-air gravity anomalies reduced to a geopotential model and 

considered to refer to the geoid; terrain corrected surface free-air gravity anomalies reduced 

to a geopotential model and considered to refer to a surface corresponding to the mean 

elevation over the area; terrain corrected surface free-air gravity anomalies reduced to a 

geopotential model and to a residual terrain model. The former two cases constitute a direct 

method of calculation and the latter an indirect method of calculation (i.e., the influence of 

the topographic variations are considered separately in the computation process). The 

upward continued gravity anomaly field calculated by the indirect method is the result of the 

following: upward continuation with the Poisson integral of the residual gravity anomalies; 

gravitational effects at elevation of the removed residual terrain model; and geopotential 

model contribution at altitude. 

The comparison of free-air gravity anomalies calculated at altitude by the direct upward 

continuation method and by point mass modelling show that the two methods perform in a 

similar manner. The root mean square difference for the gravity anomaly field at 3 km 

altitude is approximately 0.8 mGal. The use of the indirect method produced results very 

different from the direct method with a root mean square difference of approximately 4.5 

mGal. The differences resulting from the latter comparison appear to be negatively 

correlated with the topography. The use of different assumptions in the data reduction 

show that results can vary significantly for each case. For high accuracy requirements, the 

topographic effects must be considered, especially in mountainous areas. These differences 

are more pronounced at lower elevations and appear to diminish with an increase in 

elevation. The testing of the airborne gravity system will be attempted at altitudes as low as 

possible over the Kananaskis area (i.e., approximately 3 km to 3.5 km). Thus, good 

gravity anomaly models at these elevations are of importance. 

The analysis of estimated standard deviations for gravity anomalies in Kananaskis indicate 

that in the area bounded by latitudes 50°40' and 51°05' and by longitudes 244°38' and 

245'08', the gravity anomaly model is stronger. Thus it is recommended that within this 

area the gravity based airborne system should be tested. The precision and the error contour 
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plots for the gravity anomalies give indication where new gravity measurements should be 

taken and/or where the point height information should be improved. From this 

investigation it can be concluded that few new gravity measurements are needed in the area. 

Attention should be devoted to improve the height information associated with the random 

point data. If additional gravity measurements will be carried out, they must be made in 

conjunction with good elevation determinations. Also, the available digital elevation models 

have to be improved (i.e., corrected). Their use is essential for modelling the effects of the 

rugged topography in the Kananaskis area in modelling the gravity field. Additional 

computational investigations to validate the current results are desirable. For example, the 

use of analytical downward continuation of the surface free-air gravity anomalies to a 

reference surface for the upward continuation should be investigated. The use of least-

squares collocation can also be considered as a possible method of upward continuation. 

As a final conclusion, though the three-dimensional gravity model for the Kananaskis area 

can still be improved, the information available so far can assist the gravity based airborne 

system at this stage in its development. 
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