

manner, involving sophisticated triangulation methods, for generating corresponding
elevation data for topographic mapping and imaging [22, 33], or for a digital terrain model
or database, unless supplemented by coincident altimeter readings.

MGS is in a sun-synchronous polar orbit [11], so that an imaginary line from
planet to sun always lies in (or makes a zero angle with) the plane of the MGS orbit. Sun-
synchronous polar orbits have been in common use for two decades by satellites from
many countries conducting Earth surveys (although the orbital plane is often a fixed non-
zero degree angle with the line to the sun). As a result MGS, always traverses (in a N-S
direction) the planet's daytime face at midday at all (nadir) points of the surface. Although
this is of little consequence for altimeter data capture, it enables photogrammetric data to
be obtained at uniform lighting and shading angle. Since the planet rotates under the
orbital plane both daily and annually, MGS will take a year (about 2 Earth years) to
complete an accurate survey of the entire planet. The initial polar orbit is highly elliptical,
and a tight near-circular orbit, enabling the survey to begin, is expected in late 1998.

From this survey, detailed surface elevation, color, and some composition data will
become available for the entire planet for the first time. Every area will be surveyed in both
summer and winter. This is important because Viking lander photographs [35, 36] have
shown that in Winter, even at latitudes as low as 22, the surface can be covered by light
water-ice snow during the entire day, a phenomenon that can be observed from Earth. If
no significant spaceprobe malfunction, and no dust storms on a global scale to delay the
photographic data, complete survey data should be available in the year 2000,

This means that for the first time, it will shortly be possible to construct a very high
resolution Mars Global Terrain Database (MGTDB). Such a database would not have
been defensible earlier. The first extensive photography of the Martian surface was by the
Mariner 9 spacecraft in 1971-72, which sent back over 7,000 images covering most of the
planet. However the image quality, while more than sufficient to reveal the much of true
nature of the Martian terrain for the first time, and arouse the interest of the scientific
community, had a resolution far too low for terrain database purposes; in addition
elevation data was sparse and essentially only estimates. The situation was very much
improved by the Viking Orbiters which arrived in 1976, and which during the next 4 years
returned over 50,000 high quality images covering the entire planet. These Martian
images intensified interest and have been much studied ever since [7, 19, 35, 36, 38].
There have been no further images from Mars until late 1997, when MGS sent back its
first even better quality pictures.

The Viking Orbiters had orbits with modest equatorial inclination, and Viking
images cover large areas near the equator to a resolution of 7-30 meters, and at least 90%
of the planet to a resolution of 100-150 meters. Accurate high-resolution terrain elevation
data is lacking, however. A high-resolution global terrain database was not defensible with
the Viking data, for three reasons: lack of uniform high resolution photogrammetric data
for the whole planet, lack of uniform high resolution elevation data for the whole planet,
and non existence of the powerful low-cost relational [8, 9, 31] and object-oriented
database techniques [10] and associated computer hardware resources that exist in the late
1990s. It is the expected high resolution altimeter [27], photogrammetric and geological
data from MGS, coupled with the availability of low-cost powerful database techniques,
that now make a high resolution MGTDB a feasible proposition for the next decade.

Such a database would have many uses, and currently it is impossible to foresee all
of them. Because of the great distance of Mars (9 months with current technology), and
oppositions only every two years (last opposition: March 1977, next: April 1999),
exploration of the planet even by robotic means is likely to be limited, expensive, and
sporadic at best. Although robotic exploration will reveal detailed geological information
at specific sites that could not be obtained from satellites, a very effective and inexpensive
exploration technique will involve using computer processing and a high resolution
MGTDB (supplemented by geological data as it becomes available).

Mars is a planet that generates intense scientific interest [7, 19, 23, 25]. Data
returned from Mars by the early Mariner and Viking orbiters have revealed a densely
featured planet that has undergone extensive cratering and great atmospheric, volcanic,
tectonic and hydrological upheavals since coming into existence, in some ways similar to
those of Earth during its early period [6, 7, 18] . The difference between the two planets
in terms of surface terrain generation seems to be due to two factors: first, Mars had a
crust that was too thick to allow for mobile tectonic plates as on Earth, but thin enough to
cause large volcanoes of a size never seen on Earth, and generate widespread tectonic
phenomena in the form of surface fractures, faults and scarps, that sometime even
dislocate craters, as well as a rift valley system like Valles Marineris, which is on a scale
far surpassing anything comparable on Earth; second, the effects of surface erosion due to
atmospheric and hydrological forces was much less than on Earth, where, for example, the
record of craters caused by early bombardment, and their interaction with tectonic forces,
is all but gone [38]. The study of the unfolding of Mars is necessarily still in its infancy but
because the geological record there is far better preserved than on Earth, it is a field of
great and justified promise.

A properly designed MGTDB of sufficient resolution, supplemented with global
geological data, would be a tool of incomparable value in research on the planet. And
furthermore, once the data for it has been obtained, the cost of creating and operating the
database, although not insignificant, would be negligible compared to the cost of even a
single robotic expedition. Researchers would be able to retrieve the high resolution local
terrain data for any combination of circumstances, for example, for any location and for
any feature on the planet, for features with specific characteristics, for areas (common on
Mars) where different types of features overlap and interact, and for features with similar
topological and geological properties similar to a specific feature under study. (Such
retrievals are easily possible with the database design proposed in this paper). Digital
terrain data so retrieved could be used in many ways, although in most cases considerable
additional computer processing will be needed. Uses include automated generation of a
variety of planimetric maps [5, 17, 22, 17], as well as images [16] and perspectives or
vistas [15] for any position and direction, for a multiplicity of research purposes. Many
techniques developed for map and image generation from Earth digital terrain databases
[12, 32] should be transferable to the terrain data extracted from the database, for
example, application of fractal techniques [14, 21, 30, 37]

Given these possibilities, it seems reasonable to investigate a possible structure for
a MGTDB, and in this paper we discuss a design for one resulting from such an
investigation. The design approach is essentially entity-relationship [2], but the design is
presented as relations [8, 31] to enable sample SQL [1, 9] queries to be carried out. With

minor modification it could be presented as an object-oriented database [10]. Functional,
multivalued and join dependency considerations [2] are largely irrelevant for a Mars
database, since, apart from error correction, it would never be change updated.
Nevertheless the design presented does avoid them. The suggested design is shown in
Figure 1. A wealth of current information on the MGS project is available from NASA
websites.

Geodetic considerations

Before beginning the discussion, a few geodetic matters relating to Mars need to
be considered. Since elevation data is fundamental to any MGTDB, the question that
immediately arises is: elevation with respect to what? On Earth elevation data is with
respect to a reference level or reference datum, which is normally sea level, reflecting an
isogravimetric [24]. With no sea on Mars, an equivalent reference datum must be derived
on the basis of gravity and atmospheric pressure isobars. A complication is that Mars is
even more spheroidal than the Earth. The Mars equator is slightly elliptical, whereas the
Earth equator is a circle, and the Mars meridian also forms a distinct ellipse, as does that
on Earth. Thus while Earth is a two-axial ellipsoid, Mars is best modeled by a 3-axial
ellipsoid.

Using Viking data, in the 1980s the U.S. Geological Survey generated a Mars
Atlas, updated since [35], of 140 quite detailed topographical maps at a scale 1:2000000,
with kilometric contour lines. The elevations were with respect to a reference datum
established both from the planet's gravitational field, and from a reference corresponding
to an atmospheric pressure of 6.1 millibars. This basic reference datum is a triaxial
ellipsoid with two semimajor axes of 3394.6 and 3393.3 km and a semiminor axis of
3376.3 km.

This UDGS-derived Mars reference datum appears to be a good standard, so that
in the proposed database, elevation data will be with respect to this datum for a given
latitude longitude coordinate. This ellipsoidal datum gives rise to a further problem for the
database designer, however. On a precisely smooth spherical planet a degree of latitude
anywhere or longitude at the equator will always correspond to a fixed surface length
(length of the arc), namely 3.14D/360. But on an ellipsoidal planet, particularly one where
there are great surface elevation variations with respect to the reference datum, as is the
case on Mars, the length on the surface corresponding to a degree will vary, and must be
computed from the reference ellipsoid. Consequently, as a basic principle, terrain elevation
and other data in a database relation should not relate directly to grids with a sides of fixed
length in meters. Instead data in a database relation should be stored in relation to grids
whose sides are constant in terms of angular coordinates. The exact side length in meters
of such angular-coordinate grid elements will vary slightly over the planet surface but can
be computed as required.

The zero of longitude on Mars is the center of a craterlet called Airy-0, called after
Sir George Airy [23], the 19th century British Astronomer Royal who was largely
responsible for making Greenwich the zero for longitude on Earth. Airy-0 is at long 0.0,
lat -0.5.

o 2k ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 2k ok ok ok ok ok ok ok ok ok ok ok ok K sk ok ok ok sk ok ok sk sk ok ok ok sk sk ok sk sk ok ok sk ok sk sk ok ok ok ok sk ok

Terrain (lat long seg, colgrid, elevl coll compl, elev2 col2 comp2, ...,
verr, €1ev600 col900 comp900, trax ())

FT(fname, lat, long)
Feature (fname, ftype, clat, clong, ...)

Crater (cname, rimdiaml, rimdiam2, floortype, rimheight, ...)
Overlay(topname, botname, rimfraction)

Valley (vname, vilength, maxwidth, maxdepth,... parentname)
Mountain (mname, mtype, height, basediam, ...)
<other feature type relations>

Figure 1

e 3k sk ke 3k Sk ok Sk s 3f sk ok ok sk ok sk 3k 3k ok ok sk 3k sk ok ok ok 3k sk sk ok 3k K ok ok sk ok 3k ok ok ok sk ok ok ok sk ok sk e sk sk sk ke sk sk sk e ok ke skok Kok ok ok ok

2. The terrain data relation Terrain

The core of the database is the relation Terrain holding the terrain data for the planet. The
basic data consists of terrain elevation, together with terrain color and composition data,
versus latitude and longitude for the entire planet. Data is spaced on a grid of slightly
curved, approximately square, approximately equal elements. Since data can be expected
from MGS to a resolution of the order of 10 meters of surface, and since 1 second of arc
is close to 16.5 meters on average, it is clear that the grid elements should be of the order
of 1 second, or even a fraction of a second. At the time of writing, the final orbit of MGS,
and thus the data resolution, remains to be determined. In this paper we therefore assume
what is likely to be a worst case for the grid, namely 1 second of arc. As will be clear
shortly, changing it to 0.5 second, and a resolution of 8.25 meters, for example, will have
no effect on the functionality of the database, apart increasing the required gigabytes by a
factor of four.

It should be obvious that given the enormous size of Terrain, a Terrain relation of
the form:

Terrain (lat, long, elev, color, comp)

with one Terrain tuple per grid element, and latitude and longitude data to one second of
arc, would involve an unnecessarily large number of Terrain tuples (1.6 10 12) and waste
of disk space.

A much more efficient design, which would very much reduce access times and
access frequencies for Terrain, and to a considerable extent underlying storage space,
would be to store a North-South column of grid elements (referred to as an N-S column-

grid) in a single Terrain tuple, as a 1-dimensional column-grid array. This 1-dimensional
N-S column-grid array consists of the data for exactly 900 1-second square grid elements,
each array element containing terrain elevation, color and composition data. Going from
South to North by 1 degree (3,600 seconds) of latitude anywhere, with a 1 second
longitudinal swath, gives rise to data for four Terrain tuples, each corresponding to a N-S
column-grid of 900 grid elements. The set of four tuples concatenated would correspond
to a N-S column of 3600 1-second grid elements. In addition, at the equator, in going East
West by 1 longitude degree, there would be exactly 60X60 or 3600 parallel 900-element
N-S column-grids, and hence 3600 tuples. Thus, at the equator, the data from a 1-degree
square of surface would be in 4 X 3600 or 14,400 900-grid-element Terrain tuples.

Four tuples span a degree of latitude at all latitudes. The situation is different with
longitude. On a sphere, the surface length of a degree of longitude falls from 3.14D/360 at
the equator to O at the poles, so that the number of parallel 900-element column-grids per
degree of longitude will fall from 3600 at the equator to zero at the poles (and 1 for
latitude 89.75). However the falloff is not linear with respect to latitude, but linear with
respect to Cos(lat), since the length of a degree of longitude is 3.14DCos(lat)/360. The
number of tuples per degree rectangle can easily be arranged to reflect this falloff.

As a result of this arrangement, any given 1-degree latitude-longitude rectangle,
that is, the curved rectangle with N-S sides equal to 1 degree of latitude and E-W sides
equal to one degree of longitude, will be covered by a set of Terrain tuples, the number n
in the set varying with latitude but equal to 4 X 3600Cos(lat). Thus for a 1-degree
latitude-longitude rectangle, the number of 90-column-grid tuples required for Terrain is
given by the following table:

Latitude Terrain tuples (max. colgrid value)

0 4X 3600
15 4X3477
30 4X3118
45 4X2546
60 4X 1800
75 4X 932

with the average number of tuples in a degree rectangle being close to 11,600. Since there
are 360 x 360 degree rectangles on a sphere, the Terrain relation will have about 11,600 X
360 X 360, or 150 million tuples. Given a minimum of 3 bytes per grid element of a
Terrain tuple, and 900 elements in a N-S column-grid and thus in a tuple, there are about
2700 bytes per tuple and thus 2700 X 150 million bytes, or about 400 gigabytes, in the
relation Terrain.

Recalling that a 1 second grid element corresponds to about 16.5 meter square of
surface, if we increase the resolution to 8.25 meters by using 0.5 second grid elements, the
number of grid elements per tuple doubles to 1800, and the number of tuples for the globe
also doubles to 300 million, with Terrain hence quadrupling to 1,200 Gigabytes.

Since we are dealing with a triaxial ellipsoid, and elevations of the order of 10
kilometers above and below the reference datum, the exact surface length of the side of a
1-second grid element will vary, from place to place, by as much as 1%. Given a specific
latitude, longitude and elevation with respect to the reference datum, a standard function
[trax (lat, long, elev)] that returns the length of the grid sides can be stored with the
Terrain relation as a virtual attribute (i.e. frax() takes up no storage space in a tuple).

Recall that for each degree of latitude, 4 distinct 900-grid-column tuples are used.
Instead of 4 tuples, if a single 3600-grid-column tuple per degree of latitude were used,
with 10,800 bytes per tuple, this would not do as well. The number of parallel N-S
column-grid (and thus tuples) per degree of longitude falls from 3600 at the equator to 0
at the poles, as discussed already, that is, an average falloff of 4 tuples per degree of
latitude. Thus there should be at least 4 tuples per degree of latitude in the database in
order for the number of tuples per degree of longitude to fall by 1, for each quarter degree
change in latitude on average. Were there only one tuple per degree of latitude, the falloff
would be 4 tuples per N-S 1-degree latitude tuple on average, which would be too abrupt
and would compromise the uniformity of the grid coverage of the planet. The 4 types of
tuple per degree of latitude can be identified in Terrain by segment numbers 1 to 4,
segment 1 being most southerly. A tuple of a Terrain relation of this design has the
structure:

Terrain (lat long seg, colgrid, elevl coll compl, elev2 col2 comp?, ...,
..... elev600 col900 comp900, trax ())

The terrain data in the array elements of a specific tuple, corresponding to Sound-to-North
grid elements of a column-grid, are in left-to-right West-East order. For a specific latitude,
longitude and segment number values, the colgrid value gives the number identifying of
the N-S grid column. The maximum value for colgrid at any latitude is the number of 1-
sec grid squares per degree of longitude. A colgrid value of 1 gives the most westerly
column-grid, or corresponding most westerly tuple in the set of tuples for a specific
latitude, longitude and segment value.

The lat-long values in any Terrain tuple are integer values for the N.-W. 'corner' of
a 1-degree curved rectangle, so that lat-long data of 43 215 means the curved rectangle
between latitudes 43 and 42 North and between longitudes 215 and 214. Latitude degrees
North are considered positive and degrees South negative. The primary key for the
Terrain relation is the (lat long seg colgrid) composite. The Terrain relation would not be
indexed in storage on the primary key, however, instead a secondary key index for the
composite attribute (lat long) would be used, since data would almost always be retrieved
on the basis of integer latitude longitude values, that is, for a 1-degree curved rectangle.
The terrain data for this rectangle, that is, the data for 4 X 900 X (max colgrid) grid
elements, or for 4 X (max colgrid) tuples, can thus be simply retrieved by:

Select * from Terrain
where lat = 43 and long = 215

However, if data is desired for only a portion of a degree rectangle, this can easily be
retrieved by specifying appropriate seg and colgrid values.

Select * from Terrain
where lat = 43 and long = 215
and seg = 4 and colgrid >2000 and colgrid <= 3000)

This would retrieve exactly 1000 tuples, or data for 900,000 grid elements, covering part
of the N.E. quadrant of the 1-degree rectangle. The primary key is (lat long seg colgrid) .

An advantage of this structure is that any curved rectangle of data can be retrieved
just as easily. For example, suppose we want the rectangle of data for the great 3000-mile
long Martian rift valley Valles Marineris in the S.W. quadrant. This valley stretches from
about latitude O to 18 degrees South, and from about longitude 40 to 100 degrees West,
with many tributary valleys. We would code:

Select * from Terrain
where lat <= 0 and lat > -18 and long <= 90 and long > 40

This would retrieve 18 X 60 sets of tuples from Terrain, each set containing a one-degree
rectangle of data, corresponding to about 3.5 million square kilometers of terrain.

Overall, this Terrain relation design solves four practical problems associated with
a relation for Mars global data. The first problem solved concerns tuple size. Assuming 3
bytes of data per grid element, we need close to 2700 bytes per tuple, which is well within
disk track capacity with current technology, and will not lead to complications with
blocking the records of the underlying Terrain file. Increasing resolution to 0.5 second (or
about 8 meters) will not affect this compatibility. With other designs that would much
reduce the number of tuples in Terrain, the underlying records are simply too large for
hardware compatibility. The second problem solved is that the design accommodates the
fact that as latitude increases, the surface length of a degree of longitude decreases, from
about 59 km at latitude 0, to 0 km at latitude 90, and uses a fixed angular-coordinate grid
element size (1 second of arc) that also stays constant in terms of surface length over the
globe, to within a percent. The third problem solved is the geodetic problem of relating the
size of a grid element to latitude, longitude and elevation for a triaxial ellipsoid. This is
accomplished by placing a virtual attribute function frax() in Terrain. The forth problem
solved by the design is that the way in which the data is gridded for storage in tuples is
transparent to users constructing expressions in non procedural relational languages like
SQL [8, 9], or expressions in more advanced languages [4, 10, 34], in order to extract
data on the basis of features and feature properties, as will be apparent later; however, at
the same time the design allows the user to extract data for any portion of any 1-degree
rectangle.

Images and vistas

Users would will frequently want to have the grid of retrieved elevation and other
data converted to an image of some kind, often a vista. Generation of images from the
digital elevation data in Terrain will involve the use of trax(), cartographic projection
techniques [22] that may involve a triaxial ellipsoid, and 3-D imaging methods. Fractal
techniques can be used to enhance images where data is insufficient. The whole field is one
of great research interest at the present time, but is largely outside the scope of this paper.

3. Relating Terrain data to terrain features.

Humans do not think of locations in terms of angular coordinates, but in terms of
feature types and feature names. Thus any generally useful database must relate features to
the survey data in Terrain. Mars has a large number of different feature types, each with
many instances, and the enormous variety of features easily exceeds that on Earth. Given
that each type of feature will have distinct characteristics, a distinct relation will be needed
for each feature type, and each of these relations must relate to Terrain, although not
necessarily directly. The relationship between the planet's features and Terrain is therefore
complex, especially when it is considered that features frequently overlap on the surface,
for example, one crater partly obliterating two craters in a tributary valley of a main valley.
These problems have been solved in the design in Figure 1. Before discussing that design
further, we give a summary of the kinds of features occurring on Mars.

Main feature types on Mars

The International Astronomical Union, the body responsible for names on Mars, has
adopted the following feature type names, using Latin. The list is not exhaustive.

Catena A chain of craters, not overlapping. An example is Ganges Catena in the SW
quadrant [lat(-2,-3), long(70,65)]

Chasma A canyon, a depression with steep sides. An example is Coprates Chasma in the
SW quadrant [lat(-10,-15), long(70,55)]

Crater Circular structure with a rim caused by a meteor impact. A crater may partly
obliterate one or more earlier craters. Common on Mars.

Fossa A ditch-like, long, narrow, valley, can be either curved or straight. An example is
Sirenum Fossa in the SW quandrant [lat (-35,-25), long(165,135)].

Mensa A table-like structure, with a flat top and steep sides. An example in the NE
quadrant is Deuteronilus Mensa [Lat (45,40), long (345,340].

Mons A mountain, which can be of volcanic origin. Best known example is

10

Olympus Mons in the NW quadrant, an extinct 15-mile high volcano [Lat 18, long 133]

Planitia A basin, or low-lying, smooth plain. Best known example is Chryse Planitia in the
NW quadrant (the 'Plain of Gold', where Viking 1 landed in 1976) [lat (25,15),long
(50,40)].

Rupes A steep cliff or scarp. An example is Amanthes Rupes which is up to 3 km high and
stretches for 250 km.

Tholus An isolated hill, or dome-like mountain. An example in the NW quadrant is Jovis
Tholus [lat 18, long 117].

Vallis A valley, or river-like winding channel, that may have tributary channels. Best-
known example is Valles Marineris (Valleys of Mariner) in the SW quadrant, mentioned
earlier. Also Ares Vallis where Pathfinder landed in 1997.

The database design in Figure 1 allows for addition of new feature types as
required. Additional feature-type relations can be added without affecting the existing
design (apart from extensions of the Feature and FT relations) Thus in this way the design
is modularized. The relation for a feature type may be ordinary or complex. 1t is ordinary
if a single relation can be used for feature instances with no recursive relationships, and
complex if it is involved in a recursive relationship [2, 3].

A Crater relation is complex, since it must participate in a many-to-many (n:m)
recursive relationship. A (top) crater may have impacted on one or more earlier (bottom)
craters, and a (bottom) crater may have been impacted by one or more (top) craters; hence
the n:m recursive relationship. A Valley relation is also complex, since it participates in a
one-to-many (1:n) recursive relationship. A valley may be a tributary of another valley,
and a valley may have one or more tributaries; hence the 1:n recursive relationship. A
Mountain is an ordinary relation, since it does not participate in recursive relationships.

The database structure shown in Figure 1 includes relations to handle only crater,
valley and mountain feature types, as this is a fair representation of the many feature-types
and how they relate to Terrain.

The Feature relation

All features, regardless of type, have common characteristics, and this is used to
construct the Feature relation, with a tuple for every feature instance, regardless of type,
in the database:

FT(fname, lat, long)
Feature (fname, ftype, clat, clong, ...)

where the primary key is fname, fiype gives the type of feature, e.g. crater, or valley, and
clat and clong give latitude and longitude for the center point of the feature. FT is all key.

11

There will be in a 1:1 ISA relationship [3, 10, 34] between Feature and each of the
specific feature-type relations, such as relations Crater, Valley and Mountain. Thus a tuple
in feature-type relation Mountain for mname = '‘Olympus Mons' inherits the properties of
the corresponding tuple in Feature for which fhame = 'Olympus Mons'.

The important design consideration concerns relating feature types to terrain, that
is, relating the quite different relations, Crater, Valley, Mountain, and so on, to the relation
Terrain. This problem is solved by enabling the n:m relationship that must exist between
Feature and Terrain. The enabling relation is FT, and its single but crucial function is to
relate a tuple of Feature (representing a feature-type instance) to the tuples in Terrain that
cover the terrain encompassed by the feature. Remember, however, that there is a set of
tuples of Terrain for each 1-degree rectangle of terrain data. The relationship between
Feature and Terrain is many-to-many because a specific 1-degree rectangle of terrain data,
a set of tuples of Terrain, can be terrain in more than one feature (e.g. the crater in a
valley, or the crater on top of another crater).

An example will clarify this. Suppose a fictional crater called C3 in the side of a
fictional mountain called M6. Suppose the mountain is centered in the curved square
between lat (50, 46) and long (104,100) with peak (center) at about (48.3,102.2).
Suppose the crater lies inside the square with lat (48, 46) and long (102, 100) with center
at (47.1, 101.2). The relevant tuples in the Feature, FT and Terrain relations would be:

fname ftype clat clong

C3 crater 471 1012
M6 mountain 483 102.3

Feature

fname lat long

C3 48 102

C3 48 101

C3 47 102 Lat long seg colgrid elevl colrl textl
C3 47 101
M3 S50 104 50 104

M6 49 101 49 101

M6 48 104

M6 48 103 48 104

M6 48 102

M6 48 101 48 103

M6 47 104

M6 47 103 48 102

M6 47 102

M6 47 101 48 101

FT 47 104

12

47 103

47 102
47 101
Terrain

From this it is clear that for one Feature tuple, for example for crater C3, there are many
(4) degree-rectangle tuple sets in relation Terrain that contain the terrain data for C3.
Conversely, for a 1-degree-rectangle Terrain tuple set, for example the set of tuples each
with (lat long) value (47 103), there are many (2) tuples in Feature, one involving crater
C3 and one involving mountain M6. This structure involving relations Feature, FT and
Terrain enables survey and other data to be retrieved on the basis of a specific feature:

R1: Get terrain data for the mountain Pavonis Mons.
Select * from Terrain
where lat long in (select lat long from FT
where fname = 'Pavonis Mons')

R2: Get terrain data and mountain name for every mountain in the
NW quadrant south of latitude 20.
Select FT.fname, Terrain.* from FT, Terrain
where FT.lat = Terrain.lat and FT.long = Terrain.long
and FT.fhame in (select fname from Feature

where ftype = 'mountain’
and clat <20 and clat > 0
and clong > 0 and clong < 180)

R3: Get the name of each valley in which there is at least one embedded crater.
Select XF.fname from Feature as XF
where XF .ftype = 'valley' and XF.fhame in
(select XFT .fname from FT as XFT
where where XFT .lat XFT long in
(select YFT .lat YET long from FT as YFT
where YFT.fname in
(Select YF.fname from Feature as YF
where YF ftype = 'crater’))

Notice that this information can be retrieved without using Terrain.

13

Alternative to the Feature/FT relation approach

A criticism of the use of the relations Feature and FT, as described above, is that
the data in FT could be computed if coordinates for a rectangle enclosing the feature were
stored in Feature, instead of the location of the center. It could therefore be argued that
we should replace both Feature and FT by a single alternative relation AFeature:

AFeature (fname, ftype, maxlat, minlat, maxlong, minlong)

where fhame is the primary key, ftype gives the type of feature, e.g. crater, or valley, and
maxlat, minlat, maxlong and minlong give the latitudes and longitudes for the curved
rectangle that enclosed the feature. The former clat in Feature can now be computed from
(maxlat - minlat)/2 and clong from (maxlong - min long)/2 to give the latitude and
longitude of the center point of the feature.

We can admittedly use maxlat, minlat, maxlong, and minlong directly to relate
AFeature to Terrain, but only at the expense of either more complex or more tedious
retrieval expressions. A rewrite of retrievals R1 and R2 below using Afeature instead of
Feature and FT demonstrates this. The reader is invited to try the equivalent rewrite of R3
above.

RI: Get terrain data for the mountain Pavonis Mons.

Select * from Terrain

where lat <= (select maxlat from AFeature
where fname = 'Pavonis Mons')

and lat >= (select minlat from AFeature

where fname = 'Pavonis Mons')

and long <= (select maxlong from AFeature
where fname = 'Pavonis Mons")

and long >= (select minlong from AFeature
where fhame = 'Pavonis Mons')

R2: Get terrain data and mountain name for every mountain in the
NW quadrant south of latitude 20.
Select AFeature.fname, Terrain.* from AFeature, Terrain
where AFeature. maxlat >= Terrain lat
and AFeature minlat <= Terrain.lat
and AFeature. maxlong >= Terrain.long
and AFeature minlong <= Terrain.long
and AFeature ftype = 'mountain’
and (AFeature.maxlat - AFeature.minlat)/2 <= 20
and (AFeature.maxlat - AFeature.minlat)/2 >= 20
and (AFeature.maxlong - AFeature.minlong)/2 <=0
and (AFeature.maxlong - AFeature minlong)/2 <= 180

14

The problem gets worse when we bring feature-type relations like Valley, Mountain and
Crater into the retrieval expressions

An alternative to this complexity and tedium would be to construct two views [3,
8, 9, 34] from AFeature, one equivalent to the relation Feature and the other to relation
FT in Figure 1. This would enable expressions like the originals for R1, R2 and R3 to be
used. However, FT could have as many as 50,000 tuples when a full roster of feature
instances is stored, so that the necessary recomputing View-FT from AFeature each time a
retrieval is executed seems like a waste; and View-FT will likely be needed in most
retrievals given its strategic position linking Terrain with surface features.

An FT tuple is unlikely to exceed 20 bytes, so that the maximum size of FT is
about 1 Mbyte, which is negligible compared with the size of Terrain (estimated earlier at
400 Gigabytes). Since the cost of data storage resources is falling, this author's preference
is to add the resource of FT to the database and gain the resulting reduction in complexity.
Some readers may not agree, but in the rest of this paper we shall assume the Feature and
FT relations as in Figure 1. From a wider perspective, this is just another example of the
old trade-off of resources versus complexity.

4. The feature-type relations

Although the availability of the Feature relation imparts considerable flexibility, in practice
users will want to get at Terrain and other data on the basis of characteristics of features,
such as diameter of a crater or height of a mountain, etc. For this we need the feature-type
relations, such as Crater, Mountain, Valley, and their relationship to Feature, as shown in
Figure 1.

Crater relation

Since craters are common on Mars and since they can overlay one another, any
Crater relation has to be in a n:m relationship with itself, that is, in a recursive relationship.
In Figure 1, the relationship relation Overlay is used to enable the recursive relationship,
that is, for craters we have:

Feature (fname, ftype, clat, clong ...)
Crater (cname, rimdiam1, rimdiam?2, floortype, rimheight, ...)
Overlay(topname, botname, rimfraction)

In the relation Crater, cname is the primary key, rimdiam1 and rimdiam2 are the
outer and inner rim diameters; many other technical attributes beyond the scope of this
paper can also be included.

In the relation Overlay, which is all key, the crater topname will have been
fashioned on top of prior existing crater botname, such that a percentage of the rim
(rimfraction) of the botname crater has been obliterated by the meteor impact forming
topname. To see how Overlay enables the recursive relation, consider an area of crater
congestion, as occurs in the SE quadrant, with fictional craters C1, C2, C3, C4 and CS5.
Craters C1 and C1 are about the same size, 50 km in outer diameter, and were formed

15

first. They are close together; the rims are about 30 km apart but do not overlap. Then a
larger crater C3, about 75 km in outer diameter is formed partly on top of both C1 and
C2, so that a fraction 0.25 of the rim of each of C1 and C1 is destroyed. Then a further
meteor impact, partly on top of C3 and C2, forms crater C4. C4 is 60 km in outer
diameter and destroys a fraction 0.3 of the rim of C3 and a further fraction 0.2 of the rim
of C2. Finally a small crater C5, 20 km in outer diameter, is formed in the middle of the
floor of C4, without destroying any of the C4 rim. The database will show:

cnhame rimdiaml rimdiam2

cr . 50 topname botname rimfraction
c2 . 50 . . .
¢ 75 C3 C1 0.25
c4 .. 60 C3 C2 0.25
cs .. 20 C4 C2 0.20

C4 C3 0.30

Crater Cs C4 0
Overlay

It should be apparent that crater C3 has two child craters C1 and C2, that crater C4 has
two child craters, that C5 has one child crater, that C1 has one parent crater C3, that C2
has two parent craters C3 and C4, and that C4 has one parent crater C5. It is in this way
that relation crater participates in a recursive many to many relation. Some retrievals will
illustrate further:

R4. For each case of a (child) crater with a single (parent) crater completely inside the
child crater, with the rims of both parent and child fully intact, retrieve the parent and
child crater names, and the relevant Terrain data.

select Overlay.topname, Overlay.botname, Terrain. *
from Overlay, Terrain, FT
where Overlay.botname = FT.fname
and FT.lat = Terrain.lat and FT long = Terrain.long
and Overlay rimfraction = 0
and /* eliminate cases where rims not fully intact */
not exists (select L1.* from Overlay as L1
where (Overlay.botname = L1 botname and rimfraction > 0)
or (Overlay. Topname = L1.botname and rimfraction > 0))

R5. Get the crater name and terrain data for each crater in the Northern hemisphere with
a sandy floor that has a partly destroyed rim.
Select FT .fname, Terrain.* from FT, Terrain
where FT lat = Terrain.lat and FT .long = Terrain.long
and FT fname in (select fname from Feature

16

where clat > 0 and fname in
(select cname from Crater
where floortype = 'sandy'
and cname in (select botname from Overlay
where rimfraction > 0))

R6. Get latitude and lontitude data for the curved square that contains the crater Cassini.

Select max(lat), min(lat), max(long), min(long) from FT
where fname = 'Cassini'

This design allows for retrieval of terrain and other data for every conceivable crater
configuration that occurs in any crater-congested region of Mars.

Valley relation

Valleys on Mars can have tributary valleys, so that a valley resembles a branch of a
tree. Such a structure is easily handled by a recursive 1:n relationship. The Valley part of
the database in Figure 1 is:

Feature (fname, ftype, clat, clong)
Valley (vname, viength, maxwidth, maxdepth,... parentname)

In a Valley tuple vname is the primary key. For a given tuple for valley V1, the attribute
parentname gives the name of the valley for which V1 is a tributary valley. Suppose this
parent is V7. Then valley V7 may have many tributary valleys, but at least one, namely
V1. For a given valley it is clear that there can be only one parent. However for a given
valley there can be many tributaries or child valleys. Thus Valley is in a recursive 1:n
relationship. Some retrievals will illustrate:

R7. Get name, length, and maximum depth of each tributary valley in the Southern
hemisphere that itself has more than 4 tributary valleys.

Select vname, vlength, maxdepth from Valley
where parentname is not null
and vname in (Select fname from Feature where clat < 0)
and 4 < (select count (XValley.*) from Valley as XValley
and XValley.parentname = Valley.vname)

R8. Get the valley name and terrain data for each valley in the Western hemisphere that
has no tributary valleys.

Select Valley.vname, Terrain.* from Valley, Terrain, FT
where Valley. vname = FT fname
and FT lat = Terrain.lat and FT long = Terrain.long

17

where vname in (select vname from Feature
where clong < 180 and clong > 0)

and not exists (select XValley.* from Valley as XValley
where XValley.vname = Valley.vname)

The structure of Valley thus allows for navigating through a valley complex with many
levels of tributaries. This would be important for a virtual exploration of a valley of the
complexity of Valles Marineris, which not only has tributary valleys but overlaps many
canyons (chasma).

Other feature-type relations

Crater and Valley relations are significant for their additional participation in recursive
relationships. Many ordinary feature-type relations can be included in the database design
as well. An example is the relation Mountain is included in Figure 1:

Mountain (mname, mtype, height, basediam, ...)
with mname as primary key. The relation Mountain, together with its supertype Feature,
would be used in the retrieval:

R9. Get the names, heights and terrain data for volcanoes lying on the equator.

Select Mountain. mname, Mountain. height, Terrain.
from Mountain, Feature, FT, Terrain
where Mountain. mname = Feature.fname
and Feature fname = FT.fname
and FT lat = Terrain.lat and FT.long = Terrain.long
and Mountain. mtype = 'volcano'
and Feature.clat = 0.

Any additional feature-relation, such as a Plain relation, can be added to the database
without altering the Terrain relation. It is necessary only to insert addtional tuples into
Feature, one for every tuple in Plain, and to insert additional tuples into FT, one for every
degree square of terrain taken up by each Plain instance. Thus Feature and FT can be
looked upon as a bus for hanging feature-type relation modules onto, for linking to the
fundamental Terrain relation.

5. Summary

This paper has presented a discussion of a modularized design for a Mars Global
Terrain Database to be based on data transmitted from a Mars survey being undertaken by
the Mars Global Surveyor Spacecraft. The database will contain feature data and terrain
data for a regular angular-coordinate grid over the entire surface of Mars. The design is
with respect to a triaxial ellipsoidal reference datum developed for Mars by USGS. At the
core of the database is a 400-Gigabytes relation called Terrain that contains the terrain

18

data. It has a surface resolution of 16.5 meters, which can be increased to 8.25 meters at a
cost of quadrupling the database size.

Data is recorded with respect to 1-second of arc grid elements. Each tuple of
Terrain contains the latitude/longitude coordinates of a 1-degree curved rectangle, plus a
column of 900 grid elements, called a column grid, for a N-S running column of grid
elements within the 1-degree rectangle. The column-grid location within a 1-degree
rectangle to which a tuple corresponds is determined by a segment and colgrid number in
the tuple. The number of tuples in the E-W direction, and thus the number of N-S column-
grids, varies from 900 per degree of longitude at the equator to O at the poles. This
ensures a grid element is of constant size in meters, at least to within 1%, over the entire
planet. Since a degree at the equator is close to 59 kilometers, a grid element is close to
16.5 meters square, giving a surface resolution of 16.5 meters

This Terrain relation design solves four practical problems associated with a
relation for Mars global data. First it enable tuple size to lie well within disk track capacity
with currrent technology, and will not lead to complications with blocking the records of
the underlying Terrain file. Increasing resolution to 0.5 second (or about 8 meters) will not
affect this compatibility. Second, the design accommodates the fact that as latitude
increases, the surface length of a degree of longitude decreases, by using a fixed angular-
coordinate grid element size that also stays constant in terms of surface length over the
globe. The third problem solved is the geodetic problem of how to relate the size of a 1-
second grid element to latitude, longitude and elevation for a triaxial elippsoid in a
convenient manner; it is solved by placing a virtual attribute function #rax() in Terrain.

The remainder of the database has to do with relating Martian feature-type
relations to Terrain. The fact that Terrain is structured so that there is a set of tuples per
1-degree square, the number in the set varying with latitude, is essentially transparent to
users writing SQL expressions to retrieve Terrain data on the basis of specific features,
even though are many different types of features, each requiring a distinct relation. This is
the forth problem solved by the design. At least two of the feature-type relations needed,
namely Crater and Valley, are involved in recursive relationships, recursive many-to-many
in the case of Crater, and recursive one-to-many in the case of Valley.

Since all features have some attributes in common, each feature-type relations is in
a 1:1 ISA relation with a relation Feature that contains attributes common to all features.
It is Feature that is linked to Terrain in a many-to-many relationship via a simple
relationship relation FT. FT is estimated to be only 1Mbyte in size, since it is likely to have
a number of tuples comparable to the number of 1-degree rectangles on a sphere. The
number of tuples in Feature is equal to the number of distinct feature instances named on
Mars, e.g. Ares Valles, Pavonis Mons, etc., and is likely to grow with time. As a result of
this design there are no feature-type relationship-attributes [3, 31] in Terrain, so that it is
possible to add additional feature-type relations in a modular manner. Since Feature-type
relations are each in an ISA relationship with Feature, a feature-type tuple inherits all the
properties of the Feature supertype, including relationship participation.

The Feature/FT relations can be viewed as a bus from Terrain, to which it is
possible to attach any addition feature-type relation, regardless of any additional
complexity due to recursive relationship participation. Three feature type relations were
discussed, including the recursive Crater and Valley relations.

19

From a data retrieval viewpoint, the structure seems to result in relatively straight-
forward SQL expressions for terrain data retrieval. Where an SQL expression is complex,
the complexity will not be due to unnecessary complexity in the database, but only to the
complexity of the request, for example, a retrieval request involving one feature type
within another feature of a different type, such as valleys in mountains, or one feature type
within another of the same type, such as craters on top of craters - the recursive case. In
the design, measured storage space is deliberately expended in order to reduce retrieval
complexity. The total database size will be less than a percent greater than the size of the
core relation Terrain, so that consuming storage space for non-Terrain relations to reduce
complexity makes sense.

A much smaller prototype version of the database proposed in this paper can be
contructed while awaiting MGS data. Such a prototype would be for a smaller mid-
latitude section of the planet, about 5 X 5 degrees in size, in an area of a multiplicity of
small features. To keep the database size down, yet enable the design to be tested, grid
size could be increased to 6 seconds, for a resolution of about 100 meters. The size of the
database prototype would then be a reasonable 30 Megabytes.

References

1. ANSI, 1992. Database language SQL, ANSI X3, 135-1992, American National
Standards Institute, New York.

2. Batini. C, Ceri, S., Navathe, 1992. "Database Design: An Entity-relationship
Approach", Benjamin Cummings, Redwood City, Ca.

3. Bradley, J., 1982. "File and Database Techniques", Holt, Rinehart & Winston, New
York.

4. Bradley, J., 1996. Extended relational algebra for reduction of Natural quantifier COOL
expressions, J. Systems Software, Vol 33, 87-100.

5. Browning B.A., Conway, B.J, Mueller, AL, and D.J. Stanley, 1988. Exploiting Remote
Sensed Images, Proceedings of a Royal Society Discussion Meeting, The Royal Society,
London.

6. Carr M. H,, et al, 1977. Martian impact craters and the emplacement of ejecta by
surface flows, J. Geophys. Res. 82 (4), 35-64

7. Carr, M. H., 1984, "The Surface of Mars", Yale University Press, New Haven,
Connecticut.

8. Date. C. J. "Database Systems", 6th Edition, 1995.

9. Date C. J., Darwen, G., 1993. "A Guide to the SQL Standard", 3rd Edition, Addison
Wesley, Reading, Mass.

21

24. Mueller, I. I, Rapp, R. H, 1989. Horizontal and vertical geodetic datums, in
"Reference Frames in Astronomy and Geophysics", Kovalevsky, J., Mueller, I. 1.,
Kolaczek, B. (Editors), Kluwer Academic Publishers, London.

25. Mutch, T.A., Arvidson, RE., Head, J W, Jones, K. L., Saunders, R.S., 1976. "The
Geology of Mars", Princeton University Press, Princeton, New Jersey.

25. NOAA and NASA, 1987. Space-based Sensing of the Earth: A Report to Congress,
Washington D.C., U.S. Government Printing Office.

27. NASA, 1987. Altimetric systems, NASA Earth Observing System Reports, Vol 2h.

28. Ramesh, R., Babu, A. J. G, Kincaid, J. P., 1989. Index optimization: Theory and
experimental results, ACM Transactions on Database Systems, 14(1), 41-74.

29. Samet, H., Aref, W., 1995. Spatial data models and query processing, in "Modern
Database Systems", Kim, W. (Editor), ACM Press/Addison Wesley, 338-360.

30. Saupe, D., 1988. Algorithms for random fractals, in "The Science of Fractal Images",
H. Peitgen (Editor), Springer-Verlag, New York.

31. Silberschatz, A., Korth, H. F., Sudarshan, S., 1997. "Database System Concepts", 3rd
Ed., McGraw-Hill, New York.

32. Skidmore, A K., 1990. Terrain position as mapped from a gridded digital elevation
model, Int. J. Geographic Information Systems, Vol 4, 33-49.

33. Sperry, S. L. Novak, K., 1992 Integrating digital photgrammetry and GIS. URISA
Annual Conf. Proc., Vol 2, 36-44.

34. Stonebraker, M., Anton., J, and Hanson, E., 1987. Extending a database systems with
procedures, ACM Trans. on Database Systems 12(3), 350-376.

35. USGS, 1995. Atlas of Mars, Version 1.0.9, USGS Information Service, Denver Co.

36. Viking Lander Imaging Team, 1978. The Martian Landscape, NASA SP-425, Science
& Technology Information Office, Washington, D.C.

37. Voss, R. M., 1988. Fractals in nature, from characterization to simulation, in "The
Science of Fractal Images", H. Peitgen (Editor), Springer-Verlag, New York.

38. Watters, T. R., 1995, "Planets, a Smithsonian Guide", MacMillan, USA.
O

