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Abstract 
Aquifer vulnerability index methods are commonly used for assessing groundwater 

vulnerability to surface contaminants. However, the methods have primarily been developed for 
dissolved contaminants. Microbial contaminants have unique characteristics that result in different 
transport behavior in the subsurface, and thus different tools need to be designed. Key vulnerability 
factors specific to microbial sources and subsurface transport mechanisms were identified in this 
study and incorporated into a model using an ArcGIS framework to create provincial-scale maps 
of groundwater vulnerability, specific to E. coli, in Alberta for the year 2012. Examples of these 
factors include: soil texture based on grain size, soil organic matter, hydrogeologic properties, 
depth to aquifer, and meteorological conditions. These factors were combined from individual GIS 
layers to create an intrinsic vulnerability map, demonstrating where aquifers were more vulnerable 
to bacterial contamination if a source became present. Maps were created for the growing season 
and cold season, and attempts were made to test the model with E. coli detection data. The results 
of these statistics were not significant enough for this model to be used for predictive purposes, but 
this could be caused by the presence or lack of risk (i.e., source of contaminants), as opposed to 
real differences in aquifer vulnerability. This project helped inform which factors should be 
considered when making a vulnerability map for bacterial contaminants, most notably temporal 
factors such as precipitation and soil moisture. The developed map provided insights as to where 
shallow aquifers in Alberta are intrinsically vulnerable to bacterial contamination. 
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1.0 Introduction 

Groundwater is an important drinking water resource, especially for those who live far away 
from surface water sources. There are many private residences in Canada, especially in rural areas, 
that use groundwater as their primary drinking source. 30% of Canadians, and 90% of rural 
households in Alberta use groundwater as a drinking water resource [Environment and Climate 
Change Canada, 2013; Alberta Agriculture and Forestry, 2017]. The misconception is that 
groundwater is safe from contamination because of the geology that protects it. However, 
infiltration of water contaminated with bacteria is possible and these contaminants present a 
significant risk. An example of this is the Walkerton groundwater contamination tragedy, an 
incident in which 2,300 residents became ill and seven people died as a result of contamination of 
well water by microbes after a heavy rainfall, and the disinfection system failures that followed 
[Hrudey et al., 2003]. Health and safety concerns are associated with vulnerable groundwater, so 
it is important to protect. 

The impacts of indicator bacteria presence in groundwater are important to monitor due to 
the number of private well users in Alberta. Private well users are more exposed to the risks of 
groundwater contamination, as they drink their water from the source rather than receiving it via a 
water treatment plant. The Canadian drinking water guideline for E. coli is none detectable per 
100mL [Health Canada, 2017], but this is not regulated for private wells. When tested, bacterial 
contaminants are frequently found to exceed water quality guidelines [van der Kamp and Grove, 
2001]. The decision to treat groundwater for consumption is up to the individuals who own or drink 
from the wells. There are more than 500,000 water wells across Alberta, which are often in rural 
or agriculture-dominated regions [Alberta Agriculture and Forestry, 2017]. The concern with wells 
being present in agricultural areas is that health and wellness risks increase with exposure to animal 
and human sources that contain pathogens such as manure fertilizer and septic systems [Bradford 
et al., 2013].  

The sensitivity of a groundwater source to contamination by any substance or species is 
known as aquifer vulnerability [National Research Council, 1993]. Vulnerability is based on 
aquifer characteristics such as the depth to the water table, the material overlying and within the 
aquifer, and the fate and transport of the contaminant itself. The faster and easier it is for water and 
contaminants to travel through the subsurface, the greater the intrinsic vulnerability of that aquifer 
[Dixon and Uddameri, 2015]. Vulnerability risk assessment of aquifers has been a prevalent 
method for determining the health and relative susceptibility of aquifers to contaminants. The 
assessment can be represented as a map, providing water managers and other stakeholders with a 
visual indicator of aquifer vulnerability. Most commonly the assessments have been targeted 
towards dissolved contaminants such as nitrate, chloride, and pesticides. The lack of microbial risk 
assessment can be attributed to the complex biological and physiochemical characteristics of 
pathogens that convolute otherwise typical fate and transport mechanisms. 

Models that currently exist to evaluate aquifer vulnerability use overlay weight of evidence 
(WoE) methods to determine the relative vulnerability of a region. They incorporate certain factors 
that are determined to be the most influential on the aquifer’s susceptibility. One prominent model 
of this type is DRASTIC, and it considers seven factors in its weights of evidence formula: Depth 
to water (D), net Recharge (R), Aquifer media (A), Soils (S), Topography (T), Impact of vadose 
zone (I), and hydraulic Conductivity (C) [Aller et al. 1987]. DRASTIC was developed with the 
intention of assessing aquifer vulnerability to pesticides, which have different fate and transport 
processes than microbes. Bacteria are affected by processes such as sorption, advection, dispersion, 
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and diffusion that are typical of dissolved contaminants, but they have unique characteristics as 
colloidal particles and living organisms that influence their transport and fate in the subsurface. 
The need to survive is a unique characteristic of this type of contaminant. If bacteria are no longer 
living, they no longer have the potential of harming their receptors. Bacteria can also move 
themselves using their flagella towards areas with higher food supply (chemotaxis), another unique 
characteristic [Corapcioglu and Haridas, 1984]. This project aims to make a similar WoE model 
that has been altered to include vulnerability factors that specifically affect bacterial fate and 
transport, as there are very few models that do this currently. One example of a vulnerability map 
that was created for bacterial contaminants was made by Dixon and Uddameri [2016], which 
combined intrinsic vulnerability (DRASTIC methods) with specific vulnerability (factors such as 
soil moisture and organic matter).  

Three mechanisms influence bacterial fate and transport: attachment to aquifer medium, 
bacterial survival, and bacterial movement through pores. Each of these mechanisms are influenced 
by other subsurface processes. Attachment of particles to the subsurface material, bacterial or 
otherwise, will be affected by pH and the soil material [Corapcioglu and Haridas, 1984; Bradford 
et al., 2013]. Bacterial survival will depend on the temperature of the aquifer, the amount of organic 
matter present, the amount of moisture in the soil, and the pH of the soil [Corapcioglu and Haridas, 
1984; Crane and Moore, 1984; Sjogren, 1994; Conner and Kotrola, 1995; Wang et al., 2004; 
Tufenkji, 2007; Bradford et al., 2013]. The movement of bacteria into the soil and through the 
subsurface is affected by the amount of water in the soil, the amount of precipitation that occurs in 
the area, the depth to the water table, and the hydraulic conductivity of the material that bacteria 
will be moving through to get to the water table [Conboy and Goss, 2000; Curriero et al., 2001; 
and Bradford et al., 2013]. Details and sources regarding the impacts of the above factors are 
discussed in Table 1. Converting these mechanisms into a spatial format and using them in an 
aquifer vulnerability model would allow for the production of an intrinsic aquifer vulnerability 
map, which indicates where groundwater would be vulnerable to bacteria-specific contamination. 

Validation of vulnerability maps is an important but difficult process. The majority of 
vulnerability maps and methodologies are not validated after they are produced [Leal and Castillo, 
2003]. There is also no standardized validation method for aquifer vulnerability models [Neukum 
et al., 2008]. Validation can be attempted by comparing the map to field data for the contaminant 
of concern. Links between existing bacterial data and the map will potentially illustrate the 
effectiveness of the developed map. However, the detectability of pathogens and pathogen 
indicators is more complicated than that of dissolved contaminants, and can be sporadic and non-
representative of overall groundwater conditions. Typically, there is a lack of reporting or 
submitting regular samples, which is necessary for bacterial detection, and the decreased reliability 
of these samples makes the results of monitoring bacteria a less accurate representation of bacterial 
presence [Batterman et al., 2009]. The most reliable data comes from repeated and temporal 
sampling, which can be rare. Another option would be to test the developed model by comparing 
each map with the disease outbreak distributions from that year. 

The protection of drinking water wells is important because groundwater contamination 
can lead to severe health risks [Hrudey et al., 2003]. Intrinsic vulnerability maps can aid in 
determining where aquifers are susceptible to contamination and help decision makers decide 
where drinking water wells should be constructed. The primary goal of this project is to fill a gap 
in vulnerability mapping methodology by creating a model that can determine where there are 
shallow aquifers that are intrinsically vulnerable to bacterial contamination. Key vulnerability 
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factors specific to microbial sources and subsurface transport mechanisms were identified. Factors 
that were appropriate, and had available data, were selected and converted into ArcGIS format. 
Climatic data were also included to generate maps for the growing season and cold season of 2012. 
The final output was an intrinsic bacterial vulnerability map for shallow aquifers in the province 
of Alberta. The suitability of the map was tested by comparing the map with E. coli detection data. 

2.0 Methods  

2.1 Site and Data Description 

2.1.1 Site Description 

The study area was focused on the “white zone” of the province of Alberta, which 
comprises the settled portions of the province where the majority of the population lives (northern, 
southern, central, foothills, and Peace River regions), and coincides with the agricultural region of 
the province where appropriate soil property information is available. Regions are highlighted in 
Figure 1, with labels indicating the name each region will be referred to throughout this document. 

 
Figure 1. Names assigned to each region covered by the vulnerability map. 

Peace River 
Region 

North Region 
(Edmonton) 

Central 
Region 

(Calgary) 

South Region 
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2.1.2 Data Description 

The selected vulnerability factors were: soil moisture, pH, soil texture, organic matter, 
depth to water table and hydraulic conditions, and precipitation. Information and sources for the 
determination of these factors are provided in Table 1. Soil temperature was excluded from this list 
because of the complexities that came from determining temperature at depth, and the low 
likelihood of large subsurface temperature variability across Alberta. Although temperature 
influences bacterial survival, the temperature of groundwater is likely not significantly influenced 
by short-term air temperature fluctuations. There are other temperature-related factors, such as 
climate and weather, that are more influential on bacteria than the actual soil temperature. Instead, 
this study focussed on the general “hot” and “cold” seasonal patterns. The literature suggests that 
bacteria survival is higher in warmer temperatures and that there are more outbreaks in the summer 
[Goss et al., 1998; Charron et al., 2005; Valeo et al., 2016]. In the cold season – defined by Alberta 
Agriculture and Forestry (AAF) – temperatures freeze the ground and prevent infiltration. The cold 
season and growing season are defined by the AAF as follows: the cold season is October 1 to 
March 31 and the growing season is April 1 to September 30.  

The ionic strength of groundwater was determined to be an important factor as well, but 
could not be included because of the lack of available data. Topography was also considered, but 
its overall influence on the transport and fate of bacteria has been observed to be minimal [Adesiyun 
et al., 1983; Cui et al., 2016]. 

The temporal (precipitation and soil moisture) data collected were for the year 2012, which 
was selected because it is the most recent year before the last major flood in the province. Flood 
impacts on water quality have been studied and have been found to be important [Wade et al., 
2004]. However, this was not the focus of this study.  

To simplify researching the impact of different factors on bacterial vulnerability, the type 
of bacteria was limited to E. coli (EC) because it is a very commonly used and tractable indicator 
of fecal contamination, which is the main parameter analyzed when considering bacterial 
groundwater contamination [Invik, 2015]. 

The data for organic matter, soil texture, and pH layers were obtained from the Alberta 
Detailed Soils geodatabase provided by Agriculture and Agri-Food Canada (AAFC), which was 
provided in a GIS polygon shapefile. The remaining data were obtained in an Excel format from 
various sources. The depth to the water table/hydraulic conductivity layer was obtained by using 
the geological information, such as lithology and the corresponding depths, from well reports in 
the Alberta Water Well Information Database (AWWID). The precipitation and soil moisture data 
were obtained from the Alberta Climate Information Service (ACIS) through Alberta Agriculture 
and Forestry (AAF). 
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Table 1. List of all the key vulnerability factors, their effects, and cited sources. 
Factor Condition Effect Source 
Soil Moisture Low • Low moisture increases filtration Corapcioglu and Haridas 

[1984] 
High • More moisture led to more total coliforms Mellor and Cey [2015] 

Depth to 
Water Table 

Shallow • Shallow aquifers are more vulnerable Pandey et al. [2014], Cui 
et al. [2016] 

Deep • Deeper wells have longer travel times for 
bacteria and lower chance of contamination due 
to die-off 

Conboy and Goss [2000] 

pH Low • Bacteria are negatively charged, so low pH 
would mean more adsorption 

 
• Lower survival rate of bacteria in lower pH 

Corapcioglu and Haridas 
[1984], Bradford et al. 
[2013]  
Sjogren [1994] 

Neutral • Quartz has a negative surface charge, metal 
oxides have a positive charge, bacteria attracted 
to positive charges 

Ginn et al. [2002] 

High • Less microbe attachment to suspended particles 
• Can mobilize biocolloids in saturated systems  
• Biocolloid mobilization is independent of pH 
 
• Lower collision efficiency and less attachment 

Guber et al. [2009] 
DeNovio et al. [2004] 
Grolimund and Borkovec 
[1999]  
Schijven et al. [2006] 

Soil Properties 
 

Generally • Particle size distribution and clay content 
influence microbial migration 

• Found no significant difference in transport rates 
between clay or sand soils in saturated or 
unsaturated conditions 

Butler et al. [1954] 
 

Safadoust et al. [2011] 

Clay • Macropores can form, especially in shrinking 
clay, but otherwise good filtration 

• Clay can act as protection for bacteria from UV 
radiation and antibiotics 

• Bacteria survived longer with at least 25% clay 
in the soil 

Safadoust et al. [2011]  
 

Marshall [1980] 
 

Burton et al., [1987] 

Sand • Bacteria + sand have optimum retention in 
saturated conditions. Weathered sand soil had 
less transport than weathered clay 

• Sand might have a higher inactivation of E.coli 
than areas without sand 

• Sandy soil has been found to provide some 
protection from contamination 

Invik [2015] 
 
 

John and Rose [2005] 
 

Conboy and Goss [2000] 

Organic 
Matter  

 • Bacteria that can grow outside of organisms can 
grow on organic matter, which can also be a 
source of nutrients which affects survival 

• Organic matter also competes for adsorption 
space 

 
• The above found for viruses as well 
• High concentrations of available carbon can 

hinder irreversible sorption of bacteria 

Corapcioglu and Haridas 
[1984] 

 
Bradford et al. [2013], 
Guber et al. [2004], 
Schijven et al. [2006] 
Sobsey et al. [1980] 
Marshall et al. [1971] 

Seasonal 
Variations 

Generally • Seasonal changes occur in a triangular wave 
• August and September have higher risk of E. 

coli contamination 

Schijven et al. [2006] 
Invik [2015] 
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Growing 
Season 

• More exfiltration Schijven et al. [2006] 

Cold Season • Colder, higher water table (better for pathogens) 
• High water table is more vulnerable 

Schijven et al. [2006] 
Elçi [2012] 

Hydraulic 
Conditions 

Generally • Microbe transport is heavily influenced by 
aquifer flow 

• Flow of groundwater has been observed to be an 
important consideration for well susceptibility 

Unc and Goss [2004] 
 

Conboy and Goss [2000] 

Low flow • Better retention esp. with small grain size 
• No flow can act as storage for biocolloids 

Bradford et al. [2006] 
Keller and Auset [2007] 

High flow • Larger grain size leads to higher hydraulic 
conductivity  “velocity enhancement” 

• Macroporosity increases flow rate which 
increases pathogen transport 

• High velocity had higher output concentration 
even with small grain size, because it decreases 
straining 

• “Velocity enhancement” decreases with distance 

Ginn et al. [2002] 
 

Guber et al. [2004] 
 

Bradford et al. [2006] 
 

 
Keller and Auset [2007] 

Precipitation Low • Low precipitation would lead to dry conditions, 
increasing the number of air-water interfaces, 
there would be more filtration 

Corapcioglu and Haridas 
[1984]  

Intermittent • Moving of air-water interfaces increases 
mobilization 

DeNovio et al. [2004]  
 

High  • More rain  more pathogens in groundwater, 
increase turbidity and ionic strength 

• Heavy rainfall will lead to biocolloids reaching 
the water table fast 

Crane and Moore [1983] 
 
Bradford et al. [2013], 
Curriero et al. [2001],  
Cey et al. [2009] 
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2.1.3 GIS Methods 

Producing a vulnerability map requires selecting important factors and creating a layer for 
each one based on the influence it has on aquifer vulnerability. For example, data for pH can be 
represented spatially by using corresponding coordinate data and importing into GIS. One layer of 
information can then be produced and re-interpreted to reflect the impact different pH levels can 
have on bacterial survival and movement. Vulnerability indexes (VIs) are ranges of values specific 
to each factor that represent the relative influence that factor has on the overall aquifer 
vulnerability. VIs were selected based on information from literature, data distributions, and 
existing regulations. Using pH as an example, a low VI value would be used for pH conditions that 
are to harmful bacteria because they would not be able to survive (1 in this case). A high VI value 
would be used for pH conditions that are optimal for surviving (4 in this case). The data were 
reclassified into a new data layer that represents areas of high and low vulnerability based on these 
VIs. Each selected factor was converted into a GIS format and given VIs (i.e. ratings) based on 
their impact on bacterial fate and transport as described above. A vulnerability layer was created 
for each factor, all of which were overlaid on top of each other to produce an intrinsic bacterial 
vulnerability map for shallow aquifers in the Province of Alberta. An example of the layering 
system of index methods is shown in Figure 2. 

 
Figure 2. An example of GIS layering for determining aquifer vulnerability using index methods. 
Retrieved from https://pubs.usgs.gov/circ/2002/circ1224/html/new.htm [Focazio et al., 1984]. 

https://pubs.usgs.gov/circ/2002/circ1224/html/new.htm
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Data that were not already in GIS format were loaded into GIS with their corresponding 
spatial information and turned into a point shapefile. This shapefile was converted into a raster 
format using kriging. The result of the kriging was then reclassified into the VIs that were defined, 
and this was clipped to the shapefile of Alberta. Data that were obtained already in GIS format 
were also reclassified into the determined VIs in raster format.  

The projection selected for the map was NAD 1983 10TM AEP Forest. This is a common 
projection used for the entire province of Alberta. Data that were imported from Excel that didn’t 
have a coordinate system were set to NAD 1983 (2011). The data were imported into a file 
geodatabase set to the 10TM AEP Forest projection. The final output of the map was in a raster 
format. The raster resolution selected was 100m by 100m, as recommended by Elçi [2012] for 
groundwater vulnerability assessment. 

2.2 Climatic Data 

2.2.1 Precipitation 

The size of individual precipitation events is important when considering EC contamination 
of aquifers, as large rainfall events are connected to increased disease outbreaks [Curriero et al., 
2001]. The average event size and the variance of the event size together at one weather station 
both represent the potential for that location to have large precipitation events. To demonstrate the 
effect of precipitation event size in a spatial environment, a new precipitation variable was 
developed. The variable took the average amount of precipitation per event into account (total 
precipitation per season/number of events in that season), as well as the variance of the precipitation 
on days when there was a rain event. The variable (Pv) was calculated separately for each weather 
station for both the cold season and the growing season by multiplying the mm/event (Pe) and the 
variance of all the events (Ve). The formula for Pv (mm3/event) is:  

𝑃𝑃𝑣𝑣 = 𝑃𝑃𝑒𝑒×𝑉𝑉𝑒𝑒    (Equation 1) 
where Pe represents the average amount of precipitation per event in that season (mm/event), and 
Ve represents the variance in event size (mm2). The final units of Pv are mm3/event. The values for 
all weather stations in both seasons are available in Appendix A in the “Precipitation” sheet. 

Precipitation VI values were selected using literature, combined with patterns observed 
within the data (Table 2). Disease outbreaks caused by waterborne pathogens tend to be preceded 
by precipitation events that are in the 80th and 90th percentile in size [Curriero et al., 2001]. This 
information was used to determine the ranges of the Pv that would lead to a higher aquifer 
vulnerability. For cold and growing seasons separately, the 80th and 90th percentile values of Pe and 
Ve for that season were calculated. These values were multiplied together (respectively) using 
Equation 1 and represented the 80th and 90th percentile Pv values for both seasons, and were used 
as VI values. The lower bounding range limits were determined by using the median values of the 
Pv data for both seasons. The median value coincided with the peak of the density graphs for either 
season, which represented the most common event size and not extreme events. The lower 
vulnerability indexes represent data from the cold season, and the higher indexes represent data 
from the growing season, but all indexes can influence data from either season. 
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Table 2. List of vulnerability index ranges for the calculated precipitation variable (units 
mm3/event) for both the cold and the growing season, and their given vulnerability indexes.  

Precipitation Variable (mm3/event) Vulnerability Index 
0 – 5.27 1 

5.27 – 15.70 2 
15.70 – 29.53 3 
29.53 – 186.18 4 
186.18 – 364.01 5 
364.01 – 492.64 6 

492.64+ 7 

2.2.2 Soil Moisture 

Soil moisture data were obtained as volumetric moisture content (VMC) measured from 
locations across the province. The VMC is calculated using the Versatile Soil Moisture model, and 
provides an estimate of the soil moisture contained in the soil profile from groundwater surface to 
a specific depth for both spring wheat (mm/120cm) and pasture (mm/60cm). The land use (wheat 
or pasture) selected for the VMC model depended on the dominant land use at the time of 
measurement. VMC was not directly measured, but calculated from both land use measurement 
types and estimations made from field data [Hayashi et al., 2012]. The soil moisture data provided 
by AAF included spatial point data for each township within the “white zone” for every day of 
2012. The seasonal average was calculated for each data point, so a single layer could be produced 
in GIS. After the point data for each season were imported into ArcGIS, a layer was created by 
kriging the point data. 

The soil moisture VIs were determined using the quartiles that came from using the 
volumetric moisture content (VMC) data for both the cold season and the growing season (Table 
3), with increasing soil moisture corresponding to an increase in aquifer vulnerability.  
Table 3. List of determined volumetric moisture content (VMC) ranges, which have been 
converted to a percentage, for both the cold and the growing season, and their given vulnerability 
indexes. 

VMC Range (%) Vulnerability Index 
11.28 – 13.52 1 
13.52 – 15.22 2 
15.22 – 17.67 3 
17.67 – 22.96 4 

2.3 Geologic Data 

2.3.1 Hydraulic Resistance 

One model that has been developed for the purposes of understanding aquifer vulnerability 
is the Aquifer Vulnerability Index (AVI) method, which uses the thickness of each geological layer 
above the water table and the corresponding hydraulic conductivity to calculate hydraulic 
resistance [Van Stempvoort et al., 1993]. Hydraulic resistance represents an estimate of protection 
that geology overlying the water table provides for aquifers. Hydraulic resistance was the only 
value used in the AVI method to assess groundwater vulnerability [Van Stempvoort et al., 1993; 
Simpson et al., 2014]. In this study, it will be one of many layers. To account for depth to the water 
table and hydraulic conductivity, well log data from the Alberta Water Well Information Database 
(AWWID) were used in order to analyze the subsurface geologic properties, as well as the depth 
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to the shallowest aquifer. These data were combined to calculate a hydraulic resistance value (s) 
for each well with the following formula: 

𝑅𝑅 =  ∑(𝑑𝑑 𝐾𝐾� )     (Equation 2) 

where d (m) is the thickness of each geologic layer above the water table, and K (m/s) is the 
hydraulic conductivity assigned to that geologic material.  

Hydraulic resistance was calculated for each groundwater well that was in a shallow aquifer 
in the dataset. Shallow aquifers were the focus of this study because they are more vulnerable, and 
because bacteria have a finite lifespan. Knowing the water level in the well was critical for the 
hydraulic resistance calculation because in shallow aquifers, it indicated where the water table was, 
and therefore the total depth over which hydraulic resistance was calculated. The well log data did 
not include water table information, so the well screen mid-point or static water level was used 
instead. The shallower depth was used if the well report had both of these values, but in most cases 
the only available information was the static water level. Each analyzed well needed to be shallow 
or unconfined to ensure that the static water level was representative of the top of the water table. 
A 30m limit was established as the maximum depth for a shallow aquifer, and wells that had a 
water level deeper than 30m were removed. The factor layer, and therefore the vulnerability map, 
will only be applicable to shallow aquifers. 

Each well report contained layered geological data. The hydraulic resistance was calculated 
for each layer above the water table and added together to determine total hydraulic resistance. 
Well reports that had incomplete or non-descriptive data were removed from the dataset. A 
hydraulic conductivity was assigned to every material type listed in the well logs. Hydraulic 
conductivities were determined by taking the midpoint of existing hydraulic conductivity ranges 
for specific materials [Clapp and Hornberger 1978; Freeze and Cherry, 1979; Rehm et al., 1980; 
Lee et al., 2001]. After the calculation for each well, the data were imported into ArcGIS and 
interpolated using kriging to make a raster layer that would be used in further analysis. More details 
regarding the removal of wells for quality assurance, and the assigning of hydraulic conductivity 
values are provided in Appendix B.  

The VI ranges of hydraulic resistance were determined by using a combination of natural 
bins in the data, the lower four deciles of the data, and a regulation for wellhead protection zones 
(Table 4) [Moore, 1993]. Resistance was calculated with units of seconds, and was log-transformed 
prior to classification. Larger values of hydraulic resistance represented more aquifer protection. 
The upper VI range was the most important to define because any resistance value within that range 
would indicate that bacteria would not survive. The maximum value was determined by using the 
maximum time-related capture zone determined by a study conducted in the United States for the 
Environmental Protection Agency. The 400-day capture zone represents the steady state zone of 
influence if a well is being pumped at 650 gallons per minute. The study also recommends a 200-
day time-of-transport limit for protection against pathogen contamination, which is considering the 
lower bacterial survival rate in tortuous conditions [Moore, 1993]. However, the 400-day limit was 
used instead for the purposes of remaining conservative. The lower limits were defined using 
natural bins that occurred within the data. After classifying the upper limit, the remaining data were 
comprised of the lower four deciles, which were then used to create the remaining VIs. 
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Table 4. List of log(resistance) ranges for the dataset obtained from the Alberta Water Well 
Information Database (AWWID), and the vulnerability index value given to each range. 

Time (days) Corresponding resistance value (log10[seconds]) Vulnerability Index 
Minimum – 0.25 -0.52 – 4.33 4 

0.25 – 10.15 4.33 – 5.94 3 
10.15 – 400  5.94 – 7.54 2 

400+ 7.54+ 1 

2.3.2 Soil Texture 

Soil texture is important because it can affect bacterial attachment and movement in the 
subsurface. For information about how soil texture data was incorporated into GIS, see Appendix 
B. For the soil texture vulnerability factor classification, similar classifications used in other 
vulnerability models were examined [Aller et al., 1987; Dixon and Uddameri, 2016].  

Another category was created additionally to consider the influence of macropores. 
Macropores are cavities in the soil that can become preferential flow pathways that have the 
potential to direct contaminated water to aquifers at a faster rate [Cey et al. 2009]. The presence of 
macropores would therefore increase the aquifer vulnerability. Clay-rich soil can form macropores 
as the clay expands and shrinks with changing moisture conditions. The VI values were changed 
from Dixon and Uddameri [2016] to increase the risk of clay. More changes were made to sand 
index values which were lowered because of cases where sand in soil has been found to increase 
protection from contamination or inactivate/immobilize bacteria [Conboy and Goss 2000; John 
and Rose 2005; Invik 2015]. Values for soil texture identifiers other than sand and clay were 
determined from previous DRASTIC values from Aller et al., [1987] and altered based on 
increasing/decreasing presence of sand and clay. The values determined from the alternative 
impacts of sand and clay were found to have no correlation with the EC detection maps, so the 
Dixon and Uddameri [2016] values were used instead (Table 5).  
Table 5. List of soil texture identifiers and corresponding vulnerability indexes from Dixon and 
Uddameri [2016] along with an alternative vulnerability index developed based on potential 
interactions of EC with sand, and macropores in clay.  

Soil Texture Dixon and Uddameri [2016] Alternative Vulnerability Index 
Sandy Loam 8 1 
Loamy Sand 9 1 
Sand 10 2 
Silt Loam 3 3 
Sandy Clay Loam 4 4 
Silty Clay Loam 2 5 
Loam 5 5 
Clay Loam 2 6 
Silty Clay 1 6 
Clay 1 7 
NA NoData NoData 
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2.4 Geochemical Data 

2.4.1 Organic Matter 

Dixon and Uddameri [2016] also used soil organic matter percent (OM%) values as a layer 
in their vulnerability map. Organic matter presence is beneficial to bacteria; increasing OM% 
increases vulnerability because bacteria are more likely to survive in these conditions [Corapcioglu 
and Haridas, 1984]. The ranges selected by Dixon and Uddameri [2016] combined with the four 
quantiles from the data obtained were used to set the VI ranges (Table 6).  
Table 6. List of organic matter content, and the vulnerability index values assigned. 

Organic Matter (%) Vulnerability Index 
<1.25 1 
1.25 – 2.99  2 
3.00 – 3.99 3 
4.00 – 54.5 4 

2.4.2 pH 

The pH conditions of the aquifer will affect bacterial mobility and survival, because their 
ability to grow in population size and survive is highly impacted by pH. The optimum range for 
EC growth is at a pH of 7 [Madigan et al., 2012], so a range of pH 6.9 – 7.1 was selected as the 
most vulnerable range (Table 7). Another range of pH for optimum survival was observed to be 
6.0 – 8.3 based on high survival time and low die-off rates [Cuthbert et al., 1955; Sjogren, 1994]. 
Two ranges of 6.0 – 6.9 and 7.1 – 8.3 were selected for the second highest vulnerability. The lower 
range (0 – 6.0) was determined to be most hostile for bacteria, and the upper range (8.3 – 14.0) was 
determined to be moderate for bacteria. The higher extreme pH values were determined to be more 
vulnerable than the lower extreme because of more observed EC growth at high-neutral pH 
[Rudolfs and Ragotzkie, 1950; Conner and Kotrola, 1995]. 
Table 7. List of determined pH ranges and the given vulnerability indexes. 

pH Range Effect Vulnerability Index 
0 – 5.5 Dangerous for bacteria 1 

5.5 – 6.9 Safe for bacteria 3 
6.9 – 7.1 Optimal for bacteria 4 
7.1 – 8.3 Safe for bacteria 3 
8.3 – 14.0 Moderate for bacteria  2 

2.5 Comparison to Microbial Detection Data 

Once all the VIs were assigned and the layers were created, the VIs were normalized to 
give each factor equal weight. The model was compared to provincial EC detection data to 
determine which factor had a stronger correlation to EC presence in the subsurface. If a factor had 
a strong correlation, it would receive a higher weight value in the final model. The EC detection 
data used were provided by an Alberta Health Services program called Provincial Laboratory for 
Public Health (ProvLab). ProvLab receives groundwater samples from Alberta well owners for 
bacterial testing and monitoring purposes. The results are given back to the owners as either a 
detection of EC (1) or a non-detection (0). Total coliform (TC) results were provided as well, but 
were not used in this study. All of the samples were submitted by individuals, so there was no 
control over where and when the sample was taken, or how often the sampling occurred for one 
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location. The ProvLab dataset was used for the year 2012, and included EC testing on a total of 
8610 samples, of which 155 tested positive for the presence of EC.  

Detection and non-detection point data for the year 2012 were used for the comparison, 
initially in an aggregated format. By comparing each layer to detections of EC for the year 2012, a 
weight could be assigned based on the significance of the correlation (See Appendix C, Figure C4 
and Figure C5 for aggregated maps of the detection data). However, the relationships were 
unexpectedly negative after having done an ordinary least squares test for aggregated EC detection 
compared to each layer’s vulnerability values, so another comparison was done for point detection 
data. Kruskal-Wallis tests were used to compare the vulnerability values of EC detection points 
and non-detect points. Since the data are ordinal (i.e. a ranking), a non-parametric test was the most 
appropriate.  

The value of vulnerability at each point of EC detection and non-detection was extracted in 
each separate factor layer using the Extract by Points tool in GIS. The outcome of the extraction 
was the vulnerability value at each point of detection, and each point of non-detection. The 
vulnerability values of the points were compared for each factor using a Kruskal-Wallis test to see 
if the factor had a higher vulnerability value at the points of detection. If there was a strong EC 
detection and high vulnerability correlation, the factor would be given a large weighting in the final 
map. Based on the results, further factor adjustment was not warranted. A similar Kruskal-Wallis 
test was then conducted for the overall vulnerability maps to observe whether the final result had 
accurate predictive properties for determining where bacterial contamination would occur. 

3.0 Results and Discussion 

An aquifer vulnerability map was created by determining which factors affect bacterial fate 
and transport, establishing the degree of the effect caused by each one, and combining them in an 
ArcGIS framework. Six factors were selected based on their influence on bacteria and data 
availability (Table 8). The layers produced for each factor had their own spatial distributions and 
were combined to produce two final vulnerability maps, one for the growing season (Figure 3) and 
one for the cold season (Figure 4). 

3.1 Aquifer Vulnerability Maps 

The results from the final vulnerability maps gave an indication of where shallow aquifers 
could be intrinsically vulnerable to bacterial contamination. The overall vulnerability maps had 
similar patterns for both the growing season (Figure 3) and the cold season (Figure 4). The foothills 
region of Alberta had the highest vulnerability, while there was lower vulnerability in the central 
and southern regions (Figure 1). The higher vulnerability in the foothills region is likely driven by 
the high vulnerability values of both soil moisture and soil organic matter in that region. The ranges 
of vulnerability for each map are slightly different, with the cold season having the lowest value of 
1.49, and the growing season having the highest value of 5.26. The growing season had more 
vulnerable areas than the cold season, although the spatial distribution of high vulnerability regions 
was similar for both maps.  

The growing season had an overall higher vulnerability than the cold season, which is 
driven by the higher vulnerability values of precipitation in the growing season (Figure 5b). The 
literature states that more disease outbreaks and higher densities EC detections occur in the summer 
[Goss et al., 1998; Charron et al., 2005; Valeo et al., 2016]. Severe weather conditions have been 
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noted as a catalyst for gastrointestinal disease outbreaks, and also occur more frequently in summer 
in temperate regions such as Alberta [Curriero et al. 2001; Charron et al., 2005]. 

3.2 Notable Layers 

The precipitation (Pv), soil moisture, and organic matter layers were important to focus on 
because they are unique layers that are not used in vulnerability maps for dissolved contaminants. 
Each of these three layers are naturally linked to each other, and gave some insight into what might 
be causing the patterns visible in the final vulnerability maps. The remaining layers are available 
in Appendix C (Figure C1 - C3). 

3.2.1 Precipitation 

Patterns for the precipitation layers were very different between the cold season (Figure 5a) 
and the growing season (Figure 5b). The cold season vulnerability was highest in the mountains 
and foothills area, whereas the growing season had the highest vulnerability in the Peace River 
region. It is important to note that the highest vulnerability in the cold season was equivalent to the 
lowest vulnerability index in the growing season. The data values in the cold season only covered 
the lower four vulnerability indexes, and the data values in the growing season only covered the 
higher four.  

The growing season precipitation layer had an interesting spatial pattern (Figure 5b). A 
large portion of the Peace River region displayed a high vulnerability. The high values in this area 
indicate that there was a higher average precipitation event size, and a larger variance in the event 
sizes, meaning that there was potential for very large events. The convective weather that occurs 
during a period of the growing season from May to September is what causes these large events. 
The summer heat results in convective storms that primarily focus on a region that extends from 
Peace River to Rocky Mountain House [Vickers et al., 2001]. Summer storms have the potential to 
occur frequently, and can be large events, which would increase the vulnerability of this area. The 
potential for gastrointestinal disease outbreaks increases significantly after a rain event that exceeds 
the 80th and 90th percentile [Curriero et al., 2001], therefore the large precipitation events in the 
Peace River region of Alberta present concerns for the vulnerability of the aquifers there. This high 
vulnerability region does not align with the agricultural region and thus is not well represented in 
the final map, so it is important to make a separate note of this area as a potential region of higher 
vulnerability. 

The cold season precipitation layer demonstrated a separate distribution of vulnerability, 
with a lower overall vulnerability than in the growing season (Figure 5a). Most of the precipitation 
was focussed in the mountain ranges, which is due to the increased snowfall in the mountains 
during the winter. Snow precipitation is not likely to increase the vulnerability of shallow aquifers 
because of the cold temperature, and the frozen ground decreasing infiltration. The impact of snow 
on EC can be lethal due to the damage caused by ice crystals during freezing [Parker et al., 2000]. 
However, if bacteria already exist in the groundwater, the snow could act as an insulator, protecting 
the bacteria from harsh winter weather. In the spring the snow could cause an increase in 
vulnerability because of the runoff and rapid infiltration during snowmelt. Regardless, the impact 
of snow on EC survival is harmful, especially in freeze-thaw chinook conditions that frequently 
occur in Alberta.  
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3.2.2 Soil Moisture 

Soil moisture had similar distributions for both seasons, but there was more overall soil 
moisture in the growing season (Figure 6b). Both seasons had the same vulnerability range of 1 – 
4 (before normalizing), and the highest soil moisture regions occurred in the mountains and 
foothills for both layers. The soil moisture vulnerability in the cold season is overall much lower 
than in the growing season, which is a result of the ground freezing in the winter (Figure 6a). 

Agriculture and Agri-Food Canada [2005] determined that the dominant soil type which is 
in the high moisture area is Gray Luvisols (Appendix C Figure C6). These soils have a LFH horizon 
(Litter-Fermented-Humic) that responds quite rapidly to precipitation, increasing soil moisture 
[Howitt and Pawluk, 1985]. The observed pattern of soil moisture could therefore be a result of the 
soil type (and resulting soil properties) that exists in Alberta. 

3.2.3 Organic Matter 

The organic matter layer had a large portion with high organic matter percent in the north 
and foothills regions in the province (Figure 7). The central and south regions of the province had 
less organic matter, and therefore lower vulnerability.  

Presence of organic matter within the soil is strongly related to the soil type, which is 
closely related to ecozones. Both the soil moisture and soil organic matter layers are influenced by 
climatic and environmental conditions that cause the different ecozones. According to a map 
produced by Agriculture and Agri-Food Canada, the main ecozones in Alberta are the Prairies, the 
Boreal Plains, the Taiga Plains, and the Montane Cordillera (Appendix C, Figure C7). Comparing 
the ecozones to the soil moisture and organic matter layers reveals that the Montane Cordillera and 
the Boreal Plains are the primary areas where there is high organic matter and high soil moisture. 
The Prairie ecozone corresponds reasonably well with the regions of lower organic matter (Figure 
7). The conditions within each ecozone influence and are influenced by the amount of organic 
matter, soil moisture, and type of climate in the area. These factors are closely intertwined, and 
affect each other [Schultz, 2005]. 

3.3 Statistical Comparison to EC Detection 

Extracted vulnerability values from each factor layer were compared to EC detection and 
non-detection point data using a Kruskal-Wallis statistical test (Table 9). The aim was to test the 
relationship between the vulnerability factor values and the distribution of groundwater EC 
detections and non-detections across the province in the year 2012. The same process was repeated 
for the final maps, comparing the final vulnerability values of the locations with EC detection and 
non-detection (Table 10).  

The Kruskal-Wallis tests only showed significant results (p < 0.05) for the cold season soil 
moisture, growing season precipitation, and growing season overall. However, only the cold season 
soil moisture results had a significantly larger vulnerability for the detections (χ2 = 9.4637, df = 3, 
p-value = 0.02372). The growing season precipitation layer and overall vulnerability map for the 
growing season had significantly larger vulnerabilities for the non-detections (precipitation: χ2 = 
9.6345, df = 3, p-value = 0.02194; final map: χ2 = 57.3914, df = 39, p-value = 0.02896). Other 
results did not display any statistically significant relationships. 

The only significantly larger results for EC detections were for the cold season soil moisture 
layer, which suggests that the locations of detections of EC were accurately predicted by the soil 
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moisture vulnerability values. The other significant result was for the growing season precipitation 
layer, but the non-detection had the larger vulnerability, the opposite of what was expected. A 
larger vulnerability at points of non-detection suggests that large rainfall events decrease the 
intrinsic vulnerability. It is known that rainfall events increase the risk of gastrointestinal disease 
[Curriero et al., 2001], so it is unlikely that regions with more rainfall are less vulnerable. 

A similar phenomenon of high vulnerability at non-detect points was also observed in the 
final map for the growing season. Regions with non-detects of EC had a significantly higher 
vulnerability value than the locations with detections. The other factors did not have statistically 
significant relationships, although cold season precipitation had a p-value of ~0.06, approaching 
significance for a larger vulnerability for EC detection. The stronger statistical relationships 
observed in the cold season present the idea that the cold season is more predictable, or perhaps 
there is a factor missing in the growing season that does not influence the cold season. However, 
considering the overwhelming lack of significant relationships, and unexpected negative 
relationships, there is likely a lack of reliability in detection measurements. 

3.4 Sources of Error 

The EC detection data did not correlate well with the map vulnerability, but this could be 
attributed to several things. Bacterial detection data are not inherently reliable due to the common 
lack of appropriately frequent sampling rates [Batterman et al., 2009]. The samples tested by 
ProvLab are primarily obtained from individuals who collect and send samples from their own 
private water supply well for monitoring purposes. Some individuals for the year 2012 took regular 
samples in different months, while others only took samples once that year. Other possible reasons 
for the poor correlation could be: the potential lack of a contaminant source at a sampling location; 
the distribution of samples, as most of the samples were collected in regions that happened to have 
a high vulnerability.  

Most samples were collected from the foothills and north regions of the province, areas 
with high organic matter and soil moisture. Samples submitted for EC analysis in the ProvLab data 
were generally focussed in regions of high vulnerability, biasing the relationship between aquifer 
vulnerability and EC detections. A more even distribution of samples across the province might 
have made the comparison more representative, including detections and non-detections in regions 
of high and low vulnerability. There was also a large difference in the number of detections and 
non-detections; the number of non-detections was nearly two orders of magnitude larger than the 
number of detections. This caused a significant skew in the data and potentially affected the results. 
Finally, the actual presence of a source of microbial contamination would affect the correlation, 
and could be the main cause of the discrepancy. If there is no EC source near aquifers in regions 
with high vulnerability, then the aquifer will not become contaminated, and there will not be a EC 
detection. A new layer that represents potential sources of contamination could be created by 
acquiring data that shows the locations and magnitudes of various sources (e.g. manure, septic 
systems, wastewater discharge). However, the risk of contaminant presence was not considered in 
this study because the map is intended to represent intrinsic vulnerability. 

The lack of spatially continuous data resulted in gaps in each layer that had to be filled in 
with interpolation, increasing the uncertainty of the results. Most of the data for layers constructed 
with point data were estimated through the kriging process. If this methodology was used in a 
smaller area with more thorough data, it could yield more accurate results. There were disclaimers 
from most sources that were used to collect data stating that their data would not be helpful in large 
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modeling studies. Most of the data were not measured directly, but estimated by experts using data 
that were more easily collectible. A more ideal situation would be having data that have been 
measured directly, more accurately representing the conditions of the subsurface. If better data are 
collected in the future, this map could be recreated using that information. 
3.5 Future Studies 

The goal of the statistical analysis was to determine the degree of influence of each factor 
and to assign a weight to each layer for the final map. The model was originally intended to be a 
weights of evidence (WoE) model, but the mixed statistical results made this impossible without 
arbitrarily assigning weights based on perceived impacts of the different factors. This led to the 
decision to not assign weights and normalize the vulnerability of each layer. One potential method 
of determining weights would be to compare the factor layers to gastrointestinal disease outbreak 
distributions. Outbreak data would provide a different perspective on the impact of EC 
contaminated water on humans and would be an interesting continuation for this research. If any 
future studies determine the degree of influence of the selected factors, those values could be 
applied to this model. 
3.6 Model Testing 

Aquifer vulnerability map validation can be a complicated and convoluted process, 
especially if the map covers a large area. Many factors contribute to the location and detection of 
contaminants, including time lags caused by the travel time of the contaminant, contamination 
source presence, and degree of field and lab work required to collect contaminant detection data 
[Neukum et al., 2008]. Validation usually occurs after the model has been calibrated. However, 
vulnerability maps are rarely, if ever, validated. In this study, a validation was attempted on the 
unweighted map, but this yielded uncertain and unexpected negative results (Table 10). Regardless, 
the attempt to validate the model improves the knowledge of how useful vulnerability maps can 
be. Literature exists that shows some successful model validations after some recalibration, but this 
is not done as often as it needs to be [Leal and Castillo, 2003; Neukum et al., 2008]. At the very 
least, the importance of incorporating risk data (i.e. contaminant source locations) was made 
apparent, and could help improve this map. The map on its own is useful for understanding the 
spatial distribution of influence of different important factors on bacteria. The verification of the 
overall map only indicates its predictive properties, and how useful it might be for decision-makers 
[de Marsily et al., 1992]. 
3.7 Is the Vulnerability Map Useful? 

Ultimately, the map produced in this study could not be verified using EC detection data, 
and therefore could not be used with certainty for decision making purposes. However, this is the 
case with several existing vulnerability maps [Eilers and Buckley, 2002]. Verification of 
vulnerability maps is not often required as they are used as general guides by decision makers as 
an indication of relative vulnerability. These kinds of maps should not be considered hard evidence 
of true vulnerability, but rather a relative vulnerability of that region in comparison with 
surrounding regions. Aquifer vulnerability maps are intended to determine relative intrinsic 
vulnerability, and should be used as guides that are followed up with a site-specific investigation. 
The idea that vulnerability maps are not true representations of exact vulnerability also carries 
through with all kinds of models; as noted in Box and Draper [1987]: “Essentially, all models are 
wrong, but some are useful.” The map developed in this study is useful in the sense that it can be 
used to estimate relative intrinsic vulnerability of shallow aquifers to bacterial contamination in the 
Province of Alberta.  
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Table 8. List of aquifer vulnerability factors and the influence each one would have on bacterial 
fate and transport. 
Category Vulnerability Factor Effect on Bacteria 
Climatic  Precipitation Mobilization (release from manure and 

infiltration) 
Soil Moisture Survival and filtration effects 

Geochemical Organic Matter Attachment and survival 
pH Attachment and survival 

Geologic Hydraulic Resistance  Movement through the subsurface, 
survival, distance to travel in vadose 
zone 

Soil Texture Specifically, clay/silt/sand effects on 
attachment and filtration 

 
Table 9. Results of the Kruskal-Wallis tests comparing EC detection (+) and EC non-detection   
(-) point data using spatially corresponding vulnerability values for all factors (p = 0.05). 

Factor p-value Larger Mean  Larger Median Significant  
+ or - 

  (+ or - EC Detection)  
Growing Season Precipitation 0.022 - - Yes (-) 
Cold Season Soil Moisture 0.024 + Equal Yes (+) 
Cold Season Precipitation 0.062 + + No (+) 
Soil Texture 0.117 - Equal No (-) 
Growing Season Soil Moisture 0.189 - - No (-) 
Hydraulic Resistance 0.476 + Equal No (+) 
pH 0.489 + Equal No (+) 
Organic Matter 0.552 - Equal No (-) 

 

Table 10. Results of the Kruskal-Wallis tests comparing EC detection (+) and non-EC detection 
(-) point data using spatially corresponding vulnerability values for the final vulnerability maps 
(p = 0.05). 

Season p-value Larger Mean  Larger Median Significant  
+ or - 

  (+ or - EC Detection)  
Growing Season Overall 0.029 - - Yes (-) 
Cold Season Overall 0.604 + + No (+) 
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Figure 3. Growing season groundwater bacterial vulnerability map for Alberta, Canada in the 
year 2012. 
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Figure 4. Cold season groundwater bacterial vulnerability map for Alberta, Canada in the year 
2012. 
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Figure 5. The classified and non-normalized layer for the precipitation variable Pv (mm2/event) in the cold season (a) and the growing 
season (b) in Alberta, Canada in the year 2012.  

(a) (b) 
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Figure 6. The classified and non-normalized layer for soil moisture as volumetric moisture content (VMC%) in the cold season (a) 
and the growing season (b) in Alberta, Canada in the year 2012.

(a) (b) 
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Figure 7. The classified and non-normalized layer for percent organic matter for both seasons in 
Alberta, Canada. 
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4.0 Conclusions 

An intrinsic aquifer vulnerability map for bacterial contaminants was developed by 
including climatic, geochemical, and geologic characteristics as vulnerability factors. All of the 
factors were converted to GIS layers and combined to produce an intrinsic vulnerability map for 
the Province of Alberta for the year 2012. 

Climatic temporal factors such as weather events affect bacterial survival and infiltration 
rates, and therefore affect bacterial presence in an aquifer. Climatic factors influence soil conditions 
such as soil moisture and organic matter, which also affect bacteria survival. These factors are not 
commonly used in vulnerability maps, but are important when considering the particular fate and 
transport properties of bacterial contaminants. The inclusion of these factors make this 
vulnerability map unique. 

Although six factors that were thought to be the most relevant for bacterial vulnerability 
were successfully assembled in this study (including soil moisture, hydraulic resistance, pH, soil 
texture, organic matter, and precipitation), only two were found to have a significant relationship 
to bacterial detection. However, more tests need to be done that incorporate contaminant sources 
with the intrinsic vulnerability to further understand the relationship between vulnerability and 
bacterial detection. 

There was a lack of statistically significant relationships when the model was tested, which 
could be due to the unreliable nature of bacterial data, or the presence/absence of a contaminant 
source. The statistical analysis of the final map indicated that the model does not have predictive 
properties, but it could be used to get a basic understanding of intrinsic characteristics and 
vulnerability. 
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Appendix A – Data Values 

For all data used for the creation of GIS layers, please refer to the additional document 
titled “Data for Assessing and Mapping Groundwater Vulnerability to Bacteria in Alberta.xlsx”. 

Sheet names in order: Soil Moisture, pH, Soil Texture, Organic Matter, Hydraulic Resistance, and 
Precipitation. 

Descriptions are as follows: 

Sheet A1. Soil moisture data including spatial coordinates and the seasonal averages of volumetric 
moisture content percentage (VMC%). 

Sheet A2. pH data including object ID of the polygon in the Agriculture and Agri-Food Canada 
shapefile and the corresponding pH assigned to that polygon. 

Sheet A3. Soil texture classification data including object ID of the polygon in the Agriculture and 
Agri-Food Canada shapefile and the corresponding texture type assigned to that polygon. 

Sheet A4. Organic matter percent data including object ID of the polygon in the Agriculture and 
Agri-Food Canada shapefile and the corresponding percentage of organic matter assigned to that 
polygon. 

Sheet A5. Hydraulic resistance data including spatial coordinates and the log transformation of 
the resistance values. 

Sheet A6. Precipitation data including the weather station name, the spatial coordinates, the 
average precipitation per event (Pe), the variance in the event size (Ve), and the calculated 
precipitation variable (Pv). 
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Appendix B – Extended Methodology 

1. ArcGIS Methods 

Soil texture data required additional management before it could be used in ArcGIS. The 
attribute tables needed to be joined with the geochemical and locational data based on the 
“POLY_ID” attribute. First, the SLT shapefile must be joined to the CMP shapefile using the 
“Soil_ID” attribute, then the joined CMP value can be joined to the Alberta Soils shapefile using 
the “POLY_ID” attribute. This shapefile contained data for clay (TCLAY), silt (TSILT), and sand 
(TSAND) percentages, pH (PH2), and organic matter (ORGCARB). The shapefile was converted 
to a raster format using the Polygon to Raster tool (Conversion Tools  To Raster). The desired 
feature was selected and converted to a new raster layer for that feature (e.g. ORGCARB for 
organic matter). For the soil texture raster, the percentages of clay, silt, and sand were extracted to 
Excel and used to determine the soil type with a “Soil Type Calculator” spreadsheet found online 
[Natural Resources Conservation Service, N.D.]. However, this spreadsheet only calculated for 
one manual entry at a time, so the formulas used in the tool were moved to a different spreadsheet 
that would allow for mass calculation. Example of the formula for sand: 
“=IF(AND(I4>=7,I4<27,G4>=28,G4<50,F4<=52),"Loam","")”, where ‘F’ refers to sand, ‘G’ 
refers to silt, and ‘I’ refers to clay. This formula indicates that if the three percentages meet these 
requirements (e.g. sand is < or = 52%), then that data point receives the “Loam” classification, 
otherwise the cell is left blank. This was repeated with the formulas for each soil classification in 
a new column, and the results were then combined into a new column using the 
“CONCATENATE” function. These data were then imported into ArcGIS and joined to the 
Alberta Soils shapefile using the “POLY_ID” attribute. 
Table B1. Formulas used to determine soil classification based on clay, silt, and sand percentages. From 
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167. 

Excel Formula Soil 
Classification 

((silt + 1.5*clay) < 15) Sand 
((silt + 1.5*clay >= 15) && (silt + 2*clay < 30)) Loamy Sand 
((clay >= 7 && clay < 20) && (sand > 52) && ((silt + 2*clay) >= 30) || (clay < 7 && silt < 50 && (silt+2*clay)>=30)) Sandy Loam 
((clay >= 7 && clay < 27) && (silt >= 28 && silt < 50) && (sand <= 52)) Loam 
((silt >= 50 && (clay >= 12 && clay < 27)) || ((silt >= 50 && silt < 80) && clay < 12)) Silt Loam 
(silt >= 80 && clay < 12) Silt 
((clay >= 20 && clay < 35) && (silt < 28) && (sand > 45))  Sandy Clay Loam 
((clay >= 27 && clay < 40) && (sand > 20 && sand <= 45)) Clay Loam 
((clay >= 27 && clay < 40) && (sand  <= 20)) Silty Clay Loam 
(clay >= 35 && sand > 45) Sandy Clay 
(clay >= 40 && silt >= 40) Silty Clay 
(clay >= 40 && sand <= 45 && silt < 40) Clay 

Normalization was done by dividing each layer by the highest vulnerability value in that 
layer. For example, the pH layer had a maximum vulnerability of 4, the entire layer was divided 
by 4 using the raster calculator. Formula: (“ProSoilpHRas” / 4.0000000000). The additional zeros 
were necessary to prevent rounding. 

The normalized layers were added together to create the final map. Final map raster 
calculator formula for the growing season: ("NormGrowSM" * 10.0000000000) + ("NormpH") + 
("NormOM" * 6.0000000000) + ("NormLogR" * 2.0000000000) + ("NormGrowP" * 
4.0000000000) + ("NormSTex" * 2.0000000000). 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
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2. Hydraulic Resistance Extended Methods 

The well report data was received in Microsoft Access format. To get the desired data, the 
necessary values (e.g. core material, depth, location) were related to each other based on well ID 
and well report ID. The data were organized in terms of descending well ID and descending depths 
(recorded in ft, converted to m). The depths and the material attached to each depth (for estimating 
hydraulic conductivity) was used to calculate hydraulic resistance (s). Some wells needed to be 
removed because of a lack of information. 

Shallow aquifers were focussed on for the purposes of simplifying the map. The water table 
depth was limited to 30m, and only new wells were focussed on. The hopes were that this would 
mean that the static water level would be indicative of water table depth.  

Water levels were necessary to determine within each well for the purposes of calculating 
the hydraulic resistance above the water table. If one well reported two water depths, the well 
report was examined to find the listed water depth. If the well report could not be found in the 
AWWID, the first listed depth was removed. In the cases where the well had screen depth 
information, the deeper value between the static water level and the top of the screen was taken. If 
screen depth data were not available, it was assumed that the static water level represented the top 
of the aquifer.  

Layers that had >5m of “Unknown”, “Unreadable”, “Blind”, “See comments”, 
“Predrilled”, “Old Well”, or “Lost Circulation” were removed from the dataset. If listed static 
water level is >30m, well is removed. Removed wells with static water level at zero (or left blank) 
because of the possibility that the water level was not recorded in those cases. If a layer that did 
not have a hydraulic conductivity assigned to it (such as “See Comments” or “Unknown”) was 
above the water level, that well was removed from the dataset. 

The material identifiers for several layers were convoluted (e.g. Sand and Boulders, Sand 
and Clay, etc.). They were sorted into groups, in this example, Sand + (Sand and Boulders) and 
Sand – (Sand and Clay). Some generalizations for hydraulic conductivity selections were made 
(e.g. cap rock was given the hydraulic conductivity of unfractured igneous rock). Fill was 
generalized to be loam. If a layer was named “Formation”, the well log was examined for further 
information, if none was available, the material was assumed to be sandstone. 

There were large ranges of hydraulic conductivities for generic labels of soil/rock types, so 
the midpoint value of the range was used. Bentonite was labelled as a layer in some wells. It is a 
fine-grained clay that is prone to swelling [Sällfors and Öberg-Högsta, 2002], and was assigned 
the conductivity value that was found by Lee et al., [2001]. Coal and bedrock conductivities were 
taken from Rehm et al. [1980], this paper also notes that coal’s conductivity will only be caused 
by fractures. Coal’s hydraulic conductivity ranges from 10-5.02 to 10-5.89 (m/s) with a midpoint at 
5.419 x 10-6 m/s. 

3. Additional Information 

It is important to note that the average soil moisture value that was used to determine the 
vulnerability does not pick up the change in soil moisture from spring to summer, where 
evapotranspiration and evaporation would decrease the soil moisture in the summer from the wet 
snow-melt springs [Howitt and Pawluk, 1985]. 

This method is very similar to DRASTIC and is limited to the accuracy of the data and the 
oversights that were necessary to take to complete the simulation (E.g. generalized polygons and 
missing data from AAFC, interpolated values).  
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4. Missing Information  

• The distribution of manure application and location of irrigation zones were not used in 
this study because they are indicators of risk, and not intrinsic vulnerability. 

• Solar radiation is considered dangerous for bacteria, but was not considered to be a die-off 
factor because most of the processes would be happening underground. 
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Appendix C – Additional Figures 

 

Figure C1. The classified and non-normalized layer for pH for both seasons in Alberta, Canada. 
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Figure C2. The classified and non-normalized layer for hydraulic resistance (in log(m/s)) for 
both seasons in Alberta, Canada.  
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Figure C3. The classified and non-normalized layer for soil texture for both seasons in Alberta, 
Canada.  
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Figure C4. Relative risk map for Alberta for total coliform and EC in the growing season of 
2012. Produced by Jesse Invik with similar methods outlined in Invik [2015]. 
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Figure C5. Relative risk map for Alberta for total coliform and EC in the cold season of 2012. 
Produced by Jesse Invik with similar methods outlined in Invik [2015]. 
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Figure C6. Dominant soil types found within the Province of Alberta. Obtained from 
Agriculture and Agri-Food Canada [2005]. 
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Figure C7. Image of the terrestrial ecozones of Canada, obtained from the National Ecological Framework as a part of Agriculture 
and Agri-Food Canada [2013]. Link: http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html.  

http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html
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