
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 932686, 13 pages
doi:10.1155/2010/932686

Research Article

A Tester-Assisted Methodology for Test Redundancy Detection

Negar Koochakzadeh and Vahid Garousi

Software Quality Engineering Research Group (SoftQual), Department of Electrical and Computer Engineering,
Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to Negar Koochakzadeh, nkoochak@ucalgary.ca

Received 15 June 2009; Revised 16 September 2009; Accepted 13 October 2009

Academic Editor: Phillip Laplante

Copyright © 2010 N. Koochakzadeh and V. Garousi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Test redundancy detection reduces test maintenance costs and also ensures the integrity of test suites. One of the most widely used
approaches for this purpose is based on coverage information. In a recent work, we have shown that although this information can
be useful in detecting redundant tests, it may suffer from large number of false-positive errors, that is, a test case being identified
as redundant while it is really not. In this paper, we propose a semiautomated methodology to derive a reduced test suite from a
given test suite, while keeping the fault detection effectiveness unchanged. To evaluate the methodology, we apply the mutation
analysis technique to measure the fault detection effectiveness of the reduced test suite of a real Java project. The results confirm
that the proposed manual interactive inspection process leads to a reduced test suite with the same fault detection ability as the
original test suite.

1. Introduction

In today’s large-scale software systems, test (suite) mainte-
nance is an inseparable part of software maintenance. As a
software system evolves, its test suites need to be updated
(maintained) to verify new or modified functionality of the
software. That may cause test code to erode [1, 2]; it may
become complex and unmanageable [3] and increase the cost
of test maintenance. Decayed parts of test suite that cause test
maintenance problems are referred to as test smells [4].

Redundancy (among test cases) is a discussed but a
seldom-studied test smell. A redundant test case is one,
which if removed, will not affect the fault detection effective-
ness of the test suite. Another type of test redundancy dis-
cussed in the literature (e.g., [5, 6]) is test code duplication.
This type of redundancy is similar to conventional source
code duplication and is of syntactic nature. We refer to the
above two types of redundancy as semantic and syntactic test
redundancy smells, respectively. In this work, we focus on
the semantic redundancy smell which is known to be more
challenging to detect in general than the syntactic one [5].

Redundant test cases can have serious consequences
on test maintenance. By modifying a software unit in the

maintenance phase, testers need to investigate the test suite to
find all relevant test cases which test that feature and update
them correctly with the unit. Finding all of the related test
cases increases the cost of maintenance. From the other hand,
if test maintenance (updating) is not conducted carefully,
the integrity of the entire test suite will be under question.
For example, we can end up in a situation in which two
test cases test the same features of a unit, if one of them is
updated correctly with the unit and not the other one, one
test may fail while the other may pass, making the test results
ambiguous and conflicting.

The motivation for test redundancy detection is straight-
forward. By detecting and dealing with redundant test case
(e.g., carefully removing them), we reduce test maintenance
cost and the risk of loosing integrity in our test suite, while
fault detection capability of our test suite remains constant.

One of the most widely used approaches in the literature
(e.g., [6–11]) for test redundancy detection, also referred to
as test minimization, is based on coverage information. The
rationale followed is that, if several test cases in a test suite
execute the same program elements, the test suite can then
be reduced to a smaller suite that guarantees equivalent test
coverage ratio [6].
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However, test redundancy detection based on coverage
information does not guarantee to keep fault detection
capability of a given test suite. Evaluation results from
our previous work [12] showed that although coverage
information can be very useful in test redundancy detection,
detecting redundancy only based on this information may
lead to a test suite which is weaker in detecting faults than
the original one.

Considering fault detection capability of a test case for
the purpose of redundancy detection is thus very important.
To achieve this purpose, we propose a collaborative process
between testers and a proposed redundancy detection engine
to guide the tester to use valuable coverage information in a
proper and useful way.

The output of the process is a reduced test suite. We claim
that if testers play their role carefully in this process, fault
detection effectiveness of this reduced test set would be equal
to the original set.

High amount of human effort should be spent on
inspecting a test suite manually. However, the proposed
process in this paper tries to use the coverage information in
a constructive fashion to reduce the required tester efforts.
More automation can be added to this process later to
save more cost and thus the proposed process should be
considered as the first step to reduce required human effort
for test redundancy detection.

To evaluate our methodology, we apply the mutation
technique in a case study in which common types of faults
are injected. Then original and reduced test set are then
executed to detect faulty versions of the systems. The results
show similar capability of fault detection for those two test
sets.

The remainder of this paper is structured as follows. We
review the related works in Section 2. Our recent previous
work [12] which evaluated the precision of test redundancy
detection based on coverage information is summarized in
Section 3. The need for knowledge collaboration between
human testers and the proposed redundancy detection
engine is discussed in Section 4. To leverage and share
knowledge between the automated engine and human tester,
we propose a collaborative process for redundancy detection
in Section 5. In Section 6, we show the results of our case
study and evaluate the results using the mutation technique.
Efficiency, precision, and a summary of the proposed process
are discussed in Section 7. Finally, we conclude the paper in
Section 8 and discuss the future works.

2. Related Works

We first review the related works on test minimization
and test redundancy detection. We then provide a brief
overview of the literature on semiautomated processes that
collaborate with software engineers to complete tasks in
software engineering and specifically in software testing.

There are numerous techniques that address test suite
minimization by considering different types of test coverage
criteria (e.g., [6–11]). In all of those works, to achieve
the maximum possible test reduction, the smallest test set

which covers the same part of the system was created
[7]. The problem of finding the smallest test set has been
shown to be NP-complete [13]. Therefore, in order to
find an approximation to the minimum cardinality test set,
heuristics are usually used in the literature (e.g., [7, 9]).

A few works have applied data flow coverage criteria (e.g.,
[7, 10]) while a few others have applied control flow criteria
(e.g., [6, 9, 11]).

In [7], in addition to the experiment which was
performed for all-definition-use coverage criterion on a
relatively simple program (LOC is unknown), the authors
mentioned that all the possible coverage criteria should be
considered in order to detect redundant test cases more
precisely. The authors were able to reduce 40% of the size
of the test suite under study based on coverage information.

Coverage criteria used in [10] were predicate-use,
computation-use, definition-use, and all-uses. The authors
applied their approach on 10 Unix programs (with average
LOC of 354) and 91% of the original test suites were reduced
in total.

The control flow coverage criteria used in [6, 9, 11]
are Branch [6], statement [9], and MC/DC [11]. In [9],
mutation analysis was used to assess and evaluate the fault
detection effectiveness of the reduced test suites. The ratios
of reduction reported in these works were 50%, 34%, and
10%, respectively. The Systems Under Tests (SUTs) used in
[6, 9] were small scale (avg. LOC of 29 and 231, resp.), while
[11] used a medium size space program as its SUT with 9,564
LOC.

The need to evaluate test redundancy detection by
assessing fault detection effectiveness was mentioned in [6,
11]. In those works, faults were manually injected into the
SUTs to generate mutants. Then the mutation scores of
original and reduced test sets were compared. Reference
[6] concludes that test minimization based on coverage
information can reduce the ability of fault detection, while
[11] showed opposite conclusions.

In [6], faults were seeded to the SUTs manually by
modifying mostly a single line of code (first order mutation),
while in a few other cases, the authors modified between two
and five lines of code (k-order mutation). As mentioned in
[6], ten people (mostly without knowledge of each other’s
work) had tried to introduce faults that were as realistic as
possible, based on their experience with real programs.

In [11], the manually injected faults (18 of them) were
obtained from the error-log maintained during its testing
and integration phase. Eight faults were in the “logic omitted
or incorrect” category, seven faults belong to the type of
“computational problems,” and the remaining three faults
had “data handling problems” [11].

In our previous work [12], an experiment was performed
with 4 real Java programs to evaluate coverage-based test
redundancy detection. The objects of study were JMeter,
FitNesse, Lurgee and Allelogram with LOC of 69,424, 22,673,
7,050, and 3,296, respectively. Valuable lessons learned from
our previous experiment revealed that coverage information
cannot be the only source of knowledge to precisely detect
test redundancy. Lessons are summarized in Section 3 of this
paper.
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To the best of the authors’ knowledge, there has been no
existing work to improve the shortcomings (imprecision) of
coverage-based redundancy detection. In this paper, we are
proposing a semiautomated process for this purpose.

Semiautomated decision supports systems leverage
human-computer interaction which put together the knowl-
edge of human users and intelligent systems to support
decision-making tasks. Hybrid knowledge is very effective
in such situations where the computational intelligence
provides a set of qualified and diversified solutions and
human experts are involved interactively in the decision-
making process for final decision [14].

A logical theory of human-computer interaction has
been suggested by Milner [15]. Besides, the ways in which
open systems’ behavior can be expressed by the composition
of collaborative components is explained by Arbab [16].
There are various semiautomated systems designed for
software engineering such as user-centered software design
[17].

There have also been semiautomated systems used specif-
ically in software testing. For instance, test case generation
tools require tester’s assistance in providing test oracles [18].
Another example of collaborative tool for testing is manual
testing frameworks [19]. In these tools, testers perform test
cases manually while system records them for later uses.
The process proposed in this paper is a semiautomated
framework with the purpose of finding test redundancy in
software maintenance phase.

3. Coverage-Based Redundancy Detection
Can Be Imprecise

In our previous work [12], we performed an experiment to
evaluate test redundancy detection based only on coverage
information. We formulated two experimental metrics for
coverage-based measurement of test redundancy in the
context of JUnit test suites. We then evaluated the approach
by measuring the redundancy of four real Java projects
(FitNesse, Lurgee, Allelogram, and JMeter). The automated
test redundancy measures were compared with manual
redundancy decisions derived from inspection performed by
a human software tester.

In this paper, we use the term test artifact for different
granularity levels supported in JUnit (Figure 1). Three levels
of package, class, and methods are grouping mechanism for
test cases that have been introduced in JUnit.

The results from that study [12] showed that measuring
test redundancy based only on coverage information is
vulnerable to imprecision given the current implementation
of JUnit unit test framework and also coverage tools. The
following discussion explains the root causes.

In the SUTs we analyzed in [12], about 50% of
test artifacts, manually recognized as nonredundant, had
been detected as redundant tests by our coverage-based
redundancy metrics. In a Venn diagram notation, Figure 2
compares a hypothetical original test set with two reduced
sets showing high number of false-positive errors. Three
main reasons discovered in [12] to justify the errors are
discussed next.

Test class Test package Test suite

Test method

Test case

<<abstract>> test artifact

Figure 1: Test granularity in JUnit.

Original
test set

Reduced set based
on coverage

Reduced set after inspection

F + error

Figure 2: False-Positive Error in Test Redundancy Detection based
on Coverage Information.

(1) Test redundancy detection based on coverage infor-
mation in all previous works have been done by only
considering limited number of coverage criteria. This fact
that two test cases may cover the same part of SUT
according to one coverage criterion but not the other one
causes impreciseness in test redundancy detection only by
considering one coverage criterion.

(2) In JUnit, each test case contains four phases: setup,
exercise, verify, and teardown [4]. In the setup phase the
required state of the SUT for the purpose of a particular
test case is setup. In the exercise phase, the SUT is exercised.
In the teardown phase the SUT state is rolled back into the
state before running the test. In these three phases SUT is
covered while in the verification phase only a comparison
between expected and actual outputs is performed and SUT
is not covered. Therefore, there might be some test cases
with the same covered part of SUT with various verifications.
In this case, coverage information may lead to detecting a
nonredundant test as redundant.

(3) Coverage information is calculated only based on
the SUT instrumented for coverage measurement. External
resources (e.g., libraries) are not usually instrumented. There
are cases in which two test methods cover different libraries.
In such cases, the coverage information of the SUT alone is
not enough to measure redundancies.

Another reason of impreciseness in redundancy detec-
tion based on coverage information mentioned in [12]
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public void testAlleleOrderDoesntMatter () {
Genotype g1 = new Genotype(new double [ ] {0,1});
Genotype g2 = new Genotype(new double [ ] [13]);
assertTrue (g1.getAdjustedAlleleValues (2).

equals(g2.getAdjustedAlleleValues (2)));
}
public void testOffset (){

Genotype g = new Genotype(new double [ ]{0,1});
g.offsetBy (0.5);

List<Double> adjusted =

g.getAdjustedAlleleValues (2);
assertEquals (2, adjusted.size ());

assertEquals (0.5, adjusted.get (0));

assertEquals (1.5, adjusted.get (1));
g.clearOffset();

adjusted = g.getAdjustedAlleleValues (2);
assertEquals (0.0, adjusted.get (0));

assertEquals (1.0, adjusted.get (1));
}

Algorithm 1: Source code of two test methods in the Allelogram test suite.

was some limitations in coverage tools implementation.
For example, the coverage tool that we used in [12] was
CodeCover [20]. The early version of this tool (version
1.0.0.0) was unable to instrument return and throw
statements due to a technical limitation. Hence, the earlier
version of the tool excluded covering of such statements from
coverage information. This type of missing values can lead
to detecting a nonredundant test as redundant. However,
this limitation has now been resolved in the newest version
of CodeCover (version 1.0.0.1 released on April 2009) and
we have updated our redundancy detection framework by
using the latest version of this tool. Since in [12] this
problem was a root cause of false positive error, here we
just report this as a possible reason of impreciseness in
redundancy detection, while in this paper we do not have this
issue.

Algorithm 1 shows the source code of two test methods
from Allelogram test suite as an example of incorrect redun-
dancy detection by only applying coverage information.
In this example, test method testAlleleOrderDoesntMatter
covers a subset of covered items by the test method
testOffset both in setup and exercise phases. The setup phase
includes calling Genotype(new double) constructor. The
exercise phase contains calling getAdjestedAlleleValues(int)
method by passing the created Genotype object, which both
are called in the second test method as well. However,
the assertion goal in the first test is completely different
from the assertion goal in the second one. In the first
test method, the goal is comparing the output value of
getAdjestedAlleleValues method for two Genotype objects,
while in second one, one of the goals is checking the
size of output list from the getAdjestedAlleleValues method.
Therefore, although according to coverage information the
first test method is redundant, in reality it is nonredun-
dant.

4. The Need for Knowledge Collaboration
with Testers

Reduced test set based on coverage information contains
those test artifacts that cover at least one coverable item
not covered by any other test artifact. Therefore these
test artifacts contribute to achieving more coverage and
according to the concept of test coverage, they may increase
the fault detection capability of the test suites.

Based on the above discussion, it is worthwhile to use
coverage information for test redundancy detection to reduce
the number of test artifacts that might be redundant.

On the other side, high ratio of false-positive errors
shows that the coverage-based results alone are not reliable
and we may inaccurately detect many nonredundant test
artifacts as redundant ones.

The above advantages and disadvantages of coverage-
based redundancy detection have motivated us to improve
the test redundancy detection process by leveraging knowl-
edge from human testers. The three main root causes of
imprecision discussed in Section 3 should be considered in
such a tester-assisted approach.

First, the more coverage criteria are applied, the more
precise test redundancy will be detected. However, all of
the existing test coverage tools support a limited number
of coverage criteria. White-box criteria are more usually
supported, while there are only a few tools supporting
black-box criteria (e.g., JFeature [21]). In addition, usually
there are no precise formal specifications for some units
in some systems. Thus, automated measurement of black-
box coverage is impossible in those cases. Also, there is a
lack of coverage tools which automatically measure both
white-box and black-box coverage criteria at the same time.
Combing the coverage results from various coverage tools
might be a solution. However, lack of formal specification
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for many real projects makes it very challenging for us testers
to consider automated measurement of black-box coverage
for the purpose of redundancy detection in this work []. For
projects with full formal specifications, if test minimization
is performed precisely with respect to all available coverage
criteria, loss of fault detection ability can be minimized or
eliminated altogether. However, since formal specifications
are not available for many real projects, we propose to involve
human testers in the process of test redundancy detection.

For this purpose, testers can use their knowledge to write
formal specification for the SUT and use them in black-box
coverage tools, or apply black-box coverage manually. For
instance, if test t1 covers a subset of covered items by t2, and
the main goal of t1 is to check whether there is an exception
thrown by the SUT while t2 has a different goal, t1 is not
redundant. In other words, the inputs of two above tests are
from different equivalence classes (i.e., a black-box coverage
criterion should be applied).

Second, the verification phase of JUnit test methods
should be analyzed separately. As explained in Section 3,
this phase is independent of coverage information, and is
thus a precision threat to redundancy detection. Assertion
statements in JUnit tests should be compared to find if
they cause redundancy or not. In some cases, the actual
and expected values in assert statements have complicated
data flow. In such cases, comparing assertions in verification
phase would require sophisticated source code analysis (e.g.,
data flow analysis). For example, the actual outcomes of the
two assertEquals statements (located in two test methods)
in Figure 3 are the same: adjusted.get(). However,
determining whether their expected outcomes (a and 1.5)
have the same value or not would require data flow analysis
in this example. Automating such an analysis is possible, but
is challenging while in this step we use human tester for this
purpose by leaving its automation as a future work.

Third, in addition to the SUT, all the external libraries
used should be considered. However, as the source code of
those libraries is not probably available, we need to instru-
ment the class files in Java systems or to monitor coverage
through the JVM. As per our investigations, automating this
instrumentation and calculating coverage information for
the external libraries and combining them with coverage
information of the source code of the SUT is challenging and
is thus considered as a future work. At this step, we propose
the human tester to analyze the test code to find out how
an external library affects test results and consider that in
comparing test artifacts.

As explained previously, although it is possible to increase
the degree of automation to cover the shortcoming of
redundancy detection only based on limited number of
coverage criteria, there is one main reason that does not
allow full automation for this process, which is the lack of
precise and formal specification for real world project. In
other words, in the process of test redundancy detection
the existence of human testers is necessary to confirm the
real redundancy of those test artifacts detected as redundant
by the system. The human tester has to conduct a manual
inspection with guidelines proposed in this work and has to
consider the three root causes to prevent false positive errors.

· · ·
double a = getDefaultAdjusted(0);
· · ·
assertEquals (a, adjusted.get(0));
· · ·
· · ·
assertEquals (1.5, adjusted.get(0));
· · ·

Figure 3: The challenge of comparing assertions: excerpts from the
test suite of Allelogram.

Using the three above guidelines helps testers to collab-
orate more effectively in the proposed redundancy detection
process by analyzing test codes. Testers who have developed
test artifacts are the best source of knowledge to decide about
test redundancy by considering the above three lessons.
However, other test experts can also use our methodology
to find the redundancy of a test suite through manual
inspection. For instance, in the experiment of this work,
the input test suite was created by the developers of an
open source project while the first author has performed the
process of test redundancy detection.

5. A Collaborative Process for
Redundancy Detection

To systematically achieve test redundancy detection with
lower false-positive error, we propose a collaborative process
between an automated redundancy detection system and
human testers. The system will help the tester to inspect
test artifacts with the least required amount of effort to
find the actually redundant tests by using the benefits from
coverage information while the fault detection capability of
the reduced test suite is not reduced.

Figure 4 illustrates the activity diagram of the proposed
interactive redundancy detection process. The input of this
process is the original test suite of a SUT. Since human
knowledge is involved, the precision of the inspection
conducted by the human tester is paramount. If the tester
follows the process and the three above guidelines carefully,
the output would be a reduced test with the same fault
detection effectiveness as the original one.

As the first step in this process, redundancy detection
system uses a coverage tool to calculate coverage informa-
tion, which is used later to calculate two redundancy metrics
(discussed next).

Two redundancy metrics were proposed in [12]: Pair
Redundancy and Suite Redundancy. The Pair Redundancy is
defined between two test artifacts and is the ratio of covered
items in SUT by the first test artifact with respect to the
second one. In Suite Redundancy, this ratio is considered
for one test artifact with respect to all other tests in the test
suite.

Equations (1) and (2) define the Pair and Suite Redun-
dancy metrics, respectively. In both of these equations,
CoveredItemsi(t j) is the set of code items (e.g., statement
and branch) covered by test artifact t j , according to a given
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Figure 4: Proposed collaborative process for test redundancy detection.

coverage criterion i (e.g., statement coverage). CoverageCri-
teria in these two equations is the set of available coverage
criteria used during the redundancy detection process.

Based on the design rationale of the above metrics, their
values are always a real number in the range of [0 · · · 1]. This
enables us to measure redundancy in a quantitative domain
(i.e., partial redundancy is supported too).

However, the results from [12] show that this type of
partial redundancy is not precise and may mislead the tester
in detecting the redundancy of the test. For instance, suppose
that two JUnit test methods have similar setups with different
exercises. If for example 90% of the test coverage is in the
common setup the pair redundancy metrics would indicate
that they are 90% redundant with respect to each other.
However different exercises in these tests separate their goals
and thus they should not be considered as redundant with
respect to each other while 90% redundancy can mislead the
tester about their redundancy.

Equation (1) shows Redundancy of test artifact (tj) with
respect to another one (tk):

PR
(
t j , tk

)

=
⎛
⎝ ∑

i∈CoverageCriteria

∣∣∣CoveredItemsi
(
t j
)

∩CoveredItemsi(tk)
∣∣∣
⎞
⎠/

⎛
⎝ ∑

i∈CoverageCriteria

∣∣∣CoveredItemsi
(
t j
)∣∣∣
⎞
⎠,

(1)

equation (2) shows Redundancy of one test artifact (t j) with
respect to all others:

SR
(
t j
)

=
⎛
⎝ ∑

i∈CoverageCriteria

∣∣∣CoveredItemsi
(
t j
)

∩CoveredItemsi
(

TS− t j
)∣∣∣
⎞
⎠/

⎛
⎝ ∑

i∈CoverageCriteria

∣∣∣CoveredItemsi
(
t j
)∣∣∣
⎞
⎠.

(2)

However, partial redundancy concept can be useful in
some cases to warn testers to refactor test code. To find these
cases, in [12], we have offered to separate phases in a test case.
As this approach is considered as a future work, in this work
we do not consider partial redundancy concept. A test artifact
can be redundant or nonredundant. The suite redundancy
metric is used as a binary measure to separate test artifacts
into these two groups: redundant, and nonredundant. If SR
value of a test artifact = 1, that test is considered as redundant
otherwise it is nonredundant.

In some cases, a test artifact does not cover any type
of items (according to the considered coverage criteria). In
[12], we have found that these cases may occur for various
reasons, for example, (1) a test case may only cover items
outside the SUT (e.g., an external library), (2) a test case
may verify (assert) a condition without exercising anything
from the SUT, or (3) a test method may be completely empty
(developed by mistake). In these cases, the nominator and
the denominator of both above metrics (PR and SR) will be
zero (thus causing the 0-divide-by-0 problem). We assign the
value of NaN (Not a Number) to the SR metric for these
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cases leaving them to be manually inspected to determine the
reason.

After calculating coverage and redundancy metrics, the
system prepares a list of test artifacts in no particular order.
All the information about coverage ratios, number of covered
items and redundancy metrics (both SR for each test and PR
for each test pair) is available for exploration by the tester.

Step 2 in the process is the tester’s turn. He/she should
inspect the tests which are identified as a redundant test
by the SR value (=1) to find out whether they are really
redundant or not. This manual redundancy analysis should
be performed for each test artifact separately. Therefore tester
needs to choose a test from a set of candidate redundant tests.

The sequence in which test artifacts are inspected may
affect the final precision of the process. Test sequencing often
becomes important for an application that has internal state.
Dependency between test artifacts may cause the erratic test
smell in which one or more tests behave erratically (the test
result depends on the result of other tests) [4]. However,
in this work we do not consider this smell (our case study
does not have this problem and thus we did not have any
constraints for sequencing the test artifacts).

Our experience with manual redundancy detection in
our case study (discussed in next section) helps us to find
that the locality principle of test artifacts is an important
factor that should be considered in test sequencing. In other
words, for instance, test methods inside one test class have
more likelihood of redundancy with respect to each other
and should be inspected simultaneously.

There can be different strategies for ordering test artifacts
and picking one to inspect at a time. One strategy can
be defined according to number of covered items by each
test artifact. As discussed next ascending and descending
orders of number of coverage items each may have their own
benefits.

A test expert may prefer to first choose a test artifact with
higher redundancy probability. In this case, we hypothesize
that the ascending order based on number of covered items
is more suitable. The rationale behind this hypothesis is that
the likelihood of covering fewer code items (e.g., statement,
branch) by more than one test artifact is more than covering
more items by the same test artifacts. Relationship between
numbers of covered items by a test artifact with probability
of redundancy of that test needs to be analyzed in an
experiment. However, this is not the main goal of this paper
and we leave it as a future work.

Descending order can have its own benefits. A test expert
may believe that having test cases with more covered items
would lead to the eager test smell (i.e., a test with too many
assertions [22]). In this case, he/she would prefer to first
analyze a test that covers more items in the SUT.

Finding a customized order of two above extreme cases
by considering their benefits and costs is not discussed in
this paper. Also other factors more than redundancy and
coverage information may be useful in finding a proper test
order.

Another strategy for sorting the existing test cases would
be according to their execution time. If one of the objectives
of reducing test suite is reducing the execution time, by this

strategy test cases which need more time to be executed have
more priority of redundancy candidates. However, we believe
that in unit testing level execution time of test cases is not as
important as other smells like being eager.

After picking appropriate test artifact, tester can use
PR values of that test with respect to other tests. This
information guides tester to inspect source code of that
test case and compare it with source code of those tests
with higher PR values. Without this information, manual
inspection would take much more time from testers since
he/she may not have any idea how to find another test to
compare the source code together.

As discussed in Section 4, the main reason of need for
human knowledge is to cover shortcomings of coverage-
based redundancy detection. Therefore testers should be
thoroughly familiar with these shortcomings and attempt at
covering them.

After redundancy analysis, the test is identified as
redundant or not. If it was detected as redundant by tester
(Step 3), system removes it from original test set (Step 4).
In this step, the whole collaborative process between system
and tester should be repeated. Removing one test from
test suite changes the value of CoveredItemsi(TS − t j) in
(2). Therefore system should recalculate Suite Redundancy
metric for all of the available tests (Step 5). In Section 6
we show how removing a redundant test detected by tester
and recalculating the redundancy information can help the
tester not to be misled by initial redundancy information and
reduce the required effort of the tester.

Stopping condition of this process depends on tester’s
discretion. To find this stopping point, tester needs to
compare the cost of process with savings in test maintenance
costs resulting from test redundancy detection. Process cost
at any point of the process can be measured by the time and
effort that testers have spent in the process.

Test maintenance tasks have two types of costs which
should be estimated: (1) costs incurred by updating (syn-
chronizing) test code and SUT code, and (2) costs due to
fixing integrity problems in test suite (e.g., one of two test
cases testing the same SUT feature fails, while the other
passes). Having redundant tests can lead testers to updating
more than a test for each modification. Secondly, as a result
of having redundant tests, the test suites would suffer from
integrity issues, since the tester might have missed to update
all the relevant tests.

To estimate the above two cost factors, one might per-
form change impact analysis on the SUT, and subsequently
effort-prediction analysis (using techniques such as [23]) on
SUT versus test code changes.

To decide about stopping point of the process, a tester
would need to measure the process costs spent so far and
to also estimate the maintenance costs containing both the
above-discussed cost factors. By comparing them, he/she
may decide to either stop or to continue the proposed
process.

In the outset of this work, we have not systematically
analyzed the above cost factors. As discussed before, we
suggest testers to inspect all the tests with the value SR = 1
as many as possible. However, according to high number
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Table 1: The size measures of Allelogram code.

SLOC
Number of
packages

Number of
classes

Number of
methods

3,296 7 57 323

Table 2: The size measures of Allelogram test suite.

Test suite
SLOC

Number of test
packages

Number of test
classes

Number of test
methods

2,358 6 21 82

of false-positive errors, other tests in this category (with
SR = 1) which were not inspected, should be considered as
nonredundant. If the SR metric of a test artifact is less than
1, it means that there are some items in the SUT which are
covered only by this test artifact. Thus, they should also be
considered as nonredundant.

To automate the proposed process for test redundancy
detection, we have modified the CodeCover coverage tool
[20] to be able to measure our redundancy metrics. We
refer to our extended tool as TeReDetect (Test Redundancy
Detection tool). The tool shows a list of test artifacts
containing coverage and redundancy information of each
of them, it lets the tester to sort test artifacts according
to his/her strategy (as explained before) and to introduce
a real detected redundant test to the system for further
metrics recalculation. After detecting a redundant test
method, system automatically recalculates the redundancy
metrics and updates the tester with new redundancy
information for the next inspection iteration. A snapshot
of the TeReDetect tool, during the process being applied
to Allelogram, is shown in Figure 5. TeReDetect is an open
source project (it has been extended to the SVN repository
of CodeCover http://codecover.svn.sourceforge.net/svnroot/
codecover). TeReDetect is not a standalone plug-in, rather
it has been embedded inside the CodeCover plug-in.
For instance, ManualRedundancyView.java is one of the
extend-ed classes for our tool which is available from http://
codecover.svn.sourceforge.net/svnroot/codecover/trunk/
code/eclipse/src/org/codecover/eclipse/views/.

6. Case Study

6.1. Performing the Proposed Process. We used Allelogram
[24], an open-source SUT developed in Java, as the object
of our case study. Allelogram is a program for processing
genomes and is used by biological scientists [24]. Table 1
shows the size measures of this system.

The unit test suite of Allelogram is also available through
its project website [24] and is developed in JUnit. Table 2 lists
the size metrics of its test suite. As the lowest implemented
test level in JUnit is test method, we applied our redundancy
detection process on the test method level in this SUT.

As the first step of proposed redundancy detection
process, coverage metrics are measured. For this purpose, we
used the CodeCover tool [20] in our experiment. This tool
is an open-source coverage tool written in Java supporting

Table 3: Coverage information (%).

Coverage (%)

Statement Branch Condition Loop

Entire Allelogram 23.3 34.7 35.9 22.2

Without GUI components 68.0 72.9 71.4 43.0

Table 4: The percentage of fully redundant test methods.

Coverage criteria Percentage of fully redundant test methods

Statement 77%

Branch 84%

Condition 83%

Loop 87%

All 69%

the following four coverage criteria: statement, branch,
condition (MC/DC), and loop. The loop coverage criterion,
as supported by CodeCover, requires that each loop is
executed 0 times, once, and more than once.

Table 3 shows the coverage metrics for our SUT. The
first row in this table is the coverage ratios of the whole
Allelogram system which are relatively low. We also looked
at the code coverage of different packages in this system.
Our analysis showed that the Graphical User Interface (GUI)
package of this SUT is not tested (covered) at all by its test
suite. This is most probably since JUnit is supposed to be
used for unit testing and not GUI or functional testing. By
excluding the GUI package from coverage measurement, we
recalculated the coverage values shown in the second row of
Table 3. These values show that the non-GUI parts of the
system were tested quite thoroughly.

The next step in the process is the calculation of
suite-level redundancy for each test method and pairwise
redundancy for each pair of test methods in the test suite of
our SUT.

To automate the measurement of redundancy of each test
method using the two metrics defined in Section 5 ((1) and
(2)), we have modified CodeCover to calculate the metrics
and export them into a text file, once it executes a test suite.

Table 4 reports the percentage of fully redundant test
methods (those with SR = 1) according to each coverage
criterion and also by considering all of the criteria together.

As we expected, according to Table 4, ratio of full
redundancy detected by considering each coverage criteria
separately is higher than the case when all of them are con-
sidered. This confirms the fact that the more coverage criteria
used in redundancy detection, the less false positive error can
be achieved. In other words, All coverage criterion detects
those tests as nonredundant that improve the coverage ratio
values of at least one of the coverage criteria. As All criterion
is more precise than the others, in the rest of our case study
we consider the suite redundancy based on All criterion.

According to the suite redundancy result by considering
all four coverage criteria (Table 4), 31% (100−69) of the tests
in test suites of Allelogram are nonredundant. To confirm
the nonredundancy of those methods, we randomly sampled
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Figure 5: Snapshot of the TeReDetect tool.

a set of test methods in this group and inspected them. We
found few cases that seem as redundant tests which are in fact
true-negative errors as reported in [12]. However, according
to our inspection and code analysis, such test methods cover
at least one coverable item not covered by any other test
method. For instance, a test method named testOneBin in
Allelogram covers a loop only once while some other test
methods cover that loop more than one time. Therefore, loop
redundancy of this method is slightly less than 1 (0.91) and
thus detected as nonredundant by our redundancy metrics.
For the same test method, the other types of redundancy
considering only statement, branch, and condition coverage
are 1. In fact, the above test cases contribute to loop coverage
and we thus mark it as nonredundant since it covers a loop
in a way (only once) not covered by other test methods.

Having a candidate set of redundant test methods
(redundant tests based on All criterion: 69%), tester needs
to decide about their order to inspect their source code. In
this study, the first author (a graduate student of software
testing) manually inspected the test methods. Recall the
heuristics discussed in Section 5 about the sorting strategy
of test method in the proposed process: test methods with
fewer numbers of covered items have higher likelihood of
being redundant. We thus decided to order the tests in
the ascending order of the number of covered items (e.g.,
statement). In this case, we hoped to find redundant test
methods sooner which may lead to a reduction in the search
space (discussed next).

As the next step, manual inspection of a test was
performed by comparing the source code of the test with
other tests having high pair redundancy with the current one.
The main focus of this step should be detecting redundancy
by covering the shortcomings of coverage-based redundancy
detection discussed in Section 5.

Redundancy of one test affects the redundancy of others.
For instance, if test method A is redundant because it covers

the same functionality covered by test method B (while there
are no other tests to cover this functionality), test method B
cannot be redundant at the same time. Therefore, while both
of them are candidates for being redundant tests according
to coverage information, but only one of them should be
considered redundant finally. We refer to such effects as inter-
test-method-redundancy effects

By only using redundancy information from the begin-
ning step of the process, tester would need to keep track
of all the tests previously detected as redundant during
the process and apply the inter-test-method-redundancy
effects by him/her self. However, recalculating the coverage
information, after each redundancy detection, can reduce
the search space (as explained next). Therefore, detecting
redundant tests one by one and subsequently recalculating
redundancy metrics increase precision and efficiency of the
tester.

In this case study, we manually inspected the whole test
suite of Allelogram. Figure 6 illustrates the whole process
results by showing the size of five different test sets manip-
ulated during the process. Those five test sets are discussed
next.

We divide test methods into two categories: redundancy
known and redundancy unknown. The test artifacts in
the redundancy-unknown set are pending inspection to
determine whether they are redundant or not (Set 1).
Redundancy-known set contains redundant (Set 2) and
nonredundant test sets whose decisions have been final-
ized. Furthermore, the set of nonredundant tests inside
redundancy-known category contains three different sets:
those identified through inspection (Set 3), those identified
without inspection (Set 4), and the ones that were identified
by system as nonredundant after nonredundancy has been
detected through inspection (Set 5).

At the beginning of the process, by calculating redun-
dancy metrics based on coverage information, test methods
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Figure 6: Labeling the test cases through the redundancy detection
process.

are divided into two sets of Nonredundant Tests without
Inspection and Remaining Tests Pending Inspection sets. As
the figure shows, 28 test methods were recognized as
nonredundant, while 54 (82 − 28) test methods needed to
be inspected.

After each test method inspection, redundancy of that
test is identified. This test method then leaves the Remaining
Tests Pending Inspection set and Nonredundant test joins
Nonredundant Tests with Inspection set while each redundant
test joins Redundant Tests set. In the second case, redundancy
metrics are recalculated.

In this case study, as shown in Figure 5, 11 test methods
are recognized as redundant (test methods numbered in
the x-axis as 7, 12, 19, 21, 24, 27, 36, 38, 40, 41, and
44). In these cases, new iterations of the process were
performed by recalculating the redundancy metrics. In 5
cases (test methods numbered 12, 21, 24, 27, and 44), the
recalculating led to search space reduction (5 test methods
left the Remaining Tests Pending Inspection set and joined
the Nonredundant Tests without Inspection set). In 2 of them
(test methods 21 and 44), recalculating caused 2 test methods
to leave Nonredundant Tests with Inspection set and join
Nonredundant Tests with Unnecessary Inspection set.

At the beginning of the process, the size of the Remaining
Tests Pending Inspection set was 54 (our initial search space).
However, through the process, recalculating reduced the
number of test methods that needed to be inspected to 49.
In this case study, we ordered test methods in the ascending
order of number of their covered items.

The final result of the process is a reduced test set
containing 71 test methods instead of 82 (the original
test suite of Allelogram). Stopping point of this process is
considered by inspecting all the redundant candidate test
methods (with SR = 1) and no cost estimation is applied
for this purpose.

6.2. Evaluating the Proposed Process. To evaluate the pre-
ciseness of the proposed process, we considered the main
purpose of test redundancy detection as discussed by many

researchers. Test minimization should be performed in a
way that the fault detection effectiveness of the test suite is
preserved. Therefore, the process is successful if it does not
reduce the fault detection capability.

One way to evaluate the above success factor of our test
minimization approach is to inject probable faults in the
SUT. Mutation is a technique that is widely used for this
purpose ([25, 26]). The researches in [27, 28] show that
the use of mutation operators is yielding trustworthy results
and generated mutants can be used to predict the detection
effectiveness of real faults.

In this work, we used the mutation analysis technique
for the evaluation of the fault detection effectiveness of the
reduced test suites generated by our technique. However,
after completing this research project, we found out that, as
another approach, we could also use the mutation analysis
technique to detect test redundancy in a different alternative
approach as follows. If the mutation scores of a given test
suite with and without a particular test case are the same,
then that test case is considered redundant. In other words,
that test case does not kill (distinguish) any additional
mutant. We plan to compare the above test redundancy
detection approach with the one we conducted in this paper
in a future work.

To inject simple faults into our case study, we used the
MuClipse [29] tool which is a reincarnation of the MuJava
[30] tool in the form of an Eclipse plug-in. Two main types
of mutation operators are supported by MuClipse: method
level (traditional) and class level (object oriented) [30].

To inject faults according to the traditional mutation
operators, MuClipse replaces, inserts or deletes the primitive
operators in the program. 15 different types of traditional
mutation operators are available in MuClipse [29]. One
example of this operators is the Arithmetic Operator
Replacement (AOR) [31].

The strategy in object-oriented mutation operators is to
handle all the possible syntactic changes for OO features by
deleting, inserting, or changing the target syntactic element.
28 different types of OO mutation operators are available
in MuClipse [29]. One example is Hiding variable deletion
(IHD) which deletes a variable in a subclass that has the same
name and type as a variable in the parent class [32].

All the available above mutation operators were used in
this experiment. During this step, we found that MuClipse
generates some mutants which failed to compile. These types
of mutants are referred to as stillborn mutants which are
syntactically incorrect and are killed by the compiler [29].
The total number of mutants for Allelogram that were not
stillborn was 229.

To evaluate the fault detection effectiveness of the
reduced test set by our proposed process compared to
original test set, we calculated their mutation scores. We used
MuClipse to execute all the created mutants with the two
test sets (original and reduced). Table 5 shows the mutation
score of three test sets: original test set, reduced test set only
based on coverage information, and reduced test set through
collaboration process with a tester.

The result shows that every mutant that is killed by
original test set is killed by the reduced set (derived by
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Table 5: Mutation score of three test suites for Allelogram.

Test set Cardinality Mutation score

Original 82 51%

Reduced (coverage based) 28 20%

Reduced (collaborative process) 71 51%

the collaborative process) as well. In other words, the
effectiveness of these two test sets is equal while the reduced
set (solely based on coverage information) has 11 (82 − 71)
less tests than the first one. That test suite thus has lower fault
detection effectiveness.

Mutation score decreasing from 51% in original test
set to 20% in the reduced set only based on coverage
information confirms our discussion in Section 3 about
impreciseness of test redundancy detection based only on
coverage information.

7. Discussion

7.1. Effectiveness and Precision. Let us recall the main
purpose of reducing the number of test cases in a test suite
(Section 1): decreasing the cost of software maintenance.
Thus, if the proposed methodology turns to be very time
consuming, then it will not be worthwhile to be applied.

Although the best way to increase the efficiency of the
process is to automate all required tasks, at this step we
suppose that it is not practical to automate all of them. Thus,
as we discuss next, human knowledge is currently needed in
this process.

To perform manual inspection on test suite with the
purpose of finding redundancy, testers need to spend time
and effort on each test source code and compare them
together. To decrease the amount of required effort, we
have devised the proposed approach in a way to reduce
the number of tests needed to be inspected (by using the
suite redundancy metric). Our process also suggests useful
information such as pair redundancy metric to help testers
find other proper tests to compare with the test under
inspection.

We believe that by using the above information, the
efficiency of test redundancy detection has been improved.
This improvement was seen on our case study while we
first spent on average more than 15 minutes for each test
method of Allelogram test suite before having our process.
But inspecting them using the proposed process took on
average less than 5 minutes per test method (the reason of
time reduction is that in the later we knew other proper
test methods to compare them with the current test). Since
only one human subject (tester) performed the above two
approaches, different parts of the Allelogram test suite were
analyzed in each approach to avoid bias (due to learning and
gaining familiarity) on time measurement.

However the above results are based on our preliminary
experiment and it is thus inadequate to provide a general
picture about the efficiency of the process. For a more
systematic analysis in that direction, both time and effort
should be measured more precisely with more than one

Table 6: Cost/benefit comparison.

Cost Benefit

Full automation Low Imprecise reduced set

Full manual High Precise reduced set

Semiautomated Mid Precise reduced set

subject on more than one object. Such an experiment is
considered as a future work.

In addition to the efficiency of the process, precision of
redundancy detection was also evaluated in our work. As
explained in Section 6.2, this evaluation has been done in
our case study by applying mutation technique. The result
of analysis on one SUT confirmed the high precision of the
process.

However, human’s error is inevitable in collaborative
processes which can affect the precision of the whole process.
To decrease this type of error, the tester needs to be familiar
with the written tests. Therefore, we suggest having the
original test suite developers involved in the redundancy
detection process if possible or that they be at least available
for the possible questions during the process. In other words,
a precise teamwork communication is required to detect
correct test redundancy.

7.2. Cost/Benefit Analysis. According to above discussions,
our redundancy detection technique has the following
benefits.

(i) Reducing the size of test suite by keeping the fault
detection effectiveness of that.

(ii) Preventing possible future integrity issues in the test
suite.

(iii) Reducing test maintenance costs.

Different types of required costs in this process are
summarized as follows.

(i) TeReDetect installation costs.

(ii) System execution time during the process (steps 1, 4,
and 5 in Figure 4 ).

(iii) Redundancy analysis by human testers (steps 2 and 3
in Figure 4 ).

The first and second cost items are not considerable
while the main part of the cost is about the third one which
contains human efforts.

Table 6 shows an informal comparison of above costs and
benefits in three approaches of full automation, full manual,
and semiautomated process proposed in this paper. In the
second and third approaches that human has a role, it is
inevitable that the preciseness of human affects the benefits
of the results.

7.3. Scalability. In large-scale systems with many LOC and
test cases, it is not usually feasible to look at and analyze
the test cases for the entire system. However, as mentioned
before, in TeReDetect it is possible to select a subset of
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test suite and also a subset of SUT. This functionality
of TeReDetect increases the scalability of this tool to a
great extent by making it possible to divide the process of
redundancy detection into separate parts and assign each
part to a tester. However a precise teamwork communication
is required to make the whole process successful.

Flexible stopping point of the proposed process is
another reason for its scalability. According to the tester’s
discretion, the process of redundancy detection may stop
after analyzing the subset of test cases or continue for all
existing tests. For instance, in huge systems, by considering
the cost of redundancy detection, project manager may
decide to analyze only the critical part of the system.

7.4. Threats to Validity

7.4.1. External Validity. Two issues limit the generalization
of our results. The first one is the subject representativeness
of our case study. In this paper the process has been done
by the first author (a graduate student). More than one
subject should be experimented in this process to be able to
compare their results to each other. Also, this subject knew
the exact objective of the study which is a threat to the result.
The second issue is the object program representativeness.
We have performed the process and evaluate the result on
one SUT (Allelogram). More objects should be used in
experiments to improve the result. Also our SUT is a random
project chosen from the open source community. Other
industrial programs with different characteristics may have
different test redundancy behavior.

7.4.2. Internal Validity. The result about efficiency and
precision of the proposed process might be from some other
factors which we had no control or had not measured. For
instance, the bias and knowledge of the tester while trying to
find redundancy can be such a factor.

8. Conclusion and Future Works

Measuring and removing test redundancy can prevent the
integrity issues of test suites and decrease the cost of
test maintenance. Previous works on test set minimization
believed that coverage information is useful resource to
detect redundancy.

To evaluate the above idea we performed an experiment
in [12]. The result shows that coverage information is not
enough knowledge for detecting redundancy according to
fault detection effectiveness. However, this information is a
very useful starting point for further manual inspection by
human testers.

Root-cause analysis of above observation in [12] has
helped us to improve the precision of redundancy detection
by covering the shortcomings in the process proposed in this
paper.

We proposed a collaborative process between human
testers and redundancy system based on coverage informa-
tion. We also performed an experiment with that process
on a real java project. This in turn led us to find out that

the sharing the knowledge between the human user and the
system can be useful for the purpose of test redundancy
detection. We conclude that test redundancy detection can be
performed more effectively when it is done in an interactive
process.

The result of the case study performed in this paper
shows that fault detection effectiveness of the reduced set
is the same as the original test set while the cost of test
maintenance for reduced one is less than the other (since the
size of the first set is less than the second one).

The efficiency of this process in terms of time and effort
is improved comparing to the case of manual inspection for
finding test redundancy without this proposed process.

In this paper, the efficiency factor was discussed qualita-
tively. Therefore measuring precise time and efforts spent in
this process is considered as a future experiment.

Finding the stopping point of the process needs main-
tenance and effort cost estimation which is not studied
thoroughly in this work and is also considered as a future
work.

As explained in Section 5, the order of the tests inspected
in the proposed process can play an important role in the test
reduction result. In this work we suggested a few strategies
with their benefits to order the test while this needs to be
studied more precisely. Also, test sequential constraints such
as the case of dependent test cases are not discussed in this
work.

Visualization of coverage and redundancy information
can also improve the efficiency of this process extensively.
We are now in the process of developing such a visualization
technique to further help human testers in test redundancy
detect processes.

In addition to above, some tasks which are now done
manually in this proposed process could be automated in
future works. One example is the automated detection of
redundancy in the verification phase of JUnit test methods
which will most probably require the development of
sophisticated code analysis tools to compare the verification
phase of two test methods.
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