Chapter 1

Introduction

Automatic memory management is a collection of memory management techniques which
free programmers from the chore of keeping track of which areas of memory are in use and
which are available for re-use. The emphasis in this paper is on the automatic aspects
of memory management, namely identifying and reclaiming unused storage rather than on
techniques of memory management such as quick fit [Wein88] and the buddy system [Knut73].
This paper also covers such techniques as cdr-encoding which are concerned with compact
representations of common LISP data structures.

The objective of this paper is to identify techniques suitable for use on a small, single
user, real-memory workstation using a stock CPU (one with no hardware support specifically
tailored for LISP). The assumption is that such workstations have limited amounts of real
memory and no virtual memory capability. These restrictions mean that making effective
use of memory is very desirable. In addition, since such workstations are typically operated
interactively by a single user, long pauses for garbage collection during which the memory
manager identifies and reclaims all unused storage are unacceptable.



Chapter 2

Memory Organization

The basic unit of memory in a LISP system is the node. A node is a number of consecutive
words of memory which must contiguous. The words in the node may contain control
information describing the node itself, pointers to other nodes and they any other kind of
information. A node may be moved relative to other nodes, but words in a node may not
move relative to each other.

All nodes have an associated type. The type of a node determines its size and determines
which words in the node are pointers to other nodes and which are not. Type information
is associated with nodes in one of three ways:

¢ Type information may be encoded as a bit field associated with every node [Betz86]
or every word of memory [Moon84]. Since the average size of LISP nodes is between
10 and 20 bytes [ClarG77] [ClarG78], using a one byte node header to encode type
information results in a memory overhead of between 5% and 10%. This figure can
be reduced when there is already sufficient waste space in a node to encode type
information. In general, node headers are a fairly simple and portable way to associate
type information with LISP nodes.

¢ Type information may be encoded as a bit field within every pointer, identifying the
type of node the pointer points at [Hans69], [Broo84]. This is possible either when
there are spare bits in pointers which are ignored by the addressing hardware, or when
the software masks the type bits out of pointers before using them as addresses. Typed
pointers require no additional storage since they make use of otherwise wasted storage
inside of pointers.

Sweeping storage from one end to the other, is impossible using typed pointers since size
information is associated with the node type information. Type (and size) information
is available only when chasing a pointer to a node and not when constructing a pointer
by adding a size to an existing pointer pointing to a node.

¢ Type information may be associated with nodes by locating all nodes of a given type
in the same page (Brooks’ big bag of pages (BIBOP) [Stee77]). If a page is a region



of memory which is a power of two words in length, the beginning of the page can
be found by masking out the appropriate bits in a pointer to a node in the page.
Type information can be associated with all nodes in a page either through a table

associating page starting addresses with types or by encoding the type information in
the first word of the page.

Using two bytes of memory at the beginning of every 1024 byte page to encode type
information adds insignificantly to the memory cost of the LISP implementation. The
fact that memory must be allocated to types in fixed blocks means that, on average,
there will be one half block of memory wasted per data type. In a half Megabyte system
using 1024 byte pages and using 20 data types, this represents a 2% memory overhead.
This overhead can increase significantly if some nodes are a significant fraction of a
page long and a page does not contain an integral number of nodes.

While its memory and processing requirements are small, the implementation of mem-
ory allocation and collection portions of a BIBOP system are quite complex. Difficulties
arising from allocation of nodes which are almost as large as or larger than a page and
from a non-contiguous address space are all more difficult to deal with in BIBOP than
in other kinds of memory organization strategies.

On the other hand, since most LISP data types are of a fixed length (the exceptions
being strings, vectors and cdr-encoded lists), and a single memory page in BIBOP
contains nodes of only one type, many pages will contain fixed size nodes. Compaction
of these fixed size nodes is trivial [Knut73] and can be accomplished very efficiently.

When a LISP implementation deals with a large number of types, a hybrid method may
be used where either the BIBOP method or typed pointers are used for the most common
node types and where node headers are used for the less frequently used node types.



Chapter 3

Identifying Unused Memory

All algorithms for identifying areas of memory which are available for re-use fall into one of
two families: reference count schemes and tracing schemes. .

Tracing schemes identify those memory locations which are still in use by walking the tree
of pointers to nodes rooted at a small number of fixed locations known to the LISP system.
These fixed locations usually include CPU registers and the LISP stack, thus guaranteeing
that even nodes which are temporarily in use will be traced. As each node is encountered, it
is identified as being in use, usually by turning on a mark bit in the node. Any node which
is not encountered and marked during the trace of all nodes in memory is not in use.

Tracing schemes can use external bit maps to identify nodes which are in use, but such
maps are rarely used in modern LISP systems because external bit maps occupy valuable
storage. Space can almost always be found within the node structure for a mark bit. Tracing
schemes which move trees of nodes (lists) during tracing do not require mark bits to identify
nodes which are in use (see section 2 below).

Reference count schemes keep track of the number of pointers to a given memory location.
When this count reaches 0 for any node, there are no pointers anywhere in the LISP system
which point to the node and the node can be immediately re-used. Reference count schemes
suffer from an inability to reclaim circular chains of pointers. To reclaim such circular list
structures, reference count schemes may be augmented by periodic use of a tracing scheme.

3.1 List Tracing by Pointer Reversal

Probably the oldest scheme for tracing an arbitrarily linked set of nodes [Knut73] involves a
stack of pointers to nodes containing at least one pointer to another node (Appendix A).

The problem with this method is that it requires a stack of pointers to nodes and current
locations within those nodes. The size of this stack, in the worst case, is proportional to the
number of nodes still in use.

This memory cost can be substantially reduced by distributing information from the
stack amongst visted nodes in a technique called pointer reversal [Knut73] [SchoW67]. This
technique effectively reverses the list structure of the list being traversed, thus allowing the
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Iigure 3.1: Tracing By Pointer Reversal

tracing routine to find the beginning of the list again after it has reached the end of the
list. As the garbage collector works its way back to the beginning of the list, it reverses the
list again, restoring the original list structure. This list reversal eliminates the need to store
pointers to nodes on the garbage collector stack.

Even with pointer reversal however, there must be some mechanism to keep track of the
current pointer location in a node which may contain many pointers. If most nodes contain
at most two pointers as [SchoW67] assumes, a single bit can be reserved in these nodes to
indicate which of the pointers have been txaced More generally, [Wegb72b] points out that
position information is required only for those nodes containing many pointers. If a node
contains only two pointers, this position information can be encoded in a single bit. If a node
contains IV pointers, this information can be encoded in no more than loga N bits. Room for
these bits can either be reserved in each node with pointers, or these bits can be stored on
a separate bit stack (Appendix B).

While these techniques may reduce the size of the trace stack by an order of magnitude,
they do not eliminate the possibility of a stack overflow. The only way to cope with this
possibility is to either:

* Encode the remaining stack information (the index of the current pointer in the node)
within nodes. This requires log,(number of pointers in a node) bits per node.

¢ Use a technique like that of [Knut73] to recover from stack overflow. Knuth suggests
that the oldest information in the stack simply be discarded when the stack overflows.
This means that some some parts of the tree of nodes will remain untraced. To trace
these nodes, the garbage collector must traverse all of memory and continue tracing
all nodes which are marked as traced, but whose pointers point to untraced nodes.



If the latter method is used, pointer reversal cannot be used. Discarding stack information
during a pointer reversal trace results in permanent damage to the structure of the node tree
being traced.

A variant of the former method of encoding stack information in nodes, is to somehow
identify the pointer in the node which has been reversed. This can be accomplished by
reserving a bit in each pointer or by re-using a field in the pointer whose value can be
re-created when the pointer is restored [Knut73]. The disadvantage of this mechanism is
that it requires that each node be scanned for the reversed pointer every time the node is
encountered. This increases the cost of marking a node from O(N) to O(N * *2) where N
is the number of pointers in the node. This cost can be reduced by using a stack whenever
possible and resorting to marking reversed pointers only when stack space is exhausted.

3.2 Tracing By Moving

Some of the garbage collection techniques discussed in the next chapter require moving trees
of nodes from one location to another in addit#on to tracing them. To guarantee that the
moved set of nodes is connected in the same way as the original set, the move operation must
carry out pointer adjustment. Pointer adjustment modifies every pointer in every moved node
so that for all nodes A and B in the tree of nodes to be moved, and for all pointers P in A,
if B’ and P’ are the moved copies of B and P respectively, and P— > B before the move
then P'— > B’ after the move.

The next section provides many mechanisms for pointer adjustment. For now we are
concerned only with the forwarding pointer mechanism used in an elegant algorithm invented
by Cheney [Chen70]. A forwarding pointer is a pointer distinguishable from other pointers
and which indicates the new location of a node. Forwarding pointers can be distinguished
from other pointers either by some bit field in the pointer or by using the BIBOP method
where pages containing moved pointers are marked as new. This latter method is used almost
exclusively in tracing by moving algorithms since these algorithms are almost always used
to move a tree of nodes into an entirely new set of memory pages. The use of forwarding
pointers places a lower bound on the size of a node: every node must be large enough to
contain a forwarding pointer.

Cheney’s algorithm allocates a number of new pages of memory called new-space, suffi-
ciently large to hold all of the used nodes in the tree of nodes to trace. The set of pages
containing this tree is called old-space. The algorithm maintains two pointers into new-space:

e nezi-free points to the beginning of a contiguous region of unused memory in new-
space. This pointer initially points to the beginning of new-space and is advanced
sequentially through new-space as nodes are moved to new-space.

e rescan points to the beginning of the contiguous region of nodes in new-space which
have been moved, but whose pointers have not all been adjusted to point into new-
space. This pointer initially points to the beginning of new-space, is advanced sequen-
tially through new-space as pointers in moved nodes are adjusted, and never moved

8



OLD SPACE NEW SPACE

A-rescan

LT EEEX
i*ﬁ gEERE

L > c X

a) original list structure

OLD SPACE NEW SPACE

" |%-rescan

free

b) part way through
tracing by moving

Figure 3.2: Tracing by Moving



beyond the next-free pointer. When the rescan pointer meets the next-free pointer,
the trace of the tree of nodes in old-space is complete.

The tracing algorithm begins by copying the root node from old-space to the beginning of
new-space, replacing the root node in old-space with a forwarding pointer to the beginning of
new-space and advancing the next-free pointer in new-space by the size of the node moved.
The tracing algorithm then advances the rescan pointer until it meets the next-free pointer.
For every node the rescan pointer passes in new-space, every pointer to old-space is examined.
If the pointer in new-space points to a forwarding pointer, it is replaced with the forwarding
pointer. If the pointer in new-space points to a node in old-space, that node is copied to the
next-free location in new-space and next-free is advanced. The list is completely copied when
the rescan and next-free pointers are identical. This algorithm is illustrated in Appendix C.

This algorithm visits every node to be traced exactly twice: once to copy it to new-space
and once to adjust pointers in the node. A small optimization of Cheney’s algorithm is
presented in [Clar76] which exploits the fact that only those nodes containing more than
one pointer need to be visited twice. Clark actually applies the algorithm only to nodes
containing two pointers, but the idea is easily generalized to nodes containing many pointers.

Clark suggests maintaining list of nodes which must be visited twice rather than sequen-
tially searching new-space for these nodes. The list is linked using the memory in the copy of
the node in old-space. The copy of the node in old space is guaranteed to be big enough to
hold both the forwarding pointer and the link, because only those nodes containing two or
more pointers are added to the list for pointer adjustment. Nodes containing no pointers do
not require pointer adjustment and nodes containing one pointer have their pointer adjusted
as they are copied to new-space. The optimized algorithm can be seen in Appendix D.

Clark’s modification performs better than the original since it visits twice only those nodes
which need to be visited twice. In addition, since Clark’s modification involves no sequential
sweep of nodes in either old-space or new-space, it can be used with typed pointers. Cheney’s
original algorithm accesses nodes sequentially in new-space and so will not work with typed
pointers.

3.3 Reference Counting

Reference counting schemes keep track of how many pointers there are to a given node by
associating an integer, called the reference count, with each node. Every time a pointer is
made to point to a node, the node’s reference count is incremented. Every time a pointer is
changed from pointing at one node to pointing at something else, the node’s reference count
is decremented. When a node’s reference count reaches 0, the node can be immediately
re-used.

The advantage to reference count schemes is that they update trace information continu-
ously, rather than suspending the LISP system periodically while identifying and collecting
unused memory. The two biggest disadvantages are:
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® At least one and sometimes two reference count fields must be updated with every
pointer assignment made by the LISP system. Each such adjustment requires several
instructions, and pointer assignments occur on average at least once every 25 instruc-
tions [Moon84]. The processing cost of keeping reference count fields up to date is
therefore somewhere between 20% and 50% of the cost of the entire LISP application.

e Some trees of nodes which are really unused may not be identified as such by reference
count schemes (see below).

To guarantee that a reference count field will never overflow, the field must be as large as a
pointer since every pointer in memory could conceivably point to the same node. Associating
a pointer-sized field with every node in memory is generally considered to be an unacceptable
memory cost. In practice [DeutB76] [WiseF77] the field is much smaller and risks overflow.

When a reference count overflows, the node associated with it must be marked as un-
reclaimable since it is no longer clear how many pointers reference the node. In addition,
the reference count of nodes in a circular chain will always be non-zero, even if the chain
is referenced by no other pointers, since every element in the circular chain is referenced
by its preceeding element. Neither these chains nor nodes whose reference counts have
overflowed can be reclaimed by by a reference counting scheme. For these reasons, reference
count tracing schemes must be backed up by one of the previously described, more thorough
tracing schemes.

No figures have been published comparing the performance of LISP systems using ref-
erence counting schemes to the performance of LISP systems using using other garbage
collection schemes.
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Chapter 4

Reclaiming Unused Storage

Where the previous section was concerned with algorithms for identifying those nodes which
are in use, this section is concerned with algorithms for reclaiming all storage which a trac-
ing algorithm has not identified as being in use. Most of these algorithms are compacting
algorithms; that is they move all used nodes to a single contiguous region of memory, leaving
a single contiguous region of unused memory. This has the advantage of making memory
allocation very simple and, in a virtual memory system, of reducing the number of pages
containing nodes which are still in use.

Compacting algorithms can be categorized by the relative positions of nodes which are
still in use after compaction:

* In linearizing algorithms, nodes which are the targets of pointers in a given node tend
to be adjacent to the given node after compaction.

¢ In sliding algorithms, nodes are moved to a contiguous region at one end of the address
space without changing their order.

In the discussion which follows, linearizing algorithms are presented first, followed by
sliding and hybrid algorithms.

Unfortunately, all of the known collection algorithms perform poorly when the number
of in-use nodes is large and the number of unused nodes is small. When this is the case, the
ideal garbage collector would have a cost proportional to the amount of unused memory, but
this is not the case for any known LISP garbage collection algorithm. All known algorithms,
with the exception of the reference count algorithm, have a cost proportional to either the
number of in-use nodes or the size of memory.

- ™
4.1 Mark and Sweep

The oldest of reclamation algorithms is the mark and sweep algorithm of the first LISP
interpreters [Knut73]. This technique uses any of the pointer reversal tracing algorithms
to identify (mark) nodes which are still in use and then sequentially scans (sweeps) all of

12



memory, collecting on a linked free list any locations are not marked. The sweeping phase
of this algorithm requires that the size of a node be identifiable from an examination of the
node as it is encountered in the sequential scan of memory. This precludes the use of typed
pointers since the sweeping phase of the garbage collector has not followed any pointer chain
to nodes it encounters.

A mark and sweep garbage collector must visit every used node in memory at least
once during the marking phase, and must visit every location in memory once during the
sweeping phase. While this could be very expensive on a machine with virtual memory (every
page of virtual memory must be paged into real memory during the sweeping phase), the
cost of examining every location in memory in a real memory machine is often acceptable,
given the performance characteristics of the other algorithms in this section. The memory
requirements for the mark and sweep algorithm are the same as requirements of the tracing
algorithm. The memory requirements for the sweeping phase are negligible when the linked
list of unused memory is constructed within the unused memory itself.

The most serious drawback of the mark and sweep algorithm is memory fragmentation.
When a contiguous unit of unused memory is smallersthan the amount of memory required
for a link (usually the size of a pointer), that unit of unused memory cannot be added to
the free list and so cannot be re-used. Worse, even though there may be enough unused
storage in total on the free list to satisfy a request for a node of a particular size, there
may be no single entry on the free list large enough to satisfy the request. The only way to
guarantee eliminating the fragmentation problem given variable-sized nodes is to use one of
the following compacting algorithms.

4.2 Reclaiming Storage Using Reference Counts

Reference counts easily identify unused nodes, but reclaiming such nodes efficiently is more
difficult. The problem is that when the reference count on a node reaches zero, the entire
subtree rooted at that node is potentially reclaimable. The processing cost of reclaiming the
tree is an issue. Ideally this cost should be distributed among the nodes in the tree as they
are re-used. A more pressing concern is the memory requirement for traversing the tree.
Any naive scheme for traversing the tree and freeing nodes in it would have storage
requirements similar to those of the tree tracing algorithms presented earlier. This storage
can be eliminated entirely if there is a way to distinguish pointers from small integers in the
first pointer field of a node (ie: use some bit which is otherwise meaningless in an unused
node - perhaps the mark bit). Using the pointer reversal mechanism presented earlier and
storing the current pointer location in the first pointer field of the node eliminates the trace
stack. As the garbage collector works its way back to the root of the tree after visiting its
branches, it examines the first pointer field of the node. If this field contains a pointer, it is
the reversed pointer and all of the other pointers in the node have yet to be chased. If the first
pointer field contains an integer, this integer specifies which of the remaining pointer fields
is reversed. Note that this mechanism cannot be used when tracing, since it destroys the
first pointer field in the node. The contents of this pointer field is irrelevant when reclaiming
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storage though, since it is destroyed after what it points to has been reclaimed.

When all of the nodes in a tree are of the same size, processing costs of reclaiming the
tree can be amortized among the re-allocation of the reclaimed nodes by using Weizbaum’s
trick [Weiz63]. When a tree of nodes is identified as no longer in use, the pointer reversal
mechanism above is used to immediately reclaim a leaf node in the tree. A leaf node of
course, is a node which either contains no pointers or contains only pointers to nodes which
are still in use. In the latter case, the reference counts of these nodes must be decremented
before reclaiming the leaf node. The reclaimed node, call it a free list link node, is used to
link the tree being reclaimed into the free list. The node in the tree which is the target of
the link node is not the root of the tree, but the current position in the tree of the pointer
reversal reclamation process. Every time a new free node is required from this tree, the
pointer reversal reclaimer is applied to reclaim a single node.

The most serious drawbacks of the reference count scheme for storage reclamation are
memory fragmentation and the processing costs of keeping reference counts up to date. The
biggest advantage to the scheme is that there are rarely large delays introduced into the
LISP system by garbage collection. The only time garbage collection is necessary is when
free space has been exhausted and some other garbage collection scheme is invoked to reclaim
those unused nodes which the reference counting scheme missed.

4.3 Compacting By Reserving Forwarding Pointers

Probably the simplest compacting storage reclamation mechanism is the LISP 2 algorithm
described in [Knut73] pp: 602-603. This algorithm reserves a pointer field in every node to
hold a forwarding pointer. The algorithm consists of a tracing pass, a pointer adjustment
pass and a final copying pass. The tracing pass can use pointer reversal, and can use the
reserved pointer field to eliminate the need for a trace stack. A node is marked as being
in use when its reserved pointer field is non-nil. The pointer adjustment pass scans all of
memory and replaces all pointers in all in-use nodes with the forwarding pointer assigned
to the node the in-use node’s pointer points at. The final copying pass scans all of memory
again and copies all in-use nodes to the locations their forwarding pointers point at.

The big advantage of this algorithm is its simplicity, speed [CoheN83], and the fact that it
is a linearizing compaction algorithm (the significance of this will be apparent in the chapter
on CDR-encoding). This algorithm is little used in modern LISP systems though, because of
the requirement to reserve a pointer field in every node. The cost of this field is non-trivial
in most LISP systems, since the majority of nodes in LISP systems are very small [ClarG77).

4.4 Two Space Compacting
The tracing by moving algorithms of the last chapter can be adapated for use as complete

garbage collectors [Bake78a] [Stee75]. Memory for the LISP interpreter is split into two
spaces, usually called old-space and new-space. Initially, all used nodes are contained in old-
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space and all new nodes are allocated in old-space. When the LISP application requests a
new node whose size is larger than the amount of space remaining in old-space, the garbage
collector is activated.

The garbage collection consists of a single tracing phase, with all of the traced nodes
being moved to new-space. When the tracing phase is complete, the meaning of old-space
and new-space are reversed: used nodes are located in new-space and new nodes are allocated
there also. When there is no more room in new-space for a request for more memory, the
tree of used nodes in new-space is moved back to old-space.

The big advantage of this algorithm is that it compacts memory and that it does it
relatively quickly. Each used node in the tree is visited no more than twice: once to copy the
node to new-space and once to adjust the pointers in the node. The unused portions of old-
space are not visited at all, resulting in a small CPU savings during garbage collection and
a potentially tremendous real time savings in reduced paging in a virtual memory machine.
One last advantage which is apparent in the chapter on CDR-encoding is that the collector
is a linearizing collector.

The big disadvantage with this algorithm is that it requires that the garbage collector
reserve memory enough to contain all of the used nodes in the LISP system (ie: new-space
must be reserved). This means that the LISP system can never use more data than one half
of the memory in a real memory machine. It also means that garbage collection must be
carried out more frequently than in mark and sweep, since the LISP system has less unused
memory to consume between collections. The partially compacting hybrid scheme presented
later in this section addresses, to some extent, these limitations.

4.5 Pointer Munging Revisited

Morris [Morr78] invented and Jonkers [Jonk79] subsequently optimized an ingenious algo-
rithm similar to the pointer reversing tracing algorithm. The algorithm relies on the fact that
under certain circumstances, a set of locations Ay, Aq...A, all containing pointers pointing
to a location X containing ¥ contains the same information as the chain rooted at X where:

contents(X)— > Ay,
for all i < n, contents(A4;)— > A1, and
contents(A,) =Y

Morris and Jonkers use this fact to do pointer adjustment without using forwarding
pointers. This algorithm therefore requires no additional storage, either explicitly to hold
forwarding pointers or implicitly to reserve large fractions of the address space for a list
copying process.

Jonkers algorithm has three phases:

* a pointer reversal tracing phase to identify nodes which are still in use,
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® a forward scan of all memory, from lowest to highest addresses, to carry out pointer

adjustment of forward pointers (pointers which point to addresses higher in memory
than the pointer’s own address), and

e another forward scan of memory to carry out pointer adjustment of backward pointers

and to copy all in-use nodes to a contiguous region of storage starting at the lowest
address in memory.

The second and third passes of Jonkers’ algorithm assume that all nodes contain a pointer-
sized field which does not contain a pointer. Morris’ original algorithm makes no such
assumption, but requires that the third phase scan backward through memory. Scanning
backwards requires that blocks of in-use nodes be searched for the beginning of the next
node in the backwards direction. The cost of this searching«s non-trivial [CoheN83).

"The second phase of Jonkers’ algorithm carries out pointer adjustment of forward pointers
and converts backwards pointers into a pointer chain rooted at the mutual target of the
backwards pointers. The second phase does not copy nodes, but keeps track of where the
third phase will copy the nodes and uses this information to carry out pointer adjustment.
To do this, the second phase scans all of memory and processes every pointer P in every
used node thus:

e When P points to some node other that the node M which contains P, P is replaced
with the contents of the non-pointer value in the pointer-sized field A in the node N
which P points at. A is then replaced with the address of P. above. When multiple
pointers point at N and this procedure is applied to all of them, the result is that A
points to a chain of pointers ending in the original contents of A.

o When P points to its containing node M, P is replaced with the address of where M
will be copied on the third phase.
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If this were all that the second phase accomplished, the end of the second phase would
see every used node chained to all of the pointer fields that reference it. In fact, the second
phase, upon encountering a used node, carries out pointer adjustment on all forward pointers
to that node. It does this by chasing the chain of pointers rooted at the node and replacing
each of them with the address the node will be copied to in the third phase. The contents
of the pointer-sized field in the node is restored from the last field in the pointer chain. This
pointer adjustment cannot be carried out in the third phase because, by the time the third
phase encounters a node, it will already have moved all of the nodes containing forward
pointers to that node.

The third phase scans all of memory and copies backwards to the beginning of memory
all used nodes. After the copy, it carries out pointer adjustment of all backward pointers to
the node in the same way that the second phase carried out pointer adjustment of forward
pointers.

Both the second and third phases, upon encountering a node, must be able to determine
whether or not a chain of pointers requiring adjustment are rooted in the pointer-sized field.
Jonkers suggests that by using an appropriate structure for information within the node,
this determination can be made simply by examining the pointer-sized field. However, in
general, it seems that each node must have a bit reserved in it somewhere to determine
whether the pointer-sized field contains its original contents or not. If a priming sweep is
made through memory, coalescing all of the unused nodes and identifying in them the lengths
of the used regions between the unused regions, the mark bit used by the pointer reversal
tracing algorithm can be re-used to indicate that the pointer-sized field in the node contains
its original contents.

Both the second and third phases, upon chasing a pointer chain to carry out pointer
adjustment must be able to recognize the end obthe chain. Again, Jonkers suggests that no
additional storage is required for this, but it seems that in general, a bit in each pointer in
the chain must be reserved to determines whether or not the target of the pointer is the end
of the chain. Jonkers’ algorithm is described in detail in Appendix E.

Jonkers’ algorithm performs almost as well [CoheN83] as the LISP 2 algorithm which
reserves forwarding pointers and requires somewhat less storage than that algorithm. In
Jonkers’ algorithm, the reserved word for forwarding pointers can contain any information
except a pointer to another node.

4.6 Table Collectors

A relatively large body of literature has been published describing a class of algorithms which
Cohen describes as table collectors [CoheN83] [Cohe81]. All of these algorithms involve at
least three phases:

® A marking phase identifies all used and unused memory.

e A table describing used memory is constructed, to be used when adjusting pointers in
the next phase. This table usually consists of pairs of addresses: the start address of
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a block of used nodes and the new address that block will occupy after compaction.
These tables can be simple linear chains of pairs of addresses [FitcN78] [HaddW67]
[Wegb72a] [HaddW67], hash tables [FitcN78], or binary trees [TeraG78].

e The final phase searches the above constructed table to adjust each pointer in all used
blocks of memory and then copies those blocks to their new locations in memory.

The simplest, least processor efficient tables are guaranteed to fit into unused stor-
age, provided that the smallest unused node is large enough to contain two pointers and
a flag [HaddW67]. Other tables, while more efficient than simple chains of address pairs, re-
quire that an additional fixed amount of storage be allocated for the garbage collector. These
table driven collectors, on the surface, seem less efficient than other compacting collectors
because of the cost of searching the table during pointer adjustment. In theory, they should
cost about O(N log(N)) where N is the number of in-use nodes. In practice [CoheN83], these
algorithms appear to perform almost as well as the pointer munging algorithms described
above.

4.7 Hybrid Algorithms

A recently published algorithm by Lang and Dupont [LangD87] combines mark and sweep
with two space compacting. This algorithm divides memory into three areas: ms-space
(mark and sweep space), old-space and new-space. Ms-space is a region of memory collected
with a mark and sweep algorithm, old-space is a region of memory collected with a two-
space compacting algorithm and new-space is a region at least as large as old-space which
is reserved for use in the two-space compacting process. After every garbage collection,
old-space is entirely unused and is designated as the new new-space. New-space, after every
collection, is partly filled with nodes from the old old-space and is designated to be part of
ms-space. The most fragmented region in the new ms-space is then designated to be the
new old-space for the next collection.

This algorithm compacts only the most fragmented subset of memory with every garbage
collection. It represents a trade-off between the space-efficiency of a mark and sweep algo-
rithm (which requires very little reserved memory) and the time efficiency of the two-space
compacting algorithm (which visits only used nodes, no more than twice each). The hy-
brid algorithm reserves only a small region of memory when memory is scarce, rather than
reserving one half of memory like the pure two-space compacting algorithm. When mem-
ory is plentiful, the algorithm eliminates ms-space altogether and behaves like the processor
efficient, pure two-space compacting algorithm.

This adaptation occurs dynamically in the hybrid algorithm. When memory becomes
scarce, the algorithm simply reduces the size of old-space. When old-space becomes new-
space following the next garbage collection, new-space will be similarly reduced in size,
making more memory available for use by the LISP system. When memory becomes plentiful,
new-space can be increased in size whenever it is adjacent to an unused area in ms-space.
Such adjacency can be forced by choosing the largest unused area in ms-space following a
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garbage collection, removing that area from the free list, and designating old-space to begin
adjacent to this area. Following the next collection, new-space (the old old-space) will be
adjacent to this large, unused area and can therefore be expanded.

If there is enough memory, and if multiple regions of ms-space are highly fragmented,
several old-space and new-space regions can be assigned. In practice, it seems unlikely
that multiple regions could be justified. Multiple, small, two-space compaction efforts will
not yield the same reduction of fragmentation as a single compaction effort, and multiple
efforts will not linearize memory to the same degree as a single effort. Nothing has yet
been published describing effective algorithms for choosing which region of memory should
be the next old-space or for determining an optimal size for old or new-space. A simple
implementation of the hybrid algorithm can be seen in Appendix F.

An as yet unpublished hybrid algorithm invented by the author was inspired by Lang
and Dupont’s efforts. This algorithm makes three passes through memory:

o The first pass is a straightforward mark and sweep pass to identify unused areas in
memory.

e The second pass is a tracing pass similar to that of Lang and Dupont’s where nodes
in ms-space are marked and nodes in old-space are copied to new-space. In this case
though, new-space is the unused memory identified by the first pass.

e The third pass copies the contents of unused memory (new-space) back into old-space
in consecutive locations in memory. As this information is copied, the free list is rebuilt.

The second pass is able to employ unused memory as new-space because Cheney’s trace-
by-moving algorithm accesses new-space sequentially. Sequential access to the free list can
be arranged simply by keeping track of the current free item and the current position in
that item. Not all of the space in an unused region of memory can be used as new-space. A
size field must be reserved in each unused region to determine where the next used region
begins. Information describing either the location of the next unused region or the size of the
in-use region following each unused item is desirable as well. If this linking information is not
present, in-use regions must be sequentially scanned in pass three, increasing the processing
cost of the algorithm somewhat. This algorithm is illustrated in Appendix G.

The differences between the algorithms can be summarized thus:

e The memory cost of Ginter’s algorithm is equal to the memory cost of a mark and
sweep algorithm. The memory cost of Lang’s algorithm is somewhere between that of
a mark and sweep algorithm and that of the more memory-expensive trace-by-moving
algorithm.

e The processing cost of Ginter’s algorithm is the cost of a mark and sweep pass of all
memory, a trace-by-moving pass of all memory and a copying pass of new-space (which
may contain only a subset of all of the in-use nodes). The processing cost of Lang’s
algorithm is somewhere between that of a trace-by-moving algorithm and the more
expensive mark-and-sweep algorithm.
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¢ The degree of compaction of Ginter’s algorithm is generally greater than that of Lang’s
algorithm. The exception to this rule is when memory is so badly fragmented that most
unused regions contain barely enough room for the size and link information.

¢ Ginter’s algorithm requires strictly fewer garbage collections than Lang’s when Lang’s
new-space is of non-zero size. Ginter’s algorithm reserves no memory from the LISP

system, and so provides the LISP system with more memory to consume than Lang’s
algorithm.

e Lang’s algorithm can be executed in parallel with the LISP system while Ginter’s

cannot. Parallel execution requires random access to new-space which is impossible in
Ginter’s algorithm.

¢ Both algorithms are linearizing compaction algorithms for some subset of memory.
Ginter’s algorithm linearizes slightly better than Lang’s since Ginter’s old-space is
usually larger than Lang’s.

It is not clear from the above comparison which of the hybrid algorithms performs better
in general. Other hybrid algorithms are possible but nothing has been published regarding
them. For instance, a priming pass of a table driven compaction algorithm could slide all
unused memory in a single region. A trace-by-moving compaction pass could then move a
subset of the in-use nodes to that region in a linearizing fashion. A final table driven pass
could slide the remainder of the in-use nodes up against the linearized region, leaving a single

contiguous unused region to speed up allocation. Nothing has been written describing such
hybrid algorithms.
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Chapter 5

Compact Representation of Lists

Empirical studies of LISP systems [ClarG77] [ClarG78] show that over 50% of the data used
in an average application consists of list nodes containing exactly two pointers (usually called
the car and cdr pointers, respectively). In over 70% of these nodes the second pointer points
to another list node. In addition, in about 25% of list nodes, the second pointer points to NIL
and less than 3% of all list nodes are referenced more than once by another list node. These
statistics have lead to a variety of proposals to represent list nodes more compactly. These
techniques have become known as cdr-encoding techniques, and generally involve eliminating
the second pointer in list nodes as frequently as possible.

When these techniques are 100% effective, the empirical results above indicate that at
most 50% of the space in 95% of the list nodes can be eliminated. This means that the space
taken up by data in a typical LISP application can be reduced by at most 23%.

5.1 Encoding Techniques

The earliest documented encoding technique was Hansen’s [Hans69]. Hansen represented a
list node as exactly two pointers, one pointing to the car of the list and the other to the cdr.
Hansen attempted to linearize lists by eliminating the cdr from the node as frequently as
possible, and by making consecutive car’s occupy consecutive memory locations.

Hansen reserved a bit in each of these pointers to identify whether the pointer was really
a car pointer or whether it was a cdr pointer instead. Hansen required an occasional cdr
pointer to indicate the end of a list. Any cdr pointer to an atom (including NIL) indicated
the end of a list and any cdr pointer to another list node indicated merely a continuation of
a list. Continuations are required any time a portion of a list structure is shared between
two lists, since the immediate predecessor to the shared portion can be only one of the two
lists sharing it, not both.

All cdr-encoding techniques rely on the assistance of a compacting, linearizing garbage
collector. While it is possible to build a cdr-encoding CONS operator, it is the garbage collec-
tor which periodically visits every used node in memory and so has the opportunity to carry
out large scale linearization. Hansen’s paper [Hans69] described in some detail a primitive

22



/% return the CDR of a list node */
NODE **cdr (list_node)
NODE **1ist_node;
{

return ((NODE **) (list_node [1]));
}

Figure 5.1: The Original CDR Operator

/* return the CDR of a possibly compact 1ist node */
NODE *#*cdr (list_node)
NODE *#*1ist_node;

{
if (list_node [1] && REAL_CDR)
return ((NODE **) (list_node [1]));
else return (list_node + 1);
}

Figure 5.2: The Modified CDR Operator

linearizing garbage collector. Such linearization is a trivial by-product of many very of the
simple algorithms invented since Hansen’s paper was published [Chen70] [Clar76] [Knut73]

Hansen’s algorithm required modifications not only to the garbage collector, but to the
CDR and REPLCDR operators as well. The CDR operator was modified from something
which simply returned the contents of the cdr pointer (figure 5.1) to something which rec-
ognized compact encodings (figure 5.2).

The biggest disadvantage of Hansen’s proposal is that there is no way to reliably encode
the REPLCDR operator. When this operator is applied to a compactly represented list node
X, the word Y following the car of X must be replaced with a cdr pointer. When Y already
contains a cdr pointer, the replacement can be performed without loss of information. When
Y contains X’s successor node, the replacement cannot be carried out without destroying
the contents of the successor node. These contents cannot even be moved to make room for
the new cdr for X, since some other list may have saved a pointer to the old successor node.

More recent proposals [LiH86] [Bake78a] address this problem by redefining the meaning
of the “cdr pointer” bit. These proposals intepret this bit as meaning “go indirect through
this pointer to get what you're really looking for”. Pointers with this bit set are called
indirection pointers while pointers where this bit is clear are called content pointers. List
structures in the new representation are encoded exactly as they are encoded in Hansen’s
method, but the REPLCDR operation is now possible.

To effect a REPLCDR, the car of X is replaced by an indirection pointer to a new, two
pointer node N. The car of Nis set to the old contents of the car of X and the cdr of X is set to
the second argument of the REPLCDR operator. If X is the subject of repeated REPLCDR

23



X Y X Y

vy ;
[ Tal >zl [Tal=>[z]

Y
[al: [D] SIali b

Q
Q

0
0

o
o

AR
[ Tc] v > Te]
&] E]

a) original list structure b) list structure after
X = ((a ((e) ¢) d) b) (repledr X (cadar X))

Figure 5.3: A REPLCDR Operation on a CDR-Encoded List

operations, the car of X can become the root of a very long chain of indirection pointers.
These chains can be eliminated if the REPLCDR operator chases indirection pointers in
X’s original car pointer. If only the CAR, CDR and REPLCDR operators chase indirection
pointers, then no other operators need be modified to implement cdr-encoding,.

The more recent proposals all reserve two bits in the car pointer of a list node. The two
bits are required to distinguish between three possibilities:

o the current pointer is an indirection pointer (and is the end of the list only if it points
to an atom),

o the current pointer is a content pointer and is not the end of the list,
e the current pointer is a content pointer and is the end of the list.

The last case indicates that the cdr pointer for the list node, were it present, would be
NIL. Two bits actually can encode four possibilities and in all of the documented algorithms
actually do encode four possibilities [LiH86] [Bake78a]. In all cases though, the fourth
possibility is either redundant or is information which could be encoded as effectively some
other way.

5.2 A Compact CONS Operation

Early efforts in this field relied on the garbage collector to convert lists to a compact, linear
representation. The CONS operator (which allocates a list node) in these early implemen-
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/* a compact cons operator */
NODE *#*cons (car_stuff, cdr_stuff)
NODE #*car_stuff;

NODE **cdr_stuff;

{
NODE **new_node; /* what cons will return */
int pos; /* position in large cons cell */
extern int bibop_type (); /* node type using BIBOP */
extern int cons_size; /* global variable */

/% : check if the cons can be accomplished compactly */
it ((bibop_type (cdr_stuff) == LIST) &&
(*(cdr_stuff - 1) == UNUSED)) {
new_node = cdr_stuff - 1;
*new_node = car_stuff;

}

/* : do the cons the hard way */

else {
new_node = (NODE **) malloc (cons_size * sizeof (NODE *));
for (pos = 0; pos < (cons_size - 2); pos++)

new_node [pos] = UNUSED;

new.node = new_node + cons_size -~ 2;
new_node [0] = car_stuff;
new_node [1] = (NODE *) cdr_stuff;
}

return (new_node);

Figure 5.4: A Compact CONS Operator

tations returned list nodes containing two pointers and constructed lists in the same way
as in non-linearizing LISPs. Li and Hudak [LiH86] describe a modification to CONS which
constructs compact lists between garbage collections. This optimization should somewhat
decrease the frequency of garbage collections by consuming memory at a slower pace during
list construction.

Li and Hudak suggest that CONS allocate a block of N pointers, use the highest addressed
two pointers in the block to construct a list node X and mark the remaining pointers as
unused. Marking the pointers as unused can be accomplished either by using the “spare” bit
pattern described above or by reserving a location in memory to indicate an unused pointer
and then using the address of this reserved location as an “unused” indication. A subsequent
CONS operation of a list node ¥ whose cdr is X can use the unused pointer field before X
to construct a compact representation of Y (see figure 5.4).

This strategy will delay garbage collection only when it results in less waste space than
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a non-compact list representation. Choosing N too large will cause such waste. Choosing
N = 2 reduces the compact CONS to a normal CONS. Li and Hudak suggest leaving the
choice of N to the programmer. When the default for Nis 2, the application performs as well
as it would in the abscence of a compacting CONS. When the programmer knows, either
statically or dynamically, the exact length of a list being constructed, the programmer can
instruct CONS to use a vector of the appropriate length and achieve the maximum benefit
possible from a compacting CONS.
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Chapter 6

Generation Scavenging

Generation scavenging [Unga84] [LiebH83] [Cour88] [Moon84] is an algorithm intended to
reduce the frequency of garbage collection by collecting only those regions of memory which
are likely to contain unused nodes. The algorithm assumes that:

o recently created nodes become unused much more quickly than do nodes which have
been in-use for some time, and

¢ the number of pointers from old nodes to young nodes is relatively small.

While no empirical studies yet published verify these assumptions, generation scavenging
has improved the performance of several systems in which it was implemented [Moong84]
[Unga84] [Cour88|.

Generation scavenging divides memory into two or more regions, each containing nodes
of a certain age range. New nodes are allocated in the region containing the youngest nodes
unless the application has instructed the LISP system that a number of nodes are to be
allocated in another region. The latter functionality allows application developers to make
the best use of the algorithm when it is possible to predict how long those nodes are likely
to be in-use.

Every node in the system has an associated age. This is usually encoded in a bit field
somewhere within the node. A single bit will suffice, if storage within nodes is scarce. When
a region of memory fills, it, and all younger regions, are garbage collected. All of the nodes
in each of these regions which are older than the oldest age allowed for the region are copied
to a region of memory containing older nodes.

The trickiest part of generation scavenging is the fact that older nodes in one region of
memory may contain pointers to younger nodes in another region of memory. If a younger
region of memory is garbage collected, the trees of nodes rooted in all older regions of
memory must be marked as in-use. On the surface, this appears to require that all in-use
nodes in all of memory be traced whenever any region of memory is garbage collected. If this
were the case, the generation scavenging algorithm would offer little hope of a performance
improvement,.
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Figure 6.1: Ungar's Generation Scavenging

The algorithm gets around this requirement by maintaining (N?— N)/2 tables of pointers
from older regions of memory into younger regions of memory. Every pair of older/younger
regions has an associated table of pointers to locations in the older region which point to
locations in the younger region. Ungar calls these tables the remembered sets. Every garbage
collection of a region of memory A must mark as in-use those trees of nodes identified by
each of the remembered sets R corresponding to each pair of spaces A/B where B is younger
than A.

Every garbage collection of a region of memory A also updates all of the remembered
sets associated with A:

* Remembered sets associated with A and an older region B are pruned of all references
to locations in B which no longer point to A.

* Remembered sets associated with A and a younger region B are discarded and are
completely rebuilt during the tracing of in-use nodes in A. Whenever a pointer is
found which points to a location in B, the address of that pointer is added to the new
A/B remembered sct.

In addition, it would appear that every set instruction to any location in any region A
must be examined to see if what is being set is a pointer to a location in a younger region B.

When such sets occur, the address of the pointer must be added to the A /B remembered set.
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In practice, it is possible to eliminate these checks for sets to locations which are known to
reside in the youngest region of memory. These checks can therefore be eliminated from set
instructions in many primitive LISP functions, and from set instructions to local variables
in the stack if the stack is restricted to lie entirely within the youngest memory region.

All published implementations of generation scavenging in LISP accomplish checking
of set instructions in hardware. No published results indicate whether or not generation
scavenging results in improved overall performance when checking set instructions is done
in software. Moon [Moon84] observed that about one instruction in 25 on a LISP machine
is a set instruction and speculated that a software implementation would result in poorer
performance by between a factor of 1.1 and 2.

Ungar [Unga84] implemented generation scavenging in software for Smalltalk. His re-
sults show that one instruction in 23 is a set instruction, but in Ungar’s implementation
those instructions were interpreted. Each interpreted instruction required approximately 25
hardware instructions, resulting in a set instruction about once every 600 hardware instruc-
tions. Ungar’s results shows that generation scavenging improved the performance of the
Smalltalk system. This is because the 5-10 instruction check of set instructions degraded
the Smalltalk system’s performance by only 10/600 = 0.2%. A similar implementation in
LISP would degrade the LISP system performance by 10/25 = 40%.
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Chapter 7

Variable Binding Strategies

Variable binding strategies are worth examining in the context of memory management,
since this activity is responsible for generating most of the “garbage” collected by the garbage
collectors discussed so far. LISP implementations using inefficient variable binding strategies
can spend up to 80% of their time running the garbage collector [HolISSBSO0).

7.1 Variable Binding and Closures

Variable binding strategies allow LISP functions to read and write values associated with
LISP variables or symbols. In most implementations, every LISP symbol has an entry in a
global symbol table, and this entry contains things like the name of the symbol, its property
list and its value cell. The value cell of a symbol contains a pointer to the location holding
the top-level value of the symbol.

Any LISP procedure can associate a local value with a symbol. Such a local value is
called a lambda binding and is active only until the procedure which defined it exits. A
lambda-binding environment is the set of lambda bindings which are active at a particular
point in time. An environment can be captured and associated with a LISP procedure. Such
an association is called a closure. A closure is invoked by temporarily inactivating all lambda
bindings in the current environment (by suspending the current environment), reactivating
all of the bindings in the environment in the closure and then invoking the procedure in the
closure.

In all LISP implementations, a reference from a LISP procedure to a lambda-bound
symbol affects the most recent active lambda-binding of the symbol. If there is no active
lambda-binding for a symbol, references to the symbol affect the top-level value of the symbol.
If a lambda-binding has been captured in several closures, modifying the binding in one
closure modifies the binding in all of the closures.
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; apply procedure on each element of list-1 until
; the first non-nil result
(defun or-map (procedure a-list)
(if a-list
(or (procedure (car a-list))
(or-map procedure (cdr a-list)))))

; Return the first element of 1list-2 which is an
; element of list-1
(defun find-first-member (list-1 list-2)
(or-map (lambda (element)
(if (member element list~1)
element))
list-2))

Figure 7.1: The Downward Funarg Problem

7.2 The Funarg Problem

The problem of symbol references in procedures which are passed or returned as functional
arguments is called the funarg problem. The problem with these references is that they can
yield unexpected results. For example, in the code fragment in figure 7.1, it is clear that
when the lambda function is executed, the programmer intends the list-1 symbol to refer to
the list-1 lambda variable in the first line of find-first-member. In fact, when that procedure
is executed by or-map, the most recent lambda-binding for list-1 will be to some subset of
find-first-member’s list-2 variable. This is known as the downward funarg problem because
functions are being passed as arguments to procedures down the calling subtree of a program.

Figure 7.2 illustrates the upward funarg problem. In this case, a function is being passed
up the calling subtree of a program. It is clear that the programmer intended the n in the
lambda function to refer to the n passed into make-nums. In fact, when s-cdr is evaluated,
that n will refer to whatever the top-level value of n is (if there is one).

The solution to the funarg problem is to pass closures, not procedures, as function argu-
ments. If the lambda function had captured its environment in both of the above cases, then
when those closures were invoked, the symbol references in the closures would have been
resolved in the expected manner. In lezically scoped LISPs, this is the case. In dynamically
scoped LISPs, the built-in procedure function is usually responsible for creating closures. In
a dynamically scoped LISP, all of the (lambda ...’s of figure 7.1 and 7.2 would have to be
replaced by (function (lambda ... for the examples to work correctly.

7.3 Tree Structured Deep Binding

A simple representation for lambda-bindings is an association list [Bake78b]. Each element
in the list is a (symbol . value) pair and the car of the list is the most recent lambda-binding.
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; Return a stream of conmsecutive integers starting from N.
; (A stream is a list whose CAR is the next value in the
; stream and whose CDR is a procedure to call to create the
; following number/procedure pair.
(defun make-nums (n)
(cons n
(lambda (prog)
(setq n (+ 1 n))
(cons n prog))))

; Return the first element in a stream
(defun s-car (stream) (car stream))

; Return the rest of a stream
(defun s-cdr (stream)
(apply (cdr stream)
(list (cdr stream))))

; print the first two elements in a stream

(setq num-stream (make-nums 25))

(s-car num-stream) ;should be 25
(s-car (s-cdr num~stream)) ;should be 26
(s-car (s-cdr (s-cdr num-stream))) ;should be 27

Figure 7.2: The Upward Funarg Problem
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If a symbol does not have an associated value in the list, its value is the top-level value of
the symbol. This mechanism is called deep binding. The environment list in a deep binding
LISP can be thought of as a tree whose root is the last element in the list. A closure in a
deep bound implementation is simply a pointer to the first element of the environment list.
Any closure which captures the environment captures a path from a leaf (a set of bindings
corresponding to some procedure) to the root. Since deep binding allows closures, it can
accommodate both lexically and dynamically scoped LISPs.

Invoking a function in a deep bound implementation means cons’ing a symbol/value pair
to the front of the environment list for every lambda variable in the function. The cost
of invoking a function is proportional to the number of lambda variables in the function.
Returning from a function and restoring the original environment is accomplished by remov-
ing the function’s lambda-bindings from the environment. In most implementations this is
accomplished by a single pointer assignment. Evaluating a symbol in a deep bound imple-
mentation means searching the environment list for a value for that symbol. The length of
the environment list in a deep bound implementation is potentially unbounded, because it
grows with each function invocation. This means that evaluating a symbol in a deep bound
environment involves a search whose length can grow as large as large as all of memory.

The memory cost of such an environment list is substantial. The tree must be maintained
as a list in dynamically allocated storage because a closure can capture any path from leaf
to root in the tree. Closures, however, tend to occur infrequently in the course of a LISP
application, which means that most of the storage allocated to an environment list becomes
garbage very quickly, making frequent garbage collection necessary. More memory efficient
environment implementations are considered later in this section.

Compiled LISP implementations can somewhat reduce the memory and processing costs
of a deep bound implementation. Compiled implementations can use a stack for local symbols
- symbols which are not referenced by any code deeper in the calling tree. In a dynamically
scoped implementation, user intervention in the form of declare statements [MoonT8] is
necessary to identify local variables, since the compiler cannot identify those variables which
will be referenced by code deep in a calling subtree. When local variables are relegated to
a stack, fewer variables appear in the environment list, which means both searching and
maintaining the list is cheaper.

In alexically scoped implementation, the compiler requires no user intervention to identify
local variables. In a lexically scoped environment, the environment in which a function is
defined is the environment in which it will be executed. If a function defines no further
functions itself, then all of the variables in that function are local. When a function does
define nested functions, only non-local references from those nested functions to variables in
the defining function need be placed on the environment list [BartJ86].

In a compiled, lexically scoped environment a further optimization is possible. A lexically
scoped compiler can identify at compile time, all of the references to a particular environment
binding. Thus, instead of storing the environment list as a list of bindings, the environment
list can be stored as a list of records, with lambda-bound values stored consecutively in the
record [Bake78b]. A compiled reference to one of these values requires no searching. Such a

33



reference involves generating code to access a known offset in an environment record which
is a known number of records from the beginning of the list.

7.4 Tree Structured Shallow Binding

Deep binding keeps lambda-bindings in an environment and searches that environment for
values. Shallow binding keeps lambda-bindings in the top-level value cells of symbols and
keeps old values of these symbols in the environment. A shallow bound function call involves
saving all of the values of top-level symbols which are about to be lambda-bound in the
environment and then modifying the top-level values of these symbols to their new lambda-
bindings. The advantage to this is that a function referencing a symbol does not need to
search an environment for the symbol’s value - the value is immediately available in the
symbol’s value cell.

Baker [Bake78b] describes a general method which can be used to convert a deep bound
environment to a shallow bound one. Baker’s environment list contains:

((symboly.value)...(symboly.value)())

The trailing () is a place holder indicating the binding associated with the root of the
environment tree. Baker converts this deep bound environment list to a shallow bound one
by the application of the reroot procedure in Appendix H. This procedure

¢ reverses the environment list using destructive list operations,

e traverses the reversed list and exchanges values in the list with top-level values and
finally

e rotates the list by one element during the traversal.

Shallow binding is achieved during the exchange of values between the environment list
and the top-level symbol values. The list reversal is necessary because bindings must be
exchanged with top-level values in the reverse of the order in which they appear in the
environment list. If a shallow bound reference to a symbol value cell is to return the same
value as a deep bound search, the value which the deep-bound search would have found first
must be placed into the value cell last.

The list is left reversed and is rotated to allow closures to work properly. Any closure
which captured all or a subset of the environment list will refer to the modified environment
list after the application of the algorithm. A closure which captured the entire environment
list would have captured an environment pointer to the head of the list. Since Baker’s
algorithm converts the head of the list into its tail, a deep binding search of the environment
list will discover that it contains no bindings and will conclude that the current value for
any symbol is contained in that symbol’s value cell.

A closure which captured some subset of the list will find that its captured pointer refers
to an element of the modified list. The reversal and rotation guarantees that the captured
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pointer points to a deep binding environment describing the difference between the current
set of top-level values and the lambda-bindings captured by the closure. Baker’s algorithm
can be applied again to this deep bound environment to convert it to a shallow bound
environment for the evaluation of the function in the closure.

Baker calls his algorithm a rerooting algorithm, since it effectively moves the root of the
environment tree out to a leaf. Baker’s article [Bake78b] gives an inductive proof that his
algorithm preserves lambda bound values for both functions and closures. Baker further
points out that since his algorithm can be applied to an environment list at will, it can be
used to give the programmer control over whether deep or shallow binding should be carried
out during the evaluation of a function.

It is also worth noting that when s®hllow binding is carried out consistently using Baker’s
algorithm in a dynamically scoped environment, the cost of shallow binding a function is
proportional to the number of lambda variables in the function. The cost of applying shallow
binding to a closure however, is proportional to the length of the environment list in the
closure. This makes invoking a closure in a shallow bound implementation as expensive as
evaluating a symbol in a deep bound implementation.

7.5 MACLISP Shallow Binding

Maclisp [Moon78] implemented shallow binding using a stack in an attempt to reduce the
memory and processing costs of lambda binding. The processing cost of invoking functions
and closures in a stack based environment is identical to the cost of such invocations in a
tree based environment. The memory cost is much lower though, since the memory used for
lambda-binding for a function can be immediately reclaimed when the function exits.

The Maclisp mechanism, while more memory efficient than a tree based environment
implementation, is incapable of dealing with the upward funarg problem. Downward funargs
in Maclisp are implemented as closures where the environment pointer in the closure is a
pointer to the stack frame which defined the function argument. Upward funargs can use
no such mechansim since the target of the stack frame pointer in the closure would cease to
exist as soon as the closure is returned.

7.6 Phantom and Spaghetti Stacks

A variety of stack-based strategies have been proposed to reduce the memory cost of binding
while providing a closure mechanism powerful enough to address the funarg problem. Each of
these strategies stores environment information in a stack rather than in a garbage collected
store most of the time. Such strategies have been deemed absolutely essential in implementing
SCHEME [HollSSB80], since an implementation entirely within garbage-collected memory
was found to consume 80% of its time in garbage collections.

McDermott [McDe80] proposed a simple, if slightly inefficient, mechanism for imple-
menting lambda-binding environments in a stack. McDermott’s idea was to store the tree

36



structure of such environments on a stack as long as no part of the environment was cap-
tured. As soon as some binding in the stack was captured, the entire stack below the binding
was copied into garbage-collected memory with forwarding pointers to the new copy left in
the stack. The forwarding pointers guaranteed that the captured environment was correctly
shared when multiply captured. The biggest drawback of this method was the cost of copying
a potentially large stack from one place to another.

Stallman [Stal80] quickly addressed this drawback in proposingphantom stacks. Stallman
suggested that stacks be allocated in garbage-collected memory to begin with, so that when
an environment was captured, no copying would be necessary. The captured portion of the
current stack could simply be abandoned to the garbage collector. When one of these stacks
overflows, it is also abandoned, and a new stack is allocated.

The biggest problem with phantom stacks lies in determining what size of stack to use
when allocating a new stack in garbage collected memory. If stacks are allocated too small,
they will overflow frequently and be frequently abandoned. When allocated, stacks should be
large enough so that most of stack abandonment is a result of stack capture activity rather
than stack overflow.

Another scheme to use stacks to hold environment information is the spaghetti stack ef-
fort of Bobrow and Wegbreit in 1973 [BobrW73]. This algorithm involves copying captured
stack frames to garbage collected store when those frames would normally be popped. A
complex reference count scheme is used to determine whether or not a frame on the stack
has in fact been captured. Because of its complexity, this technique is rarely used in prac-
tice [Stal80] [Danvg7].

A recent optimization of this technique [Danv87] involves allocating environment frames
in garbage-collected memory and then reclaiming uncaptured frames when the procedure
which created them returns. Frames are marked as captured by setting a bit in the frame
when it is captured, and by manipulating a global variable CAPTURE. The capture bit in
the frame indicates that the frame is the head of a chain of captured frames. The CAPTURE
variable indicates that the current frame, marked or not, is in fact a captured frame. A frame
can be reclaimed only when both indicators are clear. The CAPTURE variable must be set
whenever control is transferred to a frame marked as captured.

A final optimization which can be applied to any of these stacking strategies is the detec-
tion of downward funarg/closures. Creating a closure and passing it to another procedure as
an argument can be done safely in a stack-based environment since the environment captured
by the closure is still present on the stack when the function argument is invoked. All of
the stack-based environment algorithms recommend examining the arguments of the rplcar,
rpledr, setq operators and the (often invisible) return operator. When a closure is detected
as an argument to one of these operators, that closure risks use as an upward funarg. Only
when the risk of such use is detected, should any of the stack based algorithms register a
capture of a portion of the stack.

No performance measures are available for any of the techniques in this section.
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Chapter 8

Continuations

A continuation is a closure which has captured not only a lambda-binding environment, but
a control environment as well. When a continuation is invoked, the procedure in the contin-
uation is invoked at the location in which the continuation was created. When the procedure
in a continuation exits, control returns to the procedure that created the continuation. In
contrast, when a closure is invoked, the procedure in the closure is invoked at its beginning.
When the procedure in a closure exits, control returns to the procedure that invoked the
closure.

Continuations are therefore comparable more to coroutines than to subroutines. Contin-
uations are most frequently used to implement emergency escape mechanisms from inside of
deeply nested loops or recursive procedures. Continuations can be used to implement any
of the catch, throw, return, or goto constructs of continuation-less LISPs. They have been
used to implement not only coroutines [HaynFWB84], but complete multi-tasking systems
completely within LISP [HaynF84] [Wand80).

The control environment in a LISP implementation consists of a number of frames, one
for each active function invocation. Each frame contains a return address and any variable
bindings which are local to the function to which the frame belongs. Each frame can therefore
construct a path from itself to the root frame which is the frame corresponding to a procedure
invoked at LISP top-level.

This structure is identical to the structure of the lambda-binding environment, which is
no coincidence since the lambda-binding environment structure was derived from an implicit
understanding of the control structure of a LISP application. Continuations can therefore
be implemented using techniques very similar to those used to implement closures. Early
implementations captured continuations exclusively. When these implementations used the
continuations as closures, they simply ignored the control information present in the con-
tinuation. Recent implementations separate the binding environment frames from control
frames as an optimization. Closures do not need control information or local bindings and
so can be represented somewhat more compactly than continuations.

All of the techniques of the previous section therefore apply to continuations. Continua-
tions can be implemented as trees in garbage-collected memory, or as spaghetti or phantom
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stacks.

One last subtle point to keep in mind when implementing continuations is that local
bindings are shared among all continuations sharing a control frame. Not only is this con-
sistent with the treatment of shared bindings in closures, this treatment is demanded of

continuations if no distinction is to be made in the semantics of LISP between local and
non-local variables.

39



Chapter 9

Conclusions

The conclusion of the author is that the following techniques are suitable for use in LISP in
the context of small, real memory workstations using stock CPUs.

® The memory regained from cdr-encoding is worth the small processing overhead the
algorithm entails. A compact CONS operation in a cdr-encoding environment is worth
the effort as well, since if it is used only where performance improvements are guaran-
teed, it is does improve performance.

e One of the hybrid garbage collector must be used if cdr-encoding is to be carried
out. The only garbage collector that will work effectively with a cdr-encoding imple-
mentation is a linearizing, compacting garbage collector. The collector best suited to
cdr-encoding is the two-space compactor. This collector not only linearizes all nodes
in memory every time it is run, but has the smallest processing cost of all of the col-
lectors examined. The two-space collector however, requires that one half of memory
be reserved from use. This more than negates any memory performance improvements
gained from cdr-encoding.

The only other known linearizing collectors are the LISP 2 algorithm and various hybrid
algorithms. The memory overhead of the LISP 2 algorithm, again, eliminates all of the
memory performance improvement of cdr-encoding. The hybrid compacting algorithms
are therefore the only choice left to implement cdr-encoding. Which algorithm to use
is not clear, since no performance comparison of the algorithms is available.

¢ Both of the hybrid algorithms require a non-copying tracing algorithm for a mark and
sweep phase. The algorithm of choice for the marking phase is clearly pointer reversal,
since this uses less stack space than a recursive algorithm. Even with a bit-stack
though, pointer reversal still requires that storage be reserved for a stack which could
potentially grow very large. When there is sufficient unused storage in small nodes,
it would be best if these nodes could reserve log(num ptrs in node) bits so that for
small nodes, the bit stack would be unnecessary. It is always possible to reserve this
many bits in large nodes, since the memory cost of doing so is proportionally much
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smaller for large nodes. When there is not enough space in small nodes to encode this
quantity, a small bit stack must be reserved and Knuth’s [Knut73] recovery procedure
applied when this stack overflows. -

¢ Encoding type information in node headers is the best memory organization model
when there is sufficient waste space in nodes to contain this information.

The fact that both hybrid algorithms use a mark and sweep pass eliminates typed
pointers from consideration as a memory organization model. When node headers
will occupy an unacceptable amount of memory, BIBOP must be used. BIBOP is
more complex and less portable than node headers, though, and should be avoided if
possible.

¢ To minimize the memory and processing costs of lambda-binding, the MACLISP stack
appears to be the fastest method around. This method suffers from a lack of generality
though, since it cannot solve the upward funarg problem. A more general, though
slightly less memory and processor efficient solution is Stallman’s phantom stacks.
This algorithm performs slightly better than Danvy’s optimized spaghetti stacks since
it fragments memory less than the spaghetti stacks do.

It is not clear at this time whether or not generation scavenging or reference counts will
improve processing performance without hardware assistance. The estimates published so
far do not bode well for these technique when applied to LISP.

9.1 Future Research

Empirical tests are necessary to determine which of the hybrid algorithms performs best
and to determine whether or not generation scavenging or reference counting results in a
performance improvement. ,

This study has not addressed the question of continuous or incremental garbage collectors.
It seems unlikely that these systems would improve the performance of a LISP system since
they require additional processing on the part of both the LISP system and the garbage
collector to maintain synchronization. These algorithms may improve perceived performance
though, since they eliminate annoying pauses in execution while garbage collection takes
place. This study has not addressed parallel garbage collection mechanisms either, since
these mechanisms require hardware assistance (ie: another CPU) not available on most
simple workstations.

Additional hybrid algorithms appear to be worth investigating as well. It may be that a
new hybrid can be developed with better compaction characteristics than either of the two
existing ones.

41



Appendix A

Tracing List Structure Using a Stack

void mark (curnode) /* mark tree rooted at curnode */

NODE *curnode; /* pointer to current node */

{
int ptrnum; /* pointer number in curnode */
extern void turn_on_mark (); /* turn on mark bit in a node */
extern int already_marked (); /* is the node already marked? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /* returns nth pointer in node */

/%* : check if the node is already marked */
if (already_marked (curnode) == YES)
return;
turn_on_mark_bit (curnode);

/* : chase each pointer in the node */
for (ptrnum = 1; ptrnum <= num_ptrs (curnode); ptrnum++)
mark (get_ptr (curnode, ptrnum));
return;
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Appendix B

Tracing List Structure Using Pointer
Reversal

void mark (start) /* mark tree rooted at curnode */

NODE *staxt; /* node to start marking from */

{
extern void turn_on_mark (); /* turn on mark bit in a node */
extern int already_marked (); /* is the node already marked? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /% returns nth pointer in node */
extern void set_ptr (); /* replace nth pointer in node */
extern void push_pos (); /* save pos info using min bits */
extern void pop_pos (); /* restore node position */
int ptrnum; /* pointer number in curnode */
NODE *curnode; /* node currently being processed */
NODE *prevnode; /* previous value of curnode */
NODE *next; /* next node to become curnode */

/* : mark the subtree rooted at start */
curnode = start;
prevnode = NIL;
ptr_num = 0;
while (TRUE) {

/* : descend as far in the tree as possible */
while (TRUE) {
if ((already_marked (curnode) == YES) || (curnode == NIL))
break; /* stop descending */

/* :* mark a node and its descendants */
turn_on_mark (curnode);
ptr_numt+;
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if (ptr_num <= num_ptrs (curnode)) {

if (get.ptr (curnode, ptr_num) != NIL) {
next = get_ptr (curnode, ptr_num);
set_ptr (curnode, ptr_num, prev); /* rev ptrs */
push_pos (curnode, ptr_num); /* save pos */
prev = curnode;
curnode = next;
ptr.num = 0;
}

}

/* no more descendants - stop descending */
else break;
3

/%* : back up to a point where further descent is possible */
while (TRUE) {

/* no more backing up is possible, the subtree is traced */
if (prev == NIL)
return;

/* :* back up a step */
nth_ptr = pop_pos (prev);
next = get_ptr (prev, nth_ptr); /* geot reversed ptr */
set_ptr (prev, nth_ptr, curnode); /* restore list */
curnode = prev;
prev = next;

/* :% stop backing up when a node can be traced further */
if (nth_ptr < num_ptrs (curnode))
break; -

}
}

/* push a number on the stack using the minimum number of bits */
void push_pos (curnode, position)

NODE *curnode; /¥ node that position applies to */
int position; /% pointer position in node */
{
extern int num_ptrs (); /* number of pointers in node */
extern void push_bits (); /* push low N bits of arg */
extern int log2N (); /* minimum number of bits to use */

push_bits (position - 1, log2N (num_ptrs (curnode)));

/* pop a number from the stack using the minimum number of bits */
int pop_pos (curnode)
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NODE *curnode; /* node that position applies to */
{

extern int num_ptrs (); /* number of pointers in node */
extern void push_bits (); /* push low N bits of arg */
extern int log2N (); /* minimum number of bits to use */
int N; /* number of bits to pop */
N = log2N (num_ptrs (curnode));
if (N == 0)

return (1); /% 1 pointer needs no bits */

else return (pop_bits (log2N (num_ptrs (curnode))) + 1);



Appendix C

Tracing By Moving

NODE *trace_by._moving (start) /* move tree of nodes */

NODE *start; /* the node to move first */

{
extern void copy_node (); /* copy a node */
extern int fwding_ptr (); /* is the node already moved? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /* returns nth pointer in node %/
extern void set_ptr (); /* replace nth pointer in node */
extern int node_size (); /% return size of node in bytes */
extern char *new_space (); /* get big, empty memory region */
int ptrnum; /* pointer number in curnode */
NODE *curptr; /* current pointer in curnode */
NODE *curnode; /* node currently being processed */
char *next_free; /* next free pos in new-space */
char *rescan; /* nodes to pointer-adjust */

/* : acquire new space */
next_free = new_space ();
rescan = next_free;

/* : move the root node to new space */
copy_node (start, next_free);
set_ptr (start, 1, next_free); /% leave fwding ptr behind */
start = next_free; /* remember where we moved start */
next_free += node_size (start);

/* : adjust all pointers in new space */
while (rescan != next_free) {
curnode = (NODE *) rescan;
for (ptrnum = 1; ptrnum < num_ptrs (curnode); ptrnum++) {
curptr = get_ptr (curnode, ptr_num);
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/¥ :* pointers to forwarding pointers are simply replaced %/
if (fwd_ptr (get_ptr (curptr, 1)) == YES)
set_ptr (curnode, ptr_num, get_ptr (curptr, 1));

/* % unmoved nodes are moved & the new address is the new pointer */

else {
copy._node (curptr, next_fres); /* copy node */
set_ptr (curptr, 1, next_free); /* set fuding ptr */

set_ptr (curnode, ptr_num, next_free); /* adjust ptr */
next_free += node_size ((NODE *) curptr);
}

} /* end of for all pointers */

/* : make the rescan pointer point at the next node in new-space */
rescan += node_size ((NODE *) rescan);
} /* end of adjust all pointers */
return (start); /* return new location of start */
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Appendix D

Optimized Tracing By Moving

NODE *trace_by_moving (start) /* move all nodes in tree */

NODE *start; /* the node to move first */

{
extern void copy_node (); /* copy a node */
extern int fwding_ptr (); /* is the node already moved? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /* returns nth pointer in node */
extern void set_ptr (); /* replace nth pointer in node */
extern int node_size (); /* return size of a node in bytes */
extern char *new_space (); /* get big, empty memory region */
int ptrnum; /* pointer number in curnode */
NODE *curptr; /* current pointer in curnode */
NODE *curnode; /* node currently being processed */
NODE *new_node; /* where to copy curnode to */
char *next_free; /* next free pos in new-space */
NODE *rescan; /* nodes to pointer-adjust */
NODE *cs_result; /* result of copying list */

/* : acquire new space */
next_free = new_space ();
rescan = NIL;

/*

copy the start node to new space */

new_node = (NODE #) next_free;

next_free = next_free + node_size (start);

copy_node (start, new_node);

set_ptr (start, 1, new_node); /* leave fwding pointer behind */
start = new_node; /* remember where start was moved */

/% :* check if the start node needs to be added to the rescan list */
if (num_ptrs (start) > 1) {
set_ptr (start, 2, rescan);
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rescan = start,;

/* :¥ check if the start node is too small to add to the rescan list */
else if (num_ptrs (start) == 1)
copy_singles (new_node, &next_free, &rescan);

/* : rescan everything on the rescan list */
while (rescan != NIL) {
curnode = get_ptr (rescan, 1);
rescan = get_ptr (rescan, 2);
for (ptrnum = 1; ptrnum < num.ptrs (curnode); ptrnum++) {
curptr = get_ptr (curnode, ptr_num);

/* :* simply replace pointers to forwarding pointers */
if (fwd_ptr (get_ptr (curptr, 1)) == YES)
set_ptr (curnode, ptr_num, get_ptr (curptr, 1));

/* :* copy nodes which have not yet been forwarded */
else {
new_node = (NODE *) next_free;
next_free += node_size (curnode);

copy_node (curptr, new_node); /* copy node */
set_ptr (curptr, i, new_node); /* fuding ptr */
set_ptr (curnode, ptr_num, new_node); /* adjust ptr */

/* %% check if the copied node must be added to the rescan list */
if (num_ptrs (new_node) > 1) {
set_ptr (curptr, 2, rescan);
rescan = curptr;

}

/% :x* check if the copied node is too small to add to the rescan list */
else if (num_ptrs (new_node) == 1)
copy.singles (new_node, &next_free, &rescan);
¥ /* end of copy all other nodes */
} /* end of for all pointers %/
} /* end of rescan the rescan list */
return (start); /* return new copy of start */

}

/* Curnode contains a single pointer field and so cannot be added to the */
/% rescan list. Chase that pointer and copy the node it points at to */

/* new space. Continue chasing all pointers as long as their targets are */
/* nodes containing a single pointer */
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void copy.singles (curnode, next_free, rescan)

NODE *curnode;
char **next_free;
NODE **rescan;

/* single pointer node to chase */
/* start of free new-space memory */
/* start of rescan list */

{
NODE *curptr;

/* : replace forwarding pointers */
do {
curptr = get_ptr (curnode, 1);
if (fwd_ptr (get_ptr (curptr, 1))) == YES)
set_ptr (curnode, 1, get_ptr (curptr, 1));

/* : copy nodes which have not yet been forwarded */
else {

new_node = (NODE *) next_free;
new_node = (NODE *) *next_free;
*next_free += node_size (curnode);
copy_node (curptr, new_node);
set_ptr (curptr, 1, new_node);
set_ptr (curnode, ptr_num, new_node);

/* the pointer in the node */

/* copy node */
/* fwding ptr */
/* adjust ptr */

/% : check if the copied node must be added to the rescan list */

if (num_ptrs (new_node) > 1) {
set_ptr (curptr, 2, rescan);
rescan = curptr;

}

/% : check if the copied node is too small to add to the rescan list */

while (num_ptrs (new_node) == 1);
return;
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Appendix E

Jonkers’ Sliding Compaction
Algorithm

void
NODE
char
long

/*

/*

compact (rootnode, start_of_memory, memory_size)

*rootnode;
*start_of_memory;
memory_size;

int ptrnum;
NODE *curptr;
NODE *curnode;
char *newpos;

extern void ptr.reversal_mark ();

extern
extern
extern
extern
extern
extern
extern

int is_marked ();
int num_ptrs ();
NODE #get_ptr ();
void set_ptr ();
int node_size ();
void chain ();
void unchain ();

3

/*
/*
/%

/*
/*
/*
/*

/*
/*
/%
/*
/*
/*
/%
/*

pass 1 - pointer reversal marking */

ptr_reversal_mark (rootnode);

newpos = start_of_memory;
for (curnode =

root of tree of used nodes %/
the lowest address in memory */
the number of bytes in memory */

pointer number in curnode */
current pointer in curnode */
the node being processed */

new position for this node */

ptr-reverse-mark tree of nodes */
is the node marked? */

number of pointers in node */
returns nth pointer in node */
replace nth pointer in node */
size of a node in bytes */

add a node to reference chain */
adjust ptrs in reference chain */

! pass 2 - visit every used node in memory */

(NODE *) start_of_memory;

curnode < (NODE *) (start_of_memory + memory_size);

curnode =
if (is_marked (curnode)) {

(NODE *) (((char *) curnode) + node_size (curnode))) {

/* :* do pointer adjustments of all forward pointers to this node */
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unchain (curnode, newpos);

/* :x prepare each pointer in the node for future pointer adjustment */
for (ptrnum = 0; ptrnum < num_ptrs (curnode); ptrnum++) {

/* curptr points to the node containing it? */
if (get_ptr (curnode, ptrnum) == curnode)
set_ptr (curnode, ptrnum, new_node);

/* curptr is either a forward or a backwards pointer */
else chain (curnode, ptrnum);

}

/* :* adjust predicted location of next used node */
newpos += node_size (curnode);

3

/* : pass 3 - visit every used node in memory */
newpos = start_of_memory;
for (curnode = (NODE #) start_of_memory;
curnode < (NODE #) (start_of_memory + memory_size);
curnode = (NODE *) (((char *) curnode) + node_size (curnode))) {
if (is_marked (curnode)) {

/* % copy the node to its new home */
copy_node (curnode, newpos);

/* :% do pointer adjustment on all backwards pointers to this node */
unchain (newpos, newpos);

/* :* adjust predicted location of next used node */
newpos += node_size (curnode);
}
}
return;

}

/* chain a pointer to a node */
void chain (curnode, ptrnum);

NODE *curnode; /* node containing the pointer */
int ptrnum; /* index of ptr to chain */
{
NODE #*nodeptraddr; /* address of pointer in node */
long oldcontents; /* contents of ptr-sized field */
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/*

/*

}

int need_end_of_chain; /* need to set end of chain bit */

extern char **get_ptr_addr (); /* return addr of nth ptr in node */
extern void set_ptr (); /* replace nth pointer in node */
extern long get_ptr_sized_field ();/* get value of ptr-sized field */
extern void set_ptr_sized_field ();/* sets ptr-sized field */

extern int ptr_sized field was_set (); /* was ptr-sized field set? */
extern void set_end_of_chain (); /* indicate target of ptr is eoc */

chain ptr-sized field to the location containing current ptr */

nodeptraddr = get_ptr_addr (curnode, ptrnum);

oldcontents = get_ptr_sized_field (*nodeptraddr);

if (ptr_sized_field_was_set (*nodeptraddr) == NO) {
set_ptr_sized field (set_end_of_chain (nodeptraddr));

else set_ptr_sized_field (nodeptraddr);

replace the current pointer with old contents of ptr target */
*nodeptraddr = oldcontents;
return;

/% adjust pointers in a chain of references to a location */
void unchain (curnode, newpos)

NODE *curnode; /* node which is start of chain */
NODE *newpos; /* new position for node */
{
NODE **curptraddr; /* pointer to pointer to adjust */
NODE **nextptraddr; /* ptr to next ptr to adjust */

/*

/*

extern long get_ptr_sized field ();/# get value of ptr-sized fields/
extern void set_ptr_sized_field ();/* sets ptr-sized field %/

extern void reset (); /* ptr-sized field is not set */
extern int ptr_sized_field_was_set (); /* was ptr-sized field set? */
extern void end_of_chain (); /* indicate target of ptr is eoc */

check if there’s any unchaining to do at all */
if (ptr_sized_field_was_set (curnode) == YES) {

: keep adjusting pointers until the end of chain looms */

for (curptraddr = (NODE #*) get_ptr_sized_field (curnode);
end_of_chain (curptraddr) == NO;
curptraddr = (NODE **) nextptraddr) {

nextptraddr = (NODE **) *curptraddr; /* save chain ptr */
*curptraddr = newpos; /* adjust ptr */
}
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/* : adjust the end of the list */

*curptraddr = newpos; /¥ adjust last ptr */
set_ptr_sized field (curnode, *curptraddr); /* restore field */
reset (curnode); /* reset indicator */
}
return;
}
o
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Appendix F

Lang and Dupont’s Hybrid
Incrementally Compacting Algorithm

/* NOTES

The procedure update_stats is not included here. The question
"What is a good heuristic for determining which region of
memory to designate as old-space?" is still open.

*/

/* information describing memory (containing a single compaction region) */
struct memory {

char *low; /* lowest address in memory */
char ¥high; /* highest address in memory */
char *lold; /* lowest address old space */
char *hold; /* highest address in old space */
char *1lnew; /* lowest address in new space */
char *hnew; /* highest address in new space */
};

/* the structure of an item on the free list */
struct free_item {

long size; /* number of bytes item */
struct free_item *next; /* next free item in list %/
};

/* the hybrid garbage collector */

NODE *collect (mem, root) /* returns the free list */
NODE *root; /* root node of used node tree */
struct memory *mem; /* description of memory */
{
extern NODE *markall (); /* mark all of memory */
extern struct fstats *sweep (); /* sweep memory, return stats */
extern void add_free (); /* add a region to free list */
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/*

/*

/*

/*

extern struct free_item *free_list;
struct fstats stats; /*

/* the free memory blocks */
statistics about the free list */

NODE *next_free; /* next free loc in new-space */

: mark all of memory */

next_free = markall (root, mem);

sweep all of mark-and-sweep memory */
sweep (mem, &free_list, &stats);

: add the unused portion of new-space to the free list */
add_free (next_free, mem -> hnew - next_free + 1, &free_list);

: move the compaction region to its new home */

if (stats.resize == NO) {
mem -> lnew
mem -> hnew = mem —-> hold;

mem -> lold; /* just use old-space %/

}
else {
mem -> lnew = stats.lold; /* use what stats says to */
mem -> hnew = stats.hold;
}
mem -> lold = stats.lold;
mem -> hold = stats.hold;

return (free_list);

/* mark all of the used nodes in memory */
NODE *markall (mem, root)
struct memory mem; /*

NODE *root; /*
{
extern int num_ptrs (); /*
extern NODE *get_ptr (); /*

extern void set_ptr (); /*
extern int node_size (); /*

extern void mark (); /*
int ptrnum; /*
NODE *curptr; /%
NODE *curnode; /*
char *next_free; /*
char *rescan; /*

what memory looks like */
the root of all in-use nodes */

number of pointers in node */
returns nth pointer in node */
replace nth pointer in node */
size of a node in bytes */
pointer-reverse mark a subtree */

pointer number in curnode */
current pointer in curnode */
node currently being processed */
next free pos in new-space */
list of nodes to ptr-adjust */
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/*

/¥

/*

INIT %/
next_free = mem -> lnew;
rescan = next_free;

mark the root node */
mark (root, mem, &next_free);

adjust all pointers in all nodes new space */
while (rescan != next_free) {
curnode = (NODE *) rescan;
for (ptrnum = 1; ptrnum < num_ptrs (curnode); ptrnum++) {
curptr = get_ptr (curnode, ptr_num);
mark (curptr, mem, &next_free);
if (in_old_space (curptr, mem) == YES)
set_ptr (curnode, ptr_num, get_ptr (curptr, 1));
} /* end of for all pointers */
} /* end of adjust all nodes */
return (next_free);

/* pointer reversal tracing #/

void mark (start, mem, next_free) /* mark reachable nodes */

NODE *start; /* node to start marking from */

struct memory *mem; /* what memory looks like */

char **next_free; /* next free pos in new-space */

{
extern void turn_on_mark (); /% turn on mark bit in a node */
extern int already_marked (); /* is the node already marked? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /* returns nth pointer in node */
extern void set_ptr (); /* replace nth pointer in node */
extern void push_pos (); /* save pos info using min bits */
extern void pop_pos (); /* restore node position */
extern void copy_node (); /% copy a node */
extern int fwding_ptr (); /* is the node already moved? */
int ptrnum; /* pointer number in curnode */
NODE *curnode; /* node being processed */
NODE *prevnode; /* previous value of curnode */
NODE *next; /* next value of curnode */

/* : mark the subtree rooted at start */

curnode = start;
prevnode = NIL;
ptr_num = 0;
while (TRUE) {
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/* : descend as far in the tree as possible */
while (TRUE) {

/* : copy nodes in old-space to new-space and stop descending */
if (in_old_space (curnode, mem) == YES) {

if (fwding_ptr (curnode, mem) == NO) {
copy_node (curnode, *next_free);
set_ptr (curnode, 1, *next_free);
}

break; /* stop descending */

}

/* : nodes already marked mean stop descending */
if ((already_marked (curnode) == YES) || (curnode == NIL))
break; /* stop descending */

/* :* mark a node and its descendants */
turn_on_mark (curnode);
ptr_num++;
if (ptr_num <= num_ptrs (curnode)) {
if (get_ptr (curnode, ptr_num) != NIL) {
next = get_ptr (curnode, ptr_num);
set_ptr (curnode, ptr_num, prev); /* rev ptrs */
push_pos (curnode, ptr_num); /* save pos */
prev = curnode;
curnode = next;
ptr_num = 0;
}
}

/* no more descendants - stop descending */
else break;
}

/* : back up to a point where further descent is possible */
while (TRUE) {

/* no more backing up is possible, the subtree is traced */
if (prev == NIL)
return;

/* :* back up a step */
nth_ptr = pop_pos (prev);
next = get_ptr (prev, nth_ptr); /* get reversed ptr */
set_ptr (prev, nth_ptr, curnode); /* restore list */
curnode = prev;
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prev = next;

/* :* stop backing up when a node can be traced further */
if (nth_ptr < num_ptrs (curnode))
break;

}

/* determine whether or not a node is in old space */
int in_old_space (curnode, mem)

NODE *curnode; /* the node in question */
struct memory *mem; /* what memory looks like */
{

return ((curnode >= mem -> lold) && (curnode <= mem -> hold));
b

/* sweep all of ms-space */
void sweep (mem, free_list, stats);

struct memory *mem; /* new description of memory */
struct free_item **free_list; /* next free pos in new-space */
struct fstats *stats; /* fragmentation statistics %/
{
extern void sweep_region (); /* sweep a region of memory */
extern void update_stats (); /* update fragmentation stats */
/* : INIT %/

*free_list = NIL;

/* : sweep all of ms-space, adding unused stuff to the free list */

if (mem -> lold == NIL) /* is all of memory ms-space? */
sweep_region (mem -> lold, mem ~> hold, free_list, stats);
else {

sweep_region (mem ~> low,

min (mem -> lold, mem -> hold) - 1, free_list, stats);
sweep_region (min (mem ~> hold, mem -> hnew) + 1,

max (mem -> lold, mem -> lnew) - i, free_list, stats);
sweep_region (max (mem -> hold, mem -> hnew) + 1,

mem -> high, free_list, stats);

}

/% : tell the statistics subsystem that the sweep of ms-space is complete */
update_stats (stats, mem, NIL);
return (stats);
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/* sweep a region of memory */
void sweep_region (low, high, free_list, stats)

char *low; /* lowest address in region */

char *high; /* highest address in region */

struct free_item **free_list; /* current free list */

struct fstat *stats; /* fragmentation statistics */

{
extern int already_marked (); /* is the node already marked? */
extern int node_size (); /* size of a node in bytes */
extern void add_free (); /* add something to free list */
extern void update_stats (); /* update fragmentation stats */
NODE *curnode; /* the node being examined */
NODE *freenode; /* a free node */

/* : visit every node in the region */
curnode = (NODE *) low;
while (curnode < (NODE *) high) {

/* : skip in-use nodes
while ((already_marked (curnode) == YES) &&
(curnode < (NODE #) high))
((char *) curnode) += node_size (curnode);

/* : add ununsed nodes to the free list */
freenode = curnode;
while ((already_marked (curnode) == NO) &%
(curnode < (NODE *) high))
((char *) curnode) += node_size (curnode);
if (freenode < (NODE *) high) {
add_free (curnode, curnode - freenode, fl1);

update_stats (stats, mem, freenode, curnode - freenode)

}
}
return;

}

/* add a region of memory to the free list */
void add_free (item, size, free_list);

struct free_item *item; /* item to add to free list */
long size; /* size of item */

struct free_item **free_list; /* the current free list */

{

/¥ : check if the item is big enough */
if (size >= sizeof (struct free_item)) {
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item -> size = size;

item -> next = *free_list;
*free_list = item;

}

return;



Appendix G

Ginter’s Hybrid Incrementally
Compacting Algorithm

/* NOTES

The procedure update_stats is not included here. The question
"What is a good heuristic for determining which region of
memory to designate as old-space?" is still open.

*/

/* information describing memory */
struct memory {

char *low; /* lowest address in memory */
char *high; /* highest address in memory */
char *lold; /* lowest address in old-space */
char *hold; /* highest address in old-space */
};

/* the structure of an item on the free list */
struct free_item {

struct free_item #*next; /* next free item in list */
long size; /* size of this free item */
};

/* the structure of the free list */
struct free_list {

struct free_item *first; /* first emtry in the list */
struct free_item *last; /* last entry in the list */
3

/* the structure of a sequential position in the free list */
struct free_pos {

-

struct free_item *current; /¥ current free list entry */
char *end; /* the end of the current entry */
char *curpos; /* current position in this entry */
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extern int node_type ();
extern int type2num ();

/*
/*

returns the type of a node */
number of ptrs in node type */

return (type2num (node_type (curnode)));

}

/* return the Nth pointer in a node */

NODE *get_ptr (curnode, n)
NODE *curnode;
int n;
{
extern int node_type ();
extern int ptroffset ();

/*
/*

/*
/*

the node we’re interested in */
the ptr we’re interested in */

return type of a node */
offset of ptr in that type */

return (*((NODE **) (((char *) curnode) +
(ptroffset (node_type (curnode), n)))));

}

/* set the Nth pointer in a node */
void set_ptr (curnode, n, newval)

NODE *curnode;

int n;

NODE *newval;

{
extern int node_type ();
extern int ptroffset ();

int offset;

/*
/*
/%

/*
/*

/*

the node we’re interested in */
the ptr we’re interested in */
new value for that pointer */

determine the type of a node */
offset of ptr in that type */

the offset of the pointer */

offset = ptroffset (node_type (curnode), n);
*((NODE **) (((char *) curnode) + offset)) = newval;

return;

/* mark all of the used nodes in memory */
struct free_item *markall (mem, root, f1)

struct memory mem;

NODE *root;

struct free_list *fl;

{
extern int node_type ();
extern int type2num ();
extern int ptroffset ();
extern int type2size ();
extern void read_bytes ();

extern struct free_item *write_bytes ();
extern void move_to_pos ();

extern void init_pos ();

extern struct free_item *mark ();

/*
/*
/*

/[*
/%
/%
/*
/*

/*
/*
/*

what memory looks like */
the root of all in-use nodes */
the free list */

determine the type of a node */
number of ptrs in that type */
offset of ptr in that type */
size of a type of node */

read from free-list */

/* write to free-list */
move to a virtual position */
init free_pos data structure */
ptr-reverse mark a subtree */

64



/%

/*

/*

/*

/*

int ptrnum; /* pointer number in curnode */
P po

NODE *curptr; /* current pointer in curnode */
char *curnode; /* virtual pos of current node */
struct fp next_free; /* next free pos in new-space */
struct fp rescan_read; /* read here for ptr-adjusting #*/
struct fp rescan_write; /* write here for ptr-adjusting */
int curtype; /* type of curnode */

int offset; /* current offset in curnode */
struct free_item *first_fwd; /* first entry to chain fwds */
struct free_item *result; /* result of mark */

INIT */

if (mem -> lold != NIL) {
init_pos (&next_free, f1, mem);
init_pos (&rescan_read, f1, mem);
init_pos (&rescan_write, fl, mem);
}

first_fwd = NIL;

: mark the root node */

result = mark (root, mem, &next_free);
if (result != NIL)
first_fwd = result;

adjust all pointers in all nodes in new space */
for (curnode = mem -> lold; curnode < next_free.virtpos;
curnode += type2size (curtype)) {
move_pos (&rescan_read, curnode);
curtype = node_type (rescan_read.curpos);
for (ptrnum = 1; ptrnum < type2num (curtype); ptrnum++) {

* get the current pointer */
offset = ptroffset (curtype, ptrnum);
move_pos (&rescan_read, curnode + offset);
read_bytes (&rescan.read, &curptr, sizeof (curptr));

: mark it and adjust it *:/

result = mark (curptr, mem, &next_free);

if (result != NIL)
first_fwd = result;

if (in_old_space (curptr, mem) == YES) {
curptr = get_ptr (curptr, 1);
move_pos (&rescan_write, curnode + offset);
write_bytes (&rescan_write, &curptr, sizeof (curptr));
}

} /* end of for all pointers */
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} /* end of adjust all nodes */
return;

/% pointer reversal tracing */
struct free_item *mark (start, mem, next_free)

NODE *start; /* node to start marking from */

struct memory *mem; /* what memory looks like */

struct free_pos *next_free; /* next free pos in new-space */

{
extern void turn_on_mark (); /% turn on mark bit in a node */
extern int already_marked (); /* is the node already marked? */
extern int num_ptrs (); /* number of pointers in node */
extern NODE *get_ptr (); /* returns nth pointer in node */
extern void set_ptr (); /* replace nth pointer in node */
extern void push_pos (); /* save pos using minimum bits */
extern void pop_pos (); /* restore node position */
extern int fwding ptr (); /* is the node already moved? */
extern struct free_item *write_bytes (); /* write to free space */
extern void move_pos (); /* move to a virtual position %/
int ptrnum; /* pointer number in curnode */
NODE *curnode; /* node being processed */
NODE *prevnode; /* previous value of curnode */
NODE *next; /* node to process next */
struct free_item *first_back; /* first node to chain bkwds */
struct free_item *result; /* result of write_bytes op */

/% 1 INIT */

first_back = NIL;

/* : mark the subtree rooted at start */
curnode = start;
prevnode = NIL;
ptr_num = O;
while (TRUE) {

/* : descend as far in the tree as possible */
while (TRUE) {

/* : copy nodes in old-space to new-space and stop descending */
if (in_old_space (curnode, mem) == YES) {
if (fwding_ptr (curnode, mem) == NO) {
result = write_bytes (next_free, curnode,
node_size (curnode));
if (result != NIL)
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first_back = result;
set_ptr (curnode, 1, next_free -> virtpos);
}

break; /* stop descending */

}

/* : nodes already marked mean stop descending */
if ((already_marked (curnode) == YES) || (curnode == NIL))
break; /* stop descending */

/* :* mark a node and its descendants */
turn_on_mark (curnode);
ptr_num++;
if (ptr_num <= num_ptrs (curnode)) {
if (get_ptr (curnode, ptr_num) != NIL) {
next = get_ptr (curnode, ptr_num);
set_ptr (curnode, ptr_num, prev); /* rev ptrs */
push_pos (curnode, ptr_num); /* save pos */
prev = curnode;
curnode = next;
ptr_num = 0;
}
}

/* 1o more descendants - stop descending */
else break;
}

/* : back up to a point where further descent is possible */
while (TRUE) {

/* no more backing up is possible, the subtree is traced */
if (prev == NIL)
return (first_back);

/* :¥ back up a step */
nth_ptr = pop_pos (prev);
next = get_ptr (prev, nth_ptr); /* get reversed ptr */
set_ptr (prev, nth_ptr, curnode); /* restore list */
curnode = prev;
prev = next;

/% :* stop backing up when a node can be traced further */
if (nth_ptr < num_ptrs (curnode))
break;

}
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/* determine whether or nmot a node is in old space */
int in_old_space (curnode, mem)

NODE #*curnode; /* the node in question */
struct memory *mem; /* what memory looks like */
{

3

return ((curnode >= mem -> lold) && (curnode <= mem -> hold));

/* sweep all of ms-space */
void sweep (mem, f1, stats);

struct memory *mem; /* new description of memory */

struct free_list *fl; /* the free list */

struct fstats *stats; /* fragmentation statistics */

{
extern int already_marked (); /* is the node already marked? */
extern int node_size (); /* number of bytes in node */
extern void add_free (); /* add a region to free list */
extern void update_stats (); /* update fragmentation stats */
NODE *curnode; /* the node being examined */
NODE *freenode; /* a free node */

/% : visit every node in the region */

/*

/*

/*

curnode = (NODE #*) (mem -> low);
while (curnode < (NODE *) (mem -> high)) {

skip in-use nodes
while ((already_marked (curnode) == YES) &&
(curnode < (NODE *) (mem -> high)))
((char *) curnode) += node_size (curnode);

add ununsed nodes to the free list */

freenode = curnode;

while ((already_marked (curnode) == K0) &&
(curnode < (NODE *) (mem -> high)))
((char *) curnode) += node_size (curnode);

if (freemode < (NODE *) (mem -> high)) {
add_free (curnode, curnode - freenode, fl);
update_stats (stats, mem, freenode, curnode - freenode);

3

determine where old-space should be located */
update_stats (stats, mem, NIL, OL);
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return;

/% copy the contents of the free list back into old-space */
void copy_free_list (f1, mem, first_fwd)

struct free_list *fl; /* the free list */
struct memory *mem; /* what memory looks like */
struct free_item *first_fwd; /* first entry to chain forwards */
{
extern void memcpy (); /* copy memory */
struct free_item *curitem; /* current free item */
struct free_item *previtem; /* previous free item */
struct free_item *nextitem; /* next free item %/
struct free_item *first_back; /* beginning of backwards chain */
struct free_item *first_fwd; /* beginning of forwards chain */
char #curpos; /* cur virt pos in old-space */
int cursize; /* size of current item */
char *fwdpos; /* pos to start forward copying */
/* . search for the last free entry to copy backwards */

/%

/*

previtem = NIL;

curpos = mem -> lold;

for (curitem = f1 -> first; curitem != first_fwd; curitem = nextitem) {
curpos += curitem -> size - (sizeof struct free_item);
nextitem = curitem -> next; /¥ reverse links for bkwd copy */
curitem -> next = previtem;
previtem = curitem;
¥

first_back = previtem;

first_fwd = curitem;

fwdpos = curpos;

: copy backwards each of the entriis which must be copied backwards */

for (curitem = first_back; curiten != NIL; curitem = curitem -> next) {
cursize = curitem -> size - simeof (struct free_item);
memcpy (curpos - cursize, ((char *) curitem) + cursize, cursize);
curpos —-= cursize;

}

: copy forwards each of the entries which must be copied forwards */

curpos = fwdpos;

for (curitem = first_fwd; curitem != NIL; curiter = curitem -> next) {
cursize = curitem -> size - sizeof (struct free_item);
memcpy (curpos, ((char *) curitem) + cursize, cursize);
curpos += cursize;

}



/* : restore the free list */
if (first_back != NIL) {
if (first_fwd == NIL)
fl ~> last = f1 -> first;
fl -> first -> next = first_fwd;
fl -> first = first_back;
}

return;

/* add a region of memory to the free list */
void add_free (item, size, f1);

struct free_item *item; /* item to add to free list */
long size; /* size of item */

struct free_list *fl; /* the current free list */

{

/% : check if the item is big enough to put on the free list */
if (size >= sizeof (struct free_item)) {
item -> size = size;
if (£f1 -> last != NIL)
fl -> last -> next = item;
item -> next = NIL;
f1 -> last = item;
if (f1 -> first == NIL)
f1 -> first = item;
}
return;

}

/* initialize a free_pos data structure */
void init_pos (pos, fl, mem)

struct free_pos *pos; /* the thing to initialize %/
struct free_list *fl; /* the free list */
struct memory *mem; /* what memory looks like */
{

struct free_item *curitem; /* current free item %/

/% : find the first free element large enough to hold additional info */
for (curitem = f1 -> first;

curitem -> size == sizeof (struct free_item);
curitem = curitem -> next);

/% : initialize the data structure */
pos —> current = (char *) curitem;
pos -> end = pos -> current + curitem -> size;
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pos -> curpos = pos -> current + sizeof (struct free_item);
pPos => virt_pos = mem -> lold;
return;

¥

/% seek forward to the desired virtual position */
void move_pos (pos, destpos)

struct free_pos *pos; /* current position in free list */
char *destpos; /* desired virtual position */
{
int delta; /* how much to adjust position */
struct free_item *curitem; /* current unused item */

/* : is the desired location within the current unused item? %/
delta = destpos - pos ~> virtpos;
if (pos -> curpos + delta < pos -> end)
pos —> curpos += delta;

/* : search for the unused item containing the desired location */
else {
delta -= (pos -> end - pos => curpos);
curitem = pos -> current -> next;
while (delta > (curitem -> size - sizeof (struct free_item))) {

delta -= curitem -> size - sizeof (struct free_item);
curitem = curitem -> next;
}

/* : make that item the current item */
pos -> current = curitem;
pos -> end = ((char *) curitem) + curitem -> size;
pos => curpos = ((char *) curitem) + curitem -> delta;
pos -> virtpos = destpos;
}
return;

}

/* write information sequentially to unused storage - return the first */
/* item which must be processed forwards rather than backwards */
struct free_item *write_bytes (pos, from, bytes)

struct free_pos *pos; /* current position in free list */
char *from; /* what to write */
int bytes; /* how much to write %/
{
extern void memcpy (); /* copy memory */
int backwards; /* started with bkwds stuff */
struct free_item *last_back; /* the last backwards item */
struct free_item *prev; /* previous unused item */
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int cursize; /* num bytes to copy this time */

: INIT %/

last_back = NIL;

: remember whether we’re processing forwards or backwards at the start */
if (pos -> virtpos > pos -> curpos)

backwards = YES;
else backwards = NO;

: write as much as possible into the current unused item */
cursize = pos -> end - pos -> curpos;
if (cursize > bytes)
cursize = bytes;
if (cursize > 0)
memcpy (pos -> curpos, from, cursize);
pos -> curpos += cursize;
pos => virtpos += cursize;
from += cursize;
bytes -= cursize;

: keep writing to additional items until we’re finished writing */
while (bytes > 0) {
prev = pos;
pos ~> current = pos -> current -> next;
pos => curpos = ((char *) pos -> current) +
sizeof (struct free_item);
if ((pos -> curpos <= pos -> virtpos) && backwards == YES)
last_back = prev;
cursize = pos -> current -> size - sizeof (struct free_item);
if (cursize > bytes)
cursize = bytes;
if (cursize > 0)
memcpy (pos -> curpos, from, cursize);
pos -> virtpos += cursize;
from += cursize;
bytes -= cursize;

}

: update the position info */

pos -> curpos += cursize;

pos -> end = pos -> curpos + pos -> current -> size -
sizeof (struct free_item);

return (last_back);
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/* read information sequentially from unused storage */

void read_bytes (pos, to, bytes)
struct free_pos *pos;

char *to;
int bytes;
{

extern void memcpy ();

int cursize;

/%
/*
/*
/*

/*

current position in free list */
where to read to */
number of bytes to read */

copy memory */

num bytes to copy this time */

/* : read as much as possible from the current unused item */
cursize = pos -> end - pos -> curpos;

if (cursize > bytes)
cursize = bytes;
if (cursize > 0)

memcpy (to, pos -> curpos, cursize);

pos -> curpos += cursize;
pos => virtpos += cursize;
to += cursize;

bytes -= cursize;

/* : keep writing to additional items until we’re finished writing */

while (bytes > 0) {

pos -> current = pos -> current -> next;

pos -> curpos = ((char *) pos -> current) +
sizeof (struct free_item);

cursize = pos -> current -> size ~ sizeof (struct free_item);

if (cursize > bytes)
cursize = bytes;
if (cursize > 0)

memcpy (to, pos -> curpos, cursize);

pos —> virtpos += cursize;
from += cursize;
bytes -= cursize;

X

/* : update the position info */
pos -> curpos += cursize;

pos -> end = pos -> curpos + pos -> current -> size -

sizeof (struct free_item);
return;
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Appendix H
Baker’s Re-rooting Algorithm

/* reroot an environmment list %/
NODE *reroot (leaf)

NODE *leaf; /* the new root node */

{
NODE *root; /* the 0ld root node */
NODE *curnode; /* the current node in the list */
NODE *next; /* the next node in the list */
NODE *prev; /* the previous node in the list #*/
NODE #value; /* the current lambda value */
NODE #*symbol; /* symbol the value is bound to */
extern NODE *car (); /* return the CAR of a list */
extern NODE *set_car (); /* modify the CAR of a list */
extern NODE *cdr (); /* return the CDR of a list */
extern NODE *set_cdr (); /* modify the CDR of a list */
extern NODE *get_value (); /* return value cell of a symbol %/
extern NODE *set_value (); /* modify value cell of a symbol */

/* : traverse the path from leaf to root, reversing the list as you go */
prev = NULL;
curnode = leaf;
while (curnode != NULL) {
next = cdr (curnode);
set_cdr (curnode, prev); /* reverse list */
prev = curnodes;
curnode = next;
¥

root = prev; /* remember the old root */

/* : traverse the path from root to leaf, reversing as you go */
prev = root;
curnode = cdr (root);
while (curnode != NULL) {
symbol = car (car (curnode)); /# get symbol node from binding */
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value = cdr (car (curnode)); /* get value for symbol */
set_cdr (car (curnode), get_value (symbol)); /# reverse binding */
set_value (symbol, value);
set_car (prev, car (curnode)); /* rotate one step */
prev = curnode;
curnode = cdr (curnode);
}
set_car (prev, NULL); /* turn leaf into new root */
/* (ie: complete the rotation) */

/* : return the old root node so the process can be reversed sometime */
return (root);

3
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