Optimal Data Structures for Spherical Multiresolution Analysis and Synthesis

J. A. Rod Blais Dept. of Geomatics Engineering Pacific Institute for the Mathematical Sciences University of Calgary, Calgary, AB www.ucalgary.ca/~blais

Introduction

- Geopotential and related fields are global with continuous spectra
- Multiresolution analysis and synthesis require regular array data
- Spherical Quad Tree (SQT) data structures are most appropriate
- Spherical Harmonic Wavelets (SHWs) using Transforms (SHTs)
- Equiangular discretizations are most common in applications
- Equitriangular (near equiareal) are often desirable in practice
- Other equidistribution strategies are much less appropriate
- Simulations with Geopotential Models (GMs) are discussed
- Concluding Remarks

Multiresolution Analysis on Sphere (S²)

A multiresolution analysis of $L^2(S^2)$ is a nested sequence of subspaces $\{V_n : n = 0, \pm 1, \pm 2, ...\}$ such that

- $L^{2}(S^{2}) \supset ... \supset V_{1} \supset V_{0} \supset V_{-1} \supset ... \supset \emptyset$
- $f(t) \in V_n \iff f(s \cdot t) \in V_{n-1}, s > 1$ (dilations)
- $f(t) \in V_n \Leftrightarrow f(t-k) \in V_n$ (translations)
- \exists a scaling or smoothing function $\varphi(t) = \sqrt{s} \sum_{k} g_k \varphi(s \cdot t k)$ such that { $\varphi(t-k)$ } is an orthonormal basis of V_0
- \exists a detail or wavelet function $\psi(t) = \sqrt{s} \sum_{k} h_k \psi(s \cdot t k)$ that is a quadratic conjugate of the scaling function $\varphi(t)$

Multiresolution Analysis of GMs

using the lowpass filter kernel with decimation (binary scaling)

 $K_L : GM_N \to GM_{N/2}$ and $k_L : u_N(\theta, \lambda) \mapsto u_{N/2}(\theta, \lambda)$ and highpass filter kernel with decimation (binary scaling)

 $K_{H}: GM_{N} \rightarrow \Delta M_{N/2}$ and $k_{H}: u_{N}(\theta, \lambda) \mapsto v_{N/2}(\theta, \lambda)$ satisfying Bezout's theorem: $K_{L}^{*}K_{L} + K_{H}^{*}K_{H} = I$ for reconstruction purposes: $K_{L}^{*}GM_{N/2} + K_{H}^{*}\Delta M_{N/2} = GM_{N}$

Example: SHT of Order N = 2B

$$CS = \begin{pmatrix} c_{00} & s_{11} & \dots & s_{B-1,1} \\ c_{10} & c_{11} & \dots & s_{B-1,2} \\ \dots & \dots & \dots & \dots \\ c_{B-1,0} & c_{B-1,1} & \dots & c_{B-1,B-1} \\ c_{B,0} & c_{B,1} & \dots & c_{B,B-1} \\ c_{B+1,0} & c_{B+1,1} & \dots & c_{B+1,B-1} \\ c_{B+1,0} & c_{B+1,1} & \dots & c_{B+1,B-1} \\ c_{B-1,0} & c_{B-1,1} & \dots & c_{B+1,B-1} \\ c_{B+1,0} & c_{B+1,1} & \dots & c_{B+1,B-1} \\ c_{B+1,0} & c_{B+1,1} & \dots & c_{B+1,B-1} \\ c_{B+1,0} & c_{B+1,1} & \dots & c_{B+1,B-1} \\ c_{B-1,0} & c_{N-1,1} & \dots & c_{N-1,B-1} \\ c_{N-1,0} & c_{N-1,1} & \dots & c_{N-1,1} \\ c_{N-1,1} & c_{N-1,1} & \dots & c_{N-1,1} \\ c_{N-1,1}$$

Multiresolution Synthesis of GMs

For a potential function $u(\theta, \lambda)$ in GM_{∞}

$$\mathbf{u}(\theta,\lambda) = \mathbf{u}_0(\theta,\lambda) + \mathbf{k}_H^* \mathbf{v}_0(\theta,\lambda) + \dots + \mathbf{k}_H^* \mathbf{v}_N(\theta,\lambda) + \dots$$
$$= \mathbf{u}_N(\theta,\lambda) + \dots$$

and with more observational information,

$$\mathbf{u}(\theta,\lambda) = \mathbf{u}_{\mathrm{N}}(\theta,\lambda) + \mathbf{k}_{\mathrm{H}}^{*}\mathbf{v}_{\mathrm{N}}(\theta,\lambda) + \mathbf{k}_{\mathrm{H}}^{*}\mathbf{v}_{2\mathrm{N}}(\theta,\lambda) + \dots$$

Recall that with the usual (geodetic) conventions,

$$u_{N}(\theta,\lambda) = \sum_{n=0}^{N-1} \sum_{|m| \le n} u_{n,m} Y_{n}^{m}(\theta,\lambda)$$
$$= \sum_{n=0}^{N-1} \sum_{m=0}^{n} \left(\tilde{c}_{nm} \cos m\lambda + \tilde{s}_{nm} \sin m\lambda \right) \tilde{P}_{nm}(\cos \theta)$$

Estimation of Spectral Coefficients

Chebychev Quadrature (CQ) Methods:

- Equiangular grids of e.g. 2Nx4N points for $\Delta \theta = \Delta \lambda$
- With 2N equispaced parallels and at least N equispaced meridians
- Usually excluding the poles for numerical stability
- » Providing least degree N per data (N² coefts, O(N³) oper'ns)

Least-Squares (LS) Methods:

- Equiangular grids of e.g. Nx2N points for $\Delta \theta = \Delta \lambda$
- With at least N parallels and at least N equispaced meridians
- Usually excluding the poles for numerical stability
- Multiple least-squares estimation per order
- » Requiring least data per degree N (N² coefts , O(N⁴) oper'ns)

SHT Using Chebychev Quadrature

SHT:

$$\begin{cases}
\begin{aligned}
z_{11} & z_{12} & \cdots & z_{1K} \\
z_{21} & z_{22} & \cdots & z_{2K} \\
\cdots & \cdots & \cdots & \cdots \\
z_{J1} & z_{J2} & \cdots & z_{JK}
\end{cases} \rightarrow \begin{cases}
\tilde{c}_{00} & \tilde{s}_{11} & \cdots & \tilde{s}_{v1} \\
\tilde{c}_{10} & \tilde{c}_{11} & \cdots & \tilde{s}_{v2} \\
\cdots & \cdots & \cdots & \cdots \\
\tilde{c}_{v0} & \tilde{c}_{v1} & \cdots & \tilde{c}_{vv}
\end{cases}$$
with

$$\begin{cases}
\tilde{c}_{nm} \\
\tilde{s}_{nm}
\end{cases} = \sum_{j=1}^{J} \sum_{k=1}^{K} \tilde{q}_{j} z_{jk} \begin{cases}
\cos m\lambda_{k} \\
\sin m\lambda_{k}
\end{cases} \tilde{P}_{nm}(\cos \theta_{j})$$
and

$$z_{jk} = \sum_{n=0}^{v} \sum_{m=0}^{n} (\tilde{c}_{nm} \cos m\lambda_{k} + \tilde{s}_{nm} \sin m\lambda_{k}) \tilde{P}_{nm} (\cos \theta_{j})$$

in which q_i denote the Chebychev quadrature weights [Blais, 2011].

SHT Using Least Squares

From the previous synthesis formulation

$$z_{jk} = "const." \cdot IDFT_{k=1,K} \left\{ \sum_{n=m}^{\nu} (\tilde{c}_{nm} + i \, \tilde{s}_{nm}) \tilde{P}_{nm} (\cos \theta_j) \right\}$$

one has for unknown coefficients \tilde{c}_{nm} and \tilde{s}_{nm} $DFT[z_{jk}] = "const." \cdot \left\{ \sum_{n=m}^{\nu} (\tilde{c}_{nm} + i \, \tilde{s}_{nm}) \tilde{P}_{nm}(cos \, \theta_j) \right\}$

implying a least-squares problem per order m, with

$$\theta_{j} = j \pi/N, \quad j = 0, 1, ..., N-1$$

 $\lambda_{k} = k \pi/N, \quad k = 0, 1, ..., 2N-1$

for \tilde{c}_{nm} and \tilde{s}_{nm} with $m \le n, n = 0, 1, ..., N-1$ [Blais, 2011].

SHT Computations for Degree N

For gridded data with at least 2N equispaced isolatitude data

$$\left\{\mathbf{Z}_{jk}\right\} \xrightarrow{\mathbf{DFT}} \left\{\mathbf{u}_{jh} + i\mathbf{v}_{jh}\right\} \xrightarrow{\mathbf{IDFT}} \left\{\hat{\mathbf{Z}}_{jk}\right\}$$

For gridded data with 2N data per column with constant $\Delta \theta$

$$\left\{\mathbf{c}_{nm} + \mathbf{i}\mathbf{s}_{nm}\right\} \xrightarrow{\Sigma} \left\{\mathbf{u}_{jh} + \mathbf{i}\mathbf{v}_{jh}\right\} \xrightarrow{\text{Chebychev}} \left\{\mathbf{\hat{c}}_{nm} + \mathbf{i}\mathbf{\hat{s}}_{nm}\right\}$$

For gridded data with N data per column with variable $\Delta \theta$

$$\left\{\mathbf{c}_{nm}+\mathbf{i}\mathbf{s}_{nm}\right\} \xrightarrow{\Sigma} \left\{\mathbf{u}_{jh}+\mathbf{i}\mathbf{v}_{jh}\right\} \xrightarrow{\text{Least}} \left\{\mathbf{\hat{c}}_{nm}+\mathbf{i}\mathbf{\hat{s}}_{nm}\right\}$$

Note that only DFTs are generally invertible above.

Equidistribution on the Sphere

In general for an arbitrary partition of the sphere S², Discrepancy = $\sup_{all C \in S^2} \frac{\sum_{n=1}^{N} \chi_C(\xi_n) / N}{\lim_{N \to \infty} \sum_{n=1}^{N} \chi_C(\xi_n) / N}$

in which $\chi_C(\zeta_k)$ denotes the characteristic function for the cell C.

- With pseudo-random numbers, Disc. ~ $O((\log \log N)^{1/2}/N^{1/2})$
- With quasi-random numbers, Disc. ~ $O((\log N)^{s}/N)$ for dim. s

Hence quasi-random (deterministic) sequences are advantageous in higher dimensional simulations [Morokoff & Caflisch, 1994]

Quad Tree Data Structures

Planar Quad Trees

- Two-dimensional pyramidal binary data structures
- Planar domains can be square, rectangular or triangular
- Most often used for multiresolution analysis/synthesis

Spherical Quad Trees

- Spherical pyramidal binary data structures
- Spherical partitions can be equiangular or equitriangular
- Octahedrons and icosahedrons have equitriangular faces
- Densification can only be near equiareal in general

Near Equiareal Strategies

Platonic Solids (for exact regularity)

- Tetrahedron (4 vertices, 4 edges, 4 faces)
- Cube (8 vertices, 12 edges, 6 faces)
- Octahedron (6 vertices, 12 edges, 8 faces)
- Dodecahedron (20 vertices, 30 edges, 12 faces)
- Icosahedron (12 vertices, 30 edges, 20 faces)

Dualities (by interchanging faces and vertices)

- Tetrahedron ↔ Tetrahedron
- Cube ↔ Octahedron
- Dodecahedron \leftrightarrow Icosahedron

Cube and Octahedron

For the octahedron, radially projected face centres are equispaced on parallels enabling the use of FFTs in SHTs.

Octahedron Based Examples

Level One:

 $\begin{pmatrix} \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \end{pmatrix}$

Level Two:

(X			Х			Х			Х		
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	X			Х			Х			Х		

Level Three:

(\mathbf{x})							Х							Х							Х)
X	Х					Х	Х	Х					Х	Х	Х					Х	Х	Х					X
X	Х	Х			Х	Х	Х	Х	Х			Х	Х	Х	Х	Х			Х	Х	Х	Х	Х			Х	X
X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
X	Х	Х			Х	Х	Х	Х	Х			Х	Х	Х	Х	Х			Х	Х	Х	Х	Х			Х	X
X	Х					Х	Х	Х					Х	Х	Х					Х	Х	Х					X
(x							Х							Х							Х)

Data matrix: $2^{L} x 4(2^{L}-1)$ for level L=1, 2, 3, ...

Octahedron Based EGM 2008

Level: Grid	CQ SHT wit	hout MASK	CQ SHT with MASK							
	Spectral RMS	Spatial RMS	Spectral RMS	Spatial RMS						
1: 2 × 4	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00						
2: 4 × 12	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00						
3: 8 × 28	5.01518E-22	2.46658E-22	3.46314E-07	1.76088E-07						
4: 16 × 60	4.60189E-22	2.71065E-22	2.95147E-07	1.35163E-07						
5: 32 × 124	3.49076E-22	2.48811E-22	1.75164E-07	5.95464E-08						
6: 64 × 252	3.27367E-22	1.97523E-22	9.36630E-08	2.82141E-08						
7: 128 × 508	2.35428E-22	1.49245E-22	4.83148E-08	1.36872E-08						
8: 256 × 1020	2.95569E-22	4.46778E-22	2.45261E-08	6.72713E-09						
9: 512 × 2044	2.44512E-22	3.41138E-22	1.23503E-08	3.34493E-09						
10: 1024 × 4092	1.86931E-22	1.98060E-22	6.19652E-09	1.65967E-09						
11: 2048 × 8188	2.63594E-22	1.34133E-21	3.10356E-09	8.27754E-10						
12: 4096 × 16380	1.79304E-22	4.37061E-22	1.93038E-09	2.61150E-11						

Octahedron Based EGM 2008

Level: Grid	LS SHT witl	nout MASK	LS SHT with MASK							
	Spectral RMS	Spatial RMS	Spectral RMS	Spatial RMS						
1: 2 × 4	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00						
2: 4 × 12	1.69759E-22	5.94638E-22	4.37280E-07	1.47796E-06						
3: 8 × 28	1.99773E-22	1.72819E-21	2.81856E-07	2.03906E-06						
4: 16 × 60	1.31301E-22	2.13755E-21	1.69567E-07	1.82278E-06						
5: 32 × 124	1.12135E-22	3.27313E-21	9.21266E-08	1.76746E-06						
6: 64 × 252	7.95785E-23	4.51222E-21	4.79136E-08	1.73217E-06						
7: 128 × 508	5.15702E-23	5.27782E-21	2.44238E-08	1.71213E-06						
8: 256 × 1020	3.44812E-23	7.57625E-21	1.23245E-08	1.70243E-06						
9: 512 × 2044	2.72378E-23	1.14566E-20	6.19003E-09	1.69697E-06						
10: 1024 × 4092	1.82607E-23	1.49602E-20	3.10193E-09	1.69397E-06						
11: 2048 × 8188	1.27162E-23	2.12524E-20	1.55270E-09	1.69232E-06						

Dodecahedron and Icosahedron

For the icosahedron, radially projected face centres are equispaced on parallels enabling the use of FFTs in SHTs.

Icosahedron Based Examples

Level One:

Level Two:

(x				Х				Х				х				х)
X	Х		Х	Х	Х		Х	Х	Х		Х	Х	Х		Х	Х	Х		x
X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
X	Х	х	х	Х	х	Х	Х	Х	Х	х	Х	Х	Х	х	Х	х	Х	х	x
X	Х		х	Х	х		Х	Х	Х		Х	Х	Х		Х	х	Х		x
(x				х				Х				х				х)

Level Three:

()	K							Х								Х								х								Х)
2	к х						Х	Х	Х						Х	Х	Х						Х	Х	Х						Х	Х	Х						x
2	х х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	x
2	к х	Х	Х		Х	Х	Х	Х	Х	Х	х		х	Х	Х	х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	x
2	х х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x
2	к х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x
2	х х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x
2	K X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
2	к х	Х	Х		Х	Х	Х	Х	Х	Х	х		х	Х	Х	х	Х	Х	Х		х	Х	Х	Х	Х	Х	Х		х	х	Х	Х	Х	Х	Х		Х	Х	x
2	K X	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	x
2	K X						Х	Х	Х						Х	Х	Х						Х	Х	Х						Х	Х	Х						x
	K							Х								Х								х								Х)

Data matrix: 3·2^{L-1} x 10·2^{L-1} for level L=1, 2, 3, ...

Icosahedron Based EGM 2008

Level: Grid	CQ SHT wit	hout MASK	CQ SHT with MASK							
	Spectral RMS	Spatial RMS	Spectral RMS	Spatial RMS						
2: 6 × 20	5.80442E-22	3.08926E-22	5.16965E-08	2.97412E-08						
3: 12 × 40	5.36589E-22	3.10983E-22	2.34916E-07	1.17869E-07						
4: 24 × 80	5.34168E-22	4.00308E-22	1.48875E-07	6.88029E-08						
5: 48 × 160	3.90610E-22	2.79288E-22	8.43465E-08	2.84157E-08						
6: 96 × 320	2.39380E-22	1.71708E-22	4.36315E-08	1.32942E-08						
7: 192 × 640	2.34844E-22	2.53629E-22	2.21818E-08	6.42338E-09						
8: 384 × 1280	3.76414E-22	7.51429E-22	1.11800E-08	3.14001E-09						
9: 768 × 2560	2.44109E-22	5.55374E-22	5.61113E-09	1.55210E-09						
10: 1536 × 5120	2.10235E-22	7.98760E-22	2.81076E-09	7.71222E-10						
11: 3072 × 10240	2.67382E-22	1.17283E-21	1.40667E-09	3.84318E-10						

Icosahedron Based EGM 2008

Level: Grid	LS SHT witl	nout MASK	LS SHT with MASK							
	Spectral RMS	Spatial RMS	Spectral RMS	Spatial RMS						
1: 3 × 10	1.25238E-22	2.11758E-22	1.25238E-22	2.59350E-22						
2: 6 × 20	2.95140E-22	1.51008E-21	2.51053E-07	1.46517E-06						
3: 12 × 40	1.52452E-22	2.20379E-21	1.52962E-07	1.68124E-06						
4: 24 × 80	1.15572E-22	2.77977E-21	8.48097E-08	1.35730E-06						
5: 48 × 160	1.05883E-22	4.66450E-21	4.37294E-08	1.27438E-06						
6: 96 × 320	5.34825E-23	4.45502E-21	2.22020E-08	1.23198E-06						
7: 192 × 640	4.06924E-23	6.62470E-21	1.11842E-08	1.20504E-06						
8: 384 × 1280	3.88597E-23	1.15537E-20	5.61215E-09	1.19159E-06						
9: 768 × 2560	2.02286E-23	1.24795E-20	2.81100E-09	1.18438E-06						
10: 1536 × 5120	1.58626E-23	1.93084E-20	1.40673E-09	1.18052E-06						

Reuter Grids

- Homogeneous point distributions include e.g. Reuter grids
- Fast computations can be performed using panel clustering
- New grids are required for each level of decomposition
- Not a pyramidal data structure for analysis and synthesis

Concluding Remarks

- Multiresolution analysis/synthesis can be done on \mathbb{R}^2 or S^2
- Equiangular grids are common but not always desirable
- Equitriangular (near equiareal) are generally convenient
- Other equidistributed point sets often have drawbacks
- SHTs (CQ & LS) analysis/synthesis give comparable RMS
- With EGM and like data, equitriangular grids work well
- With noise like data, some analysis problems may arise