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Abstract
 

In this thesis we develop methods of estimating amplitude-variations-with-frequency 

(AVF) signatures in seismic data for the inversion of anelastic reflectivity. AVF in­

version requires estimates of the anelastic reflection coefficient as input and allows for 

the determination of the target Q value. We start by calibrating a fast S-transform to 

use as our processing tool to estimate the local spectrum of reflection coefficients. We 

then modify the AVF inverse theory to operate in the S-domain and find accurate in­

version results. In a synthetic data environment we test AVF inversion to manage a 

prioritized set of issues including random noise, nearby/difficult to isolate events, and a 

source wavelet. We find AVF inversion, in the presence of these seismic data phenomena, 

to be a tractable problem. We also identify and examine a target reflection from a VSP 

data set and observe an AVF signature. 

A least-squares approach is developed with the goal of making AVF inversion more 

robust in the presence of a source wavelet. We also extend the least-squares formalism 

to oblique incidence. We find the least-squares approach is successful at inverting for 

Q when an estimate of the wavelet is brought into linear AVF inverse theory. Finally, 

we study the basic nature of full waveform inversion (FWI) on an anelastic reflection 

coefficient. We find that the first calculation of the gradient yields an imaginary step at 

the proper location of the anelastic reflector. 
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Chapter 1 

Introduction 

Absorption is the progressive decay of the highest frequencies of a seismic pulse as it 

travels through Earth materials (O’Doherty and Anstey, 1971). The effect on the seismic 

pulse is that the peak amplitude decays (O’Doherty and Anstey, 1971) and the pulse 

becomes broader. A common measure of absorption is the attenuation coefficient a 

(Toksoz and Johnston, 1981) which is the exponential decay constant of a plane wave 

amplitude in a homogenous medium. Another quantitative measure of absorption, or 

anelasticity, is the dimensionless quality factor, Q. Q is a fundamental rock property 

defined as the ratio of energy stored to energy dissipated of a seismic wave as it travels 

through the medium, and is given in Toksoz and Johnston (1981) as 

2αW 
Q = . (1.1)

∆W 

Here, W is the elastic energy at maximum stress and ∆W is the energy lost per cycle. Q 

is inversely related to the attenuation coefficient a. Q is an important rock parameter in 

exploration seismology as knowledge of it allows us to remove the effects of attenuation 

and increase data resolution (Hargreaves and Calvert, 1991) and Q is also an indicator 

of rock fluid properties such as fluid saturation, viscosity, permeability etc. (Nur et al., 

1980; Vasheghani and Lines, 2009; Vasheghani, 2011). 

Q is not easy to measure in the field as it is difficult to isolate the effect of absorption 

on the seismic pulse from other subsurface mechanisms which attenuate seismic energy 

(Sheriff and Geldart, 1995). These include geometrical spreading, elastic scattering and 

the thin bed multiple reflection mechanism which acts as a high cutoff filter and appears 

very much like absorption (O’Doherty and Anstey, 1971; Spencer et al., 1982). However, 
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methods of estimating Q from seismic data do exist, such as the centroid frequency 

method (e.g., Quan and Harris, 1997; Vasheghani and Lines, 2009) and the spectral ratio 

method (e.g., Hauge, 1981). 

It is well established that a contrast in the absorptive properties of two media will 

cause a frequency dependent reflection coefficient (e.g., White, 1965; Kjartansson, 1979; 

Chapman et al., 2006; Lines et al., 2008; Quintal et al., 2009; Ren et al., 2009; Innanen, 

2011). An amplitude-variation-with-frequency (AVF) method of inverting for Q of a 

target medium developed by Innanen (2011) exists which requires as input the spectrum 

of the anelastic reflection coefficient. The estimation of the local spectrum of a reflection 

coefficient in seismic field data is not a straightforward task. First, it requires a method of 

time-frequency decomposition which can estimate the local spectra of individual seismic 

events with high fidelity. Further, all other effects on the spectrum of the reflection 

event of interest which are not associated with the dispersive reflection coefficient must 

be accounted for and/or removed. This includes the effect of nearby/difficult-to-isolate 

events, random noise and the seismic wavelet. If these effects on the amplitude spectrum 

of the reflection are not accounted for or removed they will mask the effect of the contrast 

in Q on the reflection coefficient and make it impossible to accurately invert for Q of the 

target medium. 

Much is made in modern reflection seismic literature of AVO-compliant processing, 

meaning workflows which permit amplitude variation with offset, or angle, to meaning­

fully and accurately represent reflection at an elastic interface. In this thesis we develop 

some early steps towards AVF-compliant processing, in which the frequency dependence 

of reflection processes are preserved and exposed, as well as target property estimation 

based there upon. 

In this thesis, we develop and analyze an AVF processing workflow suitable for im­

plementation on seismic field data. The following steps are taken
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1. A fast S-transform algorithm (FST) is calibrated to be	 our time-frequency de­

composition tool used for high fidelity estimates of the local spectrum of a target
 

reflection.
 

2. A linearized, two-parameter AVF inversion equation is modified to take as input
 

the FST estimate of the spectra of reflection coefficients.
 

3. Using synthetic data, the effects of nearby/difficult-to-isolate events, random/uncorrelated 

noise and a source wavelet are examined for their adverse effect on the spectra of 

anelastic reflection coefficients. Recommendations are made for mitigating these 

effects. 

4. A vertical seismic profile (VSP) survey from the Ross Lake heavy oil field in south­

east Saskatchewan is processed using the calibrated FST. Evidence of an AVF
 

signature in a candidate anelastic target is presented and analyzed.
 

5. Further advancements in the inversion of anelastic reflectivity are developed. First,
 

the AVF invese problem is cast as a least-squares minimization problem to stabilize
 

the inversion accuracy in the presence of seismic data phenomena listed in item (3)
 

which prove problematic. Then we study how full waveform inversion (FWI) works
 

on anelastic reflection data by considering a toy problem.
 

1.1 Anticipated significance of a robust AVF processing workflow 

The ability to estimate Q presents an important problem in exploration seismology for 

two reasons. Consider a surface seismic experiment in which the target is located un­

derneath an attenuating overburden (Figure 1.1(a)), the attenuation of the overburden 

decays the peak amplitude of the wave and corrupts AVO measurements. Hence, one 

reason geophysicists may be concerned in determining Q is that both the resolution of the 
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structural image and amplitude variation with offset (AVO) analysis are compromised 

when attenuative effects of Q have degraded the seismic signal. Once Q is known the res­

olution loss of the structural image may be compensated for by applying Q-compensation 

(for example, see Reine et al., 2009; Hargreaves and Calvert, 1991). Alternatively, Q-

compensation can be performed without explicitly determining the Q structure of the 

Earth (for details, see Innanen and Lira, 2008, 2010). The degradation of the AVO sig­

nature caused by Q attenuation in the overburden can thus be accounted for to produce 

higher fidelity estimates of elastic parameters. The second reason geophysicists may be 

interested in Q is that it is a valuable reservoir characterization parameter itself. Consider 

an elastic overburden overlaying an attenuative target (Figure 1.1(b)). The attenuation 

of the target alters the AVO response, through its effect on the reflection coefficient, and 

may be an indicator of rock properties of interest. For instance, it is understood that Q 

may be closely related to the lithology (Dasgupta and Clark, 1998) and fluid properties 

of rocks (Quan and Harris, 1997). Some researchers have shown that, in some experi­

ments, Q is more sensitive to permeability than seismic velocities are (Best et al., 1994). 

Synthetic tests have shown that the modeled reflection coefficients for layers partially 

saturated with water and gas result in significantly high amplitude reflections due solely 

to a contrast in Q (Quintal et al., 2009). Also, reflection field data in which dispersion 

anomalies, associated with a highly absorptive, hydrocarbon charged targets have been 

observed in the literature (Odebeatu et al., 2006). Field data examples of these dispersive 

reflections are supported by laboratory experiments (Lines. et al., 2011). 

It has been shown that the absorptive properties of heavy-oil reservoirs are propor­

tional to fluid viscosity in the reservoir (Vasheghani and Lines, 2009). This is important 

as an understanding of the heavy-oil viscosity is a key consideration to production plan­

ning (Vasheghani and Lines, 2009). In oil sands reservoirs steam assisted gravity drainage 

(SAGD) horizontal wells are drilled to inject steam in the reservoir to stimulate produc­
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tion. The location of these horizontal wells can be mapped in 4D time lapse seismic data 

because the flow of heat along the well paths causes higher levels of absorption (Miao 

et al., 2007). This is strongly suggestive that developing an AVF processing workflow 

could have a broad and positive impact in exploration geophysics. 

1.2 Overview of processing and amplitude estimation tools 

In this thesis we will make use of a particular S-transform processing tool. We will use 

it to analyze an event in a VSP data set, which has been pre-processed to correct for 

transmission losses, in order to determine Q. In this section we review these two issues 

and the tools we will use to approach them. 

1.2.1 S-transform 

Time-frequency decomposition methods provide a means to estimate the local spectrum 

of seismic data. There are a range of time-frequency decomposition methods with ap­

plicability to seismic signal analysis (for example, see Margrave, 1997; Margrave et al., 

2003). There are many motivations for performing time-frequency decomposition meth­

ods on seismic data. For instance they have been used to facilitate nonstationary seismic 

processing (for example, see Margrave, 1997; Margrave et al., 2003). The S-transform 

is one such method. It utilizes a Gaussian window and provides progressive resolution 

(Stockwell et al., 1996). The S-transform, originally developed by Stockwell et al. (1996), 

has been generalized in several ways, for instance to include non Gaussian windows (for 

details see Pinnegar and Mansinha, 2003). The S-transform has been shown to be a 

special case of the continuous wavelet transform (Gibson et al., 2006). More recently, 

the S-transform has been shown to be part of a broader class of Fourier-type transforms 

(Brown et al., 2010). The S-transform has been used for a wide range of reasons in 

seismic processing and analysis. For instance, Pinnegar and Eaton (2003) use the S­
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transform for pre-stack noise attenuation and filtering. Further, Pinnegar (2006) used 

the S-transform on 3-component seismic data to filter Rayleigh waves from shot records. 

Seismic attenuation has been estimated using the method of spectral ratios (for example, 

see Hauge, 1981) by employing the S-transform to estimate the local spectra of seismic 

events with differing arrival times (Du et al., 2010). Further, the S-tranform has been 

used in qualitative interpretations of seismic data for thin bed thickness (Tian et al., 

2002; Miao et al., 2007) and identification of horizontal wells (Miao et al., 2007). Outside 

of seismology, the S-transform has been used on ground penetrating radar data to remove 

wavelet dispersion (Irving and Knight, 2003). 

Figure 1.1: Effect of Q on AVO. (a) Attenuation of the wave in the overburden corrupts 
AVO of the elastic interface; (b) Attenuation of target alters the AVO response itself. 

1.2.2 Methods of determining Q from VSP and surface seismic data 

A vertical seismic profile (VSP) is a seismic experiment in which a source excited at 

the surface is measured by receivers located on the wall of a borehole (Hardage, 1985). 

Vertical seismic profiling, therefore, makes measurements of seismic waves in situ (Spencer 
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et al., 1982; Stewart, 1983) and should provide deeper understanding of wave propagation 

within the Earth (Hardage, 1985). Because of this property of VSP experiments, they are 

ideal for the testing of the AVF inversion processing workflow developed in this thesis. 

A major difference between a VSP and a surface seismic experiment is that in VSP 

experiments both the upgoing and downgoing wavefields are recorded by the receivers in 

the well (Hardage, 1985; Hinds et al., 1996). 

Methods of determining Q from VSP data have been an ongoing subject of research 

with a number of investigators having contributed over the years, see for example (Hauge, 

1981; Tonn, 1991; Amundsen and Mittet, 1994; Spencer et al., 1982; Lanning, 1985). The 

spectral ratio method (explained in detail by Tonn, 1991; Hauge, 1981) is probably the 

best known method for Q-estimation. When applied to VSP data, the method involves 

the ratio of amplitude spectra of an event recorded at two different depths. The ratio 

is proportional to the attenuation of the interval between the two receivers. A serious 

limitation of the spectral ratio method is the effect of thin bedding near the well (Dietrich 

and Bouchon, 1985). This is due to the fact that thin bedding acts as a high cutoff 

frequency filter on seismic signals which appears very similar to the effect of anelastic 

absorption (O’Doherty and Anstey, 1971). The amplitude decay method involves the 

ratio of peak amplitudes of a reference wave recorded at two different depths, which are 

proportional to Q (for details see Tonn, 1991). A drawback of this method is that it is 

difficult to isolate the effect of attenuation on peak amplitudes from other mechanisms 

(Sheriff and Geldart, 1995). The centroid frequency method uses the shift in the centroid 

frequency of a reference wave recorded at two different depths, (for example see Quan 

and Harris, 1997; Vasheghani and Lines, 2009). Vasheghani and Lines (2009) found that 

this method has some advantages over the spectral ratio method showing around 10 

percent error on VSP data but being much less accurate on synthetic surface seismic. 

Stewart (1983) developed a full waveform inversion scheme, based on the one-dimensional 
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acoustic wave equation, to determine attenuation and velocity. Dietrich and Bouchon 

(1985) developed an iterative procedure of implementing the spectral ratio method which 

improves estimates of Q when receiver spacing is small. Tonn (1991) compares a number 

of methods of estimating Q from VSP data including the spectral ratio method (explained 

in detail by Hauge, 1981; Tonn, 1991) and the amplitude decay method (for details see, 

Tonn, 1991); He found that no single method is superior and that, depending on noise 

and recording parameters, some methods are better than others. From the wide array 

methods for estimating Q from VSP data we can conclude that 

1. No method is consistently satisfactory and therefore the development of an AVF 

workflow to use on VSP data could add value and 

2. that these methods provide a natural comparison to which an AVF method should 

be compared to. 

There are a number of examples in the literature of attempts to determine Q from 

surface seismic reflection data. Dasgupta and Clark (1998) developed a method of apply­

ing the spectral ratio method on individual traces of common midpoint (CMP) gathers. 

The method is called Q-versus-offset (QVO) and involves plotting the spectra of reflec­

tors of individual traces in a CMP gather versus offset, the amplitudes vary with offset 

because each trace in the gather undergoes a different source-reflector-receiver travelpath 

and therefore the slope of the amplitude versus offset plot is proportional to the accu­

mulative attenuation in the overburden. Reine et al. (2009) compared variable window 

time-frequency transforms (such as the S-transform) with fixed window time-frequency 

transforms such as the short-time Fourier transform (for example, see Hauge, 1981) by 

applying the QVO method to a surface seismic data set in the Alberta oil sands and found 

that the variable window transforms produced more stable estimates of Q. Yang et al. 

(2009) developed a viscoelastic waveform inversion method which jointly inverts both 
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surface seismic and VSP data by minimizing an objective function which is dependent 

on both surface seismic and VSP data residuals. Compared to VSP data there are a very 

limited number of methods for determining Q from surface seismic data and all attempt 

to invert for Q by analyzing the effect that Q has on the propagation of seismic waves 

as they travel through Earth material. The novelty of an AVF workflow to estimate Q 

from surface seismic is that it estimates Q from its effect on the reflection coefficient and 

not its effect on propagation. 

1.3 Outline of thesis 

An outline of this thesis will be given here as well as a brief summary of some of the 

important concepts seen throughout this work. 

•	 In Chapter 2 we will present a review of the background theory which the rest of 

this thesis is built on, this will include a presentation of the fast S transform (FST) 

developed by Brown et al. (2010), a method of estimating the reflection coefficient 

from VSP data (Lira et al., 2011), and an overview of the theory of AVF inversion 

of anelastic reflectivity. 

•	 In Chapter 3 we calibrate the FST to provide high fidelity estimates of local 

spectra. Limitations of the calibrated FST are examined. 

•	 In Chapter 4 we build on Chapter 3 by testing the calibrated FST on synthetic 

anelastic reflection coefficients. The AVF inversion equation is modified to accept 

input from the FST and inversion accuracy is examined. 

•	 In Chapter 5 we study practical issues affecting the implementation of AVF in­

version on seismic field data. The influence of noise, proximal events and seismic 
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wavelets on AVF inversion are examined and recommendations are made for miti­

gating these effects. 

•	 In Chapter 6 we apply AVF inversion to a VSP field data set from the Ross Lake 

heavy oil field in south-west Saskatchewan. 

•	 In Chapter 7 new developments of the inversion of anelastic reflectivity are pre­

sented. These include a least-squares framework for AVF inversion which allows 

for the inclusion of oblique incidence reflections and a seismic wavelet. A study of 

full waveform inversion (FWI) of anelastic reflection data is also performed. 

•	 Chapter 8 is the conclusion of this thesis, in which the key results are summarized 

and recommendations for future work are proposed. 
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Chapter 2 

Theory Review 

2.1 Introduction 

In this chapter we review key theoretical aspects of the methods which we make use 

of and build on in this thesis. First an explanation of the fast S-transfrom (FST) by 

(Brown et al., 2010) is presented as it is the method of time-frequency decomposition used 

throughout this thesis. This is followed by a review of amplitude-variation-with-frequency 

AVF inverse theory for Q estimation. We demonstrate how the theory characterizes 

dispersive reflection coefficients associated with a contrast in Q, and how it permits 

determination of Q given measurements of the dispersive reflection coefficient. Finally, 

we review a method developed by Lira et al. (2011) for determining reflection coefficients 

from vertical seismic profile (VSP) data. 

2.2 Fast S-transform 

The Fourier transform (FT) does not expose the time-varying spectral content of a signal. 

This may be problematic because a seismic signal is often non-stationary, meaning its 

frequency content changes with time. The S-transform is a time-frequency decomposition 

method utilizing a Gaussian window to provide progressive resolution (Brown et al., 

2010). The S-transform of a time signal g(t) is defined by Stockwell et al. (1996) and 

presented by Brown et al. (2010) as 

−( −t)2f 2 
∫ ∞ |f | 

2S(δ, f) = g(t)√ e e −i2 ftdt, (2.1) 
−∞ 2α 
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where δ and f are the time co-ordinate and frequency co-ordinate of the S-domain respec­

|f | −( −t)2f 2 

tively and √ e 2 is the Gaussian window. Using equation (2.1) the S-transform 
2 

can be calculated directly from the time domain input. It is also possible to calculate the 

S-transform from frequency domain input. By taking the Fourier transform along the δ 

axis of the S-domain we generate what Brown et al. (2010) refer to as the a-domain: ∫ ∞ 
−i2 f a(f ′ , f) = S(δ, f)e 

′ dδ, (2.2) 
−∞ 

where f ′ is a frequency-shift axis generated by taking the Fourier transform along the δ 

axis of the S-domain. The a-domain may also be expressed as (Brown et al., 2010) 

a(f ′ , f) = G(f ′ + f)W (f ′ , f). (2.3) 

Here G(f ′ + f) is a matrix where each row is the Fourier transform of the signal G(f) 

shifted by a frequency increment f ′ . The a-domain is generated by multiplying this 

matrix by the Fourier transform of the window function W(f ′ ,f), which is given by the 

equation: 
−( −t)2f 2 

∫ ∞ |f | −i2 f
2W (f ′ , f) = √ e e 

′ ( −t)d(δ − t). (2.4) 
−∞ 2α 

Once the a-domain is constructed, the S-domain is obtained by performing an inverse 

Fourier transform along the f ′ -axis of the a-domain. The equation for transforming to 

the S-domain from the a-domain is given in (Brown et al., 2010) as ∫ ∞ 
i2 f ′ S(δ, f) = a(f ′ , f)e 

′ df . (2.5) 
−∞ 

In Figure 2.1, we illustrate how the S-domain may be constructed from the a-domain 

with an example time signal. Similar examples can be seen in Brown et al. (2010); 

Naghizadeh and Innanen (2010). In Figure 2.1(a) a time signal which is a sum of two 

harmonics of 10 Hz and 50 Hz is illustrated. The FT of this signal is shown in Figure 

2.1(b). G(f ′ + f), a matrix in which every row is the FT of the original signal shifted by 
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Figure 2.1: Construction of S-domain from a domain. (a) An example time signal 
produced by the sum of two harmonics of 10 Hz and 50 Hz. (b) The Fourier transform of 
the time signal. (c) G(f ′ + f) which consists of shifted versions of (b). (d) W (f ′ , f), the 
Fourier transform of the window function. (e) The a-domain obtained by mutliplying 
G(f ′ + f) with W (f ′ , f). (f) The S-domain of the time signal in (a). After Brown et al. 
(2010) and Naghizadeh and Innanen (2010). 
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f ′ , is shown in Figure 2.1(c). W(f ′ ,f), the FT of the window function is shown in Figure 

2.1(d). The a-domain, Figure 2.1(e), is achieved by multiplying every row of G(f ′ + 

f) with every row of W(f ′ ,f). Finally, taking the inverse fast Fourier transform (IFFT) 

along f ′ , expressed by (2.5), yields the S-domain of the original signal (Figure 2.1(f)). 

Notice that the S-domain correctly represents the signal as stationary and containing two 

frequencies, 10 Hz and 50 Hz. 

2.2.1 Fast S-transform algorithm 

As presented by Brown et al. (2010) and implemented by Naghizadeh and Innanen (2010) 

the ST can be calculated non-redundantly by segmenting in the a-domain, with higher 

frequencies being coarsely sampled and lower frequencies being finely sampled. The a-

domain is divided into segments, with large segments for high frequencies and small 

segments for low frequencies (Brown et al., 2010). Only one frequency is sampled at 

the centre of each segment and these values are used for all frequencies enclosed by the 

segment (Brown et al., 2010). Finally, to generate the S-transform an IFFT is applied to 

each segment. The IFFT of each segment populates its corresponding frequency range in 

the S-domain for the entire δ axis. Since at larger frequencies we have larger segments, 

we gain time resolution but lose frequency resolution. For low frequencies we gain high 

frequency resolution but have poor time resolution. This method of segmenting the 

a-domain makes the calculation of the ST fast and non-redundant and yields the fast 

S-transform (FST). Consider Figure 2.2. In it, the segmentation and sampling of the 

a-domain is illustrated. The a-domain segments are shown with solid black lines and the 

dashed lines correspond to the sampled frequency in each segment. Now if we unshift 

the frequency-shift axis of the a-domain we can see a relationship between this sampling 

scheme and the frequency domain of the original signal (Figure 2.3). Notice that the 

horizontal-axis is no longer a frequency-shift axis but is now just a frequency axis and 
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that the chosen sampling scheme covers the entire frequency domain. All that is required 

for the construction of the S-domain then is to take the Fourier transform of the signal, 

partition the frequency domain of the signal according to the described sampling scheme, 

and then IFFT each segment to populate the S-domain (Figure 2.4). We mention here 

that Brown et al. (2010) presented the FST as a series of steps, they did not express the 

FST algorithm as an equation. A valuable topic of future research would be to derive an 

equation to express the FST. 

2.3 Q models 

There are a range of Q models designed to characterize the attenuation of seismic waves 

in the Earth. Viscoelastic theory is a common approach to model attenuation. In this 

model, a body’s response to stress occurs with a time delay caused by the viscous be­

havior of the material (Vasheghani and Lines, 2009). Viscoelastic models include the 

Maxwell, Kelvin-Voigt, and Zener models (Vasheghani and Lines, 2009). A problem 

with viscoelastic models is that they produce Q values which are dependent on frequency 

(Vasheghani and Lines, 2009) while most observations suggest that Q is independent 

of frequency in the seismic frequency range (Toksoz and Johnston, 1981; Kjartansson, 

1979). Kjartansson (1979) contains a table summarizing a number of different Q models 

including constant Q and nearly-constant Q models. In this thesis we will adopt a nearly 

constant Q model, described by Aki and Richards (2002), which includes a convenient 

dispersion relationship. 
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Figure 2.2: Sampling of the a-domain. The solid black lines illustrate how the a-domain 
is divided into segments. The dashed line corresponds to the frequency of each segment 
to be sampled. After Brown et al. (2010). 
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Figure 2.3: Unshifted a-domain, highlighting how the S-domain may be constructed 
non-redundantly. After Brown et al. (2010). 
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Figure 2.4: Constructing the S-domain from the a-domain. An IFFT is performed on 
the samples chosen to represent each segment. 
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2.4 Anelastic reflection coefficients
 

Consider a plane wave incident upon a planar boundary whose normal is the vertical (z) 

axis, and separating two homogeneous layers. The reflection coefficient is given by 

kz0 − kz1R = , (2.6)
kz0 + kz1 

where R is the reflection coefficient, kz0 is the vertical wavenumber in the layer above the 

interface and kz1 is the vertical wavenumber in the layer below the interface. In order to 

model anelastic reflection coefficients, we use an expression for the wavenumber which 

includes a model for nearly constant Q described by Aki and Richards (2002) as ( )
θ i log(θ/θr)

k = 1 + − . (2.7) 
c 2Q αQ 

Here Q is the quality factor, θ is the angular frequency, θr is a reference frequency, and 

c is the phase velocity at frequency θr. For waves at normal incidence the expression 

for wavenumber k given in equation (2.7) can be used as the vertical wavenumber kz in 

equation (2.6). Hence, the equation which models anelastic reflection coefficients in one 

dimension is obtained by inserting equation (2.7) into equation (2.6). This is represented 

by [ ]
1 i − log(W/Wr) 1 i − log(W/Wr )(1 + ) − (1 + )
c0 2Q0 Q0 c1 2Q1 Q1 

R(θ) = [ ] , (2.8) 
1 i − log(W/Wr ) 1 i − log(W/Wr)(1 + ) + (1 + )
c0 2Q0 Q0 c1 2Q1 Q1 

where the reflection coefficient, R(θ), is now complex and frequency dependent. Equation 

(2.8) is the general form for the normal incidence reflection coefficient in anelastic media. 

Consider the situation where an elastic overburden (infinite Q) is overlaying a highly 

anelastic target (low Q). Equation (2.8) becomes [ ]
1 1 i − log(W/Wr )− (1 + )
c0 c1 2Q1 Q1 

R(θ) = [ ] . (2.9) 
1 1 i − log(W/Wr)+ (1 + )
c0 c1 2Q1 Q1 
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− 1 log(θ/θr),
i 
2

Now if we make the following substitutions (from Innanen, 2011), F (θ) =
 

0= 1 − c
c

2 

and aQ2 =
 
Q1 

1 we obtain
aC 
1 

√ 
1 − 1 − aC (1 + aQF (θ))

R(θ) = √ . (2.10)
1 + 1 − aC (1 + aQF (θ)) 

√ 
We then take the Taylor series expansion of 1 − aC to obtain 

1 −

1−1
2

1 
C + . . . 2 

2 

1 −
 (1 + aQF (θ)) 

(1 + aQF (θ)) 

aC + a

8

((


))
R(θ) =
 , (2.11)

1 11 +
 aC + + . . .
a
C2 8

from which we obtain
 

1 
2

1−aC 2
1−aC 2

1 
4

)
aC aQF (θ) + . . .

1−1 + F (θ)aQ 2

1 − 1 + aQF (θ) −
((

1 
4

(
−1 aQF (θ) + aC +

1 − 
2

aC aQF (θ) + . . .
))

aC aQF (θ) + . . .

aC aQF (θ) + . . . ) 

R(θ) =
 

=
 

1 +
 

(2.12)

1 1 1−
 aQF (θ) + aC +2 4 4

(
Ω 

= ,
1 − Ω

where Ω =
 
(

for R(θ) by expanding around Ω to obtain 

−
1 
2

)

aQF (θ) + 1 

4
aC +

1 
4
aC aQF (θ) + . . . .
 We can further form a Taylor series
 

R(θ) = Ω (1 + Ω + . . .) = Ω + Ω2 + . . . ( ) ( )2 (2.13)
1 1 1 1 

= − aQF (θ) + aC + . . . + − aQF (θ) + aC + . . . . 
2 4 2 4 

Finally, linearizing equation (2.13) assuming small aC and aQ gives 

1 1 
R(θ) ≈ − 

2 
aQF (θ) + 

4 
aC , (2.14) 

where aQ and aC are the dimensionless perturbations measuring the contrasts across 

the boundary in Q and acoustic seismic velocity respectively. F (θ) is a known function 

reflecting our particular choice of nearly-constant Q model. Equation (2.14) defines the 

forward problem of calculating R(θ) given aC and aQ. We use a simple model in this 

thesis, in which the reflection coefficient is dependent only upon contrasts in wavespeed 

and Q. The reason for this is that we are developing the application AVF inverse theory 
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to field data from the ground up and so we begin with a simple model and we are free to 

add complexity as needed. Further, considering a simple model for reflection coefficients 

like this exposes the basic nature of the AVF problem. As AVF inversion is built upon 

in the future (ie. for oblique incidence) the effects of density are readily included. 

The goal of AVF inversion is to determine aQ or aC from measurements of R(θ). 

Equation (2.14) contains two unknowns, aC and aQ. If we can determine R(θ) for two 

different frequencies, θ1 and θ2, we can take the difference between R(θ1) and R(θ2) and 

obtain an expression for aQ: ( )
R(θ2) − R(θ1) 

aQ ≈ −2 . (2.15)
F (θ2) − F (θ1)

2.4.1 Using amplitude spectra 

Implementing equation (2.15) to solve for aQ, in practise, amounts to taking the difference 

between the real part of R(θ) and the real part of F (θ): ( )
R(θ2) − R(θ1) 

aQ ≈ −2 
F (θ2) − F (θ1)(( ) ( ))
−1 aQF (θ2) + 1 aC − −1 aQF (θ1) + 1 aC2 4 2 4≈ −2 

F (θ2) − F (θ1) (( [ ] ) ( [ ] ))
−1 i 1 i 1 aQ − 1 log(θ2/θr) + aC − −1 aQ − 1 log(θ1/θr) + aC2 2 [ 4 ] [ 2 2 ] 4≈ −2 

2 
i − 1 log(θ2/θr) − 

2 
i − 1 log(θ1/θr)(( [ ]) ( [ ]))

1 1 1 1− i aQ + log(θ2/θr)aQ + aC − − i aQ + log(θ1/θr)aQ + aC4 2 4 4 2 4≈ −2 [ ] [ ]
i i 
2 − 1 log(θ2/θr) − 

2 − 1 log(θ1/θr)([ ])
1 1 1 1 
2 log(θ2/θr)aQ + 

4 aC − log(θ1/θr 4 aC2 )aQ + 
≈ −2 [ ]] [[ ]

− 1 log(θ2/θr) − − 1 log(θ1/θr)( )
ℜ[R(θ2)] −ℜ[R(θ1)]≈ −2 . 
ℜ[F (θ2)] −ℜ[F (θ1)]

(2.16) 

Here ℜ denotes the real part. In the coming chapters we will use estimates of R(θ) 

obtained from the FST. It will be much more convenient for us to extract the amplitude 

spectrum of R(θ) from the FST. Further, when we examine VSP data in Chapter 6,
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we will use a method of estimating reflection coefficients which requires as input the 

amplitude spectra of primary and direct arrivals (described in the following section). As 

we see in equation 2.16 the real part of R(θ), ℜ[R(θ)], is 

1 1 ℜ[R(θ)] ≈ log(θ/θr)aQ + aC . (2.17)
2α 4 

Now, we find an expression for the amplitude spectrum of R(θ), |R(θ)|, given by √ 
|R(θ)| ≈ ℜ[R(θ)]2 + ℑ[R(θ)]2 √( )2 ( )2 

(2.18)
1 1 aQ≈ log(θ/θr)aQ + aC + 
2α 4 4 

where ℑ[R(θ)] ≈ a
4 
Q is the imaginary part of R(θ). Now if the imaginary part of R(θ) 

is small then we can drop it from equation (2.22) and obtain 

√ 
|R(θ)| ≈ ℜ[R(θ)]2 ≈ ℜ[R(θ)] (2.19) 

To illustrate the accuracy of equation (2.19) the amplitude spectra for a number of 

dispersive reflection coefficients, for varying contrasts in Q, are shown in Figure 2.5. 

Each panel in Figure 2.5 shows the exact amplitude spectrum of the dispersive reflection 

coefficient (red), calculated using equation (2.6), associated with a large contrast in Q and 

velocity. It also shows the corresponding elastic reflection coefficient in blue. The caption 

in Figure 2.5 lists the value of Q of the target medium. The amplitude spectra of the 

dispersive reflection coefficients shown in Figure 2.5 serve as input into equation (2.15) 

to perform AVF inversion. Figure 2.6 shows the result of inverting for Q using equation 

(2.15) on the amplitude spectra of reflection coefficients, such as shown in Figure 2.5. The 

inverted Q value is in red and the blue curve represents the true Q values. The accuracy 

of the inversion indicates that the amplitude spectrum of the reflection coefficient is a 

good approximation to the real part of the reflection coefficient. 

Further, this inversion is a straightforward task given access to exact values of the 

reflection coefficient at two or more frequencies. In real data, we require a method of 
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time-frequency decomposition to isolate the reflection of interest from all other events in 

the recorded data. Further, the presence of random/uncorrelated noise, proximal events 

and a seismic wavelet must be expected to have an effect on the spectra of dispersive 

reflection coefficients. These issues must be contended with before AVF inversion can be 

carried out. In this thesis, we examine and address these problems. 
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Figure 2.5: Dispersive reflection coefficients. In blue is the amplitude spectrum of a 
frequency independent elastic reflection coefficient. In red, the amplitude spectrum of 
the dispersive reflection coefficient associated with a large contrast in Q. Q0 = ∞, 
c0 = 1500m/s, c1 = 1800m/s. In (a) Q1 = 15. In (b) Q1 = 45. In (c) Q1 = 75 and in 
(d) Q1 = 105. 
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Figure 2.6: Inversion for Q from the reflection coefficients shown in Figure 2.5. The blue 
line is the actual target Q value and the red x’s are the inversion result. 

2.5 A method for determining reflection coefficients from VSP data 

In Chapter 6 of this thesis, we apply our AVF workflow to a VSP data set from the Ross 

Lake heavy oil field in south-west Saskatchewan. In order to apply the AVF workflow, we 

will require a method of estimating the reflection coefficient of our chosen target reflector. 

We describe here a method developed by Lira et al. (2011) which allows for the recovery 

of the reflection coefficient in VSP data. The method is related to the work of Hardage 

(1985) and Stewart (1983). 

We consider a zero offset VSP experiment in two geophysical settings; one for layered 

acoustic media and the other for anelastic media (Figure 2.7). In this simple model the 
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Earth has been divided into n layers where the nth layer is located between the nth and 

(n + 1)th interface. In both cases a target reflector is located at depth zn, and a receiver 

at depth z is located above the reflector. In the VSP geometry illustrated in Figure 2.8 

the receiver at z will record a primary reflection from the interface at zn and a direct 

wave which travels directly from the source to the receiver. 

Figure 2.7: VSP geometry and idealized Earth model consisting of flat layers. On the
 
left: elastic model. On the right: anelastic model. Image adapted from Lira et al. (2011).
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Figure 2.8: VSP survey showing the direct wave (solid black line) and reflected primary 
(dashed line). Image adapted from Lira et al. (2011). 

2.5.1 Elastic formulation 

For the elastic case we can mathematically describe the primary event in the frequency 

domain as 

ik2(z3−z2) (ikn−1(2zn−zn−1−z))Pn(θ) = e ik0(z1−z0)T01e ik1(z2−z1)T12e × . . . × Rne (2.20) 

where Pn is the recorded primary, kn is the wavenumber in the nth layer, Tij is the 

transmission coefficient from layer i to layer j and Rn is the reflection coefficient of the 

http:Rne(2.20


27 

target. The amplitude spectrum of the primary is 

[ ]
|Pn| = T01T12 . . . T(n−1)(n) Rn. (2.21) 

In order to isolate the reflection coefficient Rn from the primary we need to remove the 

effect of the transmission and propagation through the overburden. In order to achieve 

this let us look at the expression describing the direct wave in the frequency domain 

ik2(z3−z2) ikn−1(z−zn−1)D(θ) = e ik0(z1−z0)T01e ik1(z2−z1)T12e × . . . × e , (2.22) 

where D is the direct arrival. The amplitude spectrum of D is then 

[ ]
|D| = T01T12 . . . T(n−1)(n) . (2.23) 

Hence, equation (2.23) prescribes the operator OP that we apply to the primary Pn(θ) 

to obtain an estimate of the reflection coefficient. This operator is simply 

1 
OP = . (2.24)

|D| 

We can apply this operator to the primary event to obtain an estimate of the reflection 

coefficient which we will denote as PC for corrected primary, given by 

1 
PC = OP × |Pn| = × |Pn| = Rn. (2.25)

|D| 

2.5.2 Anelastic formulation 

The formulation of an operator to correct the primary is more complicated when the 

overburden is anelastic. This is because absorption acts on the wave as it travels through 

the medium. Continuing to use the Q model given in Aki and Richards (2002), in which 

the wavenumber k is replaced by a complex k̃, we have [ ]
θ F (θ)

k̃j = 1 + , (2.26) 
cj Qj 
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where k̃j is the complex wavenumber in layer j, θ is radial frequency, cj is the seismic 

wavespeed in layer j, Qj is the value of Q in layer j, and F (θ) = 
2 
i − 1 log(θ/θr) is a 

known function with θr being a reference frequency. By replacing kj with k̃j in equation 

(2.20) we obtain the following expression for the anelastic primary 

i˜ i˜ i˜ ik̃n −1(2zn −zn −1−z)RnPn(θ) = e k0(z1−z0)T01e k1(z2−z1)T12e k2(z3−z2)T23 × . . . × T(n−1)(n)e (θ), 

(2.27) 

where the absorptive transmission coefficients Tij are given in Lira et al. (2010) as  ( )−1 
 

F (W)2cj 1 +  Qj Tij =  ( )−1 ( )−1  
ci 1 + F (W) + cj 1 + F (W) 

Qi Qj (2.28) 

− W (zi −z(i −1)) 
iW log( W )(zi −z(i −1))2Qic 7 Qic× e i e i W 0 .e  ' " 

attenuation component 

W− (zi −z(i −1))2Qic iHere e acts to attenuate the event. Using these definitions for transmission 

coefficients the direct wave is written as 

ik̃ i˜ ik̃ ik̃n −1(z−zn −1)D(θ) = e 0
( 
z1−z0)T01e k1(z2−z1)T12e 2

( 
z3−z2)T23 . . . e . (2.29) 

In the same manner as for the acoustic formulation, we can define the operator for the 

anelastic case, OPan as 

1 
OPan = . (2.30)

ik̃n −1(z−zn −1)T01T12T23 . . . e

If we apply equation (2.30) to the primary we obtain an estimate of the reflection coeffi­

cient. Denoting this corrected primary PCan we have 

ik̃n −12(zn −z)PCan = OPan × Pn(θ) = Rn(θ)e (2.31) 

ik̃n −12(z−znwhere e −1) is due to the component of the primary’s path which is not shared 

ik̃n −12(zn −z)) ≈ 1by the direct wave. If this distance is small (k̃n−12(zn − z) << 1) then (e

and 

PCan → Rn(θ). (2.32) 
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Equation (2.31) does not take into account geometrical spreading, however, if zn − z 

is small, the primary and direct arrivals travel nearly identical paths, and the effect of 

geometric spreading is equivalent. 

2.5.3 Synthetic examples of AVF inversion of estimated VSP reflection coefficients 

Here we illustrate this method of obtaining the reflection coefficient with synthetic ex­

amples of a 1D zero-offset VSP experiment in the anelastic case. We generate zero-offset 

VSP traces for the model shown in the right hand panel of Figure 2.7, with the Earth 

parameters listed in Table (2.1). Except for the first layer, all layers are anelastic includ­

ing layer 4, which is where the receiver is located. The interface below the receiver is 

associated with a large contrast in Q. We allow the depth of the receiver to vary (Table 

(2.2)). We generate spectra of the direct and primary events, using equations (2.27) and 

(2.27), for each of these receiver geometries. As shown in Figure 2.9 to 2.11 we calculate 

the amplitude spectrum of the analytic reflection coefficient (blue) and we plot with the 

amplitude spectrum of the reflection coefficient calculated using Lira’s method (red x’s). 

As can be seen in Figure 2.9 to 2.11, we lose accuracy as the distance between the receiver 

and the target reflector grows. This is due to the eik̃n−12(zn−z) term in equation (2.31). 

When the receiver is 10 meters above the reflector we obtain a good estimate of the the 

ik̃n−12(zn−z))reflection coefficient because e ≈ 1 . As the distance distance between re­

ceiver and the reflector grows then (eik̃n−12(zn−z)) is far from 1 and our corrected primary 

becomes a poor approximation to the reflection coefficient. 

2.6 Remarks 

In this chapter we review theory which is called upon throughout this thesis. We use the 

FST extensively as a means of estimating the local spectra of reflection events on both 

synthetic and field data. The review of anelastic reflection coefficients and AVF inversion 
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is important as it forms the theoretical foundation which this thesis is built on. Finally, 

Lira’s method of estimating the reflection coefficient of a target on VSP data is called 

upon in Chapter 6 when AVF inversion is applied to a VSP data set from the Ross Lake 

heavy oil field in south-west Saskatchewan. 

Table 2.1: Anelastic Earth model parameters. 
Layer Depth (m) c (m/s) Q 

0 0-100 1500 ∞ 
1 100-400 1800 250 
2 400-650 1950 60 
3 650-950 2100 100 
4 950-1200 2200 100 
5 1200-∞ 2500 10 

Table 2.2: Depth of receiver
 
Depth of receiver (m) Distance above reflector (m) 

1190 10 
1170 30 
1150 50 
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Figure 2.9: Analytic reflection coefficient (blue) and estimated reflection coefficient (red 
x’s) for receiver 10 meters above reflector. 
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Figure 2.10: Analytic reflection coefficient (blue) and estimated reflection coefficient (red 
x’s) for receiver 30 meters above reflector. 
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Figure 2.11: Analytic reflection coefficient (blue) and estimated reflection coefficient (red 
x’s) for receiver 50 meters above reflector. 
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Chapter 3 

Calibration of a fast S-transform 

3.1 Introduction 

Time-frequency decomposition methods provide a means of estimating the local spectra 

of recorded seismic events (for example, see Du et al., 2010). There are a range of 

time-frequency decomposition methods with applicability to seismic signal analysis (for 

example, see Margrave, 1997; Margrave et al., 2003). The S-transform is one such method 

which utilizes a Gaussian window and provides progressive resolution (Stockwell et al., 

1996). The fast general Fourier family transform (FGFT) proposed by Brown et al. (2010) 

and implemented by Naghizadeh and Innanen (2010) provides a fast, non-redundant 

method of calculating the S-transform, henceforth referred to as the fast S-transform 

(FST). There are many applications of time-frequency decomposition methods in seismic 

data analysis. They have been used to facilitate non stationary processing (Margrave, 

1997; Margrave et al., 2003) and analyzing absorption (Miao et al., 2007; Reine et al., 

2009). More recently, the FST has been implemented in multiple dimensions and is 

used as a tool for seismic interpolation (Naghizadeh and Innanen, 2010). In forthcoming 

chapters we will require high fidelity estimates of local reflection amplitudes as functions 

of frequency from seismic traces. It is our goal then, to test the ability of the FST in 

providing high fidelity estimates of the local spectra of seismic reflections. Where it fails 

to do so, we calibrate the amplitudes by normalizing the unit impulse response of the 

FST algorithm. 
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3.2 S-transform review 

3.2.1 S-transform theory 

The S-transform of a time signal g(t) is defined by Stockwell et al. (1996) and presented 

by Brown et al. (2010) as 

−( −t)2f 2 

2 

∫ ∞ |f |
S(δ, f) = g(t)√ e e −i2 ftdt, (3.1) 

−∞ 2α 

where δ and f are the time co-ordinate and frequency co-ordinate of the S-domain re­
−( −t)2f 2 |f |spectively and √ e 2 is the Gaussian window. Equation (3.1) demonstrates how 

2 

the S-transform is calculated directly from the time domain input. It is also possible to 

calculate the S-transform from frequency domain input. By taking the Fourier transform 

along the δ axis of the S-domain we generate what Brown et al. (2010) refer to as the 

a-domain: ∫ ∞ 
′ 

a(f ′ , f) = S(δ, f)e −i2 f dδ, (3.2) 
−∞ 

′ where f is a frequency-shift axis generated by taking the Fourier transform along the δ 

axis of the S-domain. The a-domain may also be expressed as (Brown et al., 2010) 

a(f ′ , f) = G(f ′ + f)W (f ′ , f). (3.3) 

Here G(f ′ + f) is a matrix where each row is the Fourier transform of the signal G(f) 

shifted by a frequency increment f ′ . The a-domain is generated by multiplying this 

matrix by the Fourier transform of the window function W(f ′ ,f). Once the a-domain is 

constructed, the S-domain is obtained by performing an inverse Fourier transform along 

the f ′ -axis of the a-domain. The equation for transforming to the S-domain from the 

a-domain is given in Brown et al. (2010) as ∫ ∞ 
−i2 f ′ S(δ, f) = a(f ′ , f) · e 

′ 
df . (3.4) 

−∞ 
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3.2.2 Fast S-transform algorithm 

As presented in Brown et al. (2010) and implemented by Naghizadeh and Innanen (2010) 

the ST can be calculated non-redundantly by segmenting in the a-domain, with higher 

frequencies being coarsely sampled and lower frequencies being finely sampled. The a-

domain is divided into segments, with large segments for high frequencies and small 

segments for low frequencies (Brown et al., 2010). Only one frequency is sampled at 

the centre of each segment and these values are used for all frequencies enclosed by 

the segment (Brown et al., 2010). To generate the S-transform an inverse fast Fourier 

transform (IFFT) is applied to each segment. The IFFT of each segment populates its 

corresponding frequency range in the S-domain for the entire δ axis. 

3.3 Amplitude calibration of the FST algorithm 

3.3.1 Errors in uncalibrated FST 

In Figure 3.1(a) a unit impulse is illustrated and its corresponding S-domain generated by 

the FST (Figure 3.1(b)). In Figure 3.1(c) the amplitude spectrum of the unit impulse is 

obtained by extracting the S-domain amplitudes at the time sample of the unit impulse. 

Figure 3.1(c) is a plot of the unit impulse response (hereafter UIR) of the FST. The 

amplitude spectrum of a unit impulse is a constant value at unity for all frequencies. By 

looking at Figure 3.1(c) it can be seen that the derived spectrum of the unit impulse 

from the S-domain is not a constant value but rather increases with a stair-case trend. 

The goal of this chapter is to calibrate the FST by removing the algorithm footprint, 

as observed in Figure 3.1. We do this by correcting its unit impulse response to be a 

constant value at unity. 

In order to characterize the footprint of the FST algorithm, a series of tests are 

performed. For the first test, unit impulses at the centre of empty vectors of varying 
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Figure 3.1: UIR of FST before any corrections. (a) A Unit impulse. (b) The S-domain 
of the unit impulse. (c) The amplitude spectrum of the unit impulse extracted from its 
S-domain. 

lengths are input into the FST algorithm and the UIR is observed for all of these vectors. 

For example, in Figure 3.1 the unit impulse is at the centre of a 512 point vector. A 

stair-case pattern of increasing amplitude with frequency, as shown in Figure 3.1(c), is 

observed for all vector sizes. Upon further investigation, we discover that in the original 
√ 

FST algorithm there is a scaling factor of 1/ N applied with the IFFT of the individual 

segments in the a-domain, where N is the number of samples in the segment. We have 

corrected to the proper scaling of 1/N . After implementing this correction the same 

tests described above are performed again to observe the UIR. Consider Figure 3.2, the 
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UIR of the FST after this correction is illustrated. In Figure 3.2(a) the unit impulse 

input into the FST is shown, in Figure 3.2(b) we see the S-domain of the unit impulse. 

In Figure 3.2(c) we see the amplitudes of the UIR extracted from the S-domain. It is 

clear from Figure 3.2 that the stair-case increase of amplitude with frequency has been 

eliminated and the spectrum is closer to the desired result. However, the amplitude of 

the UIR drops to 0.95 at roughly 5 Hz and then stays relatively constant. This is close 

to the desired UIR but there is still some residual algorithm footprint which needs to be 

addressed. 

0 0.5 1 1.5 2
0

0.5

1

(a)

Time t (s)
(b)

Time t (s)

F
re

qu
en

cy
 f 

(H
z)

0 0.5 1 1.5 2

0

50

100

0 20 40 60 80 100 120
0.9

0.95

1
(c)

Frequency f (Hz)

A
m

pl
itu

de

Figure 3.2: UIR after 1/N scaling correction. (a) A unit impulse. (b) Is its S-domain 
with errors corrected (c) The amplitude spectrum of the unit impulse extracted from its 
S-domain. 
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3.3.2 Calibration
 

Another test we perform is to vary the position of a unit impulse within an empty 

vector and observe the resulting S-domain of the unit impulse. A number of these unit 

impulses are input into the FST and the S-domain is examined to determine if the UIR 

is dependent on the impulse position in time. Consider Figure 3.3. Two separate unit 

impulses located at roughly 0.2 s and 1.4 s within a 2.044 s time signal, their S-domain 

signatures, and profiles through the S-domain at their respective arrival times are shown. 

The distinctly different S-domain profiles of these two unit impulses shows that there is 

a dependence of the UIR on the location of the unit impulse in time. 

In order to correct the UIR for the dependence on position of the impulse, and any 

other residual footprint, a code is developed which calculates and implements the correc­

tions needed to make the spectrum of a unit impulse a constant at unity for any location 

in time. The corrections are stored in a matrix which is subsequently multiplied with 

the S-domain. This matrix will hereafter be referred to as the FST spectrum fidelity 

correction matrix (SFCM). For every N-point signal there is a corresponding NxN point 

S-domain and an NxN point SFCM. The SFCM is found by first determining the UIR of 

the FST at every time sample. Then for each of these UIR’s a set of N scaling coefficients 

is produced by determining the multipliers needed to scale the UIR to a constant value 

at unity. This is carried out by dividing 1 by the amplitude of the UIR at all frequen­

cies. Hence, the jth row of the SFCM contains the scaling coefficients which needs to be 

multiplied with the S-domain spectrum at the jth time sample. The SFCM corrects the 

dependence of the UIR on position in time and it also takes care of all other residual 

algorithm footprint. With this correction matrix applied to the S-domain, a unit impulse 

input into the FST algorithm at any location will yield the desired constant value. In 

Figure 3.4 we see the S-domain for a unit impulse with the SFCM applied and its profile 

in the S-domain. We find the desired UIR. 
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Figure 3.3: Dependence of the position of the unit impulse on the UIR of the FST 
algorithm. (a) and (b) Two unit impulses at roughly 0.3 s and 1.4 respectively. (c) and 
(d) S-domains of the unit impulses. (e) and (f) Amplitudes of the unit impulses extracted 
from their S-domains. 

3.3.3 An alternate approach 

As an alternative to applying the NxN point SFCM to the S-domain, we have developed a 

code which allows for the FST amplitude calibration to be carried out only on specific sets 

of time samples. This code is computationally more efficient by applying the calibration 

only to time samples of interest. If, for instance, we only desire to calibrate the FST 

amplitudes of a specific reflection event in a seismic trace, we need only calibrate the 

amplitudes for the time sample where the reflection is located. 
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Figure 3.4: Unit Impulse Response of FST after calibration. (a) A unit impulse. (b) 
The calibrated S-domain of the unit impulse. (c) The amplitude spectrum of the unit 
impulse extracted from its S-domain. 
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3.4 Limits of the calibration 

The spectrum generated by the FST algorithm has low time resolution at low frequencies. 

Therefore, even with the SFCM applied, the individual spectra of adjacent events will 

interfere with each other at low frequencies even when the events are separated in time 

by a wide margin. Also, the range of frequencies at which the spectra of individual events 

interfere with each other is greater the closer events are to each other. Because of this, 

it is important to develop a set of standards which define the fidelity of the spectrum of 

an event as a function of its proximity to other events. Two unit impulses are input into 

the FST at opposite ends of an otherwise empty time series. The S-domain is examined 

to determine the lowest frequency at which the spectra of the individual impulses do not 

interfere with each other in excess of 8 percent (henceforth called the cut-off frequency). 

Then each unit impulse is moved one sample closer in time and again the S-domain is 

examined for the cut-off frequency. This procedure continues until the separation of the 

impulses approaches zero. Consider Figures 3.5 through to 3.8, in which the S-domain of 

two unit impulses and their S-domain profiles for time separations of 240, 180, 90 and 20 

samples are shown. In Figure 3.5(a) is displayed the S-domain of two unit impulses which 

are set 240 samples apart, as can be seen from their profiles (Figure 3.5(b) and 3.5(c)) 

the individual spectra of these two events only interfere with each other at very low 

frequencies. However, as the separation between impulses decreases (Figure 3.7, 3.8, and 

3.9) it can be seen that individual spectra interfere with each other at progressively higher 

frequencies. To quantify the cutoff frequency, a program is written which determines the 

lowest frequency at which the amplitude of the unit impulses spectra falls within 8 percent 

of unity. The cutoff frequency is then plotted against the number of samples separating 

the unit impulses. This is shown by the blue line in Figure 3.9. As expected, the closer 

the impulses are to each other the higher the cutoff frequency. The green line in Figure 
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3.9 is the best-fit exponential decay curve in the least squares sense. Because there is 

so much variance to the cut-off frequency curve (Figure 3.9), we anticipate that we may 

come across examples where even a large separation between events renders large regions 

of the local spectra to be useless. Also a qualitative study of the cutoff frequency as a 

function of impulse separation is performed and is shown in Figure 3.10. This qualitative 

plot is obtained by “eyeballing” the general trend exhibited in Figure 3.9. Figure 3.9 and 

3.9 provide a guideline for determining the portion of an events spectrum which is high 

fidelity. 
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Figure 3.5: (a) S-domain of two unit impulses 240 samples apart. (b) and (c) Their 
respective amplitude spectra extracted from the S-domain. 
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Figure 3.6: a) S-domain of two unit impulses 180 samples apart. (b) and (c) Their 
respective amplitude spectra extracted from the S-domain. 
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Figure 3.7: a) S-domain of two unit impulses 90 samples apart. (b) and (c) Their 
respective amplitude spectra extracted from the S-domain. 
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Figure 3.8: a) S-domain of two unit impulses 20 samples apart. (b) and (c) Their 
respective amplitude spectra extracted from the S-domain. 
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Figure 3.9: Cutoff frequency vs. impulse separation, quantitative approach. The green 
curve is the best-fit exponential decay curve in the least-squares sense. 
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Figure 3.10: Cutoff frequency vs. impulse separation, qualitative approach
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3.5 Conclusions 

The FST, proposed by Brown et al. (2010) and implemented by Naghizadeh and Innanen 

(2010) provides a fast, non-redundant method of time-frequency decomposition with a 

wide range of applicability to seismic signal analysis. In this chapter, the amplitude spec­

trum of the FST algorithm is calibrated by normalizing the unit impulse response. This 

calibration is carried out by calculating and implementing the spectrum fidelity calibra­

tion matrix which is multiplied directly with the S-domain. Also, limits on the usefulness 

of the amplitude calibration, due to the low time resolution at low frequencies nature of 

the algorithm, are discussed and a set of guidelines for determining the validity of the 

spectra of individual events as a function of proximity to other events is established. As 

there is a large variance to the calculated cutoff frequency curve, we anticipate problems 

adhering to these guidelines. In the coming chapters we will use this calibrated tool to 

analyze the frequency dependence of individual events in a densely populated trace. 
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Chapter 4 

Anelastic reflection coefficients and their estimation 

4.1 Introduction 

It has been observed that strong absorptive reflection coefficients, caused by reservoirs 

with very low Q, cause frequency dependent seismic anomalies (for example, see Ode­

beatu et al., 2006). Our goal is to develop quantitative methods by which the informa­

tion in such anomalies may be extracted. In this chapter we review briefly the theory 

covered in Chapter 2 of anelastic reflection coefficients and linear amplitude-variations­

with-frequency (AVF) inversion. We then develop the theory for anelastic AVF inversion 

for the blocky spectra generated in realistic data by the fast S-transform (FST). We test 

the AVF inversion of blocky spectra on synthetic data and evaluate inversion accuracy. 

4.2 Character of an anelastic reflection coefficient 

If a plane wave is incident upon a planar boundary whose normal is the vertical (z) axis, 

and separating two homogenous layers then the reflection coefficient will be given by 

kz0 − kz1R = , (4.1)
kz0 + kz1 

where R is the reflection coefficient, kz0 is the vertical wavenumber for the layer above the 

interface and kz1 is the vertical wavenumber for the layer below the interface. In order 

to model anelastic reflection coefficients, we use an expression for wavenumber which 

includes a model for nearly constant Q described by Aki and Richards (2002) as ( )
θ i log(θ/θr)

k = 1 + − . (4.2) 
c 2Q αQ 
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Here c is the seismic velocity, Q is quality factor, θ is the frequency component, and θr 

is a reference frequency. For waves at normal incidence the expression for wavenumber 

(k) given in (4.2) is equivalent to vertical wavenumber (kz) and can be implemented in 

equation (4.1). Hence, the equation which models anelastic reflection coefficients in one 

dimension, by inserting equation (4.2) into equation (4.1) is given by [ ]
1 i − log(W/Wr) 1 i − log(W/Wr )(1 + ) − (1 + )
c0 2Q0 Q0 c1 2Q1 Q1 

R(θ) = [ ] , (4.3) 
1 i − log(W/Wr ) 1 i − log(W/Wr)(1 + ) + (1 + )
c0 2Q0 Q0 c1 2Q1 Q1 

where the reflection coefficient, R(θ), is now complex and a function of frequency. Equa­

tion (4.3) is the general form for the normal incidence reflection coefficient in anelastic 

media. Consider the situation where an elastic overburden (Q → ∞) is overlaying a 

highly anelastic target (Q finite). Equation (4.3) becomes [ ]
1 1 i − log(W/Wr )− (1 + )
c0 c1 2Q1 Q1 

R(θ) = [ ] , (4.4) 
1 1 i − log(W/Wr)+ (1 + )
c0 c1 2Q1 Q1 

inow if we make the following substitutions (from Innanen, 2011) F (θ) = 
2 − 1 log(θ/θr), 

aC = 1 − c0
2 

and aQ 
1 . We can expand equation (4.4), and linearize (assuming small 2 = 

c1 Q1 

aQ and aC ) to obtain the following expression 

1 1 
R(θ) ≈ − aQF (θ) + aC , (4.5)

2 4 

where aQ and aC are the perturbation parameters in Q and acoustic seismic velocity 

respectively. It is also worth noting that F (θ) is a known function. Equation (4.5) 

defines the forward problem of calculating R(θ) given aC and aQ. 

4.3 Review of the theory of linear anelastic AVF inversion 

Recall from our review of linear AVF inverse theory (Chapter 2) that our goal is to invert 

equation (4.5) to estimate aQ or aC from measurements of R(θ). Equation (4.5) contains 
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two unknowns, aC and aQ. If we can determine R(θ) for two different frequencies, θ1 and 

θ2 , then we can take the difference between R(θ1) and R(θ2) and obtain an expression 

for aQ given by Innanen (2011): ( )
R(θ2) − R(θ1) 

aQ ≈ −2 . (4.6)
F (θ2) − F (θ1)

We point out that the method we use to invert for Q is independent of the method which 

we use to model the seismic data. 

We take a moment here to remind the reader that, although the theoretical derivation 

for aQ in equation (4.6) calls for the real part of R(θ), in practise we will use the amplitude 

spectrum of R(θ), |R(θ)|. This is because it is the amplitude spectrum of the FST that 

we calibrate in Chapter 3 to obtain high fidelity estimates of the local spectra of reflection 

events. Further, in Chapter 6 when we study a vertical seismic profile (VSP) data set, 

we follow a method of estimating the reflection coefficient of a target which calls for 

amplitude spectra as input. In Chapter 2 we show that if the imaginary part of R(θ) is 

small then |R(θ)| is a good approximation to the real part of R(θ). Henceforth, when 

we write R(θ) we refer to the amplitude spectrum of the reflection coefficient. 

4.4 A seismic trace containing an anelastic reflection 

Consider Figure 4.1, in which a model of an elastic overburden overlaying a highly anelas­

tic target is illustrated. Also illustrated in Figure 4.1 is the seismic trace which would be 

recorded over this model for a source at zs and a receiver at zg. In Figure 4.2 we see the 

amplitude spectrum of the anelastic (or absorptive) reflection coefficient associated with 

this model (red). In blue we see the elastic, frequency independent, reflection coefficient 

due solely to an equivalent contrast in wavespeed. It is this dispersive character of the 

anelastic reflection coefficient which we wish to use to estimate target parameters. 
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Figure 4.1: A simplified Earth model of an elastic overburden overlaying a highly anelastic 
target. On the right: a synthetic seismic trace generated for a source at zs and a receiver 
at zg. The exact analytic expression for the reflection is used to generate the synthetic 
data. 

4.5 Estimation of local spectra of anelastic reflection coefficients 

In a real seismic data trace with numerous reflection events we will need a method of time-

frequency decomposition to extract local spectra of target anelastic reflection events. We 

can obtain an estimate of a targets dispersive reflection coefficient using the calibrated 

FST. Consider again the simple Earth model consisting of an elastic overburden over­

laying a highly anelastic target (Figure 4.1). In Figure 4.3 we see the analytic anelastic 

reflection coefficient (blue) for this model and the estimate of the anelastic reflection us­

ing the calibrated FST (black). Notice that the FST estimate of the reflection coefficient 

has a blocky appearance. We will need to modify linear AVF inverse theory to take input 

from the FST. 
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Figure 4.2: Dispersive reflection coefficient associated with the model in Figure 4.1 
(red). The elastic reflection coefficient due to the contrast in wavespeed only (blue). 
c0 = 1500m/s, c1 = 1800m/s, and Q1 = 10. 

4.6 Theory for anelastic AVF inversion of blocky spectra 

4.6.1 Overview 

Equation (4.6) provides an expression to invert for aQ provided we have an estimate of 

R(θ) for at least two different frequencies. The problem is how to estimate R(θ) from 

recorded seismic data. It is necessary that we are able to estimate local spectra of seismic 

events. We will use the calibrated fast S-transform algorithm (FST) which our testing 

indicates offers high fidelity estimates of local spectra (see Chapter 3). 



56 

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Frequency f (Hz)

A
m

pl
itu

de

Figure 4.3: Analytic reflection coefficient associated with the model in Figure 4.1 (blue). 
The FST estimate of the reflection coefficient (black). The reflection is created using the 
following parameters, c0 = 1500m/s, c1 = 1800m/s, and Q1 = 10. 

˜In this chapter, we define R(θ) as the estimate of the spectrum of the reflection 

coefficient, R(θ), obtained from the calibrated FST. We use forward modeling codes to 

generate synthetic traces with a single anelastic reflection and then implement the FST 

to estimate the local spectrum of the anelastic reflection coefficient. Finally, we invert 

for aQ using a slightly modified version of equation (4.6). For synthetic traces with a 

single reflection, the true spectrum of the reflection coefficient, R(θ), may be obtained 

by using a fast Fourier transform (FFT). For our synthetic traces with a single anelastic 

reflection, we compare the spectrum of the reflection coefficient as estimated by the FST 
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(R̃(θ)), with the true spectrum as calculated by an FFT. 

4.6.2 Method 

We start by generating a synthetic trace with a single anelastic reflection coefficient (as 

illustrated by Figure 4.1). Figure 4.4(a) is a plot of the synthetic trace, modeled using 

a plane wave incident upon a planar boundary separating an elastic overburden from a 

highly anelastic target. Figure 4.4(b) is a plot of the S-domain of the synthetic trace. 

The black curve in Figure 4.4(c) is the local spectrum of the reflection ( R̃(θ)) which is 

obtained by extracting the profile of the reflection through the S-domain. The blue curve 

in Figure 1(c) is a plot of the analytic spectrum, R(θ), calculated directly from equation 

˜(4.3). Note that R(θ) in Figure 4.4(c) is not a continuous spectrum; it has a blocky 

appearance due to the tiling associated with the FST algorithm (see Chapter 2). Notice 

that the spectrum estimated by the FST is a very good approximation to the average of 

the true spectrum across the frequency band of each “tile”. 

˜Consider the R value in Figure 4.4(c) associated with the band from f = 31Hz to 

f = 62Hz. It is an average of the true spectrum over that frequency range. We can 

relate the R̃ values to the R(θ) values by the equation ∑je R(θi)
R̃j = i=js . (4.7)

(je − js + 1) 

where R̃j is the value of the jth S-domain frequency band which spans the continuous 

spectrum from sample js to je. We define F ′ as the sum of the known F (θ) function j 

over the same frequency band 
je∑ 

F ′ = F (θi). (4.8)j 
i=js 

˜Now consider Rk which is the average of R(θ) over the kth S-domain frequency band 

which spans the continuous spectrum from sample ks to ke. Likewise, Fk 
′ is defined as 

˜the sum of the known F (θ) function over the same frequency band as Rk. Now, let 
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M = (je − js + 1) and N = (ke − ks + 1) and define Z such that Z × N = M . Then we 

can rewrite equation (4.6) in terms of R̃j , R̃k, Fj 
′ , and Fk 

′ ( )
MR̃j − ZN R̃k 

aQ = −2 . (4.9)
F ′ ′ − ZF j k 

With equation (4.9), we may invert for aQ using the FST to estimate the local spectrum 

of anelastic reflection coefficients. 

4.7 Evaluation of inversion accuracy with synthetic data 

We implement equation (4.9) to invert for Q by generating synthetic seismic traces with 

a single anelastic reflection. The traces are generated for a two-layer, single interface 

model in which an elastic overburden overlays a highly anelastic target (such as shown 

in Figure 4.1). We use the FST to estimate the spectrum of the reflection and then 

implement equation (4.9) to invert for Q. A number of traces are modeled in which 

target Q ranges from 200 to 1. The inversion is performed and compared with the actual 

value for accuracy. This is shown in Figure 4.5 through to 4.7, where the red line is the 

inverted Q value and the black line is the actual Q value used to model the reflection. 

From these figures, we observe that the inversion works best for Q values ranging from 

about 15 to 50 but works satisfactorily until Q drops below 8. This is highlighted in 

Table (4.1), which shows the difference between the inverted and actual Q values. 

As can be seen from Figures 4.5 through 4.7 and Table (4.1) the inversion works 

satisfactorily until Q drops below 8 and then inversion accuracy degrades rapidly. The 

failure of the inversion at very low Q is not due to an inability of the FST to estimate the 

spectrum of the reflection. Rather it is partly because we made a small aQ assumption 

in order to linearize equation (4.4). Also we chose a reference frequency, θr, which 

is the highest frequency used in the modeling and this makes linearization error more 

pronounced at low Q. Thus, when Q is very low, the assumption of a small aQ is not 
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satisfied and the linearized expression for aQ is no longer valid. 
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Figure 4.4: How to extract a frequency-dependent reflection coefficient from a seismic 
trace. In (a) The single primary reflection generated by a contrast from elastic to highly 
attenuative media is plotted in the time domain; in (b) The calibrated fast S-transform 
is carried out on the trace in (a), identifying the location of the event and estimating it’s 
spectrum; in (c) The amplitudes picked from the S-transform (in black) is compared with 
the analytic reflection coefficient (in blue). The reflection is created using the following 
parameters, c0 = 1500m/s, c1 = 1800m/s, and Q1 = 10. 
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Figure 4.5: Determination of Q using linear AVF inversion. The value of Q used to model 
the single primary reflections is plotted in black and the value of Q determined by the 
linear AVF inversion is plotted in red. 
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Figure 4.6: Determination of Q using linear AVF inversion. The value of Q used to model 
the single primary reflections is plotted in black and the value of Q determined by the 
linear AVF inversion is plotted in red. 
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Figure 4.7: Determination of Q using linear AVF inversion. The value of Q used to model 
the single primary reflections is plotted in black and the value of Q determined by the 
linear AVF inversion is plotted in red. 
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Table 4.1: Comparison of inverted Q value to actual Q
 
Actual Q Inverted Q difference(absolute value)
 

50 51.4 1.48 
40 41.3 1.38 
30 31.3 1.30 
20 21.2 1.29 
15 16.4 1.41 
14 15.4 1.47 
13 14.5 1.54 
12 13.6 1.65 
11 12.8 1.82 
10 12.0 2.09 
9 11.5 2.54 
8 11.4 3.4 
7 12.3 5.3 
6 16.8 10.82 
5 63.4 58.47 

4.8 Conclusions 

We conclude that the calibrated FST is a promising time-frequency decomposition tool 

which may be used to extract AVF information. The FST is shown to produce a very 

good approximation to the average of the spectrum of the analytic reflection coefficients. 

Linear AVF inverse theory is modified to take input from the FST. We invert synthetic 

traces with a single anelastic for Q and find AVF inversion to be accurate except at very 

low Q(Q < 8). At low Q the assumptions made in order to linearize equation (4.4) are 

no longer satisfied and inversion accuracy degrades rapidly. 

In subsequent chapters we will extend this method of extracting AVF information 

to more complex traces with numerous reflection events. In Chapter 5 we discuss the 

ability of the FST to estimate the spectrum of local events as a function of proximity 

to other events. The more proximal events are to each other, the greater the frequency 

range that their individual spectra interfere with each other. Therefore, it is important 
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that we only use values of R̃ which fall outside this zone of interference when performing 

AVF inversion. 
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Chapter 5 

Practical considerations in anelastic AVF inversion 

5.1 Introduction 

An amplitude-variations-with-frequency method (AVF) of inverting for Q developed by 

Innanen (2011) exists which requires as input an estimate of the local spectrum of the 

anelastic reflection coefficient. We have a calibrated fast S-transform (FST) which we 

have demonstrated provides a high fidelity estimate of the local spectra of seismic reflec­

tion events (Bird et al., 2010) and is suitable as input for AVF inversion. In this chapter 

we consider a prioritized set of issues a method like this will face when applied in the 

field. We develop methodologies and recommendations to manage: 

1. Nearby/difficult-to-isolate events. 

2. Random/uncorrelated noise. 

3. Source wavelet. 

We begin by describing our synthetic testing environment, including the forward modeling 

of attenuating traces, and then consider each of these ideas in turn. We determine AVF 

inversion, though more complicated, to be a likely tractable problem. Wu. et al. (2010) 

indicates that other research groups are making encouraging though not fully confirmed 

progress in this regard. Our conclusions in this chapter suggests that there are significant 

challenges for the quantitative characterization of an anelastic AVF signature in seismic 

field data. This indicates that refinements of signal analysis tools are required, and warns 

us that field identification of the data variations we are interested in will tend to be the 

exception rather than the rule with our current tool kit.
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5.2 Synthetic data 

We begin by modeling a synthetic seismogram which contains a single anelastic reflection. 

We start with an Earth model consisting of an elastic overburden overlaying a highly 

anelastic target (illustrated by the simple Earth model in Figure 4.1). We generate 

synthetic anelastic reflections for a plane wave normally incident on the target. The data 

are generated using exact analytic expressions. For example, consider the simple Earth 

model shown in Figure 4.1. Let the depth of the anelastic target be z1 = 300 meters and 

the source and receiver be collocated at the surface, then the frequency domain of the 

seismic data is written as 

D(θ) = R(θ) exp(ik0z1). (5.1) 

Here, D(θ) is the frequency domain of the data, R(θ) is the frequency domain of the 

anelastic reflection coefficient calculated using equation (2.6), and k0 is the wavenumber 

in the incident medium. The time domain of the data is then obtained by performing an 

inverse fast Fourier transform on D(θ). 

Once target anelastic reflection coefficients have been generated we further specialize 

the synthetic data to study the phenomena of interest. For instance, we study the effect 

of nearby/proximal events by adding our anelastic reflection coefficient to a synthetic 

trace with a large number of random reflections. To study the effect of a wavelet we 

convolve the anelastic reflection coefficient with a wavelet. To study random noise we 

add noise drawn from a Gaussian distribution to the traces. 

5.3 Proximal reflections 

In order to implement AVF inversion to estimate the Q contrast at a target, we need an 

estimate of the local spectrum of the target reflection coefficient. However, in realistic 

seismic data the low frequency spectrum of the reflection will be interfered with by nearby 
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seismic events. The closer two events are, the more their spectra will interfere. An event 

which is far away will only interfere with the target at very low frequencies, but closer 

events will interfere at higher frequencies. Unless the reflection to be analyzed is alone 

on the trace, some region of the local spectrum of the reflection will be influenced by 

its neighbors. This region will begin at the lowest frequencies, and move into the higher 

frequencies as other events approach the reflection of interest. In an event-dense trace, 

we will unavoidably be restricted to high-frequency regions of the local spectrum of a 

particular event. In Chapter 3 we developed quantitative guidelines for regions of the 

spectrum we deem high fidelity by restricting ourselves to an 8% tolerance level. In this 

section we attempt to confirm these guidelines by examining AVF inversion accuracy for 

target Q in event-dense traces, we take note where these guidelines fail. 

We begin by generating an anelastic reflection coefficient as discussed in the previous 

section. Then, this single anelastic reflection is added to a synthetic trace with a large 

number of elastic reflections which precede the anelastic reflection in time, with the 

number of samples between the anelastic reflection and the nearest elastic reflection 

being a controlled variable. We define the number of samples between the target anelastic 

reflection and the nearest elastic reflection event as the separation distance. Figure 5.1(a) 

shows an example trace, the isolated reflection near 3.7 seconds is the anelastic reflection, 

it can clearly be seen that the separation distance is quite large for this trace. Each trace 

is input into the FST and the local spectrum of the anelastic reflection coefficient is 

obtained. The extracted spectrum of the anelastic reflection is then used to invert for Q 

of the target media using the modified AVF equation (Chapter 4). The low frequencies 

are rejected as useless. The numerical experiment is repeated with the separation distance 

reduced. In Figure 5.1(a) we see an example trace in which the separation distance is 

quite large. In Figure 5.1(b) we see the local spectrum of the anelastic reflection in blue 

extracted using the FST. The spectrum of the anelastic reflection alone is shown in red. 
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Figure 5.2 is similar to Figure 5.1 except that the separation distance has been reduced. 
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Figure 5.1: In (a) An anelastic reflection on the right and random reflectivity on the far 
left. Notice the large separation in time between the anelastic reflection and the other 
reflection events. In (b) The FST spectrum of the anelastic reflection (red) and the FST 
spectrum of the anelastic reflection with the random reflectivity present (blue). Notice 
that the spectrum of the anelastic reflection is interfered with by the random reflectivity 
at low frequencies and so the low frequency information cannot be used for AVF inversion. 

5.3.1 FST estimation of local spectra of anelastic reflection coefficient in the presence 

of proximal reflections and their inversion 

A decrease in the separation distance of events results in a greater portion of the local 

spectrum of the anelastic reflection being interfered with by the spectra of nearby events. 



70 

This is apparent when we compare Figure 5.1(b) to Figure 5.2(b). Notice that in Figure 

5.2(b), where the separation distance is quite small, there is a greater portion of the 

spectrum of the anelastic reflection coefficient which is interfered with. However, we 

observe in Figure 5.2 that the estimate of the spectrum in the presence of numerous 

events (blue) tracks the analytic spectrum (red) in the high frequency region. Therefore, 

by only using the high frequencies we may implement AVF inversion. In Figure 5.3 we 

have plotted the inverted value of Q in red and the actual value of Q used to model the 

reflection (Q=13) against the separation distance. We can see that the AVF inversion 

estimate of Q is accurate until a separation distance of around 10 samples is reached and 

then the estimate degrades rapidly. 

We then run this same experiment letting Q range from 8 to 46. Figure 5.4 summarizes 

the results. There are 9 panels in Figure 5.4, in each panel the separation distance is 

fixed. The separation distance decreases from Figure 5.4(a) to Figure 5.4(f). Then in 

each panel Q of the target reflector is varied from 8 to 46 and the inversion result is 

compared to the actual Q value used in the modeling. As can clearly be seen, there is 

an inconsistent ability of AVF inversion to predict Q. For instance, in Figure 5.4(f) the 

separation distance is 209 samples but the inversion is inaccurate for nearly all values 

of Q. In Figure 5.4(e), where the separation distance is 154 samples (and hence, the 

inversion result should be even less accurate) we see that the inversion is exceptional 

at predicting Q. This surprising result would suggest that the amplitude of the event 

nearest the anelastic reflection has a greater impact on the inversion result than the 

separation distance. In Chapter 3 we developed initial guidelines and observed that the 

cutoff frequency vs. the separation distance plot had a high level of variance. This is 

likely manifesting itself in the inversion results of Figure 5.4. A systematic study of 

AVF inversion consistency and the amplitudes of proximal events is an important future 

project. 
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5.4 Random noise 

Because random noise is present in any seismic experiment, it is necessary to test the 

effectiveness of AVF inversion in its presence. We obtain a random noise vector to 

be added to our synthetic data by generating a time series containing random numbers 

drawn from the Gaussian distribution. We then add the random noise to synthetic traces 

containing a single anelastic reflection coefficient to generate data traces with a signal 

to noise ratio (SNR) of 7.67. These traces are then added input into the FST and the 

spectrum of the anelastic reflections is extracted and used to invert for Q. Figure 5.5 

shows an example noisy trace. Figure 5.6 shows 9 attempts at performing AVF inversion 

on spectra derived from noisy traces. In each panel, the actual Q value (blue) and the 

inverted Q value (red) is shown. The experiment is repeated 9 times. The inversion is 

poor. This is not surprising as the FST algorithm averages over short time windows at 

high frequencies (for example, see Chapter 2 and Brown et al., 2010) and so noise will 

have a significant contribution to the output of the FST at high frequencies. To combat 

the effect of noise, repeat experiments should be performed (i.e. acquire numerous traces) 

and then the traces stacked to attenuate the random noise. To model this, we generate 

a set of synthetic traces with noise and stack them, which attenuates the random noise. 

Figures 5.7 and 5.8 are repeat experiments of the type shown in Figure 5.6. They illustrate 

how stacking improves the fidelity of the FST estimate of the spectrum of the reflection 

coefficient. In Figure 5.7, we stack ten traces together. The inversion accuracy improves. 

In Figure 5.8, we stack 35 traces and inversion accuracy improves even more. Notice 

from Figure 5.7 and Figure 5.8 that the inversion works best when Q is low. This is also 

expected as the variability of the reflection coefficient is higher for a larger contrast in Q. 
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5.5 Source wavelet 

In order to implement AVF inversion to estimate the Q value of a target, we require an 

estimate of the local spectrum of the target reflection coefficient. However, the embedded 

wavelet imposes a footprint onto the spectrum of the reflection. This must be removed 

in order to implement AVF inversion. 

To remove the effect of the embedded wavelet we can perform deconvolution of the 

seismic trace. To test how effective AVF inversion may be on deconvolved traces a number 

of synthetic traces are generated in which a single anelastic reflection is convolved with a 

minimum phase wavelet. We use the simple Earth model, such as shown in Figure 4.1, to 

generate the synthetic anelastic reflections. The traces generated from this model are then 

deconvolved using the Wiener deconvolution codes from the CREWES toolbox. Next the 

deconvolved trace is input into the FST to obtain an estimate of the anelastic reflection 

coefficient. This spectrum is then used to invert for Q using the modified AVF framework 

(Chapter 4). Figure 5.9 shows an example of a deconvolved trace obtained using Wiener 

deconvolution from the CREWES toolbox. In Figure 5.9(a) we see the anelastic reflection. 

In Figure 5.9(b) we see the anelastic reflection convolved with a minimum phase wavelet. 

In Figure 5.9(c) we see the result of deconvolution. The spectrum of the deconvolved 

result is obtained by utilizing the FST. An example of this is shown in Figure 5.10. The 

blue curve in Figure 5.10 is the FST spectrum of the anelastic reflection. The red curve 

in Figure 5.10 is the FST spectrum of the reflection after deconvolution. Notice that 

the amplitudes of the deconvolved result are lower than the spectrum of the analytic 

reflection. This is because the deconvolution code performs an rms power balancing of 

the input trace and the output deconvolved trace. The deconvolved result is broader band 

than the input trace and hence the amplitudes of the deconvolved output are uncalibrated 

after the rms power matching performed by the Wiener deconvolution. Because of this, 
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there is a discrepancy between the amplitudes of the deconvolved result and the analytic 

amplitudes. We illustrate this in Figure 5.11. In Figure 5.11(a) a random reflectivity 

series, in Figure 5.11(b) this reflectivity series is convolved with a wavelet. The result of 

deconvolving the trace in Figure 5.11(b) using Wiener deconvolution is shown in Figure 

5.11(c). Notice that the amplitudes of the reflections in the deconvolved result are less 

than the amplitudes of the original reflectivity series. The amplitudes of the deconvolved 

result need to be calibrated to true amplitudes before AVF inversion can be implemented 

accurately. 

5.5.1 Mean amplitude matching 

A solution is found by plotting the amplitude spectra of input traces with an embedded 

wavelet and the output deconvolved result (Figure 5.12). The blue curve in Figure 5.12 

is the spectrum of a trace composed of a random reflectivity convolved with a wavelet. 

The effect of the wavelet is to bandlimit the data outside the range of the dominant 

frequencies of the wavelet. The dominant frequencies lie roughly between 10 and 35 Hz. 

The deconvolved result is shown in black. It has the spectrum of a white reflectivity. 

The rms power balancing carried out during deconvolution uses the entire spectrum to 

balance the input trace (blue) and the deconvolved result (black). Therefore, as the input 

trace has a sharp drop in amplitude after 30 Hz, the mean amplitudes of the deconvolved 

result is somewhere between the high amplitude portion of the input trace (i.e., between 

10 - 35 Hz) and the very low amplitudes at all other frequencies. As we can see in 

Figure 5.12, the amplitudes of the deconvolved result are less than the amplitudes of the 

input trace in the range of its dominant frequencies. This is why the amplitudes of the 

deconvolved result in Figure 5.10 are less than the input trace amplitudes. In order to 

calibrate the amplitudes of the deconvolved result, a ratio of the mean amplitudes of the 

deconvolved result and the input trace are found for the dominant frequency range of the 
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input trace. This ratio is used to boost the amplitudes of the deconvolved result. Figure 

5.13 is the same as Figure 5.12 except that in it we highlight the region for which the ratio 

of mean amplitudes is extracted with vertical red lines. After applying the correction, 

the amplitude spectrum of the corrected deconvolved result and the analytic reflection 

are shown in Figure 5.14. Notice that the amplitudes of the corrected deconvolved result 

are much closer to the amplitudes of the analytic reflection coefficient. 

5.6	 The combined impact of proximal events, noise and wavelet on in­

version 

With the calibration of the amplitude spectrum of deconvolved traces, through an inter­

pretive step, it is possible to use the corrected spectrum to invert for Q. The individual 

effects of noise, proximal events and a seismic wavelet have been examined for their effect 

on the local spectrum of an anelastic reflection. To test AVF inversion, synthetic traces 

are generated in which all of these adverse effects influence a target anelastic reflection 

located near the centre of the trace. An example of one of these traces is shown in Figure 

5.15. These traces are generated using a random reflectivity and zeroing out a specified 

number of samples in the middle of the trace to control the separation distance. Then 

an anelastic reflection is manually added to this empty portion of the trace. These traces 

are then convolved with a wavelet and random noise is added. AVF inversion can be 

implemented by first stacking a number of these traces to attenuate the effect of random 

noise. Then we deconvolve the traces and perform the mean amplitude matching as 

described in the previous section to calibrate the deconvolved amplitudes. Finally, the 

traces are input into the FST and the spectrum of the reflection is obtained. Only the 

high frequency portion is suitable for AVF inversion due to the contamination of the low 

frequencies by proximal events. Figure 5.16 shows an example of an FST spectrum of the 
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anelastic reflection coefficient extracted from a trace such as shown in Figure 5.15. It can 

be seen from Figure 5.16 that deconvolution and then mean amplitude matching yields a 

good estimate of the spectrum of the anelastic reflection coefficient at high frequencies. 

However, repeating the experiment with a new random reflectivity, and extracting the 

deconvolved spectrum as shown in Figure 5.17 we can see that the results are incon­

sistent. Figure 5.17 is an example of a spectrum which will yield very inaccurate AVF 

inversion results. The AVF inversion scheme will predict a negative Q value due to the 

drop in amplitude at 125 Hz. 

The workflow of stacking and deconvolution followed by mean amplitude matching 

and then finally estimating the spectrum before inverting is performed for a number of 

experiments. In one of these numerical experiments the separation distance and noise 

level are kept constant and the target Q is varied. In another, model Q and noise level are 

kept constant but the separation distance is varied. Finally, we perform an experiment 

where the separation distance and model Q are maintained constant but the noise level 

is varied. For each individual experiment, the inversion is performed 9 times. The results 

are displayed in Table (5.1) through to (5.3). Recorded in the tables is the median 

inversion value, the highest inversion value and the minimum inversion value. In Table 

(5.1), the model Q ranges from 50 to 5 and for each value of Q the test is performed 

9 times. In Table (5.2), the model Q and the noise level are maintained constant and 

the separation distance is varied and in Table (5.3) we vary the noise level. Table (5.1), 

(5.2), and (5.3) show that AVF inversion produces inconsistent results especially for 

small separation distances, high noise levels, and high model Q values. As model Q is 

lowered, we obtain more consistent results but there are still some erroneous results. For 

example, in Table (5.1) for model Q of 5 there is an anomalous inversion result of -10. 

The same inconsistent results hold true for the experiments where separation distance 

and the noise level are varied. Even at large separation distances and low noise levels 
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there are inconsistent inversion results. 

Table 5.1: Inversion values for varying model Q with constant separation distance and 
noise level 

Actual Q Inverted Q Inverted Q (high) Inverted Q (low) 

50 9 53 -74 
25 4 87 -23 
15 10 93 -70 
10 9 116 -39 
7 9 24 -9 
5 6 11 -10 

Table 5.2: Inversion values for varying separation distance and constant noise level. 
Actual Q used in modeling is 5 

separation distance Inverted Q (median) Inverted Q (high) Inverted Q (low) 

100 7 10 -10 
80 8 21 -5 
60 6 27 -6 
40 8 36 -6 
20 5 52 -30 
10 4 22 -6 

Table 5.3: Inversion values for varying noise level an constant separation distance. Actual 
Q used in modeling is 5 

noise level (%) Inverted Q (median) Inverted Q (high) Inverted Q (low) 

2 10 18 -4 
5 12 19 -2 
10 8 17 -23 

5.7 Conclusions 

AVF inversion provides a frequency by frequency method of inverting for anelstitic para­

maters of a target from seismic reflection data. It requires as input an estimate of the 

local spectrum of the anelastic reflection coefficient. In this chapter, we explore practical 
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issues affecting the implementation of AVF inversion in the presence of random noise 

and multiple reflection events. It is shown that proximal events interfere with the low 

frequency portion of the anelastic reflection and progressively affects higher frequencies 

as the events become closer. Also, an unexpected inconsistency of AVF inversion in the 

presence of numerous events is observed. Namely, that there is not a systematic decrease 

in the fidelity of the inversion with proximity of neighboring reflections. A systematic 

study of AVF inversion consistency in event-dense traces is an important future project. 

The effect of a source wavelet and deconvolution on AVF inversion is also studied. Decon­

volution yields uncalibrated amplitudes which may be corrected for by mean amplitude 

matching of the deconvolved output and the input over the dominant frequency range of 

the input. After the calibration of the deconvolved traces, the FST had some remaining 

inconsistencies in its prediction of the spectrum of the reflection coefficient. 

Further, we explore the effect of random noise in this chapter and observe that random 

noise degrades the fidelity of AVF inversion. To combat this, repeat experiments and 

stacking was performed and it was found that stacking helps in attenuating the random 

noise and improves the AVF inversion. 

Estimation of an AVF signature from seismic data with sufficiently high fidelity to 

allow for accurate inversion is, we conclude, a difficult task. Our current signal analysis 

tools have been optimized for this but until future research is performed we must assume 

that examples of anelastic AVF inversion from field data will only be possible under ideal 

conditions. 
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Figure 5.2: In (a) An anelastic reflection on the right and random reflectivity on the far 
left. Notice now that the separation in time between the anelastic reflection and the other 
reflection events is very small. In (b) The FST spectrum of the anelastic reflection (red) 
and the FST spectrum of the anelastic reflection with the random reflectivity present 
(blue). Notice that the spectrum of the anelastic reflection is interfered with by the 
random reflectivity for a much greater bandwidth than in Figure 5.1. This is due to the 
proximity of the nearby reflectivity. 
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Figure 5.3: AVF inversion accuracy in the presence of proximal reflection events. On the 
x-axis is the separation in number of samples between the anelastic reflection and the 
nearest event. The blue line is the actual value of Q used in the modeling and the red 
line is the inversion result. 



80 

20 40

10

20

30

40

50

60
(a)

20 40

10

20

30

40

50

60
(b)

20 40

10

20

30

40

50

60
(c)

20 40

10

20

30

40

50

60
(d)

20 40

10

20

30

40

50

60
(e)

20 40

10

20

30

40

50

60
(f)

20 40

10

20

30

40

50

60
(g)

Exact Q

E
st

im
at

ed
 Q

20 40

10

20

30

40

50

60
(h)

20 40

10

20

30

40

50

60
(j)

Figure 5.4: 9 panels showing the accuracy of AVF inversion. Each panel represents a 
different separation distance. (a) Separation distance of 484 samples. (b) 429 samples. 
(c) 374 samples. (d) 319 samples. (e) 264 samples. (f) 209 samples. (g) 154 samples. (h) 
99 samples. (j) 44 samples. In each panel we see the inversion result (red x’s) and the 
actual value of Q (blue). Notice that the separation distance does not appear to be the 
deciding factor in inversion accuracy. For instance, the inversion result for a separation 
distance of 99 samples is much better than for a separation distance of 209 samples, 
which is contrary to what we would expect. 
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Figure 5.5: A trace with a single anelastic reflection and a SNR of 7.67.
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Figure 5.6: Accuracy of AVF inversion in the presence of random noise and no stacking. 
Each panel is a repeat experiment to gain statistical sampling of the inversion accuracy. 
Notice that the presence of noise greatly degrades the accuracy of AVF inversion. The 
SNR is 7.67. 
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Figure 5.7: Accuracy of AVF inversion in the presence of random noise and 10 stacked 
traces. Each panel is a repeat experiment to gain statistical sampling of the inversion 
accuracy. The SNR of the stacked trace is 24.25. Notice that stacking 10 traces has 
somewhat improved the accuracy of AVF inversion, especially for low Q values. 
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Figure 5.8: Accuracy of AVF inversion in the presence of random noise and 35 stacked 
traces. Each panel is a repeat experiment to gain statistical sampling of the inversion 
accuracy. The SNR of the stacked trace is 45.37. Notice that stacking 35 traces has 
greatly improved the accuracy of AVF inversion, especially for low Q values. 
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Figure 5.9: In (a) An anelastic reflection coefficient. In (b) The anelastic reflection coef­
ficient is convolved with a minimum phase wavelet and in (c) The result of deconvolving
 
the the trace in (b) using Wiener spiking deconvolution codes from the CREWES toolbox.
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Figure 5.10: The blue curve is the FST spectrum of the analytic anelastic reflection 
coefficient. This anelastic reflection coefficient was convolved with a minimum phase 
wavelet and then deconvolved using Wiener deconvolution codes. The red curve is the 
FST spectrum of the deconvolved result. 
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Figure 5.11: In (a) A random reflectivity series. In (b) The reflectivity series is convolved 
with a minimum phase wavelet and (c) The deconvolved result. 
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Figure 5.12: The blue curve is the amplitude spectrum of a reflectivity series convolved 
with a wavelet and serves as the input into the deconvolution code. The black curve 
is the spectrum of the deconvolved result. RMS power matching of the deconvolution 
code is performed across the entire bandwidth. Therefore, the deconvolved spectrum has 
lower amplitudes than the original trace over the bandwidth of the input. 
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Figure 5.13: The blue curve is the amplitude spectrum of a reflectivity series convolved 
with a wavelet and serves as the input into the deconvolution code. The black curve 
is the spectrum of the deconvolved result. RMS power matching of the deconvolution 
codes is performed across the entire bandwidth so the deconvolved spectrum has lower 
amplitudes than the original trace over the bandwidth of the source wavelet. The vertical 
red lines show where the mean amplitude ratio was extracted to calibrate the spectrum 
of the deconvolved trace to obtain true amplitudes and implement AVF inversion. 



90 

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frequency f Hz

A
m

pl
itu

de

 

 

Figure 5.14: The result of mean amplitude matching the deconvolved spectrum. The 
blue curve is the FST spectrum of an analytic anelastic reflection coefficient. The red 
curve is the corrected FST spectrum of a deconvolved anelastic reflection coefficient after 
mean amplitude matching. 



91 

0 0.5 1 1.5 2 2.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time t (s)

absorptive reflection

Figure 5.15: A random reflectivity, with an embedded anelastic reflection coefficient. The 
reflectivity series is convolved with a wavelet and random noise is added. 
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Figure 5.16: The blue curve is the FST spectrum of an analytic anelastic reflection 
coefficient. The red curve is the calibrated FST spectrum of the anelastic reflection 
extracted from traces such as shown in Figure 5.15. 
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Figure 5.17: The blue curve is the FST spectrum of an analytic anelastic reflection 
coefficient. The red curve is the calibrated FST spectrum of the anelastic reflection 
extracted from traces such as shown in Figure 5.15. 
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Chapter 6
 

Identification of the AVF signature of an anelastic target in field 

data 

6.1 Introduction 

Large contrasts in anelastic properties of the Earth have frequency-dependent reflection 

coefficients (White, 1965; Kjartansson, 1979; Chapman et al., 2006; Lines et al., 2008; 

Quintal et al., 2009; Ren et al., 2009; Innanen, 2011). This represents a potentially 

valuable source of information with which to characterize fluid or gas bearing geophysical 

targets. 

The dispersive amplitude-variation-with-frequency (AVF) signature in these reflec­

tions is likely subtle. Nevertheless, some field evidence of these variations has been 

reported (Odebeatu et al., 2006), and this evidence is further supported by a growing 

body of laboratory work (Lines. et al., 2011). Before the presence of such data variations 

in hydrocarbon-relevant field data is accepted community-wide, however, we require a 

larger number of convincing field cases. Our purpose in this chapter is to describe the 

methodology by which we might add to this number (or to the number of negative re­

sults), and show our initial results. 

Evidence that anelastic reflections with dispersive AVF signatures are being generated 

above the ambient seismic noise level must come, initially, from environments with access 

to high levels of “ground truth”, ideally in the form of instrumented wells. Vertical 

seismic profiling data sets are optimal in this regard. Vertical seismic profiling (VSP) is 

a method of seismic data measurement in which the wave field generated by a surface 

source is measured by receivers at numerous depth in a borehole (Hardage, 1985; Hinds 
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et al., 1996; Zhang, 2010). A major difference between VSP and surface seismic is that in 

a VSP experiment, both the upgoing and downgoing wavefields are recorded (Hardage, 

1985). VSP surveys are valuable in delineating lithological, structural and stratigraphic 

properties of the subsurface and, of particular importance to this study, are also useful 

in determining physical properties of rocks such as absorption (Hardage, 1985; Zhang, 

2010; Stewart, 2001). 

To produce plausible examples of dispersive AVF signatures in VSP field data, we 

will require the following: 

1. A field site with VSP data from a well which traverses geological structures with 

strong variations in Q; 

2. A robust means of analyzing the local frequency dependence of an event, i.e., a tool 

for time-frequency decomposition of the seismic traces; 

3. A means for separating the amplitude effects of transmission from those of reflection 

on a candidate AVF-rich event, i.e., a method for estimating the “bare” reflection 

coefficient; 

4. A theory for determining the target	 Q from the AVF signature of the candidate 

event, which can be compared to independently derived Q estimates. 

In previous chapters we have discussed items 2 (Chapter 3, Calibration of a fast S-

transform), 3 (Chapter 2, Theory review) and 4 (Chapter 4, Anelastic reflection coeffi­

cients and their estimation). We will next review these and discuss the missing item. 

6.1.1 Item 1: study area and VSP data set 

The Ross Lake heavy oil field is located in the Southwest of Saskatchewan and is owned 

and operated by Husky Energy Inc. (Zhang, 2010). See Figure 6.1. The reservoir is 
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a channel sand, of Cretaceous age, in the Cantaur Formation of the Mannville group 

(Zhang, 2010). The Mannville group consists of sands and shales and is overlain by the 

carbonates of the Joli Fou formation (Zhang, 2010). See Figure 6.2 for a stratigraphic 

column. 

In a collaboration between CREWES, Husky Energy, and Schlumberger Canada, a 

number of VSP experiments were performed in June 2003, including a zero-offset VSP, 

using the well 11-25-13-17W3. The data were acquired using 3-component receivers and 

both horizontal and vertical vibrators (Zhang, 2010). The receiver spacing in the borehole 

was 7.5m. 

Zhang (2010) performed a Q analysis of the Ross Lake VSP data using the spectral 

ratio method (for details of which see, e.g., Hauge, 1981). A profile of Q from this effort 

can be seen in the far left panel of Figure 6.3. The profile suggests strong depth variability 

of Q. 

6.1.2 Item 2: a calibrated fast S-transform 

To identify an AVF signature in the local spectrum of the reflection coefficient, a method 

of time-frequency decomposition is required. As discussed in Chapter 3 we have a cali­

brated FST which our testing indicates offers high fidelity estimates of the local spectra 

of reflection events. The output of the FST are “blocky” local spectra—averages over 

frequency bands, as opposed to pointwise spectra. 

6.1.3 Item 3: a method for estimation of reflection strengths from VSP data 

As developed by Lira et al. (2011) and presented in Chapter 2 we have a processing 

strategy whereby the amplitude of a reflected VSP event may be corrected to remove 

all transmission influences, leaving the “bare” reflection coefficient. The method is in 

principle applicable in the time or the frequency domain, and hence in the presence of 
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Figure 6.1: Map of western Canada showing the Ross Lake heavy oil field. From Zhang 
(2010), used with permission. 

a suitable time-frequency decomposition is able to determine the raw spectrum of the 

reflection coefficient. It amounts to the division of the upgoing field by the downgoing 

field at or just above the reflection event. We will refer to this method as Lira’s method. 

6.1.4 Item 4: AVF inversion of anelastic reflectivity 

Finally, we have access to a frequency-by-frequency (AVF) method of inverting for Q 

from the frequency dependent absorptive reflection coefficient, developed by (Innanen, 

2011). In chpater 4, we modified AVF inverse theory for use on data in the fast S-

transform domain. In Chapter 5 this approach is tested extensively on synthetic data, 
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in the presence of noise, a seismic wavelet and proximal events. 

6.2 A candidate reflector 

There is a large contrast in Q at the boundary between the Joli Fou Formation and 

the Mannville Group at approximately 1100m depth (Figure 6.3): the quality factor in 

the Joli Fou carbonates is above 120 whereas Q at the top of the Mannville is about 

50. Because of this contrast in Q, the primary event from the top of the Mannville is a 

potential example of a dispersive AVF reflection (Innanen, 2011). We now focus on the 

reflection associated with this event, which we will refer to as the Mannville reflection. 

6.3 Pre-processing 

Having identified a candidate reflector and its associated reflected event in the VSP data 

set, we must next process these data such that the “bare” reflection coefficient (i.e., the 

amplitude corrected for all transmission effects) is exposed as a function of frequency. 

This requires that we separate the direct wave from the reflected wave when they are 

quite close to each other, and the problem of doing this stably accounts for most of the 

processing issues discussed here. 

We will use Lira’s method twice: once, to obtain an estimate of the Mannville reflec­

tion coefficient, and once more, as a control, on a primary from the Lea Park/Milk River 

interface (Figures 6.2 and 6.3) in which there is very little associated contrast in Q. We 

will the control reflection with the Mannville reflection. 

6.3.1 Avoidance of wave field separation 

The zero-offset VSP data are plotted in Figure 6.4 with the two interpreted reflections. 

Lira’s method involves forming the ratio of the reflected to the direct events as near as 
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possible to their point of coincidence. Elsewhere this has been accomplished by applying a 

wave field separation algorithm based on median filtering (Hinds et al., 1996, for example, 

see), but we did not, in this case, because the median filtering could potentially remove 

the AVF signature, if it exists, from the data. This means we will be forced to compare 

these events at shallower depths, where they are further apart. 

6.3.2 Applying the FST and choosing the bandwidth 

In order to provide the numerator and denominator for the division called for by Lira’s 

method, we applied the FST to the VSP data, and extracted the spectra at the times of 

the interpreted events. The data used for the FST spectrum extraction is the zero-offset, 

stacked z-component of the full (i.e., non separated) wave field at a chosen depth. The 

data input into the FST does not have an AGC applied to it, however there is an AGC 

applied to the data in Figure 6.4 to make the reflectors more visible to the reader. The 

depths of the traces used are discussed further below. 

Only a portion of the bandwidth contains useable signal. The low frequency range 

will be contaminated by nearby seismic events and so we must exclude the low frequencies 

from analysis; in our case, the exclusion was of frequencies below 31 Hz. Also, Zhang 

(2010) determined that the signal contains energy only up to 95 Hz so we have included 

the FST band 62-124 Hz but none higher. 

6.3.3 Compensation for the finite Q of the overburden 

Since the full (un-separated) wave field is used, to distinguish between the reflection and 

the direct event we must use receivers which are a significant distance up the borehole 

from the reflector. In Figure 6.4 the reason is clear: the direct arrival dominates the 

signal so strongly that the primary is not visible until it travels up to the receiver located 

at 857m depth, a distance of approximately 240m above the reflector. 
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This non-negligible distance can re-introduce some of the transmission effects Lira’s 

method is designed to suppress. However, (Lira et al., 2011) showed that the approxi­

mation of the reflection coefficient in an attenuative medium is given by 

|P | (ik̃n−12(zn−zx))Rest = = R × e . (6.1)
|D| 

Here zn is the depth to the reflector, zx is the depth to the receiver and Rest is the 

estimate of the true reflection coefficient, R, obtained by dividing the spectrum of the 

primary |P | by the spectrum of the direct wave |D|. Recall from Chapter 2: [ ]
θ F (θ)

k̃n−1 = 1 + , (6.2) 
cn−1 Qn−1 

where k̃n−1 is the complex wavenumber in the layer above the reflector, cn−1 is the velocity 

in the layer above the reflector, Qn−1 is the quality factor in the layer above the reflector 

and 
i 1 

F (θ) = − log(θ/θr). (6.3)
2 α 

In our field data set the measurement of the primary is approximately 240m above 

the reflector, and so we may not assume that exp[(ik̃n−12(zn − zx))] ≈ 1. Instead, we use 

averages of Zhang’s estimates of Q (Qave) and velocity (cave) in the region between the 

reflector and the receiver (Zhang, 2010, as seen in Figure 6.3) and correct our reflection 

by the inverse operator: 

Rest
Rcor ≈ ([ [ ] ])

F (W)exp i W 1 + 2(zn − zx)cn−1 Qn−1 (6.4)([ [ ] ])
|P | −θ F (θ) 

= exp i 1 + 2(zn − zx) . 
|D| cn−1 Qn−1 

6.4 Results 

Following the above prescription, we: 

1. Locate a depth in the VSP data set at which the Mannville reflection and the direct 

wave are separable; 
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2. Calculate the FST spectra of both of these events, and focus on the useable fre­

quency bands; 

3. Estimate the Mannville reflection coefficient	 R(θ) by dividing the reflected FST 

spectrum by the direct FST spectrum; 

4. Compensate the result for attenuation on the path down and back from the receiver 

depth to the reflector. 

In this section we examine the results, looking for supporting evidence (or otherwise) for 

anelastic AVF behaviour in reflections from large Q contrasts. 

6.4.1 Blocky FST spectra: review 

For the reader’s “mental benchmarking” we recall that the FST produces averages of 

spectra over pre-defined frequency bands and has a blocky appearance. Consider Figure 

6.5, the blue curve is the analytic spectrum of an anelastic reflection coefficient and the 

black, blocky curve is the FST spectrum of the anelastic reflection coefficient. 

6.4.2 Preliminary positive evidence 

In Figure 6.6(a) we see the FST spectrum of the direct wave recorded at the receiver at 

a depth of 842.3m. In Figure 6.6(b) we see the FST spectrum of the Mannville primary 

also recorded at 842.3m depth. The amplitudes of both the direct wave and the primary 

are corrected for geometrical spreading. The blue curve in Figure 6.6(c) is the estimate 

of the frequency dependent reflection coefficient obtained by dividing the spectrum of 

the primary (b) by the spectrum of the direct arrival (a) before Q-compensation. The 

red curve in Figure 6.6(c) is the estimate of the frequency dependent reflection coefficient 

after Q-compensation. The black vertical line in Figure 6.6(c) illustrates the cutoff below 

which the low frequencies are excluded due to interference from nearby events. 
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Figure 6.6c shows that, after Q-compensation, there is an increase in the amplitude 

of the reflection coefficient at 62 Hz. This behavior is consistent with standard Q models, 

and represents evidence that the Mannville reflector has the desired dispersive character. 

6.4.3 Mitigating evidence 

In order to evaluate whether the trend shown in Figure 6.6(c) could be an AVF signature 

we use Lira’s method to extract an estimate of the reflection coefficient of a primary in 

which there is no contrast in Q. We choose then, a reflection which occurs at roughly 

600m, which is interpreted as being associated with the interface between the Lea Park 

and Milk River Formation (henceforth we refer to this reflection as the Milk River pri­

mary; see Figure 6.2 for the stratigraphic column). Figure 6.4 also shows this reflection 

on the VSP data, interpreted in green. 

Again, the signal is so dominated by the direct arrival that we do not see signal for this 

reflection until over 200m above the reflector. We apply Lira’s method of estimating the 

frequency dependent reflection coefficient as we did for the Mannville reflection. Figure 

6.7(a) is the spectrum of the direct wave recorded by the receiver at 392.3m depth and 

6.7(b) is the FST spectrum of the primary reflection from the Milk River also recorded 

at 392.3m depth. The amplitudes of both the direct wave and the primary are corrected 

for geometrical spreading. Figure 6.7(c) shows the spectra of the estimated reflection 

coefficient with the blue curve representing the estimate before Q-compensation and the 

red curve after Q-compensation. Again, the low frequencies are disregarded. 

We see that there is an increase with amplitude of the Q-compensated reflection 

coefficient at roughly 62 Hz in the Milk River reflector also. It is not expected that 

there would be an AVF signature in the reflection coefficient for this primary as there 

is no associated contrast in Q. Figure 6.8 shows the spectra for both the Milk River 

and Mannville primaries for comparison. The frequency dependence of the two are of 
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comparable order. 

We also calculate the spectrum of the reflection coefficients using the first three re­

ceivers which record primaries for both reflectors and plot the results (Figure 6.8). Notice 

that, generally, the Q-compensated reflection coefficients exhibit an increase in amplitude 

at 62.5 Hz for both the Mannville and Milk River. 

Because we use average values of Q (obtained from a spectral shift method) and 

velocity, the frequency dependence we see in both reflection coefficients could simply be 

due to over-compensating the amplitudes at high frequencies. Because Q values are so 

low above the Milk River reflector, the Q compensation step in equation (6.4) may be 

having an unduly large influence on the results. 

6.5 Conclusions 

We wish to confirm or refute the presence of the theoretically predicted anelastic AVF 

behaviour of reflection coefficients from large Q contrasts. To do so, we applied a method 

developed by (Lira et al., 2011), for estimating the frequency dependent reflection coef­

ficient by comparing direct and reflected VSP events, to a zero-offset VSP data set from 

the 11-25-13-17W3 well in the Ross Lake Heavy oil field of Southwest Saskatchewan. 

Using the FST we obtained the spectra of both the primary and direct wave for the 

Mannville reflection, which a transmission analysis (Zhang, 2010) suggests is associated 

with a fairly large contrast in Q. 

It is observed that there is an increase in the amplitude of the Mannville reflection 

coefficient at 62Hz, which is consistent with an AVF signature. However, in our control 

event, the Milk River reflection, which is not thought to be associated with a contrast in 

Q, we again find an increase in amplitude with frequency. 

We suspect that the Q compensation step in the processing of the control (Milk River) 
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event may be overcorrecting, however, since this reflector’s overburden has a very low Q. 

A project of future work will be to compare the Mannville reflection to a better control, 

ideally with almost infinite Q in the overburden. 

Another project of future work should investigate other forms of separation of the 

upgoing and downgoing fields. Avoiding the Q compensation step entirely will likely add 

stability to our search. 

When we are more satisfied with our estimate of the spectra we will also invert the 

spectral information to estimate the target Q. The proximity of the inverted result to 

the (independently derived) Q profile will be further evidence for or against the presence 

of the AVF signature. 
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Figure 6.2: Stratigraphic column of study area. At the 11-25-13-17W3 well, the depth to 
Mannville formation is about 1100 meters. From Saskatchewan Industry and Resources, 
2006 adapted from (Zhang, 2010). 
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Figure 6.3: Ross Lake parameter profiles. On the left-most panel is the Q profile derived 
using a spectral shift method. Indicated are two reflecting horizons, the top of the 
Mannville group and the Lea Park/Milk River interface. From (Zhang, 2010), used with 
permission. 
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Figure 6.4: VSP data from the 11-25-13-17W3 well in the Ross Lake heavy oil field. The 
interpreted Mannville (blue) and Milk River (green) primaries are displayed. The direct 
arrival is displayed in black. An AGC is applied here to make the reflectors more easily 
visible. 
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Figure 6.5: Analytic anelastic reflection coefficient (blue). The FST estimate of the 
reflection coefficient (black). 
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Figure 6.6: Evidence of dispersive AVF reflections. (a) The spectrum of the direct arrival 
recorded by the receiver at 842.3 m depth; (b) The spectrum of the primary reflection 
from the top of the Mannville formation and recorded by the receiver at 842.3 m depth. 
(c) The estimate of the reflection coefficient with Q-compensation (red) and without 
(blue). 



110 

0 20 40 60 80 100 120
0

5

10
x 10

5 (a)

A
m

pl
itu

de

0 20 40 60 80 100 120
0

1

2
x 10

5 (b)

A
m

pl
itu

de

0 20 40 60 80 100 120
0

0.2

0.4
(c)

A
m

pl
itu

de

Frequency f (Hz)

Figure 6.7: (a) The spectrum of the direct arrival recorded by the receiver at 392.3 m; 
(b) The spectrum of the primary reflection from the top of the Milk River formation and 
recorded by the receiver at 392.3 m; (c) The estimate of the reflection coefficient with 
Q-compensation (red) and without (blue). 
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Figure 6.8: Comparison of the Mannville and Milk River reflection coefficients as calcu­
lated from the first three receivers to record primaries. In (a) The Mannville reflection 
coefficient calculated from the receiver located at 857.4 m depth. (c) The Mannville reflec­
tion coefficient calculated from the receiver located at 849.8 m depth. (e) The Mannville 
reflection coefficient calculated from the receiver located at 842.3 m depth. (b) Milk River 
reflection coefficient calculated from the receiver located at 407.4 m depth. (d) Milk River 
reflection coefficient calculated from the receiver located at 399.8 m depth. (f) Milk River 
reflection coefficient calculated from the receiver located at 392.3 m depth. In all panels 
the blue curves are the spectra of the reflection coefficients without Q-compensation and 
the red curves are the spectra of the reflection coefficients with Q-compensation. 
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Chapter 7 

Other advances in inversion of anelastic reflectivity 

7.1 Introduction 

An effective AVF workflow requires that we have 

1. A method of time-frequency decomposition which provides accurate estimates of 

local spectra of reflection coefficients, and 

2. Processing steps to account for/mitigate the effect that other seismic phenomena 

have on the spectrum of a reflection coefficient. 

To satisfy item (1) we calibrate a fast S-transform (FST) algorithm to provide high fidelity 

estimates of the local spectrum of reflection events (Chapter 3). Further, in Chapter 4 

we reformulate linear AVF inverse theory to take FST spectra as input and test inversion 

accuracy using the modified equation to find accurate results. In Chapter 5 we satisfy 

item (2) by examining the adverse effect of random noise, a source wavelet, and proximal 

events on AVF inversion and make recommendations to mitigate these effects. We find 

that the increase in signal to noise created by stacking diminishes the adverse effect of 

random noise. Disregarding the low-frequency portion of the target reflection coefficients 

spectrum improves inversion accuracy in the presence of nearby events but surprisingly, 

we find accuracy of inversion inconsistent even with this measure in place. To remove 

the effect of a seismic wavelet, in Chapter 5 we deconvolve the trace and calibrate the 

result. We have determined that deconvolution leaves a footprint on the spectrum of the 

reflection coefficient, yielding inconsistent inversion results. 
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In this Chapter we explore two ideas of inverting anelastic reflectivity. The first is 

a least-squares approach to AVF inversion. The reasoning behind a least-squares AVF 

inversion methodology is to obtain a more robust method of satisfying item (2) above. 

Removing the wavelet from the spectrum of anelastic reflection coefficients, via decon­

volution, leaves a footprint which yields inconsistent inversion results. In this chapter, 

we bring an estimate of the wavelet into the linear AVF inversion equation and find a 

least-squares solution with the hope of finding consistent AVF inversion results. 

In the second part of this chapter we study full waveform inversion (FWI) of anelastic 

reflectivity. We calculate analytic data for a simple anelastic Earth model consisting of 

an elastic overburden overlaying a highly anelastic target. The analytic data is one 

dimensional, normal incidence and is used to calculate the first step of the gradient 

function for FWI. We then interpret the gradient to draw insight into how FWI will 

reconstruct the proper model. 

7.2 Least-squares AVF inversion 

7.2.1 Introduction 

In Chapter 5 we explore the effects that a wavelet, random noise, and proximal seismic 

events will have on the spectrum of a target absorptive reflection coefficient. Recommen­

dations for implementing AVF inversion in the presence of these effects are made but 

we find inconsistent inversion accuracy. It is because of this that we develop a method 

here of casting the AVF inverse problem as a least-squares minimization problem. The 

opportunity for optimization and regularization offered by a least-squares approach may 

bring stability to the output of AVF inversion in the presence of wavelet, noise, proximal 

events, etc. We develop the following methodologies of least-squares AVF inversion in 

the following environments: 
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1. at normal incidence and no wavelet, 

2. at oblique incidence, 

3. with source wavelet intact, 

4. using the FST spectra as input. 

The angle dependence of reflection coefficients is studied in the least-squares framework. 

The effect of the wavelet is taken into account by utilizing the estimate of the wavelet 

in the linear AVF inversion equation as opposed to deconvolving the trace prior to im­

plementation of AVF inversion. This approach of utilizing the wavelet estimate in the 

least-squares algorithm may also help stabilize the AVF inversion result. Finally, we use 

output from a fast S-transform (FST) (for details, see Brown et al. (2010) and Chapter 2) 

as input into our least-squares AVF approach and test using numerically modeled data. 

7.2.2 Normal incidence, source wavelet removed 

We start with the expression for the linearized anelastic reflection coefficient for an elastic 

overburden overlaying a highly attenuative target given by (for derivation see Chapter 2 

or Innanen, 2011) 
1 1 

R(θ) ≈ − aQF (θ) + aC , (7.1)
2 4 

where the reflection coefficient, R(θ), is complex and a function of frequency and aQ 

and aC are the perturbation parameters in Q and acoustic seismic velocity respectively 

iand F (θ) = 
2 − 1 log(θ/θr). The AVF inverse problem is to determine aQ and aC from 

measurements of R(θ). By differencing the reflection coefficient across frequencies the 

perturbation in Q can be solved for (Innanen, 2011). In Chapter 5 we discuss AVF 

inversion on a target anelastic reflection coefficient in the presence of a wavelet, random 

noise, and numerous proximal events. We found that the inversion accuracy can be 
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adversely affected by these phenomena. For this reason, we cast the AVF inverse problem 

in a least-squares formalism in order to stabilize the results of AVF inversion. Beginning 

with equation (7.1) we can treat N instances of R(θ) and re-write in matrix form,  
1 −1 

2
R(θ1) 

R(θ2) 
.
 .
 .
 

F(θ1)
 


 

=
 


 

4  


 
1 −1 

2 F(θ2) aC
 



4 
(7.2)
 

. .
 . .
 aQ. . 

1 −1 
2

R(θN ) F(θN )4 

Equation (7.2) highlights the fact that, given R(θ) at more than two frequencies, solving 

for aC and aQ is an overdetermined problem. To cast the problem as a least-squares 

minimization problem we can view equation (7.2) in the form 

d=Gm, (7.3) 

where the data vector d is R(θ), G is the operator and the model vector m is aC and 

aQ. Least-squares minimizing the error between d and Gm and solving for m yields 

m = (GH G)−1GH d. (7.4) 

Here H is the Hermitian transpose. We could modify this least-squares approach to 

AVF inversion to include weights, a model objective, etc. To test the effectiveness of 

this approach we model anelastic reflection coefficients and invert using equation (7.4). 

The modeling is performed for an impulsive plane wave incident upon a planar boundary 

separating an elastic overburden with a highly anelastic target (such as illustrated in 

Figure 4.1). Target Q is varied from 10 to 105. The spectra of the traces are then 

obtained using an FFT and equation (7.4) is implemented to solve for aC and aQ for 

each of these traces. In Figure 7.1(a) we see an example trace in which Q of the target is 

40, and in Figure 7.1(b) is the spectrum of this anelastic reflection coefficient. Consider 

Figure 7.2 and Figure 7.3, the accuracy of the inversion of aC and aQ is shown. Notice 



116 

in Figure 7.3 that the inversion for aQ fails at low Q values. This is to be expected since 

we linearized the expression for the anelastic reflection coefficient by assuming small aQ 

(for example, see Chapter 2, or Innanen, 2011). 
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Figure 7.1: (a) A synthetic seismic trace with a single anelastic reflection and no source 
wavelet. Q of the target is 40. (b) Amplitude spectrum of the anelastic reflection coeffi­
cient in (a). c0 = 1500m/s, c1 = 1800m/s, Q1 = 40. 

7.2.3 Oblique incidence, source wavelet intact 

In Chapters 4-5 we have investigated the inversion of AVF data at normal incidence, either 

testing with no wavelet, or deconvolving the wavelet by designing the deconvolution filter 

away from the reflection of interest. In practise, we may have access to an estimate of 



117 

10 20 30 40 50 60 70 80 90 100
1550

1600

1650

1700
V

el
oc

ity
 (

m
/s

)

Model Q

Figure 7.2: Comparison of the inversion of target velocity (red) and the actual target 
velocity (blue) vs. the Q used in the modeling. 

the wavelet, and our data will not be restricted to normal incidence. In this section we 

extend the inversion framework to accommodate a wavelet estimate and plane wave data 

at oblique incidence. 

Oblique incidence 

We first extend the normal incidence formula in equation (7.1) to oblique incidence (for 

derivation, see Innanen, 2011) given by the expression (
1 1 

)( )
R(θ, e) = − aQF (θ) + aC 1 + sin2 e . (7.5)

2 4 
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Figure 7.3: Comparison of the inversion of target Q (red) and the actual target Q (blue). 
Notice the inversion fails at low Q. This is due to linearization error. 

Here e is the angle of incidence and R(θ, e) is the linearized, frequency dependent and 

angle dependent reflection coefficient. In the same way as equation (7.1) is cast in a 

least-squares framework so too is equation (7.5). We start by rewriting equation (7.5), 

for a given angle of incidence em as  (
(

)
)1 + sin2 1 + sin21 

4

1 

−1 
2 F(θ1)
 

R(θ1, em) 

R(θ2, em) 
.
 .
 .
 


 

=
 


 

em em  


 (
(

F(θ2) 1 + sin2 

.
 .
 .


)
)

em1 + sin2 −1 
2

em aC
 



4
.
 

.
 .
 .
 aQ (
 )
 (

1 + sin2

)

1 + sin21 −1 

2
R(θN , em) 4

em F(θN ) em

(7.6)
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With equation 7.6 we may find the least-squares solution for aC and aQ. As we are 

moving away from our simple normal incidence model by considering oblique incidence 

reflections, we should use a model for reflection coefficients which includes contrasts in 

density. But as the basic character of the AVF problem is exposed using this simple model 

we stick to using it for now. Any attempt to apply this least-squares AVF inversion to 

non-normal incidence field data will need to account for density contrasts. The AVF 

inversion equations are readily adaptable to include density and so we leave this as a 

topic of future research. 

Source wavelet intact 

Consider Figure 7.4, in it we see a seismic trace consisting of an anelastic reflection 

coefficient convolved with a wavelet (Figure 7.4(a)), and the amplitude spectrum of this 

synthetic trace (7.4(b)). If we knew the wavelet we could simply remove its spectrum 

from the trace to obtain the amplitude spectrum of the anelastic reflection coefficient by 

itself (Figure 7.4(c)). In Chapter 5 we attempt to remove the source wavelet from the 

trace by performing standard Weiner deconvolution on the trace. However, we find that 

deconvolution imposes a footprint on the amplitude spectra of the anelastic reflection 

coefficients, adversely affecting inversion accuracy. A more robust method of accounting 

for the source wavelet may be found if we bring an estimate of the wavelet into the linear 

AVF equation and find a least-squares solution. In order to include a source wavelet 

in AVF theory, we need only multiply the reflection coefficient with the wavelet in the 

frequency domain. We can use the Wiener deconvolution to obtain an estimate of the 

wavelet to be used in inversion. Since equation (7.1) and equation (7.5) are already in 
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the frequency domain, we can simply re-write equation (7.5) as 

1 1
 
1 + sin2 e
R ′ (θ, e) = R(θ, e)S(θ) =

(


4
 
aC

() )

S(θ). (7.7)
− aQF (θ) + 

2
 

Here S(θ) is the spectrum of the source wavelet and R ′ (θ, e) is reflection coefficient 

multiplied by the source wavelet. R ′ (θ, e) will be contained in the data vector d in 

equation (7.3). To cast equation (7.7) as a least-squares inverse problem we first re-write 

for a given angle of incidence, em, as  (
(

)
)

)
)1 1 + sin2 −1 

2 1 + sin2R ′ (θ1, em) 

R ′ (θ2, em) 
.
 .
 .
 

S(θ1) F (θ1) S(θ1) 

S(θ2) 

em em4

1 


 


 

=
 


 

 




(
(
1 + sin21 + sin2 −1 

2
S(θ2) F (θ2)em em aC
 



4

.
 
.
 .
 .
 

.
 .
 .
 aQ (

em

)
 (
 )

1 
4

1 + sin2 −1 
2 1 + sin2R ′ (θN , em) S(θN ) F (θN ) S(θN )em

(7.8)
 

Now we let
  
 

R ′ (θ1, em)
 

R ′ (θ2, em)
 
. . .
 

R ′ (θN , em)
 


 

d =
 , (7.9)
 

and
  (
(

)
)

)
)1 1 + sin2 −1 

2 1 + sin2S(θ1) F (θ1) S(θ1) 

S(θ2) 

em em4

1 


 


 

(
(
1 + sin21 + sin2 −1 

2
S(θ2) F (θ2)em em4

G =
 , (7.10)
 
.
 .
 .
 

.
 .
 .
 (

em

)
 (



)

1 
4

1 + sin2 −1 
2 1 + sin2S(θN ) F (θN ) S(θN )em

and finally
 
 

aC
 

 (7.11)
m =
 ,
 

aQ 

which allows us to write the least-squares solution for m as 

m = (GH G)−1GH d. (7.12) 
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7.2.4 Synthetic examples 

To test this least-squares AVF inversion framework, angle dependent reflection coef­

ficients are calculated and a minimum phase wavelet is convolved with the reflection 

coefficients, such as shown in Figure 7.4(a). A standard Weiner deconvolution code from 

the CREWES matlab toolbox is used to obtain an estimate of the wavelet to be used 

in equation (7.8). Figure 7.5 shows the inversion result for the wavespeed, the red line 

corresponds to the inversion result and the black line is the actual wavespeed. The in­

version fails at high angles of incidence (greater than 40 degrees). This is due to the fact 

that equation (7.5) is a linearized expression obtained by expanding around small sin2 e. 

Figure 7.6 shows the inversion result for Q in red and the actual Q in black, again the 

failure of the inversion at high angles of incidence is due to the linearization error. Figure 

7.5 and Figure 7.6 show that this least-squares approach has the ability to invert for the 

wavespeed and Q of the target for angles of incidence up to about 40 degrees. This is a 

promising result as it shows that an estimate of the wavelet using standard deconvolution 

codes can be implemented with the AVF inverse equation to obtain reliable estimates of 

target Q. 

7.3 Least-squares AVF inversion using the fast S-transform 

The goal of developing this least-squares approach for solving the AVF inverse problem 

is to stabilize the inversion results in the presence of a source wavelet. In Chapter 5 we 

saw that the inversion results on deconvolved data are inconsistent due to the footprint 

that deconvolution imposes on the spectrum of the reflection coefficient. We have now 

seen that the source wavelet can be brought into the equation for dispersive reflection 

coefficients and then aC and aQ can be solved for in a least-squares sense. However, 

in order for this to be useful to us, we must be able to implement least-squares AVF 
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Figure 7.4: In (a) An anelastic reflection coefficient convolved with a wavelet. (b) The 
amplitude spectrum of reflection in (a). In (c) the spectrum of the anelastic reflection 
coefficient alone. 

inversion using estimates of the spectra of reflection events from the FST. In order to 

modify the least-squares approach to accept input from the FST recall that the FST 

calculates averages of the local spectra over frequency bands. First consider the wavelet 

free case. The S-domain amplitudes of the reflection coefficient are given by ∑je R(θi)
R̃j = i=js , (7.13)

(je − js + 1)

where R̃j is the average of R(θ) over the jth FST frquency band which spans the contin­

uous spectrum from sample js to je. We similarly define F̃j as the average of F (θ) over 
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Figure 7.5: Comparison of the inverted target velocity (red) and the actual target velocity 
(black) vs. incidence angle. Notice the inversion fails at high angles of incidence. This 
is due to linearization error. 

the same band ∑je F (θi)
F̃j = i=js . (7.14)

(je − js + 1) 

Now equation (7.1) can be re-written to take input from the FST as follows ( )
R̃j ≈ − 

1 
aQF̃j +

1 
aC , (7.15)

2 4 
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Figure 7.6: Comparison of the inversion of target Q (red) and the actual target Q (black) 
vs. incidence angle. Notice the inversion fails at high angles of incidence. This is due to 
linearization error. 

if there are M bands in the S-domain, equation 7.15 can be re-written in matrix form as  
R̃1

1 −
2
1 F̃1
 


 


 

4  


 

R̃2 

.
 .
 .
 

1
2 F̃2−1 aC
 



4 

.
 (7.16)
=
 
. .
 . .
 . .
 aQ 

R̃  
M 

1 −1 F̃  
M4 2 

We may invert equation (7.16) for aC and aQ by finding the least-squares solution. We test 

AVF inversion accuracy on synthetic data with input from the FST. Anelastic reflections 

are modeled at normal incidence and with no wavelet. The FST is used to estimate the 
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local spectrum of the anelastic reflection coefficient and the least-squares approach is 

used to invert for velocity and Q of the target. The experiment is repeated for a range 

of Q values, while the pertrubation is kept small, and the results are shown in Figure 

7.7 and 7.8. In these figures the actual target parameters are shown in blue and the 

inverted target parameters are shown in red. The black curve in Figure 7.8 represents 

the inversion result using the analytic spectrum (i.e. the inversion result using equation 

(7.2)). The inversion for velocity is accurate and the inversion for Q is accurate except 

at low Q. We see the inversion result fails using analytic spectra as well. The failure of 

the inversion at low Q is due to linearization error and our choice of θr. 

Now consider the case where the reflection coefficient is convolved with a source 

wavelet: define SM as the average of the amplitude spectrum of the source wavelet S(θ) 

from sample js to je ∑je S(θi)
S̃j = i=js . (7.17)

(je − js + 1) 

We re-write equation 7.7 (at normal incidence) to take input from the FST in the presence 

of a source wavelet ( )
Rs̃j = R̃j S̃j = − 

1 
aQF̃j S̃j +

1 
aC S̃j . (7.18)

2 4
 

˜
Here Rs is the FST spectrum of the reflection coefficient convolved with the wavelet. 

We may invert for aC and aQ by finding the least-squares solution. Once again, we test 

AVF inversion accuracy on synthetic data with the source wavelet intact. We obtain 

an estimate of the wavelet using Weiner deconvolution codes. We then use the FST to 

˜obtain Rs and then invert for velocity and Q of the target. The experiment is repeated 

for a range of Q values and the results are shown in Figure 7.9 and 7.10. Notice that the 

velocity inversion is accurate but the inversion for Q fails. It is unclear to us why the 

least-squares inversion for Q breaks down in the presence of a wavelet when the FST is 

used to estimate the input spectra. 
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Figure 7.7: Comparison of the inversion of target velocity (red) and the actual target 
velocity (blue) using the FST to estimate the spectrum of the reflection coefficient. aC 

is kept small. 

7.4 Full waveform inversion of anelastic reflectivity 

7.4.1 Introduction 

Full waveform inversion (FWI) is taking on an increasingly important role in seismic 

exploration. As this role grows, we must develop (1) implementations and algorithms, 

and (2) our understanding of the basic nature of FWI. In this chapter we are concerned 

with the second of these issues. Particular issues associated with inversion of anelastic 

media have been discussed by Hicks and Pratt (2001) and Malinowski et al. (2011). Here 
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Figure 7.8: Comparison of the inversion of target Q using the FST spectrum (red) and 
using the analytic spectrum (black). The actual target Q is shown in blue. aC is kept 
small. 

we add to these discussions by developing an analytic example of the first iteration of 

anelastic FWI. The first gradient of full waveform inversion is calculated for analytic 

data of a very simple attenuating Earth model. This simple Earth model consists of an 

elastic overburden overlaying an attenuative target with the interface between the layers 

occurring at a depth of 300m. The source and receiver are colocated at the surface and 

so the analytic data calculated is one dimensional and normal incidence. The analytic 

data for this simple model is used to calculate the first step of the gradient function for 

full waveform inversion. The gradient is analyzed and we attempt to draw insight into 
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Figure 7.9: Comparison of the inversion of target velocity (red) and the actual target 
velocity (blue) using the FST to estimate the spectrum of the reflection in the presence 
of a source wavelet. 
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Figure 7.10: Comparison of the inversion of target Q (red) and the actual target Q 
(blue) using the FST to estimate the spectrum of the reflection in the presence of a 
source wavelet. The inversion for Q fails. 
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how full waveform inversion will reconstruct the proper model in this setting. 

7.4.2 Analytic data and initial model 

In this example the actual medium is a two layer model in which both layers have velocity 

c0. There is a contrast in Q, however, as the first layer is elastic and the second layer is 

anelastic with a Q value of 40. Therefore there is a single primary in the data. We define 

the perturbations in wavespeed (aC ) and Q (aQ) as 

2c
aC = 1 − 0 

2c1 

1 
aQ = 

Q 

Figure 7.11(a) shows the simple attenuating Earth model. The blue line in Figure 7.11 

corresponds to the perturbation in velocity, aC , and the red line corresponds to the 

perturbation in Q, aQ. Notice that since there is no contrast in the acoustic properties of 

the medium and so the profile of aC is constant at zero. However, the profile of aQ jumps 

at 300m, which corresponds to the contrast in Q at that depth. Also, the starting model 

to be used in the calculation of the gradient is that of a homogeneous acoustic model 

with velocity c0, which is shown in Figure 7.11(b). For a source and receiver colocated 

at the surface the analytic, one-dimensional normal incidence data for this Earth model 

can be written as 

i2k0z11 e
D(θ) = + R(θ) ,

i2k0 i2k0 

where k0 = 
c
W 
0 
, z1 is the depth to the reflector and since there is no acoustic impedance 

contrast, the reflection coefficient is given approximately by (Innanen, 2011) 

1 
R(θ) ≈ − aQF (θ)

2 ( )
1 1 ≈ − aQ

i − log(θ/θr)
2 2 α 
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7.4.3 Full waveform inversion of analytic data 

A well-known result of the theory of FWI is that the gradient is given by the equation 

(Tarantola, 1984; Pratt, 1999; Margrave et al., 2010) ∫ ∞ 

g(z) = dθθ2G(0, z, θ)G(z, 0, θ)5P ∗ (0, 0, θ) (7.19) 
−∞ 

where g(z) is the first step of the gradient, G(0, z, θ) is the Green’s function for a wave 

traveling from source position zs = 0 to depth z and G(z, 0, θ) is the Green’s function 

for a wave traveling from source position zs = z to a receiver at z = 0. 5P ∗(0, 0, θ) is 

the complex conjugate of the data residuals. In order to calculate the data residuals, we 

need another Green’s function, G(0, 0, θ) which is the analytic data we obtain from our 

initial model. The needed Greens functions can be written as 

1 
G(0, 0, θ) = ,

i2k0 
ik0ze

G(z, 0, θ) = ,
i2k0 
ik0ze

G(0, z, θ) = . 
i2k0 

We can therefore write the data residuals as 

i2k0z1e
5P (0, 0, θ) = D(θ) − G(0, 0, θ) = R(θ) ,

i2k0 

taking the complex conjugate we obtain ( ) −i2k0z11 1 e
5P ∗ (0, 0, θ) = − aQ

i 
+ log(θ/θr) ,

2 2 α i2k0 
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now we can calculate the gradient
 ∫ ∞ 

g(z) = dθθ2G(0, z, θ)G(z, 0, θ)5P ∗ (0, 0, θ) 
−∞ ∫ ∞ [ ]2 [ ( ) ]

ik0z −i2k0z1e 1 1 e
= dθθ2 − aQ

i 
+ log(θ/θr)

−∞ i2k0 2 2 α i2k0 ∫ ∞ [ ]
2 i2k0(z−z1)c0 e i log(θ/θr) 

= dθ aQ + aQ
4 i2k0 4 2α−∞ (7.20)∫ ∞ i2k0(z−z1) 

∫ ∞ i2k0(z−z1)ic30 e c0
2 e

= aQ d(2k0) + aQ dθ log(θ/θr)
32 i2k0 8α i2k0−∞ −∞ 

2 ∫ ∞ i2k0(z−z1)c eic30 0 = aQH(z − z1) + aQ dθ log(θ/θr)
32 8α −∞ i2k0 

= g1 + g2 

where H(z − z1) is a Heaviside function. The first term in the gradient, g1, is a step 

function which turns on at the depth of the reflector z1, but notice that there is a complex i 

in front of the Heaviside and therefore the step is wholly imaginary. This seems intuitively 

correct as we know that in order to model attenuation we let wavenumber or velocity 

i2k0(z−z1)have an imaginary component. Also, the second term, g2, contains an e
i2k0 

, which 

when integrated alone would produce a Heaviside function which steps at the appropriate 

depth of the reflector, z1. However, there is a log(θ/θr) also contained in the integral 

which acts as filter and hence performing the integral should yield a step function which 

has been in some way filtered. The integral g2 was evaluated numerically. Figure 7.11(c) 

shows the wholly imaginary step function g1 vs depth. Figure 7.11(d) shows the absolute 

value of g2, it also has a step at z1. However, it is not a sharp step but rather has a 

droopy like appearance. This is due to the filtering that the log(θ/θr) performs on the 

step function. 
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7.4.4 An alternative approach 

The equation defining the gradient(equation (7.19)) is obtained by minimizing the ob­

jective function (Innanen, 2012) ∫ ∞1 
Φ = dθ|5P ∗|2 . (7.21)

2 −∞ 

As we see in equation (7.20), the first calculation of the gradient is complicated by the 

presence of the F (θ) in the data residuals 5P ∗ . To obtain a more readily interpretable 

form for the first step of the gradient we minimize a convenient objective function defined 

as: ∫ ∞ ∗|21 |5P 
Φ = dθ . (7.22)

2 F (θ)−∞ 

The equation for the gradient, obtained by minimizing this objective function is given by
 ∫ ∞ θ2 

g(z) = dθ G(0, z, θ)G(z, 0, θ)5P ∗ (0, 0, θ). (7.23)
F (θ)−∞ 

An finally, by re-calculating the gradient for our analytic data we obtain 

g(z) = 
c3 
0 

16 
aQH(z − z1). (7.24) 

This gradient is a real Heaviside located at z1 and proportional to aQ. This form is 

more convenient than our previous calculation as the F (θ) function vanishes. We readily 

interpret equation 7.24 as predicting a contrast in Q located at the appropriate depth 

z1 and being proportional to the perturbation in Q. Of course, our choice of objective 

function is convenient for a reflection coefficient caused by a contrast in Q only. 

7.5 Conclusions 

In this chapter, the AVF inverse problem was recast as a least sqaures minimization 

problem and this least-squares approach was adapted for angle dependent reflections and 

a seismic wavelet. In Chapter 5 it is shown that AVF inversion is inconsistent in the 
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presence of noise, numerous reflection events, and a wavelet. The hope of this least-

squares approach is to stabilize AVF inversion in the presence of these phenomena. It 

is shown that for incidence angles up to about 40 degrees reliable estimates of both 

wavespeed and Q are obtainable, even in the presence of a source wavelet. Further, it is 

shown that using standard deconvolution codes to obtain an estimate of the wavelet, a 

reliable inversion result is achieved. Any hope of implementing AVF on seismic field data 

will require an estimate of the local spectrum of seismic reflections using time-frequency 

decomposition. We tested this least-squares AVF inversion using the FST estimate of 

an absorptive reflection coefficient as input. We observe that the inversion results are 

accurate. However, when we use the FST to estimate the spectra of reflections in the 

presence of a source wavelet, inversion for Q fails even while the inversion for velocity 

remains accurate. It is not known why this occurs but it is the subject of future work to 

resolve this situation. 

Also in this chapter, the first step of the gradient for full waveform inversion is calcu­

lated on analytic data for a simple Earth model. This simple Earth model consisted of an 

elastic overburden overlaying an attenuative target. One dimensional, normal incidence 

data is generated for this model and is used to calculate the first step of the gradient 

function. We find that the gradient predicted an imaginary step function located at the 

depth of the attenuative target. This imaginary step function seems to be an intuitively 

correct result as introducing absorption into the wave equation usually involves allowing 

the wavespeed to have an imaginary component. Because of dispersion, the real part of 

the gradient was a step function which is filtered by log(θ/θr). The insight we gain is 

in seeing what the next iterations must accomplish if they are to converge to the correct 

answer. The imaginary part appears to be moving well towards the right answer, whereas 

the dispersion and its effect on the real part has left much remaining work to be done 

to reconstruct the correct result. Since both are here related to the same parameter, we 
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suggest and will consider as a matter of future research the idea of using the former to 

help condition the latter. By minimizing a more convenient objective function we obtain 

a more readily interpretable form for the first gradient. 
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Figure 7.11: In (a) a simple attenuative Earth model consisting of an elastic overburden 
overlaying an anelastic target. The is a contrast in Q at 300m. In (b) the starting model 
for FWI is homogeneous and perfectly acoustic. In (c) the imaginary part of the gradient 
g1 and in (d) the real part of the gradient g2. 
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Chapter 8 

Conclusions 

The aim of this thesis was to develop a processing workflow for seismic AVF inversion 

suitable for implementation on field data. To develop this workflow a number of items 

were needed: 

1. A method of time-frequency decomposition which provides high fidelity estimates 

of the local spectra of seismic reflections 

2. The ability to mitigate the adverse effects that random noise, source wavelets, and 

proximal events has on the spectrum of target reflection coefficients 

3. A field data set with a potential AVF reflection 

To meet the requirements of item (1) we calibrated a fast S-transform (FST) developed 

by Brown et al. (2010) (Chapter 3) and we reformulated AVF inversion to be carried 

out in the S-domain (Chapter 4). To satisfy item (2), in Chapter 5 we examined how 

random noise, source wavelets, and proximal events influence AVF inversion accuracy 

and we made recommendations to mitigate these effects. We found a surprising result 

in our study of nearby/proximal events. We expected that the closer a target reflection 

is to other events, the more their spectra will interfere. Evidently this is not always the 

case in the FST domain. We find that in some cases, events farther away may strongly 

interfere with the spectrum of a target reflection coefficient. This surprising phenomenon 

should be studied further as it makes it difficult to quantify which portion of a target’s 

spectrum is high fidelity as a function of its proximity to other events. 

In Chapter 6 we identified a potential candidate for a measurable anelastic reflection 

in the Ross Lake VSP data set. We identified and extracted our target reflection (top
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of the Mannville) believed to have a possible AVF signature. We also identified and 

extracted a control reflection (top of Milk River) not believed to be asssociated with a 

contrast in Q. We were forced to perform additional Q-compensation to account for the 

attenuation of the primaries in the interval between reflector and receiver. Comparing the 

spectrum of the target Mannville reflection coefficient with the spectrum of the control 

Milk River reflection coefficient we observe a similar dispersive character in both. This 

inconclusive result motivates us to continue to search for another field data set where 

one of the following are met: 

•	 There is a stronger contrast in Q and therefore more likely to produce a stronger 

AVF signature; or, 

•	 We need not perform additional Q-compensation either because the overburden is 

highly elastic or we have wavefield separation techniques we are confident will not 

alter the local spectra of the primary and direct arrivals. 

Deconvolution imposes a footprint on the local spectrum of anelastic reflections which 

results in inconsistent AVF inversion accuracy. Because of this, in Chapter 7 we re-cast 

the AVF inversion in a least-squares framework in the hope of producing more robust 

AVF inversion results in the presence of a wavelet. This methodology has the advantage 

that we may bring an estimate of the wavelet into the linear AVF equations and then 

find a least-squares solution for the model parameters aC and aQ. We also observe 

accurate inversion results in the presence of a source wavelet on analytic data. The 

least-squares formalism also provides a natural framework for AVF inversion of oblique 

incidence reflections. On analytic data, we observe accurate inversion results on angles 

of incidence less than 40 degrees. 
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8.1 Final remark
 

Future research efforts should be undertaken to increase our ability to detect, quantify, 

and interpret AVF signatures when they are strong and well isolated, and to detect them 

when conditions are less than ideal. Of particular importance is that AVF signatures 

may be most strongly observed at low frequencies, the same part of the bandwidth ren­

dered useless by interference from nearby events. Spectral estimation techniques designed 

specifically to be used on fractions of cycles may be a fruitful line of future research. How­

ever, field examples with strong Q contrasts likely do exist which would be detectable 

with the methods used in this thesis. It is mostly a matter of finding one. 
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