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Abstract 

An industrial process for liquifying sulphur deposited in mounds which serve as 

long-term repositories for the element after its recovery from H2S in sour natural gas has 

been investigated through numerical modelling. In the operation using the Ellithorpe 

remelter, staggered banks of vertical tubes in two rows are heated internally with saturated 

steam and pressed against a vertical wall of sulphur. The melt is squeezed azimuthally 

out of the gap between the solids and drained by gravity to collection headers. This is a 

close-contact melting problem with the additional characteristics that the liquid's 

thermophysical properties are temperature dependent. The objective of this study is to 

model the early stage of the development of a melting front after the hot tubes are 

suddenly brought in contact with the surface of sulphur which was initially flat. 

The actual model is an isolated heating element which is a cylinder of infinite 

length maintained at a constant temperature. This is contacted with the surface of a semi-

infinite block of sulphur maintained at its melting point. As the melting occurs, the 

surface is indented. Proximity between the two solid surfaces is maintained by a force 

applied on the cylinder. The transient outline of the melting interface is unknown a priori 

and it therefore has to be determined as part of the solution. 

The algorithm developed involved solving the finite difference forms of the 

continuity, Navier-Stokes and energy equations simultaneously with the boundary 
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conditions and closure criteria at the melting interface. The SIMPLE technique was 

employed to discretize the equations. The technique involves 5-point computational 

molecules and the staggered grid points around control volumes in a fixed grid domain. 

A fractional volume of fluid (VOF) method was used to track the advancement of the 

melting interface. 

A simplified pseudo-steady state model was developed to obtain the parameters 

that affect the melting process. The Stefan number and the ratio of liquid gap thickness 

at the closest approach S. to the radius of the hot tube were found to be the primary 

dimensionless quantities. In the numerical simulation of the transient process, these 

parameters were varied over a wide range. The results for the temperature and velocity 

fields, gap width and external force required to maintain close contact between the 

surfaces were compared. 

Numerical results are reported on the early development of the outline of the 

melting boundary, the evolving temperature and velocity fields within the melt inside the 

gap, and the displacement rate of the hot tube. Calculations were carried out for a set of 

parameters typical of field conditions. The results show an initial rapid increase in the 

migration rate of the heat source followed by a near steady rate even when the surface 

has only been indented a little. The gap width increased in the azimuthal direction. The 

shape of the melting front, the liquid temperature and the velocity profiles become nearly 

stationary soon after the melting zone has been established around a sector of the heating 

tubes. 
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Chapter 1 

Introduction 

1.1 Close-Contact Melting with Migrating Heat Source 

Close-contact melting in a domain of fixed coordinates, or under transient 

conditions, is a moving boundary problem. It is characterized by a thin gap between a 

solid to be liquefied and a body warmer than the melting point of the solid. This gap, 

from which the liquid produced is continuously displaced, is usually maintained by a 

force acting on one of the bodies. Under time-dependent conditions, at least a segment 

of one of the apposed surfaces is in relative motion to the other surface. When the heating 

surface has an arbitrary shape and the initial boundary of the melting solid is described 

by a different geometric form, the melting surface would undergo changes in shape within 

a stationary coordinate frame of reference. The evolving contour or the outline of the 

surface is not known a priori. Typically, the rate of relative movement between the heat 

source and the melting boundary has to be regarded as a function of time and space and 

considered as an integral part of obtaining simultaneous solutions to the energy and 

hydrodynamic equations which describe the system. 

In close-contact melting, either the solid melts and slides around a stationary heat 

source as in latent heat storage systems (Saito et al. 1985a, 1985b, 1986, 1988) or the 

heat source migrates through the solid. For the latter, the movement occurs in the 
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direction of forces such as gravity, buoyancy, shear forces (Emerman and Turcotte, 1983, 

Moallemi and Viskanta, 1985a & 1985b) or along an external applied force (Lea and 

Stegall, 1973). Such forces are not large enough to induce regelation at temperatures 

lower than the solid's melting point. 

The problem of current interest involves the application of an external force while 

melting occurs. Because of decreased spacing between the solids, the heat flux density 

is much higher than for a phase change process in which the heat source position is fixed 

and the thickness of liquid layer progressively increased, i.e. the thermal resistance 

increases with time (Sparrow and Myrum, 1985). Since the liquid production rate is 

enhanced with close-contact melting, it has been applied in the latent heat thermal storage 

systems (Saito et al. 1985a, 1986, 1988), utilized in industrial processes such as 

metallurgy and welding (Jacson, 1965), and observed during the migration of hot zones 

in geophysics (Emerman and Turcotte, 1983) and nuclear technology (Tong, 1965). 

In close-contact melting process, the liquid layer between the heat source and the 

phase change material (PCM) is normally very thin due to the applied force which 

continuously squeezes the liquid produced out of the gap. Consequently, the melting rate 

of the PCM and energy transfer to the PCM are greatly increased. The gap width is 

usually less than 1 mm. For direct-contact melting involving a flat heating surface 

impressed on a planar PCM, Saito et al. (1985a, 1985b) reported that the liquid layer 

width ranged between 0.014 and 0.16 mm. The PCM used in their experiment was ice 

and the force applied to maintain close contact varied from 0.42 N to 42.7 N. The heat 

flux was reported to increase about 1.5 - 1.8 times when the contact pressure was 
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increased 10 times. The maximum velocity of the melt in the gap between the surfaces 

was reported to vary between 5.1(10) and 4.7(10.2) rn/s when the applied force was 

increased about 200 times, from 0.234 N to 42.7 N. In a different study, melting was 

observed for a PCM inside a horizontal tube. Close-contact melting was maintained by 

gravity force on the PCM heated by the enclosing wall. The rate of melting was higher 

by 50-100% compared to a system where the surfaces were kept separated (Sparrow and 

Myrum, 1985). For example, when 30% of the PCM had melted for the non-contact case, 

about 52% of solid was liquefied in the direct-contact operation over the same length of 

time. For larger periods, the corresponding fractions of melt were 0.45 and 0.85. It is also 

shown that about 88-94% of the total volume of melt was produced in the region of close 

contact which means that melting was more efficiently carried out where the solid 

separation was narrow. In view of the high energy transport rates and rapid phase change, 

there is an economic incentive to encourage industrial application of direct-contact of 

melting. 

The motivation for this study is an industrial scheme which involves the use of 

hot tubes for liquefying sulphur (Tm - 113°C) which is piled in above-ground blocks. A 

commercial equipment called the Ellithorpe remelter is of current interest. This is 

described in the following section. The problem is interesting and complex because the 

thermophysical properties of liquid sulphur vary strongly with temperature over the range 

maintained across the narrow gap. To the author's knowledge, there has not been any 

previous analysis or numerical investigation of this problem. 
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1.2 Ellithorpe Process for Sulphur Melting 

The Ellithorpe remelter is a contraption, the heart of which is a steam-heated array 

of tubes forced against the sulphur block in the horizontal direction. This contrasts with 

the Frasch direct-contact hot water process for underground mining. In the Frasch process, 

the sulphur is melted in situ by direct contact through injection of superheated steam. 

Molten sulphur is air lifted to the surface (Kirk and Othmer, 1978, Moliere, 1989). As an 

alternative to melting, elemental sulphur deposited near the top of the soil may be 

recovered by open pit mining. This is an operation which involves scraping and hauling 

and a considerable amount of dust is generated. Apart from the detrimental effects on 

human health and the environmental impact problems posed by such airborne articles, the 

dust may lead to explosions and conflagrations. The Ellithorpe remelter was designed to 

avert such hazards. 

The basic element of the remelter is a series of vertical steel tubes, approximately 

3 m in length and 5 cm in diameter (12 BWG). Eight-five (85) tubes are arranged per set 

in a staggered 2-row pattern. A particular unit has four sets of tubes stacked one on the 

top of the other and the entire set is driven against the sulphur mound by a motor-driven 

rig. Saturated steam is fed through the tubes in one pass. The force applied to the tubes 

serves to maintain close contact between the sulphur and the heat source. The sulphur is 

judged to be predominantly in the rhombic allotropic form. Molten sulphur is squeezed 

out primarily in the azimuthal (9) direction through the gap between the surfaces. As it 

emerges at the back side of the tubes, it runs down into the collection trays. The gap 

width between the tube surface and solid-liquid interface appears, from visual observation, 
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to be less than 0.5 mm for a substantial region around each tube. Thus both conduction 

and convection of heat occur in the narrow channel. The dynamics and stability of the 

process can be complex. The field operation shows significant variations in melting rates 

under apparently constant process conditions. There is currently little theoretical guidance 

for optimizing the equipment and its performance. 

1.3 Scope and Objectives of the Study 

This study was motivated by the need to establish theoretically the rates at which 

the liquid can be produced under varying operating conditions and geometry of the 

equipment. The model is an isolated hot tube impressed upon a semi-infinite body of solid 

sulphur which initially had a flat surface. Although this model does not allow for 

interactions between the thermal fields of closely spaced tubes, it nonetheless sets the 

lower bounds for the system performance. The goals are to describe the velocity and 

thermal fields, monitor the evolution of the contour of the interface between solid and 

liquid sulphur and obtain estimates for the migration rates of the hot tube. 

Specifically, the current work is aimed at the following tasks: 

1. Develop a numerical model and its algorithm. 

2. Derive equations for an approximate analytical solution to provide and identify 

important parameters. Dimensionless parameter groups which describe the process are to 

be explored through an analysis based on a simplified case under quasi-steady state 

condition. 

3. Carry out a parametric study to find out the dominant critical parameters for 
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the melting process. 

1.4 Dissertation Format 

The content of each section in this dissertation is briefly summarized as follows. 

In chapter 2, the field process for sulphur melting and the unique thermophysical 

properties of sulphur are described. Theoretical analysis, experimental studies and 

numerical treatment carried out in previous studies on close contact melting are reviewed. 

Focus has been placed especially on transient analyses and numerical simulations. 

Finally, the features to be considered in this work are identified. 

The physical model is described in chapter 3. Equations are formulated to describe 

the flow and energy transport. Constraints which need to be satisfied are determined. A 

preliminary analysis involving assumptions of steady state and the lubrication 

approximation was performed to identify the relevant dimensionless parameter groups. 

In chapter 4, the full set of transport equations, without simplifications, are 

formulated in a cylindrical coordinate system. The problem was translated into a non-

inertial frame through fixing the origin along the axis of the hot tube. An algorithm was 

developed to discretize the system of equations. The technique was a combination of a 

cliscritization method developed by Patankar (1981) (SIMPLE method) and a melting 

interface tracking method developed by Hirt and Nicols (1981) (YOF method) which 

together determined the temperature and velocity field and the moving interface boundary 

contour. 

Results and discussions are presented in chapter 5. Numerical results for a typical 
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set of parameters are reported which include the temperature and velocity profiles, 

migration rates of the hot tube, melting interface shape changes and the applied force. 

Effects of variations of the parameters on the melting process are also investigated and 

the results are presented. 

In the final chapter, the most important findings of the present study are 

summarized. Recommendations for future research are made. 
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Chapter 2 

Background and Literature Review 

2.1 Industrial Background 

Sulphur is an important industrial commodity used for the manufacture of 

sulphuric acid, fertilizers, petrochemicals and structural materials (Vroom, 1972, Platou, 

1972), In Alberta, when the market is not favourable, it is typically stockpiled in open 

mounds near sour natural gas plants after its recovery from hydrogen sulphide (H2S) in 

the produced gas (Hatch, 1972). One of the ways to transport the sulphur from such a site 

involves making sulphur beads or pellets from the liquid sulphur produced by the solid. 

The current research is focused on liquefying the solid sulphur in situ. An equipment for 

this operation is the Ellithorpe remelter. Of industrial interest are the rates at which liquid 

sulphur can be produced (by the Ellithorpe remelter and its variants), the costs of the 

operation and the "involuntary" expenses associated with pollution abatement, or the 

clean-up of block pads. 

The production rate of liquid sulphur has been observed to vary significantly with 

time and from one block to another even under similar operating conditions. The melting 

pattern may be determined in part by the physical characteristics and composition of the 

solid medium. Typical features for the solid are as follows: 1) pure sulphur exists as a 

mixture of allotropes in monoclinic, orthorhombic and amorphous structures in relative 
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proportion which vary with solidification conditions, 2) a sulphur block cast from melt 

in layers contains different amounts, types and concentrations of insoluble impurities (like 

sand, leaves, moisture etc.) and bubbles and 3) sulphur derived from the base of sulphur 

blocks is contaminated by organic substances and inorganic particles. How these 

conditions affect the efficiency and the cost of sulphur remelting are poorly established. 

To the knowledge of the author, little or no systematic experimental data or 

theoretical analysis which would serve as the basis and guidance for industrial operations 

exist. Comprehensive investigations of many problems associated with sour gas processing 

and sulphur handling have been carried out at the Alberta Sulphur Research Ltd. (ASR) 

and other organizations. These include describing the interconversion between allotropic 

forms of sulphur and the time-dependent change in the mechanical properties of solid 

sulphur (Currell et al., 1975, Roberts et al., 1987) and the forming, handling and 

transportation of elemental sulphur (Raymont and Hyne, 1983; Hyne, 1989). Problems on 

fugitive dust generation and measurement during the handling of formed solid sulphur 

(Wassink and Hyne, 1993), establishment of protocols to recover sulphur from pads 

(Hyne, 1981/2, Hyne and Schwalm, 1982/3, Hyne and Schwalm, 1983, Schwalm and 

Hyne, 1984), the production and friability of prills (Schwalm and Hyne, 1983), and 

hydrogen sulphide (H2S) release during remelt (Schwalm et al. 1987/8) have also been 

examined. Finding large-scale uses for sulphur (West, 1975) and explorations on a variety 

of sulphur recovery techniques as alternatives or complementary schemes to the Claus 

process (Pfeiffer, 1975, Hyne, 1990) have also been of interest. The foregoing indicates 

that thermodynamic aspects, i.e the chemistry of the processes and phase equilibria as 
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related to species concentrations and crystal habits (Hatch, 1972), have been the dominant 

areas of the extensive studies to date. 

2.1.1 The Remelter in operation 

As a prelude to describe the problem to be investigated, it is useful to briefly 

consider the geometric and operational aspects of an industrial equipment currently used 

to remelt sulphur stockpiled in mounds outside sour gas processing plants. The Ellithorpe 

remelter illustrated in Fig. 2.1 has been described in chapter 1 (tube diameter and length, 

number of tubes in one set, etc.). The tubes in each set are staggered with centre-to-centre 

spacing of 6 cm. That means the minimum separation between two tube surfaces in the 

same row is —1 cm. Effectively, each set of tubes covers a 3m x 3m area. The assembly 

is driven against the sulphur mound with a minimum pressure of - 3 kPa. 

Saturated steam (at 200°C, —15.4 atm) is fed into the tubes at a rate between 2500 

and 3500 kg/hr. This corresponds to 29.5 and 41 kg/hr per tube. The latent heat content 

of the steam supply is hence 4.8 to 6.8 GJ/hr. Liquid sulphur is produced at an average 

rate of up to —22.5 tons/hour when tubes move between 0.254 and 0.352 rn/hr. Since the 

solid will be mostly in the orthorhombic crystalline habit (Sa, aB1 = 49.8 Id/kg), about 

1.1 GJ/hr of heat is utilized for melting. The sensible heat to bring the solid sulphur, at 

an average temperature of 5°C, to the melting temperature of —113°C is —1.7 GJ/hr. A 

conclusion from the foregoing is that between 40 and 60% of the energy supplied is lost 

to the ambient. In some operations, the tubes migrated, without significant changes in 

steam input rates and other processing conditions, at speeds reaching 0.66 rn/hr. A higher 
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(a) Schematic view of the remelter 

Sulphur mound 

Bank of tubes 

(b) Side view of the remelter 

(c) Top view of the remelter (enlarged compared with (a) and (b)) 

Fig. 2.1 Schematic of the Ellithorpe remelter 
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steam utilization efficiency is thus realized. It is obvious that the nature of the solid, the 

geometry of the remelter and the process conditions influence the production rate of the 

liquid. 

2.1.2 Pertinent sulphur properties 

The properties of solid sulphur of importance in the remelt process are the relative 

quantities of crystalline and amorphous sulphur, heterogeneities caused by molecular 

aggregates, fractions of solid spaces and insoluble impurities, and the thermophysical 

properties associated with heat conduction and phase transformation. For the liquid, the 

density, viscosity and heat capacity are important because of the strong coupling between 

the dynamics of melt flow and the rates of heat conduction through the liquid layer or 

film to the multi-solid interface. Thermophysical properties of sulphur are summarized 

in Table 2.1 (Kirk and Othmer, 1978). 

The physical characteristics of the solid in a mound may be determined by the 

following factors: 

(a) When the liquid sulphur (density, p—i800 kg/rn3) at a temperature below 159°C 

(lambda sulphur or SA) is cooled down slowly, the volume contracts as fusion occurs to 

form monoclinic su1phur(S, p—i960 kg/n?). Sulphur S is however unstable and a 

substantial fraction of the crystals change in hours to the orthorhombic habit (Sa) which 

has a density of 2070 kg/m. The maximum possible volume reduction of 5% in the 

crystals is incorporated in the matrix structure. 
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Table 2.1 Some Important Properties of Sulphur (Kirk and Othmer, 1978) 

Freezing point, °C 

Density, kg/rn3 

rhombic 
monoclinic 

110.2(112.8, ideal) 
114.5 (119.3, ideal) 

solid rhombic 2070 
monoclinic 1960 
amorphous 1920 

liquid 125 °C 1799 

Specific heat kJ/kgK 

solid rhombic 60 °C 0.732 
95.4 °C 0.754 

monoclinic 100 °C 0.754 
115.2°C 0.790 

liquid (see Fig. 2.5) 

Heat of fusion id/kg 

rhombic -4 S (liquid) 
monoclinic - S (liquid) 
monoclinic - 4  Equilibrium 

mixture (liquid) 

498 (at 112.8°C) 
385 (at 118.9°C) 
536 (at 115.2°C) 

Thermal conductivity, W/mK 
solid rhombic 20 °C 0.272 

60 °C 0.243 
95 °C 0.226 

monoclinic 100 °C 0.161 
amorphous 20 °C 0.09 

liquid 0.1399 
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(b) The batch way that the original melt was poured into the mound may cause the 

block to be anisotropic. 

(c) When liquid sulphur is rapidly cooled from a temperature above 159°C (p sulphur 

or Sr), a solid mixture of polymeric (Sw) and S8 ring molecules is amorphous. This is 

unstable and becomes friable after a while. At elevated temperatures, the liquid's 

octatomic ring structure is broken and sulphur polymerizes into long chain. The liquid 

finally becomes octatomic linear molecules when the temperature exceeds 300°C. Rapid 

cooling at these temperatures give the amorphous solid. These transitions between 

molecular forms is shown in Fig. 2.2 (Hatch, 1972). 

Properties of the liquid are presented with reference to the phase diagram in Fig. 

2.3. (Findlay, 1945; Hatch, 1972). Conditions for the 3 stable triple points are indicated. 

At atmospheric pressure, Sa to S,3 transition occurs at 112.8°C while the monôclinic 

crystals melt at 119.5°C. In the natural state, rhombic sulphur contains other allotropic 

forms and the melting point is depressed to 110.2°C. With the monoclinic habit 

predominant, the melting point is also depressed to 114.5°C. Between 120°C and 157°C, 

the liquid (S) consists essentially of S. ring molecules. As shown in Fig. 2.4, the liquid 

sulphur viscosity decreases from 11 mPa.s to 6.7 mPa.s. Some of the ring molecules 

undergo scission at around 159°C to produce straight molecules with (reactive) free 

radicals at either end. Hence the molecules can polymerize by addition. The liquid (Sr) 

hence contains S8 rings and straight sulphur molecules in equilibrium. Large polymer 

molecules and lower S8 ring concentrations are present at higher temperatures. The liquid 

viscosity consequently rises to 8.0 mPa.s(cP) at 158°C, 30 mPa.s at 160°C and attains a 
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Fig. 2.2 Temperature relationship between 
the various forms of liquid sulphur (Hatch, 1972) 
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Temperature 

Fig. 2.3 Phase diagram of sulphur (Findlay, 1945) 
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maximum of 93,000 mPa.s at 187°C, i.e. approximately 8000 times the value at 120°C. 

The viscosity decreases beyond this temperature by a factor of 60 until 315"C (Bacon and 

Fanelli, 1943). The heat capacity plotted in Fig. 2.5 also increases i.S times from 1.02 

kJ/kgK at 130°C until a maximum is attained —158°C (Lewis and Randall, 1911). 

Approximately 75% of the rise in C,, value occurs at —157°C. That is both Tj and C, rise 

sharply at effectively the same temperature but attain maximum values at different points 

and show different trends as the temperature is increased. At —188°C at which 11 is close 

to maximum, C,, had already decreased to 1.17 kJ/kgK. 

2.1.3 The Flow of Melt 

As sulphur melts, the liquid is expelled from the gap between the two boundaries 

by an applied force. The liquid film width is normally very narrow. It is within 1 mm as 

discussed in chapter 1 and it increases along the azimuthal direction. The flow of liquid 

in contact melting is usually laminar (Moallemi and Viskanta, 1985a). Velocities, 

however, can reach up to 4.7(10.2) m/s (Saito et al., 1985a, 1985b) depending on the 

magnitude of the applied force. This continuous flow affects the heat transfer rates which 

in turn promotes the melting process. The relationship between the heat transport and the 

fluid flow is non-linear and can be complex due to the following reasons: a) the surface 

contour is unknown a priori and is expected to vary with time and depend on factors such 

as applied force, separation between tubes and size of tube; b) the migration rate of the 

hot tube depends on the process driving force (AT,), the gap width and flow patterns 

around the tube and c) changes in viscosity (1) over the range 113 - 200 °C (since 
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operators prefer to keep the hot tube at —200°C) may mean that the velocity profile will 

be complicated and different from Couette flow (as shown in Fig. 2.6). 

2.2 Close-Contact Melting 

The "classical" phase change problem, known as the Stefan problem (Stefan, 

1890), has been widely studied during the past century. In the traditional approach to the 

melting process, it was assumed that the conduction across the liquid melt was the sole 

means by which heat was carried from the heating source to the interface. Thus the heat 

transfer rate decreases monotonically as the melting surface receds. Such a problem can 

be solved analytically with a prediction for the movement of the melting front. 

In more recent work, encompassing both experiment and analysis, it has been 

demonstrated that a key role is played by natural convection in the melt layer. The cases 

of melting above or below a heated horizontal plate and at vertical surfaces have been 

studied by Hale and Viskanta (1978, 1980). The melting inside vertically oriented 

cylindrical enclosures has also been studied experimentally by Bareiss and Beer (1980). 

Melting within horizontal tubes has been the subject of studies which are numerical 

simulations (Saitoh and Hirose, 1982), experimental observations (Katayama et al., 1981) 

and both (Rieger et al. 1983). Melting outside a stationary vertical tube, with natural 

convection present, was numerically simulated by Sparrow et al.(1977). Features common 

to the aforementioned investigations are: (a) the demonstrated importance of natural 

convection unlike in Stefan's formulation and (b) there is no relative movement between 
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Fig. 2.6 Schematic of molten sulphur flow between two solid surfaces 
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the solid and the heating source during melting. For example, in Sparrow et al.'s (1977) 

numerical study on the melting of a solid at its fusion point by an embedded vertical tube 

which was heated, natural convection caused variations in the heat rate. The rate 

decreased at early times and reached a minimum when heat transport was controlled only 

by heat conduction. With the onset of convection, the rate increased and achieved a 

maximum before decreasing again as the melting surface receded. With pure conduction, 

however, the heat transfer rate would have continued to decrease monotonically. The 

width of the region occupied by the melt was found to vary along the length of the tube, 

with the greatest thickness near the top. These findings indicate that flow effects are of 

importance in enhancing melting rates. 

In close-contact melting, the phase change material (PCM) and the heating source 

are pressed against each other. Heat transfer occurs through a very thin layer to enable 

high heat fluxes. Studies involving close contact melting are reviewed in the following 

sub-sections. The problem has the following features. A heat source is in relative motion 

with the domain in which it is embedded or with which it comes in contact. The melt is 

produced and thus flows over the surface of the source. The heat input by the source is 

distributed between warming up the domain, supplying latent heat for melting and storage 

in the melt produced as sensible heat. 

2.2.1 Moving heat source problems 

Analytical solutions for problems with moving heat sources have been obtained 

for simple configurations such as slabs and half-infinite plates (Rosenthal, 1946; Landau, 
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1950; Carslaw and Jaeger, 1959). The heat source was assumed to be infinitesimal in size 

such as a hot spot in the medium. In Carsiaw and Jaeger's (1959) model, the hot spot was 

represented as a point source of heat in an infinite half space. The heat source moved 

vertically with a constant rate u0. The hot zone locally melted the PCM, but as it passed 

through, the liquid formed re-froze. Heat was conducted from the source to the 

surrounding region. The temperature distribution was derived as 

T(x,y,z) = (s/4t?) exp [-(R1 - x) u0 /2K] exp[-(R2 - x) u0 /21] j (2.1) 

R1 RZ 

where s is the strength of the source, 7 is the thermal conductivity, ic is the thermal 

diffusivity, R1 and R2 are the distances to the source and the image source. 

Jackson (1965) extended the work of Carsiaw and Jaeger (1959) to the case of a 

thin rod geometry. Temperature distributions were determined subject to a constant 

migration rate of the heat source. Here again, the heat source was considered to be 

infinitesimal in size as a hot spot. No convective interaction between the melt and the 

heat source was included. The melt was simply assumed to re-solidify into its original 

solid shape after the passage of the heat source due to some external cooling. 

Logan (1974) attempted to account for the convection effect on a process in which 

phase change occurred around a moving heat source. The process described was a deep 

self-burial of radioactive wastes by rock-melting capsules which are normally spherical 

containers. The heat generated inside the capsule brought the surface of the sphere to a 

temperature which was higher than the melting point of the surrounding rock. Formation 

of a melt rock-layer occurred. The melt was displaced and the capsule continuously 
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descended under its own weight. The descent rate was determined by the rate of energy 

exchange between the capsule and the rock melt with the consideration of conduction 

losses by using an empirical estimation. The displacement rate, therefore, was only a 

function of the heat generation rate. No convective heat transport due to the upward 

movement of the "squeezed" melt was considered in the model, and the rock melt layer 

thickness between the source surface and the rock interface was not determined. 

For these set of studies, the motion of the melt is ignored. Heat used to produce 

a small amount of melt is withdrawn by the medium. The net effect is that the hot body 

moves and the surrounding is heated. 

2.2.2 Theoretical analyses and experimental investigations on 

close-contact melting problems 

Lea and Stegall (1973) analyzed the steady melting of an ice wall with a hot plate 

impressed under a constant pressure. The plate was assumed to move at a constant rate. 

A thin film of water separated the two solids. In their analysis of the flow of water within 

the film, the governing Navier-Stokes equation was linearized by neglecting the inertial 

terms. The density and viscosity of the melt were assumed constant. They suggested that 

a relationship exists between the film thickness, the contact pressure and the melting rate 

of ice, which can be expressed as 
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ö [vm 11 L 2 ]4 (2.2) 

In their equation, p is the average pressure within the fluid in the gap, L is the vertical 

length of the melting surface, v,,, is the velocity at which the melting surface moved and 

Tj is the melt viscosity. Equation (2.2) is consistent with the trends one would anticipate 

since the film thickness decreases as the contact pressure is elevated. The energy balance 

equation in two dimensions is 

U .aT  +v ..E =?. ( ! +L. 
ax ay ax2 ay  

The scalar orders of the heat conduction terms in the energy equation are AT/I2 and ET/o2 

along the flow direction (i.e. x direction) and across the film (i.e. y direction), 

respectively. Since 3 <<L and a2/ax2 << a2/ay2, the first term on RHS, or the conduction 

term in the melt flow direction can be neglected (The orders of magnitude for convection 

terms are respectively AT ujL and AT vJ6). Only if (vjö)(L2A) << 1 can the convection 

terms in LHS be omitted. 

In their analysis, all convection terms were neglected without verifying the above 

condition. Therefore, a linear temperature profile was obtained across the film.Moreover, 

another relationship between Vm and 6 should be determined such that vm and 6 can be 

predicted from eq.(2.2). 

A more realistic model was developed by Emerman and Turcotte (1983). They 

studied the migration of a hot sphere under gravity as it melts the surrounding medium. 

The liquid between two solid surfaces was a thin film. Behind the sphere was a molten 
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wake. The liquid gap thickness, 8, varied with the longitudinal angle 0. the layer was thin 

compared to the radius of the sphere r0 (6/r0 << 1). A coordinate system (x,y) was 

curvilinear with x along the spherical surface and y across the film. The lubrication 

approximation (Schlichting, 1979) was applied. This involves neglecting the inertial terms 

in the equations of motion. In the energy equation, conduction along the x direction was 

neglected. The convection term along the y direction was retained. The energy equation 

was solved by an integral method. The gap thickness was then found to satisfy 

=  Kf(Ste) 
UO Cos e 

(2.3) 

In eq.(2.3), Ste is the Stefan number defined as Cp(TwTm)/hsi, where h, is the heat of 

fusion, Tm is the melting point of the PCM, Tw is the temperature of the heat source and 

C is the heat capacity of the melt. Also ic is thermal diffusivity and u0 is the migration 

speed of the sphere, 0 is the azimuthal angle from the direction of migration of the heat 

source. The function f(Ste) is written explicitly as: 

112 

f(Ste) =! Ste - 10 + [ Ste 2 + 70 Ste+ ioo] (2.4) 

An obvious limitation for eq.(2.3) is that 8 becomes infinite when 8 = ir/2. In eq.(2.3), 
neither of 6 and u0 is known. The additional relationship required was obtained from a 

force balance. This related the migration rate u0 to the pressure forces. The shear stress, 

of the order of iu0rj62, is negligible compared to the pressure grdient which is of the 

order iju.rJ83. The force, Fd, is expressed as: 
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F - irY%Ru 

d - 2ic3f3(Ste) 
(2.5) 

Moallemi and Viskanta (1985a) extended the above analysis to the case of a 

horizontal cylinder migrating through a solid block under gravity. Their assumptions and 

the solution technique were similar to those by Emerman and Turcotte (1983). They also 

carried out experiments using the same geometry and n-octadecane as the phase change 

material. The temperature of the cylindrical surface was kept constant at a value above 

n-octadecane's melting point. Parameters varied were the density (and hence gravity 

forces) of the heat source, its surface temperature and where the source was initially 

located in the PCM. The velocity of the heat source was empirically correlated with the 

Stefan number from the experimental data as: 

= 161.3 (Ste) 1°95 (2.6) 

In eq.(2.6), u0 is the dimensionless displacement rate of the heat source, defined as 

u0rj1. This relationship did not agree well with the results from the analytical model 

which suggested that (for Ste <0.2) 

u0 = 146.5 (Ste)°75 (2.7) 

Eq.(2.7) was derived from an expression similar to eq.(2.5). The measured velocities are 

between 64 percent to 47 percent lower than those predicted by the analysis. For instance, 

when Ste = 0.1, u0 values calculated form eq.(2.6) and (2.7) are 12.96 and 26.05 

respectively, or the measured velocity is —50.2 percent smaller than prediction. 

From the experimental investigation of Moallemi and Viskanta (1985a), two 
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conclusions can be drawn: (a) conduction was the dominant heat transfer mechanism 

around the lower stagnation point of the source where the surfaces are in closest 

approximation. The migration velocity of the heat source is essentially determined by the 

heat transfer in this region. (b) The shape of the melting interface near the stagnation 

point stops changing quickly while other points continue to deform. Experiments 

involving the same geometry and under constant surface heat flux conditions were 

undertaken by Moallemi and Viskanta (1985b). Their findings were similar to those 

obtained by Moallemi and Viskanta (1985a). 

In Saito et al.'s (1985a) experiments on contact melting, molten liquid was 

squeezed out of a thin layer between a flat solid and the melting interface by an imposed 

force. Parameters varied were the contact area of the surface of the disk, the force applied 

and the surface temperature. The heat flux increased by about 1.5 - 1.8 times for a 

contact pressure rise by a factor of 10. The correlation derived was 

q A (P *)flt (Ste) (2.8) 

where q* is the non-dimensional heat flux (q r0/X.iT ), P, the dimensionless contact 

pressure (F/irric), and A, m and n are constants with m and n estimated to be 0.2 - 0.3. 

The actual mean liquid layer thickness was 0.014 and 0.16 mm as dimensionless 

pressure decreased 100 times from 585(10'°) to 5.88(108) for melting ice. The maximum 

velocities along the flow direction at approximately the middle plane of the liquid gap 

were reported to increase nearly 10 fold from 5.1(10) to 47(10) m/s at (p*, Ste) values 

of (2.25(108), 2.51(10.2)) and (5.85(1010), 1.59(10.2)) respectively. Maximum velocities in 

the vertical direction were attained at the melting boundary with values between 1.9(10) 
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and 9.8(10) m/s for (*, Ste) values with ranges (5.85(1O'°), 3.78(10)) and (2.25(l0), 

1.59(10')) respectively. For the Ste range of iO 3 to 0.1, heat fluxes were correlated 

against pressure and Stefan number, using the least square approximation, to give values 

of A = 0.94, both m and n with 0.25. For Ste less than 0.1, the thickness of the liquid 

film was almost uniform and convection due to the flow of melt did not appear to 

enhance the rates of heat transfer between the two surfaces. 

This problem was numerically simulated (Saito et al., 1985b) with neglect of the 

inertial terms in the hydrodynamic equations. The analysis involved a steady state. 

Parameters were varied over a wide range, i.e. Ste = 10 - 2.5 and P = 10 - 1011. The 

liquid gap thickness was calculated and shown to vary along the flow direction. 

Nevertheless, only average gap widths were reported in the results. 

In further studies on the subject, Saito et al. (1986) provided an expression valid 

for wider ranges of Ste (10 4.0) and P (10 - 1011). The parameter A in eq,(2.8) was 

replaced by a function F(Ste) determined as: 

F(Ste) = 0.915 + 0.168 Ste - 0.00608 Ste 2.64 (2.9) 

F(Ste) or A equals 0.94 when Ste - 0.15. The experiments from which this relationship 

was generalized involved melting in an enclosed capsule. Heat was supplied from the 

bottom and the melt produced was expelled by gravity forces on the mass of solid left. 

The liquid flowed to the side and accumulated over the solid. 

The height of the solid block decreased with time according to the relationship: 
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where 

= (1 -0.75 P r )4/3 

=  0.25 

g r tp H0 (Ste)-0-21 F(Ste)[ I 

 T1C  

(2.10) 

(2.11) 

In eq.(2.10), H* has been scaled by the initial height H0, t is the dimensionless time 

scaled by (Ste 1/r0 H0)(p/p). ztp is the density difference between the solid and its melt 

(P - p) and g is the gravitational acceleration. 

Moallemi et al.(1986) also conducted similar experiments with n-octadecane 

employed as PCM. The solid was not enclosed in a capsule and the melt was expelled. 

The study included a steady state analysis in which the following assumptions and 

approximations were made: a) the energy transport as sensible heat by the melt was not 

negligible compared with latent heat; b) temperature distribution in the liquid layer was 

obtained by an integral method and c) the liquid layer thickness was prescribed as an 

exponential function. A relationship for the height of the solid left versus time was 

obtained as: 

r *'3/4 3 H ' = H0 - * (P g * Ste  )1/4 
]4/3 

CPr 
(2.12) 

where H0* is the dimensionless initial height of solid H/r0, t' is the dimensionless time 

(,K/r.') t, g* = gr03/1c and p* = pjp. Eq.(2.12) can be re-arranged to yield 

= [1 -0.75 t 

where 

(2.13) 
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0.25 
2 

g r0 p H0 

71 x 
(Ste) 0.75 0.25 (1)5) 

P 

(2.14) 

The constant C has value of 3/2 for a circular area of close contact and 4 for a 

rectangular surface. 

Predictions of H* from eq.(2. 13) were always lower than the measured values and 

the difference increased with elapsed time. The foregoing is the reverse of the trends 

obtained by Saito et al. (1986) with the melt contained. Moallemi et al.(1986) obtained 

that 

= f(Ste) 

UO 
(2.15) 

where & is the dimensionless thickness of liquid film defined as 8/r0. The function f(Ste) 

was given as: 

f(Ste) =  400 + (200 + 80n) Ste + 9 Ste   ) -  3 Ste - 20 (2.16) 
2 (n+1) 

In eq.(2. 16), n has value 0 for rectangular and 1 for circular cross sections of the PCM. 

The rate of migration of the solid depended on the instantaneous weight of the solid, i.e. 

r * p Ste 1025 (H SI) 0.25 
U1, =[ g CPr ] (2.17) 

Pr in the denominator is the Prandtl number (1C/?). 

In a relatively recent study, Hirata et al. (199 1) investigated melting of ice and n-

octadecane inside horizontal rectangular capsules at three aspect ratios (H0/L = 3, 1 and 
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1/3, L is the length of the capsule). Close contact between the heated and melting surfaces 

was maintained by gravity. Sensible heat in the melt was neglected and the width of the 

liquid gap was held constant along the flow direction. The film thickness was derived as, 

Ste 1 ]1/4 

[g* (l -p) Pr (H0 IL) H 
(2.18) 

In eq.(2.18), 6 depends on time elapsed through H*. Hirata et al. (1991) obtained 8 values 

in the ranges between 0.1 and 0.4 mm at the bottom of the capsule. These values are 

much larger than values of 0.014 and 0.16 mm reported by Saito et al.(1985a, 1985b), 

but forces were different by an order of magnitude of -1000. 

Bejan (1993) commented on the work of Hirata et al. (1991) and suggested that 

the thin film analysis was a special case of the more general theory earlier derived by 

Bejan (1989). In the latter, Bejan described melting on a rectangular surface with or 

without relative motion (sliding) between the solids and with or without heat generation 

by viscous dissipation in the liquid film. He noted that the film thickness formula 

(eq.2.18) was essentially the same as 

6*-[ Ste P /(icx/L 2) 
(2.19) 

where P is the instantaneous average pressure maintained between a melting solid and 

a flat hot surface. He also pointed out that, because contact melting was quasi-steady, the 

presence of H* as a time-dependent variable on the right-hand side of eq.(2.18) is 

misleading: the time-dependence entered that expression only through the instantaneous 
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average pressure, which changed slowly with time. However, we can see the systems 

described by Hirata et al. (1991) and Bejan (1989) are different. Hirata et al.'s (1991) 

problem is subject to buoyancy and therefore the actual pressure on the film is H (p-p)g. 

For the latter case, the liquid was squeezed out of the film and the contact pressure is 

Hp,g. 

In the following, studies involving melting inside the horizontal cylindrical 

capsules and spherical enclosures are reviewed. Bareiss and Beer (1984) were the first to 

investigate the case of a horizontal cylinder. They monitored photographically changes 

in the contours of the enclosed solid as it melted. The rate of liquid production and the 

heat flux densities were determined. An analysis was carried out with assumptions which 

include: a) the fluid flow within the gap is quasi-steady and laminar; b) pressure gradients 

across the liquid film were negligible; c) there was no flow along the radial direction, d) 

the density of the solid is greater than that of the liquid and natural convection at the 

upper region was non existent and e) the temperature profile across the gap was linear. 

The downward velocity of the centroid of the solid bulk was correlated with Stefan 

number ( Ste = Cp(TwTm)/hi), Prandtl number ( Pr = C, ¶1/A.) and Archimedes number 

(Ar = (zp/p)(gr03/K) ). The expression obtained was: 

(Pr Ar' °.25 
= 0.4 Ste J p* 0.75 (1 + cc) 

where 

(2.20) 
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CC = 0.25 1 Ste p* Ra 0.25 

Pr Ar 
(2.21) 

The dimensionless time required for completely melting the solid t is the inverse of 

eq.(2.20). Therefore t = 1/u05. The shift distance s0 was defined as the distance of the 

upper most point on the melting solid contour to the upper most point of the enclosure. 

The relationship between s0 and the elapsed time was given as: 

= 0.805 ( + 0.167 s0 2 + 0-074 s0' ) (2.22) 
U0 

In eq.(2.22), t5 is dimensionless elapsed time (Ste r./r,,2) t, s0 is the dimensionless shift 

distance as s0/2r0. When C = ta5, s.* = 1. 

The experimental results agreed with the theoretical predictions at early times in 

the melting process. The data (s0 and e) deviated significantly from analytical solutions 

in the final stages of the liquefaction. They suggested that the limit of validity of the 

analytical solution can be defined by means of following expression 

Ste  p5 Ra < 1.4 
PrAr 

(2.23) 

Eq.(2.23) suggests that the CC value (in eq.(2.21) would be less than 0.27. The melting 

which occurred at the upper surface of the cylinder was estimated as - 10 - 15% of the 

total. This was ignored in their analysis. One can, however conclude that the melt 

conveyed sensible heat to the wake of the PCM to cause some of the phase change. 

Prasad and Sengupta (1987) extended Bareiss and Beer's (1984) work by including 

the effect of natural convection in the governing equations and they solved the problem 
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numerically. Calculated Nusselt numbers (Nu = h cIA) along the upper surface of the tube 

and at the rear side of the PCM are indicated to strongly depend on the Rayleigh number 

(Ra = g r03 (T - T.)/(K v) ). Their results were in close agreement with Bareiss and 

Beer's (1984) prediction up to Ra = 5(l0). It was suggested that, at higher Rayleigh 

numbers, Bareiss and Beer's (1984) results underestimate the heat flux. 

Saito et al. (1988) also studied a similar problem with the difference that the tube 

was not closed. That is, the heat transfer surface was a sector covered on the upper 

surface of a copper block. The radius of the surface was, r0 = 17.5 mm, its length was 

240 mm and the sector angle was 2'ir/3 (1200). The system was symmetric about a 

vertical plane through the axis of the circle circumscribed. The melting solid was ice. A 

steady force was applied to the top of the ice. The water produced was squeezed 

azimuthally out of the gap and over the edge at an angle of 60° to the vertical. The 

analysis performed had similar assumptions to those previously given by Saito et 

al.(1985b, 1986). The average heat flux on the heat transfer surface was found to depend 

on three non-dimensional parameters: Stefan number Ste, contact pressure P* and the 

contact angle 8. Melting was controlled by pure conduction across the liquid gap for Ste 

<0.1. For Ste > 0. 1, the flow of the melt significantly enhanced the rate of phase change. 

Their experimental results were in good agreement with the numerical solutions. 

The effect of inclining the tube which contained a melting solid was studied 

experimentally by Sparrow and Myrum (1985). The circular tube was of copper and the 

PCM was high purity paraffin (99 percent pure n-eicosane). The length-diameter ratio of 

the tube was —5. Melting was first investigated with the tube axis vertically oriented. Then 
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the tube was inclined successively at angles of 5, 10 ,15, 20, 25 deg to the vertical. It was 

found that natural convection determined the melting rates until an angle 15° was reached. 

Thereafter, close-contact was established. With close contact, enhancements up to a factor 

of two in the rate at which melt was produced were achieved compared to when natural-

convection dominated the melting process. 

In the experiments performed by Sparrow and Geiger (1986) to study the melting 

of a solid encapsulated in a horizontal tube, a comparison of heat transfer rates was made 

for cases of the solid constrained to be stationary and allowed to fall freely to the bottom 

of the tube under gravity. The results showed that for a fixed duration, the melt produced 

in the unconstrained mode exceeded that in the constrained mode by 50-100%. For the 

unconstrained mode, 90% of the melting occurred at the lower region of the solid. 

Webb et al. (1987) similarly investigated a melting process of unconstrained ice 

in a horizontal cylindrical capsule to determine the interaction of "forced" flow induced 

by the solid squeezing out the melt and natural convection. The PCM, ice, was lifted by 

buoyancy to the top of the heated cylinder where close-contact melting occurred. Three 

distinct flow regimes were identified as the cylinder wall temperature was changed. When 

the wall was below the density inversion point of - 4°C, water was squeezed out of the 

gap by the solid, to form weak recirculation cells at the lower edges of the ice near the 

wall. With increasing time, the separation point on the cylinder wall moved upward such 

that the recirculation cells remained approximately the same size. At wall temperatures 

far above 4°C, the flow exhibited two-dimensional recirculation cells near the edge of ice, 

and strong three-dimensional rolls and plumes in the cavity below. At intermediate wall 
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temperatures, the flow pattern was in transition, characterized by multiple two-

dimensional cells in the melt. 

The melting of solids confined within spherical enclosures has also been studied. 

Moore and Bayazitoglu (1982) were the first to carry out an experimental study and 

undertake a numerical analysis of the problem. Results of their study showed good 

agreement with their experimental data for Ste = 0.05 and 0.1 with a maximum deviation 

of about 10 percent for the predicted interface position. Roy and Sengupta (1987) 

extended Bareiss and Beer's (1984) analysis of the melting process in a cylindrical 

enclosure to the one with spherical geometry. They employed the same assumptions. The 

solutions were in good agreement with the experimental data of Moore and Bayazitoglu 

(1982). The maximum deviation of the predicted interface position from the experimental 

results was about 16 percent. The two main parameters found to affect the melt rates were 

the temperature difference across the film and the ratio of the net gravity to viscous forces 

in the film. The latter is defined as the Archimedes number. Babrami and Wang (1987) 

also applied an analytical technique similar to that of Bareiss and Beer (1984) in 

considering melting inside a sphere. The theories of lubrication (Schlichting 1979) and 

film condensation (Nusselt, 1916) were applied. The energy equation was solved using 

an integral technique similar to the one employed by Emerman and Turcotte (1983). In 

their findings, the centroid of the solid bulk descended at a relatively constant speed. The 

dimensionless melting time was expressed as a function of Ste, Pr, Ar and dimensionless 

travel distance. The functions relating melting time to distance travelled by the centroid 

were different for spheres and for cylinders ( as in eqs.(2.20) to (2.22) ). For complete 
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melting of a sphere, t was derived as (Babrami and Wang, 1987) 

* 1/4 ( Ste 
= 2.03 p Pr Ar 

) ' 

(2.24) 

From the foregoing review, the major findings from analytical and experimental 

studies on close-contact melting are summarized as follows. 

From the theoretical analysis: 

1. The dimensionless parameters affecting the close-contact melting are found to 

be the Stefan number Ste, the applied force P (if there is one), Archimedes 

number Ar (when there is buoyancy) and critical sector angle 0, (in cylindrical 

or surface curved geometry). 

2. The liquid film thickness between two contact surfaces is very thin, normally 

less than 0.5 mm. Its value can be estimated from analysis. 

3. The rates of relative motion between the melting solid and the heating source 

are inversely proportionally to the liquid gap width. The migration rates are also 

increased at higher driving potential (i.e. larger Ste) and larger imposed 

pressure; 

From experimental observations: 

1. The process is transient at least in the early stages of melting; 

2. The heat transfer rate is much higher for close contact melting compared with 

the phase change problems in which there are no relative motions between the 
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heating source and the melting solid; 

3. Conduction is the principal mode for heat transfer in this process when Ste 

numbers are small. Fluid flow enhances melting at high Ste. When the heat 

transfer surfaces are curved as with cylinders and spheres, conduction 

determines the rate of melting at the stagnation point and hence the 

displacement rate of the heat source. 

2.2.3 Numerical simulation of transient close-contact melting 

Literature on numerical solution of transient close-contact melting problem is very 

sparse. In the following section, the related studies are reviewed. 

In the analysis of steady or quasi-steady melting problem, numerical calculations 

have been undertaken to solve simplified transport equations (Saito et al.,1985b, Saito et 

al., 1986, Saito et al., 1988). Moore and Bayazitoglu (1982) were the first to simulate 

a transient close-contact melting process within a spherical enclosure. The density of the 

solid was greater than that of the liquid so that the solid continually dropped towards the 

bottom of the shell as melting progressed. The model was developed in polar coordinates 

and the origin was placed at the centre of the sphere and was thus valid as long as the 

origin is within the solid region. The interface contour could be predicted only up to the 

time when the point at the most upper front (at 0 = 0) of the contour coincided with the 

origin. It was also assumed that the gap width changed slowly with time and the velocity 

field was quasi-steady. The radial velocity was neglected. The energy and interface 

equations were solved by the Crank-Nicolson procedure which employed finite difference 
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techniques. Numerical results were reported for the instantaneous interface positions of 

the solid and the temperature distributions in the melt. The interface position was found 

to be in good agreement with their experimental results in the early stages of melting and 

at small Stfan numbers. About a —10% deviation was observed when Ste became larger 

(>0.1). 

Moallemi (1985), Moallemi and Viskanta (1986) formulated a general 

mathematical model for unsteady contact melting by a migrating horizontal cylinder. One 

difficulty associated with the problem, as formulated, is that at time zero, the two surfaces 

touch and cause a singularity. They then simplified the problem according to their 

experimental observations which suggested that the melt domain can be divided into two 

distinct and different regions. Two regions were distinguished by the thickness of the melt 

layer, (8), separating the source and the solid. The first region referred to the melt layer 

under the heat source bounded by the solid where (0) was much smaller than the radius 

of the source (i.e. 6(0) <<r,). The second region was then the remaining of the melt 

domain or the melt wake left behind the source. They then set up two sets of formulations 

for two the regions. In the first region, a quasi-steady state was assumed and the 

migration rate of the heat source was independent of time. Due to 8(0) << r0, the 

momentum equations and energy balance equations were further simplified by neglecting 

the second derivatives along the flow direction (i.e. /x2 <</ay2). To this point, their 

simplified transport equations in this region were similar to those of Emerman and 

Turcotte (1983) and Moallemi and Viskanta (1985a, 1985b) for steady analyses. In the 

second region, u0 was also assumed constant. For the numerical approach, a new 
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parameter 8. was introduced which was the minimum separation gap width (at 0 = 0). 

The displacement rate of the heat source was then determined by the melting interface 

energy balance at 0 = 0. The transport equations in the first region were solved via a 

marching-integration procedure along the dominant flow direction. Based on the solutions 

from the first region, the transport equations in the second region were solved by equating 

the profiles of velocity and temperature at the interface between the two regions. The 

irregular flow domain was transferred to a regular one through an adaptive grid generation 

method. The numerical results showed that the heat source velocity was only a function 

of Ste, as it was independent of 8,, and the density difference between the source and the 

melt. The simulation, however, underestimated the heat source velocity compared with 

experimental observations. 

Hong and Saito (1993) recently undertook a numerical simulation for a transient 

close-contact melting. An algorithm was developed for a solid pressed against a flat 

heating surface in rectangular coordinates. The usefulness and effectiveness of their 

algorithm were tested by two problems. The first one involved imposing a constant 

temperature at the heating surface. The second one was a copper block with an initial 

temperature higher than 00 and being cooled by ice in which the copper block was used 

as the heat source. The copper block was insulated except at the surface contacting ice. 

The algorithm employed the SIMPLE method (Patankar, 1980) in a fixed grid domain. 

Transport equations were formulated using the primitive variables in two-dimensional 

Cartesian coordinates. For the first problem, steady state was attained after —15 seconds. 

The gap width gradually increased along the direction of liquid flow, but the difference 
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between the minimum near the centre line and the maximum near the exit was less than 

0.1%. The liquid-solid interface was reported to be planar and parallel to the heating plate 

at smaller Stefan number (less than 0.1). The average thickness of the liquid layer 

calculated from their simulation was in good agreement with that of the steady state 

analysis conducted by Moallemi and Webb et al.(1986) and Saito et al. (1986). The 

velocity profile was almost parabolic with its maxima located at the middle of the gap 

and its value increasing along the flow direction. In their second problem, the calculations 

were carried out for different initial temperatures and heights of the copper block. Results 

were presented for only one specification of the copper block: 0.2 m in length, 0.05 m 

in height and initially at 20°C. Ice was 0.1 m in height and at melting point 0°C. The 

velocity profiles were also parabolic, similar to those in the first problem. Nevertheless, 

the thickness of the liquid layer increased significantly along the flow direction. The 

thickness difference between the minimum and maximum was much greater than that in 

the first problem and amounted up to 4.5%. The surface temperature of the copper block 

and heat fluxes varied along the surface. The non-uniformity of surface temperature 

increased with time. 

In closing, one can state that the numerical simulation for unsteady close-contact 

melting problem is now still at an early stage. Moore and Bayazitoglu (1982), Moallemi 

and Viskanta (1986) and Hong and Saito (1993) are the three papers so far found in the 

literature that deal with transient contact melting phenomena. There has been no attempt 

to obtain a fundamental understanding of the transient behaviour of direct-contact melting 

with a moving cylindrical or spherical heat source, at least in the early phases of melting. 
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Chapter 3 

Analysis 

3.1 Formulation of the Problem 

A physical model of close-contact melting with an isolated vertical hot tube is 

proposed in this section. Governing equations which describe the hydrodynamics of fluid 

flow and energy transfer within the melt domain are derived in a non-inertial frame with 

its origin fixed with respect to the axis of the cylinder. The model is different from the 

commercial melting device described in chapter 1 which consists of two staggered arrays 

of tubes. Normally the thermal fields of an array of tubes will interact if the spacing 

between the tubes is small. With large spacing, and because of low thermal conductivity 

(A) for sulphur, each tube may be treated as isolated. 

3.1.1 The Physical Model 

The model, as illustrated in Fig. 3.1, is a hot, vertical tube suddenly brought in 

contact with the flat surface of a solid sulphur block to be melted. In the schematic 

diagram, changes in the contour of the melting surface relative to an origin located at the 

axis of the hot tube are shown. At the start of the melting, saturated steam is suddenly 

passed through the tube and a constant temperature T is rapidly attained and maintained 

on the tube surface. The tube is kept in close contact with the surface of the solid sulphur 
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Fig. 3.1 Cross-sectional view of model 
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by an externally applied force. Molten sulphur produced is squeezed in the azimuthal 

direction out of the gap that develops and it runs down at the rear side of the tubes into 

a catchment basin located at the bottom of the tubes. The cylinder is assumed long 

enough such that the end effects can be neglected. The flow of melt is assumed to be 2-

dimensional, i.e. in the radial and azimuthal directions within the gap which is the 

primary domain of interest. The sites of drainage due to gravity, where velocities may be 

3-dimensional, were assumed sufficiently displaced away from the gap and ignored. 

The following conditions are imposed on the problem. 

1. The solid sulphur is composed of pure rhombic crystals, always at its melting 

point; 

2. The melt is an incompressible and Newtonian fluid; 

3. The density and thermal conductivity of the liquid are assumed constant, i.e. 

p = 1790 kg/m' and ? = 0.1399 W/mK (from experiments, p varies by 15 kg/m3 in the 

120-160°C range). The density of the solid is 2070 kg/m. The density can thus decrease 

by a maximum - 16% on melting. This density difference is ignored in the current 

analysis. 

4. The flow is laminar and viscous dissipation is negligible. 

3.1.2 Transport Equations 

The equations which describe the flow and the temperature fields for the melt in 

the inertial frame are respectively the continuity, momentum and energy equations (Bird, 

Stewart and Lightfoot, 1960) 
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V.U=0 

DU 1 1V (iVU) = -_Vp + 
P p 

Dh 1 DC 
Vq+T p 

Dt P Dt 

(3.1) 

(3.2) 

(3.3) 

In Eqs. (3.1) -(3.3), U is the velocity vector, h equals CT and q is the heat flux defined 

as -2 VT. 

With the origin fixed with respect to the axis of the cylinder and its displacement 

rate time dependent, the Navier-Stokes equations and the energy equation have to be 

transformed into a non-inertial frame when the tube is held stationary and melting solid 

moves with velocity u0 (The transformation is shown in Appendix A.1). The governing 

equations become (Jeje and Wu, 1994): 

V u =0 

Du =-1Vp+!VVu)- Duo 
Dt p p at 

Dh DC!V. q+ T p 

Dt P Dt 

(3.4) 

(3.5) 

(3.6) 

where u is the velocity vector in the moving coordinate system relative to u0. Its 

components are u and v in the 0 - and r-directions respectively. Eq.(3.6) is expanded as, 

with K symbolizing the thermal diffusivity (XJpC) and density p = constant, 
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Dh DC 
_=VKVh+VT1cVC +T " 

Dt Dt 

The equations are subject to the following boundary conditions. 

(3.7) 

On the hot tube surface, r = r0, there is no slip and temperature is uniform and 

constant, 

u= 0 and T=T (3.8) 

At the solid-melt boundary, r = r (see Appendix A-2, eq.(A-29)); 

GIat - u VG 
  and T = T. 

IVGI 
(3.9) 

where r, is the radial distance from the melting interface to the centre of the tube. G(r1,O,t) 

is an implicit function which describes the shape of the melting boundary, 

G (re, 8, t ) = 0 (3.10) 

Along the line of symmetry 8 = 0, 

u=0 and au __.= T _=O 
DO DO 

The initial conditions are: 

t=O;u=O and T=T 

(3.11) 

(3.12) 

Eqs. (3.4) to (3.7) with the boundary and initial conditions are to be solved in a 

domain whose boundary at r1 is not known a priori. Since u0 is a function of time, the 
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velocity at the melting front is also unknown. Consequently, two more constraints have 

to be imposed on the system so that the number of equations may match the number of 

unknowns. These are the local energy balance equation at the melting front and a balance 

on the force to maintain close contact. 

At the melting surface, the energy balance equation is (Arpaci, 1966; Ozisik, 1978) 

7. -?.DT .=ph u (3.11) 
a an ' 

where n is the normal vector inwards to the melting interface. Eq.(3.l 1) yields, in the 

non-inertial frame (see appendix A.3), 

VG-VT = ph s' h3, 1.2 - u •VG 
Lt 

The relative motion between the hot tube and the sulphur block is governed by 

Newton's second law of motion 

du 

dt 

where M is the mass of the heat source, F is the net force acting on the body. The latter 

includes the externally applied force, the normal force due to pressure and the drag force 

due to shear stress. 

The system of equations are time-dependent, non-linear and highly-coupled. 

Therefore, a numerical computational scheme was developed to obtain a solution. An 

analytical solution based on a simplified model was also examined to determine the 

principal parameters which affect the melting process. In the following subsections, the 

simplified model and the analytical solutions are presented. 

(3.12) 

(3.13) 
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3.2 Analytical Solution 

3.2.1 A Simplified Mathematical Model 

An approximate solution for the melting problem, after a long time has elapsed 

from the start, is here presented. Its purpose is to determine the relevant parameters and 

the steady state solution for the displacement rate of the heat source, the temperature and 

the flow fields for the melt. In the analytical solutions of Emerman and Turcotte (1983) 

and Moallemi and Viskanta (1985a) for spherical and cylindrical heat sources 

respectively, they assumed that the thin film of the melt terminated at 90° degrees from 

the plane of symmetry. That is, they set the critical angle 0 to be it/2. This is the angle 

beyond which the curvature of the melting surface would remain constant. In their 

numerical simulation, Moalletni and Viskanta (1985a) found that the critical angle could 

be different as the melting conditions varied. It was 66.7° degrees , for example, for the 

melting of octadecane when the heat flux was constant and the closest approach between 

the surface, 8.,, = 7.5(l0) M. Saito et al. (1988) used a critical angle of 600 degrees in 

their experimental set-up. Since the critical angle is a parameter which defines the 

domain, the task is to find out how it relates to the other parameters of the system. 

In addition to the assumptions stated in the previous section, the temperature range 

for the melting is chosen to be narrow such that the properties of liquid sulphur: viscosity 

and heat capacity (i and C) can be considered constant and the liquid film separating the 

hot tube and solid sulphur is very thin (6/r0 << 1). 

It is convenient, for the analysis, to introduce a local cartesian coordinate system 
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(x,y) on the cylindrical boundary (Morega et al. 1993) as shown in Fig. 3.2, which is 

related in the cylindrical geometry to (e,r) as 

x=r08, y=r-r0 (3.14) 

The Jacobian of this transformation (with respect to the rectangular coordinates (X,Y))can 

be written as (X = r cosO and Y = r sine) 

-(1 +L)=   =1+=l +O() 
r0 (x,y) r0 r0 

For a thin gap, eq.(3.15) shows that it is possible to consider (x,y) coordinates as if they 

were orthogonal coordinates with no local curvatures and constant metric. The transport 

equations under steady state conditions can be transformed into the (x,y) coordinate 

system as: 

(a) mass continuity: 

Du + av = 

ax ay 
0 

(b) momentum equations for velocity component u and v: 

au au - lap a2u a2u 
u—•v -- 

TX ax2 ay  

(3.15) 

(3.16) 

(3.17) 
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Y 

Fig. 3.2 Physical model for quasi-steady state analysis 
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U + v 
av av - - lap + + a2v ) 
_ _ - 

ax ay a2 TT 

(c) energy conservation: 

= u_ _ + v 
ax DX  ay2 

with constant fluid properties K (XIpC) and '. (= ii/p). 

(3.18) 

(3.19) 

The order of magnitude for the two terms in eq,(3.16) are .L. and J.. respectively. Since 
r0 S 

S/r0 << 1, one obtains that v << u. Eq.(3.18) can thus be neglected as the pressure is 

considered to be constant in the y direction. For the same reason, Du < < Du and 
ax ay 

a2 a2 a2 a2 
- -, terms with - can be neglected compared with terms of - 

ax 2 ay2 DX  

With the above approximations, equations (3.17) to (3.18) simplify to: 
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and 

aT DT 
U- + V_ = K-
ax ay ay 2 

The boundary conditions to be applied are: 

(3.22) 

(3.23) 

y=O; u=v=O; T=T 
y = u = 0; v = -U0 cosO; T T (3.24) 

x=O; 
ax 

Since u0 and 6(9) are unknown a priori, one more constraint is needed to solve the 

problem. An energy balance at the melting boundary is appropriate. With the negligible 

sensible heat in the melt as produced and displaced into the gap, the balance equation can 

be expressed as: 

A DT I (0) = Ps U0 h51 cos9 ay 
(3.25) 

3.2.2 Order of Magnitude Analysis 

Before solving the above set of equations subject to the boundary conditions, a 

dimensionless analysis is presented to show the relationship between the migration rate 
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U. and other parameters relevant to the melting process. The length and velocity scales 

are r0 and u0 respectively. The angle scale is chosen as critical contact angle 6, (< 7c/2). 

Eq.(3.16) suggests that 

U.ax 

r0 

or 

U0 

6 

U— .f u0 
For the momentum equation (3.22), the order of magnitude is, 

AP 

r0 

Umax 

82 

Eliminating umax from equation (3.27) by substituting equation (3.26), results in 

/ 

8-
AP 

The order of magnitude for the local energy balance equation (3.25), is 

AT - - p h1 u0 cos8 
6 S 

Equation (3.29) can be re-organized with substitution of equation (3.28) to give 

or 

2 4 
T r0 U0 - AP 

2LAT 

PS h51 cos6 

2 
U0 r0 - Ste ]3/4 [  r 
K cos9 1K 

C 

where Stefan number (Ste) is defined as 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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Ste C (T - Ta,) (3.31) 

The left side of equation (3.30) is the dimensionless migration rate u0 of the hot tube. 

The ratio involving AP is the dimensionless contact pressure p. 

3.2.3 Analytical Solution 

The analytical solution to equations (3.16), (3.22) and (3.23) subject to the 

boundary conditions eqs.(3.24) and (3.25) is derived in this sub-section. When equation 

eq.(3.22) is integrated, one obtains, 

where 

G(9) y (y-S) 
2 i r0 

G(0) = 
- dp 

A 

(3.32) 

(3.33) 

The continuity eq.(3.16) can be integrated with respect to y by substituting eq.(3.32) and 

using the conditions in eq.(3.24) to produce 

(Q(9) 3 

aO 12 il r2 

Eq.(3.34) can be further integrated respect to 8 to obtain 

dp 1211 u0r 
- G(8) = -   sinO 

Combining eq.(3.32) and (3.35) yields 

(3.34) 

(3.35) 

(3.36) 
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Temperature distribution across the liquid gap can be obtained under two different 

situations according to the melting rate of the process. 

At Low Melting Rates 

The left side of eq.(3.23) presents the convection term whose representative scale 

is u0iT/& The scale of the diffusion effect is KT/62. Comparing these scales, one can 

conclude that the effect of convection is negligible if U08/K << 1. If this inequality is 

satisfied, only the conduction term is retained in the energy equation (3.23). Temperature 

distribution in the melt layer is then linear, i.e., 

T = T - T - T. (3.37) 

The local balance equation eq.(3.25), with the temperature distribution eq.(3.37) can be 

re-organized to obtain a relationship between the migration velocity and liquid gap 

thickness, 

u0 (8) cosO = K Ste (3.38) 

At High Melting Rates 

When the condition u06/K < 1 is not satisfied, the flow effects on heat transfer can 

not be neglected. Eq. (3.23) is then solved by an integral method. The temperature profile 

may be approximated with a quadratic polynomial in y as: 

T = C1 + C2 y + C3Y 2 (3.39) 

where C1, C2 and C3 are constants determined from the boundary conditions, eq.(3i4) and 

(3.25): 
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C1 =T 

C2 = -(T-T) - u0cos0 
6 KSte 

( 

u0cos0 

C3   icSre 

(3.40) 

Up to this point, the temperature distribution is not yet determined since q and C3 

include the unknown gap width 6 and the migration rate of the tube u0. The relationship 

between 6 and u0 can be obtained through integrating eq.(3.23) across the melt layer and 

substituting Eqs. (3.24), (3.25), (3.39) and (3.40). The mathematical manipulations are 

similar to those carried out by Emernian and Turcotte (1983) and Moallemi and Viskanta 

(1985a). They are summarized as follows. Integration of eq.(3.23) yields, 

_f(uT)dY_uoTm cose=iCI .2: y 3 - DT O Iy TX ] 

where 

f 5 
and 

u Tdy = is0 r0 sinO (C1 + ! C25 + 2. C3 62 ) 

(3.41) 

a 8 u T dy - u0 Tm cosO = u0 (T - Tm) ...?._ cos9 + 1 U0 d (6sin29) 
Jo 10 icSte d9 

I 

/ 

1c yS =o DT a 1 =1 2(T -T) 
DY ay 

;. j 

So that eq.(3.41) can be arranged as 

K - U0 cosO 

- Ste 
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d 6 K - 20f K )2 = 0 (3.42) 
TO 

(_ sin20) + (20 + 3Ste) cos8 
der0 u() 10 6/r0 u0 r 0 

With the boundary condition d6/dø = 0 at 8 = 0, the first term in Eq.(3.42) has a 

zero value. If Ste < 20/3, an initial solution for the term of (6/r) cos 0 can be obtained 

from eq.(3.42), 

6 KSte 
- cosO =   

r 
0 

Inserting eq.(3.43a) into (3.42), one obtains 

U0 T0 

sin20) _ Ste K cosO 
TO  ur 

0 0 0 

The integration of eq(3.44) gives, 

(3.43a) 

(3.44) 

cosO = 3 K Ste (3.43b) 
r(, 2 U() r() 

The integration constant is zero as at 0 = 0, both sides of the equation have to be equal. 

In each of the above cases, eqs.(3.43a) and (3.43b) are substituted into eq.(3.44), 

it then becomes, 

and 

respectively. 

and 

d6 
_(_ sin20) = -3 cos0 
dO r1, r0 

sin20) = 2 cos20 
dO r0 r0 

By substitution of eqs.(3.45a) and (3.45b) into eq.(3.42), one obtains 

u6cos0 uScosO 
3 (  0 )2 + (20+3Ste)( ) - 20 Ste = 0 

K K 

(3.45a) 

(3.45b) 

(3.46a) 
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u6cos0 u6cos8 
2 (  0 )2 + (20+3Ste)(  ' ) - 20 Ste = 0 (3.46b) 

K K 

respectively. 

The roots of eqs.(3.46a) and (3.46b) can be found and expressed as 

u 6(8) cosO = K f(Ste) 

where f(Ste) is a function of Ste and has the following forms: 

or 

from eq.(3.46a) and 

or 

f(Ste) = 
20 

f(Ste) = Ste 

f(Ste) = - ._Ste - 5 + 116 ?Ste2 70+ Ste 
4  4 

J(Ste) - 37  Ste - - H9-6 Ste 2 + .ZSte 

(3.47) 

(3.48a) 

(3.48b) 

(3.48c) 

(3.48d) 

from eq.(3.46b). 

Eq(3 .48d) is not physically realistic and therefore is eliminated. It is interesting 

to notice that eqs.(3.48a) and (3.48b) are consistent in that they have the same value when 

Ste = 20/3. A comparison of eqs.(3.48a), (3.48b) and (3.48c) is shown in Fig. 3.3. The 

function f(Ste) in eq(3.48c) approaches Ste as Ste - 0. For Ste ≤ 0.0132, f(Ste) of 

eq.(3.48b) and eq.(3.48c) equals Ste (from Fig.3.3(a)). At Ste = 0. 1, since f(Ste) = 0.0976 

(from eq.(3.48c), for example, the error is 1% and heat transfer rates may be considered 

negligibly affected by the flow of the melt. The f(Ste) value difference between eq.(3.48b) 
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Fig. 3.3 Comparison of f(Ste) from eq.(3.48a&b) (dotted line) and eq.(3.48c) 
(solid line), (a) at small Ste ranges; (b) Ste from 0 to 8 
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and (3.48c) increases as Ste increases. At Ste = 20/3, for example, since f(Ste) = 3.1774 

(from eq.(3.48c), a 52% difference can be noticed. Nevertheless, since the analytical 

model is only valid at lower Ste range, the solutions from eqs. (3.48b) and (3.48c) are 

still in consistence. In the following presentation and discussion, both the eqs.(3.48b) and 

(3.48c) are included and compared. In all the plots, solid lines refer to eqs.(3.48c) whereas 

the dotted lines to eq.(3.48b). We will discuss in more detail the consequences of the 

solutions (3.48b) in a subsequent publication. 

The pressure gradient can be determined by using eq.(3.47) to substitute for 6(0) 

in eq.(3.35), 

dp = 12 r r : cos38 sine (3.49) 
dO i f3(Ste) 

Eq.(3.49) can be further integrated with respect to 0, from 0 to a critical contact angle 0 

after which the criteria 6/r0 << 1 will be invalid. The result is, with the zero pressure at 

2u4 1 r P = 3  ° U. ( cos0 - cos49 ) 
i f3(Ste) C 

The force balance acting on the hot tube can be written as: 

(3.50) 

F = 2L rØJ' (p cosO + r sinO)dO (3.51) 

The shear stress is considered negligible compared to pressure for 6/r0 <<1. When 

eq.(3.50) is substituted into eq.(3.51), the integration result is: 

3 4 

F = 8 L  r(, 1 U0 sin 30 ( 5 - 3 sin 20 ) 
K3 f3(Ste) 

Through the application of the following non-dimensional variables, 

(3.52) 
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r r 
00 

* uor * Vr 
U0 = V,, = ________ 

K K 

F 
()r 2 

* L 0 * p r0 
pf=   p = __ 

1K IlK 

Eq.(3.52) can be arranged to obtain the non-dimensional migration velocity: 

= p 1/4 (f(Ste) ) [!. sin3O ( 5 - 3 sin 20 J 
The non-dimensional liquid gap width is found to be 

= 

( 

f(Ste) sin38 ( 5 - 3 sin2O ) 

(3.53) 

(3.54) 

(3.55) 

cose P; 

The heat flux at the hot tube surface can be obtained from eq.(3.39) and it is equal to C2. 

That is 

qS = ? (T-T) 2 u(,cosO j 
KSte 

Eq.(3.25) can be re-arranged to obtain the heat flux at the melting interface: 

u cosO 
q  
I w m KSte 

If the non-dimensional heat flux is defined as 

= q  (T  -T) 

Then the non-dimensional heat fluxes at the hot tube surface and the melting interface q* 

and q1* are given as 

(3.56) 

(3.57) 

r 
0 (3.58) 
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* = l\ * 1 2 - 1 cosO (3.59) 
'is f() 11 

q1 = U(  cos9 
Ste 

(3.60) 

3.2.4 Results and Discussions 

The above results are now used for the specific case of melting a block of sulphur 

with a hot vertical tube. The values for the therrnophysical properties of the sulphur are 

presented in Table 2.1. The radius of the tube, r0, is chosen as 2.5(10-2) m and the length 

of the cylinder L is chosen as 3 m. The thermal diffusivity is found to be 1C = 7.3133(10-') 

m2/s, Stefan number is related to the temperature difference AT as Ste = 0.01995 AT. 

The critical melting sector angle O is first determined at different Ste and f* 

values. It is noted that 6/r0 is not << 1 when 9 ≥ e. 9 is determined from eq.(3.53) by 

replacing 9 value with 9 and 8 value with 6 which is chosen as 1 percent of the tube 

radius. A function for O is then obtained as: 

f() _f(Ste) sin38 ( 5 - 3 sin 9) - (8, cosO )4 = 0 (3.61) 

To find O, a Newton-Raphson iteration procedure is employed to find the roots of 

eq.(3.61). A plot of O against Ste is shown in Fig. 3.4 for three different values: 

2.70(10), 2.70(108) and 2.70(10). These values correspond to the applied force Fe (N) 

and contact pressure Fe/27rroL (N/m2) of (0.3, 0.645), (3, 6.45) and (30, 64.5) respectively. 

The solutions with solid and dotted lines are those from eqs.(3.48c) and (3.48b) 

respectively. O, value calculated from eq.(3.48a) does not change with Ste. It is not 

considered here since the result discussion is confined in lower Ste range where the 
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Fig. 3.4 Critical sector angle as function of Ste at different p values 
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analytical solution is valid. The critical contact angle is noted in the plot to decrease with 

increasing Stefan number. It also increased with increasing applied force. The critical 

contact angle declined sharply at low Ste. That is, when two surfaces have nearly the 

same temperatures, the melting surface closely matches the contour of the heating surface 

and the critical contact angle approaches 900 deg. The gap width will be small and nearly 

constant along the azimuthal direction. As the hot surface temperature is increased, the 

gap width increases from its smallest value at e = 0 along the azimuthal direction. As the 

contact pressure is increased, more liquid sulphur is squeezed out and the melt layer 

becomes narrower. Since O increases, the channel length becomes longer. The solution 

for f(Ste) from eq.(3.48b) is the same as from eq.(3.48c) when Ste is small (<0.05). The 

critical angle value then tends to be lower from eq.(3.48b) with a difference of 1% from 

that of eq.(3.48c). 

With the knowledge of 8, the migration velocity of the tube was calculated from 

eq.(3.54) and plotted at different pf* values. The results in Fig. 3.5 show that the migration 

rate of the hot tube u0 is higher as f* is increased. At Ste = 0.1, for example, the contact 

angles, with f(Ste) from eq.(3.48b), are 30.2°, 50.0° and 67.9°, and with f(Ste) from 

eq.(3.48c), 30.4°, 50.2° and 68.0°, when f* =2.70(10), 2.70(108), 2.70(10) respectively, 

the velocities are 3.37(10 6), 4.68(10 6) and 7.76( 10,6) rn/s and 3.30(10.6), 4.59(10.6) and 

7.62( 10-6) m/s. The dimensionless gap width at 0 = 0°, öO a function of Ste, p f* and 0, 

can be obtained from eq.(3.55). The relationship between ** 102 and pf** i0 at different 

Ste values is presented in Fig. 3.6. first decreased most rapidly at low values for f*• 

When f* exceeded 1.0(10), the decline was slower. 
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Fig. 3.5 Migration rate of heat source u0 as function of Ste at different p values 
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Fig. 3.6 Gap width at 0 = 0, as function of p17 at different Ste values 
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Fig. 3.7 shows ö** 102 plotted as function of Ste at different p17 values. When the 

applied force is small, becomes independent of Ste for Ste > 0.1. E decreased from 

0.2044 mm to 0.026 mm when p17 was increased 100 times at Ste = 0.1. From Saito et 

al.'s (1985b) work, the average liquid gap width for the flat heating surface was reported 

to change from 0.16 mm to 0.014 mm when the dimensionless contact pressure decreased 

100 times from 5.85(10'°) to 5.85(108) when ice was melted. 

In Figs. 3.8(a-c), variations in the liquid gap thickness 6 along the azimuthal 

direction are presented at various Ste and p17 values. The gap width initially increased 

gradually. Beyond 0, when &r0 << 1 is not satisfied, the liquid gap thickness increased 

very sharply and the channel diverged. 

The average dimensionless heat flux at the hot tube surface q* and the interface 

q1* are plotted in Figs. 3.9a and 3.9b at different p17. When Ste exceeds 0.1, q5 and q1t 

attain different values and q is greater than q1*• This is due to the sensible heat carried 

by the flow of the melt. The heat flux from the hot tube q5* at lower Ste values are 

plotted in Fig. 3.10 (a), (b) and (c). The larger the applied force, the higher the heat flux 

achieved at the same Ste. 

The pressure distribution patterns are shown in Figs. 3.11(a-c) (p**107, p**108, 

P** 10-9 versa 0 for (a), (b) and (c) respectively) for the same condition as in Fig. 3.8. The 

pressure is almost independent of Ste when p17 becomes large. The pressure gradients 

calculated from eq.(3.38) are presented in Figs. 3.12(a-c) (dp*/d0*10l, dp*/d0*108, 

dp*/dO* iO versa 0 for (a), (b) and (c) respectively) for the same conditions as in Fig. 

3.8. They approach maximum values around 30° degrees under all the different conditions. 
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Fig. 3.7 Gap width at 0 = 0, 5 as function of Ste at different f* values 
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Fig. 3.8 (a) Gap width & development along azimuthal direction at different Ste 
values; pf = 2.70(10) 
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Fig. 3.8 (b) Gap width & development along azimuthal direction at different Ste 
values; = 2.70(108) 
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Fig. 3.8 (c) Gap width & development along azimuthal direction at different Ste 
values; = 2.7O(1O) 
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Fig. 3.9(a) Average heat flux of q,* as function of Ste at different f* values 
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Fig. 3.9(b) Average heat flux of q1* as function of Ste at different p17 values 
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Fig. 3.10 (a) Heat flux at heating surface q* as function of polar angle position 
at different Ste values; pf = 2.70( 107) 
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Fig. 3.10 (b) Heat flux at heating surface q* as function of polar angle position 
at different Ste values; f* = 2.7O(10) 
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Fig. 3.10 (c) Heat flux at heating surface q* as function of polar angle position 
at different Ste values; pf* = 2.70(109) 
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Fig. 3.11(a) Pressure p as function of polar angle position 
at different Ste values; p7 = 2.70(l 07) 
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Fig. 3.11(b) Pressure p as function of polar angle position 
at different Ste values; f* = 2.70(108) 
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Fig. 3.11(c) Pressure p as function of polar angle position 
at different Ste values; f* = 2.70(10) 
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Fig. 3.12 (a) Pressure gradient dp*/dO as function of polar angle position 
at different Ste values; f* = 2.70( 107) 
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Fig. 3.12 (b) Pressure gradient dp*/de as function of polar angle position 
* 8 at different Ste values; pf = 2.70(10) 
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Fig. 3.12 (c) Pressure gradient dp*/d8 as function of polar angle position 
at different Ste values; p* = 2.70(109) 



84 

The tangential magnitude eq.(3.36) can be re-arranged to give, 

U 

U 
(, 

6 sine (i.) (1 - ' ) 
(3.61) 

r 
C 

The u/u0 profiles are parabolic across the liquid gap, with maximum value increasing 

along azimuthal direction. 

When eq.(3.16) is integrated with the substitution of eq.(3.61), one obtains the 

normal velocity component as, 

1 - ) sin  (3.62) V (Y)2 
- - 3) cosO + 6 ( cosO) 

The volumetric production rate of melt is obtained by evaluating the tangential 

velocity eq. (3.53) at sector angle e. The result is, in dimensionless form, 

v; = ; sinec / o; (3.63) 

Plots of Vm* versus Ste at different p are shown in Fig. 3.13. Under same applied force, 

the V increases with increasing Ste number. The production rate is also higher when p7 

is increased under the same driving potential ATw or Ste. 

3.3 Closing Remarks 

In this chapter, a physical model was proposed and the general equations were 

formulated with respect to the coordinate system fixed at the centre of the heat source. 

These provide the foundation on which the numerical computational scheme was 

developed. 
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Fig. 3.13 Production rate of the melt V as function of Ste at different p values 
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A simplified quasi-steady state model was developed under a local curvilinear 

coordinate system (x,y) based on the general physical model. Approximate analytical 

results were presented for the migration rate of the heat source. The intent of the analysis 

was to obtain the dimensionless parameters that could affect the melting process. The 

results show that the primary parameters are the Stefan number and a dimensionless 

applied force p. The critical sector angle 9 is a parameter related to the applied force 

and surface temperature and it also influences the process. The migration velocity was 

found to vary from 7.7814(108) m/s to 2.415(10) m/s while Ste and p varied from 

(0.001, 2.7O(1O)) to (0.5, 2.70(109)), respectively. The gap width at angle 0 = 0 changes 

from 0.026 mm to 0.204 mm as was decreased by a factor of a 100 from 2.70(109) to 

2.7O(1O). The result also shows that at very small Ste number ( Ste < 0.015), the heat 

transfer is controlled by conduction. Sensible heat transport can not, however, be 

neglected at large Ste number. The differences between two f(Ste) solutions (3.48b and 

3.48c) become more critical as Ste value increases. Most of the disccussion in this chapter 

pertains to consequences of eq.(3.48c) while the conclusions do not change for very low 

Stefan number. The follow-up change due to the other solution (3.48b) will be done in 

subsequent research. 
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Chapter 4 

Numerical Simulation of the Transient 

Process 

In this chapter, numerical techniques used in solving a moving boundary problem 

with a phase change event are reviewed. The grid generation method, how irregular-

shaped boundaries are treated, how temperature-dependent physical properties of the melt 

are handled, and the procedure for tracking the moving interface are briefly summarized. 

Discretization of the PDEs is carried out and an algorithm was developed to solve the 

resulting algebraic equations. 

4.1 Literature Review on Numerical Techniques 

4.1.1 Introduction 

The problem of a phase change with a moving heat source involves both the 

conduction as well as convection of thermal energy. The resulting transport equations are 

nonlinear for three reasons. One type of non-linearity is due to the convective terms in 
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the momentum and energy equations. The second is because the thermophysical properties 

of the melt vary strongly with temperature. The third kind of non-linearity is caused by 

the existence of a moving boundary; the melting interface whose loci is not known a 

priori and has to be determined simultaneously as a part of the system solution. The 

shape of the boundary may not match or follow the coordinate directions. For treating 

such problems by numerical techniques, there are basically two approaches. The first one 

is connected with interface-fitting algorithms (varied grid or mesh methods), and the 

second one with interface-smearing (fixed grid) methods. Samarskii et al. (1993) have 

recently reviewed these two numerical techniques in relation to solving moving-boundary 

problems. Lacroix and Voller (1990) have also suggested that both varied and fixed grids 

can be applied with success to a wide variety of problems, including solving phase change 

problems. 

4.1.2 Varied and Fixed grid Methods 

The varied grid method is based on a transformation of the irregular physical 

domain under consideration into a regular rectangular one through the introduction of new 

independent variables. If the process is transient (or time-dependent) with a moving 

boundary, the transformation has to be repeated continually since the system geometry 

changes. Although the domain thus transformed is regular, the mapping from the physical 

domain to each new regular domain is demanding. It is necessary to solve a coupled 

system of PDEs at every time-level as the grid is constructed (Thompson, 1982; Warsi 

and Thompson, 1982). This procedure may require more computational effort than solving 
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the transport equations directly. If the relationship between an irregular domain and the 

transformed regular one can be expressed analytically, the mapping would be 

straightforward and the PDEs may not have to be solved. The work is simplified if the 

new coordinate variables can be defined explicitly by using the old ones. Sparrow et al. 

(1977) and Hsu et al. (1981) employed the varied grid method to transform the physical 

domain to a rectangular one without solving the transformation PDEs. Under their specific 

conditions, a vertical hot tube was embedded at a fixed location in a solid to be melted. 

The melting interface formed a truncated cone wider at the top. The cone angle varied 

with elapsed time. Natural convection involving the melt in this space is two dimensional, 

i.e. in r- and z- directions. During any given computational interval, the shape was 

assumed unchanged. As a consequence, when this geometry was transformed into a 

rectangular one, the new coordinate variables were defined explicitly as functions of the 

interface radius (i.e. X = (r-r0)/(r1-r0) and N' = z/z0). Solutions of PDEs for the grid 

transformation were thus avoided. This transformation was also used by Moore and 

Bayazitoglu (1982) for investigating close-contact melting inside a spherical enclosure. 

Moallemi (1985) and Moallemi and Viskanta (1986) employed an adaptive grid generator 

to create a curvilinear coordinate in their simulation of a horizontal tube melting its way 

through a phase-changing solid. 

The varied grid method removes the difficulties which arise from the presence of 

irregular boundaries. However, new difficulties arise. The transformed governing 

equations are more complicated than the untransformed ones and the execution of the 

algorithm consumes a large amount of CPU time. The alternative fixed grid method is 
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thus in more common use. In the fixed grid technique, the mesh established at the start 

is not altered during the entire calculation process. The calculation domain is the physical 

one which is usually irregular. Discretizations of PDEs can be done using a general 

approach which is known as the fictitious regions method (FRM). The energy equation 

can be formulated using temperature (Hong and Saito, 1993) or enthalpy (Shamsunder and 

Sparrow, 1975; Voller and Prakash, 1987; Brent, Voller and Reid, 1988, Date, 1991). For 

defining the velocity field, the fixed grid method can be employed using either primitive 

variables (velocity-pressure) or a stream function-vorticity formulation. In terms of the 

primitive variables formulation (u,v,p), the governing equations are the Navier-Stokes 

equations. The stream function-vorticity formulation involves a fourth-order equation 

derived from the Navier-Stokes equations through eliminating the pressure terms. 

For the present study, the fixed gird method was chosen and the numerical 

simulation involved the primitive variables formulation (u,v,p). The transformed grids 

method or varied grid method is an efficient method to solve a phase change problem in 

some cases, but it was difficult to apply to the present problem. For the transformed grids 

method, the calculation domain must be mapped from the real region for each time step. 

This requires extensive calculations and, therefore, is costly. The unknown migration rate 

of the heat source must also be re-calculated whenever the assumed velocity is updated 

at each time step. 

4.1.3 Temperature-dependent Properties in Phase-change Process 

In the process of melting and solidification, media properties sometimes vary with 
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process temperature. Cho and Sunderland (1974) analyzed a phase-change heat conduction 

problem into a semi-infinite slab in which thermal conductivity was assumed to be a 

linear function of temperature. Oliver and Sunderland (1987) extended the above problem 

to the situation where both the thermal conductivity and heat capacity of the melt varied 

linearly with temperature. A semi-analytical solution was obtained by using modified error 

functions to predict the heat transfer rates. A Runge-Kutta scheme was used to evaluate 

the modified error functions. Heat conduction with phase change and varied properties 

have also been investigated by Sheen and Hayakawa (1991) in a food freezing process 

which involves volumetric changes. To overcome the convergence problem in their 

analysis due to the temperature-dependent food properties (both the thermal conductivity 

and heat capacity were functions of temperature), the internal temperatures were solved 

numerically by an implicit finite difference method while a finite volume heat balance 

method was applied at the boundary nodes. They, however, did not elaborate on how to 

handle the varied properties when discretizing the PDEs. 

Patankar( 1980) introduced an "effective" thermal conductivity for the case of 

varied thermophysical properties. Ogawa et al. (1991) employed a similar technique to 

handle the situation in which viscosity was expressed as an exponential function of 

temperature. Similar treatments were used by Hong and Saito (1993) for the viscosity and 

Voller and Swaminathan (1993) for the thermal conductivity at the phase change 

boundaries. 
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4.2 Numerical Analysis 

The governing equations are expanded and normalized in the cylindrical coordinate 

system as described in subsection 4.2.1. The calculation domain and the technique to 

generate the grid mesh is described in 4.2.2. The treatment of the string intersected 

boundary and the discretization of the partial differential equations (PDE) are then 

presented respectively in 4.2.3 and 4.2.4. 

4.2.1 Governing Equations in a Cylindrical Coordinate System 

In chapter 3, a mathematical model was described with respect to a coordinate 

system fixed at the centre of the hot tube. In this section, detail expressions of the 

governing equations will be developed for the cylindrical coordinate along the 8- and r-

directions as in Fig.3. 1. The boundary conditions are elaborated upon. The constraints are 

presented as expressions to be solved simultaneously with the governing equations. 

Equations (3.4), (3.5) and (3.7) are expressed in the cylindrical coordinate system. 

The properties of the melt (e.g. 11 , C) are not constant but temperature-dependent. A 

reference temperature was chosen to be the melting point Tm. The variables were 

normalized with respect to the following scales: length, r0; velocities, iç /r0; pressure, 

plç2/r02; time, Km-' r02; energy content, h - hm; and temperature, T - Tm. The prime 

variables and the corresponding dimensionless ones with scales are listed in Table 4.1. 
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Table 4.1 Prime variables and their corresponding dimensionless counterparts 

Dimensionless Variable 

* 

r 

* 

U 

* 

V 

* 

U0 

* 

Uor 

UOe* 

p* 

Definition 

v/(lcm r0') 

Uo COe/( t0 ') 

u0 Slfl8l(1(m r;') 

p/(piç2 r;2) 

tJ(r 2 iç') 

h (h - hm)I(h v - hm) 

T* (T - Tm)/(Tw - Tm) 

M* M/(pr02L) 

Fe* Fe/(PKm2L r0') 

c p* Cp/Cpm 
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The governing equations, in dimensionless form, are 

(a) continuity: 

(b) r- component 

(c) e- component 

1 

rt 

1 a (r * vt) + 1 au* 0 
- - 
rt art -;:-: -j-e-- 

Dv* aV t 
- +v - + 

avt = apt 

ao art 

1 Pr Dv* 2a 
+ - Pr r* J + - - rt art art rt ae 

I 

1 a a 
+-- Pr_-_ 
r*ao O 

2 Pr (au* " Ut2 au0,. 
+v 1+ --

- r*2 ) att 

+v au* +ut DU* ._ lap 
-  
at* 7: 

( ( 

Prr DU* + -  ---

rt art art r t ae r* ae 
I 

a [Pr Vt 

r ao 

- U 
I ia 
] rt ae 

Pr (aut 

+2vr* ra 0— 
*J] 

I 

Pr Du* 1 Dv* ut u tv t au:0 

+ 7: + 7: DO -  rt rt  

(4.1) 

(4.2) 

(4.3) 
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(c) energy 

V * ai u 
r* aO 

r*c + I 
r* r* r* r* aO r ao 

- Ia rh EJlnC, - 1 a h*t E1lnC, 

r ar* Dr* r* ao rt ao 
I 

+ h* 
alnc; lnc; + ainc; 
  + v*   
ar Dr* r* ae 

I 

(4.4) 

where Pr = im Cpm/A is the Prandtl number and = ic/ic is the ratio of the thermal 

diffusivity at temperature T relative to the value at the melting point Tm. The reference 

diffusivity, iç, is defined as 

temperature. C = Cp/Cpm. 

P C PM 

The boundary conditions to be applied are 

where Cpm is heat capacity at the melting 
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r*=1 ; u *= v =O and h*=1 

r*=1 + *;u *= ucos8 sin (O_4)) 

v* = - U( cosO cos (8 - 0); and h* = 0 

o = 0; = _X_ = = 0 
DO ao DO 

(4.5) 

(4.6) 

(4.7) 

where angle 4) (Fig. 4.1) is subtended by the tangent to the curve defined by G (r1, 0, t) 

and the horizontal, i.e. 

= 0 - tan' 
i 

1 + o*(O, t) 

The curvature at any point on the melting surface is given as: 

k = 

2 I 
(* '2 

(1 ._I - 
0) 

+ * )2 

3/2 

Derivations of eqs.(4.8) and (4.9) are in Appendix B.1. 

The initial conditions for the problem are 

t* =O;u* =O,v*=O and h*=O 

(4.8) 

(4.9) 

(4.10) 

So far, eight unknowns are identified, i.e. U, v, h, p, u0,  and k. However, only 

six equations are available (eqs.(4. 1) to (4.4), (4.8) and (4.9). Two constraint equations 

are needed for closure. The constraint expression eq.(3.14), is simplified using the 
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Fig. 4.1 Definition of 0 and velocity component at the melting interface 
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approach suggested by Patel (1968). The details are presented in Appendix B.2. Some 

important formulas are summarized as follows: 

Since 

U = - u(cos e 1- sin ø]); 

G 1 DG 
VG = i - 

ar r ae 

G =r -r(, -(O, t) =0; 

and DG DG DG - = 1, - = -  

ar ao a- o at at 

Eq. (3.14) can then be expanded as 

* 

- = U, 
at* 

I 

cos 0 + 

( 
1 (a6* 

Ste 1+ 

I 

sin e 

aT i 

I (4.11) 

An external force is applied on the hot tube to maintain a close contact of two 

solid surfaces for the operation. The force balance for the heat source in dimensionless 

form is formulated as: 

* 

M* du.. J!. = Fe* - 2 f dt*  ( p *cosO + <,sin0 ) dO (4.12) 

where Fe* denotes the dimensionless applied force per tube length. 'r.7 is the dimensionless 

shear stress, 0,, is the critical sector angle. 

For the present problem, the boundary at 0 = 00 has a stagnation point on the 
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surface of the tube. The surfaces also have the closest approach at this boundary. In order 

to find a solution to the problem, either the force applied or the minimum spacing 6 has 

to be specified. 6 was chosen as the prescribed parameter. The energy balance at 9 = 

0 can be obtained directly from eq.(4.1 1) as: 

I (4.13) u0 I = Ste Ir=1+8: * 

4.2.2 Calculation Domain and Mesh Generation 

The origin of the system, as illustrated in Fig.3.1, is fixed at the centre of the hot 

tube. Only one half plane is considered due to the symmetry about the vertical line 

through the origin. The solid wall being melted is assumed initially flat. The domain, as 

shown in Fig. 4.2, is a rectangular block upon which a cylindrical grid pattern is 

superposed (Hastaoglu, 1987, Negiz, 1991). The indices i and  are for 9 and r directions 

respectively. It is important to note that the sketch is not scaled as the 6 value has been 

exaggerated and is not proportional to the radius r0. The initial grid domain is much larger 

than the region where melting occurs. The latter expands as the melting progresses. The 

lateral side of the computational domain, R, is 5 r0. The mesh is non-uniform but &r and 

are constant. The sizes are 1.5(10 5)m and it/180 for tr and A9 respectively. The grid 

is 181x101. 

System variables such as temperature and pressure are determined at the nodes of 

the principal grids (e.g. points N E S W in Fig. 4.3(a)). The velocity components u and 
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Fig. 4.2 Initial calculation domain 



101 

v are evaluated at the staggered secondary grid points (n e s w) located midway between 

the main grid points in the 0- and r- directions. As noted by Patankar (1980, 1988), this 

keeps the continuity equation consistent and unrealistic pressure and velocity fields, which 

may also satisfy the continuity equation and Navier-Stokes equations, are avoided. A 

control volume is illustrated as in the shaded area in Fig.4.3(a) for the variables such as 

temperature and pressure. Similar control volumes are constructed for the staggered grid 

points where the momentum equations are discretized. Fig. 4.3(b) and (c) illustrate the 

control volumes for the u and v components both of which shift halfway along the 0 and 

r directions respectively. 

4.2.3 String Intersected Boundaries 

As close-contact melting progresses, the solid-liquid interface is continuously 

deformed and the melt envelops the hot tube surface. It is possible that the curved 

boundary intersects the grid mesh at the points which are not located at the mesh nodes. 

String intersected boundaries arise in our problem due to the fact that the interface 

contour may not coincide with the grid line of the mesh. The melting interface may 

traverse a cell bounded by a set of computational molecules as illustrated in Fig. 4.4. 

Such cells are called surface or partial cells as compared full cells which fully locate 

inside the flow domain. Under this condition, "short legs" arise when string(s) are 

intersected by the curved boundary. That means the distance ( r ij r) between the node 

and the interface (shown in Fig. 4.4), where f,. ij ≤ 1, is less than the mesh size Ar. The 
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Fig. 4.3(a) Schematic of main grid point, staggered grid points 
and control volume for T and p 



Fig. 4.3(b) Control volume for u 
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Fig. 4.3(c) Control volume for v 
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Fig. 4.4 A surface cell bisected by the solid-liquid interface 
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number of grid points in r direction is not the same at the different angles, 0. When the 

value for E is prescribed, the number of grid points in the r- direction, at each angle 0, 

can be calculated from 

N.(0) r.' -r" 1l • 

I 

6(8)1 
=   = 1 

J L  rJItr i   
(4.14) 

The symbol I. i means the integral values of the quotient. These numbers are updated 

once the melting interface shape is established at each time step. The coefficient f,,j for 

the r-direction can be determined from the formula 

1 
= [ 6(0) - (I\(0) -1) r] 

Ar 

Coefficient f, ij in 0- direction can be calculated from: 

f ii  
where (I is the root of the equation 

(i-i) t0 - (f -

AO 

(4.15) 

(4.16) 

G(r , cb , t) = 0 (4.17b) 
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Solid - liquid interface 

Fig. 4.5(a) Schematic of string intersected boundary in one direction 
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Solid - liquid interface 

Fig. 4.5(b) Schematic of string intersected boundary in two directions 
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curved boundary at point B. The distance between the nodes (i,j) and B is f, r. Fig. 

4.5(b) illustrates a situation in which two of the strings from the node(i,j) are intersected 

by the curved boundary at points B and C. The distances between the nodes (i,j) and B 

and C are f, ij &r and f, ij i &0 respectively. The representation of War at node (i,j) can 

be obtained from (Ozisik, 1980) 

h1 = 1 h  frj  h - 1 fr  h. I (4.18) 
Ar frij (1 fr) 1 frij i"' frj "j 

For the second order finite difference approximation, one obtains 

Dr  
2 hm   +  i,; h.-1  _ h.. = _ 

r 

(A r)9frU (1+ fn j.) fr ii frij 

A similar expression can be obtained for derivatives with respect to 0 as: 

and 

- 1 [ h 

DO 'J -  r A0[i(1 +f) 
j 

D2  
e   

(4.19) 

- ft z:i  h. - 1  hi (4.20) 
1 -i-f.. :-lj ( 

(If If 

2 h  +  h 1 - h..l 

A Ø)21f U (1 +f) + L ft ii ft ii -

(4.21) 

where f, j and f ij are coefficients defined in eqs.(4. 15) and (4.16) in r- and 0- directions 

respectively. 

Singularity may arise in eqs.(4.18) to (4.21) if the coefficients 1 ij and f j are zero 

or very close to zero. This means that, if the grid point is very close to the solid-liquid 
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interface, the discretization should be handled differently. When the solid-liquid interface 

is closer to a grid point than a fixed distance, variables at the node are set to assume the 

values at the interface. Equations (4.18) to (4.21) can not be applied at such grid points. 

The criterion implemented was that the distance from the grid point to the surface in any 

of the two directions be less than 1010 m, i.e. 

frij tr and f, ij r t8 < 10'° 

4.2.4 Discretization of the PDEs 

I Treatment of internal nodes 

Equations (4.1) - (4.6) are coupled and non-linear. For the discretization, the finite 

control volume method developed by Patankar(1980, 1988) was used. This method 

combines finite difference as well as finite element techniques, and the conservation 

principle applies at every node point (Li and Durbetaki, 1992, Hong and Saito, 1993). 

In this approach, each of the transport equations is expressed, in terms of a general 

variable 1, of the form 

+ J__(prVr ) + 1 
Tt T Jr 

(4.22) 

1 D 1 ikI" 1 a(' 1aY+s •s = ..IrT 1 
rar T) r8 reJ " 

where r, S, and S, are respectively the exchange coefficient, the source and the pressure 

terms. The terms I, F,, S, and S, are defined for each of the equations (4.1) - (4.4) 
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through certain manipulations. These results are presented in Table 4.2. 

Table 4.2. Expressions for r', S, and Sc!, for any general Variable 

Equation Sp Sc!) 

Continuity 1 0 0 

Angular ut Pr - 1 v * 
r*-e-

Momentum 

Radial 

Momentum 

Energy 

Pr 

0 

1 a %V* 
T7[ rJ] 

1 a 'r 
+ + 2v* J] 

U 

at* 

rt Dr* l ar* 

au u 

r* ae rae r* 

- 2 P (au* + * J 
r. 

- * 

U  

r* at* 
( 

0 r 1 a *h* alnc; 
-__ 

r* ar* Dr* 

- i a h*t alnc; 

r* ae r*  ae 
I 

In C,* alncp* 

at* ar* 

u* alnc; 

ae 
I 

I 
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The governing partial differential equations summarized in Table 4.2 are 

discretized to yield algebraic equations by using a power law difference scheme discussed 

by Patankar (1980). The grid and the control volume in (r,O) coordinates have been 

presented earlier in Fig. 4.3. The z-direction thickness of the control volume is assumed 

to be unity. To obtain the discretization equation, we integrate eq.(4.22) with respect to 

r and 0 over the control volume. The general discretization equation can be written as 

where 

a cJ? = aEcT?E + a'J? + aNcI N + a5t5 + b 

aE = De A(IPl) + 0:—Fe , 0]] 

a;y =D iv A(IPl) + 0:—F19 , 0]] 

aN = D A(IPI) + !t-F , 0:11 

a5 D A(1P51) + 0:— 

b = a ' • S AV 

1'-S LW aP aE +aW +aN +aS + ap P 

(1 - 0.1 P 
C 

(4.23) 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

(4.24e) 

(4.240 

(4.24g) 

(4.24h) 
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A V = 0.5 ( r + r,1 ) Ar AO (4.24i) 

In the foregoing equations, ap° and I° are values known at time level t while all other 

values refer to values at time level t+At which are unknown. Ff11 means the larger of the 

enclosed components. Sc and Sp are the coefficients of the source term after a 

linearization by a formula 

s = sc + sP (4.25) 

F, D and P (Peclet number) are defined as 

F=uAr De= FE Ar 
re (AO)e 

r' Ar F 
F =u Ar D=  - - w w 

rw (Ae), 

FrAO F 

(Ar) 
n n  p n Fn fl v r - 

F'rçA9 F 
F v rç AO D  (Ar), D 

(4.26a) 

(4.26b) 

(4.26c) 

(4.26d) 

The momentum equations have been discretized in a way similar to the 

discretization of the energy equation. The control volumes for u* and v* are different from 

each other and both are different from that for h*, as was shown in Fig. 4.3 (b) and (c). 

The resulting discretization equations for u* and v* can be written as 

a e ue* = Ya nhUnb + b + (p; - PE)4e 

for the u component, and 

(4.27) 



a n v!* = flb1'flh + b + (p - p,)A 

for the v component. The terms A and A are defined as: 

A=& 

A,, = 0.5(r + rN)18 
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(4.28) 

(4.29a) 

(4.29b) 

They represent the areas over which the pressure differences act in the radial and 

azimuthal directions respectively. The neighbour coefficients, ;b account for the 

combined convection-diffusion transport across the control-volume faces. The terms allb 

and b in eqs. (4.27) and (4.28) are defined in the same manner as in eq.(4.24). 

II Treatment of boundary nodes 

Due to the fact that the calculation domain is irregular, grid cells close to the 

interface may not be full. As discussed earlier in this section, the fraction values should 

be considered when discretizing the system of equations. Eqs.(4.14) -(4.17) are employed 

for the discretization. The resulting algebraic equations are similar to eq.(4.23). However, 

on the boundary, the values of O N or/and (Dw correspond to the values at the melting 

boundary. 

4.2.4 Treatment of Temperature-dependent Properties 

In the temperature range of industrial interest, from the hot surface to the melting 

point of solid sulphur (112.8 - 200°C), the viscosity and the heat capacity of liquid 
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sulphur exhibit almost discontinuous changes as the temperature is increased, as was 

described in section 2.2.2. These data could not be fitted with simple mathematical 

formulas. Therefore, values for viscosity and heat capacity were stored in two data files 

in the program package and retrieved (with interpolation as necessary) at temperatures 

obtained at the main grid points. When Patankar (1980)'s SIMPLE method is employed 

to discretize the PDEs, the property values are defined for the conditions at the centre of 

a grid cell while velocities are defined at points on the cell faces. However, one needs the 

values of the viscosity Tj at the corners of grid cells (e.g. point e in Fig.4.6) when the 

viscous terms in the momentum equations are calculated. Special care has to be .taken in 

calculating the viscosity lie from values at the neighbouring grid points by interpolation 

to avoid numerical instability. The treatment as described in Patankar (1980) for the 

varied thermal conductivity and its application by Ogawa et al. (1991) to handle the 

varied viscosity was employed for the il, calculation. In the calculation of the 0-

momentum equation, for example, 11 was calculated from the following equations 

(Patankar, 1980, Ogawa et al. 1991) 

= 111 6e + 112 602 
e 

2 A 
11,2 =   

6r1 6r 

• 1 .,b 

(4.30) 

(4.31) 

here r, is the viscosity at point i in Fig.4.6 such as point 1 or 2. When lib' for example, 

is much larger than the viscosities at the points a, d and c, Tib contributes negligibly to the 
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Fig. 4.6 Illustration of the grid cell used in the interpolation of variable 
properties in a main-staggered grid net. Temperature, pressure and properties (i C 
etc.) are defined at the grid points a-d, the 0-component velocity u is defined at the 

staggered points by solid squares, and the r-component velocity v is defined at the grid 
points represented by empty squares. 
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viscosity r• This procedure facilitates computation when large viscosity differences exist 

even between adjacent grid cells. A similar treatment has been applied to the interpolation 

of C,, values, when necessary. 

4.3 Tracking of the Melting Front 

4.3.1 Calculation of Radii of the Interface 

The solid-liquid interface location is a function of time as the melting progresses. 

The interface which is defined by an implicit function G(r1,O,t) in eq.(3.1O) can be 

explicitly expressed, in dimensionless form, as 

r1 f( 0 , t ) (4.32) 

As discussed in section 4.1.1, the development of the melting contour is determined by 

the local energy balance equation at the melting interface and the migration rate of the 

hot tube. The discretization of eq.(4. 11) in finite difference form is 

* 0* 

r1 - r1 

- Ste ____ 

where 

20 

I, sinO, a* 
 * 

r• COU I 
(4.33) 

(4.34) 

Here, r, and r,+,* indicate the radii of the interface at angle 8,,, 8, and 8+,, 
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respectively, and r1° * is the value of r' at the time t level. Eq.(4.33) can be re-arranged 

in the following form by substitution of eq.(4.34), 

where 

Cr 

b 

a,. 'I + b r* + C r11 = 0 

Ste T* 
a =  +  

L8 (Ø)2 Dr 

2* ()* * 

r, -r, r * * 

=   - U0 cosO, r. 
AO 

sinG. Ste T* * * 

+ I (r 1 - 2 r_1) 
AO (A O)2 jTr7 

(3.35) 

(4.36a) 

(4.36b) 

(4.36c) 

This set of non-linear equations with three bands can be easily solved using the Newton-

Raphson iteration method(Burden, 1980). 

In the above equation, u0* is calculated from eq.(4. 13). aT*/r* I is the temperature 

gradient at the solid-liquid interface. It can be numerically evaluated by using the 

temperature values at the nodes closest to the surface. The evaluation formula for 

I may, due to the irregularity, vary with the interface position: the closest node 

may be located exactly at the interface or at a position between two grid nodes. If the 

contour is intersected by the r grid line, at the grid node or very close to the grid node 

NR (the criterion for which is discussed in section 4.2.1), it can be evaluated using a 

formula suggested by (Kuehn and Goldstein, 1976) 
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- -2 "i,NR-3 + NR-2 - 18 7'i,NR-I + 11 T, 

Dr * 1i 6rt 
(4.37) 

In this case, TNR = Tm. If the boundary intersects r grid line at a distance t ij Ar above the 

nearest internal grid node NR, the heat flux can be calculated using a formula which takes 

the coefficients into account. That is, 

T 1 - -2 TR.2 + 9 7 WR-I - 18 + 11 TI: 

ar (hf -5)r nj 

(4.38) 

4.3.2 VOF Method 

Since the melting front becomes indented and its position moves as the melting 

proceeds, it is necessary to develop a strategy to track this irregular interface in order to 

compute efficiently the numerical approximations to partial differential equations within 

a variable calculation domain. Several methods for tracking discontinuous front and 

interface are reviewed by Hyman (1984). These methods include surface tracking 

techniques based on connected marker points along the interface, volume tracking 

methods that track the volume occupied by the solution regions bounded by the interfaces, 

and moving-mesh methods where the underlying mesh is aligned and moved with the 

interface. 

Among these methods, the fractional volume method (also called the volume of 

fluid,VOF) developed by Nichols et al. (1980) and Hirt and Nichols (198 1) seems suitable 

for the current interface tracking. VOF is one of the volume tracking methods which 
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employs the fractional volumes of fluid in a cell as the identification flag for this grid 

cell. In this technique, a function F(r,O,t) is defined whose value is unity (1) at any point 

occupied by fluid and zero (0) elsewhere. When averaged over the cells of a 

computational mesh, the average value of F in a cell is equal to the fractional volume of 

the cell occupied by the fluid. Cells with F values between zero and one contain a 

boundary surface (surface cell or partial cell). This method was initially developed for 

tracking a free surface, and it is found that it can be applied for a moving boundary 

tracking with phase change after some modification. 

In the (r,O) coordinates, the time dependence of F is governed by the equation 

F + + 1 a(FU) 1 a (rFv*) 0 - __ 

at* r*8 r*ar* 
(4.39) 

When eq.(4.39) is integrated over a computational cell, the changes in F within a cell 

reduce to fluxes of F across the cell faces. Special care must be taken in computing these 

fluxes to preserve the sharp definition of an interface. The technique used here is a type 

of donor-acceptor flux approximation (Johnson, 1970). The essential idea is to use 

information about F downstream as well as upstream of a flux boundary to establish a 

crude interface shape, and then to use this shape in computing the flux. 

As shown in Fig. 4.7, considering the amount of F to flow through the right-hand 

face of a cell during a time step of duration 1t*, the total flux of fluid volume and void 

volume crossing the right cell face per unit sectional area is V, = u &. The sign of u* 

determines the donor and acceptor cells, i.e, cells losing and gaining fluid volumes 

respectively. For example, if u* is positive, the upstream or left cell is the donor and the 
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(b) AD=D 

(d) AD=A 

Fig. 4.7 Concept of donor and acceptor cells 
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down stream or right cell the acceptor. The amount of F flowed across the cell face 

within one time step is a product of 6F and the face cross-sectional area. 8FX is defined 

as 

= MIN ( FAD IV,1 + CF, FD r* 60D ) (4.40) 

where 

CF = MAX( (1.0 - FAD) I VJ - (1.0 - FD) r* 69D , o.o ) (4.41) 

Single subscripts denote the acceptor (A) and donor (D) cells. The double subscript, AD, 

refers to either A or D, depending on the orientation of the interface relative to the 

direction of flow: AD = A or acceptor cell is used when the surface is convected mostly 

normal to itself; otherwise, the donor cell value is used. Briefly, the MIN feature in 

eq.(4.40) prevents the flowing of more fluid from the donor cell than it has to give, while 

the MAX feature accounts for an additional fluid, CF, if the amount of void to be flowed 

exceeds the amount available. Similar treatment can be used to calculate 5FY for the lower 

and upper cells when the total flux of fluid volume and void volume crossing the lower 

cell face per unit cross sectional area is V, = v* At*. Therefore the updated fluid 

configuration will be 

F = F° - 6F /r* - F r* AO 

for a donor cell, and 

F = F I + Lr * + F r * AO 

for an acceptor cell. 

(4.42) 

(4.43) 
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4.3.3 Determining the Interface Within a Cell 

One needs to know the exact location of the interface in surface cells in order to 

obtain the fraction information. In the VOF approach, it is assumed that the boundary can 

be approximated by a straight line cutting through the cell. By first determining the slope 

of this line, it then can be moved across the cell to a position where it intersects the 

known amount of fluid volume in the cell. 

The slope of the intersect line is: 

dY - r,  r1 cosO - r, cos81_1 

dX - r_1 + r1 + r11 r, sinO, - r,_1sine,_1 

+  I I 

r, 1cosO1 - rcosO 

r_1 + r, + r11 r141sinO 1 - rsin81 

(4.44) 

Given the slope of the interface at a location, a line can be drawn through the cell 

with the correct amount of fluid volume within the fluid side of the volume. This line 

represents a portion of the actual surface and provides the information necessary to 

calculate the coefficients for the application of equations for the surface nodes as 

described in eqs.(4.15) to (4.21). 

4.4 The Solution algorithm 

4.4.1 The Speed of Motion of the Hot Tube and the Critical Angle O 

As mentioned in section 4.2.1, the displacement rate of the heating tube u0 can 

be evaluated from eq.(4.13) since the gap thickness S,,, at 0 = 00 is assumed as a 
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parameter for the process. T*/r* I 8=0 at the interface can be calculated using eq.(4.37) or 

eq.(4.38) depending on the boundary situation there. The migration rate affects. the 

velocity field and depends explicitly on the temperature field. Since the velocity field is 

determined on the basis of a guessed migration velocity u0, the procedure of velocity and 

temperature calculations has to be repeated until convergence is reached. The loop is 

presented in the flow diagram which is Fig 4.8. 

As melting progresses, the polar sector of the flow domain continuously expands 

and the 0-direction numbering of the grid points varies as a function of time elapsed from 

the start of the melting. The sector angle subtended by the gap is the instantaneous critical 

angle 0. Beyond 0, the flow channel diverges widely and the heat transfer towards the 

interface at the melting point is negligible. The challenging problems involved are how 

to determine this angle 6 and where to terminate the calculation. As the heating body 

migrates and the melting surface is indented, the curvature of the melting interface would 

be observed to change sharply in the plane of the original wall location. This point of 

curvature change determines the extent of the domain at each time step. The curvature of 

the melting surface is calculated from eq.(4.9) after the boundary shape is re-determined 

using eq.(4.1 1). Consequently the angle 0, can be updated. 

4.4.2 The Calculation Procedures 

After the relevant technical details have been discussed in the above sections, a 

solution algorithm can be presented and the sequence of calculations shown for each time 

step (Wu and Jeje, 1994). A flow diagram of the calculation procedure is shown in Fig. 
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4.8. The highlights of the key operations in each time step are listed as follows: 

1. A semi-implicit technique, the SIMPLE method (Patankar, 1980), is employed 

to calculate the primitive variables u, v and p* for the radial and azimuthal components 

in the equations of motion and continuity. 

2. The temperature field is then determined from the energy equation and, from 

the result, the local values for heat capacity (Cr) and viscosity (TI) are evaluated according 

to the latest temperature field. 

3. These updated property values are then substituted into the transport equations 

and calculations are repeated until convergence is achieved at each time step. 

4. The moving rate of heat source is calculated by eq.(4.13). 

5. Calculations are returned to step 1 until a constant velocity for the migration 

rate is obtained. 

6. The melting boundary is located and the surface cells are tracked by the VOF 

technique (Hirt and Nichols, 1981). The fluid configuration is updated and the fraction 

values are calculated. 

7. The curvature of the interface contour is then calculated and the critical angle 

O is determined and the numberings of grid points in the r- and 9-directions are re-

calculated. The flow domain is then advanced. 

The calculation is stopped when a specified simulation time is reached. In this 

approach, it is assumed that the melting process allows for a small time lag between the 

heat transfer to the interface and the movement of the interface (due to melting and also 

motion of the heat source). To explain this treatment: suppose that for a small time 
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Fig. 4.8 Flow diagram for the numerical algorithm 
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interval, At, the, interface is regarded as fixed. For this fixed calculation domain (with 

respect to the heat source), the SIMPLE approach is used to solve the discretized system 

of equations for the velocity and temperature fields, subject to the boundary conditions, 

to yield the distributions of the field variables for the next time step. The interface 

contour is then updated using the heat flux through the interface calculated from the 

distribution of temperature based on the fixed domain throughout the time interval. The 

heat flux through the interface at 8 = 0 is used to evaluate the displacement rate of the 

hot tube. 

4.4.3 Stability of the Finite Difference Scheme 

The effective implementation of the above approach requires that At be sufficiently 

small to avoid errors associated with the lag between the heat delivery to the interface and 

the resultant interface displacement. The value of the time increment has a significant 

effect on the stability of the solution, particularly for the melting interface contour. After 

a series of tests, a time increment of 2( lO s) second was found small enough to ensure 

stability of the solution. The corresponding dimensionless time increment is 2.261(10). 

The effect of varying the grid size (Ar and A8) on the solution was examined. The 

grid sizes were: 91x51, 181x101 and 361x201. For identical conditions of the 

calculations, the results obtained were similar to each other. A run with more grid points 

(i.e. finer grid size) consumed more CPU time (a —40% increase compared with the 

intermediate one). For the coarsest grid size, the pl9tted contours of the melting interface 

were not very smooth. An intermediate set of the grid sizes provided the best compromise 
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with respect to both CPU consumption and smoothness of the melting interface contours. 

This corresponds to the size values of 1.5(10 5)m and ir/180 for &r and t9 respectively 

as mentioned earlier in Section 4.2.2. 

4.4.4 Validation of the Numerical Algorithm 

Since there were no numerical and/or experimental data available in the literature, 

no comparisons can be made with previous work. A validation of the numerical algorithm 

was carried out on a simple ice-making process. The scheme was also tested by 

comparing the migration rates of the hot tube u0 obtained from transient simulation 

algorithm and from the steady analytical solution at low Stefan numbers. The analytical 

solution in Chapter 3 has been demonstrated to be valid when Ste is small. In the 

following presentation, the solid lines refer to the results from numerical simulation 

whereas the dashed lines and discrete dots to the analytical solutions and experimental 

data points. 

Growth of ice above a horizontal plate maintained at -20°C and in contact with 

a semi-infinite body of water was simulated. It was assumed that no convection currents 

were present in the water and heat transfer with phase change occurred only by 

conduction. Numerical results obtained for the time-dependent thickness of the ice match 

the analytical solution presented by Ozisik (1980) as shown in Fig. 4.9. 

For the melting of sulphur, when the Stefan numbers are low, the plateau value 

for u0 (after the initial rapid increase) obtained from the numerical simulation was almost 

the same as the one calculated from the analytical solution using eq.(3.54) (f(Ste) values 
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Fig. 4.9 Numerical simulation of ice thickness versus time, 
compared with analytical solution by Ozisik(1980) 
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from eqs.(3.48b) and (3.48c) respectively) along the e = 0 direction. This result is 

illustrated in Fig. 4.10 for Ste = 0.15 (T = 120°C) and 8. = l.5(10) rn. When the 

temperature of the hot surface was increased, the analytical solution underestimated u0 by 

—5% (when Ste<0.5). 

The numerical model was also employed to simulate the melting of n-octadecane 

with a horizontal hot tube migrating through the phase change material under gravity. The 

thermophysical properties of n-octadecane used are as follows: fusion temperature, 27.5 

°C; heat of fusion, 243.5 kJ/kg; specific heat of liquid, 2.23 kJ/kg.K; density of liquid, 

768 kg/m3; viscosity of liquid, 3.064 mPa.s. 

The calculated migration rate of the hot tube is compared with the experimental 

data of Moallemi & Viskanta (1986) when the hot tube temperature was set at 40°C and 

the phase change block was at the melting point of n-octadecane, which is 27.5°C . As 

shown in Fig. 4.11, the steady displacement rate of the hot tube is in good agreement with 

the data. The experimental observation for u0 was —2% higher at the initial melting stage. 

The difference may be attributed to natural convection occurring in the experimental 

system. This was neglected in the numerical simulation. 

To compare the simulation results with the experimental data when the n-

octadecane block is at a temperature lower than its melting point, the algorithm was 

modified to take into account heat conduction into the block. The migration velocity of 

the hot tube was obtained for TW = 36°C and T,, = 23°C. The results are plotted in Fig 

4.12 and compared with experimental data reported by Moallemi & Viskanta (1986). The 

results are in close agreement with a maximum difference of 5%. 
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Fig. 4.10 Numerical simulation of migration rate of the hot tube u0 when T = 120°C, 
compared with steady state solution obtained from chapter 3 
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Fig. 4.11 Migration rate of the horizontal hot tube u0 for n-octadecane melting when 
T = 40°C and T0, = T. = 27.5°C, compared with the experimental results (.) of 

Moallemi and Viskanta (1986) 
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Fig. 4.12 Migration rate of the horizontal hot tube u0 for n-octadecane melting when 
TW = 36°C and T, = 23°C, compared with the experimental results (v) of 

Moallemi and Viskanta (1986) 
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Although the melting on the melting sulphur in this study is based on the 

assumption that the surface of the hot cylinder involved with melting is at the prescribed 

temperatures, the algorithm has been tested for the situation with a prescribed heat flux, 

the Neumann boundary condition. The medium, as for the foregoing, is n-octadecane for 

which the thermophysical properties can be assumed invariant. At a heat flux of 2630 

W/m2 which corresponds to a Stefan number ( defined as Ste = r, q"/[h51 + Cs [Tm - T0J 

) of 2.326 and with the n-Octadecane maintained initially at T = 21 °C, the results for 

the migration velocity are as presented in Figure 4.13. A definite "overshoot" is predicted 

in agreement with the experimental data of Moallemi and Viskanta (1985b) which are 

also shown on the same plot. This overshoot was never predicted from any of the 

calculations based on specifying a constant temperature at the surface of the hot cylinder. 

In the present calculations, the simulation was terminated when the azimuthal angle for 

melting reached 90°. 

In Figure 4.14, the variation in temperature with melting time was plotted at angle 

of 0°. The simulation shows good agreement with the measured data (Moallemi and 

Viskanta, 1985b). The wall temperature of the hot tube first increased to a peak value 

before declining with time. The variation of the wall temperature affects the migration 

rate of the hot tube which demonstrated an "overshooting" in the initial stage as shown 

in Fig. 4.13. 
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Fig. 4.13 Migration rate of the horizontal hot tube u0 for n-octadecane melting when 
the hot tube wall heat flux q" = 2630 W/m2, T00 = 21°C (Ste = 2.326), compared with 

the experimental results of (0) Moallemi and Viskanta (1985b) 
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Fig. 4.14 Variation of heat-source surface temperature with time for n-octadecane melting 
when the hot tube wall heat flux q" = 2630 W/m2, T., = 21°C (Ste = 2.326), compared with 

the experimental results of ( for 00) Moallemi and Viskanta (1985b) 
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Chapter 5 

Results and Discussion 

In this chapter, results are presented for the temperature and the velocity fields, 

the displacement rates of the heating source, and the evolution of the outline of the 

melting front at early times during close-contact melting. In Section 5.1, the results 

typical for the process are discussed and interpreted. In the following section, the effects 

of changes in the variables are presented. These variables had earlier been identified as 

the surface temperature of the heat source, the gap width 6, at 9 = 0 and the radius of the 

hot tube r0. 

5.1 An Illustrative Example 

In this simulation, initial conditions for the solid sulphur block and the cylindrical 

tube were specified as eq.(4. 10). The surface of sulphur was initially flat and the solid 

block was at its melting point during the entire process. The surface temperature of the 

tube was also initially at the melting point of sulphur. The temperature of the heat source 

was then suddenly increased to a temperature T (T > Tm) and melting commenced. The 

equations to be solved include terms for il and CP. Both vary with temperature in a 

complicated way - both rise rapidly at certain temperatures and the sensitivity of the 
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solutions to the changes in the parameter increases, i.e., the eqs.(4.2)-(4.4) become ill-

conditioned. For this reason, the temperature of the hot tube was maintained at ≤ 158°C 

such that predominantly the S, liquid would be present (Fig. 2.2). Under this condition, 

the viscosity of liquid sulphur decreased monotonically from 12.64 mPa.s at the melting 

point of 112.8°C for orthorhombic sulphur to a minimum value of 6.63 mPa.s at 153°C. 

Beyond this temperature, viscosity increased to 11.9 mPa.s at 158°C. The imposed 

temperature limit reduced the degree of system sensitivity, i.e. the equations are not as 

wretchedly ill-conditioned as for a larger range of temperature. The heat capacity, 

however, increased from 0.993 kJ/kg K at the melting point to 1.86 kJ/kg K at 158°C. 

The latter is slightly beyond the peak of a cusp in the data. 

The representative results of calculation are for a typical set of parameters listed 

in Table 5.1. 

Table 5.1 Parameters for the Example Solutions 

Ste (or T, °C) 6, (m) r0 (m) 

0.77 (150) 1.5(1O) 2.5( 10-2) 

Results for the migration rate of the hot tube versus time elapsed is shown in 

Fig.5. 1. At the very initial stage of the process, the migration rate u0 increased rapidly as 

melting started. After a short induction period, the acceleration rate of the tube increased 

from zero, then reached a maximum value of 1.0(10) rn/s2 in the first -10 seconds. The 
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Fig. 5.1 Migration rate of the hot tube u0 as function of time 
T = 150°C (Ste = 0.77), 8. = 1.5(10)m, r0 = 2.5(102)m 
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velocity attained a near plateau value of 4.7(10) m/s (or 16.8 cm/hr) after —15 seconds. 

This u0 value is in agreement with the field operating observation which is from 26 to 34 

cm/hr when TW is set to 200°C. 

In calculating the force required to maintain the minimum separation distance 6 

between the hot tube and the sulphur block, the term M* du0*/dt* in eq.(4.12) was 

neglected because its maximum value is —1.01(10) while is in the range of io - 10 10. 

A plot of the applied force as function of the melting time is shown in Fig. 5.2. Fe* of i09 

corresponds to an absolute force of 11.1 N for a 3 m long tube. The force increased 

rapidly in the early phases of the melting process. It then increased at a slower pace after 

—60 seconds. The applied force serves two functions in this process: a) to keep a constant 

moving rate of the tube or to keep close contact of the hot tube with the solid surface, 

and b) to overcome the drag force due to the melt flow along the surface. Pressure forces 

are much larger than the viscous forces. The ratio is —20. As the melting progressed and 

the melting interface deformed continuously, the close approach area between the melting 

surface and the hot tube increased with time. Both the pressure and drag forces increased 

and larger external forces were needed. Even though the migration rate of the heating tube 

reached a steady state in a short time, the applied force kept increasing. Nevertheless, the 

force increased only slowly with time after —420 seconds. 

Fig. 5.3(a) - (d) show the dimensionless temperature distributions across the film 

at various angles and after different elapsed time up to 300 seconds. The abscissa is the 

radial distance from the heating surface (r - r) scaled by the local melt thickness (r1 - r0) 

or 6(O,t). The ordinate is the dimensionless temperature defined as 
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Fig. 5.2 External applied force Fe* as function of time 
T = 150°C (Ste = 0.77), ö = l.5(1O)m, r0 = 2.5(102)m 
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Fig. 5.3(a) Radial temperature profiles across the melt gap at different angles, t = 10 S 
T = 150°C (Ste = 0.77), 8, = 1.5(10)m, r0 = 2.5(10 2)m 
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Fig. 5.3(b) Radial temperature profiles across the melt gap at different angles, t = 30 S 
T = 150°C (Ste = 0.77), 80 = 1.5(10)m, r0 = 2.5(10 2)m 
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Fig. 5.3(c) Radial temperature profiles across the melt gap at different angles, t = 60 S 
T = 150°C (Ste = 0.77), 5 = 1.5(1O)m, r0 = 2.5(10 2)m 
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Fig. 5.3(d) Radial temperature profiles across the melt gap at different angles, t=300 s 
T = 150°C (Ste = 0.77), 8. = 1.5(10 4)m, r0 = 2.5( 1072)M 
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AT 

ATIV 

- T- TM  
(5.1) 

which varies from 0 at the melting interface to 1 at the heating surface. Temperature T 

is calculated from the dimensionless heat content, h*: 

{ht (h -h) ]+h 
T = w m m (5.2) 

cp 

where 

= T • PIV h = Tm • CP. 

At the initial stage of the melting, the temperature shows strong non-linear profiles at 

different angles. The differences among the profiles are large. The melt became cooler 

as the angle 0 increased from 00. Radial heat transfer occurs over a longer path length at 

larger polar angles. After -10 seconds, for example, the heat flux ratio at the melting 

interface and the hot surface, q1/q, at angle 0° is -0.4, while at angle 20° (0), it is -0.1, 

as shown in Fig. 5.4. On the melting boundary, the ratio of the temperature gradients at 

angle 0° and at 20° is -10. The temperature profiles at different angles come closer to one 

another with time. The ratio of the temperature gradients at angle 0° and at 20° at the 

melting boundary approached -1.05 after 60 seconds. The average heat flux ratio at the 

melting interface to the hot surface became -.45 (Fig. 5.4), or about 45% the heat was 

utilized for the phase change. 

The non-linearities of the temperature profiles are due to the changes in the 

curvature of the surfaces and the "injection" of the liquid from the melting interface. 
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Fig. 5.4 Angular variation of heat flux ratio qJq as function of melting times 
T = 150°C (Ste = 0.77), S, = 1.5(1O')m, r0 = 2.5(102)m 
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Curvature of the melting surface, from eq. (4.9) is, at 9 = 0, 

1 
0 (r 0 + ö )2 a 0 

0 

1 

e=o (r 0 + 8 
0 ) 

(5.3) 

Along 8 = 0, heat transfer is by conduction. When liquid injection from the melting 

surface into the gap is ignored along 0 = 0, the radial temperature profile, may be 

estimated through the use of the method of heat sources and sinks (Eckert and Drake, 

1987): 

where 

Tw Tm 

T-T = In [(NI r+)+(N/r+)2_1 

[ k0N2 + /(k0N2)2 - 1 

In 
 (N1 / r0) + / (N.110 )2 - 1 

1c0N2 +ij (kN2)2 -1 

N[k2 -r +2 _ 2]I2; N1 =[k-2 _ r( _c2]/28; 

2 - r(, +C2]/28 =[k(2 -r +2 N2+ 0   

= k'-r0-60 ; 

(5.4) 

(5.5) 

Curvature at 0 = 0 would be a little lower than the theoretical curvature of the isothermal 

surface if heat transfer was strictly by conduction. 

This profile differs from that obtained when heat is conducted between the 
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surfaces of two concentric cylinders. The latter is given as: 

TTm - In( ri r(, ) 
T- T In(r1/r0) 

As r1 approaches r0, the right side of eq.(5.6) becomes (r - r0)/(r1 - r0). 

In the numerical calculations shown in Figs. 5.3(a-d), the profile along 0 = 0 

changed only significantly at the early times, <-30 seconds, when k0 changed from 0 to 

hr0. Thereafter it was nearly invariant. The analytical solution from eq.(5.4) is compared 

with the limiting profile in Fig.5.5. The temperature obtained from eq.(5.4) is almost 

linear and the melt is predicted to be cooler at the same radial position as compared with 

the numerical results. The injection of melt into the gap is suggested to account for the 

differences. The maximum difference between the two temperatures is -30%. 

The azimuthal velocities at different angular positions are plotted in Fig.5.6 (a) to 

(d) at different melting times (10, 60, 180 and 300 seconds). The abscissa is the 

dimensionless distance from the hot surface as defined for Fig. 5.3 while the ordinate is 

the dimensionless velocity u/u0. The velocity of approach of the sulphur block to the 

heating surface, u0, is a function of time as presented in Fig. 5.1. At a given instant, the 

maximum of the normalized velocity profiles initially increased as the polar angle 0 

increased. The maximum velocity in the domain is at an angle 0 < 0. It is important to 

note that the volume rate of the melt flow increased monotonically with 0 at each instant 

and the normalization of velocity with u0 (which varied with time) gives a wrong 

impression at a first glance at these curves. The highest velocity in the gap is located at 

a point within the domain and its value and position changed with time. Peak velocities 

(5.6) 
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Fig. 5.5 Comparison of radial temperature profiles at 0 = 0, from simulation 
and eq.(5.4), T = 150°C (Ste = 0.77), ö = 1.5(10)m, r0 = 2.5(10 2)m 
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Fig. 5.6(a) Tangential velocity profiles across the melt gap at different angles, t=1O S 
T = 150°C (Ste = 0.77), 5. = 1.5(10 4)m, r0 = 2.5(102)m 
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Fig. 5.6(b) Tangential velocity profiles across the melt gap at different angles, t=60 s 
T = 150°C (Ste = 0.77), ö = l.5(1O)m, r0 = 2.5(10 2)m 
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Fig. 5.6(c) Tangential velocity profiles across the melt gap at different angles, t=180 s 
T = 150°C (Ste = 0.77), 8. = 1.5(10')m, r0 = 2.5(10 2)m 
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Fig. 5.6(d) Tangential velocity profiles across the melt gap at different angles, t=300 s 
Tw = 150°C (Ste = 0.77), ö, = 1.5(10')m, r0 = 2.5(102)m 
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are given in Table 5.2 at the radial distances where they are located. The profiles are not 

similar since the curves in each plot can not be collapsed into one. Non-zero velocities 

at (r - r0)/ 1, reflect two things - first, the surface is being deformed and moving at a 

velocity different from the approach velocity of the block to the hot surface. Secondly, 

each location on the surface is curling around the tube at different rates. 

Table 5.2 The local maximum velocity values at different melting times 

TW = 150°C, u0 = 4.4(1O) m/s at t = 10 s, and 4.7(10) m/s when t ≥ 30 s 

t (s) 00 (0°) (r-r0)Th Maximum u(10 3) (mis) 

10 19 (20) .475 2.17 

30 22 ( 25) .465 3.46 

60 25 (31) .479 3.58 

90 29 ( 36) .477 3.55 

120 34(41 ) .469 3.50 

150 39 (45) .479 3.48 

180 43 (48) .479 3.44 

210 48 (52) .500 3.40 

240 51 (56) .487 3.30 

270 54 ( 59) .494 3.25 

300 58 ( 63 ) .472 3.18 

360 63 (69) .467 3.00 

420 67 (76) .448 2.51 
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The velocity profiles show some interesting patterns. In Fig. 5.6(a), the maximum 

velocities at different angles are located at varying dimensionless radial distances which 

are progressively (as 8 varies) closer to the heating surface at each instant. In Fig.5.6(b), 

the profile at 0 = 5° shows almost zero velocity at a radial position of -P0.88 and the local 

shear stress vanishes. This suggests that the flow could become unstable and flow 

structures like rolls (cells) could develop. A similar minimum in the velocity pattern 

appears in Fig. 5.6(c) at 0 = 10°. Since such a profile is not seen at larger times in Fig. 

5.6(d), any unstable structures may be transient. Hydrodynamic instability has not been 

examined in this study. 

The dimensionless bulk-mean temperature of the melt is defined as ATbmILTw. The 

numerator can be evaluated from: 

fr r•+5 u(TTm )Cp rdr 
AT =   hm fr•+8 U C, r dr (5.7) 

Fig.5.7 presents the angular variation of the dimensionless bulk-mean temperature at 

different times. At the initial stage of the melting (t < 30 s), the bulk-mean temperature 

of the melt decreased significantly along the melt channel. The liquid was initially at the 

melting point Tm and time was required for the melt to gain sensible heat through 

conduction. At early times, the volume of melt per sector angle between 0 to 0 is the 

largest. Furthermore, temperatures at 0 - 0° are rapidly elevated because 8 is minimum. 

The discharged melt, therefore, has a disproportionate amount of liquid initially present 

at the temperature of Tm. With increasing time, more of the melting surface approaches 
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Fig. 5.7 Angular variation of bulk mean temperature as function of melting times 
Tw = 150°C (Ste = 0.77), 8,, = 1.5(10 4)m, r0 = 2.5(102)m 
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the hot surface. This encourages a more rapid heat accumulation in the gap and the 

fraction of sensible heat in the melt to latent heat used for the phase change increases. 

The bulk-mean temperature declined at a slower rate at longer times along the azimuthal 

direction. 

With the production of melt at the interface, there is a radial velocity component. 

Fig.5.8 shows the profiles at 60 seconds. The radial velocity components are small 

compared to the azimuthal values and they decayed rapidly away from the interface. The 

values became low and convergent on one line within 0.15 of the gap width from the 

melting boundary. Liquid produced is quickly re-directed in the azimuthal direction. 

Changes in the gap width, ö(O,t), are illustrated in Fig.5.9(a). The locations for 0 

values are noted in each curve. The curves are described by a bounding envelope from 

which each curve diverged at increasing elapsed time. The implication is that as time 

progresses, larger sectors of the melting surface become fixed in shape. For example, at 

240 seconds, only the surface region within the sector 40° <e < 60° exhibits changes in 

the gap width. The development of the melting surface contour is illustrated in Fig.5.9(b). 

The gap width has been enlarged 100 times. It is obvious that only portion of the surface 

near O is modified progressively. After 540 seconds, the critical sector angle had reached 

81 0 under the set of parameter used. 

Changes in the curvature of the melting surface with time and position are 

presented in Fig. 5.10. The curves show the instantaneous variations with polar angle up 

to 420 seconds from the start of melting. As was earlier noted, near 0 = 0, a fixed 

curvature was rapidly achieved. Thereafter, the general pattern shows a slight decrease 
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Fig. 5.8 Radial velocity profiles across the melt gap at different angles, t = 60 s 
T = 150°C (Ste = 0.77), 8,, = 1.5(10)m, r0 = 2.5(10 2)m 
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Fig. 5.9(a) Gap width development as function of time (time = nx60 s) 
T = 150°C (Ste = 0.77),'S. = 1.5(10')m, r0 = 2.5(102)m 
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Fig. 5.9(b) Interface development with melting time 
time interval between two contours is 60 seconds 

Tw = 150°C (Ste = 0.77), ö = 1.5(10')m, r0 = 2.5(102)m 
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Fig. 5.10 Curvature of G(r1,O,t) as function of melting time 
T = 150°C (Ste = 0.77), 8,, = 1.5(10")m, r0 = 2.5(102)m 
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in curvature form 0 = 0 to a minimum close to the melt discharge angle. The curvature 

decreases sharply and becomes negative at the edge of the melting front. The angles 

subtended from the axis of the hot tube are 0. at the peaks of the curves in the figure in 

which absolute values of curvature are plotted. 

In the Fig. 5.11 (a and b), the changes in 0, with time are presented. This reflects 

the rate at which the sulphur block wraps around the hot tube. The plots suggest that there 

are two regimes. Within less than 1 second, the melting surface was rapidly indented such 

that an angle of _300 was subtended at the hot surface in close contact with the sulphur. 

Initially, contact was along a line. In this interval, the volume of melt produced is, 

according to the sketch below, 

Os 

less than 1/2 (r0+ 0)2 (0 - sin 0) per unit length of the hot tube. With r0 = 2.5(10 2) m, 

8. = 1.5(10) m and 0, = 150, the volume of the melt is —3.8(1O) times the volume of 

the hot tube. This means only a minute quantity of melt would have been expelled with 

the conformational change. The heat transferred in the interval therefore goes primarily 

into phase change and 0 increases rapidly. It is suggested that when 0 reaches —15°, the 

curvature in the region of 0 =0 might have stopped changing, i.e. reached its upper limit 
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Fig. 5.11(a) Critical sector angle O as function of melting time at t ≤ 5 s 
T = 150°C (Ste = 0.77), ö, = 1.5(10 4)m, r0 = 2.5(102)m 
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Fig. 5.11(b) Critical sector angle O, as function of melting time 
= 150°C (Ste = 0.77), ö = 1.5(10)m, r0 = 2.5(102)m 
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and thus any further liquid produced in this zone of closest approach needs to be expelled 

to maintain a constant 8, This initiates the motion of the melt and subsequent 

developments. In the second regime, melt is expelled and a fraction of the heat transferred 

by the hot tube is carried off as sensible heat not utilized foi melting. The corresponding 

rate of change of 9 thus decreases. The plot in Fig. 5.11(b) suggests that, gradually, a 

higher fraction of the heat supplied per area of contact, is convected as sensible heat with 

the melt. 

5.2 Parametric Results 

The effects of varying the principal parameters on the melting process are 

presented and discussed. These parameters are as follows: surface temperature of the hot 

tube, the gap width at 8 = 0°, E and the radius of the tube r0. Surface temperatures are 

set at 120, 130, 140 and 150°C which correspond to Ste values of 0.15, 0.36, 0.56, 0.77 

respectively. The ö, values are chosen to be 1.5(1O), 2.O(1O), 2.5(10) m and the radii 

of the tube are 1.25(10 2), 2.5(10 2), 5.0(10.2) m respectively. In the following discussion, 

just one of these parameters is changed while others are kept constant. The typical values 

of parameters are: 130°C for the steam temperature, 1.5(10) m for 8. and 2.5(102) m for 

the tube radius. 

5.2.1 The Effect of Heating Temperature T,4, 

The tube temperature has a significant influence on the melting process as shown 

from the theoretical analysis in chapter 3. The effects of steam temperature on the 
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migration rates are shown in Fig. 5.12. The migration rates varied significantly with time 

and Stefan numbers. The velocities first increased sharply and then attained a near plateau 

values after 15 seconds. The steady state values were higher as the driving potential AT, 

(or T - Tm) increased. Asymptotic velocities (u0) of 6.8(106), 1.8(10-i), 3.0(10), 4.7(10) 

m/s ( or 2.4, 6.5, 10.6, 15.7 cm/br) were obtained when the hot tube was maintained at 

120, 130, 140 and 150°C respectively. At early times, the rates of increase of u0 to the 

maximum is higher as AT is increased. 

In Fig. 5.13, the forces required to maintain the minimum separation between the 

two surfaces are presented. At higher AT, more melt is produced, the forces required to 

expel the melt from the gap are elevated. The results reflect the combination of an 

increase in the area of close contact with time and increasingly larger viscous resistance. 

The development of 6(O,t) at different times is presented in Fig. 5.14 for T values 

of 120 and 150°C respectively. The deformation rate of the melting interface is much 

faster while a higher driving potential (T - Tm) is imposed. It requires, for example, -300 

s to develop a similar interface shape from the same starting planar surface when T = 

120°C, compared to -60 s when T = 150°C. The developments of the melting interface 

contours are shown in Fig. 5.15(a) to (c) for Tw values of 120, 130 and 140°C 

respectively. The gap widths have been enlarged 100 times in the plots which show a 

faster evolution of the surfaces at higher Stefan numbers. 

The same information is presented more quantitatively in the form of e in Fig. 

5.16. The plot illustrates the same phenomena as discussed in the previous subsection. 

That is, critical angles increased rapidly within -1 second and thereafter the rates of 
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Fig. 5.12 Migration rate of the hot tube u0 as function of Ste number 
80 = 1.5(1O)m, r0 = 2.5(102)m 
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Fig. 5.13 Comparison of the applied force as function of Ste number, 
8. = 1.5(1O)m, r0 = 2.5(102)m 
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Fig. 5.14 Comparison of gap width development as function of Ste number, 
T = 150°C (Ste = 0.77)(-) and 120°C(Ste = 0.15)(---), 8. = 1.5(10)m, r0 = 2.5(102)m 
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-600s 

Fig. 5.15(a) Interface shape development as function of angle position; 
gap width was enlarged 100 times; 

time interval between two contours is 60 seconds 
T = 120°C (Ste = 0.15), 3.., = 1.5(10)m, r0 = 2.5(1O)m 
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Fig. 5.15(b) Interface shape development as function of angle position; 
gap width was enlarged 100 times; 

time interval between two contours is 60 seconds 
Tw = 130°C (Ste = 0.36), S, = 1.5(10)m, r0 = 2.5(102)m 
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Fig. 5.15(c) Interface shape development as function of angle position,; 
gap width was enlarged 100 times; 

time interval between two contours is 60 seconds 
T = 140°C (Ste = 0.56), 8. = 1.5(10)m, r0 = 2.5(102)m 
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Fig. 5.16 Comparison of critical sector angle development as function of Ste number, 
80 = 1.5(1O)m, r0 = 2.5(102)m 
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increase for O, decreased. At a given instant, O values increased faster under higher 

driving potentials AT since more melt has to be expelled and the area of close contact 

is larger. After —300 seconds, for example, the melt channels stretch in the azimuthal 

direction to angular positions of 29°, 41°, 51°, 63° degrees when the temperatures of the 

hot surface are set for 120°, 130°, 140° and 150°C respectively. An increase in contact 

area of - 0.6•r0 per tube length has occurred when Tw = 150°C, compared with T = 

120°C. 

The radial temperature distributions are compared in Fig. 5.17 after 10 seconds 

when the T value is set to be 120 and 150°C respectively. The temperature profiles are 

different when TW is different. At short melting times of 10 seconds and at higher values 

for T, the melt is cooler near the discharge at O, but warmer in the interior positions. 

This is due to the fact that at higher Tw value, more melt is produced and the nascent 

liquid is at the melting point. The melt thus has not gained much sensible heat before it 

is expelled out of the gap. Fig. 5.18 shows a comparison of the radial temperature 

profiles after 60 s for the same condition of Fig. 5.17. The variations of temperature 

profiles at the intermediate angles are smaller. Nevertheless the profiles are not similar. 

The melt is always warmer when Tw = 150°C to reflect the higher sensible heat 

convected. The temperature distributions appear closer to linear profiles when Tw = 120°C 

probably because liquid production rates are low. 

A comparison of the azimuthal velocity profiles is presented in Fig. 5.19 and Fig. 

5.20 at 60 s and 300 s respectively for the same conditions as Fig. 5.17. At the same 

elapsed time, the profiles are not similar at the same angle values. As discussed in Section 
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Fig. 5.17 Comparison of radial temperature profiles, at t = lOs, 
T = 150°C (Ste = 0.77)(-) and 120°C(Ste = 0.15)(---), 6 = 1.5(10)m, r0 = 2.5(10 2)m 
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Fig. 5.18 Comparison of radial temperature profiles, at t = 60s, 
T = 150°C (Ste = 0.77)(-) and 120°C(Ste = 0.15)(---), ö,, = 1.5(104)m, r0 = 2.5(1(T2)m 
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Fig. 5.19 Comparison of tangential velocity profiles, at t = 60s, 
T = 150°C (Ste = 0.77)(-) and 120°C(Ste = 0.15)(---), B. = 1.5(10), r0 = 2.5(102)m 
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Fig. 5.20 Comparison of tangential velocity profiles, at t = 300s, 
T = 150°C (Ste = 0.77)(-) and 120°C(Ste = 0.15)(---), 6,, 1.5(10)m, r0 = 2.5(102)m 
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5. 1, the velocity profiles are functions of 8 and melting time. They are also dependent on 

the TW values. At the same polar position, the normalized velocity profiles scaled by u0 

are located higher at lower surface temperature. As shown in Tables 5.3 and 5.4, the 

maximum velocities are higher with the hotter surfaces since more liquid is produced and 

it is expelled out of the channels with almost the same widths. The highest velocities are 

located at different points within the domain and they occur at larger angular positions 

as TW is increased. 

Table 5.3 Comparison of Maximum Velocity Values at Various Angles 

t = 60 s, unit for velocity, m/s, 8,, = 1.5(104)m, r0 = 2.5(10 2)m 

T(°C) 50 100 15° 20° ' 21° 2 25° 3 30° ' 

120 5.6(10) 2.0(10) 3.5(1O) 5.1(10) 3.1(10) N/A N/A 

150 9.0(10) 2.8(10) 7.0(10) 1.2(10) 1.4(10) 3.6(10) 2.1(1O) 

Notes: 1, maximum profile located at T = 120 °C; 
2, O located at T = 120 °C; 
3, maximum profile located at T = 150 °C; 
4, 8 located at TW = 150 °C. 
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Table 5.4 Comparison of Maximum Velocity Values at Various Angles 

t = 300 s, unit for velocity, m/s, ö, = 1.5(10 4)m, r0 = 2.5(10 2)m 

T(°C) 100 200 25° 1 29° 2 400 58° 3 63°" 

120 7.4(l0) 2.5(l0") 5.0(10") 3.0(10) N/A N/A N/A 

150 8.7(10) 4.3(10") 5.1(10") 5.3(10) 5.8(10) 3.1(10) 1.9(1071) 

Notes: 1, maximum profile located at T = 120 °C; 
2, 9 located at Tw = 120 °C; 
3, maximum profile located at Tw = 150 °C; 
4, 9 located at Tw = 150 °C. 

5.2.2 The Effect of Gap Width at 0 = 0, 6, 

One of the parameters fixed for the computations is the gap width at e = 00, ö,,, 

The effects of its variation on the process are next considered. For the sensitivity 

analysis, three 6, were chosen as 1.5(10), 2.0(l0) and 2.5(10) m. Fig. 5,21, 5.22 and 

5.23 are the plots of the migration velocity of the hot tube at T values of 130, 140 and 

150°C respectively. In general, as 8,, is increased, the migration rate of the tube decreases. 

The migration rate also requires a longer time to attain a plateau at higher 8. (Table 5.5). 

These results are consistent with a longer path length for heat transfer across the gap to 

the surface at which the melt is produced. 
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Fig. 5.21 Migration rate of the hot tube u0 as function of gap width at 0 = 0, 8. 
T = 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Fig. 5.22 Migration rate of the hot tube u0 as function of gap width at 8 = 0, 6,, 
T = 140°C (Ste = 0.56), r0 = 2.5(102)m 
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Fig. 5.23 Migration rate of the hot tube u0 as function of gap width at 9 = 0, 6, 
T = 150°C (Ste = 0.77), r0 = 2.5(102)m 
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Table 5.5 Comparison of Migration Rates 
at Different 5,, Values 

T (°C) (10), (m) U. (m/s) t (s) 

120 1.5 6.80(10.6) 19.4 

120 2.0 5.12( 1076) 349 

120 2.5 4.08( 10-6) 76.5 

130 1.5 1.82(10) 22.2 

130 2.0 1.26(10) 46.4 

130 2.5 9.97( 10-6) 108.0 

140 1.5 2.96(10) 25.8 

140 2.0 2.12(10) 47.9 

140 2.5 5.12( 10-6) 130.0 

150 1.5 4.70(10) 27.6 

150 2.0 3.42(10) 54.5 

150 2.5 2.74(10) 143.5 

Note: t is the time to attain the plateau value for u0. 
The coupled effects of T and 8. on u0 are reflected in Table 5.5. The velocity u0 

is proportional to AT, and inversely proportional to 8, or u0 oc (AT, 1/8). To obtain the 

same migration velocity of the tube, one can either raise the wall temperature Tw or 

decrease 6,. It is suggested that the migration rate of the tube u0 is more sensitive to 

changes in ATw than to 8, 

The forces applied to maintain the minimum gap separation () are plotted as 

functions of time in Figs. 5.24(a-c) for T values of 130°, 140° and 150°C respectively. 

The forces increased with decreasing 80 and increasing T. Both effects are 

complementary. A narrower gap and a higher wall temperature both promote a higher rate 
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Fig. 5.24(a) Comparison of applied force as function of 8., 
T = 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Fig. 5.24(b) Comparison of applied force as function of ö,, 
T = 140°C (Ste = 0.56), r0 = 2.5(102)m 
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Fig. 5.24(c) Comparison of applied force as function of B., 
T = 150°C (Ste = 0.77), r0 = 2.5(102)m 
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of melt production. More work is required to displace the liquid from the narrow gap. 

With regards to changes in gap width in relation to 8, Figs. 5.25(a-c), the 

arrangements with larger E show larger normalized discharge areas at O• This might be 

anticipated since heat has to be transported over a longer path and the corresponding rate 

of change of the curvature at the 9 = 0 will be slower compared to the arrangement with 

a closer approach between the surfaces. The surface, at O should not be further displaced 

because of a higher melting rate and higher heat conduction to the boundary in the 

neighbourhood of 0. 

The rate at which the edge of the curved surface, the line which represents the 

physical (not material) intersection between the melting and the planar (unheated) walls, 

is displaced around the tube varies with the prescribed minimum separation distance 6,, 

as shown in Figs. 5.26(a-c). At a fixed elapsed time of 300 s, in Fig. 5.26(a), for example, 

0 is over 400 when 8, - 1.5(10") m while it is --22° when 6, = 2.5(1O) m. This 

displacement rate is significantly affected by the temperature of the hot tube wall. A 

comparison of the results at 130 and 150°C in Fig. 5.26(a) and (c), for example, when S 

= 1.5(1O) m and time = 300 s, shows a difference of -25° in 00 values. An explicit 

relationship for 0(S0, T) has not been determined. 

Changes in the temperature profiles within the gap for different 8. are shown in 

Fig. 5.27 and 5.28 for elapsed times of 10 and 60 s respectively. The angles for the lower 

curves in the plot are the corresponding 0, values. Therefore the temperature profiles for 

intermediate angles are within zones bounded by curves at 0° and O. The average 

temperatures are cooler for the gaps with wider 6,, and the gradients at the melting 
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Fig. 5.25(a) Comparison of gap width development as function of B., 
= 1.5(1O)m(-), 2.0(1O)m( --- ) and 2.5(10)m( ), 

T = 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Fig. 5.25(b) Comparison of gap width development as function of ö, 
80 = 1.5(10 4)m(-), 2.O(10 4)m( --- ) and 2.5(1O)m( ), 

T = 140°C (Ste = 0.56), r0 = 2.5(102)m 
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Fig. 5.25(c) Comparison of gap width development as function of 
= 1.5(1O)m(-), 2.O(10 4)m( --- ) and 2.5(lO)m( ), 

TW = 150°C (Ste = 0.77), r0 = 2.5(102)m 
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Fig. 5.26(a) Comparison of critical sector angle development as function of 8., 
T = 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Fig. 5.26(b) Comparison of critical sector angle development as function of , 

T = 140°C (Ste = 0.56), % = 2.5(102)m 
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Fig. 5.26(c) Comparison of critical sector angle development as function of 8, 
T = 150°C (Ste = 0.77), r0 = 2.5(102)m 
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Fig. 5.27 Comparison of radial temperature profiles, at t = lOs, 
= 1.5(104)m(-), 2.O(1O 4)m( --- ) and 2.5(1O)m( ), 

T = 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Fig. 5.28 Comparison of radial temperature profiles, at t = 60s, 
8. = 1.5(10 4)m(-), 2.0(10 4)m(---) and 2.5(10 4)m( ), 

T = 130°C (Ste = 0.36), r0 = 25(1O2)m 
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boundary indicate lower heat fluxes for phase change. In Fig. 5.27, no appreciable heat 

appears to be used for melting for the widest gap at e = 15°, i.e., any heat input by the 

tube at this angle e is entirely convected in the melt at 10 s. This situation is not static 

and by t = 60 s, the profiles and heat flux patterns had changed. 

As might be anticipated from the temperature fields with regards to the melt 

production rates, the velocity profiles in the gap also depend on 5, Although the general 

shapes of the profiles for velocity for different 6,, look alike at various 0, they are not 

similar as shown in Fig. 5.29. Except for the profiles at 10°, two other sets of velocity 

profiles are at 0 values where the velocity attains peak values within the domain and at 

corresponding Oc values. Peak velocities for the three calculated examples are presented 

in Tables 5.6 and 5.7 for comparison. These show increases in the azimuthal direction and 

a sudden drop near 0 for each of the 8,, values. An increase of ö,, by 60% also results 

in a 4 fold lowering of the velocity at certain angles - 16° at 10 s and 17° after 60 s when 

T = 130°C. 

Table 5.6 Comparison of maximum velocity values at various angular positions 

t = 10 s, TW = 130°C, unit for velocity, m/s, for 6,,, m 

6(10) 10° 14° 15° 16° 17° 18° 19° 

1.5 5.8(10) 7.7(l0) 8.0(l0) 8.l(10) 8.2(10) 8.4(10) 4.9(10) 

2.0 4.0(10) 4.5(10) 4.6(10"') 4.8(10"') 4.0(10"') N/A N/A 

2.5 3.6(10"') 2.3(10"') 2.5(10"') 2.2(10"') N/A N/A N/A 
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Fig. 5.29 Comparison of tangential velocity profiles, at t = 60s, 
B. = 1.5(10 4)m(-), 2.O(1O)m( --- ) and 2.5(1O)m( ), 

= 130°C (Ste = 0.36), r0 = 2.5(102)m 
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Table 5.7 Comparison of maximum velocity values at various angular positions 

t = 60 s, TW = 130°C, unit for velocity, m/s, for 5, m 

8.(104) 100 160 170 180 20° 22° 240 

1.5 3.4(10) 7.4(10) 8.1(10) 8.9(10) 1.0(10-s) 1.3(10) 7.9(10) 

2.0 3.5(10) 6.8(10) 7.5(10) 8.5(10) 5.7(10) N/A N/A 

25 3.4(10) 6.5(10) 2.3(10) N/A N/A N/A N/A 

5.2.3 The Effect of Radius of the Hot Tube r0 

The effect of changes in the tube radius on the melting characteristics was also 

examined. The theoretical analysis in chapter 3 suggests that the tube radius is a 

parameter which has a weak effect on the melting rate. To confirm this, three radii were 

used in the simulation. They are 1.25(10.2), 2.5(10 2) and 5.0(10.2) m. The surface 

temperature of the hot tube was kept at 130°C and the ö,, value was fixed as 1.5(10) m. 

The calculated migration velocities are presented in Fig. 5.30 when Tw equals 

130°C. The results show that the displacement rates of the tubes attain the same steady 

value after —15 seconds. Only at the initial acceleration phase do very small differences 

appear. The larger tubes exhibit a reduced "induction" time during which the melting 

surface became indented but melt flow had not been initiated. The implication is that 

more melt is produced per tube over a given period and this is in direct proportion to the 

tube diameter. 

The forces required to maintain 8,, constant are compared in Fig. 5.31. The 

dimensionless forces are directly proportional to the tube radius. However, according to 
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Fig. 5.30 Migration rate of the hot tube u0 as function of tube radius 
r0 (1.25, 2.5, 5.0x10 2 m), T = 130°C (Ste = 0.36), 6, = 1.5(104)m 
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Fig. 5.31 Comparison of applied force as function of r0, 
normalized by corresponding % values 
T = 130°C (Ste = 0.36), 8. = 1.5(1O)m 
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the definition of Fe*, which is F . rjpiçL, the actual forces were not increased even 

though r0 was increased. Three dimensionless forces normalized by using the same r0 

value (i.e. 2.5(102) m) appeared to be the same except the infinitesimal differences at the 

initial phase of melting, as was shown in Fig. 5.32. 

Changes of the liquid gap width with regards to r0 are presented in Fig. 5.33. The 

melting interface was deformed faster when r0 was smaller. A larger discharge area at O 

was noted when the tube diameter became bigger. 

Variations in the critical sector angles with time are also plotted in Fig. 5.34. At 

a given time of 300 s, for instance, O is —54° when % = 1.25(10-2) m, while it is —29° 

when % was increased 4 fold to 5.0(10 2) M. 

Temperature distributions for different r0 values after 10 s elapsed time have been 

compared in Fig. 5.35 when T = 130°C. The lower curves are at corresponding 8. The 

average temperature of the melt was higher at smaller r0. When % was increased to 

5.0( 10-2) m, the temperature gradient at the melting interface was very low as no 

appreciable heat was used for the phase change. But this situation was changed after - 

60 s of elapsed time, as shown in Fig. 5.36. Even though the flow domain was longer 

along the azimuthal direction when r0 was smaller, the melt produced were almost at the 

same average temperatures. 

Fig. 5.37 shows the velocity profiles at different % values at t = 60 s. Except for 

the profiles at 10°, the peak velocity profiles and those at O values have also been 

presented. At the same angular position, the velocity profiles are different. The maximum 

velocity is almost tripled, for example, at 10°, with a quadruple increase for r0. A 4 fold 
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Fig. 5.32 Comparison of applied force as function of r0, 
r0 (1.25, 2.5, 5.0x10 2 m),normalized by the same r0 value (2.5x10 2 m) 

T = 130°C (Ste = 0.36), ö,, = 1.5(10)m 
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Fig. 5.33 Comparison of gap width development as function of r0, 
r0 = 2.5(10 2)m(-), 1.25(10 2)m(---) and 5.0(10 2)m( ), 

T = 130°C (Ste = 0.36), 8, = 1.5(104)m 
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Fig. 5.34 Comparison of critical sector angle development as function of r0, 
T = 130°C (Ste = 0.36), S = 1.5(10')m 
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Fig. 5.35 Comparison of radial temperature profiles, at t = lOs, 
r. = 2.5(10 2)m(-), 1.25(10 2)m(---) and 5.0(10 2)m( ), 

T = 130°C (Ste = 0.36), ö, = 1.5(104)m 
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Fig. 5.36 Comparison of radial temperature profiles, at t = 60s, 
ro = 2.5(10 2)m(-), 1.25(10 2)m(---) and 5.0(10 2)m( ), 
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Fig. 5.37 Comparison of tangential velocity profiles, at t = 60s, 
r0 = 2.5(10 2)m(-), 1.25(10 2)m(---) and 5.0(10 2)m( ), 
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increase in the peak velocity is noted at —60 s as presented in Table 5.8. 

Table 5.8 Comparison of Maximum Velocity Values at Various Angles 

t = 60 s, TW = 130°C, unit for velocity, m/s, for r0, m 

r0(102) 10° 15° 17° 22° 24° 30° 32° 

1.25 7.8(10) 1.2(10-s) 1.3(10) 1.7(10-s) 1.8(1(Y3) 2.2(10) 8.6(10) 

2.5 3.4(10) 6.7(10) 8.1(10) 1.3(10) 7.9(10) N/A N/A 

5.0 2.4(10) 4.4(10) 3.8(10) N/A N/A N/A N/A 

5.3 Computer Efficiency 

The algorithm was executed with a main program and 30 subroutines. Thirty-five 

two-dimensional variables (size 181x101), 50 one-dimensional variables (size 181) and 

about 420 other variables were employed to generate the program with about 6000 lines 

of Fortran code. The memory size of the program is about 25 MB. The calculation 

included time-marching in increment of two milliseconds simulated time. Vector 

calculations were involved in solving the non-linear algebraic equations of the discretized 

PDEs. Numerous iterations exist in each time level calculation. Consequently, the 

simulation was time consuming and high CPU demanding. It took 2 - 4 weeks, for 

example, to advance through approximately 5 minutes of simulation on a time-shared 

IBM RISC 6000 (AIX) system at the University of Calgary. For accelerated calculations, 

the program was modified and transferred to the high performance Fujitsu VPXJ24O 

system which is operated by the Fujitsu Canada High Performance Computing Centre in 
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Downtown Calgary. 

From an analysis of the computing performances on the two systems (Wu, Jeje 

and Phillips, 1994), it was found that the calculations of velocity (u), pressure (P) and the 

interface location G (r,, 0, t) consumed most of the CPU time. Respectively, the CPU 

time consumption percentages for u, P and G were 14%, 35%, 42% on the AIX, and 

19%, 25%, 53% on the Fujitsu systems. The results in Fig. 5.38 show how, for identical 

input conditions, the CPU times changed in relation to the simulation time on the AIX 

and Fujitsu systems. An inspection of the scale of the plots shows, that the Fujitsu 

system is faster than AIX system by an order of magnitude. The relative proportion of 

time to calculate u, P and G were also different for the two hardware systems. 

Calculation times of the pressure and locating the melting boundary consumed similar 

amounts of CPU on the AIX but pressure values were determined at a faster rate than G 

(r1, 0, t) on the Fujitsu. The elapsed times for AIX and Fujitsu are shown in Fig. 5.39 for 

the identical parameter conditions. It also shows that the Fujitsu system saved 7-9 times 

of calculation time compared with the AIX system. 

The results shown in Fig. 5.38 and 5.39 corresponded to a version of the program 

in which the overall vectorisation percentage is very low, only about 3%. Efforts to 

improve and optimize the code have been made. As mentioned earlier, due to the 

irregular calculation domain, the grid numbering in the r-direction is function of azimuthal 

angle 8. This prevented certain types of optimization, which might otherwise improve 

vectorisation, such as interchanging certain nested loops. To overcome this difficulty, we 

have considered an indirect addressing scheme to reduce the nested loops to single loops 
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over the angle variable. Secondly, due to the dynamic nature of the calculation, a grid 

much bigger than the actual calculation domain was generated. It is expected that much 

of the CPU and elapsed time would be saved if the calculation is always based on the 

actual melting region rather than on the whole mesh. The data in Fig.5.38 and 5.39 were 

collected using a version of the program in which the calculations involved the whole 

grid. A new test was done in which the calculation was restricted to the real melting 

domain. It was found that the CPU time was reduced by factors of 5 and 8 on the AIX 

and Fujitsu systems respectively. The average vectorisation percentage increased to 38-

40%. With this change, the code ran about 15 times faster on the Fujitsu system 

compared to the AIX. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

A simplified model of the Ellithorpe remelter, for producing liquid from solid 

mounds of sulphur, has been numerically simulated. It was assumed that only 

orthorhombic sulphur (Tm - 113°C) is present. The process involves close-contact melting 

and the liquid produced is continuously squeezed out of a narrow gap. The system is a 

hot cylinder forced into close proximity with a wall of sulphur which was initially flat 

and at its melting point. As latent heat was supplied, the wall was progressively deformed 

while the tube migrated inwards. The hydrodynamic and energy equations were solved 

simultaneously using a time-marching procedure based on a combined finite difference 

and finite element scheme in a fixed grid domain. Moreover, a volume of liquid fraction 

(VOF) method was used to track the moving boundary front. The shape or contour of the 

interface and the displacement rate of the moving heat source were determined as part of 

the solution. The numerical algorithm was validated by comparing the numerical 

simulation results with analytical solutions for a ice-making process, migration rate of the 

hot tube in the sulphur melting process at lower Ste values. It was also verified by 
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simulating the contact melting process of n-octadecane in a migrating horizontal hot tube 

under constant wall surface temperature and constant heat flux conditions. The numerical 

results are in good agreement with the experimental measurements conducted by 

Moallemi and Viskanta (1985b, 1986). Based on the results, the following conclusions are 

arrived at: 

1. The migration rate of the tube was most rapid at early times, —15 s, then the rate 

attained almost steady values under a typical set of system parameters and operating 

conditions. Radial temperature profiles developed very quickly at the early stages of the 

melting and the variations between the profiles at most intermediate angles became very 

small after - 60 s. The non-linearity of the temperature distribution across the channel is 

obvious even though the gap width is very narrow 80/r0 << 1. The tangential velocity 

profiles are different at different polar angles. Maxima in the velocity distributions are 

more often not located midway within the liquid gap. The highest velocities were at 

different polar positions as melting progressed. The radial flows of the melt produced 

were found to be quickly re-directed azimuthally. The velocities dropped rapidly within 

0.15 of the gap width from the melting boundary. The force applied to maintain a 

constant minimum gap separation increased rapidly at the initial stage while the 

displacement rate of the heat source increased rapidly from zero. Thereafter, the 

displacement occurred at a slower but still increasing rate. The critical melting sector 

angle rose quickly from 0 to nearly 20° within 5 s and then changed to a slower pace. 

The gap thickness also increased monotonically in the azimuthal direction. The interface 

was progressively deformed around the hot tube and the travel path of the melt from 0 
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= 0 increased with time. 

2. A simple pseudo-steady state analysis suggested that the surface temperature of 

the tube T and, the externally applied force are the principal variables which regulate 

the steady state melting process. The critical sector angle was a function of Ste and 

applied force. Its value varied from 36° to 900 depending on the process conditions. In 

the transient numerical analysis, the wall temperature T, the minimum spacing at 0 = 0, 

6 (which is related to the applied force), and the radius of the hot tube were the three 

primary variables. The applied force Fe and the critical sector angle 0 were calculated 

while c3, was prescribed in numerical calculations. 

3. The analytical model presented in chapter 3 was a simplified steady state situation 

with constant properties. The model is valid at small Ste numbers. Two solutions were 

found for f(Ste) which are expressed in eqs.(3.48b) and (3.48c). Most of the discussion 

in chapter 3 pertains to consequences of eq.(3.48c) while the conclusions do not change 

for very low Stefan number, they should be different for Stefan's number beyond 0.0132 

when the results diverge and f(Ste) from eq.(3.48b) has larger values than those from 

eq.(3.48c) as Ste increases. The follow-up change due to the other solution (3.48b) will 

be done in subsequent research. 

4. While other conditions/variables were maintained constant, changes in the surface 

temperature Tv had significant effects on the melting rates. The initial and asymptotic 

rates of migration of the tube were higher as the driving potential (T - Tm) was 

increased. Temperature profiles across the channel deviated more from a linear pattern 

as the heating surface became hotter. At a given angular position such as 20°, for 
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example, the profiles of the azimuthal velocity, scaled with the approach velocity between 

the hot tube and the sulphur block u0, were higher at lower driving potentials than at 

higher temperature differences. However, the absolute values for the velocity were larger 

when the Tw was higher. Both the gap width and its length along the tube wall gradually 

increased as the tube became enveloped. The contour of the interface was curved more 

towards the tube at higher T. Larger applied forces were also required to maintain 80 as 

T was increased. 

5. When larger minimum separation gap widths E were chosen, the migration rates 

of the hot tube were, as expected, lower and it required longer periods for the system to 

attain steady state. The applied force was correspondingly reduced compared with the 

configuration with smaller S values. The flow field also developed faster with smaller 

S• The variations of the temperature profiles in the intermediate angles became smaller 

after initial stage developments, when S. was smaller. 

6. The migration rate of the hot tube and the corresponding applied force were not 

affected by the hot tube radius r0. Three r0 values were used in the calculations. The 

largest r0 was four times the smallest one. It was found that the steady migration rates for 

the tubes were the same. The only variations involved the "induction" times which were 

smaller for the larger tubes. All the tubes attained the steady migration rate phase at about 

the same time. Applied forces required to maintain the minimum separation of constant 

80 showed the same magnitudes as they were not affected by the tube diameters. The 

temporal development of the flow field and changes in the gap width over the same 

interval of melting, however, varied for the different r0 values. With smaller r0, the tube 
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surface was enveloped by the melt more quickly and the flow domain expanded faster 

along the azimuthal direction. The latter means that the critical angle was displaced faster 

around the tube. At a given angular position, The melt discharge area was narrower, the 

maximum velocity larger and the melt was warmer when r0 was lower. 

7. The program code for the simulation was written in Fortran, developed first on an 

IBM RISC 6000 system (AIX) and then adapted for the high performance Fujitsu 

VPXI24O system. Comparisons were made for the CPU time, the elapsed time and 

vectorisation CPU time for both systems. Results show that the Fujitsu system consumed 

about 7% CPU and 16% total time as for the AIX. The overall vectorisation percentage 

was about 40% and the calculations were not in the Fujitsu's best computing performance 

zone due to the short vector length in the current code. 

6.2 Recommendations 

The work presented in this thesis was focused on the transient simulation of the 

early development of a close-contact sulphur melting process from an initial flat wall of 

solid mound. There was no previous work from the literature with which it could be 

compared, neither were any experimental data available. More work is, hence, required 

on this subject as outlined in this section. 

1. A longer simulation time should be attained for each calculation to observe the 

development of the shape of the melting interface, In particular, it is of interest to 

examine when the critical sector angle exceeds 90°, where a singularity may arise for the 

flow and temperature fields. The interface contour in this case is important in deciding 
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how far away the next steam tube should be positioned. 

2. The simulation was confined to the situation when the solid sulphur is pure and 

in the orthorhombic habit form. The heating surface temperature was also maintained 

below 158°C such that liquid sulphur existed in the single ring structure and no 

polymerization occurred. As discussed in chapter 2, both the viscosity and heat capacity 

of a liquid change almost in a discontinuous manner at certain temperatures. Viscosity 

changes by a factor of 4o3 around 160°C. Such temperature dependence may cause the 

system of equations to be ill-conditioned. The present work emphasized more the effects 

of variations in the geometric parameters and the temperature of the hot tube. A lower 

emphasis was placed on variations in r. The latter should be investigated because, in the 

current industrial melting process, operators prefer to keep the steam temperature at 

—200°C. 

3. Analogous experimental work should be done to validate the numerical simulation 

results. 

4. More effort should be invested to optimize the simulation code, when it is running 

on the high performance computing Fujitsu VPXI24O system since the current vector 

length has not been in the best performance range of the machine. Vector lengths are 

short in some parts of the calculation because grid points in the radial direction number 

only 15-30. Collapsing some double loops into single ones through the use of an indirect 

addressing scheme to locate grid cells along the liquid-solid interface may help solve the 

problem. 
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Appendix A-i 

Governing Equations in Non-inertial Coordinate System 

The Navier-Stokes equations are applicable to the inertial coordinate system the 

origin of which does not have any motion. If the body is in acceleration, however, it is 

straightforward and convenient to formulate the conservation equations with respect to 

body-fixed coordinate system which is non-inertial. Therefore, it is necessary to transform 

the inertial coordinate system to the non-inertial one in order to obtain the conservation 

equations in body-fixed coordinate system. The boundary conditions and the energy 

balance equations at the melting interface also have to be transferred in the new non-

inertial body-fixed coordinate system. 

Conservation Equations 

A coordinate system xi whose origin has a pure translational motion (no rotation 

) with velocity U0(t) with respect to a fixed coordinate system X , i = 1, 2, 3, is shown 

in Fig. A-i. A point p(X) which moves with velocity U with respect to the fixed system 

becomes p(x) in the moving coordinate system and moving at the velocity u = U - U0(t) 

with respect to the new non-inertial system. The non-inertial set of variables are related 

to the inertial ones by 

x.=X.-JU. 01 dt i=1,2,3 
I I 

(A- 1) 

Time variables are the same for both systems. If the motion is purely translational and 

U0 is only a function of time, then the derivatives respect to the coordinate spaces are the 
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same in both systems except for the derivatives with respect to time. That is, 

and 

a 
iiII 

+ ax1 

at a, 

where subscripts I and NI indicate inertial and non-inertial frames respectively. 

With .L = - U .(t) , Eq.(A-3) can be simplified as: 
t 01 

a a 
= INJ - UO •V 

(A-2) 

(A-3) 

(A-4) 

where V is the divergence operator in x1 - frame. 

With Eq.(A-2) and the pure translational motion of the non-inertial frame which 

means the principal unit vectors of the system are identical. It is inferred that, 

V11 = V 1 

V2I - V 21 I - 'NI 

(A-5) 

(A-6) 

The total substantial derivative vector in the inertial frame can be expressed as: 
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U0(t) 
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x 3 I p ( X1 , X2 , X3 ) 
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/ 
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x2 

Fig. A-i Schematic of inertial and moving frames of reference 
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D II = a II +U.v Tt_ 7 

After substituting Eq.(A-4) into (A-7), one obtains 

D 11 = a 
IN _bt at 
+(U-U0)V 

While the substantial derivative in the non-inertial frame is 

D a1 +uV 
IN NJ 

From Eq.(A-8) and (A-9) with u = U - U0, it can be seen that 

D - D 
7NJ - 

(A-7) 

(A-8) 

(A-9) 

(A-b) 

Therefore the conservation equations can be written with respect to the new non-

inertial coordinate system by applying the above conclusions. 

CONTINUITY EQUATION: 

In X1 - coordinate system, 

ap I1+VI1(pU) = 0 
Tt 

(A- 11) 
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Substituting Eq.(A-4) and (A-5) into Eq.(A-1 1), one can get, 

INJ U0 V +VINJ(PU) = 0 
at 

(A-12) 

For the reason that U0 is a function of time only, therefore, pV U0 = 0, the 

Eq.(A-12) can be written as: 

+V IN! [p(U-U0 )J = 0 1INI  
(A-13) 

With u = U - U0, the velocity vector with respect to the non-inertial coordinate 

remains the same form as in the inertial one. That is, 

ap 7INf + VIN, (pu) = 0 

MOMENTUM EQUATIONS: 

(A-14) 

In the fixed coordinate X1 - system, the momentum equation can be written as 

p- DU  pg-V1p+V1(r1Dt  (A-15) 

According to Eq.(A-5) and (A-b), the above equation can be transformed to 
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DU 
P i5i IN pg - VNJ P + VNJ( NJ ) (A-16) 

With U = u - U0 and U0 is the function of time only, this, combined with Eq.(A-

16), and yields 

Du au 
15T IN! = pg - VN,, P + VN,( 'rNI ) - p 

at 

ENERGY CONSERVATION EQUATION: 

In X1 - system, the energy conservation equation is 

(pC7)l1 = V1 ( ?V1T) + 

(A-17) 

(A-18) 

The viscous dissipation term 1 is same as in both frames, which is the stress 

tensor. With the aid of Eq.(A-4) and (A-b), the energy equation in non-inertial 

coordinate system can be transformed to the form of 

p CDT) IN, = VN/( ?VNzT) + (A-19) 

In the liquid phase, the velocity with respect to the moving frame is U = u - U0 

the energy equation (A-19) can be written as 
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(pf CPf T)+(uVNJ )(pfCPf Tf) 

= VNI (?VNI T)+ 

(A-20) 

In concluding, the governing equations in a moving frame of velocity U0(t), with 

respect to the body-fixed coordinates should be transformed. With substantial derivative 

not changing (Eq. A-b) and partial derivative respect to time t having an extra term in 

right-hand side (Eq. A-4), the continuity and energy conservative equations remain 

unchanging in the non-inertial frame as shown in Eq. (A-14) and (A-20), the momentum 

equation, however, deserves an extra term, which is -p , on the right-hand side as 
at 

shown in Eq. (A-17). 
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Appendix A-2 

Melt Velocity at the Solid-liquid Interface 

The solid-liquid interface can be expressed using an implicit function as Eq.(3. 10) 

which is 

G(r, , 0, t) = 0 (A-21) 

If a unit vector n normal to the interface G(r1,8,t) is defined, then 

VG 
ii =   (A-22) 

IV GI 

It is assumed that n is pointing into the liquid phase. The magnitude of the 

interface normal velocity u can be expressed as 

V•VG 
= Vn = 

where V is the interface velocity vector. 

Of 

IVGI 

The total derivative of the interface position function gives 

rDG DG laG 
dt+ dr+ d(r8)]=0 

at r [ ae 

(A-23) 

(A-24) 



aG 1 a aG 
—V + V 
ar r rae  at 

On the other hand, the interface velocity vector V can be written as 

therefore 

aG 1aG 
V = - 

Jr rae 

VVG = DG _v + ia v0 aG = 
ar r rae at 

Substituting Eq.(A-27), (A-23) yields 

V aG/at u ii = -   

IVGI 
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(A-25) 

(A-26) 

(A-27) 

(A-28) 

The interface velocity with respect to a non-inertial frame moving with velocity 

U. may be obtained by substituting Eq.(A-4) into Eq.(A-28), or 

Un 
aG/at - U0 VG 

IVGl 
(A-29) 

The boundary condition for the fluid next to the interface is the same as u 

expressed in eq. (A-29). 
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Appendix A-3 

Local Energy Balance Equation at the Interface 

The energy balance equation at the solid-liquid interface has been expressed in Eq. 

(3.11), which is 

- A. aT = p h51u 

As the temperature field at the melting interface possesses the same properties as 

the isothermal surface function G, defined in Eq.(3.1O), n at the melting interface can also 

be expressed as: 

VG = =   VT, V 2 = VT 
n =       

IV GI IV TI IV TS IV TI 

The derivatives in the n direction become 

DT. VT. . VG 
_L=VT.n =   

an ' IVGI 

Substituting Eqs.(A-32) and (A-29) into (A-30), one obtains 

(A.5VT5 - A.V VG - p hci at [ _0 .VG] 

This yields, in the non-inertial frame with T = T. (a constant) 

p h,1 raG 
VGVT =  I  -u A. [ 0 .VG] 

which is Eq.(3.12). 

(A-30) 

(A-31) 

(A-32) 

(A-33) 

(A-34) 
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Appendix B-i 

Curvature of the Melting Interface G(r1,O,t) = 0 

The interface curve described by Eq.(A-21) also can be expressed as function of 

liquid gap width, which is 

G(r1 , 0, t) = r. - r - (0, t) = 0 

or 

(B-i) 

r = r0 + (0, t ) (B2) 

where 6(0,t) is the liquid gap width. 

Any point p(x,y) at the curve has coordinates (r1,0) in polar system as shown in 

Fig.B- 1. Their relationships can be expressed as 

and 

x = r sin  = (r0 + ) sine =f(0) 

y = ricos 0 = (r(, + ) cos 0 = g(9) 

(B-3) 

(B-4) 

The curvature k of G can be calculated from the formula (Thomas & Finney, 1980), 

k I f(0) g"(0) - g'(0) f"(0) I  

[( fy(o) ) 2 + (g'(0) ) 2  3/2 

since 

(B-5) 
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Fig. B-i Expression of a point on the interface at both cartesian and polar systems 
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(r + 6) cos 9 + - sin 0 
ao 

(B-6) 

+ 6) sin 0 + 2 cos e + sin edij 

and 

g'(9) = -(r(, + 6) sin 0 + D8 cos - 0 
ao 

(B-7) 

g"(0) = -(r0 + 6) cos 0 - 2 sin o +D16  Cos 0 
DO D02 

therefore 

)2 
2 = (r0 + 6)2 Cos  0 + 1\ (a6 ) Sfl 0 

50 

+ 2 (re, + 6' sin 0 cos 0 
)ao 

( g'(0) ) 2 (r + 6)2 sin  9 + I I Cos  0 

rao  

-2(r° +6) a6 _ sin O cos O 
' DO 

and 

+ (g'(0))2  + 6)2 2 +1 I 

where 

(B-8) 

(B-9) 

(B-b) 
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a26 
term 1 = - (r + 6\_ sin 0 cos 0 + + 6\_ cos2 0 

° 'e U  02 

a6 a26  COS f 
- - sin e + - sin e 

ae ae2 

term 2 = - (rO / + 6\_ sin 0 Cos 0 - (r + 6'_ao sin2 8 
Ø '2 

+ 08 I cos2 0 + sin O Cos O 

so that 

f'(0) g"(0) - g'(0) f"(0) 

= - [frn(o))2 + (g1(0))2] + term 1 - term 2 

+ 6) - 2 (6 2 - (r1, + 6)2 

Substituting Eqs.(B-1O) and(B-12) into (B-5), yields 

k= 

which is Eq.(4.9). 

26 2 
(r() + 6) - - z I Ø2 J - (r0 + 6)2 

[(re + 6)2 + 

(1 + 6)  2ö* - 2 
D02 

+ 6* )2 + 

(B-12) 

(B-13) 
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Appendix B-2 

Expression of Local Energy Balance Equation 

at the Melting Interface With Gap Width ö(9,t) 

The temperature gradient at the melting interface in 9-direction can be expressed 

in terms of the gradient in the r-direction, or 

DG 

T DO aT 

DO - aG a 
ar 

(B-14) 

The substitution of Eq. (B- 14) into (A-34) results in the following expression for interface 

condition 

+ 
i (ciae )2]   T p h3 0 , [G - u •VG 
ADGIDr 1 

=  ] 
As the interface curve also can be expressed as Eq.(B-1), therefore 

G_ 1 DG _ D8 DG D8 

-o' 
The velocity u0 can be written as a vector 

and 

uo = u( ,( cos 9i  sin Of) 

I aG 
VG = i - + 3 - - 

r DO 

Substitution of Eqs.(B-16), (B-17) and (B-18) into (B-15), one obtains 

(B-15) 

(B-16) 

(B-18) 
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I 

p h1 C u cos e + 
0 (  

1 (a "\2 DT1+_i__i - 

r2 Ø ) a 
1Fi 

- sin 0 
r FiG at 3 

The above equation can be non-dimensionlized into Eq.(4.1 1), which is 

Ste 1+ 

I 

cos 0 + 

1 [a8* 
T X2 a  

sin e 

(B-19) 

I (B-20) 


