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Abstract 

A two-dimensional dynamic muscle model is described and assessed qualitatively. 

The model is based on a physical principle, namely the principle of virtual work, and 

includes a kinematic constraint of constant volume. 

Paying special attention to physical consistency and simplicity, this model 

incorporates consistent equilibrium considerations which relate the external muscle forces 

to the internal fibre forces. The equations describing the model are expressed by a set of 

non linear algebraic equations which are solved by the Newton-Raphson iterative method. 

The model incorporates properties of the individual muscle fibres down to the 

sarcomere level, such as the force-length and force-velocity relationships. 

Keeping with the presently accepted view of muscle structure and function, the 

assumptions underlying the model are: 

(a) muscle fibres are one-dimensional entities and 

(b) the mechanical muscle behaviour is a reflection of the active and passive 

muscle fibre characteristics exclusively. 
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1. Introduction 

Muscles are the components of the body which are capable of active contraction. 

The contraction of skeletal muscle acting on the skeletal system is responsible for 

vertebrate locomotion and movement. The study of muscle contraction is an interesting 

one which can be undertaken from many aspects; biological, chemical or mechanical to 

name a few. The scope of this thesis allows for the study to be done from a mechanical 

point of view. The transmission of forces produced by the cells through the tendinous 

sheaths is of prime concern. 

It is hoped that studying muscle behaviour from a mechanical point of view, will 

add another dimension to the body of knowledge already available in the fields of bio-

chemistry, muscle physiology, neurology, etc. Ultimately, a better understanding of any 

problem leads to an increase in the number of ways of solving that problem. In the bio-

mechanical field, this could lead to improvements in rehabilitation procedures and the 

design of prostheses. 

Muscle fibres generate forces as a result of stimuli. The mechanics of muscular 

contraction on a microscopic scale, as well as the associated active and passive muscle 

fibre characteristics, are well understood both from an experimental and theoretical point 

of view. The most widely accepted theories of muscular contraction on a microscopic 

scale, that is the Cross Bridge Theory and the Sliding Filament Theory, are results of 

relatively recent research by Huxley [1957,1974] and Gordon et al [ 1966]. 

The earliest reference to models of entire muscle dates back to the early 17'  

century. Niels Stenson ( 1638 - 1686) recognised the pinnate structure of muscle. He 
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demonstrated, based on geometrical arguments, that muscles could contract without 

changing their volume. This was in contradiction to the views held by his contemporaries 

that the animal spirit was the cause of muscle shortening. 

Muscle models can he divided into two groups; functional and geometrical muscle 

models. Only geometrical muscle models are of interest in the context of this thesis. 

The currently most cited (pinnate) muscle models have been proposed by Woittiez 

et al. [ 1983,1984] and Otten [1985, 1987a, 1987b, 19881. In general, these models are 

based on kinematic constraints, that is, the mode of muscle deformation is preordained, 

with the imposed mode of muscle deformation showing a close resemblance to the work 

of Stenson. The models incorporate the present knowledge of active and passive muscle 

fibre behaviour, and are essentially based on the assumptions of one-dimensional fibres 

with uni-directional fibre activity, non-interaction between neighbouring fibres, and the 

constancy of volume. 

Anton [ 1991] developed a model ( straight line model) based on the principle of 

virtual work in which he made use of the present knowledge of active and passive muscle 

fibre behaviour. His model, however, did not take into account any dynamic effects. 

It is, therefore, the goal of this thesis to develop a muscle model which is based 

on a physical principle and will also incorporate dynamic effects. It is envisioned that the 

muscle will be qualitative in nature. The model will be formulated using the principle of 

virtual work and the kinematic constraint of constant volume will be implemented by 

means of the method of Lagrange Multipliers. The primary concern in developing the 

muscle model is directed toward its internal consistency. The present knowledge of active 
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and passive muscle fibre behaviour will be assumed to be correct. 

The muscle model will be able to incorporate a variable number of fibre bundles 

(from two to infinity), but selection of the number of fibre bundles is somewhat limited 

by computer processing time. 

Unreferenced model comparisons to experimental results and experimental 

observations are also made with respect to experiments conducted independently of this 

thesis by Dr. Walter Herzog in his laboratory at the University of Calgary. 

The theoretical aspects of the model will be derived in the early chapters. A brief 

introduction to muscle structure, a literature review of muscle models and the muscle 

model derivation will follow. The study concludes with a number of examples which 

highlight the capabilities of the model. 



2. The Principle of Virtual Work 

The principle of virtual work, which was first formulated by Johann J. Bernoulli', 

offers an elegant way of investigating the conditions of equilibrium for a given system 

[Pestel & Thomson]. The term "virtual" is used because the work is done, or would be 

done, by the external force(s) for the imagined displacements on the system. 

n 

Figure 2.1 Particle acted upon by several forces. 

Consider a particle acted upon by several forces F,, F2, ..., F as shown in figure 

2.1. Assume that the particle undergoes a small displacement from A to X. This 

displacement is possible, but it will not necessarily take place. The forces may be 

balanced and the particle at rest, or the particle may move under the action of the given 

forces in a direction different from that of A-A'. The displacement considered is therefore 

an imaginary displacement; it is called a virtual displacement and is denoted by 5u. The 

symbol Bu represents a differential of the first order; it is used to distinguish the virtual 

Born 1667 in Basel, Switzerland; died 1748 in the same place. The name virtual work was first 
mentioned in a letter by Bernoulli to P. Varignon (1640 - 1718), who is known for his theorem concerning 
the addition of force couples. It is interesting that in the Russian literature "virtual" is translated as 
"possible." Instead of "virtual" the famous mathematician C. F. Gauss (1777 - 1855) used the word 
"facultative." 
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displacement from the displacement du which would take place under actual motion. 

Virtual displacements may be used to determine whether the conditions of equilibrium of 

a particle are satisfied. 

The work of each of the forces F1, F2, ..., F during the virtual displacement 8u 

is called virtual work. The virtual work of all the forces acting on the particle of figure 

2.1 is 

6U = F1.6u+F2.&i+...+F.öu 

= (F1+F2+ ... +F).0 

= R.0 (2.1) 

where R is the resultant of the given forces. Thus the total virtual work of the forces F1, 

F2, ..., F is equal to the virtual work of their resultant R. 

The principle of virtual work for a particle states that, if a particle is in 

equilibrium, the total virtual work of the forces acting on the particle is zero for any 

virtual displacement of the particle. This condition is necessary: if the particle is in 

equilibrium, the resultant R of the forces is zero, and it follows from eqn. (2.1) that the 

total virtual work 8U is zero. The condition is also sufficient: if the total virtual work 8U 

is zero for any virtual displacement, the scalar product R.öu is zero for any 8u, and the 

resultant R must be zero. 

In the case of a rigid body, the principle of virtual work states that, if a rigid body 

is in equilibrium, the total virtual work of the external forces and couples acting on the 

rigid body is zero for any virtual displacement of the body. The condition is necessary: 

if the body is in equilibrium, all the particles forming the body are in equilibrium and the 
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total virtual work of the forces acting on all the particles must be zero; but we have seen 

in the preceeding section that the total work of the internal forces is zero; the total work 

of the external forces must therefore also be zero. The condition is also sufficient. 

The principle of virtual work may be extended to the case of a system of connected 

rigid bodies. If the system remains connected during the virtual displacement, only the 

work of the external forces need to be considered, since the total work of the internal 

forces at the various connections is zero [Beer & Johnston]. 

Turning our attention to deformable bodies, consider a body under a system of 

generalised forces shown in figure 2.2 

Figure 2.2 Body loaded at several points. 

The principle of virtual work is stated mathematically as 

ÔU = Qôq 

where 8U represents the the work done internally by the Q-induced stresses under the 

strains engendered by the virtual deformation on. In words, the principle of virtual work 
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may be stated as follows [Bisplinghoff et al.]: 

If a deforinable body is in equilibrium and remains in equilibrium while it is subjected 

to a virtual distortion compatible with the geometrical constraints, the virtual work done 

by the external forces is equal to the virtual work done by the internal stresses. 

2.1 The equivalence of the virtual work equations to the equilibrium equations. 

It can be easily shown that the principle of virtual work (PVW) is a valid 

substitute for the usual equilibrium equations by means of a simple one dimensional 

example [Epstein]. 

A bar of variable cross section A(x) is subjected to horizontal loads as shown in 

figure 2.3. 

concentrated load P 

distributed horizontal load w 
(per unit length) 

'4  

X 
------ I- -P0 

L 

Figure 2.3 Variable X-section bar subjected to one dimensional forces 

2.1.1 Equilibrium Equation Consideration: 

Consider a thin section of the bar of thickness dx 
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dx 

From the equilibrium of forces in the x direction 

EF= 0 

or 

-aA + (; + da)(A + dA) + wdx = 0 ... (2.3) 

dividing eqn. (2.3) by dx and rearranging the resultant, we obtain, 

d(aA) 
dx + w=0 

2.1.2 Virtual Work Consideration: 

Consider the strain on a bar as shown in figure 2.4 

By definition 

dx*dx du 
ex = dx dx 

thus for a given virtual displacement, Su, the corresponding virtual strain is 

(2.4) 

(2.5) 
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U 

dx 

u+du 
 01 

'I 

dx* = (x+dx+u+du)-(x+u) 
= dx + du 

Figure 2.4 Thin section of same bar subjected to horizontal loads 

= d(ôu) 

dx 

The internal virtual work (I.V.W.) is defined as 

WW = fV (oe) (a) dV = f L d(ôu) a A dx d. 

The external virtual work (E.V.W.) is defined as 

EVW = ôu.w dx + ôii IX..La' 

(2.6) 

(2.7) 

(2.8) 

From the principle of virtual work, the internal virtual work is equal to the external 

virtual work for all compatible virtual displacements. 

fL d(ôu) a A dx = fL ôu.w dx + ôu  x=Ldx "0 (2.9) 
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Consider the left hand side, and apply the divergence theorem (integrate by parts). 

Substitute the result in eqn (2.9) to give 

fL d(8u) A dx = 1L öu.w dx + ÔULL.P 
o dx "0 

(2.10) 

This is an identity which is valid for all Bu's provided they do not violate the constraint 

(i.e. 8u vanishes at x = 0). Any equality obtained from an identity by choosing particular 

values of the variables is valid. Choose all those Su 's which vanish at both ends. These 

do not violate the constraints, with the added advantage that only the integral terms 

remain. This can be concluded for all such Bu 's 

f L 8U.  dx = L ôuw dx 
dx Jo 

(2.11) 

Eqn (2.11) is true for a wide range only if the multipliers of Bu under each integral are 

the same'. Thus we conclude 

_d(aA) - 

dx 
(2,12) 

which is the equilibrium equation. 

The boundary condition of force (namely, the stress at the right end must be P/A) 

is also obtained from eqn (2.10) at x = L. 

It will also be shown (Chapter 3) that the P.V.W. offers an advantage over 

equilibrium equation derivation by allowing the addition of constraint equations to the 

problem. ( e.g. constant volume panels, or displacement along a specified path). 

Formally, we are applying the the so-called fundamental lemma of the calculus of variations. 
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2.2 Problem Formulation: 

The particular problem that will be considered in this thesis involves a two-

dimensional space truss (used to model a muscle). The deformation due to a loading 

experienced by this truss is not restricted in magnitude. It must, however, remain in an 

in-plane direction. The constitutive equation can also be modified to represent different 

types of materials. The virtual work equations will be developed for this truss system and 

the simplicity of the method will be highlighted. 

Consider a pin-jointed space truss having M nodes. Denote by N the number of 

free (unrestrained) joints so that M-N is the total number of supports. In the present 

analysis, only fixed supports are dealt with [Epstein & Tene]. 

External forces act on the nodes and do not vary during the process of 

deformation, neither in magnitude, nor in direction. 

2.2.1 Kinematics: 

i, 

Figure 2.5 Bar i-j before and after deformation. 

Let i and j (Fig 2.5) be two nodes connected by a bar i-j. After deformation the 
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position of the nodes will be i' and j' respectively. Denote by u the displacement of node 

i, by u the displacement of node j and by dj and d',,the vectors from node i to node j 

before and after deformation, respectively. 

Using vector equalities, 

d+u = 

or d' =d +( u- u) 

are obtained. The length of d'ij is obtained from 

d' 2 

or ( dt + d )( d' - d ) = 2d . (u - u ) + ( Uj - u) . (u - u1) 

in which d' and dij are the lengths of d',,and d respectively. 

Denote 

e = du' - d ij 

Eqns. (2.16) and (2.17) yield 

(2 d +e = 2db. (Uj - u) + ( Uj - U1) 

rearranging eqn. (2.18) yields a non linear equation, 

where 

e= - d+ /d + d1.(u. — u)+(u — u1).(u — ui) 

eii is the physical elongation of the bar, 

d is the vector from node i to node j 

d1 is the length of d1 

u and Uj are the displacement vectors of node i and node j respectively. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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2.2.2 Time Dependent Quantities: 

The nature of the problem being dealt with involves velocity and acceleration 

terms. The velocity term, which is the time rate of change of elongation, is derived in this 

section. The acceleration term will be derived in chapter 4. 

Recall eqn. (2.15) 

d',2 

differentiating w.r.t time we obtain 

(a(d' ) ii  at aU .0 +  .ui] 
all, 

(2.20) 

further simplification and substitution of equations (2.15) and (2.17) gives the non linear 

result 

•, - (d+uj+u1).(üj—Uj) 
g=d ij  d' 

2.2.3 Equilibrium Equations: 

Let 

Nij = f(e,ó) 

(2.21) 

(2.22) 

represent the relationship between elongations and internal forces in the bars. Denote by 

F1 the force acting on node i. The variational form of the equilibrium equation of the 

structure is 



14 

M N N 

N1(e1,é1).ôe - F1.ôu1 = 0 
J>1 1=1 1=1 

for all 6u 's compatible with supports. 

(2.23) 

N1 ( e , o e1 is the internal virtual work of the system of bars, 
j>1 1=1 

F1. ô = o is the external virtual work of the same system, 

= (du + u3 + u).( 6 uj - öu1) 
Cjj 

d' 
U 

is the variation of eb. 

Equations (2.23) represent a non linear system of equations. These exact 

equilibrium equations are formed by equating to zero the coefficients of each of the 

independent variations 6 u1. They are valid for arbitrarily large strains and displacements 

(eqns. 2.19 & 2.21) and make use of exact kinematic equations (strain-displacement 

relations). The resulting non linear equations are written using the known initial geometry 

of the structure. It should be noted that the strain-displacement relations can be 

represented by Hooke's law for small strains, or by any other physically valid strain-

displacement relation (e.g. constitutive equation for a rubber like material) for large 

strains. 

Equation (2.23), now takes the form 

N 

41 (UP u.2, ... MN) .ôuj =0 
1=1 

(2.24 a) 

Since this equation is an identity, each of the coefficients of the 6u's will vanish 
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identically and the remaining coefficients are merely the equilibrium equations. 

= 0 i=1,2, ... ,N (2.24 b) 

One of the best methods of solution available is the Newton-Raphson method. The 

method has achieved a wide range of acceptance, particularly for large diplacements and 

stability analyses. Obviously, in order to achieve such a degree of acceptance, this 

solution procedure must possess some excellent characteristics. The most important of 

these characteristics is the ability of the procedure to converge for highly non linear 

behaviour.[Tillerson et. al.]. This method will be discussed in the next section. 

2.3 Newton-Raphson iterative method for non linear system of equations 

Consider a system of K non linear equations ( equivalent to eqn. (2.24) ) to be 

solved for K unknowns, i.e. K functional relations to be zeroed, involving variables u1, for 

i = l,2,...,K. 

f(uI,u2,u3,...,uK) = 0, i = l,2,3,...,K ... (2.25) 

Let U denote the entire vector of values u1. Then, in the neighbourhood of U, 

each of the functions f.1 can be expanded in Taylor Series: 

f(U+6U) = f1(U) + E --. AU + 0.(AU)2 i=1,2,...,K ... (2.26) 

Neglecting terms of the order iU2 and higher, we obtain a set of linear equations for the 

corrections AU that eventually yield the solution, namely, 
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where, 

and 

a1Au = 

b1 = - f 

aj=.aui -= 

8f1 &1 8f1 

a a 

N N 

a1 is called the Jacobian. 

(2.27) 

The quantity b1 represents the vector of the values of each function, whereas a 

represents the matrix of the partial derivatives of the same functions ( a is also referred 

to as the stiffness matrix ). 

Equation (2.27) is solved by LU decomposition and the corrections, AU, are then 

added to the solution vector, U: 

ui new = old + Au1, i = l,2,...,K ... (2.28) 

The process is iterated to convergence [Press et. al.]. The relative error of each function 

and its arguments is checked until satisfactory convergence is achieved. 
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2.4 Discussion: 

Having introduced the principle of virtual work and derived the equations of 

equilibrium for a two dimensional truss, the next step is the introduction of kinematic 

constraints. Specifically, the method of Lagrange Multipliers is used to link these 

constraints into the problem. This method is introduced in chapter 3 and the required 

modifications to the equilibrium equations are discussed. 

The introduction of inertia terms is done in chapter 4. A brief review of the 

relevant methods is undertaken and one particular method, the Wilson method, is 

implemented. 



3. Kinematic Constraints 

The introduction of the method of Lagrange Multipliers forms the core of this 

chapter. It is preceeded by a brief review of the determination of maxima and minima as 

relevant to the calculus of variations. The mathematical derivation of a typical kinematic 

constraint, relevant to the muscle model, is given at the end of this chapter. 

3.1 Maxima and Minima: 

Applications of the calculus of variations are concerned chiefly with the 

determination of maxima and minima of certain expressions involving unknown functions. 

Certain techniques involved are analogous to procedures in differential calculus, which 

are briefly reviewed in this section [Hilderbrand]. 

The problem of determining maximum and minimum values of a function y = f(x) 

for values of x in a certain interval (a,b) is an important one in differential calculus. If in 

that interval, f(x) has a continuous derivative, then a necessary condition for the existence 

of a maximum or minimum at a point x0 inside (a,b) is that dy/dx = 0, at x0. A sufficient 

condition that y be a maximum (or a minimum) at x0, relative to values at neighbouring 

points, is that, in addition d2y/dx2 < 0 (or d2y/dx2 > 0) at that point. 

If z is a function of two independent variables, say z = f(x,y), in a region k and 

if the partial derivatives az/ax and zThy exist and are continuous throughout R, then 

necessary conditions that z possesses a relative maximum or minimum at an interior point 

(x0, y0) of R, are that az/ax = 0 and az/ay = 0 simultaneously at (x0, y0). These two 

requirements are equivalent to the single requirement that 
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dz = az dx+-dy=0 (3.1) 

at a point (x0, yo) for arbitrary values of both dx and dy. Sufficient conditions for either 

a maximum (or minimum) involve certain inequalities among the second partial 

derivatives 

or 

A (  a2  
ax2 ax2 ay2 axay) >0 

A ( 
ax2 ax2 ay2 laxay) >0 

(3.2a) 

(3.2b) 

More generally, a necessary condition that a continuously differentiable function 

f (xi, x2, ..., x) of p variables x 1, x2, ..., x1, have a relative maximum or minimum value 

at an interior point of a region is that 

df_-!dx +.!.. dx2+... •_ Ld = 0 
ax1 a a ' 

at that point, for all permissible values of the differentials dx1, dx2, ..., dxv. 

At a point satisfying eqn. (3.3), the function f is said to be stationary. 

If the p variables are all independent, the p differentials can be assigned arbitrarily, 

and it follows that eqn (3.3) is then equivalent to the p conditions 
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af - af - = af -0 (34) 
ax1 ax2 ax 

Sufficient  conditions that values of the variables satisfying eqns. (3.3) or (3.4) actually 

determine maxima (or minima) involve certain inequalities similar to those shown in eqns. 

(3.2a) or (3.2b). 

3.2 Lagrange Multipliers and Constraints: 

Suppose that p variables are not independent, but are related by, say, R conditions 

each of the form 

I1k(Xp, ... ,xP) = 0 

Then, at least theoretically, these R equations generally can be solved to express R of the 

variables in terms of the p-k remaining variables, and hence to express f and df in terms 

of p-R independent variables and their differentials. Alternatively, R linear relations 

among the p differentials can be obtained by differentiation. These conditions permit the 

expression of k of the differentials as linear combinations of the differentials of the p-k 

independent variables. If eqn. (3.3) is expressed in terms of these differentials, their 

coefficients must then vanish, giving p-R conditions for stationary values of f which 

supplement the R constraint equations. 

A convenient alternative procedure used in these cases consists of the introduction 

of the so-called Lagrange Multipliers. To illustrate their use, consider the problem of 

obtaining stationary values of f (x,y,z) 
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df fdx + fdy + fdz 

subject to the two constraints 

(x,y,z) = 0 

Ji2 (XI y,z) = 0 

(3.5) 

(3.6a) 

(3.6b) 

Since the three variables must satisfy the two auxiliary conditions eqns. (3.6a,b), only one 

variable can be considered as independent. Eqns. (3.6a,b) imply the differential relations 

(3.7a) 

(3.7b) 

The procedure outlined above would consist of first solving eqns. (3.7a,b) for, say, dx and 

dy in terms of dz (if this is possible) and of introducing the results into eqn. (3.5), to give 

a result of the form 

df (... )dz=0 

Since dz can be assigned arbitrarily, the vanishing of the indicated expression in the 

parentheses in this form is the desired condition that f be stationary when eqns. (3.6a,b) 

are satisfied. 

As an alternative procedure, eqns. (3.7a) and (3.7b) are multiplied respectively by 

the quantities A and 42 to be specified presently, and the results added to eqn. (3.5). 

Since the right- handed members are all zeros, there follows 
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+ (f+A1qi1 +X2 r2 )dy 

+ = 0 (3.8) 

for arbitrary values of X, and X2. Let ?, and X2 be determined so that two of the 

parentheses in eqn. (3.8) vanish'. Then the differential multiplying the remaining 

parenthesis can be arbitrarily assigned, and hence that parenthesis must also vanish. Thus 

we must have 

-af 
+ A + 12 - 0 

ax ' ax ax 

af+A 8'A 2_0 
I2 ay 

- af + A + A —!. - 0 
az 'az 

(3.9a) 

(3.9b) 

(3.9c) 

Eqns. (3.9a,b,c) and eqns. (3.6a,b) comprise five equations determining x, y, z and ?,, X,. 

The quantities k, and X2 are known as the Lagrange Multipliers. Their introduction 

frequently simplifies the relevant algebra in problems of the type considered. In many 

applications, they are found to have physical significance as well. 

It should be noted that there are other types of problems which are greatly 

simplified by the introduction of Lagrange multipliers. These will not be discussed, as 

they are not relevant in the context of this thesis. 

'If two of the parentheses do not vanish, then the functions 4, and 42 would be functionally 
dependent, so that the two constraint eqns. (3.6a) and (3.6b) would be either equivalent or incompatible. 
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3.3 Implementation of Lagrange Multipliers: 

This section deals with the implementation of Lagrange multipliers in the context 

of the thesis. The notation used is consistent with that of chapter 2. Consequently, the 

terms defined in the previous section are renamed. The terms from the previous section 

are stated first and those from the previous chapter are shown as equivalent. 

f E (u) 

N' g (u) and 

x, y, and z are equivalent to u1. 

The introduction of Lagrange Multipliers modifies the virtual work calculations 

and increases the vector of unknowns by one entry per kinematic constraint. 

Recall eqn. (2.24 a) 

N 

E =0 
i=1 

which is an expression for the virtual work in terms of the known initial geometry. 

By introducing a constraint condition, say, g (u1, u2, ... , UN ) = 0 to the system, 

eqn. (2.24 a) is modified and takes the form of 

N 

E (4'ou +Aöi) + gôA = 0 
i=1 

(3.10) 

This is consistent with the derivations shown in eqns. (3.9a,b,c) and (3.6a,b). Since 

eqn. (3.10) is an identity, the coefficients of 5u and R must vanish identically, giving the 

equilibrium equations: 
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'19 Ti =4'+A-. = 0 
0u1 

g = 0 

for all eu's compatible with supports. 

In the formulation of the modified stiffness matrix, recall eqn. (2.27). 

E ajj Au = bi 

where i = 1, 2, ..., N and N is the number of unknown variables. The addition of a 

constraint condition results in an increase of the vector of unknowns by one. i.e. i = 1, 

2, ..., N+1. The Jacobian a1, which is essentially a matrix of the partial derivatives of the 

equilibrium equations, is also modified to give 

ag 

allj 

0 

Since the exact locations of each constraint equation entry in the matrix a are known, the 

modifications to the computer program are therefore simple to implement. This will be 

shown in chapter 5. 
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3.4 A Typical Constraint: 

The constancy of volume during muscle contraction forms an important part of this 

thesis. There have been many publications in the journals of biomechanics and physiology 

that deal with this issue. In this sub-section, the mathematical foundation of a constant 

volume (i.e. incompressible) "panel" will be examined. 

Consider an initial geometry as shown in figure 3.1 

Balloon type structure 
representing a fibre 
bundle 

Tendon Sheath 

Figure 3.1 Two-dimensional structure of muscle fibres between parallel tendon plates. 

where 

D is the diameter of a fibre bundle, 

k can be related to the stiffness of the tendon sheath, 

n is the number of fibre bundles, 

x is the angle formed between the fibre bundle and the tendon sheath, 

L is the distance between tendon sheaths, 

a is the distance along the tendon sheath. 



26 

By using simple trigonometry, the parameter k is calculated as k = D/sin cc. This 

can also be represented by k = a/n. 

Consider this same structure after a slight deformation as shown in figure 3.2. 

Balloon type structure Tendon Sheath 
representing a fibre 
bundle 

'In 

Figure 3.2 Two-dimensional structure after deformation. 

Assuming that the "balloons" remain in contact and preserve their volume, then 

k' = a'/n, or alternatively k' = D'/sin 0. 

From the condition of incompressibility, (or constant volume), D'2 L' = D2 L. 

Re-arranging and substituting gives, 

k2sin2c 

k'2 sin2 p 
L = L' 

Further rearranging yields a form of the equation which is easily incorporated in the 

computer program: 
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La 2sin2a - La 12 Sile La' 2sin2 = 0 

The sine of the angle is calculated from the vector product of the two intersecting vectors, 

the fibre bundle and the tendon sheath. The mathematical form of this is: 

A x B = AB sin(0) 

where A and B are vectors representing the lengths L (or L') and k (or k') respectively. 

The angle 0 represents the angle a (or ). 

The quantities a and L are easily obtained from the initial geometry and the 

quantities a' and L' are calculated in terms of the displacements. 

3.5 Discussion: 

In highlighting the simplicity of the method of Lagrange Multipliers, it is 

appropriate to point out that the imposed incompressibility constraint would be extremely 

difficult to implement by means of static analysis (performed on a node by node basis). 

Another advantage, already mentioned, is the relative ease with which the 

constraint can be implemented. This is largely due to the modelling approach employed 

in the thesis. 

Recalling eqn. (3.10) 

N 

E (4'8u + A--ôu1) + gôA = 0 
i=1 au  

(3.10) 

It can be seen, from a careful examination of this equation and keeping in mind the 

derivations of section 3.2, that different types (different g functions) and numbers of 

constraint can be easily incorporated, thereby altering the nature of the problem being 
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considered. This renders the method of Lagrange Multipliers a simple, flexible and 

attractive alternative. 



4. Time Dependent Problems and Dynamics 

41 Introduction 

In many engineering applications the inclusion of dynamic terms in the analysis 

of structures is essential. The term 'dynamic transient situations' implies that the inertia 

terms must be included in the equations of equilibrium. In certain instances widely 

different displacements are obtained from a quasi-static analysis as compared to a 

complete dynamic transient solution [Owen]. Examples where such inertia effects are 

important include the impact loading of structures due to collision, shock blast or 

explosive conditions, in which cases the loading is of high intensity and is applied for a 

short time period only. The type of structural loading can have a profound influence on 

the choice of numerical method most suitable for solution of the problem. 

The transient response analysis of structural systems generally involves the discrete 

modelling of the structure by either finite element or finite difference methods and the 

solution of large, second-order differential equations by direct time integration techniques. 

Although finite difference solutions compare well in accuracy with those obtained by use 

of the finite element method, the difficulties encountered in problems with complicated 

geometries make the finite difference method unattractive. 

Based on the general approach for solving nonlinear problems adopted in chapter 

2, however, the resulting system of governing equations for the transient dynamic problem 

becomes 

Mü1+4 1(u1,ü1) = 0 ... (4.1) 

in which the dots denote differentiation in time, and u stands for a set of parameters 
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describing the displacements. Matrix M is the structural mass matrix (generally 

independent of time or displacement). The information relevant to the applied or 

activating forces, the displacements and the velocity is contained in ct, ( u, fj ). 

The procedures for the numerical solution of eqn (4.1) can be divided into two 

classifications [Bathe and Wilson]: direct integration and modal superposition techniques. 

The direct integration methods can be further subdivided into explicit and implicit 

methods. Although the direct integration and modal superposition techniques may at first 

appear to be different, they are, in fact, closely related and the choice of method is a 

question of numerical efficiency. However, the modal superposition technique is used for 

linear problems only. 

In the methods of directly integrating the general dynamic equation (4. 1), 

assumptions are made about the variation of either the displacements or accelerations 

during small time intervals [Warburton]; e.g. it may be assumed that during a small 

interval the displacement is a cubic function of time or the acceleration varies linearly. 

With the aid of these assumptions the set of n second-order differential equations (4.1) 

is replaced by n simultaneous equations, in general; the solution of the latter gives the 

displacements at the end of the short time interval for known conditions at the beginning 

of the interval. Successive application of this procedure leads to a complete solution. A 

review of three of the methods used in implicit time integration is undertaken in the next 

sub-chapter. 
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4.2 Implicit Time Integration Methods: 

In this section, three implicit time integration methods are described. In particular, 

the Houbolt, Wilson-9 and Newmark methods are presented. 

4.2.1 The Houbolt Method: 

The method is mainly of historical significance, but it was one of the first 

procedures developed for the computer analysis of aircraft dynamics [Argyris & Mlejnek]. 

It is based upon the following system of equations: 

Mu+1+Cô+1+Ku1=F1 

0 p+1 - —(2u +1 —5u +4u 'p-2) 

clp+i = 6zt(hl'1p.1.1 lSUp '9u_1 —2u_2) 

(4.3) 

(4.4) 

where the subscript p+1 denotes the time t + t + it for which a solution is sought. By 

substituting eqns. (4.3) and (4.4) into eqn. (4.2), an equation determining u in terms of 

ui,, u and up., is obtained. This algorithm describes a 3-step method of 2'' order. As in 

the case for all multi-step procedures, the Houbolt method requires an initialisation since 

at the starting point in time to, only no, i)o and i0 are known (from the equation of 

motion). For a consistent application of eqns. (4.3) and (4.4), however, u1 and u2 are 

required. Thus, one should begin either with a single-step procedure or introduce some 

auxiliary equations. By exploiting the known initial displacement u0 and velocity ñ , it 
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is not difficult to obtain the following starting values: 

ü0 =M 1[F- COO -Ku0] .(4.5) 

u 1 =At2fi0 +2u0-u1 

u 2 =6it2U0+6u 1-3u0-2u1 

Following their substitution into equation (4.3) and (4.4), these equations clearly 

determine the unknown vectors u and u2 in terms of the known u0 and (ia. The Houbolt 

method is unconditionally stable, exact to the 2'' order and obviously implicit. The 

algorithm possesses strong algorithmic damping which produces a stabilizing effect in 

some cases, but can also falsify the solution. 

4.2.2 The Wilson-O Method: 

This method is essentially an extension of the linear acceleration technique in 

which a linear variation of acceleration from time t to time t is assumed. In the Wilson 

method the acceleration is assumed to be linear from time t to time t + OAt, where 0 ≥ 

1, as shown in figure 4.1 

U t+M ut+ot Ut 

i No 

t 

Figure 4.1 Linear variation of acceleration. 

t+At t+OAt 

For 0 = 1 the method reduces to the linear acceleration scheme, but in this case the 
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method is only conditionally stable [Owen]. For unconditional stability 0 ≥ 1.37. For any 

time r so that 0 ≤ r ≤ OAt, we have from figure 4.1 that 

T  ( fit +oAt — üt) 
0ILt 

Integrating eqn. (4.8) gives 

ut+ = ii - üt +  (+oAt -u) 
20it 

and integrating again gives 

U t =, + T Ut + - u, +  ( fit +0- fit ) 
60At 

For the particular time r = OAt, eqns. (4.9) and (4.10) give 

ut+oat = fit + --- + u) 
2 

= Ut + 0 Atfit   02At2 + ( fit 0 + 2u) 
6 

from which we can solve for jjt.f9t and in terms of u10 

fit+oAt e2 6 6. - (u +OA — ui) - — U + 2u 
At 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

3 () At U . (4.14) 

To obtain the displacements, velocities and accelerations at time t + At, the equilibrium 

equations are considered at time t + OAt. This requires the projection of the applied load 

vector to time t + OAt, which is performed linearly as 

= Ft  + 0 ( F, At - F1 ) 

Equation (4.1) then becomes 
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Müt+oAe +4 j(Ut+ot ,üt+oAt) = (4.15) 

Substitution of eqns. (4.13) and (4.14) into eqn. (4.15) gives a system of simultaneous 

equations which may be solved for u + &W 

Substituting u. 01 into eqn. (4.13) gives jj + which is then employed in eqns. (4.8)-

(4.10), all evaluated at t = At, to give 

where 

Üt+At = bl(u+OA -u) ' b2u+b3fit 

Üt+At = Ut +b4( fit-At + fit ) 

=u + iXtU + b5(üt+At +2fit) 

1 

02 At 

b3 3 
e 

b 

At  

It is noted from eqns. (4.16)-(4.18) that no special starting algorithm is required, since 

... (4.19a- e) 

and fi,A, are all expressed in terms of the same quantities at time t only. 

4.2.3 The Newmark Method: 

This method is also an extension of the linear acceleration method. The following 
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assumptions are used: 

=U1 +[( 1-8)fit + (4.20) 

=u + At fit +k -  )ut + aut+tAt ... (4.21) 

where a and 8 are parameters that can be determined to obtain integration accuracy and 

stability. When ö = 1/2 and a = 1/6, this method reduces to the linear acceleration method 

[Owen]. Newmark originally proposed as an unconditionally stable scheme the constant average 

acceleration method, in which case 8 = 1/2 and a = 1/4. For a solution of displacements, 

velocities and accelerations at time t + At, the equilibrium equations (4.1) are also 

considered at time t + At: 

Mot +At+41(ut+At,üt+At) = (4.22) 

An identical approach to the one considered in the Wilson method is adopted here. Eqn 

(4.21) is solved for jj .. in terms of u + . Substituting the result in eqn (4.20), a set of 

equations for fi, + , and il, + each in terms of the unknown displacement u + , is 

obtained. Substituting these expressions for ji , + and 6 t + t into eqn. (4.22) gives a 

system of simultaneous equations which may be solved to give u t +,&t. By use of eqns. 

(4.20) and (4.21) all quantities t + At can be finally expressed as 

Ut+At - bi (Ut+At u) + b2 "t + b 3 a t 

= ut +b4u + bsüt+At 

uM = ut +( ut4At - ut) 

where 

(4.23) 

(4.24) 

(4.25) 
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bi 
1  

xit2 

-1 

CUt 

=JL1 
k2c 

= At( 1 - ô) 

b5 = oAt (4.26 a-e) 

It should be noted that the numerical time integration algorithms for the Newmark and 

the Wilson methods are identical, provided that the appropriate values of the constants b1 

- b5 are employed: (eqns (4.26 a-e) and (4.19 a-e)). Thus, both methods can be easily 

incorporated in the same computer code. 

In the context of this thesis, the Wilson method has been used. The 

implementation of this method is discussed in the next section. 

4.3 Implementation of the Wilson Method: 

The implementation of the Wilson method is dealt with in this section. All 

necessary modifications to the computer program are discussed in Chapter 5. 

Recall eqn. (2.24 a) 

N 

E 4' (ul,u,...,uN).OuI = 0 
1=1 

which is an expression for the virtual work in terms of the known initial geometry. The 

introduction of the dynamic terms requires several modifications to the assembly of eqn. 

(2.24 a). 
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Recall eqn (4. 1) 

Mü1+4 1(u1,ü1) = 0 

It can be clearly seen that a representation of the mass properties is needed. The mass 

matrix is formulated using a lumped mass approach instead of a distributed mass 

approach. In assembling a lumped mass matrix, the mass of each bar of the system being 

considered is calculated from its density and volume. One half of the calculated mass is 

then assigned to each node of that bar. e.g. m1 = Y2pV1 

where V1 = Cross Sectional Area of bar 1 * length of bar 1. 

(All bars have the same density and this remains constant throughout.) 

The equations developed in section 4.2.2 are applied in the manner described in 

that section. These serve to modify eqns (2.24 a) into the following form: 

N 

E 41(u,ü,ü).ou=0 
1=1 

(4.27) 

where u is the vector of unknown displacements 

jj is a function of u 

ji is also a function of u 

Equation (4.27) which is equivalent to eqn (4.1 5), developed in section 4.2.2, may be 

solved by the Newton-Raphson method described in chapter 2. 



5. Computer Implementation of Theory 

The implementation of the theory developed in chapters 2, 3 and 4 will be dealt 

with in this section; this will be divided into two sub-sections. In the first, the relevant 

equations that need to be solved by the Newton-Raphson method are implemented. The 

latter half deals with the program's input and output. 

A BORLAND C++ 3.0 compiler and its integrated environment provides the 

platform on which the program is developed. The program has been developed to run in 

a DOS environment and requires a math co-processor. The "C" programming language, 

hereafter referred to as just "C", is used to implement the necessary code. This choice is 

greatly influenced by the current popularity of "C" over other languages (e.g. FORTRAN 

or BASIC). It is appropriate to point out that in "C't, the term function refers to what is 

commonly called a subroutine. In the context of this chapter, the term function will be 

used in this sense instead of its mathematical sense. 

A complete listing of the source code of one working version is given in appendix 

A. Listings of the function calls in the main section and those related to the Newton 

method are given in tables 5.1 and 5.2 respectively. 

5.1 Equation Implementation: 

The implementation of the equations of P.V.W., developed in chapter 2, will form 

the core of this sub-section. The necessary modifications to the program due to the 

constraint and the dynamic terms introduced in chapters 3 and 4 are also discussed. 
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main() 

Program Inputs; /* A set of function calls to handle the program input *1 

for( time = start to duration; increment dt) 

{ 
history(time, duration); 

mnewtO; 

} 

/* function that returns a scaling parameter *1 

1* Newton-Raphson function call / 

Program Output; /* A set of function calls to handle the program output *1 

} 

Table 5.1 Skeleton listing of program highlighting functions. 

5.1.1 Virtual Work Implementation: 

Recall eqns. (2.24 a) and (2.24 b) which are the equations of virtual work and 

equilibrium equations respectively. 

N 

(K but = 0 
1=1 

4j(ul,uz,...,uN) =0 i = 

Also recall eqn. (2.27) 

auj = bi I = 

The Newton-Raphson method requires the user to supply a matrix of coefficients aij and 

a vector b1. In essence these correspond to the matrix of the partial derivatives of the 
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equilibrium equations and the numerical values of the equilibrium equations respectively. 

mnewt () 
{ 

for ( K = 1 to # of iterations; increment 1) 
{ 

califunc ( ) 

ludcmp () 
lubksb ( ) 

} 
} 

cailfunc () 
{ 

for ( i=1 to N; increment 1) 

/* function which supplies and b1 *1 

1* LU decomposition */ 

1* LU backsubstitution *1 

} 
} 

vw () 
{ 

eij () 
kij () 

I 

vw () / call the virtual work function *1 

1* call the strain function */ 
/* call the constitutive equation function */ 

Table 5.2 Listing of some function calls from mnewtO. 

As can be seen from Table 5.2, the quantities a and b1 are assembled in cailfuncO. This 

is done by repeatedly calling the function vwO. This function calculates the virtual work 

for each node based on eqn (2.24 a). 
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It is possible to obtain the value of any b1 by evaluating it with a convenient 

combination of öu 's and all the u values at that step. e.g. for a case where N = 4, the 

value of b1 would be obtained by setting 8u, = 1 with all other &i 'S = 0. The function 

vw() is then called with these u and 8u values. Similarly, the quantity a is obtained by 

a convenient combination of u and Bu values. In this case, however, both values of u and 

are varied sequentially. This is equivalent to a numerical partial differentiation. 

Specifically, a central difference differentiation technique is used; the average of a 

forward and backward differentiation is taken to give each value of a11. The calculated 

values are returned to mnewt() and solved by LU decomposition and backsubstitution. 

It is apparent that this method is computationally expensive, but the simplicity of 

its implementation offers a great advantage. Its flexibility will also become obvious when 

the necessary modifications due to the constraint and dynamic terms are shown. 

5.1.2 Constraint Implementation: 

The constraint that will be implemented in this section is the incompressibility 

constraint developed in chapter 3.4. Since the modifications to the program occur in 

cailfunc, a pertinent modified function listing will be provided in table 5.3. 

The values of aij and b are obtained in a similar manner as described in the 

preceding section. The equilibrium equations are now eqns. (3.10) and the vector of 

unknowns is increased by one entry for every constraint. Since this implementation would 

be extremely wasteful (computationally expensive), the form of the Jacobian derived in 

chapter 3.4 will be implemented instead. 
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callfunc() 

{ 
for( w = 1 to # of constraints; increment w) 

{ 
go; ,* call the constraint function *1 

} 

for( i = 1 to N, increment i ) 
{ 

vwO; 1* call vw *1 

} 

eijO; 
kijO; 

/* call strain function *1 
1* call constitutive relation */ 

vw = vw + dg; /*modify vw by the partial derivative of the constraint *1 

Table 5.3 Modifications to function calls due to constraint. 

The exact location of each constraint equation entry in the matrix a1 is known. A 

numerical differentiation is thus possible with minimal changes to the function, as shown 

in table 5.3. The price to pay is the extra parameter that has to be passed to vwO. No 

other modifications are required, however. 

5.1.3 Dynamic Implementation: 

The modifications that are associated with the introduction of a dynamic term are 

slightly more complex. They occur at all stages of the program, and add correction terms 

at each stage. This results in the following changes to tables 5.1 and 5.3. 

In the case of an isometric muscle contraction, there are no external forces present. 
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main() 

{ 
Program Inputs; /* A set of functions that handles program inputs 
Mass; /* Assemble the lumped mass matrix *1 
for( time = start to duration; increment dt) 

{ 
historyQ; 
mnewtO; 
Back Projection; /* application of eqns. 4.16 - 4.19 */ 

} 
Program OutputsO; 

} 
mnewtO; 
{ 

for( k = 1 to # of iterations; increment k) 

{ 
callfunc() 
Solve; 

I 
I 
callfunc() 

{ 

I 

/* solve by LU decomposition *1 

for( w = 1 to # of constraints; increment w) 

gO; 

for( i = I to N; increment i ) 
{ 
vwO; 
} 

Forward Projection; 
eijO; 
kijO; 

vw - (m.a)*du 

/* call constraint function */ 

/* call virtual work function */ 

/* application of eqns. 4.13 - 4.14 */ 
/* call strain function */ 
/* call constitutive equation function */ 

1* Subtract inertia term *1 

*1 

Table 5.4 Listing of some function calls relevant to the dynamic terms. 
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Hence, the external virtual work consists of merely the inertia term 

(mass*acceleration*du). 

5.1.4 Adaptation for Muscle Behaviour: 

It is a relatively simple matter to change the constitutive equation in the kij() 

function. This allows the study of different types of materials. Specifically, the force-

length profile employed will be discussed in the next chapter. It is of the form shown 

below, 

Ff (L, V) = Fr (L) F (V) 

where Ff (L) represents the isometric force output of a fibre, and F (V) its force - velocity 

relationship during concentric contraction. 

5.1.5 Discussion: 

It is apparent that the approach adopted in this thesis is extremely simple and 

offers a great deal of flexibility. Different constraint equations can be easily implemented, 

thereby altering the nature of the problem being examined. It would be just as simple to 

change the constitutive equation, to study the behaviour of different types of material. 

These advantages are not readily available if one was to use a commercial finite 

element package. In particular, in the study of muscles, (large deformation, large strain 

active material) there are hardly any elements that provide such capabilities. 
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5.2 Program Input: 

A brief description of the functions that handle the program inputs will be 

undertaken in this section. 

t1readinput ( )" : An interactive function allowing the user to impose a displacement or a 

velocity on a node in a specific direction at run time. This feature is useful since 

all displacements are normally reset to zero at the start of each run. In most cases, 

an initial zero guess is sufficient. However, the number of iterations is greatly 

reduced when a sensible initial guess is chosen. 

"innodes ( )" This function can be run interactively or can allow the user to read in 

prepared data files. The nodal information of the structure is input at this point. 

The properties of the connecting bars are input and the dimension of length is 

calculated. These properties include the diameter, the depth, node connections and 

the material type. The information is stored in the files nodes,dat' and 

'connect.dat'. 

"support ( )" The user is able to read in a prepared data file or use the function 

interactively. A file titled 'support.dat' contains the prepared information. The 

nodal supports of the structure are input at this stage. 

"forces ( )": The function allows user interaction as well as reading in a prepared data 

file. The information is stored in 'force.dat' and contains all the nodal force data. 

For the example of isometric muscle contraction, the value of all the forces 

(external) is set to zero. 

"foptimum ( )" : At the start of every experiment, the user is prompted to enter the 
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optimum muscle length. This enables the calculation of the optimum length of 

each of the fibre bundles. 

A sample of the input data files required for one run is given in appendix B. 

5.3 Program Output: 

Several output files are generated for every run. These files cover the 

displacement, velocity, acceleration, force observed in the tendon, relative changes in the 

fibre lengths and the relative changes in angles of pinnation'. All the output files are 

generated with a .$$$ extension. 

'The definition of the angle of pinnation differs from that used in bio-mechanics. Here it refers to the 
relative angle between the fibre bundle and the tendon sheath. 



6. An Introduction to Skeletal Muscle 

6.1 The structure of skeletal muscle: 

Muscles are the components of the body which are capable of active contraction 

and they are sometimes referred to as force generators. There are three types of muscles 

which can be readily identified: skeletal, heart and smooth muscle. The voluntary, 

skeletal or striated muscles perform tasks as diverse as maintaining the posture of the 

spine, producing rapid and powerful movements of the limbs and executing the precise 

and finely judged movement of the eye [Purslow & Duance]. 

An appreciation of the structure-function relationships is clearly of great 

importance in understanding how a striated muscle works to fulfil its required functions. 

In general, the structure of vertebrate striated muscle is as indicated in figure 6.1. 

Much of the description that follows is also given by Bagshaw [ 1982], with a more 

detailed review given by Schmalbruch [ 1985]. Muscle is a hierarchial structure, 

comprising many identical subunits that are aggregated to form the basic unit from which 

the next level of structure is then built. Surrounding the whole muscle there is a 

connective tissue sheath, the epimysium, which is continuous with the tendons. The whole 

muscle is divided internally into bundles of muscle fibres that run along its length, each 

surrounded by the next connective tissue structure, the perimysium. The perimysia of 

adjacent bundles merge to form a continuous network across the muscle, which connects 

to the epimysium at the surface of the muscle at irregular intervals. Muscle fibre bundles 

are typically 1-10 mm across. They tend, like the muscle fibres comprising them, to be 

irregularly polygonal in cross-section rather than circular. Each bundle contains many 
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Figure 6.1 The general structure of striated muscle. Adapted from Jolley and Pursiow 
(1989). 
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individual muscle fibres, each one ensheathed in its own connective tissue envelope, the 

endomysium. Each muscle fibre is a giant, multi-nucleated cell, which runs the entire 

length of the muscle, and is typically 10-100 pm in diameter. 

The cell cytoplasm is arranged into strands of myofibrils, each having 

a diameter of 1.im. The myofibrils can be subdivided further into myofilaments which, 

in turn, are composed of sarcomeres, each of which has a length of approximately 2.5 pm. 

It is the structure and regular arrangement of the sarcomeres that gives the myofibrils and, 

in fact, skeletal muscle fibres their striated appearance; an individual sarcomere extends 

from the middle of one light region, called Z-Band, to the next within the dark-light 

striation pattern of the myofibrils. Sarcomeres constitute the smallest contractile unit 

within a muscle. They are composed of interdigitating thick (l2nm diameter) and thin 

(5nm diameter) filaments bounded by Z-Bands. It is the action of thick and thin filaments 

sliding past each other that is responsible for the contraction of muscle tissue. This 

contractile tendency and associated force generation under stimulation is explained by the 

theory of cross-bridges [Purslow & Duance]. 

The unit of muscular activity is the single twitch, produced in response to a nerve 

impulse or an electric shock. The ordinary picture of a muscle twitch shows a gradual 

rising phase, a blunt maximum and gradual relaxation. By repeating the stimulus at a 

sufficient frequency, the resulting twitches can be fused into an apparently smooth 

maintained contraction, which begins to decline soon after the last stimulus [Hill, 1950]. 

In general, the fibre force increases along with the stimulation frequency, but it does not 

increase beyond a certain maximum value. 
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6.2 Muscle Models: 

Muscle models will be grouped into functional muscle models and geometrical 

muscle models. Only a brief review of functional models will be undertaken. The review 

will concentrate on geometrical models instead, since the model developed in this thesis 

is essentially geometrical in nature. Some of the review that follows is also given by 

Anton [ 1991]. 

Functional muscle models consist of a number of equations which are obtained 

from statistical modelling of experimental data. These models, for example, give a 

description of the force-length or the force-velocity relationships. Due to the lack of a 

well founded theoretical basis, these models often contain free parameters, which are 

available for adjustment when the models are used. These free parameters are then 

adjusted, often through optimization procedures, to have the muscle behave in a 

predetermined manner. 

Geometrical muscle models, on the other hand, take account of the muscle 

geometry in deriving the equations which describe the muscle behaviour, and they attempt 

to explain differing muscle geometries on muscle performance. In general, they depend 

on relations describing the muscle fibre behaviour, where these relations are often related 

to the functional muscle models above, but which are now specific to fibres. 

6.2.1 Functional Muscle Models: 

Functional muscle models are commonly employed for investigations akin to the 

musculo-skeletal system than to questions about the inner workings of muscles. In their 
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purest form, these models intentionally ignore any detailed current knowledge about 

muscle behaviour. They rather centre on a specific actual or perceived functional role of 

muscles in the musculo-skeletal system. Their mathematical and/or physical description 

is based on this functional role. 

Most functional muscle models are derivations of Hill's Equation or Hill's Three 

Element Model of muscular contraction. Hill [ 1938] derived an empirical equation for 

tetanized (frog sartorius) muscle, which expresses a hyperbolic relation between the 

muscular contractile velocity and the applied load. Hill's investigation was restricted to 

muscle optimal length, but this was later generalized by Abbott and Wilkie [1953] to 

varying lengths. The maximum isometric force was shown to be dependent on the muscle 

length. Hill also proposed a mechanical model which was intended to "visualize" the basic 

features of his empirical equation. The model consisted of a contractile element in series 

with an elastic element. In more recent times, the model has been extended and its 

elements have been related to the Sliding Filament Theory. The most basic extension to 

Hill's original model is the addition of a parallel elastic element, and the extended model 

is usually referred to as Hill's Three-Element Model [Fung, 1970]. In this model, the 

series elastic element is commonly associated with the intrinsic elasticity of the actin and 

myosin molecules and cross-bridges, while the parallel elastic element is related to 

connective tissues, cell membrane, etc.. Often a viscous element is added in parallel to 

Hill's Three Element Model in order to give the model the velocity dependence of Hill's 

Equation when the active element is described as being independent of the shortening 

velocity. However, Hill [ 1938], [ 1950] and [ 1970] objected to the interpretation which 
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attributed the lower fibre tensions for higher shortening velocities to viscous effects. 

Herzog [ 1987] used a modification of the original Hill's Equation to estimate 

individual muscle forces in situations where different muscles are acting together in 

various activities. The modifications consisted in adding further parameters which describe 

the muscle's angle of pinnation, its state of activation, physiological cross sectional area 

and muscle force constant, i.e. the maximum isometric force a muscle can exert per unit 

physiological cross sectional area. 

6.2.2 Geometrical Muscle Models: 

Geometrical muscle models date as far back as the early 17th Century. The Danish 

scientist Niels Stensen ( 1638-1686) was first in formulating 'a mechanical model of 

muscular contraction, using Euclidean geometry. Stensen stated that the muscles consist 

of pinnate structures, each of which is composed of equally long muscle fibres forming 

a parallelepipedon between parallel tendons, and that muscle fibres are separated by 

transverse bands of tissue connected with the membrane wrapping the muscle [Kardel, 

1990]. With his model, Stensen was able to demonstrate that muscles could contract 

without changing their volume. This concept was too remote from the generally held 

belief - handed down from antiquity with great authority by Rend Descartes ( 1596-1650) 

in De Homine - that a substance, the 'animal spirit', entered from the brain through hollow 

nerves to make the muscles swell and contract [Kardel, 1990]. 

Benninghoff and Rollhäuser [1952] produced a paper in which they kept constant 

the volume of the modelled pinnate muscle by leaving the surfaces of insertion of the 
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fibres unchanged. Based on trigonometric consideration of individual fibre deformations, 

the statement was made that the maximal economical angle of fibre pinnation would be 

30 degrees, if the muscle fibres shortened by half their original lengths. 

Hatze [ 1978] and Gans [ 1982] have both produced models in which the volume 

is kept constant. 

Heukelom et al. [ 1979] investigated the relationship between the structure of 

muscle and its function, especially with regard to the influence of the internal pressure 

when a muscle contracts. They estimated the internal pressure in pinnate muscles at 10 

kPa. 

The most widely accepted geometrical muscle model in the literature today is the 

one by Woittiez et al [ 1984]. The model allows the construction of complex three-

dimensional muscles with a wide variety of architecture. Specifically, he uses a geometry 

which consists of two kite shaped tendon sheaths (with opposite geometrical orientation 

at the top and bottom) which in general are not of equal size and are not parallel. The 

fibres are allowed to have varying angles of pinnation. The muscle volume, kept constant 

throughout, is divided into segments for which, at different muscle lengths, muscle fibre 

forces, shortening velocities, maximal power etc. are calculated. The segmental fibre 

forces are added after correcting for the angle of pinnation at different muscle lengths and 

result in the length dependent total muscle force. Woittiez reports excellent agreement 

between the model generated muscle force-length and force-velocity relations and those 

obtained by experiments on Wistar rats. 

Otten [ 1988] presented a muscle model which accounts for fibre curvature, tendon 
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elasticity and internal muscle pressure. The model consists essentially of six sub-units in 

a pinnate geometrical arrangement, where each unit is formulated as a Hill type model. 

The tendon sheaths tie the ends of the sub-units together at either side. Comparing his 

model predictions to experiments performed on cat vastus lateralis, Otten obtains good 

agreement. He also observes that the inclusion of tendon elasticity in the model shifts the 

muscle force length curves to higher lengths. 

Anton [ 19911, developed a model based on a physical principle. He used the 

principle of virtual work to derive the equations of equilibrium. In his thesis, he reports 

a good agreement between his results from the straight line model and Woittiers results. 

In the same thesis, he also developed another model based on a constitutive description 

of muscle tissue and the theory of deformable continua. He called this a continuum model. 



7. Dynamic Muscle Model 

A two dimensional Dynamic Muscle Model (DMM) of uni-pinnate muscles is 

developed in this chapter. The model is built on a physical foundation. This is achieved 

by using the principle of virtual work. In the context of the current model, the principle 

equates the incremental internal energy change to the incremental work performed by the 

muscle force, for any incremental deformation of the muscle consistent with the kinematic 

constraints. It should be restated at this point that the model is essentially qualitative. 

Consequently, the force-length, and force-velocity relationships used will be the ones most 

widely accepted in the literature. 

The underlying assumptions and simplifications are similar to those encountered 

in the treatment by Woittiez et al. [ 1984] and by Anton [ 1991]. Due to the lack of a 

general constitutive theory of muscle tissue these assumptions are required in order to 

reduce the number of degrees of freedom inherent to the model and to guarantee a 

solution. These will determine to a large extent how the final model will perform, and 

they therefore, constitute an important part of the model. 

7.1 Model Assumptions and Simplifications: 

Several assumptions are made which have to be clearly stated at the outset. Some 

of these appear to be unnatural and contradict physical and experimental evidence. 

The first assumption and simplification describes the tendinous sheath as having 

a tensile stiffness and assigns to it a constant modulus of elasticity. Fibres, while they are 

allowed to contract or elongate freely, are taken to be stiff in bending. These 
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simplifications are counter to physiological evidence. As an aside, the mechanical 

properties of the tendinous sheath are assumed to change as it de-crimps and the network 

of collagen fibres re-orientates [Purslow, 1989]. 

The tendinous sheaths are allowed to deform in length as a result of the above 

discussion. This assumption will be discussed in more detail in the context of the 

kinematic constraint of constant volume. 

The volume of entire muscle and of any volumetric element of muscle tissue 

remains unchanged, that is, the muscle tissue is incompressible. This incompressibility 

of muscles under stimulation has been shown by Abbott and Baskin [ 1962]. 

The assumptions concerning muscle fibre function will be discussed later in this 

chapter. For now though, fibres are assumed to extend over the entire distance between 

the two tendon sheaths and to possess a thickness which is small compared to the 

dimensions of the muscle. They are also assumed to have identical histo-chemical and 

physiological characteristics, in contrast to reality. 

The only origin of forces is seen in the active and passive fibre force-length 

property. These forces act in the fibre direction only. 

The fibres are initially stimulated by the same amounts, but are then free to 

contract in a manner consistent with the imposed kinematic constraint. 

The muscle geometry that can be considered has to be limited only by the 

anatomical considerations. Caution should be exercised, since it would be easy to conceive 

an unrealistic muscle geometry and still obtain some solution. 

The geometry of DMM will be considered in the next section. A close comparison 
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will be made with the model presented by Woittiez et al. [ 1984] and the one derived by 

Anton [ 1991]. These are the only two models encountered which take the broad approach 

adopted here. The work by Anton [1991] provides an excellent model, the Straight Line 

Model, which is based on a physical principle but it does not consider the velocity 

dependence. 

7.2 Dynamic Muscle Model Geometry and Kinematics: 

14  

L X 

Figure 7.1 Trapezoidal Muscle Geometry 

The general muscle, whose cross section takes on a trapezoidal shape, is displayed 

in figure 7.1. The parameter h2 can be varied to make the geometry more anatomically 
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realistic. The only assumption made about the depth or muscle thickness, measured 

perpendicularly to the drawing plane, is that at any point along the length of the muscle, 

x, the depth. of the top tendon sheath and the bottom one are identical. In other words, the 

volume of each segment is essentially the volume of a cube. The corresponding surface 

area, averaged for the top and bottom sheaths, of each segment is used to obtain the 

diameter of each fibre bundle; the width distribution of the tendon sheath, from which the 

area of each segment is calculated, determines the diameter of each fibre bundle. 

Woittiez et al. [ 1984] used kite-like shapes to represent the tendon sheath 

geometries with the kites at the top and bottom having an apposite orientation. In their 

calculations of the volume, the trapezium is transformed into a rectangle by averaging the 

widths of the top and bottom tendon sheaths for each cross section. Consequently, the 

approach taken in the modelling of the tendon plate geometry in the DMM can be 

considered realistic. 

Turning our attention to the kinematic constraint, the incompressibility constraint, 

derived in chapter 3, some of the definitions need to be clarified. 

The angle of pinnation, referring to figure 7. 1, is defined as the parameter a. This 

is in agreement with Otten [ 1988] and Anton [ 1991] but in contrast with Woittiez [ 1984] 

who uses y for this purpose. The choice of the angle a will be shown to simplify the 

implementation of the incompressibility constraint. 

The kinematic constraint is shown in the context of a typical muscle geometry in 

figure 7.2. 



59 

Y 
A 

Superficial 
Aponeurosis "Panel" 

Deep  
Aponeurosis 

Muscle Fibre 
Bundles 

External 
Force 

Figure 7.2 Typical muscle geometry subjected to incompressibility constraint. 

In the context of this model, the average of the four equivalent angles, a, is taken 

as the angle of pinnation. In calculating the volume of each segment, the average of the 

two tendon sheath lengths and the average length of the adjacent fibre bundles is used. 

This is repeated for each volume segment, until the whole muscle is examined. 

Each of the fibre bundles shown in figure 7.2 is assumed to be a "balloon" type 

structure, introduced in chapter 3. They are, in reality, fibre bundles which keep their 

volume constant and remain in contact at all times. The cross sectional area of each 

bundle is obtained from the method described above 

In the implementation of the incompressibility constraint, there is a fundamental 
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difference which needs to be highlighted. Considering a segment of muscle tissue, the 

current model allows the tendon plate to stretch, this being an integral part of the 

constraint. This feature is not present in the models of Woittiez [ 1984] and Anton [ 1991]. 

It is thought that the effect of straightening out of the crimps in the tendon sheath only 

has an effect at the initial stages of stimulation. 

7.3 Fibre Force-Length Relation: 

Experimental evidence indicates that muscle fibre forces depend on a fibre's length, 

the amount of stimulation and the time rate of the fibre length changes. 

Muscle fibre force-length curves have been established experimentally by bringing 

individual muscle fibres to different absolute lengths and measiring the fibre forces with 

and without tetanic stimulation. Figure 7.2 displays the general form of measured fibre 

forces under stimulation (solid line - total muscle fibre force) and without stimulation 

(dotted line - passive muscle fibre force). The difference in force between the total and 

passive muscle fibre force is commonly called the active fibre force (dashed line). The 

absolute fibre length at which fibres reach their maximum active force is called optimal 

length. An unstimulated fibre left to itself will take on a length, called resting length, 

which is close or equal to its optimal length. 

For this model, the fibre force-length relationship will be implemented in two 

stages: the active force profile will be taken from Woittiez [ 1984] and the passive force 

profile from Anton [ 1991]. 

'active = ( 6.25 ), 2 + 12.5 X - 5.25) 



61 

12 

1 

0.8 

0.6 

0.4 

0.2 

0 
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 

Fibre Length Ratio 

Figure 7.3 Fibre Force-Length Profile. 

'passive = 3.289.10 6 e9°3" - 0.02766 

) = active + fpassive 

The active force profile can he explained in terms of sarcomere behaviour, if we 

assume that the sarcomeres, linked in series within fibres, are identical. 

A review by Pursiow and Duance [ 1989] concludes that the epimysium, 
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perimysium and endomysium all contribute significantly towards the passive elasticity. 

This could be used as an explanation for the passive force profile. 

7.4 Fibre Force-Velocity Relation: 

The muscle is assumed to behave according to an adaptation of Hill's [ 1938] 

equation: 

(F + a) (v + b) = (gF0 + a)b ... (7.1) 

where 

afF0 = b/v0 = 0.25 ... (7.2) 

and a and b are Hill's thermodynamic constants. F0 is the maximal active isometric force 

at optimal length, v0 is the maximal velocity of muscle shortening and g represents the 

maximal isometric force which a muscle can exert as a function of its length and is 

normalized to F0. 

The parameter g mentioned here is equivalent to the active force profile discussed 

in the preceding section. 

g = ( -6.25 ? + 12.5 2. - 5.25) ... (7.3) 

For ease of computer implementation, eqn. 7.1 and eqn 7.2 are combined to give 

a force-velocity profile: 

Ff(v)=2 v/v-1 

Fr(v)=2-(1-vIv)/(1+4v/vm) 

Ff(v)=(1+v/v,fl)/(1-4v/vm) 0v/v,1 

Ff(V)0 V/Vm>1 
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This type of approximation is justified since the model is qualitative at this stage 

of development. 

Previous models have assumed that either muscle length and velocity were 

independent of each other (Zajac, 1989) or that velocity was dependent upon muscle 

length (Pierrynowski and Morrison, 1985). The suitability of separating the length and 

velocity functions was recently tested by Rindos [ 1988] where cat plantar flexor muscle 

length and the velocity were controlled. Differences between predicted forces output using 

independent muscle length and velocity functions and the experimental data rarely 

exceeded 7% of maximal force. (The discussion was taken from a paper by Scott and 

Winter [ 1991]. Please refer to this paper for references of original publications by the 

authors mentioned above.) 

The present DMM assumes no interdependence between muscle length and 

velocity thus the total fibre force, 

Ff (L,V) = F1(L). F1(V) ... (7.4) 

7.5 Discussion: 

Anton [ 1991], in his derivation of the straight line model, has shown that the 

model behaviour is to a large extent indifferent to the absolute muscle geometry. This 

implies that a simple geometry (rectangular with two triangles at each end) will be 

representative of other geometries. Such a simplification lends credence to the tests that 

have been done qualitatively, which are the subject of the next chapter. The purpose of 

those tests is twofold: the first is to show that the model is consistent and the second is 
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to highlight its capabilities. It should be noted that the model has also been tested on 

realistic muscle geometries. e.g. the cat medial gastrocnemius can be modelled using 

parallel tendon sheaths and a uniform depth. 

Another useful feature of the model which has not yet been mentioned is the 

activation parameter. This serves to modify eqn. 7.4 into the following form 

F (a,L,v) = a. Ff(L). Ff(v) 

where 'at is the activation parameter and serves as a scaling factor. The parameter 'a' can 

follow different time histories and this will also be exploited in the next chapter. 

The inertia term has been incorporated into the model. The purpose of this is to 

show that it has a negligible effect, or otherwise, on the total deformation of the whole 

muscle during isometric contraction. Again the tests are included in the next chapter. It 

is envisioned that the inertia term would have a significant effect in a case where the fully 

stimulated muscle is suddenly subjected to an imposed displacement. This, however, is 

beyond the scope of the thesis and forms one of the recommendations for further work. 

The equilibrium equations, while they are not directly mentioned in this chapter, 

have been derived from physical principles in chapters 3 and 4. It is of interest that 

Woittiez [ 1984] treats this topic in one sentence, saying that "the product of the force of 

each fibre and the cosine of its angle results in the force contribution of each fibre in the 

direction of the length axis of the muscle." Anton [ 1991] on the other hand used a 

physical principle to derive his equilibrium equations. The same principle, the principle 

of virtual work, has been used for this model. 



8. Dynamic Muscle Model Exploration 

8.1 Introduction: 

This chapter is devoted entirely to testing the DMM qualitatively and highlighting 

its capabilities. It is of the utmost importance that the model be shown to be consistent. 

This is done by comparing two cases in which the volume and all in-plane dimensions are 

kept the same. In the first case, the muscle is modelled using 4 panels and in the second, 

8 panels are used. Obviously, an increase in the number of panels produces more 

information about the deformation of the whole muscle, but a consistent model is expected 

to converge to an identical solution. i.e. corresponding nodes should experience identical 

displacements. This type of reasoning is similar to the one used in finite element analyses, 

where an increase in the number of elements increases the accuracy of the results. 

Unreferenced model comparisons to experimental results and experimental 

observations are made with respect to experiments conducted independently of this thesis, 

on the cat medial gastrocnemus, by Dr. Walter Herzog in his laboratory at the University 

of Calgary 

The model is also tested with a single panel constraint to demonstrate its 

capabilities and keep the CPU time to a minimum. The choice of a single panel should 

in no way be viewed as a limitation of the model. It is done in order to simplify the 

analysis of the simulated results. The effect of including the velocity dependence and the 

inertia terms is examined and is compared to a static analysis case. Different stimulation 

rates are also considered, by varying the rate at which the parameter a, introduced in the 

previous chapter, is changed from 0 to I ( where 1 represents full stimulation ). 
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The assumptions and values that are used in these tests are introduced in this 

section. 

The constant which relates the physiological cross sectional area with the maximal 

force F0 is taken as 0.4 N/mm2. The maximal velocity of shortening, v0, is taken as 85'.Lf 

where Lf is the muscle fibre length. These values are taken from Yoshihuku and Herzog 

[1990] and are considered to be typical values of muscle properties. In testing the model 

qualitatively, these values are adequate. 

The Force-Length and Force-Velocity profiles are the same as those introduced in 

the previous chapter. 

The density of the muscle is assumed to be the same as the density of water. This 

is significant when the inertia terms are considered, since the mass is calculated from the 

density and the volume of each fibre bundle. 

Unless otherwise stated, the modulus of elasticity of the tendon is taken as 600 

N/mm2 and that of the tendon sheath as 1200 N/mm2 [Private Communication]. 

8.2 DMM Consistency: 

In this sub-chapter, a typical muscle is modelled using 4 and 8 panels. The in-

plane dimensions of the muscle are kept constant. The depth of the tendon plate in the 

case of 4 panels is obtained by averaging the values used in the case of 8 panels. 

The results are shown in figures 8.1 and 8.2 respectively. It can be observed that 

the deformations are very close to each other in both cases. There are errors of less than 

2% in the final lengths, shown in table 8.1 for selected components only, which can be 
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: Final Configuration 

INITIAL & FINAL MUSCLE CONFIGURATIONS 

Figure 8.1 Typical muscle modelled with 4 panels. 
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: Initial Configuration 

: Final Configuration 

INITIAL & FINAL MUSCLE CONFIGURATIONS 

Figure 8.2 Typical muscle modelled with 8 panels. 
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Length of Fibre Bundle #1 Length of Tendon 

Initial Final Initial Final 

4 Panels 12.53 6.64 23.25 23.91 

8 Panels 12.53 6.55 23.25 23.84 

% difference in length 
between 4 and 8 panels 1.4 0.29 

Table 8.1 Errors in some of the nodal displacements. 

attributed to the averaging of the tendon sheath depths. The averaging of the angles during 

the implementation of the constraint is also a contributing factor. 

The figures also show that the tendon I muscle attachment is free to move in a 

horizontal direction but constrained from moving in the vertical direction. This is done 

in order to speed up the convergence of the problem, but it should be noted that similar 

results are expected in the case where that joint is not supported. 

By carefully consideration of figures 8.1 and 8.2, it can also be observed that panel 

areas are not preserved, so that the incompressibility constraint seems to be doing the job 

of accurately representing volume conservation. This must be accompanied by a 

significant bulging out of the muscle, a phenomenon that is observed experimentally. 

Having shown that the model is consistent, an attempt is now made to model a cat 

medial gastrocnèmius muscle. The data is obtained from an independent set of 
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experiments performed by Dr. Walter Herzog. 

8.3 Real Muscle Experiment: 

The parameters that are used to model this muscle are the same as the ones 

mentioned in the introduction to this chapter. The modulus of elasticity of the tendon 

sheath is assumed to be 1200 N/mm2 instead of 600 N/mm2. The tendon sheath has a 

uniform depth of 7.1 mm spanning 60% of its length and it tapers down to 2.5 mm on 

either end, at the origin and the muscle / tendon junction. The dimensions of the tendon 

are given as 0.75mm x 3mm wide. The muscle length is calculated as 50 mm (tendon 

plate length is approx. 40 mm) and the initial angle of pinnation is 30 degrees. The 

stimulation is increased from 0 to 1 in 1 second, in steps of 0025. 

It is evident, from figure 8.3, that the panel areas are not conserved. This implies 

a bulging out of the muscle, which is observed experimentally. 

In order to get an appreciation of the magnitude of the values involved, the force 

that is experienced at the tendon is calculated. This also serves as a comparison against 

data measured in the lab. The force in the tendon is calculated, using the following 

formula: 

Force = E.A.(L.1 / l).cos a0 

where E is the modulus of elasticity, 

A is the area of the tendon, 

Al / 1 represents the strain in the tendon 

a0 is the initial angle of pinnation (muscle is relaxed). 
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Final Configuration 

INITIAL & FINAL MUSCLE CONFIGURATIONS 

Figure 8.3 "Real" muscle experiment. 
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The inclusion of the term cos cx0 is to correct for the area. i.e. the difference between the 

area of the tendon sheath and the physiological cross sectional area of the fibre bundles. 

The force is calculated as 106 N, compared to 93 N obtained experimentally, which is 

equivalent to an error of 10%. This error is accounted for by the approximations that have 

to be made with regards to the dimensions of the tendon, tendon sheath and the choice 

of modulus of elasticity. The constant chosen to relate the maximal force to the 

physiological cross sectional area, 0.4 N/mm2, also has a direct influence on the generated 

results. 

It should be stressed at this point that the above comparison was performed to 

merely show that the model generates results of the right order of magnitude. These 

results depend, to a very large extent on the values that are input. In this case, the values 

required are those of muscle outer dimensions, tendon dimensions, tendon sheath depth 

and the moduli of elasticity of tendon and tendon sheath. 

Having shown the model to be consistent and to generate values in the right order 

of magnitude, we now turn our attention to highlighting the capabilities of the model. As 

mentioned in the introduction, the series of tests that are performed in the next section 

involve a single panel and two fibre bundles. The areas of the fibre bundles are taken to 

be symmetrical. This simplifies the analysis, since the displacements are also symmetric. 

Hence, the general behaviour of the whole contrived muscle can be traced by simply 

examining the path of a single node. 
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8.4 DMM Capabilities: 

A contrived muscle geometry is used to test the model and highlight its 

capabilities. In this sub-chapter, the effect of including the velocity dependence and the 

inertia term is examined. The dimensions of the muscle are listed in table 8.2. 

Length of tendon sheath 
Depth of tendon sheath 
Diameter of fibre bundle 
Initial fibre length 
Initial angle of pinnation 

= 20.0 mm 
= 14.2 mm 
= 14.2 mm 
= 12.9 mm 
26 degrees 

Table 8.2 Initial data for contrived muscle. 

The muscle is stimulated at two different rates. The first rate of stimulation produces a 

velocity of shortening of 8.5 mm/s, hereafter referred to as slow stimulation, whereas 

second rate yields a value of 50 mm/s, hereafter referred to as fast stimulation. A static 

case refers to a muscle which has no velocity dependence or inertia terms. In this case, 

the muscle is gradually stimulated to its maximum level over the entire time span. The 

total deflection for a static case is first determined and the stimulation rates are then 

calculated by dividing the total deflection over the desired time to achieve full 

stimulation. 

The displacement results will be shown graphically for one of the nodes, in the 

positive horizontal direction ( figures 8.4 to 8.8 ). 

The results obtained in figures 8.4 to 8.8 are as expected for materials of this type. 

Whereas the introduction of the velocity dependence shows a stabilizing effect, the inertia 

term causes the response to overshoot. This is clearly seen in figures 8.7 and 8.8 where 
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Figure 8.5 The response of a muscle to slow and fast stimulation. 
(No velocity dependence, Inertia included) 
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Figure 8.6 The response of a muscle to slow and fast stimulation. 
(Inertia and Velocity dependence included) 
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Figure 8.7 The response of a velocity dependent muscle to slow stimulation. 
(with and without Inertia) 
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Figure 8.8 The response of a velocity dependent muscle to a fast stimulation. 

(with and without Inertia) 
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the response with and without inertia terms is compared to a static analysis. However, in 

both these graphs, it can be seen that the overshoot is of a small order of magnitude and 

after 1 second, the solutions converge to a similar value. 

Another observation, as seen from these examples, is that the response of muscles 

is critically damped. This result is not altogether surprising if one considers the smooth 

functioning of most of our everyday muscular activities. 

The example in which the inertia term is considered without any velocity 

dependence is not a realistic one (figure 8.5). It does, however, serve as further evidence 

of the correct functioning of the model. This combination is equivalent to a spring-mass 

mechanical system which would oscillate for ever, in the absence of any resistance. 

The results of the combination seen in figure 8.6 seem tobe the most realistic. The 

path followed by the node is representative of the build up of force in the muscle. The 

exact relation between stimulation and maximum force build up is not known. 

Experimentally, however, when a muscle is stimulated, there is a time lag before the 

maximum force of that configuration is observed [private communication]. This is evident 

from the graph. 

In closing, it should be noted that the model has been shown to be consistent and 

exhibits the right type of behaviour. As with any model, the results are directly related to 

the inputs, whereas the behaviour is dependent upon the assumptions and simplifications 

made at the outset. The model would require extensive testing and a review of some of 

the assumptions and simplifications made before any claims about its quantitative worth 

are made. The preliminary indications are that the forces and displacements are of the 
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right order of magnitude. 

In the next chapter, a summary of the objectives and achievements will be re-

iterated. Recommendations for further work are suggested, including ways to improve the 

quantitative aspect of the model. 



9. Summary and Recommendations 

A two dimensional dynamic muscle model has been successfully developed within 

the guidelines set at the beginning. Based on a physical principle, the principle of virtual 

work, the model has been shown to be consistent. The method of Lagrange Multipliers 

has been used to implement the kinematic constraint of incompressibility. The equations 

describing the model are expressed by a set of non linear algebraic equations. 

The model is based on the underlying assumption that muscle fibres are the sole 

force generators and that their mechanical behaviour is a reflection of the active and 

passive muscle fibre characteristics exclusively. 

The velocity dependence is based on an empirical relation formulated by Hill 

[1938] and the fibre force-length characteristics are taken from Woittiez et al. [ 1984] and 

Anton [ 1991]. In the context of this thesis, these relations are assumed to hold true over 

the specified ranges. 

The effect of the inertia term on the behaviour of a contrived muscle has also been 

examined. As expected, this has a negligible effect after a long period of time, 1 second, 

but there is a visible overshoot at the early stimulation time. 

The introduction of the velocity dependence has a stabilizing effect on the response 

of the whole system. This is to be expected, especially when one considers the smooth 

functioning of the whole musculo-skeletal system. 

Other parameters that are relevant to the muscle tissue, tendon sheaths and the 

tendon are given at the start of each section. These values are approximations and it 

would be unrealistic to expect accurate, quantitative results based on those inputs. 
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Consequently, the model can only be tested qualitatively against some of the other models 

cited in the literature. 

Nevertheless, the model has been tested against some data from independent 

experiments on the medial gastrocnemius of a cat. Initial analysis of these simulations 

yields results of the same order of magnitude. However, the model has to be tested 

extensively before any claims are made. 

Having met the initial objectives of developing a consistent model, there are 

certain assumptions and simplifications that can be re assessed in order to improve the 

model. 

The implementation of the incompressibility constraint is performed by the 

averaging of pinnation angles and panel lengths. In general, when the tendon sheaths are 

parallel, or almost so, this method represents an adequate way of implementation. As the 

model becomes trapezoidal in nature, there is a systematic error introduced due to 

averaging. This could be overcome by increasing the number of panels, but the increased 

CPU cost could be prohibitive. 

Another area in which the model might be improved is in the modelling of the 

tendon sheath characteristics, since these form an integral part of the incompressibility 

constraint. It is believed that the tendon sheath de-crimps when it is subjected to a tensile 

load. Based on this assumption, the force-displacement characteristic of the tendon sheath 

could be modelled as being exponential. 

Having seen the capabilities and limitations of the model, it is appropriate to 

mention some areas in which this model could be applied. 
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Based on the ability to model different stimulation rates, this model could be 

employed in trying to find some empirical relationship between stimulation-activation-

force output. 

By means of some modifications to the computer code and a reassessment of some 

of the assumptions, the model could also be modified to look at isotonic muscle 

behaviour. Specifically, the case in which a fully contracted muscle experiences a sudden 

displacement of one of its ends, could be studied. The response of the whole muscle from 

the point of view of inertia and "damping" could be traced. 
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Appendix A: 

1* 

1* 

The listing below is a representation of a program which uses the 

Newton-Raphson method to solve n simultaneous nonlinear equations. 
The program can handle geometrically nonlinear trusses subjected 

to static loading and provides damping capabilities. 

date: Oct. 25,1993 

The function definitions and utilities are stored in their 
respective .h files, & are called up with a #include 

A table of incidence stores the initial bar information 
3 structures are used: line.O, node.O, & info.O I 

The information which is relevant to the physical problem can be 

prepared and input in the follwing files: 

NODES.DAT > node numbers and coordinates 

CONNECT.DAT -> node connectivity and bar diameter 
SUPPORT.DAT -> external node supports 

FORCE.DAT -> external forces on nodes 

This information can also be input interactively at run time: 

nodal information & bar dimensions are input in "innodes" 
forces on each node are input in "forces" 

constraints on each node are input in "support" 

Initial guesses are input in "readinput" 

The length of connecting lines is calculated in "lent" 

A force history can be specified in "history" 

Mnewt calls up the equation solvers, the virtual work routine 

"vw" as well as perform the partial differentiation. 

(Mnewt -> Callfunc -> g ) 
'->vw->eij ) 

'-> kij ) 
The strain is calculated in "eu" 

The internal forces are calculated in "kij" 

A General Constraint is introduced in "g". This increases the vector 
of unknowns by one per constraint introduced and acts to modify the 

internal virtual work. This is commonly known as the Lagrange 
Multiplier Method. 

All unknowns are updated after each iteration, but a convergence 

check is only performed on the displacement variables. 

Data is stored in TEST.DAT & OUT.DAT *1 
1* 

#include <stdio.h> 

#include <math.h> 

#include <alloc.h> 

#include <stdlib.h> 

#include <conio.h> 

#include <dos.h> 

#include <npiso.h> 

#include <utils.h> 

struct lines{ 

ml nodel; 
mt node2; 
mt type; 
float dx; 

float dy; 

float dxl; 

float dyl; 

float length; 
float mien; 

float qik; 

float ejkdot; 

/* contains all function definitions *1 

I contains all the utilities *1 

/* specifies material property (fibre or tendon) */ 

/* initial distance */ 

I non negative *1 
I" initial length */ 

1* strain *1 
1* time derivative of strain / 

*1 
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float dejk; 

float intf: 

float area; 

float fopt; 

float diam; 

float depth: 

float angle; 

} line[60]; 

struct nodes{ 

float x; 
float y; 

float forces; 

float iforce; 

float inval: 

float nl; 

float n2; 

float n3; 

float n4; 

J node[60j; 

struct general{ 

mt connect; 
jilt total; 

mt kc; 
float result; 

jilt icon; 
float active; 

float oplength; 

float lambda; 

float ymod2; 

} info[1]; 

FILE *fp: 
FILE *45; 
FILE *fp6: 
FILE *fp7; 

FILE *fp8; 
FILE *fp9; 

/* delta strain *1 

/* internal force */ 
1* X-sectional area of each bar */ 

/* Optimal fibre lengths */ 
/* Tendon plate thickness */ 
/* Third dimension */ 

1* Pinnation angle of panel */ 
1* up to 30 lines */ 

/ x coordinate of node / 
1* y coordinate of node */ 
/ Store forces */ 

/* initial force */ 

/* initial constraint value */ 

/* define panel nodes*/ 

1* up to 30 nodes */ 

/* number of interconnections / 

/* total number of nodes *1 

/* number of modified indices */ 

P force history parameter *1 
/* number of panels *1 
/* level of muscle activation *1 

/* muscle optimum length *1 

1* The MAIN section of the program *1 
1*   

mamnO 

1* Youngs' Modulus for tendon */ 

mt count, nodes, connect, index, numcon, i, p, q; 
mt ntrial, ww, nd, dir, icon, j, counter; 
float *u, *extdp, *uold, *uddot, *value, * nl, *n2, * 3, * 4, *pan: 

float *outdp, *udot, *lrao, active, ymod2, *paflgle; 

float *udotp, * p, *yp, ymod, mlength, ratio; 

float dur, dt, tt, stm, result, oplength, activation; 

textmode(C4350); 

clrscrO: 

printf("\n Deleting TEST.$$$n"); 

system("del test.$$$'); 

printf("\n* 

printf("\n* ALL NODAL POINTS should be input in NODES.DAT 

printf("\n* THE NODAL CONNECTIONS and BAR DIAMETERS are entered in CONNECT.DAT 

printf("\n* THE NODAL CONSTRAINTS should be entered in SUPPORT.DAT a"): 

printf("\n* THE NODAL FORCES should he entered in FORCE.DAT 

printf("\n* ALL BARS HAVE THE SAME YOUNGS' MODULUS 
printf("\n* ALL BARS HAVE THE SAME DENSITY ( 1 kg/mA3 = IOE-6 g/mmA3) *"); 
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printf\n* ASSUMING ZERO INITIAL VELOCITY 

printt("\n* 

printf("\n"); 

priutf("\nModulus of Elasticity of the Tendon Plate? (approx. 600N/mmA2)  

scanf("%f', &ymod); 

printf("nModulus of Elasticity of the Tendon ? (approx. 1200 N/mmA2)  

scanf("%f', &ymod2); 

printf("\nWhat is the optimum muscle length?  

scanf("%f',&oplength); 

printf("\nWhat is the activation level?  

scanf("%f',&active); 

info[lJ.ymod2 = ymod2; 

info[ I ].active = active; 

info[ll.oplength = oplength; 
pritf("nHow many nodal points ?  

scanf("%d", &nodes); 

if( nodes <= I ) nrerror("Cannot calculate the length at a point"); 
info[ l].total = nodes;/* store total number of nodes */ 

printf("nHow many interconnections ?  

scanf("%d", &connect); 

infotlj.connect = connect; / store number of connections / 

printf("\nHow many panels 2"); 

scanf("%d", &icon); 

info[II.icon = icon; 1* store number of panels */ 
index = 2*(nodes l)+2; 1* modified # of indices */ 

index = index + icon; /* add one parameter per constraint *1 

info[l].kc = index; 1* store converted node number */ 

printf("\nHow many external supports 2"); 
scanf("%d", &numcon); 

u = vector(l,index); 1* Memory Allocation */ 

uold = vector(1,index); 

udot = vector(t,index); 

uddot = vector(1,index); 

udotp = vector(1,index); 

extdp = vector(1,index); 

outdp = vector(l,index); 
lratio = vector(1,connect); 

fp = fopen("TEST.$$$","w"); 

fprintf(fp,"Youngs' modulus of Tendon Plate = %I.4f N/mm"2\n",ymod); 

fprintf(fp,"Youngs' modulus of Tendon = %I.41 N/mm'2\n",ymod2); 

fprintf(fp,"Number of Nodes = %d\n",nodes); 

fprintf(fp,"Number of Connections = %dn",connect); 

fprintf(fp,"An"); 

fclose(fp); 

for( count=l; count<=jndex; count++) 1* initialize all variables */ 

u[countl = 0; 
uold(count] = 0; 

udot[countj = 0; 

extdp[count] = I; 

outdplcount] = 0; 
uddot[countj = 0; 
udotp[count] = 0; 

node[countl.x = 0; 
node[count].y = 0; 

node[countj.forces = 0; 

node[count].iforce = 0; 

for( count=I; count<=icon; count++) 

nodelcountl.nl = 0; 

1* initialize all nodes as unconstrained *1 
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nodelcount].n2 = 0; 
node[countl.n3 = 0; 
node[count].n4 = 0; 
node[countJ.inval = 0; 

for( count= I; count<=connect; count++) 

lratio[countj = 0; 
line[count].ejk = 0; 
line[countj.dejk = 0; 
line[count].intf = 0; 
line[count].inlen = 0; 
line(count].ejkdot = 0; 
line[countj.length = 0; 

readinput( u, udot, index); 

innodes( nodes, connect); 
for( count=1; count<=connect; count++) 

line[count].inlen = line[countj.length; 

linelcountl.dxl = lineIconnt.dx; 

line[countJ.dyl = line[countJ.dy; 

/* store initial length */ 

/* Calculate Muscle Length / 

mlength = node[nodes],x - node(1].x; 
info[ lI.lambda = mlength / oplength; 
1*   *1 

support( numcon, extdp); 
counter = index - icon; 
forces( nodes, counter); 
printf("\nMUSCLE length = %l.2f L/LO = %l.21 
foptimum( connect); 

for( count=l; count<=index; count+i-) 

Activation = %l.2t\n", mlength, info[1J.lambda, info[l].active); 

node(count].iforce = nodefcountl.forces; 1* store force magnitude *1 

/* read in panel data */ 
if( icon 1= 0) 

ni = vector(l,icon); 

n2 = vector(l,icon): 
n3 = vector(l,icon); 
n4 = vector(l,icon); 
pan = vector(l,icon); 
value = vector(l,icon); 
if((fp6=fopen('paneLdat","r"))==NULL) 

printf("nMissing Data File (PANEL.DAT) 
exit(0); 

else 

= 1; 
while( !feof(1p6) && (i<=icon) ) 

fscanf(fp6,"%f °/'t' %f %f %f',&panhil,&nl(ij,&n2(i],&n3lij,&n4[il); 

nodelil.nl = nih]; 
node[i.n2 = n2[i]; 
node[il.n3 = n3(i]; 

node[il.n4 = n4[i]; 
i++; 
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for( j=1; j<=icon; j++) 

g(u,value,indexj,nl,n2,n3,n4); 

node[j].inval = value(j]; 

free_vector(nl, 1,icon); 

free_vector(n2, 1 ,icon); 

free_vector(n3, 1,icon); 

free_vector(n4, 1,icon); 
free..vector(pan,1,icon); 

free_vector(value,1,icon); 

pangle=vector(1,icon); 

for( 1=1; i<--icon; i++) 

pangleiJ = line[i].angle; 

pangleji] = pangteli]*57.29578; 1* convert to degrees *1 

printf("\nAngle of Pinnation[%d] = %1.2f',i,panle[i]); 

printf("\n"); 

out( index, icon); /* open output data file *1 

printf("\nWhat is the time duration of the force history ?'n"); 

scanf("%f',&dur); 

printf("\n What is the starting time (>= 0) ? \n"); 
scanf("%f',&stm); 

printf("\nWhat is the value of delta t ? \n"); 
scanf("%f',&dt); 

printf("\nHow many iterations ?\n"); 

scanf("%d", &ntrial); 

if( ntrial = 0 ) nrerror("No iterations possible"); 
fp7 = fopen("nodes2.$$$","w"); 
fprintf(fp7,"n"); 

fclose(fp7); 

fp8 = fopen("ratio.$$$","w"); 

fprintf(fp8,"\nActivation Initial Length(mm) Final Length(mm) Ratio"); 

fclose(1p8); 

f9 = fopen("disp.$$$","w"); 
fprintf(fp9,"\nAct. Displacements (of all NODES)"); 

fprintf(1p9,"\n"); 

fclose(fp9); 

for( tt=stm; tt<dur; tt+=dt ) 

history( tt, dt); 

result = info[1].result; 

printf("\n"); 

printf("The scaling parameter at t= % 1.4f is % 1.4f", ft, result); 

if( tt = stm ) 

for( i=1; i<--index; i++) 

uold[i] = u[ij; 

for( i=l; i<=index; i++) 

udottil = (u[i]-uold[i])/dt; 

activation = 0; 

output( index, icon, u, tt, pangle, activation); 
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print.f("\.nThe Solution is :\n"); 

printf("nu[i] uold[il udot[il"); 
for( 1=1; i<--index; i+-i-) 

printf("n%l.3f %l.3f %l.3f",u[iJ,uold[i],udot[ij); 

printf("n"); 

else 

for( 1=1; i<=index; i++) 

uold[i] = u[il; 

printf("\n"); 
mnewt( u, extdp, index, ymod, uold, ntrial, dt); 
activation = result*infol 1J.active; 
fp9 = fopen("disp.$$$","a+"); 
fprintf(1p9,"\n'); 
fprintf(fp9,"%l.3f ",activation); 

for( i=l; i<--index; i++) 

fprintf(fp9,"%1.21 

fclose(fp9); 

for( i=l; i<=icon; i++) 

pangle[ij = line[ij.angle; 
pangle[i] = pangle[i*57.29578; 1* convert to degrees */ 

printf("nAngle of Pinnation[%d] = %l.21',i,pangle[ifl; 

output( index, icon, u, U, pangle, activation); 
printf("\nThc Solution is :\n"); 
printf("\nu[i] uold[i] udot(ij"); 
for( i=l; i<--index; i++) 

printf("n%l.31 %l.3f %l.3f",u[i],uold[ij,udotlifl; 

printf("\n"); 
xp = vector(1,nodes); 

yp = vector(l,nodes): 
f7 = fopen("nodes2.$$$","a+"); 
fprintf(1p7,"\n"); 
for( i=1; i<--nodes; i++) 

P = 2*it; 

q = 2*i; 

/ increments due to iterations / 

xp[i] = node[i.x + nip]; 
yplil = node[i].y + ulq]; 

fprintf(f1 7,"\n%d %1.3f % I . 3f',i,xpfi],yplij); 

fprintf(fp7,"\n"); 
fclose(fp7); 

free_vector(xp, 1,nodes); 
free_vector(yp,l ,nodes); 

1,8 = fopen("ratio.$$$","a+"); 
fprintf(fp8,"\n"); 
for( i=l; i<--connect; i++) 

ratio = line[il.length/line[il.inlen; 
t'printf(fp8,"n%l.2f %3.2t %3.2f %3.2f", activation, line[ij.inlen, line[ij.Iength, ratio); 
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fprintf(fp8,"\n"); 

fclose(fp8); 

printf("\nNode Node Initial Length(mm) Final Length(mm)"); 
for( 1=1; i<=connect; i++ 

printf("\n%2d %2d %3.2f %3.2f",IinefiJ.nodel ,Iine[ij.node2,linelil.inlen,line[iJ.length); 

printf("\n"); 
printf("\nDone !\n"); 

free_vector(u, I ,index); 

free_vector(uold, I,index); 

free_vector(udot, 1,index); 

free_vector(uddot, I ,index); 

free_vector(udotp, l,index); 

free_vector(extdp,l,index); 

free..yector(outdp, I ,index); 
free_vector(angle,1,icon); 

free_vector(lratio, I ,index); 

exit(0); 

return; 

/* INITIAL TABLE OF INTEGERS */ 

1*   *1 

void readinput (float *ti, float *udot, mt index) 

jut i, node, direc, count; 

float ndisp, nvel, val; 

printf("iHow many imposed displacements ?  

scanf("%f', &ndisp); 

printf("\n Which node is displaced ? In which direction ? By how much ?\n"); 

for( 1=1; i<=ndisp; i++) 

scanf("%d %d %f",&node,&direc,&val); 
count = 2*(node1) + direc; 

u[count] = vat; 

printf("\nHow many imposed velocities ?  

scanf("%f', &nvel); 

printf('\nAt which node ? In which direction ? Value ?\n"); 

for( i=l; i<=nvel; i++) 

scanf("%d %d %f',&node,&direc,&val); 
count = 2*(node1) + direc; 

udottcount = val: 

printf("\n(juesstimate of u[U I, U2, ...] is: \n"); 
for( i=I; i<=index; i++ ) 

printf("%6.If", ulij); 

printf("\n"); 
return; 

/ INPUT NODE INFORMATION IN THIS SECTION */ 
1*   *1 

void innodes(int nodes, mt connect) 
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FILE *fpl; 
FILE *l2; 

mt i, j, k, index, type; 
mt n=1; 
float *, *y, diam, area, depth; 

index = infolll.kc; 

xc = vector(l,index); 

yc = vector(1,index); 

if(( fpl = fopen("n2.dat","r")) = NULL) 

printf("\n NOTE: RECTANGULAR COORDINATE SYSTEM !"); 

printf("nSpecify a node number and its coordinates e.g. I xI,y1)"); 
printf("\n"); 

for( i=l; i<=nodes; i++) 1* input nodes & coordinates here */ 

scanf("%d %f %f", &n, &xc[il, &yc[i]); 

node[i].x = xcii]; 

node[i].y = ycli]; 

else 

printf("nNode number and its coordinates e.g. 1 (xl,yl)"); 

while( !feof( fpl ) && (n <= nodes)) 

fscanf(fpl,"%d %f %f",&n,&xc[nJ,&yc[n]); 

printf('"n%d %I.2f %1.2f',n,xc[n],yc[nj); 
node[n].x = xc[n]; 

node[n].y = yc[n]; 

if( n<=nodes) nrerror("\nWarning! Not all nodes read! Check NODES.DAT"); 

fclosc(fpl); 

printf("n\n"); 

n = I; 

if(( fp2 = fopen("connect.dat","r")) == NULL) 

printf("Bar# Type Diam. Area(mm"2)'n"); 
for( i=I; i<--connect; i++) 

printf("Please Specify Node Connection, Bar Diameter & Material Type(lor2)"); 

scanf("%d %d %f %f %d", &j,&k,&diam,&depth,&type); 1* specify connectivity & diameter & type *1 

lineiij.nodel = j; 1* store node number for each line */ 

line(i].node2 = k; 1* " *1 

line[i].type = type; 

area = 22*diam*diam/28; 

prmntf("%d %d %1.3f %I.2f\n",i,type,diam,area); 
line[ij.area = area; 

Iine1iJ.diam = diam; 
line[i].depth = depth; 

else 

printf("Bar# Type Diam Area(mmA2)\n"); 

while( !feof( fp2 ) && (n <= connect)) 

fscanf(fpl,"%d %d %f %d %f',&j,&k,&diam,&type,&depth); 

lineln].nodel = j; 1* store node number for each line */ 
line[ni.node2 = k; 1* " *1 

line[n].type = type; 
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area = 22*diam*diaml28; 

printt'("%d %d %I.3f %I.2f\n",n,type,diam,area); 

line[n].area = area; 
line[nj.diam = diam; 

line[nl.depth = depth; 

if( n<=connect) nrerror(".nWarning! Not all connections read! Check CONNECT.DAT"): 

fclose(fp2); 

printf("\n"); 

lent( xc, yc); /* calculate length */ 

free_vector(xc,l,index); 
free_vector(yc, l,index); 

return 

/* CALCULATE THE LENGTH OF EACH SEGMENT */ 
1*   *1 

void lent( float "xc, float *yc) 

mt i, j, k, connect; 
float xdist, ydist, Men, ylen; 
float *length; 

connect = info[lj.connect; 1* 'import' value of connect *1 

length = vector(1,connect); 

for( i=1; k=connect; i++) 

j = line[i].nodel; 
k = line[i].node2; 
Mist = (xclkj - xc[jJ); 
xlen = xdist*xdist; 

ydist = (yc[k] - ycU]); 
ylen = ydist*ydist; 

length[i] = sqrt(xlen+ylen); 

line[ilJength = Iength1i]; 
line[i].dx = xdist; 

line[i].dy = ydist; 

free_vector(length, I ,connect); 

return; 

/* INPUT THE NODAL SUPPORTS */ 
/*   *1 

void support( mt numcon, float *extdp) 

FILE *fp3; 

mt i, k, nd, dir, index; 
float value; 

index = info[ l].kc; 

if(( fp3 = fopen("support.dat","r")) = NULL) 

float far **ddu: 

ddu = matrix(I,index,1,index); 

printf("\nWhich nodes are supported ?\n"); 

printf("specify node #, direction & value.\n"); 

printf("); 

for( i=1; i<=numcon; i++ ) 

1* import value */ 
1* import value */ 

/* calculate length of x / 

/* calculate length of y / 

/* line length */ 

/ Store value *1 

scanf("%d %d %f", & nd, Mir, &value); 

ddu(nd]Idir] = value; 
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printf("ddu[%dl[%d) = %l.3f\n", nd, dir, value); 
printf("); 

k = 2 * (nd-I) + dir; 

extdp[kj = value; 

free_matrix(ddu, l,index, l,index); 

else 

i=1; 

printf("nNode Direction Support"); 
while( !feof( fp3) && (i <= numcon)) 

fscanf(fp3,"%d %d %f',&nd,&dir,&value); 

printf("n%2d %5d %5.2f',nd,dir,value); 

k = 2 * (nd-1)+ dir; 

extdp[k] = value; 

i++; 

if( i=numcon) nrerror("\nWarning! Not all connections read! Check cONSTRNT.DAT"); 

fclose(43); 

printf("\n\n"); 

return; 

/K INPUT ALL THE NODAL FORCES (EXTERNAL) */ 
1* 

void forces( mt nodes, mt index) 

FILE *fp4; 

Intl. j, k, nd, dir; 
float value; 

if(( fp4 = fopen("force.dat","r")) = NULL) 

float far **force; 

force = matrix(I ,index,I ,index); 

printf("\nlnput the forces for all the nodes."); 

printf("n e.g. force[illjj = force on node i in j direction."); 
printf("\n & j varying between 1 (horizontal x) & 2 (vertical y  

printf("n"); 

for( i=l; i<nodes; i++) 

for(j=1; j<=2; j++) 

printf("force[%d][%dj = ", ij); 
scanf("%f", &force[i][jfl; 
k = 2*(il) +j; 
node[k].forces = force[i]U]; 

printf("); 

free_matrix(force,I,index,I,index); 

else 

i=l; 

printf("nNode Direction Force"); 

while( !feof( fp4 ) && (i <= index)) 

fscanf(fp4,"%d %d %t',&nd,&dir,&vaIue): 
printf("\n%2d %5d %5.2t",nd,dir,va!ue); 
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k = 2 * (nd-1) + dir; 

nodetkl.forces = value; 
i++; 

if( i<index ) nrerror("\nWarning! Not all forces read! Check FOR(.E.DAr'); 

fclose(f'p4); 
printf("\n\n"); 

return; 

/* FORCE HISTORY */ 
1*   *1 

void history( float tt, float dur) 

float result; 

result = ttJ(40*dur); 

if( result> 1 

result= 1; 

info[lj.result = result; 
return 

1* Newton Raphson method for multi-variable equations *1 
1* 

void mnewt(float *u, float *extdp, jut index, float ymod, 

float *uold, mt ntrial, float dt) 

mt i, k, p, q, *jndx, *jvectorO nodes, icon; 
float *bet, **alpha, *vectorO, **matrjxO; 

float enx, errf, tolx, toif, d; 
float *xp, *yp, *, *y; 

icon = info[I].icon; 
nodes = info[I].tolal; 

tolf 0.010; 

toix = 0.010; 

alpha = matrix(1,index,1,index); 
mdx = ivector(1Jndex; 

bet = vector(l ,mndex); 

xp vector(1,index): 

yp = vector(1,index); 
x = vector(l,index); 

y = vector(1,index); 

for( i=1; i<--index; i++) 1* initialize arrays *1 

bet[il = 0.0; 

mdxlii = 0.0; 

for( i=I; i<=index; i++) 1* initiaize array *1 

for( k=1; k<=index; k++) 

alphatk)[i] = 0.0; 

for( k=l; k<=ntrial; k++) 

printf("After %d iteration(s)", k); 

callfunc(index, u, extdp, alpha, bet, ymod, uold, dt); 
errf = 0.0; /* check function convergence *1 

*1 
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for( i=l; i<=index-icon; i++) 

erif += fabs(bet[ifl; 

if ( errf <= toll) FREERETURN 
ludcmp(alpha,index,indx,&d); /* solve linear equations *1 

lubksh(alpha,index,indx,bet); 1* using LU decomposition */ 

errx = 0.0; J* check root convergence *1 

for( i=l; i<--index; i++) /* update solution */ 

if( extdp[ii = 0) 

bet[iJ = 0; 

u(iJ += betti); 

for( i=1; i<--nodes; i-t-+) 

p = 2*il; 

q = 2*i; 

x[i] = nodelii.x; 1* 'import' coordinate values */ 

yli] = nodelii.y; 
/* modified values including disp. & the external supports.*/ 

1* increments due to iterations *1 

xp[ii = xli] + upi; 
yp[i] = yli] + ulq]; 

lent( xp, yp); 
for( i=l; k=index-icon; i++) 

errx += fabs(bet[i]); 

if ( errx <= toix) FREERETURN 
printf("\nu[ii uold(i]'); 

for( i=l; i<=index; i++) 

printf("\n% 1.3f % 1.3f ',ujij,uold[ij); 

printf("n"); 

free_vector(xp, 1,index); 

free_vector(yp,1,index); 

free_vector(x, 1,index); 
free_vector(y, I ,index); 

FREERETURN 

1* A CALLING FUNCTION TO VW / 
1*   

void callfunc( mt index, float *, float *extdp, float ** alpha, float *bet, 
float ymod, float *uold, float dt) 

*1 

/* calculate length primed */ 

1* check displacement convergence */ 

mt a, i, j, nod, bar, connect, icon, w, c; 
float *inithet, *newbet, *tempo, *pval, *pbet, modify; 

float *du, *value, *initvaj, *newval, al, a2; 
float far *nl,* 112,*n3,*n4, *pan; 

float delta = 0.01; 

icon = info[ li.icon; 
connect = info[1 J.connect; 1* 'import' value of connect / 

du = vector(1,index); /* allocate memory *1 

pbet = vector(1,index); 

tempo = vector(I,index); 
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newbet = vector(l ,index); 

initbet = vector(1 ,index); 
1* read in panel data */ 

if( icon != 0) 

n  = vector(1,icon); 

n2 = vector(I,icon); 

0 = vector(1,icon); 

n4 = vector(1,icon); 

pval = vector(l,index); 

value = vector(1,index); 

initval = vector(1,index); 

newval = vector(1,index): 

for( i=l; i<--icon; i++ ) 

nl[ij = node[ij.nl; 

n2[i] = nodeli].n2; 

n3[iJ = node[ij.n3; 

n4[i] = node[ij.n4; 

1*   *1 

for( i=l; i<=index; i++) 

for( j=l ; j<=index; j++) 

pvat[i] = 0; 

value[i] = 0; 
newval(ij = 0; 

initval(i] = 0; 

/* initialize */ 

for( j=1; j<=icon; j++) /* differentiate the constraint equation *1 

for( 1=1; k=index; i++) 

w = index - icon + j; 
g(u,value,indexj,n I ,n2,n3,n4); 

initval[i] = value[j]; 

bet[w] = l*vaIueUJ; 

'if i += delta: 
g(u,value,indexjnI ,n2,n3,n4); 

newvalf iJ = valuefjj; 
u[ij -= 2*delta; 

g(u,value,indexj,n 1,n2,n3,n4); 

pvalfi] = value[j]; 

u[ij += delta; 

al = (newval[i]-initval[i])fdelta; 

a2 = (initvalfil-pvalfij)/detta; 

alpha(wj[i] = (al+a2)/2; 

aiphalijfwl = alpha[w][iJ; 

free_vector(n l,1,icon); 

free_vector(n2, 1 ,icon); 

free_vector(n3, 1,icon); 
free_vector(n4, I ,icon); 

free_vector(value, t,index); 
free_vector(newval,1,index); 

free.vector(initval, t,index); 

for( j= 1; j<=index; j++) 
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duijl = 0; /* initialize all arbitrary displacements */ 

for( j=l; j.'z=(index-icon); j+t-) 

duiji = 1; 1* arbitrary displacement */ 

for( i=I; i<--(index-icon); i++) 

nod = i; 1* direction to be examined */ 

bar = (i+l)/2; /* node to be examined */ 

vw(connect, u, bet, du, nod, bar, ymod, uold, dt, alpha); 
initbet[i] = bet(i]; 

ui] += delta; 

vw(connect, u, bet, du, nod, bar, ymod, uold, dt, alpha); 

newbet[i] = bettil; 
u[i] -= 2"delta; 
vw(connect, u, bet, du, nod, bar, ymod, uold, dt, alpha); 

pbet[i] = bet[i]; 

al = (newbet[iJ-initbet[ij)/delta; 

a2 = (initbetti]-pbet(i))Idelta; 

alpha[jl[i) = (al+a2)/2; 

u[il += delta; 

if( i == j ) tempo[jl = initbet[i]; 

dulji =0; I reset displacement to zero / 

1* incorporate the external constraints *1 

for( i=l; i<--index; i++) 

if( extdpf i] = 0) 

for( a=l; a<--index; a++) /* all elements in row = () */ 

alpha(i][aj = 0; 

for( a1; a<--index; a++) /* all elements in column = 0 */ 

alpha[a)[il = 0; 

alpha[i][i] = 1; /* diagonal element = 1 */ 

for( i=1; k=index-icon; i++) 

if( extdp[i] = 0) 

bet[] = 0; 

else 

hethiJ = _l*tempo[i]; 

free_vector(du, 1,index); 

free_vector(pbet, 1,index); 

free....vector(tempo, I ,index); 

free_vector(newbet,l,index); 

free_vector(initbet,l ,index); 
return; 

/ VIRTUAL WORK ROUTINE */ 
1*   *1 
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void vw( mt connect, float *, float *bet, float *du, mt nod, mt bar, 
float ymod, float *uold, float dt, float **alpha) 

mt i, a, b, w, index, icon, c; 
float vwk, de, nn, evwk, eforce, ivw, modify; 
index = info[lj.kc; 

icon = infollj.icon; 

eij( connect, u, du, uold, dt); /* calculate strains / 

kij( connect, ymod); 1* calculate internal forces */ 
bet[nod] = 0.0; /* reset to zero / 

modify = 0.0; 

ivw = 0.0; 

nn = 0; 

de = 0; 

for( 1=1; k=connect; i++) /* check if there is any connection / 

a = line[i].nodel; 

b = line[i].node2; 

/* 'bar' specifies the NODE being considered */ 
if( a == bar II b = bar) /* Is there a connection ? *1 

nn = lmnelij,intf; /* Internal Force */ 

de = Iineli].dejk; 1* Delta Strain *1 
vwk = nn*de; /* internal virtual work */ 

else 1* no connection */ 

vwk = 0; 

ivw += vwk; 

/* Lagrange Multipliers */ 

for( c=1; c<--icon; c++) 

w = index-icon+c; 

modify += u[w*alpha[w][nodI*dujnod]; 

ivw = ivw + modify; 
/*   *1 

eforce = node[nod].forces; 
1* external virtual work */ 

evwk = eforce*du[nod]; 

bet[nod] = ivw - evwk; 1* vw = ivw - evw / 
return; 

/* CALCULATE THE STRAINS GIVEN THE DISPLACEMENTS */ 

*1 

void eij(int connect, float *, float *du, float *uold, float dt) 

mt i, j, k , 1, m, index; 
float far **uu **uudot; 
float far **dduu, **uoldp; 

float dist[NODES], dpr[NODES], lgt[NODES], too, dfoo; 
index = info[lJ.kc; 

uu = matrix(1,index,1,index); 

dduu = matrix(1,index,l,mndex); 

uudot = rnatrix(l,index,1,index); 

uoldp = matrix(1,index,l,index); 

for( i=l; i<--connect; i++) 

line(i).ejk = 0; 
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line[il.dejk = 0; 

line[i].ejkdot = 0; 

for( k=l; k<=connect; k++) 

i=2*kt; 
j=2*k; 

distEil = line[k].dxl; 
dist(jj = line[kl.dyl; 

for( i=l; k=connect; i++) 

lgtlij = line[11.inlen; 
dpr[il = linelilJength; 

for( i=1; i<=index; i+.f) 

j = (i+l)/2; 
k = i+2.(2*j); 

uu[jj(kJ = u[iJ; 
dduu(j](k) = dull); 

uoldp[j][k) = uold[iJ; 

m=l; 

for( i=1; i<=connect; i++) 

j = Iine[ij.nodel; 
k = line[i].node2; 
for( 1=1; k=2; l++) 

/* first node of line i *1 
/* second node of line i *1 

foo= (2dist[mJ+(uu[k][l]_uu[j][l]))*(uu[kj[l]_uu[j]lh]); 

line(ij.ejk += sqrt((lgt[i]*lgt[ifl+foo)-lgt[i]; 
dfoo= 2*(dist[m1+uu[k][Ijuu[j](l])*(dduu[k][lJdduuljJ[fl); 

line[i]dejk += dfoo/(2*(lgt[i]+line[il.ejk)); 
uudot[k]f IJ = (uu[k][l]-uoldp[kl[lJ)/dt; 
uudotlj]W = (uu(j][11-uoldplj][I1)/dt; 

line[i).ejkdot += (dist[ml+uu[k][lI.uufj][l])*(uudot[k][l)_uudotW[l])/dpr[i]; 
m+=l; 

free_matrix(uu, 1,index, l,index); 
free_matrix(dduu,l,index,1,index); 
free_matrix(uoldp, l,index, l,index); 
free_matrix(uudot,1,index, l,index); 

return; 

/* CALCULATE THE INTERNAL FORCES */ 
1*   *1 

void kij( jut connect, float ymod) 

mt i, nodes; 
float active, lamda, x[NODES], y[NODES], vel[NODES], vmax; 

float stiffINODES], fl[NODES], f2[NODES], 13[NODES], ymod2; 
ymod2 = info[I].ymod2; 
active = info[ l].active*infol l].result; 

/* calculate k from E,A, & length *1 
for( i=l; i<--connect; i++) 

stiffli] = 0; / reset stiffness value */ 
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for( 1=1; i<=connect; i++) 

if( line[ij.type == I ) 

vel[i) = line[ij.ejkdot; 
vmax = 8*Iine[ij.fopt; 

lamda = Iine[ij.Iength/line[i].fopt; 
if( Jainda <= 0.6 II lamda >= 1.72) 

fl[i] = 0; 

if( 0.6 < lamda < 0.8) 

fl[il = (4.421*Iamda).2.653; 

if( 0.8 <= lamda < 0.94) 

fl[il = (1.067*Iamda)0.03; 

if( 0.94 <= lamda < 1.06) 

fl[iJ = 1: 

if( 1.06 <= lamda < 1.72) 

ul(ij = (_ 1.515*Iamda)+2.606; 

if( (vel[i]/vmax) <= -1) 

Mil = 0; 

if( - 1 <(vel[i]/vmax) <= 0) 

f2(iJ = (1+vel[i]/vmax)/(1_(4*vel[i]/vmax)); 

if( 0 < (vd[ij/vmax) <= 1) 

f2[ij = 2((1_ve1[i]/vmax)/(1+(4*veI[iJ/vmax))); 

if( (veI1i/vmax)> 1) 

12[iJ = 2; 

if( lamda <= 0.6) 

13[i] = -0.0276; 

if( 0< lamda < 1.72) 

f3[iJ = 3.289*pow10(6)*exp(9.037*Iamda).0.02766; 

if( lamda >= 1.72) 

13[i] = 18.43916933; 

Iine[il.intf = ((active*fl lil)+13[il)*0 4*lineii] areaS 

if( Iine[iJ.type == 2 ) 

stiff III = ymod*Iine[i].diam*IinefiJ.depth/Iine[i].inlen; 

Iine[i].intf = (stiff[il*IineIi].ejk); 

1* calculate bar stiffness */ 
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if( line[i].type = 3 ) 

stiff[ij = ymod2*line[i].diam*line[i].depth/line[i].inlen; 
Jine[i].intf = (stifffi]*lineti].ejk); 

return; 

/* CALCULATE OPTIMUM FIBRE LENGTHS */ 
1*   *1 

void t'optimum( mt connect) 

jut i; 

float Iamda; 

lamda = info[ 1].lambda; 

for( i=I; i<=connect; i++) 

if( iine[i).type == I ) 

Iine[ij.fopt = line [i].inlen/Iamda; 

printf("\nfiengthE%d] = %I.3f 

printf(".n"); 

return; 

/* CONSTRAINT EQUATION */ 
1*   *1 

void g( float float *Value, jut index, jut j, 
float *n I, float *n2, float * 3, float * 4) 

/* calculate bar stiffness */ 

fopt[%dj = %I.3f',i,lineljj.inlen,j,line[i].fopt); 

mt i, p, q, nodes; 
static far float x[NODES],y[NODESJ, w3; 
float far *fl, *f2, *f3, *f4, *alfal, *affa2, *a11a3, *alfa4, *store; 

nodes = mnfo[I].total; 

ti = vector(1,index); 1* allocate memory *1 

12 = vector(I,index); 
13 = vector(I,index); 

P = vector(1,index); 
alfal = vector(I,index); 

alfa2 = vector(I ,index); 

alfa3 = vector(I,index); 

alfa4 = vector(1,mndex); 

store = vector(1,index); 

for( i=1; i<=iudex; i++ ) /* initialize all variables */ 

11 [il=O; 
f2[i]=O; 

f3ji]=O; 

14[il=O; 
alfal ril=O; 
alfa2i]=O; 

alfa3liJ=O; 
alfa4[i]=O; 

1* read node coordinates *1 

for( i=l; i<--nodes; i++ ) 

p = 2*il; 
q = 2*i; 
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xlii = node[i].x; 1* 'import' coordinate values */ 

y[i] = node[i].y; 
/ increments due to displacements *1 

x[i] += u[p]; 
y[i] += u(q]; 

/* calculate and store relevant parameters *1 

flent(nl,n2,x,y,fl ,j); 

flent(n3,n4,x,y,12j); 

flent(nl,n3,x,y,f3j); 

flent(n2,n4,x,y,f4j); 
angle(nl ,112,n3,x,y,alfalj,fl,13); 

angte(n2,nl,n4,x,y,a11a2j,fl,14); 
a11a2[j} = _I*a1fa2[j]; 

angle(n3,n4,nl,x,y,a11a3j,f2,f3); 

a1fa31j] = 1*alfa3IjJ; 

angle(n4,n3,n2,x,y,alfa4j,f2,f4); 

w3 = O.25*(alfal Ij]+alfa2Fj]+alfa3lj]+a1fa4(j]); 

line[j].angle = w3; 
store(jJ = O.125*(f I [jJ+f2[j)*(t'3[jJ+f4fjJ)*(f3[j]+f4[j])*w3*w3; 

valuefj] = store(j] - nodelj].inval; 

free_vector(f I, 1,index); 

free_vector(f2, 1,index); 

free_vector(13,1,index); 

free_vector(f4, I ,index); 

free_vector(alfal, l,index); 

free_vector(alfa2, 1,index); 

free_vector(a1fa3, 1,index); 

free_vector(a1fa4, I ,index); 

free_vector(store,1,index); 

return; 

/* Relevant FUNCTIONS (--> CONSTRAINTS) */ 
1*   *1 

void flent(float *nl, float *n2, float x(NODES], 

float yENODESI, float *f, int  

float r,s,xl,x2,yl,y2; 

r = nlUb 

a = n2ljj; 

xl = xlr]; 
x2 = 

yl = yEn; 
y2 = y[sj; 
1W = sqrt(((x2_x1)*(x2_x1))+((y2y1)*(y2_y1)); 

return; 

void aagle(float *nt, float *n2, float * 3, float x[NODES], 

float ylNODES], float *alfa, int  float *f 1, float *12) 

float r,s,t,ww,zz; 

r = 
s = u2[j]; 

t = n3[jj; 

ww = ((x[tj_x[r])*(y[s]_y[rD)_((y[t]_y[nl)*(x[sj_x[rD); 
zz = fabs(fl(j]*f21j]); 

alfa(jl = (ww/zz); 
return; 

1*   *1 
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1* OPEN OUT.DAT FILE *1 
/*   

void out( mt index, mt icon 

mt i, count; 
fp5 = fopen("OUT.$$$","w"); 

fprintf(fp5,"Time  

fprinlf(fp5,"Activ 

fprintf(fp5,"L/LO  

for( i=I; i<--icon; i++) 

fprintf(fp5,"Angl%d ",i); 

for( count=1; count<=icon; count++) 

i = index-icon+count; 

fprintf(fp5,"F%d ",i); 

fprintf(fp5,"\n"); 

fclose(fp5); 

return; 

/* OUTPUT ROUTINE / 
1*  

void output( mt index, mt icon, float u, float tt, float *pangle, float activation) 

mt i, count; 
1p5 = fopen("OUT.$$$","a+"); 

fprintf(fp5,"\n"); 

fprintf(fp5,"%l.3f 

fprintf(fp5,"%1.3f ",activation); 

fprintf(fp5,"%I.3f "Jnfo[l].lambda); 
for( i1; i<--icon; i++) 

fprintf(fp5,"%I.2f ",pangle[i]); 

for( count=l; count<=icon; count++) 

= index-icon+count; 

fprintf(fp5,"%I.2f ",u[i]); 

fclose(fp5); 

return; 

/* EQUATION SOLVER */ 
1*   

void lubksb(a,index,indx,b) 
float **a,b[J; 

mt index,*indx; 

mt i,ii=O,ipj; 
float sum; 

for( i=1; i<=index; i++) 

ip=indx[il; 
sum--blip]; 

b[ipl=b[ij; 
if( ii) 

for (j=iij<=i-1j++) sum -= a[ijJ*b[j; 

else if (sum) ii=i; 
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b[iJ=sum; 

for( i=index; i>=1; i--) 

sum=b[il; 
for( j=i+1;jcz=index;j++)sum = a[iJ[j]*b[jJ; 
b[i]=sum/a[i][jj; 

/* EQUATION SOLVER */ 
1*   *1 

void tudcmp(a,index,indx,d) 
mt index,*mndx; 
float **a,*d; 

lot i,imaxj,k; 
float big,durn,sum,tenip; 

float *vv,*vectorO; I vv stores the implicit scaling of each row / 

void nrerroro,free_vectorO; 
vv=vector( 1,index); 
*d 1.0; /* No row interchanges yet *1 

for( i=1; k=index; i++) /* Loop over rows to get the implicit scaling information */ 

big=0.0; 

for(j=1; j<=index; j++) 
if ((temp=fabs(a[i](j])) > big) big=temp; 

if (big == 0.0) nrerror("Singular matrix in routine LtJDCMP"); 
/* No nonzero largest element. */ 

vv[i]=1.0/big; /* Save the scaling */ 

for( j=1; j<=index; j++) 

for( i=1; kj; i++) 

sum=a[i][iJ; 
for( k1; k'<i; k++) 

sum -= a[i][kJ*a[kj(jj; 

alij[jJ=sum; 

big--0.0; 

for( ij; i<=index; i++) 

sum=a[i]jjj; 
for( k=l; k<j; k++) 

/ initialize the search for the largest pivot element */ 

sum -= a[il[kj*a[kj(j]; 

a[i]i]=sum; 
if ((dunl=vv(i]*fabs(sum)) >= big) 

big=dum; 

imax=i; 

if (j 1= imax) /* do we need to interchange rows ? / 

for( k=1; k'cz=index; k++) 1* Yes, do so ... 

dum=a[imaxj[k]; 
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a[imaxj[kl=alj]jk]; 

a[jJ[kj=dum: 

*d = 

vv[imax]=vvlj]: 

iadx[jl=imax; 

if (a[j][jl = 0.0) aljl[j]=TINY; 
1* If the pivot element is zero the matrix is singular 

(at least to the precision of the algorithm). */ 
if (j index) /* Now, divide by the pivot element */ 

dum=l.0/(a[j][jJ); 
for( i=j+1: i<=index; i++) a[i]U] k= dum; 

/* Go back to the next column in the reduction */ 

free_vector(vv,1,index); 

#undef TINY 

#undef FREERETURN 

#undef NODES 



Appendix B: 

Sample Data Files 

An example of the data files which are used in the single panel simulations of 

chapter 8.4 is given in this appendix. Titles are included in this listing to enhance the 

clarity, but they are not part of the data files. 

N2.DAT 

All the nodal coordinates are entered in this file. 

NODE # X-coordinate Y-coordinate 

1 0.000 0.000 
2 10.686 3.288 
3 19.728 -3.288 
4 30.414 0.000 

CONNECT.DAT 
Information about the node connections, bar dimension and the material type is 

stored in this file. The material type I indicates a fibre, whereas 2 indicates a tendon 
sheath. Material type 3 indicates a tendon. 

Node I Node 2 Diameter (mm) Material Type Depth (mm) 
1 2 14.2 1 14.2 
1 3 .1 2 14.2 
2 4 .1 2 14.2 
3 4 14.2 1 14.2 

SUPPORT.DAT 
The default setting is for all nodes to be unrestrained and free hinged. The user 

is prompted to input any nodal restraints in the absence of the input file "support.dat". 

Node # Direction (x or y) Support (0 -> on) 
1 1 0 
1 2 0 
4 1 0 
4 2 0 
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FORCE.DAT 
The user is required to provide the magnitude of the applied force on each node 

in both the x- and y- directions. This can be done at run time in the absence of the input 
file "FORCE.DAT". 
Node ft X or Y direction ( 1 or 2 respectively) Force Magnitude (N) 
1 1 0 
1 2 0 
2 1 0 
2 2 0 
3 1 0 
3 2 0 
4 1 0 
4 2 0 

PANEL.DAT 
This file is required when an example is run which uses the volume constraint. 

The information provided in this file defines each panel in the structure. In the context 
of this thesis, the panels are always defined by quadrilaterals. At run time, the user is 

prompted for the number of panels. 
Panel ft Node 1 Node 2 Node 3 Node 4 
1 1 2 3 4 

The order in which the nodes are specified is very important. 


