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ABSTRACT 

The objectives of this research were (1) to investigate suitable techniques for 

modeling and controlling gaseous emissions emanating from stationary internal 

combustion engines; (2) to apply these techniques in the design of a parametric emission 

monitoring and control system; (3) to test these techniques using a computer model; and 

(4) to show the feasibility of integrating them with an existing engine management 

system, REMVue, provided by R E M Technology Inc. These objectives were 

accomplished in 5 stages: (1) development of a parametric emission modeling system 

using multidimensional arrays; (2) development of a parametric emission modeling 

system using artificial neural networks; (3) development of an emission control modeling 

system using artificial neural networks; (4) quantification of performance and comparison 

with traditional emission monitoring systems; (5) evaluation of the existing engine 

management system for integration with the neural network parametric emission 

monitoring and control system. Parametric emission modeling using both techniques was 

feasible. The neural network approach proved to be the most suitable technique for future 

real-time operation within the existing engine management system. 
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INTRODUCTION TO THE PROBLEM OF GAS EMISSION 

MONITORING AND CONTROL OF SPARK IGNITION 

STATIONARY INTERNAL COMBUSTION ENGINES 

Deterioration of the atmosphere from gaseous pollutants is an important 

environmental issue. Local, state and national governments have enacted stricter exhaust 

emission legislation to reduce and possibly reverse atmospheric deterioration [1]. 

One particular area that has received a great deal of attention in the last few years 

is utilizing gaseous fuels to power spark-ignition, stationary internal combustion (SISIC) 

engines for driving compressors used in the oil and gas industry [2]. Environmental 

legislation has affected these installations by limiting the horsepower allowed, or by 

requiring very low emission levels out of these engine-compressor units. Because of this 

situation, natural gas internal combustion engine manufacturers continue to develop 

products which help to meet these environmental requirements. In addition, exhaust 

treatment companies have developed processes which reduce pollutants by converting 

them into safe, naturally occurring compounds that are not damaging to the 

atmosphere [3]. 

Environmental regulations, specifically those enacted by the Environmental 

Protection Agency and the Canadian Environmental Protection Agency [1], have 

stimulated an increased interest in monitoring and control of actual exhaust emission 

output from SISIC engine units. Access to actual levels of exhaust emissions assists in 

verifying operating permit compliance, facilitates computation of emission fees or trading 
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credits, and enables a more comprehensive assessment of national emission inventory 

levels. 

Several methods for controlling the performance of spark ignition internal 

combustion (SISIC) engines have been suggested [2,4-6]. Few of them have attempted to 

model, monitor, and control toxic emissions such as greenhouse gases (CO, C O 2 and 

CH 4 ) , nitrogen oxides (NO x), unburned hydrocarbons (HC), and volatile organic 

compounds generated during the combustion process [2, 7-10]. 

Presently, there are several different techniques for engine exhaust gas 

quantification: (1) using a collection of expensive equipment (gas analyzers and toxic gas 

sensors) to sample, analyze and provide a continuous record of emission rates with the 

possibility for integration and forming the so-called Continuous Emission Monitoring 

Systems (CEMS) [11]; (2) empirically calculating these emissions using very complex 

chemical and thermodynamic equations [12]; (3) using Demonstrated Compliance 

Parameter Limit (DCPL) systems, which give no indication what the actual emissions 

are, but rather deliver an assurance that emissions are below a target range providing the 

engine is operated within a defined operational envelope [11]; (4) using empirical model-

based Parametric Emission Monitoring Systems (PEMS), which are typically 

multidimensional arrays or look-up tables containing data for several operational 

parameters that describe engine performance [8,11]; and (5) designing and implementing 

Virtual Emission Monitoring Systems (VEMS) to model the engine performance and to 

estimate the emission rates based on different engine operational conditions [9]. 

Emission control has been a difficult task to achieve due to a lack of expertise. 

Few experts have studied and published optimal engine conditions that might be used to 
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tune the engine performance for compliance with the legally required emission levels 

[2,9]. Moreover, there are no available tools on the market that can provide an engine-

compressor unit operator with the required information to manipulate the engine 

operation and control the emission levels as desired. 

SCOPE OF THE THESIS 

As public awareness of environmental issues increases, a significant amount of 

research is being done to find practical solutions for continuously monitoring and 

controlling the different toxic emissions produced by oil and gas facilities. 

The aim of this thesis is to suggest a method for estimating selected gas emissions 

(NO x , HC, CO and C O 2 ) in oil and gas facilities that are generated as products of 

combustion. Design and implementation of two computer-based models for emission 

estimation are presented. The models are capable of estimating different gas emissions 

produced by natural gas, stationary internal combustion engines without the use of 

expensive gas analyzers or toxic gas sensors. Furthermore, an open-loop control of gas 

emissions is presented and is embedded into the second model, so that a reliable tool for 

the estimation and control of these emissions could be achieved. Finally, integration of 

the developed system with the existing engine management system REMVue, developed 

and provided by R E M Technology Inc., is described. 

The thesis is structured into five chapters. 

Chapter I introduces the fundamentals of internal combustion engines and 

different types of emission monitoring systems. Their advantages and disadvantages for 

solving the present problem are outlined. 

* R E M V u e is the given name to the engine management system provided by R E M Technology Inc. 



4 

Chapter II describes the development of a parametric computer model for the 

estimation of exhaust emissions from spark-ignition, natural gas, stationary, internal 

combustion (SISIC) engines, based on multidimensional arrays. The implementation and 

results are discussed. This first approach was published in the Proceedings of the 5 t h 

Biennial Conference on Engineering Systems Design and Analysis, Montreux, 

Switzerland, July 10-13, 2000, and was presented at the same conference by the author. 

Chapter III presents a second approach for emission estimation, based on artificial 

neural networks. An overview of artificial neural networks and their applicability to the 

present problem is presented. A neural network-based design modeling for estimation of 

gas emissions for SISIC engines used in the oilfield is outlined. The design, 

implementation and results are discussed in details. This second approach was published 

in the Proceedings of the 6 t h International Conference on Control, Automation, Robotics 

and Vision (ICARCV2000). Singapore, December 5-8, 2000, and was presented by the 

author. 

Chapter IV describes an open-loop control system for the emission control using 

artificial neural networks. The overall experimental work for testing the two approaches 

for emission estimation and the open-loop emission control system is presented, 

including a detailed description of the data collection process. 

Chapter V encompasses the integration of the developed estimation and control 

system with an existing engine management system. The features of the REMVue engine 

management system are provided, and a protocol to build a stand-alone application to be 

embedded into the present engine system is suggested. 



5 

Finally, a conclusion chapter discusses the limitations of the neural network-based 

emission monitoring and control system, and some operational details that the users must 

be aware of for further implementation of the proposed approach. 
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CHAPTER I: INTERNAL COMBUSTION ENGINES 

AND EMISSION TECHNOLOGIES 

Some essential features of the combustion process of internal combustion engines 

must be briefly outlined to provide the reader with a background on the generation of 

exhaust pollutants, and on the factors which affect this generation. Furthermore, gas 

emission technologies are introduced to clearly understand the scope of the present work. 

1.1. Engineering Fundamentals of Spark Ignition Internal Combustion Engines and 

their Emission Pollutants. 

The purpose of internal combustion engines is the production of mechanical 

power from the transformation of chemical energy contained in the fuel used [13]. In a 

conventional spark-ignition (SI) engine the fuel and air mix together in the intake system. 

Then, they are inducted through an intake valve into the cylinders, where they get 

compressed. Under normal operating conditions, combustion is initiated towards the end 

of the compression stroke by an electric discharge at the spark plug. A turbulent flame 

develops, propagates through this pre-mixed fuel-air mixture until it reaches the 

combustion chamber walls, and then extinguishes. Figure 1.1 illustrates the combustion 

process in a four-stroke SISIC engine. 

Basically, each cylinder requires four strokes of its piston, i.e., two revolutions of 

the crankshaft to complete the sequence of events, which produce one power stroke. This 

cycle is known as the Otto cycle [13]. 
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Inlet Exhaust lnlst ExhaWl Inlet Exhaust Inlet Exhaust 

(q) Intake (i) Compression Id Expansion ji) Exhausl 

Figure 1.1. The four-stroke operating cycle (Otto cycle) 

(1) The cycle commences with an intake stroke, which starts with the piston at 

top center (TC) and ends with the piston at bottom center (BC). During this first stroke 

the inlet valve opens to admit fresh air-fuel mixture into the cylinder. 

(2) Then a compression stroke takes place. The inlet and exhaust valves are 

closed, and the mixture inside the cylinder is compressed toward the end of the cylinder. 

Shortly before TC the spark starts the combustion. The pressure of the gases resulting 

from the combustion process increases and reaches a maximum just after TC. 

(3) A power stroke, or expansion stroke takes place, starting with the piston at 

TC and ending at BC as the high-pressure of the gases push the piston down and force the 

crank to rotate. As the piston approaches BC, the exhaust valve opens to initiate the 

exhaust process, and the cylinder pressure drops to the exhaust manifold pressure. 

(4) Finally, an exhaust stroke occurs, when the remaining burned gases exit the 

cylinder through the exhaust valve, and then are released to the environment via the 

exhaust pipe. 
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Spark-ignition (SI) engines are a major source of air pollution. The SI engine 

exhaust gases contain oxides of nitrogen (ie., N O x , including nitric oxide NO, and small 

amounts of nitrogen dioxide N O 2 ) , carbon monoxide (CO), organic compounds which are 

unburned hydrocarbons (HC), carbon dioxide (CO2) and oxides of sulfur (SOx) [13,14]. 

Formation of oxides of nitrogen takes place during the high combustion 

temperatures in the combustion chamber containing atmospheric nitrogen, oxygen, and 

fuel. These gases harm humans and animals by reducing breathing capacity and limiting 

the blood's ability to carry oxygen [1,18]. In the lower atmosphere, when exposed to 

sunlight, they act as precursors in the formation of ozone (O3) [1]. 

Carbon monoxide is formed by incomplete combustion. This occurs when there is 

insufficient oxygen near the fuel (hydrocarbon) for complete combustion or when 

combustion is quenched near a cold surface in the cylinder. CO is a poisonous gas, which 

causes nausea, headache and fatigue, and in heavy concentrations can cause even death. 

In addition, it reacts with O3 in the upper atmosphere, producing carbon dioxide (CO2), 

which depletes the ozone layer [1]. 

Natural gas is a fuel made up of several hydrocarbon gases including methane, 

ethane, propane, butane, and other heavier compounds. A small fraction of these 

hydrocarbons can pass through the combustion chamber or cylinder without reacting, 

therefore, they retain their form in the exhaust. These hydrocarbon emissions are 

commonly broken down into two categories: (1) Total hydrocarbons (THC) or Total 

Organic Compounds (TOC) which include all of the hydrocarbon gases found in the 

exhaust stream; and (2) Non-Methane Hydrocarbons (NMHC) or Volatile Organic 

compounds (VOC) containing the portion of the THC except methane. Methane (CH4) is 



a greenhouse gas with a very high global warming potential. In addition, non-methane 

hydrocarbons can react with N O x in the lower atmosphere, acting as the precursors of 

photochemical smog [1]. 

Oxides of sulfur are formed when sulfur compounds in the fuel are oxidized in the 

combustion chamber. Oxides of sulfur enter the atmosphere and combine with water in 

the air forming sulfurous acid and sulfuric acid. These acids return to Earth as acid rain 

[!]• 

1.1.1. Emission regulations and systems 

Regulations, governing the quantity of emission levels which a gas engine can 

discharge, vary between different regions (countries, cities and towns) due to the air 

quality in these regions, and political factors [1,18]. Usually, regions with poor air quality 

have much tighter restrictions on exhaust emissions than areas where air quality is 

relatively good. For this reason, the local air quality board must be contacted to determine 

if a project is in compliance when engines are considered for new projects or re-powers 

[!]• 

In North America, there are two major organizations that enforce emission 

monitoring and control from various sources. The Environmental Protection Agency 

(EPA) in the United States, and the Canadian Environmental Protection Agency (CEPA) 

are responsible for regulating gaseous emissions from stationary and non-stationary 

sources. 

In Canada, a new Canadian Environmental Protection Act was enacted in 1999. It 

appears to be the most advanced environmental law of its kind in the developed world 

and will be the societal most important tool in preventing the release of toxic substances 
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not only into our air but also into the water. These new and existing laws promise to 

guarantee Canadians the highest standards of environmental and health protection, since 

they emphasize the importance of preventing pollution rather than cleaning it up after the 

fact. 

On the other hand, in the United States, the EPA is reviewing the standards of 

performance for new stationary emission sources in order to prevent, and revert the 

effects that combustion related units have had during the past ten years [15]. The Clean 

Air Act Amendments of 1990 [16] called for enhanced monitoring of combustion 

emissions. Later, the monitoring portion of the amendment was withdrawn and replaced 

by the Compliance Assurance Monitoring (CAM) rule, which offered flexibility for 

monitoring programs that can comply with continuous compliance data requirements 

[1,15]. While the specific requirements for monitoring under C A M are less specific, the 

need to have good combustion practices, and to be emission compliant at all times has not 

been lessened. Additionally, some oil and gas sites are currently required to monitor 

emissions to show continuous compliance due to local air quality standards. 

Best Available Emission Control Technology (BACT) is defined by the United 

States EPA and most of the other regulatory agencies as the technology capable of 

achieving the maximum degree of reduction of a given pollutant from an emitting facility 

on a case-by- case basis [1,15]. However, other factors such as energy, environmental 

and economic impact must be taken into account when evaluating the emission control 

technology used, thus limiting this concept. Therefore, the recently introduced 

Reasonable Available Control Technology (RACT, [1]) seems to be preferable by most 

of the emission technology manufacturers. This type of technology can achieve a fairly 
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low emission limit applicable to a specific source using reasonably available and 

economically feasible control equipment [1]. 

Typically, some regions limit production from a natural gas source based on the 

amount of useful energy it is producing. For natural gas engines, the useful energy is 

given in Kilowatt-hours (kW-hr) or Brake horsepower-hours (BHP-hr) of mechanical 

energy. Therefore the emission rates are regulated in grams/Kilowatt-hours (or 

grams/BHP-hr) per engine. This method is called "Pollutant Per Energy Unit Generated". 

Alternately, exhaust emissions are regulated based on the volume of exhaust produced. 

The common unit is Parts Per Million based on Volume (PPMV), or parts-per-million 

(ppm). This method is known as " Pollutant Per Unit Volume of Exhaust". Both methods 

are used within the present work. 

A. Emission inventories 

N O x , greenhouse gases (CO2, C H 4 ) , CO and VOCs are the main pollutants 

addressed in this subsection. N O x and SO2 emissions are the dominant precursors of 

acidic deposition; N O x and VOCs are primarily contributors to the formation of ground-

level ozone; NO x , SO2 and VOCs, together, contribute to particulate matter (PM) 

formation. Atmospheric methane (CH 4) is an integral component of the greenhouse 

effect, second only to C O 2 as a contributor to anthropogenic greenhouse gas emissions. 

The overall contribution of methane to global warming is significant because it is 

estimated to be 21 times more effective at trapping heat in the atmosphere than C O 2 [18]. 

Carbon monoxide is a byproduct of highway vehicle exhaust, which contributes 

about 60 percent of all CO emissions nationwide [17]. In cities, automobile exhaust can 

cause as much as 95 percent of all CO emissions. These emissions can result in high 



concentrations of CO, particularly in local areas with heavy traffic congestion. Other 

sources of CO emissions include industrial processes and fuel combustion in internal 

combustion engines, boilers and incinerators. The overall CO concentrations in North 

America is decreasing; however, some metropolitan and rural areas are still experiencing 

high levels of CO [17]. 

A. l . Nitrogen oxides (NOx) 

The principal anthropogenic source of N O x emissions is the combustion of fuels 

in stationary and mobile sources. This occurs in motor vehicles, residential and 

commercial furnaces, industrial and electrical utility boilers and engines, and other 

equipment. Table 1.1.a presents the overall estimated trends of N O x levels in Canada and 

the United States from 1980 to 2010. Table 1.1.b reflects the N O x emissions by source 

category for 1995 [17]. 

N O x Emissions Canada (million tons) U.S (million tons) 
1980 5.2 22.1 
1985 4.1 20.5 
1990 4.3 20.8 
1995 3.0 21.0 
2000 3.1 19.0 

2005* 3.0 18.5 
2010* 2.8 18.2 

Table J.La. Canada and U.S overall NOx emissions for 1980-2010 (^Projected 
emissions)[17] 
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Source categories Canada (1995) U.S (1995) 
Fuel Combustion (%) 23 19 

Transportation (%) 59 50 
Electric utilities (%) 11 27 

Other industrial sources (%) 7 4 
Canadian TOTAL (million tons) 3.0 21 

Table 1. Lb. Canada and U.S. NOx Emissions for 1995 [17] 

The largest contributor of N O x in Canada is the transportation sector, which 

accounts for about 60% of all emissions. Improvements are expected by 2010, with an 

anticipated decline in N O x emissions of 10% from the 1990 levels. For stationary 

sources, Canada is on target to meet its commitment to reduce national stationary source 

N O x emissions by the year 2000, with expected reductions well in excess of the required 

100 kilo-tons (kt). Reductions are in place at major combustion sources, power plants, 

and metal smelting facilities. Stricter emission limits for reducing N O x emissions from 

new power plants were established in 1995, and further tightening of the post 2000 

emission limits is in progress. New guidelines have also been developed for reducing 

N O x emissions from new gas-fired reciprocating compressor engines, gas turbines, 

modified commercial and industrial boilers, process heaters and cement kilns [17]. 

The United States continues to address N O x emissions from stationary and mobile 

sources under the 1990 Clear Air Act Amendments (CAAA), which mandated a two 

million ton reduction in N O x emissions for 2001. 

A.2. Volatile Organic Compounds (VOC) 

VOCs contribute to the formation of ground-level ozone. Anthropogenic 

emissions of VOCs come from wide variety of sources, such as mobile sources 
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(transportation), stationary sources, and industrial sources (e.g., chemical manufacturing 

and production of petroleum products). V O C emissions in both countries are expected to 

decline in the year 2000, and remain stable until 2010. Overall estimated trends in 

anthropogenic V O C emissions from 1980 to 2010 for Canada and the United States are 

shown in Table 1.1.c [17]. 

VOCs Emissions Canada (million tons) U.S (million tons) 
1980 2.0 24.0 
1985 3.5 21.8 
1990 3.0 18.5 
1995 3.2 18.6 
2000 3.1 14.5 

2005* 3.0 13.8 
2010* 3.1 14.0 

Table I.I.e. Canada and U.S overall VOCs emissions for 1980-2010 (^Projected 
emissions) [17] 

A.3. Greenhouse gases: Carbon Dioxide and Methane 

The global carbon cycle is made up of large carbon flows and reservoirs. 

Hundreds of billions of tons of carbon in the form of C O 2 are absorbed by oceans and 

living biomass (sinks) and are emitted to the atmosphere annually through natural 

processes(sources). 

Since the Industrial Revolution, the equilibrium of atmospheric carbon has been 

altered. According to emission inventories recorded by the EPA, atmospheric 

concentrations of C O 2 have risen about 28 percent [17] in the last 15 years, principally 

because of fossil fuel combustion, which accounted for almost 99 percent of the total 

U.S. and Canadian C O 2 emissions in 1997. 
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Over the last two centuries, methane concentration in the atmosphere has more 

than doubled [18]. Scientists [17,18] believe these atmospheric increases were due 

largely to increasing emissions from anthropogenic sources, such as landfills, natural gas 

and petroleum systems, agricultural activities, coal mining, fossil fuel combustion, 

wastewater treatment, and certain industrial processes [17,18]. 

Even though other pollutants such as NO x , SO2 and VOCs have decreased 

dramatically over the last decade, a remarkable contrast is reflected on C O 2 and C H 4 

targets. Table 1.1.d summarizes U.S. and Canadian CO2 and C H 4 levels for 1990-1995. 

Additionally, Table 1.1.e, shows C O 2 levels generated from the energy and non-energy 

sector. 

Emission 1990 1991 1992 1993 1994 1995 
C 0 2 463,200 453,700 467,300 469,000 482,400 499,600 
C H 4 66,300 68,300 70,400 72,600 75,600 78,600 

Table lid. Greenhouse Gases, 1990-1995 (Kilotons)[17] 

Year Energy Non-energy Total 
1990 468 97.7 567 
1995 517 102.3 619 
2000 536.7 73.2 609.9 
2005 557.5 79.0 636.5 
2010 583.0 85.7 668.7 

Table lie COj equivalent basis Megatons (Mt)[17] 

Today, organizations such as Environment Canada and the CEPA are trying to 

enforce new targets for C O 2 and C H 4 emissions for the next ten years. However, it is not 

very clear how the Canadian government will deliver this commitment. Meanwhile, both 
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Canadian and U.S environmental organizations are promoting new technologies to 

quantify and control these critical pollutants. Despite the fact that the greenhouse gas 

levels have decreased at monitoring stations [17], concern for quantifying uncertain 

emission sources (e.g., new stationary combustion related units) is increasing. 

A.4. Carbon Monoxide (CO) 

Table 1.1.f summarizes U.S national CO emission levels for 1992-1998 [17]. 

Clearly, the overall CO levels decreased 10% since 1994. However, CO emissions 

generated from stationary combustion related units have increased since 1992 due to the 

increased natural gas production. 

Source 1992 1993 1994 1995 1996 1997 1998 

Fuel 6,155 5,587 5,519 5,934 6,148 5,423 5.374 
Combustion 
(a) Electricity 47 51 55 58 54 56 57 
(b) Oil & Gas 227 268 251 245 301 295 289 

Industrial 5,683 5,898 5,838 5,790 4,692 4,844 4,860 
Processes 
Transportation 78,858 79,593 81,629 74,331 73,494 71,980 70,300 

Miscellaneous 6,934 7,082 9,657 7,298 11,144 12,164 8,920 

TOTAL 97,630 98,160 102,643 93,353 95,479 94,410 89,454 

Table 1.1.f. U.S National Carbon Monoxide Emissions Estimates, 1992-1998 (thousand 
of tons), (a) & (b) represent CO levels from internal combustion engines used in electric 

utilities and oil and gas industry [177. 

A.5 Sulfur dioxide (SO2) 

The principal anthropogenic sources of SO2 are coal and oil combustion, smelting 

and few industrial processes. S 0 2 emissions are declining in Canada and the United 
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States. Overall trends in emissions levels from 1980 to 2010 are shown in 

Table l . l . g [17]. 

SO2 Emissions Canada (million tons) U.S (million tons) 
1980 5.1 23.5 
1985 4.2 20.8 
1990 4.3 20.5 
1995 3.2 17.5 
2000 3.3 15.0 

2005* 3.2 15.2 
2010* 3.2 15.1 

Table 1. l.g. Canada and U.S overall SO2 emissions for 1980-2010 (^Projected 
emissions) [17] 

Canada has surpassed its international and domestic commitments to reduce 

emissions of SO2. In 1997, national emissions were approximately 2.6 million tons, or 

18% below the cap of 3.2 million tones. Furthermore, forecasts of emissions of SO2 up to 

the year 2010 indicate that Canadian emissions will remain well below these caps. 

Despite meeting and exceeding its commitments, Canada remains concerned 

about acid rain and depletion of the ozone layer. As a result, Environment Canada is 

forcing some provinces such as Alberta, and Ontario, to develop strategies that would 

lead to the establishment of new S 0 2 targets and reduction schedules. Recent reports [17] 

concluded that emission reductions commitments of up to 75% beyond current 

commitments would be required in specific target regions of Canada (e.g., Alberta, 

Ontario) and the United States to prevent damage to sensitive ecosystems in Canada. 

Natural gas, stationary internal combustion engines do not contribute to SO2 

generation due to the fact that the fuel (natural gas in the present case) is not expected to 
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contain sulfur. However, as mentioned before, SO2 contributes to other effects when 

reacting with pollutants such as N O x and UHC (unburned hydrocarbons), which are 

obviously generated from these units. 

B. Emission Monitoring Systems 

Various systems can be selected to indicate emission compliance. Some of these 

compliance-monitoring technologies are still maturing, while some of them have evolved 

to a more useful state. At present, the four main options for emission monitoring are 

Continuous Emission Monitoring Systems (CEMS), Demonstrated Compliance 

Parameter Limit (DCPL) systems, Periodic Routine Emission Testing Systems (PRETS), 

and Parametric Emission Monitoring Systems (PEMS) [11]. 

Canada and the United States differ in the compliance monitoring systems that 

they use to measure gaseous emissions from utilities. Due to high installation and 

maintenance costs, plus relatively fair air quality, Continuous Emission Monitoring 

Systems (CEMS) are not yet fully utilized in Canada as a tool applicable to all major 

NOx. CO, HC and C O 2 sources. Instead, methods of comparable effectiveness to CEMS 

are utilized, even though research into more reliable and inexpensive methods has been 

progressing in the recent years. CEMS are currently used for N O x , CO, HC and SO2 

emission measurements in units greater than 25MW, utility boilers, and cogeneration 

facilities, due to the fact that they are potential contributors of these pollutants, and that 

no effective method to estimate this emission is available on the market. Other sources 

such as small cogenerators and pipeline compressors still depend on alternative methods 

(e.g., annual sampling, parametric performance analysis). 
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B.l. Continuous Emission Monitoring Systems 

Continuous Emission Monitoring Systems incorporate advanced sensor 

technology to detect and quantify emission concentrations [11,18]. CEMS manufacturers 

continue working this technology while improving the economics and maintainability. 

Presently, the N O x and CO CEMS are among the most relevant emission 

monitoring systems due to their potential to deteriorate the atmosphere [18]. Figure 1.2 

shows a diagram of a particular continuous emission monitoring system using two N O x 

sensors, and an oxygen sensor. Additionally, a three-way catalytic converter, and a N O x 

catalyst are utilized to enhance N O x reduction [2]. 

The C E M system measures the following variables: (1) Supplied air by using a 

mass-air flow sensor; (2) Supplied fuel, measured by a fuel flow sensor; (3) Oxygen 

concentration in the exhaust system using a Heated Exhaust Gas Oxygen (HEGO) sensor; 

(4) Speed or RPMs; and (5) N O x concentrations in the exhaust system, before and after 

the N O x catalyst. 

As described in section 1.1, air is supplied and controlled by three different valves 

not shown in Figure 1.2. Air/fuel mixture pressure is controlled by a throttle valve, which 

has an attached throttle position sensor for proper control. Thus, the air/fuel mixture 

enters the intake manifold of the engine. Spark timing is controlled by a spark ignition 

system, and an air assist system (turbocharger) is present to boost the air pressure as 

desired. Two N O x sensors are used simply to determine whether the three-way catalytic 

converter or the N O x catalyst requires maintenance. 
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Figure 1.2. CEM system using O2 and NOx sensors for automotive exhaust emission 
systems [2J. 

A closed loop system to control the air/fuel ratio requires quantification of the 

oxygen concentration in the exhaust. Therefore, an HEGO sensor is placed in the exhaust 

pipe of this particular system. 

In some CEMS, gas sensors are replaced by a gas analyzer which is directly 

connected to the exhaust pipe of the engine. The analyzer is interconnected to a personal 

computer (PC) where emission levels are recorded and stored in a database for later 

report generation. The use of gas analyzer involves high maintenance costs due to 

frequent calibration, and short life span of its gas cells (1-2 years). 
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Presently, the automotive industry is leading the edge of gas sensor technology 

[19]. It continues using and improving N O x and O2 sensors. Considerable work is also 

being done in infrared (IR) technology to detect all chemical components in the 

automotive exhaust emission systems. However, in the majority of oil and gas facilities, 

users and experts view the purchase, operation, and maintenance costs of CEMS as 

prohibitive considering the life span of these systems (1-2 years). 

B.2. Demonstrated Compliance Parameter Limit (DCPL) systems 

DCPL systems give no indication of what the actual emissions are, but rather give 

an assurance that emissions are below certain target when the engine is operated within a 

define operational window [11]. DCPL systems can be applied to situations where unit 

operation is stable, meaning that the engine is base-loaded, and controlled parameters 

such as air manifold pressure (AMP), air manifold temperature (AMT), oil and coolant 

temperatures, etc., are invariant. 

At first glance, the simplicity of DCPL systems looks attractive. The downsides of 

this simple solution are (1) that the engine typically is constrained to a narrow operational 

range, which can restrict its usefulness, and (2) since the actual emission levels are not 

known, they can not be inventoried for fee assessment. 

B.3. Periodic Routine Emission Testing (PRET) 

Scheduled portable or reference lab emissions testing can also serve to fulfill 

certain emission monitoring requirements. PRET systems refer to emission analyzers that 

are relatively affordable [11,20]. To collect emission data accurately, the analyzer needs a 

well-designed sample conditioning system that disallows water from condensing in the 

sample line and has a low volume to detect transient emission variations. In order to 
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utilize the analyzer it must have a battery of test gases available for the entire range of 

engines to be tested and calibrated. In other words, before using the analyzer, it must be 

calibrated at different gas concentrations provided that the battery of gases is utilized as a 

certified reference. 

Scheduled routine emission testing apparently seems to be very appealing option 

for emission monitoring, particularly when the testing can be done with low cost portable 

units. However, the portable analyzer must have a battery of test gases for the entire 

range of engines to be tested, typically with at least five gases. This battery of tested 

gases ages with time, with a typical lifetime between two or three years. Therefore, for 

an analyzer measuring NO, N O 2 and CO on a range of engines, a minimum of fifteen 

different calibration gases are required. It is worth noting that even though the emission 

analyzer might be very portable, the calibration gases are not. 

Another disadvantage of scheduled routine emission testing is that if an engine is 

found out of compliance, fines can be levied back to the last defensible in-compliance 

condition, which corresponds to the last emission test. As a result, if the last emission test 

were six months earlier, then the fines could accrue back to that time and be significant. 

1.1.2. Engine parameters related to pollutant generation 

Variation of the emission levels from SI engines depends on the engine operating 

parameters. Basically, there are four major operating variables that affect not only spark-

ignition engine emissions but also the performance and the efficiency of the unit. They 

are the (1) Air/fuel ratio, (2) Speed, (3) Load and (4) Spark timing [12-14]. These 

parameters can be defined as engine control parameters due to the fact that they can be 

manipulated to achieve a specific engine performance. 
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The following is a discussion of how variations of these engine operational 

variables influence gas emission levels generated by the SI engines. 

A. Air/fuel ratio 

In engine operations, both the air mass flow-rate (ma), and the fuel mass flow-rate 

(rrif) are routinely measured. The ratio of these flow rates defines the so-called 

air/fuel ratio [12]: 

m 
Air I fuel _ratio = — (1.1) 

mf 

Another way in to represent the air/fuel ratio is with the excess air ratio referred to 

as the * Lambda factor (k). Excess air ratio is defined as the ratio between the operating 

air/fuel ratio and the stoichiometric air/fuel ratio. A stoichiometric air/fuel ratio or 

mixture indicates a chemically correct mixture of air and fuel which makes possible all 

molecules of each fuel component to be completely burned during the combustion 

process [14]. 

Air / fuel ratio(operating) 
X = = — — (1.2) 

Air / fuel _ ratio(stoichiometric) 

where X =1 at the stoichiometric air/fuel ratio. 
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The fuel/air equivalence ratio (O) is inversely proportional to the Lambda factor 

X. A rich air-fuel mixture (O >1, X <1) characterizes a mixture with absence of oxygen 

in the exhaust system after combustion, while a lean air-fuel mixture (O < 1, X > 1) 

means that there is an amount of oxygen present in the exhaust stream after combustion 

[14]. Emission levels from SI engines are extremely sensitive to the variation of O. 

Figure 1.3 illustrates N O x , CO and HC exhaust gases compared to O. 

The fuel/air equivalence ratio is an important parameter controlling SI engine 

emissions. The critical factors affecting emissions that are governed by the fuel/air 

equivalence ratio are the oxygen concentration and the temperature of the burned gases 

[2,13,14]. The maximum exhaust gas temperatures occur when the engine operates 

slightly rich at O =1.1. As the mixture becomes lean, the increasing oxygen 

concentration initially offsets the falling gas temperatures. However, N O x peaks abruptly 

at O =0.95. After this point, with the decrement of the cylinder temperature, N O x 

emissions decrease to low levels. 

Figure 1.3 also shows the effect of variations in O on the HC emissions. For rich 

mixtures, HC are very high due to the lack of oxygen for burning the residual unburned 

hydrocarbons that escape the primary combustion process within the cylinder and the 

exhaust system [14]. 

* Lambda factor (X) is the actual parameter controlled by the exisitng engine management system 
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Figure 1.3. Effect of the variation on the equivalence ratio (0) on the engine exhausts 
gases (NOx, HC and CO) [14]. 

For moderately lean mixtures (O < 1). HC emission levels decrease until a 

certain limit (<1> =0.8). When <I> is approaching the lean limit (<1> < 0.8). combustion 

quality deteriorates, and HC emissions start to rise again due to the occurrence of 

misfiring cycles (incomplete combustion). 

Considering the CO emissions, it is obvious (see Figure 1.3) that for rich mixtures 

CO levels are high because complete oxidation of the fuel carbon to C O 2 is not possible 

due to insufficient oxygen. For lean mixtures, CO levels are approximately constant at 

very low levels. 

( R E M V u e ) used in the present work. 
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B. Speed and Load 

These two engine parameters are always used to analyze the engine performance 

by determining the highest power an engine is able to develop at a certain speed [13]. 

Rated speed is a performance definition commonly used when referring to the 

crankshaft rotational speed at which a rated power is developed. It is given in revolutions 

per minute (RPM), and for SISIC engines, it varies from 250 to 1800 R P M . In addition, 

engine speed determines the amount of time that the combustible mixture of fuel and air 

is subjected to relatively higher engine cylinder pressures or complete combustion (this is 

known as "residence time") [14]. 

On the other hand, two concepts can describe the engine load. (1) Torque, which 

is a measure of an engine's ability to do work, and (2) power, which is the rate at which 

work is done. For stationary, spark-ignition engines, pressure data for the gas in the 

engine cylinders can be used to calculate the work transfer from the gas to the piston. 

Having this relationship, calculation of the useful power delivered by the engine to the 

load is obtained [13,14]. Commonly, the engine load can be expressed as power 

(Horsepower or Kilowatts) or as the Brake Mean Effective Pressure (BMEP) obtained 

with the following equation [14]: 

BMEP^ ( L 3 ) 

Vd 

where r is the brake output torque, and Vd is the displacement per cylinder. 



27 

The effects of speed and load variations on N O x and HC emissions are shown in 

Figure 1.4. 

(a) (b) 

Figure 1.4. Variation of HC and NOx emissions in a SI engine with (a) engine speed at 
load=380 kPa, and (b)load or indicated mean pressure (imep) at speed=1250 RPM. 

The equivalence ratio is 0=0.9 [13]. 

Figure 1.4.a. shows how N O x concentrations increase moderately with increasing 

the speed at constant load. NO x concentrations increase dramatically when increasing the 

load at constant speed as depicted in Figure 1,4.b. Conversely, HC concentration changes 

are opposite to the N O x concentration trends. 
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Engine speed and load affect CO concentrations by varying the cylinder 

temperatures during combustion. The importance of combustion temperatures to CO and 

HC emission levels is illustrated on Figure 1.5. 

Figure 1.5. Effect of exhaust gas temperature on (a) CO and (b) HC emission levels [13]. 



2o 

CO and HC concentrations are presented as functions of residence time at 

different exhaust gas temperatures. With higher combustion temperatures, the residence 

time required for complete combustion decreases. As a result, CO concentrations 

approach zero in a shorter period of time [13]. 

C. Spark timing 

Spark timing is defined as the time at which the ignition system provides the 

electrical energy to the spark plugs into the engine cylinders to start the combustion 

process per operating cycle [2]. It is expressed in degrees with respect to TC (before TC 

or after TC). Spark timing significantly affects N O x emission levels. Advancing the 

timing so that combustion occurs earlier in the cycle increases the peak cylinder pressure. 

On the other hand, retarding the timing decreases the peak cylinder pressure. Higher peak 

pressures result in higher peak combustion temperatures, and hence higher N O x emission 

rates. For lower peak cylinder pressures, lower N O x formation rates result. Figure 1.6 

shows typical N O x emission data for a SI engine as a function of spark timing [14]. NO 

levels correspond to more than 90% of N O x levels. 
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Figure 1.6. Variation of NO concentration with spark timing retard. Three curves 
represent variation of NO levels at three different <j)=l, 0.9, 0.8 [14]. 

As mentioned before, spark timing affects combustion temperatures. Therefore, 

HC and CO concentrations vary depending on the timing. When timing is advanced, HC 

and CO concentrations decrease because more time is allowed for complete combustion, 

and therefore higher combustion temperatures are experienced. Conversely, when the 

timing is retarded, lower combustion temperatures are experienced, and HC and CO 

concentrations augment. This effect is observed on Figure 1.5. At lower combustion 

temperatures (T= 700 C), HC and CO emission levels are higher than at higher 

combustion temperatures (T=850 C). 

1.2. Gas Emission Technology 

This section discusses primarily the fuel and air engine systems which are 

responsible for the correct air/fuel ratio control. Strategies to achieve a reliable air/fuel 
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control are briefly described. In addition, an introduction and brief description of the 

spark timing system is provided. Some other effects that various control strategies might 

have on the emission level concentrations, and on the overall engine performance, are 

also mentioned. 

1.2.1. Engine control systems 

A. Fuel and Air system 

The fuel system is responsible for delivering the correct amount of fuel to the 

engine to achieve the desired engine speed [2]. Commonly, a fuel governor, which can be 

mechanical or electronic, controls a fuel valve that allows the fuel to enter into the 

combustion chamber or cylinders. In engines with carburetor(s) *, however, the governor 

controls the amount of air/fuel mixture delivered to the intake manifold, so air and fuel 

are mixed before reaching the cylinders. 

During starting, the fuel must be controlled carefully to ensure reliable starting. 

Measurement of the fuel is necessary to determine the amount of air needed to reach a 

specific air/fuel ratio. 

The air system is in charge of delivering the correct amount of air into the 

cylinders [2]. It is directly related to the load driven by the engine. A simplified air/fuel 

system is shown in Figure 1.7. A brief general description of the operation of the overall 

system is provided here for a carbureted system. 

(1) Air is filtered before entering to the turbocharger . 

* In the present work, a fuel/air system using a carburetor was used. 
* A turbocharger is a unit supplied with energy by a turbine driven by the engine waste gases. It is used to boost the air 
pressure supplied to the intake manifold, and it is driven the engine exhaust gas pressures. 
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(2) The fuel is supplied and controlled by a fuel pressure regulator based on the air/fuel 

ratio and speed desired. 

(3) Both air and fuel are mixed in the carburetor. 

(4) The governor regulates the amount of air/fuel mixture entering the intake manifold. 

(5) Air/fuel mixture is equally distributed into the engine cylinders, combustion takes 

place and residual gases leave the combustion chamber. 

(6) Parts of these residual or waste gases are used to drive the turbine of the compressor, 

and all the gases are released into the environment. 
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A ir Dump 
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Figure 1.7. A simplified air/fuel system 
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There are two basic control strategies for air/fuel control: (1) closed loop; and (2) 

open loop control. 

The closed loop control strategy is based on an oxygen sensor located in the 

exhaust system as shown in Figure 1.8. This control method is normally used for control 

of engines equipped with catalytic converters, which are active materials in a specially 

designed metal casing that reduce N O x , HC or CO emissions. 

Exhaust out 
(Environment) 

Catalytic converter 

Air Turbocharger 
Filter 

Waste-gate 
Valve 

Compressor 

0 2 set point 

Figure 1.8. Closed loop control of the air system [2] 
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The oxygen sensor measures the amount of oxygen present in the exhaust system 

after combustion occurs. Therefore, having this amount of O2, the air/fuel ratio can be 

carefully controlled. However, it is important to note that current heated exhaust gas 

oxygen (HEGO) sensors limit the control to equivalence ratios very close to the 

stoichiometric point [2]. Problems are often encountered due to the unreliability of the 

HEGO sensors used in heavy-duty SISIC engines. In addition, operating the catalytic 

converter outside the stoichiometric point results in serious loss of efficiency as 

illustrated in Figure 1.9. 

Excess Air- Lambda factor 

Figure 1.9. Three-way catalytic converter efficiency [14] 
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For the open loop control solution, an air set point is established either according 

to a calculation or a performance map based on a range of input sensors. As stated before, 

the amount of air required depends on the amount and type of fuel, the desired air/fuel 

ratio and the load. If the fuel composition is constant, the fuel amount may be determined 

from the volumetric flow, the heat content, and the fuel temperature [1,14]. If the ratio of 

combustible elements in the fuel varies, a better alternative is to use the fuel mass 

measurement [13]. If the fuel is mixed with a variable amount of non-combustible gases 

such as N2 or C O 2 , either these elements must be measured online or closed loop control 

is needed. The amount of air may be determined either with an air flow meter or by 

calculations from the air manifold pressure and temperature [1]. Figure 1.10 shows an 

air/fuel ratio control based on the open loop concept. The amount of air is calculated by 

measuring the fuel flow or pressure, the fuel temperature and air parameters such as the 

air manifold temperature and pressure. Based on the air set point, the amount of air is 

controlled by regulating one or more of the air valves, air dump valve and waste-gate 

valve, previously discussed. 

Some systems do not use catalyst for emission reduction . Instead, the engine 

control system is designed to operate the engine near the lean limit, and some additional 

factors need to be considered. At lower engine load and speed, when the fuel 

concentration is lower, the lean limit occurs at lower value of X, so the excess air amount 

must be adjusted according to the load. 

The main advantage of using the described open loop control system is its 

independence on utilizing HEGO sensors to set the appropriate air pressure to reach the 

The present engine management system ( R E M V u e ) operates the engine in the lean area. 
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required air/fuel ratio. However, field experience shows that present HEGO sensors fail 

within 3 months when used with SISIC engines [Malm, H, R E M Technology Inc., B.C. 

Canada]. 

Therefore, combining open and closed loop control offers the advantages of both 

approaches while lessening the total dependence on a single oxygen sensor. 

Exhaust out 
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Catalytic convertor 

Air Dump 
Valve 

Turbocharger 

Waste-gate 
Valve 

SI Engine 

Air Valve 

A i r 
Control 

A i r 
Set point 

A i r 
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_ / Fuel flow o r 
pressure 

A ^ F u e l 
temperature 

~ \ A i r 
parameters 

Figure 1.10. Open loop control of the air system 
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Additional strategies to reduce these effects are: (1) utilization of second oxygen 

sensor after the catalytic converter, and (2) combination of open and closed loop control 

where the air/fuel ratio is controlled according to an equation or performance map and 

trimmed by the oxygen sensor reading [2] 

B. Ignition system 

The ignition system provides the electrical energy to the spark plugs at the correct 

time to initiate combustion. Commonly, ignition timing is fixed except during starting the 

engine. Improvements in fuel economy, knock (uncontrolled combustion or auto-

ignition) and/or emissions can be achieved with the optimization of ignition timing; 

however, not all of these conditions can be optimized at the same time. The ignition 

timing depends on speed, load, fuel-air mixture and cylinder temperatures. In order to 

find an optimal timing, a timing map is needed, i.e., variation of the spark timing at 

different engine loads, speed and air/fuel ratio must be performed, and the final decision 

is taken based on which parameter needs priority optimization [1]. Since knock can 

damage the engine, either a timing map must be constructed to avoid autoignition or the 

inputs from the knock sensing system must have priority control [1]. However, the 

importance of emission control is of great concern, and a timing map has to include this 

factor. Figure 1.11 shows a typical ignition control system. 
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Manua 
shutdown r 

Manual timing 
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Figure 1.11. Typical ignition unit for SI engines [2] 

The ignition unit provides the energy to the spark plugs based on the conditions 

detected by the knock system, the signals coming from (a) the inductive sensors, (b) the 

Hall-effect sensors, and (c) the engine management system corresponding to a possible 

manual shutdown, and a continuous manual timing adjustment. 

Basically, the ignition system needs timing marks to function. The inductive and 

Hall effect sensors are used to obtain signals from the engine-rotating shaft. These signals 

provide (1) a reference angular position; (2) a desired timing mark for the ignition signal; 

and (3) a signal to distinguish between the power revolution (compression and 
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combustion) and the breathing revolution (exhaust and intake) where no spark is required 

(Malm, H. , R E M Technology Inc., Port Coquitlam, B.C., Canada). 

1.2.2. Gas Sensors 

Contemporary toxic gas sensors, known as electrochemical sensors [21,22], are 

capable of monitoring specific toxic gases (e.g., N O x , HC, CO). Electrochemical sensors 

can be classified as (1) fuel cell; (2) semiconductor; and (3) galvanic sensors. They all 

work based on the principle illustrated in Figure 1.12. The gas being measured diffuses 

through a porous membrane and reacts with the reactive electrode (WE). Then, oxidation 

or reduction of the measured gas generates DC electricity. The amount of current 

generated is proportional to the amount of gas consumed. 

Fuel cell sensors are miniaturized fuel cells mainly made of hydrogen or methanol 

that react to low concentrations of gas (0-100 ppm). Semiconductor sensors are based on 

metal oxide, which is heated from 300 to 400 °C by a heated coil. In the presence of 

gases the conductivity of the metal oxide changes and quantification of the gas is 

possible. The average life of these sensors, the fuel cell and the semiconductors, is 

between 3 and 4 years [22,23]. 

Galvanic sensor cells are made of metal and their lifetime is governed by the 

amount of gas they absorb [23] 
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Figure LI 2. Operational principle of an electrochemical sensor [23] 

Presently, gas sensor technology is capable of monitoring a wide range of gas 

concentrations (0-4000 ppm) in environment temperatures ranging from -10 to 40 °C 

[22, 23]. The automotive industry has always been on the leading of gas sensor 

technology, due to the fact that it contributes significantly to air pollution. Based on the 

requirements to monitor and control transportation emission levels, gas sensors capable 

of measuring concentrations from 0 to 1000 ppm at high temperatures (100-300C) have 

been launched into the market [23]. However, none of the sensors is able to operate 
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reliably at higher temperatures (400 to 600°C), which are normal cylinder and exhaust 

temperature in stationary industrial engines. 

A great amount of research has been focused on developing micro-fabricated and 

micro-machined semiconductor sensors to minimize size, weight, and power 

consumption while providing a reliable, accurate operation in hostile conditions [19]. A 

promising technique that has been investigated to quantify N O x and HC gases is using 

Schottky diode sensor structures for aeronautic and aerospace applications [24]. 



42 

CHAPTER II: PARAMETRIC EMISSION MONITORING SYSTEM 

BASED ON MULTIDIMENSIONAL ARRAYS 

2. Parametric Emission Monitoring Systems (PEMS) 

PEMS have their roots not just in the gas and oil industry, but in the 

manufacturing industry as well. Pulp and paper mills, as well as chemical plants, employ 

PEMS in combustion and non-combustion processes to calculate emissions [11]. The 

term PEMS originally stood for Predictive Emission Monitoring/Measuring Systems. 

Later, the term Predictive was dropped in favor of the more correct term "Parametric". 

Furthermore, the Environmental Protection Agency in its well-known Method 19 for 

Engine Exhaust calculation uses this term [25]. 

PEMS applied to natural gas-fueled engines are somewhat new, but the concept is 

mature enough and established in terms of its effectiveness. A P E M system, sometimes 

called an Alternative C E M system (ACEMS), is based on key measurements that affect 

and control the combustion process, and thus define the combustion emissions [11]. 

PEMS can be designed to monitor few or many parameters, depending on the emission 

species of interest, the type of PEMS, the accuracy of control, and the broadness of the 

engine's operational envelope. 

There are two types of PEMS: empirical and model based. The empirical type, 

usually called matrix-based, is based on look-up tables (matrices) containing data of 

measured engine performance. The model type of PEMS generally requires parameters 

which serve as inputs into equations derived from the laws of chemistry, physics and 

thermodynamics, to calculate engine parameters related to emission generation. 
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The empirical types of PEMS are developed by collecting key data (mapping) 

from each engine type over its entire operating range, both when it is meeting the control 

algorithm set points and when it is not, i.e., when the engine is running tuned or non-

tuned. 

The model-based PEMS involve few key engine measurements that compute 

variables such as air/fuel ratio, combustion temperature, etc [8,11]. A bulk combustion 

temperature model-based PEMS uses an in-cylinder combustion pressure sensor as an 

input to the ideal gas law and chemical kinetics equations to compute N O x , CO and HC 

concentrations [11]. Although model-based PEMS require fewer parameter inputs, they 

do not provide diagnostic capabilities (see example below) that empirically-based PEMS 

do, and profound combustion knowledge is required for their development. 

Most contemporary PEMS require diagnostic capabilities, i.e., detection of any 

failure in the engine instrumentation system directly related to the emission control. A 

cylinder temperature might dramatically decrease, and a model-based P E M system will 

compute and obtain lower N O x concentrations due to the fact that no previous engine 

information is provided, while an empirical PEM system will immediately notify the user 

that failure of the spark ignition system has been experienced due to the deviation 

between the expected (engine information is available due to mapping) and the actual 

cylinder temperature. 

In a pure model-based P E M system, a single parameter can be changed without 

affecting any other parameters and a pure cause and effect noted from the emissions can 

be obtained. For example, in a turbocharged-engine the air manifold pressure (AMP) can 

be boosted by 50%, while the air manifold temperature (AMT), the exhaust pressure, and 
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air/fuel ratio remain unchanged. In a real engine, this scenario is unachievable since 

A M P , A M T , air/fuel ratio and exhaust pressure are all somewhat linked and pure singular 

cause and effect relationship to emissions cannot be easily determined. Conversely, an 

empirical type of P E M system is capable of simulating these secondary effects, thus 

reflecting a more realistic behavior of the engine [8,11]. 

The overall goal of any PEMS development is to invent systems that use as few 

inputs as possible, while maximizing the amount of information possible, yet making the 

system universally applicable to any engine. 

2.1. PEMS: Advantages and Disadvantages 

The main difference between PEMS and CEMS is that PEMS are intelligence 

(software) based and CEMS are hardware based. 

Some other advantages and disadvantages that PEMS present can be listed as 

follows: 

• PEMS Disadvantages 

The first area of concern is the cost to install and maintain PEMS. PEMS are 

considered more costly and complicated than Demonstrated Compliance (DCPL) systems 

or portable analyzer emission testing programs. It is usually the engine mapping that 

drives up the PEMS cost. However, the more similar the engine types, the lower per unit 

cost for the mapping. They cost less than CEMS, but are substantially more expensive 

than portable emission analyzer programs. In addition, PEMS require Quality 

Assurance/Quality Control (QA/QC) certification to verify correctness, and a rigorous 

control system [11]. 
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In the future, low cost CEMS sensors might become available and might replace 

PEMS. However, experts comment that sensor technology will enhance not only CEMS 

but also PEMS, offering more powerful tools for emission monitoring and control 

[11,26]. 

• PEMS Advantages 

PEMS are not limited by the lifetime of chemical sensors. They can be 

implemented by using a gas analyzer to record the different emission levels only when 

engine mapping is performed. Most PEMS are commonly applied to N O x measurements, 

but in theory, one could create a P E M system for any chemical species of concern, such 

as CO, or HC. 

PEMS can be potential candidates for replacing existing emission monitoring 

system for all engine types, including gas turbines. As a result, PEMS are candidates for 

monitoring other processes associated e.g. with boilers or gas dehydrators, among others. 

Secondly, they have a low maintenance cost once installed. Additionally, PEMS 

demonstrate continuous compliance, and can provide a standard format report indicating 

emission, engine operation and instrumentation system diagnostics. 

PEMS can be configured to generate accurate reports of emission levels both 

when the engine is operating at set point conditions and at offset point conditions. 

Furthermore, they can provide data on N O x , CO and HC along with the ability to provide 

data on other selected emissions. 

Since PEMS are parameter-based, when a P E M system reports a specific emission 

level, it can also in varying degrees be able to indicate the parameter or parameters 
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driving emissions out of the normal range. The greater the number of parameters, the 

more powerful the diagnostic capability is [11]. 

The ability to diagnose an engine remotely, via a computer and a modem, is 

becoming a necessity. Specialists are looking for monitoring engine performance, and 

adjusting certain key control parameters to comply with the emission requirements in 

real-time. Therefore, PEMS might be the solution for making this feasible at very low 

costs. 

2.2. PEMS standards 

Some of the PEMS practitioners are of the opinion that each and every engine 

must be mapped [11]. For the engines that have multitude parts or components that no 

longer meet design specifications, this might be the case. However, this approach leads to 

profound complications, because it means that a new engine map is required every time 

an engine component is changed. Nevertheless, a strong case can be made for bringing all 

similar engine types to the same pre-defined mechanical condition, so that their 

combustion fingerprint is the same. This does not mean that the engine must be working 

perfectly, but it does require that the engines should be maintained to a reasonable and 

achievable pre-defined mechanical standard. Thus, if the mechanical condition of the 

engine is known and the control system accurately controls key engine parameters, the 

emissions can be accurately predicted. 
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2.3. Parametric Emission Monitoring System for Estimation of Gas Emissions for 

Stationary Internal Combustion Engines based on multidimensional arrays. 

2.3.1. Introduction 

Typically, quantification of emission pollutants from SISIC engines has been 

accomplished using a collection of expensive equipment to sample, analyze and provide a 

continuous record of emission rates [1]. On the other hand, various P E M models have 

been developed to calculate these emissions based on chemical and thermodynamic 

equations, which are too complex to be practically applicable for continuous monitoring 

[12,27,28]. As mentioned before, PEMS can be designed to estimate the distinct emission 

levels based on a number of operational parameters already recorded from these 

machines for control compliance. 

Heater et al [8] proposed a parameter-based method for calculating exhaust 

emissions from reciprocating natural gas transmission engines, achieving relative 

accuracy derived from CEMS standards due to the fact that standards for testing and 

evaluating PEMS are not yet available. Buchop et al. [7] presented a patent providing a 

reliable and accurate PEMS for stationary engine/compressor units coupled to a pipeline 

based on an emission matrix primarily as a function of engine speed and engine torque. 

This section describes the development of an empirical-based P E M system 

capable of estimating emission levels from SISIC engines based on multidimensional 

arrays. The present system differs from the existing PEMS for SISIC engines since it 

utilizes different engine parameters, and compares estimated and actual values between 

some pre-selected engine parameters (see Section 2.3.3) for estimation adjustments. 

Thus, a universal design of a parametric model, which is capable of calculating emissions 
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produced by natural gas SISIC engines without the need of expensive gas sensors, can be 

implemented. In the development of the model control parameters, monitoring 

parameters, and calculated parameters were utilized. Using data from a tuned engine*, 4 

multidimensional arrays were created containing emission levels as functions of selected 

operational parameters. Interpolation methods were used to fill these arrays, thus 

increasing model resolution. 

Recorded data from a non-tuned engine was used to expand the model. The 

approach can dynamically estimate harmful emissions from SISIC engines and offers the 

potential to eliminate the need for site compliance monitoring. 

2.3.2. Methods 

A. Parameter definition 

Based on the theory of PEMS [11], which stipulates that there is a relationship 

between emissions produced by an engine and certain key engine operating parameters, 

identification of these important parameters was performed, involving engineering 

fundamentals of the internal combustion engines, existing data from different SISIC 

engines, and experience provided by those skilled in the art. 

Three categories of operational parameters were established: (1) control 

parameters, aiming at obtaining a specific performance of the engine, (2) monitoring 

parameters, resulting from the response of the engine to a set of control parameters, and 

(3) calculated parameters resulting from empirical calculation of various combinations of 

both the control and the monitoring parameters. 

* Waukesha, 16 cylinder, M o d e l P9390GSIU, Rated power: 1800HP 
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Engine parameters selected for the estimation of the emission levels were (a) 

control parameters: speed, air-fuel ratio (lambda factor), load, and spark timing (ST); (b) 

monitoring parameters: fuel flow rate and exhaust temperature (or combustion 

temperature); and (c) calculated parameters: brake specific fuel consumption (BSFC). 

In some cases, engine load cannot be controlled or measured. For such situations, 

required engine parameters should encompass air intake manifold pressure, fuel flow, 

speed, and exhaust temperature. 

It is important to monitor the fuel flow rate, since it allows for the calculation of 

the brake specific fuel consumption (BSFC), which determines whether the engine is 

operating tuned or non-tuned. Ideally, an engine is expected to operate at the most 

efficient consumption rate calculated at specific load, speed, and air/fuel ratio. 

On the other hand, NO x , HC and CO emission rates are affected by different 

operational parameters, which directly affect the temperature inside the combustion 

chamber. In the present engine system, exhaust temperature is measured and used to 

estimate the combustion temperature. Therefore, exhaust temperature is included as a 

relevant monitoring parameter that allows for adjustment of the emission level 

estimation. 

Brake-power (BP) is a calculated parameter, which is related with the engine load. 

Although it can be set to obtain a specific response from the engine, it is empirically 

calculated using data from the compressor unit, which the engine drives. 

B. Multidimensional arrays 

Multidimensional arrays are an extension of the ordinary two-dimensional matrix. 

Matrices have two dimensions: the row dimension and the column dimension. Access to 
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a two-dimensional matrix element is possible by using two subscripts: the first 

representing the row index, and the second representing the column index. 

Multidimensional arrays use additional subscripts for indexing. A three-dimensional 

array, for example, uses three subscripts. The first subscript references array dimension 1 

(the row). The second references dimension 2 (the column), and the third references 

dimension 3 (the depth). Figure 2.1 uses the concept of a page to represent dimensions 3 

and higher. 

Row 

Page 

Column 
(1,1,2) (1,2,2) (1,2.2) (I ( 24.2j| 

(1,1,3) (1,2,3) (1.3.3) ( l X l ) 

(2,1 >3) I(2:2,3) (2,3,3) (2,4,3) 

) (3,2,2) (3,3,2) (3,4,2) 
(1,1,1) (1,2,1) (1,3,1) 

(2,1,1) (2,2,1) (2,3,1) ( 2 , ^ ^ ( 4 A 2 ) ( 4 ; 3 ) 2 ) ( 4 A 2 ) 

(3,1,1) (3,2,1) (3,3,1) (3,4,1) 

(4,1,1) (4,2,1) (4,3,1) (4,4,1) 

) (2,2,2) (2,3,2) 
(3,2,3) (3,3,3) (3,4,3) 

(2,2,3) (2,3,3) (2,4,3) 

Figure 2.1. Multidimensional (3D) Array 

Multidimensional arrays have been used in several applications [29,30], which 

require building multidimensional and comprehensive databases. Such arrays are directly 

applicable in the present project, creating the opportunity for inexpensive feasibility 

testing of the suggested parametric model. However, their cumbersome interaction with 

the computer memory and the need for intervalue interpolation in order to improve the 

resolution of the model might jeopardize the practical implementation of this approach, 
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limiting the number of parameters in the model and/or affecting the real-time 

requirements. Figure 2.1 presents an indexing diagram of a three-dimensional (3D) array. 

2.3.3. Implementation 

A. Multidimensional array approach 

A practical approach, which offered simplicity and low cost, was to construct a 

number of multidimensional arrays, which represented the emission levels in response to 

manual control of the crucial operational parameters mentioned before. Following the 

idea given by Heater et al. [8], the first step was to develop a model with fewest number 

of parameter inputs, while achieving a given accuracy. As explained earlier, three types 

of parameters were defined: (1) control parameters, (2) monitoring parameters, and (3) 

calculated parameters. Subsequently, 3 multidimensional arrays were created using data 

from a tuned engine, containing (1) emission levels as functions of a predetermined set of 

control parameters, (2) calculated parameters as functions of a given set of monitoring 

and control parameters; and (3) monitoring parameters as functions of a given set of 

control, monitoring, and/or calculated parameters. In order to fill these arrays, a 

recording-data protocol was established. 

Four basic operation intervals or ranges for setting a natural gas SISIC engine 

were established. (1) Speed: from 700 to 1200 RPM, (2) Load: from 100 HP (just 

sufficient to overcome friction and accessory load) to 1200 HP, (3) Lambda factor: from 

0.95(rich burn) to 1.75(lean limit), and (4) Spark timing: from 20° before Top Center 

(bTC) to 27°bTC (See Appendix B). The decision to operate the engine with an overall 

lean mixture was made due to the facts that N O x production is strongly temperature 

dependent, and that the exisitng engine management system was designed to achieve 
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engine control within the lean range. Therefore, working in a lean zone causes 

combustion chamber temperature to decrease and leads to the reduction of the N O x 

levels. No catalyst was used to reduce N O x levels. 

Having the possibility of setting these four operating parameters manually, and 

working with a tuned engine, a fixed number of combinations were set and data 

corresponding to these pre-selected monitoring parameters were recorded. Data, 

including the different values of the recorded sets of control and monitoring parameters, 

was entered into the model. Calculated parameters were computed using empirical 

equations defined in the literature [14] making this PEM system not only empirical-based 

but also model-based [11]. After this calculation, a complete set of data representing the 

overall behavior of the engine was obtained. In order to increase the resolution of the 

model, well-known interpolation methods for building the multidimensional arrays were 

used. Extension of the model was performed by recording data from a non-tuned engine 

so that emission estimation can be achieved for any engine condition, and diagnostic 

capabilities to detect failures in the engine instrumentation system can be included in the 

future. 

The first multidimensional array provided preliminary emission estimation as a 

result of manually setting four control parameters: lambda factor (k), speed, load or brake 

power (BP), and spark timing (St). These arrays can be represented as follows: 

NOx(X,Speed,BP,St) 

HC (X, Speed, BP, St) 

CO (X, Speed, BP, St) 
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The second multidimensional array contained data representing calculated 

parameters such as BSFC and BP as functions of the control parameters: lambda factor, 

speed and ignition timing, and monitoring parameters such as compressor discharge (Dp) 

and suction pressure (Sp). These arrays are represented as follows: 

BSFC(k, Speed, BP, St) 

BP (I, Speed, Sp, Dp) 

The third multidimensional array incorporated monitoring parameters, e.g. 

average exhaust temperature (Avg. ExhT), as a function of control parameters and 

calculated parameters, e.g., lambda factor, speed, load, and ignition timing. Right and 

Left Exhaust temperatures corresponding to the right and left engine cylinder banks were 

averaged: 

Avg. Right ExhT (k, Speed, BP, St) 

Avg. Left ExhT (I, Speed, BP, St) 

The whole P E M model was developed using the C A D system M A T L A B 5.3.1 

(The Math Works, Inc., Natik, M A , USA). Simulation of the complete target operational 

environment was performed. After building the multidimensional arrays, a set of data that 

represented a tuned or non-tuned engine was simulated. This data was continuously 

entered into the model and dynamic estimation of the emission levels was obtained. The 

P E M model compared the data of some operating parameters to decide whether the 

engine was operating tuned or non-tuned. When the engine was working tuned, direct 

estimation was accomplished by presenting the resulting emission levels that 

corresponded to a specific parameter combination. Alternatively, when the engine 
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worked non-tuned a preliminary estimation was obtained using the previously recorded 

data representing a tuned engine. Then, comparison between the actual and the expected 

operational parameters was performed. The differences (Differ 1 and Differ2) were used 

to calculate the final emission levels. Previously recorded data from a non-tuned engine 

were used to increase the accuracy of the model. 

Figure 2.2 illustrates a diagram describing the different steps performed by the 

developed algorithm that calculate the selected emission levels generated from a SISIC 

engine after the different multidimensional arrays have been built. 

Figure 2.3 shows the graphic user interface developed, in which the user is able to 

continuously monitor the values for both the actual and the expected operating 

parameters, as well as the emission (NO x , CO and THC) levels. The model can generate a 

three-dimensional representation of any emission level as a function of any control 

parameter. Figure 2.4 illustrates a three-dimensional representation of the N O x levels as a 

function of engine speed and load. 

In addition, the system is capable of indicating excess levels if emission limits are 

reached, and offers the flexibility to add other operational parameters thus increasing the 

accuracy of the model. It also includes self-tutorial for new users, and a calculator, which 

allows the user to obtain emission levels based on Method 19 of the Code of Federal 

Regulations (CRF) for emission pollutant calculation [25]. 
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Read : 
(1) I (2) Speed (3) St (4) CiaP (5) CoaP 

(6) Avg. ExhT 

Estimate: 
(1) BP (X, Speed, CiaP,CoaP) 
(2) Avg. Exhaust T( l , Speed, BP, St) 
(3) BS¥C(k, Speed, load, St) 

Calculate Error 
(1) Differ 1= (Estimated Avg. ExhT - Actual Avg. ExhtT)*100 

Estimated Avg. ExhT 
(2) Differ2 = (Estimated BSFC - Actual BSFC)* 100 

Estimated BSFC 

Calculate: 
A N O x =0 
AHC=0 
A C O 0 

Calculate: 
A N O x (Differ 1) 
AHC(Differl) 
ACO(Differl) 

Calculate: 
A N O x (Differ2) 
AHC(Differ2) 
ACO(Differ2) 

Final calculation: 
NOx = NOx (X, Speed, BP, St) + ANO x 

HC = HC (k, Speed, BP, St) + AHC 
CO = CO (k, Speed, BP, St) + ACO 

Figure 2.2. Flow chart for emission estimation 
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Figure 2.4. Three-dimensional representation of N0X estimation as a function of the 
control parameters using multidimensional arrays. 

2.3.4. Discussion 

A universal approach for the development of a Parametric Emission Monitoring 

System for natural gas SISIC engines was presented. This approach can estimate harmful 

emissions from SISIC engines in both tuned and non-tuned states, and offers the potential 

to eliminate the need for site compliance monitoring. 

Real-time emission estimation is limited by the extensive amount of tabular data 

that the system might contain depending on the required system resolution. For example, 

assume that an engine is desired to be mapped at the following operational conditions: (a) 

Lambda factor from 1.1 to 1.7, (b) Speed from 300 to 1200 R P M , (c) load 500 to 1200 

HP, and (d) spark timing 19° to 27° bTC. Few samples would be enough to build the 
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different multidimensional arrays for emission estimation. However, the size of the arrays 

would depend on the desired system resolution (e.g., Lambda Factor 1.1:0.01:1.7, 

Speed =300:0.5:1200, and Load=500:0.5:1200HP, and Spark timing=18°:0.1:27°bTC). 

As a result, a multidimensional array of 60x1800x1400x90 is needed in order to cover the 

selected range for estimating one emission level. Furthermore, the system accuracy will 

be jeopardized when the actual resolution of some of the input parameters surpasses the 

restricted system resolution (e.g., Lambda Factor= 1.452). 

In contrast, this approach seems to be a very good avenue for quasi-real time 

emission estimation. Therefore, users can analyze in an offline fashion the emission 

levels for a specific SISIC engine. Resulting emission surfaces resulted to be very 

smooth, and resolution was improved by selecting a smaller interpolation step for each 

parameter. However, memory size augmented but it was not a limitation when using the 

system for offline emission modeling. 

Based on this limitation, investigation into a different technique to estimate 

emission concentrations for SISIC engines was pursued, and it is presented in the 

following chapters. 
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CHAPTER III: EMISSION MONITORING SYSTEM BASED ON 

ARTIFICIAL NEURAL NETWORKS 

3.1. Overview 

In the previous chapter, a P E M system design based on multidimensional arrays 

was suggested and described. Limitations were encountered when evaluating the system 

for real-time emission estimation implementation. Because of these limitations, 

investigation into a new approach for developing an emission monitoring system was 

pursued. 

The preliminary work carried by Keeler et al [9], which introduced the use of 

artificial neural networks (ANN) in estimating and controlling emissions produced by 

manufacturing plants, motivated a detailed study on the feasibility of utilizing neural 

networks for the present application. 

Artificial neural networks have been used in various applications including 

pattern recognition, identification, classification, speech, vision and control. Special focus 

has been placed on utilizing their operational capabilities for estimation and control of 

nonlinear processes. Due to the fact that the combustion itself and the products of 

combustion (emissions) are nonlinear with respect to most measured parameters [13,14], 

analysis of the neural network operational principles, as well as comparison between 

various architectures and learning algorithms, were pursued. Design and implementation 

of a neural network-based model for emission estimation for SISIC engines was carried 

out. 
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3.2. Artificial neural networks 

3.2.1. Definition 

A neural network can be defined as a massively parallel distributed process made 

up of simple processing units, which has a natural propensity for storing experimental 

knowledge and making it available for use [31]. Its knowledge is acquired from its 

environment through learning processes. Inter-neuron connection strengths (known as 

synaptic weights) are used to store the acquired knowledge. 

A neuron with a single scalar input and bias is shown on Figure 3.1. 

Input Neuron with bias 

w y n 
f 

a 
p • w — w f w 

T 
I I I b | 

a=f(wp+b) 

Figure 3.L Schematic of simple neuron 

The scalar input p is transmitted through a connection that multiplies its strength 

by the scalar weight w, forming the product wp, a scalar as well. The bias b, an additional 

weight, is added to the product wp. The resulting scalar n = wp+b, is the argument of the 

transfer function/ which produces a scalar output a. Typically,/can be a step, linear or 

nonlinear function. The main idea of neural networks is that parameters, such as w and b, 

can be adjusted so that the neural network can exhibit some desired behavior [31,32]. 
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Two representations of a neuron with a single input vector of R elements are 

shown on Figure 3.2.a and 3.2.b. The individual element inputs pit P2---PR are multiplied 

by weights wij, Wij, ...WI.R,. The sum is simply Wp, the scalar product of the weight 

matrix W and the input vector p. The neuron has a bias b, which is summed with the 

weighted inputs to form the net input n. Then, n = w/j p/ + w/jp2 +...+ w/RPR + b 

becomes the argument of / 

Input Neuron 

n 
w f 

a=f(Wp+b) 

(a) 

Input Neuron 

p > W 
Rx\ 

— ^ 

S x l 

b 

S x l 

n 

+ S x l 
f 

a=f(WV+b) 

(b) 

a 
S x l 

Figure 3.2. a and 3.2.b represent two ways for representing a neuron with vector input. 
R is the number of elements in input vector, and S is the number of neurons in layer 

A neural network contains one or more layers, each encompassing two or more 

neurons. Figure 3.3 presents a one-layer network with R input elements and S neurons. In 

this network, each element of the input vector p is connected to each neuron input 

through the weight matrix W. The i t h neuron has a summation that gathers its weighted 

inputs and biases to form its own scalar output n(i). The different n(i) taken together form 
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an S-element net input vector n. Finally, the neuron layer outputs (ai , f l2 ,-fls) form a 

column vector a [33]. 

Input 

bs 

a=/rwP+b) 

Figure 3.3 Single-layer neural network 

A neural network layer is not constrained to have the number of its inputs equal to 

the number of its neurons. Therefore, putting two networks in parallel can create a single 

layer of neurons with different transfer functions. Both networks would have the same 

inputs, and each network would create a specific output. 

A neural network can also have several layers. Each layer has a weight matrix W, 

a bias vector b, and an output vector a. Figure 3.4 illustrates a three-layer neural network. 

This network has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer, 

and S3 neurons in the last layer. The outputs of each intermediate layer are the inputs to 
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the following layer. Thus, layer 2 can be analyzed as a one-layer network with S1 inputs, 

S2 neurons, a S'xS 2 weight matrix W 2 , an input vector a1, and an output vector a2. 

Input (I) First layer Second layer Third layer 

I I 2 2 2 3 
n i a i n \ a i n \ a i 

al=f(IWup + b{) a2=f(LW2,\p + b2) (f-f{IW2,ip + b2) 

Figure 3.4. Three- layer feed forward neural network 

3.2.2. Neural network knowledge representation 

Knowledge refers to stored information or models used by a person or machine to 

interpret, predict, and appropriately respond to the outside world [31]. 

Knowledge representation can be considered as (1) the information that actually is 

made explicit or (2) the manner the information is physically encoded for subsequent use. 

In real-world applications of intelligent machines, it can be said that a good solution 

depends on a good representation of knowledge [31]. Therefore, neural networks offer 
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the required capabilities to represent an intelligent machine. However, the possible forms 

of neural network representations are highly diverse, which tends to make the 

development of a satisfactory solution by means of a neural network a real design 

challenge. 

The major task for a neural network is to learn a model of the world 

(environment) in which it is embedded, and to maintain the model sufficiently consistent 

with the real world so as to achieve the specified goals of the application of interest. Two 

types of information describe the knowledge of the world: (1) the known world state, 

represented by facts about what is and what has been known (prior information), and (2) 

observations (measurements) of the world, obtained by means of sensors designed to 

probe the environment in which a neural network is supposed to operate. These 

measurements provide the necessary information from which samples used to train the 

neural network are drawn. 

The samples can be labeled or unlabeled. Labeled samples are represented by an 

input signal paired with a corresponding desired response (target output). Conversely, 

unlabeled samples consist of different realizations of the input signal itself. Both sets of 

samples represent knowledge about the environment of interest that a neural network can 

learn through training. A set of input-output pairs, with each pair consisting of an input 

signal and the corresponding desired response, is referred to as a set of training data or 

training sample [31]. 

In a neural network of specified architecture, knowledge representation of the 

surrounding environment is defined by the values taken on by the free parameters (i.e., 

synaptic weights and biases) of the network. The form of this knowledge representation 
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involves the design of the neural network, and therefore holds the key to its performance. 

Different rules for knowledge representation have been extensively described in the 

literature [31,34]. The following four rules summarize the most important rules, which 

are employed in this work. 

• Rule 1: Similar inputs from similar classes should usually produce similar 

representations inside the network, and should therefore be classified as belonging to 

the same category. 

• Rule 2: Items to be categorized as separate classes should be given widely different 

representations in the network. 

• Rule 3: If a particular feature is important, then there should be a large number of 

neurons involved in the representation of that item in the network. 

• Rule 4: Prior information and invariance should be built into the design of a neural 

network, thereby simplifying the network design by not having to learn them. 

These rules were implemented in the present approach by implementing initial 

preprocessing steps on the network inputs (see Section 3.3.3, Part B). 

3.2.3. Artificial neural networks features and their applicability for estimating 

gaseous emissions for SISIC engines 

Artificial neural networks offer some useful properties that match the 

characteristics required for modeling the emission levels generated from SISIC engines. 

These properties are Nonlinearity, Input-Output Mapping, Generalization, and Adaptivity 

[31-34] and are briefly discussed. 
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A. Nonlinearity: A neural network designed as an interconnection of nonlinear 

neurons is nonlinear itself. Nonlinear neurons are established by defining nonlinear 

transfer functions between these interconnections. This nonlinearity is distributed 

throughout the network, and is very important in the present application due to the fact 

that the physical mechanism (generation of combustion products) responsible for the 

generation of the input signals (control and monitoring parameters), and output signals 

(emission levels) is inherently nonlinear [14]. 

B. Input-Output Mapping: Adjustment of the weights and biases during the neural 

network training process is performed by supplying a particular set of input samples to 

the network, so that they produce specific targets or desired outputs [33]. In the present 

study, the performance goal was achieved by the minimization of the mean square error 

(MSE) between the desired outputs (emission levels directly recorded from a SISIC 

engine) and the actual network response. Figure 3.5 depicts the input-output mapping 

property. 

Desired response (actual 
emissions) 

Set of input 
samples 
describing a 
wide range of 
engine 
operational 
conditions 

Neural network 
output 

Neural network including 
synaptic weights between 

neurons and biases 
• • f Compare 

X 
Figure 3.5. Block diagram illustrating the input-output mapping property of neural 

networks for this application. 
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Input-output mapping makes it possible to represent a SISIC engine performance 

by training a customized neural network system with certain number of training samples 

that correspond to specific engine operational conditions. 

C. Generalization: The potential capabilities of neural networks are expanded by 

their ability for generalizing. This feature stems from the fact that neural networks can 

produce reasonable outputs for input samples not encountered in the set of training 

samples [31-34]. Therefore, when mapping an engine, not all-possible operational 

conditions must be set to ensure maximal training effectiveness. 

D. Adaptivity: A neural network trained to operate and represent a specific 

process can be easily retrained to adapt its weights and biases to minor changes in the 

operating environmental conditions [31]. Therefore, engine performance variations due to 

lifetime degradation can be taken into account by readjusting the different weights and 

biases of the neural network neurons (the neural network can be retrained). 

3.2.4. Learning process 

The most significance property of neural networks is their ability to learn from the 

environment, and to improve their performance through learning. A neural network 

learns about a specific environment through an interactive process of adjustments applied 

to its synaptic weights and biases, and ideally it becomes more knowledgeable about its 

environment after each iteration of the learning process. In the present context, learning 

can be defined as the process by which free parameters (weights and biases) are adapted 

through a process of stimulation by the environment in which the network is embedded. 

The type of learning is determined by the manner in which parameter changes take 

place [32-33]. 
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In other words, the neural network is stimulated by the environment. It undergoes 

changes in its free parameters as a result of the stimulation, and finally it responds in a 

new way to the environment because of the changes that have occurred in its internal 

structure. 

There are different prescribed sets of well-defined rules for solving the neural 

networks learning problem, known as learning algorithms [33]. They differ from each 

other in the way the adjustment to a synaptic weight of a neuron is formulated, and the 

manner in which its structure relates to its environment. 

For the present work, error-correction, supervised learning is used. These 

concepts are discussed below. 

• Error-Correction learning resembles the input-output mapping property of neural 

networks. This learning process aims at minimizing a cost function Ek(n) which is 

defined in terms of the error signal e^n) obtained when comparing the output signal 

of the neural network yk(n) to the desired response or target output dk(n). Equations 

3.1, 3.2, 3.3, and 3.4 describe the general error-correction learning process. 

ek(n)= dk{n)-yiin) (3.1) 

Ek(n)= 0.5 e2

k(n) (3.2) 

Awyty(n)=r| ek(n)Xj(n) (3.3) 

vjkj(n+1 )=w*/n) + Aw*,(n) (3.4) 

where k identifies an specific neuron, r| is a positive constant that determines the rate of 

learning as the learning process proceeds from one step to another, x,(n) is a component 

of the input signal vector x(n), wkj(n) is the value of an specific synaptic weight, Awj/n) 
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is a synaptic weight adjustment, and w^(n+l) is the updated value of synaptic weight 

W/t/n). 

Similar error correction process is utilized when adjusting synaptic weights of a 

neural network when applying learning algorithms such as the Levenberg Maquardt and 

the Bayesian Regularization, which are described later. (See Appendix A). 

• Supervised learning: Given an algorithm designed to minimize the cost function 

Ek(n), an adequate set of input-output samples, and enough time permitted to do the 

neural network training, a supervised learning system is usually able to perform tasks 

such as function approximation [31]. It is the "teacher" involved in this process that 

provides the neural network with a desired response for a training vector. Indeed, the 

desired response represents the optimum action to be performed by the neural network. 

The network parameters are adjusted under the combined influence of the training vector 

and the error signal, and a step-by-step process takes place making the neural network to 

emulate the teacher. Thus, knowledge of the environment available to the teacher is 

transferred to the neural network through training as fully as possible. When this 

condition is reached, the teacher is dispensed and the neural network deals with the 

environment by itself. 

As a performance measure for the system, mean-square error or the sum of 

squared errors over the training sample is used. This sum may be visualized as a 

multidimensional error-performance surface or error surface. For the system to improve 

performance over time and therefore learn from the teacher, the operating point has to 

move down successively toward a minimum point of the error surface. Thus, a supervised 
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system is able to do this with the useful information it has about the gradient of the error 

surface corresponding to the current behavior of the system [31,33]. 

A. Learning algorithms 

Different A N N topologies and training algorithms have been introduced [31-34] 

for various applications. The Backpropagation (BP) algorithm is one of the most common 

and reliable algorithms to train neural networks and is described in numerous articles 

[35,36]. It is a gradient descent algorithm, and its name refers to the manner in which the 

gradient is computed for non-linear feed-forward multilayer networks. There are two 

different ways for implementing this gradient descent algorithm: incremental mode and 

batch mode [31,33]. In the incremental mode, the gradient is computed and the weights 

are updated after each input is applied to the network. In the batch mode all of the inputs 

are applied to the network before the weights are updated. The goal of the algorithm is to 

minimize the mean square error (MSE) between the predicted and the desired outputs of 

the network by changing the synaptic weights and biases caused by back propagating 

errors. High performance BP training algorithms fall into two main categories. The first 

category, which encompasses the variable learning rate backpropagation and the resilient 

backpropagation algorithms [33], uses heuristic techniques, and they involve the 

momentum technique which is often too slow for practical problems [33]. The second 

category corresponds to standard numerical optimization techniques associated with the 

Quasi-Newton and the Levenberg-Maquardt conjugate gradient techniques [33,37,38]. 

Very often, it is very difficult to determine which training algorithm would be the 

fastest for a given problem. The algorithm speed depends on many factors, including the 

complexity of the problem, the number of data points in the training set, the number of 



weights and biases in the network, and the error goal. In general, for most situations it is 

recommended to try the Levenberg-Maquardt (LM) algorithm first when working with 

networks that contain a few hundred weights [33]. However, if this algorithm requires too 

much memory, then the Quasi-Newton Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 

algorithm is the option to try [33,34]. Table 3.1 compares the performance of different 

learning algorithms based on convergence time, number of epochs, and required 

computational operations [33]. A neural network with three layers containing 1-10-1 

neurons or weights, is trained on a data set with 41 input /output pairs until a MSE of 

0.01 is achieved. The networks were trained by using the Neural Network Toolbox 

provided by the C A D system, Matlab 5.3.0. 

Technique Time of convergence 
(sec) 

Epochs **Mflops 

Variable learning 
rate 

57.71 980 2.5 

Resilient BP 12.95 185 0.56 
Fletcher-Powell 16.4 81 0.99 

Polak-Riebiere 19.16 89 0.75 

Powell-Beale 15.03 74 0.59 

One Step-Secant 18.46 101 0.75 
BFGS Quasi-

Newton 
10.86 44 0.59 

Levenberg-
Maquardt (LM) 

1.87 6 0.46 

Table 3.1. Comparison between learning algorithms 

*Iterations. This term is used when working with neural networks 
* M i l l i o n floating-point operations 
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The reader might notice that there is not a clear relationship between the number 

of floating-point operations (Mflops) and the time required to reach convergence. This is 

because some of the algorithms can take advantage of efficient built-in M A T L A B 

functions, especially when using the LM algorithm. 

Comparison between the results presented in Table 3.1 confirms the fact that L M , 

and Quasi-Newton BFGS training algorithms are the preliminary optimal algorithms to 

use, and therefore are applied in the present study. 

Detailed explanation of the development and implementation of a neural network 

design for estimating gas emissions for SISIC engines is provided in the following 

sections. 

3.3. Neural Network-Based Design Modeling for Estimation of Gas Emissions for 

SISIC engines. 

3.3.1. Introduction 

An emission monitoring system based on A N N can be represented by a group of 

neural networks capable of modeling the operation of actual gas (NO x , HC, CO and CO2) 

sensors. These neural network-based sensors must be able to virtually monitor different 

emission levels generated from heavy-duty, natural gas SISIC engines used in the oilfield 

at any operational condition. 

Choosing an appropriate structure for the different neural networks encompassing 

the system was one of the most difficult tasks due to the fact that there are no standards 

for application-related neural network structuring [34]. 

Extensive training and validation were performed to show the capabilities and the 

possible limitations of using neural networks for this particular application. Two 
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algorithms ( L M and Quasi-Newton BFGS) were initially used to train each network, and 

comparisons between both techniques based on time of convergence and generalization 

were made. 

3.3.2. Parameter definition 

In previous chapters definitions of certain operational parameters directly related 

to the emission generation were introduced. Two categories were established, control and 

monitoring parameters. 

Selected control parameters were: (1) Lambda factor*; (2) Speed; (3) Load; and 

(4) Spark timing. Selected monitoring parameters were: (1) Exhaust temperature, and (2) 

Fuel pressure or fuel flow (optional). For the present approach, the system was designed 

to estimate concentrations of N O x , HC, CO, and C O 2 after combustion. 

3.3.3. Methodology 

A. Neural network system architecture 

The architecture of the neural network system is related to the number of neural 

networks to be designed and implemented. After defining the number of neural networks, 

determination of the number of inputs, the number of layers, the number of outputs, the 

type of transfer functions applied to each layer, and the neuron interconnection layout for 

each neural network was pursued. As mentioned before, presently there are no standard 

guidelines to define the architecture of a neural network. Therefore, proper structuring of 

each network to assure maximum training effectiveness was performed. 

* Factor calculated by the existing engine management system. Factor X = X (manifold pressure,RPM,fuel 
flow, atmosphere pressure) 
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The neural network system consisted of a number of neural networks working in 

parallel, each one designed to estimate a specific output. Due to the high nonlinearity of 

the combustion process [13,14], the decision to use a customized neural network for each 

output or emission level estimated was taken. Figure 3.6 presents a block diagram of the 

developed system involving estimation of three emission levels (NO x , CO and CO2) . 

Input layer Hidden layers Output layer 

Out 1 
(NO*) 

NN1 

Out 2 
(CO) 

NN2 

Out 3 
(C02) 

NN3 

Figure 3.6. Block diagram illustrating the external architecture of the proposed neural 
network system. Three outputs were estimated based on the variation of five input 

parameters. Three neural networks (NN1 to NN3) operated in parallel. 
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B. Neural network system training 

Two high performance algorithms, which can converge from ten to one hundred 

times faster than the traditional Backpropagation algorithms, were used to train the 

present system. They were (1) Quasi-Newton BFGS, and (2) Levenberg-Maquardt 

fZMj[34,37,38]* 

When training the neural networks, initial preprocessing steps on the network 

inputs and targets were carried out. First, all network inputs and targets were normalized 

within a specified range, enhancing training effectiveness. Second, due to the fact that in 

some situations the dimension of the input vector was large and its components or 

samples were highly correlated, it was useful to reduce its dimension using the so-called 

principal component analysis [33]. This technique orthogonalized the components of the 

input vector, so that they were uncorrelated with each other, ordered the resulting 

orthogonal (principal) components so that those with the largest variation came first, and 

finally eliminated the components that contributed the least to the variation of the data 

set. 

As mentioned before, nonlinear functions give neural networks distinct nonlinear 

capabilities. One of the most common forms of activation function is the sigmoid which 

is a monotonically increasing function that asymptotes at some finite value as ± co is 

approached. The most common examples are the standard logistic functionJ/(x)=(l+e"x)"1 

and the hyperbolic tangent _/(x)=tanh(x) shown in Figure 3.7. Sigmoids that are 

symmetric about the origin are preferred so that they produce outputs (inputs to the next 

layer) that are on average close to zero due to normalization. Therefore, for the present 

* See Appendix A for B F G S and LM description and implementation 
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approach hyperbolic tangents were applied to all layers in the networks excepting to the 

output layer, because it only contained one neuron. 

Initial weights were chosen randomly but in such way that the sigmoid was 

primarily activated in its linear region. Thus, weights that ranged over the sigmoid linear 

region forced the network to learn the linear part of the mapping before the more difficult 

nonlinear part during training. 

(a) (b) 

Figure 3.7. (a) Logistic function f(x)=(l+e~xf ; (b) Hyperbolic tangent function 
f(x)=tanh(x) 

On the other hand, overfitting is one of the problems that can occur during neural 

network training [34]. A neural network can memorize the training samples, but does not 

learn to generalize new situations, if it is not properly trained. Among the methods for 

improving generalization, the most common techniques encountered in the literature were 

Regularization, and Early Stopping [31,33,34]. 
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Regularization involves the modification of the performance function, which is 

normally chosen to be the sum of squares of the network errors on the training set, i.e., 

the MSE represented by Equation 3.5. This modification (msereg) is performed by adding 

a term that corresponds to the mean of the sum of squares of the network weights (msw), 

as described in Equation 3.7: 

I N J N ^ (3.5) 
mse = — V (eS1 = — V (t, - a,)2 

(3.6) 
msereg - /.mse + (1 - y)ms\v, 

where y is the performance ratio, n the number of weights, and 

1 ^ 
msw 

Using this new performance function (Eq.3.7), the network can be forced to have smaller 

weights and biases. Therefore, a smoother network response can be observed. However, 

the problem with regularization boils down to the difficulty of determining the optimum 

value for the performance ratio parameter. Choosing a very large performance ratio 

caused overfitting. Conversely, a small value did not allow proper training. Therefore, 

decision to use automated Bayeisan regularization (see Appendix A), was made based on 

the capabilities provided by the M A T L A B Neural Network Toolbox [33]. One feature of 

this regularization technique was that it provided a measure of how many network 

parameters (weights and biases) were effectively used by the network. Therefore, 
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determination of these active parameters helped to decide whether larger or smaller 

neural network architecture was required to reach the training goal. Thus, utilization of 

the Early Stopping technique was not needed due to the remarkable results obtained using 

the automated regularization technique (see Section 3.3.5). 

The inputs and the targets were supplied in batches to the neural networks during 

training. The use of batch learning was the only choice since the training algorithms 

(Quasi-Newton BFGS, LM and Bayesian Regularization) only operate in this mode 

[33,38]. 

Each neural network was trained independently using the described methodology. 

C. Neural network system validation 

Validation was performed in order to evaluate how well each neural network 

generalized [32]. A set of input samples not encountered in the set of training samples 

was entered into each neural network. The network outputs were compared to the targets 

or actual outputs. Two analyses were performed to assess the performance of each trained 

network. First, the maximum relative error (MRE: % difference between the network 

outputs and the actual targets) was calculated. Then, linear regression analysis between 

the network outputs and the corresponding targets was performed. Correlation coefficient 

(R-value) was calculated to quantify the similarity between the corresponding targets and 

outputs [33]. 
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3.3.4. Implementation 

The neural network system was designed to model different emission levels 

generated by natural gas SISIC engines as a result of the variation of some crucial control 

parameters. Gas emissions selected* to show feasibility of the present study were N O x , 

CO, HC, and C02, which generally present the greatest environmental concern. 

Therefore, four neural networks were designed, trained and validated. The following 

steps were performed to design and implement these neural networks. 

A. Defining the input and output vectors, learning process and training algorithm 

Initially, the input and output vectors used to train each neural network were 

defined. The input vectors corresponded to the key operational parameters related to the 

emission generation. Five operational parameters were selected as elements of each input 

vector. As a result, four input vectors related to the NO x , HC, CO, and CO2 estimation 

containing six elements (air/fuel ratio, speed, load, spark timing, average right exhaust 

temperature, and average left exhaust temperature) were established for each neural 

network. The number of input samples for training each network was determined based 

on a wide range of engine operational conditions. Subsequently, manual variation of 

individual control parameters (air/fuel ratio, speed, load and spark timing) was 

performed, recording the impact of these variations on the remaining monitoring 

parameters (in this particular case only the average exhaust temperatures, which are used 

as estimates of the combustion temperatures for each engine cylinder). 

The output vectors corresponded to the gas emissions (NO x , CO, HC and C 0 2 ) 

generated as a result of the different operational conditions obtained by manual variation 

' Selection was limited to test the neural network approach. Other gases might be included. 
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of each control parameter. Four output vectors were defined, each containing the 

dynamics of a single element representing a specific gas emission. The number of 

emission samples (outputs) was made equal to the number of individual variations of 

each control parameter needed to cover the predefined engine operational range. These 

output samples were recorded using a sophisticated gas analyzer. 

Based on similar previous applications [6,9,39], "Backpropagation" was selected 

for implementing the learning process [31]. However, as mentioned before, the 

application of traditional backpropagation training techniques was avoided, and two high 

performance algorithms, the BFGS and the LM techniques mentioned earlier, were 

adopted. Additionally, Bayesian Regularization was applied during training and results 

are presented in Section 3.3.5. 

A. l . Engine data collection 

Engine operational and emission data were collected at the North Caroline Gas 

plant in September 2000. The machine used was a 16 cylinder SISIC engine made by 

Waukesha, Model P9390GSIU, Rated Power 1800HP located at a BP Energy gas plant. 

A sophisticated gas analyzer (GA-40T plus, M A D U R , Vienna, Austria) was utilized to 

record the different emission levels emanating from this unit. Data is presented in 

Table 3.2. 
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Sample X Speed Load SparkT R E x h T LexhT N O x C O c o 2 

R P M H P °bTDC °C °C ppm ppm 

1 1.23 1000 1441 24 521.75 579.25 5366 940 9.75 
2 1.28 1000 1456 24 500.75 575.37 4552 930 9.22 
3 1.33 1000 1536 24 500 570.87 3342 710 8.63 
4 1.28 1000 1546 24 507.87 577.87 4507 820 9.07 
5 1.23 1000 1559 24 520.37 588 5485 950 9.56 
6 1.28 1000 1575 24 508.75 575.12 3599 810 8.69 
7 1.4 1000 1593 24 505.25 573.25 3359 770 8.65 
8 1.35 1000 1595 24 504.5 576.12 4057 790 8.84 
9 1.35 1025 1638 24 515.12 582.12 4240 770 8.93 
10 1.33 1025 1643 24 514.25 579.87 3604 790 8.76 
11 1.28 1025 1650 24 513.12 581.12 3960 800 8.97 
12 1.23 1025 1647 24 526.75 591.12 4763 950 9.99 
13 1.4 1000 1509 24 490.37 559.5 2051 530 8.35 
14 1.45 1000 1506 24 496.5 556.62 1920 510 8.17 
15 1.5 1000 1504 24 494.12 557.37 1568 520 8.15 
16 1.5 1050 1565 24 496.87 565.62 1573 550 8.15 
17 1.45 1050 1566 24 500.25 563.62 1881 550 8.19 
18 1.4 1050 1562 24 502 562.75 2053 550 8.39 
19 1.4 950 1421 24 481.75 535.62 2248 560 8.1 
20 1.35 1000 1577 24 502.75 569.5 2947 590 8.65 
21 1.3 1000 1568 24 504.87 573.37 4025 650 9.14 
22 1.3 1000 1594 27 499.87 564.62 4416 650 8.93 
23 1.3 1000 1596 21.9 520 577.12 3072 640 8.78 
24 1.3 1000 1585 19.9 519.12 582.37 2953 590 9.01 
25 1.3 1000 1591 18.8 524.12 587.62 2792 570 9.05 
26 1.27 1000 1589 24 524.37 575.87 4383 640 9.24 
27 1.23 1000 1586 24 515.75 582.5 4991 690 9.84 

28 1.18 1000 1573 24 521.75 590.12 5433 680 9.99 
29 1.18 950 1467 24 514.75 573.25 5563 730 10.01 
30 1.23 950 1472 24 501.37 565.12 5320 710 9.48 
31 1.27 950 1476 24 494.25 559.25 4706 670 9.1 
32 1.3 950 1478 24 490.37 555 3828 610 9 

J J 1.35 950 1476 24 484.37 547.37 2615 550 8.57 
34 1.4 950 1462 24 479.25 546 2498 550 8.53 
35 1.4 90D 1370 24 471.62 532.75 2633 550 8.51 

Table 3.2. Engine operational and emission data 

A detailed section describing the overall experimental procedure for engine data 

collection is provided (See Appendix B). In addition, uncertainty of experiments is 

discussed. 
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B. Neural network system architecture 

In order to obtain an optimal neural network structure, an algorithm was designed 

to determine the number of layers, the number of neurons in each layer, and the neural 

network layout, considering two main goals: (1) minimal M S E between the neural 

network outputs and the actual targets after training; and (2) good generalization. 

Initially, the algorithm created four random-sized neural networks, which were 

relatively small multilayer networks. These initial networks were too small for 

accomplishing the given task. Therefore, a new neuron, or a new layer of hidden 

neurons, was added only when the training process was unable to meet the design 

specification. This technique is known as the Network Growing technique [31]. 

Before training the networks, the inputs and the targets had to be normalized so 

that they were always within a specified range. In this particular case, both inputs and 

targets fell in the range [-1,1]. Additionally, principal component analysis [33] was 

applied to avoid high correlation between the components of the input vector. 

Subsequently, training was performed by supplying a set of training samples into the 

networks in batch mode, i.e., adjustment of weights and biases started after all inputs and 

targets had been already entered into the networks. 

Adjustment of weights and biases during training was performed and partially 

stopped when a maximum mean square error (MSE) between the network outputs and the 

target of 2.5xl0"5 was obtained. After achieving this initial performance goal, each neural 

network was validated using a set of different input samples not encountered in the 

training set to assess the generalization ability of the network. Validation was evaluated 

by calculating the maximal percent difference between the network outputs and the 



83 

targets. The entire training process was stopped when a Maximum Relative Error (MRE) 

of 5% was obtained. Otherwise, the training process continued iteratively. 

3.3.5. Results 

After several trials, four medium size networks were obtained. Architecture of 

one of these networks is presented in detail in Figures 3.8.a, 3.8.b, 3.8.c and 3.8.d, and a 

structure summary is given in Table 3.2. In addition, the adequate transfer functions to 

incorporate the necessary non-linearity between all layers (with the exception of the 

output layer) were determined, as mentioned in Section 3.3.3 (B) 

Layer #Neurons Transfer function 
Input 22-30 Nonlinear: Hyperbolic tangent 
Hidden 8-12 Nonlinear: Hyperbolic tangent 
Output 1 Linear: f(x)=mx+b 

Table 3.2. Internal structure of the neural networks used for emission estimation 

Four three-layer networks were obtained. Each network contained a different 

number of neurons in the input and hidden layer, ranging between 22-30 and 8-12 

neurons respectively. 
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Figure 3.8.a. General neural network structure. Five inputs were supplied to a black box 
containing a number of layers and neurons determined by the developed algorithm. 

a;2> 

Figure 3.8.b. Detailed layout of connections between the layers encompassing one of the 
neural networks of the present system. 
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Figure 3.8.C. Detailed layout of weights and biases connections for the first layer of a 
neural network in the present system. In this particular example, the layer contained a 

25x5 weight matrix, and a 1x5 bias. Note that the weight indices indicate the input-weight 
connections and not the dimension of the weights. Each input sample was delayed in 

order to synchronize the network operations. 
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Figure 3.8.d. Detailed picture of the second layer of one of the neural networks in the 
system. Ten 1x25 weights were multiplied (dot product) with the results obtained from the 

first network layer (ad(2,l)). 
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Table 3.2 compares the results from the applied training algorithms (BFGS, LM 

and Bayesian regularization). The comparison was done based on the number of 

iterations required to successfully train the network and the time of convergence. 

Algorithm Number of 
iterations 

Time of convergence 

BFGS 70-100 5-10 minutes 
L M 20-30 1/2-1 minute 
Bayesian R 50-80 7-12 minutes 

Table 3.2 Comparison between training algorithms based on the number of iterations 
and time of convergence to reach the training goals. 

Figures 3.9.a, 3.9.b, and 3.9.c show the response of three different neural 

networks after training. Clearly, no differences are evident in these graphs due to the fact 

that the trained networks were capable of learning the training samples. One might think 

that any of these algorithms would efficiently work for this application. However, 

quantitative validation is the only method capable of proving this. 

After the first validation phase (see Figures 3.10.a, 3.10.b. and 3.lO.c), these 

algorithms showed capability to generalize well. Small but consistent differences showed 

that the Bayesian Regularization technique generated the minimal relative error between 

the targets and the estimated outputs from the network. Furthermore, a second validation 

phase was performed to evaluate more precisely the capabilities of each neural network 

to generalize. Figures 3.1 La, 3.1 Lb., and 3.1 l.c reveal the unquestionable benefits of 

using the last but best training algorithm, the Bayesian regularization. However, the 

Quasi-Newton BFGS and LM algorithms also complied with the set goals (i.e. M R E 
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<5%). Therefore, the discriminating factors would be the speed of convergence and the 

efficiency. 
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Figure 3.9. a. Neural network response after training using the Quasi-Newton BFGS 
algorithm. Square points represent desired outputs and cross points denote the estimated 

values by the neural network. Both outputs are normalized 
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Figure 3.9.b. Neural network response after training using the LM algorithm. Square 
points represent desired outputs and cross points denote the estimated values by the 

neural network. 
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algorithm. Square points represent desired outputs and cross points denote the estimated 
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Figure 3.10.a. Initial validation of the Quasi-Newton BGFS training algorithm; 
M R E =4.6 % 
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Figure 3.10.b Initial validation of the LM training algorithm; MRE -2.69% 
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Figure 3.10.C. Validation J- Initial validation of the Bayesian regularization training 
algorithm; MRE =2.141% 
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Figure 3.11.a. Additional validation of the Quasi-Newton BFGS training algorithm; 
MRE= 4.98% 
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Figure 3.1 Lb. Additional validation of the LM training algorithm; MRE =3.75% 
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Figure 3.1 I.e. Additional validation of the Bayesian regularization-training algorithm; 
MRE = 1.9% 
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Linear regression between the network outputs and the corresponding targets for 

the overall data was carried out for all training algorithms. High correlation between the 

outputs and the targets was obtained (R-value between 0.995 and 1). Figure 3.12 

illustrates the post-training analysis for a neural network trained using the L M , the BFGS 

and the Bayesian regularization algorithms. 

The neural network implementation was developed based on the Neural Network 

and Simulink toolboxes provided by the C A D system M A T L A B 5.3.1 (The Mathworks 

Inc., Natick, MA) . A graphic user interface (GUI) was developed to represent the system. 

The description of this GUI is given in Chapter 4, section 4.2.5. 

Best Linear Fit: A = (1) T + (0.00111) 
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Figure 3.12.a. Linear regression analysis (R-value-0.996), using the BFGS algorithm to 
train the networks. 
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Figure 3.12.b. Linear regression analysis (R-value=0.998), using the LM algorithm to 
train the networks. 
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Figure 3.12.C. Linear regression analysis (R-value=l), using the Bayesian regularization 
algorithm when training the networks. 
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3.4. Discussion 

The benefits of using artificial neural networks for emission estimation for SISIC 

engines can be extended to any combustion unit such as boilers and stationary turbines 

where there exists a relationship between monitoring and control parameters with the 

generation of the same or different pollutants. Thus, a parametric emission monitoring 

system based on neural networks can replace the existing CEMS, without any problems 

that could jeopardize the standards of performance of CEMS for stationary combustion 

units. 
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CHAPTER IV: EMISSION CONTROL SYSTEM FOR SISIC 

ENGINES 

4.1. Overview 

Nowadays, more restrictions have been placed on the performance of different 

engine installations, therefore, innovative treatment technologies originated, and 

frequently new materials capable of reducing those emissions have been applied [3,40]. 

One of the most common techniques to reduce the different emissions emanating 

from SISIC engines is using a 3-way catalytic converter, described before 

(See Chapter I). The use of 3-way catalytic converters introduces high installation and 

maintenance costs which owners of engine facilities see as prohibitive to undertake. 

Therefore, alternative techniques to control these emissions have been in the focus 

of different environmental organizations, industries and research institutes [2,11]. These 

techniques involve an appropriate manner of finding optimal operational conditions that 

might force the engines to generate the legally required emission levels or reduce them so 

that the related environmental effect is less, and permission to operate engine is obtained. 

This chapter aims to present a novel and universal approach for emission control, 

subsequent to the design of a neural network system for emission estimation. This control 

technique is also based on neural networks so that a complete emission estimation and 

control system can be integrated. 

The system can be envisioned as a set of inverse models of the emission 

estimation system previously developed (see Chapter III). These inverse models were 



97 

based on a new set of neural networks, designed to represent an open loop system capable 

of estimating the proper tuning of the control parameters related to emission generation. 

The main idea was to provide an effective tool that could facilitate a SISIC engine 

operator in finding the optimal values for certain control parameters and, by tuning them, 

to comply with the required emission levels. Therefore, using this technique, the system 

operator would be asked to manually enter a desired emission level, and the model would 

estimate the proper changes to the selected control parameters that might be implemented 

to obtain the desired engine behavior for generating the emission targets. 

In general, the concept of applying NN for emission control could be applied in a 

closed loop fashion. However, there were few, but important reasons that limited thL 

implementation, e.g. possible unsafe engine operation, and limited owner's control over 

the engine operation. 

4.2. Open-loop emission control concept 

Based on the neural network-based parametric emission estimation model, 

manipulation of the selected control parameters led to the variation of the different 

emission levels. Therefore, control parameters that required proper tuning in an open-

loop control setup were the lambda factor, the speed, the load and the spark timing. 

In a control system, these parameters were the targets (or the outputs) of a new set 

of neural networks used in the system design. Initially, the problem of controlling the 

emissions was virtually solved by designing four new neural networks corresponding to 

each emission-related operational parameter. The inputs for these neural networks were 

the engine operational parameters used to estimate the emissions in the previous P E M 

model (see Chapter III), excluding the parameter to be tuned, and an additional input 
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corresponding to the emission level required. The required emission level was entered 

manually by the user and immediate calculation and description of the optimal engine 

operation was generated by the corresponding neural network. 

After obtaining the optimal control parameters, tuning could be achieved by 

manipulating these control parameters through the existing engine management system. 

4.2.1. Description 

Figure 4.1 presents a diagram of the initial proposed emission control system. The 

figure represents the open loop control of one of the parameters related to emission 

generation. 

Parameter 2 

SISIC 
ENGINE 

Parameter 3 

Parameter 4 

Engine 
Management 

System 

Emission 
Estimation 

Emission 
level required 

Control 
parameter 1 
estimator 

Optimal 
parameter 1 

Figure 4.1. Open-loop concept for emission control 
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The selected control parameters were supplied to the already designed emission 

estimation system. The system estimated the selected emission level, which was 

compared to the emission level required. The resulting error was made part of the input 

vector supplied to the new module, the control parameter estimator. Control parameters 

were made part of the input vector, excluding the parameter to be tuned (Parameter 1 in 

the Figure 4.1). This module could estimate the optimal value of the selected control 

parameter needed to reach the emission level desired. 

The overall control system encompasses 17 modules: 1 module for emission 

estimation (the neural network P E M system), and 16 additional modules, each one 

capable of estimating/tuning a selected control parameter (lambda factor, speed, load, and 

spark timing) for a selected emission (NO x , HC, CO and C0 2 ) . 

This modular structure allows expansion of the system at any time, i.e., the 

system can be configured so that any new operational parameter or emission species can 

be included for subsequent emission estimation or control. 

4.2.2. Open-loop emission control system design using artificial neural networks 

An algorithm to create 16 neural networks was developed using the same 

methodology employed to build the parametric emission monitoring system described in 

Chapter 3. The process involved training and validation of 16 neural networks. In the 

following sections, details are provided to explain the different steps followed to develop 

the present control system. 

Integration of the parametric emission monitoring system with the proposed open 

loop control system is explained, and discussion about the application and importance of 

the overall system is provided. 
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A. Defining input and output vectors, learning process and training algorithm of the 

control parameter estimator. 

Eight input-output vectors were defined. They corresponded to the different 

lambda factor, speed, load and spark-timing ranges required to cover all possible engine 

operational conditions, and their effect on the variation of the N O x , HC, CO and C 0 2 

emission levels. The vectors were defined as follows: 

CONTROL 1: Xt<X<K 

CONTROL 2 : Speed, < Speed < Speed„ 

CONTROL 3 : Load, < Load< Load„ 

CONTROL 4: Spark-timing, < Spark-timing < Spark-timing,, 

EMISSION 1: NO x , < NOx < NO x„ 

EMISSION 2: HQ < HC < HC„ 

EMISSION 3: CO; < CO < CO„ 

EMISSION 4: C 0 2 , < C 0 2 < C0 2 „ 

Each module had different input and output vectors based on the operational 

parameter to control in order to reach a specific emission target. Table 4.1 describes the 

input and output vectors for each of the 16 modules or neural networks encompassing the 

control system. 
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MODULE 
(Neural network) 

INPUT VECTOR OUTPUT 
VECTOR 

EMISSION 

1 Control (2,3,4) 
Emission 1 

Control 1 NO x 

2 Control (2,3,4) 
Emission 2 

Control 1 HC 

3 Control (2,3,4) 
Emission 3 

Control 1 CO 

4 Control (2,3,4) 
Emission 4 

Control 1 C 0 2 

5 Control (1,3,4) 
Emission 1 

Control 2 NO x 

6 Control (1,3,4) 
Emission 2 

Control 2 HC 

7 Control (1,3,4) 
Emission 3 

Control 2 CO 

8 Control (1,3,4) 
Emission 4 

Control 2 C 0 2 

9 Control (1,2,4) 
Emission 1 

Control 3 N0 X 

10 Control (1,2,4) 
Emission 2 

Control 3 HC 

11 Control (1,2,4) 
Emission 3 

Control 3 CO 

12 Control (1,2,4) 
Emission 4 

Control 3 C 0 2 

13 Control (1,2,3) 
Emission 1 

Control 4 NO x 

14 Control (1,2,3) 
Emission 2 

Control 4 HC 

15 Control (1,2,3) 
Emission 3 

Control 4 CO 

16 Control (1,2,3) 
Emission 4 

Control 4 C 0 2 

Table 4.1. Input and output vector structure for the 16 modules of the present control 
system 

Similar to the neural network P E M system design process, the number of input 

samples for training each network was determined based on the range in which the engine 

is operated. Previous data recorded from the manual variation of individual 
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control parameters (air/fuel ratio, speed, load and spark timing) and the corresponding 

emission levels were utilized to train and validate each network. 

Based on the methodology followed to design and implement the neural network 

P E M system and the remarkable results obtained (see Section 3.3.5), a backpropagation 

algorithm was selected for implementing the Bayesian Regularization learning technique. 

B. Neural network system architecture 

An algorithm was developed to determine the number of layers, the number of 

neurons in each layer, and the neural network layout of each module encompassing the 

overall parameter control estimator. The performance of this algorithm was constrained 

by two main goals: (1) minimal MSE between the neural network outputs and the actual 

targets after training; and (2) good generalization. 

Good generalization was the most important goal to achieve due to the fact that 

frequently it was difficult to collect engine data at all desired operational conditions. 

Commonly, the recorded data was restricted to a narrow operational range due to 

production schedules. For example, if the operator needed to restrict the engine operation 

between 80% and 100% of the allowed emission range, data was collected taking into 

account this restriction. However, if, at a later date, the owner or operator elected to 

operate at a different condition within this range or outside of the restricted range, the 

system must be able to provide acceptable new control parameter values capable of 

making the engine generate the desired emission levels. 

The control module can be described using Figure 4.2. It consisted of two 

subsystems, Subsystems A and B. Subsystem A utilized the engine control parameters to 

estimate the expected exhaust temperature. The exhaust temperature, a crucial monitoring 
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parameter utilized to represent the combustion temperature, was estimated to simulate the 

response of the engine to the variation of the control parameter to be tuned. Therefore, all 

control modules had associated with it an exhaust temperature estimation module, which 

was also built using neural networks. 

In this particular example, Subsystem B used (1) the estimated exhaust 

temperature from Subsystem A; (2) the error generated from comparison between the 

estimated emission level provided by the neural network P E M system, and the level 

entered by the user, and (3) the control parameters except for the lambda factor which 

was to be tuned. 

Lambda 
Speed 
Load 
Spark T 

Subsystem A 
(Exhaust 
temperature 
estimation) 

Optimal 
Lambda 
factor 

Emission 
level required 

o 
Emission 
estimation 
(Neural 
network P E M 
system) 

Figure 4.2. Detailed open-loop concept for emission control 
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The same architecture was applied for each control module designed for tuning 

the different control parameters (See Table 3.1). Each Subsystem B had associated a 

neural network properly trained, and validated. 

C. Neural network system training 

A l l neural networks were trained using the most effective backpropagation 

technique observed when developing the neural network P E M system, the Bayesian 

Regularization [33,38]. 

Before training the required neural networks, same steps to train the different 

neural networks of the P E M system were followed: (1) Normalization of inputs and 

targets, (2) Principal Component Analysis, (3) Selection of hyperbolic tangent as the type 

of transfer function to use, (4) Initialization of weights, and (5) Adjustment of weights 

and biases. 

The inputs and the targets were supplied in batches to the neural networks during 

training, and each neural network was trained independently. 

The developed algorithm used the Network Growing Technique [31] in order to 

generate the different networks that could comply with the performance goals of minimal 

MSE and good generalization. 

D. Neural network system validation 

The overall system was validated using the methodology explained in section 

3.3.3 (C). The main difference in the present validation process was the quantity of 

modules (16 modules corresponding to 16 neural networks) to be validated, and the 

different input vectors and targets for each control module (see Table 3.1). 
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The goal of this process was to test how well the control system tuned a specific 

control parameter in order to achieve the emission level entered by the user. 

4.2.3. Implementation 

Open loop emission control modeling was pursued to demonstrate the 

functionality of this approach. After training each neural network, validation of each 

control network proceeded. 

Validation process was divided in 2 sub-validation processes. The first validation 

(Valid 1) involved the validation of the exhaust temperature estimation networks 

(Subsystem A), and the second corresponded (Valid2) to validation of the control 

parameter estimation networks (Subsystem B). Thus, each module was validated using 

different input samples not encountered during the training process. A maximum relative 

error of 5% was achieved, based on the stipulated generalization goals. 

Integration of the overall neural network P E M system and the new control system 

was pursued (Figure 4.1). Testing the overall system was carried following four steps: 

(1) An initial engine operational condition was set, based on the lambda factor, the speed, 

the load and the spark timing. This condition was entered into the neural network 

P E M system to obtain the corresponding emission levels. 

(2) An emission target was entered regardless of the emission requirements. 

(3) An engine control parameter module was activated so that estimation of only that 

control parameter according to the emission target was calculated. This step was 

repeated for all control parameters and emission species. However, if no control 

module was selected, the system was designed to tune the various engine control 

parameters with a logical sequence pre-established by the user. Additionally, control 
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parameter limits were set according to the real and the possible operational conditions 

supported by the existing engine management system. 

(4) Comparison between the value of the estimated control parameter and the actual one 

was made, and the maximal relative error to verify the generalization level was 

calculated. 

A graphical user interface (GUI) was developed to visualize the necessary tuning 

process to reach the emission target. The overall system development and integration was 

built using the Neural Network toolbox and graphical capabilities of the C A D system 

M A T L A B 5.3.1. 

4.2.4. Engine data collection 

In order to train the overall system, engine operational conditions and emission 

data were recorded from a 16 cylinder SISIC engine made by Waukesha, Model 

P9390GSIU. The engine was located in BP Energy Canada, North Caroline gas plant (see 

Appendix B). 

Table 3.2 shows the data collected in November 2000. HC emissions are not 

included due to the fact that 0 % concentrations were observed and recorded using the 

possible engine operational conditions that could be set during engine mapping. 
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Sample X Speed Load Spark T RexhT °C LexhT °C N O x C O C 0 2 
R P M H P "bTDC ppm PPm % 

1 1.45 750 682 24 470.3 470.25 244 380 6.56 
2 1.4 750 682 24 473 473.125 426 440 6.76 
3 1.35 750 682 24 479 478.875 917 490 7.17 
4 1.3 750 682 24 483.87 483.125 1948 530 7.71 
5 1.25 750 682 24 491.75 490.75 3331 580 8.27 
6 1.2 750 682 24 504.5 497 4165 660 8.65 
7 1.3 750 682 27.1 487.6 484 1929 530 7.71 
8 1.3 750 682 21.9 487 484.5 2160 540 7.81 
9 1.3 750 682 19.9 485.75 483.625 1867 520 7.67 
10 1.3 750 682 18.8 487.25 483 2034 570 7.73 
11 1.25 850 782.55 24 521.37 515.875 3188 620 8.25 
12 1.3 850 782.55 24 513.75 510 2442 590 7.97 
13 1.35 850 782.55 24 506.37 503.375 1387 550 7.5 
14 1.4 850 782.55 24 500.87 498.625 838 520 7.15 
15 1.45 850 782.55 24 498.62 496.75 442 500 6.82 
16 1.3 850 782.55 27.1 514 510 2749 610 8.09 
17 1.3 850 782.55 19.9 515.62 511.125 2511 590 7.99 
18 1.25 950 886.22 24 556.12 552.75 3735 630 8.73 
19 1.3 950 886.22 24 548 543.75 2303 570 8.09 
20 1.35 950 886.22 24 541 537.5 1514 530 7.7 
21 1.4 950 886.22 24 539 533.625 994 520 7.41 
22 1.45 950 886.22 24 536.12 531.125 638 490 7.12 
23 1.3 950 886.22 27.1 552,5 538.875 2633 570 8.17 
24 —1,3 950 886.22 19.9 549.87 541.875 2416 550 8.13 
25 1.25 1050 993 24 588.62 579 3446 950 8.61 
26 1.3 1050 993 24 584.12 575.625 3404 640 8.66 
27 1.35 1050 993 24 576.5 569 2256 560 8.06 

28 1.4 1050 993 24 570.75 564 1608 530 7.74 
29 1.45 1050 993 24 568 560.75 1053 510 7.41 
30 1.3 1050 993 27.1 583.87 572.375 3461 610 8.51 
31 1.3 1050 993 19.9 581.12 571.5 2942 590 8.36 

Table 4.2. Engine operational and emission data 

Twenty two samples were used to train each neural network, and the remaining 

samples were applied to the networks in order to verify the generalization. 

4.2.5. Results 

Following the four steps outlined in section 4.2.3, the engine was set at a stable 

condition (condition #25, Table 4.2). At this condition the N O x emission level was 

approximately 3446 ppm. 
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Next, a N O x emission target of 495 ppm was entered to the neural network P E M 

and control system. The tuning process sequence was established based on the following 

priorities: (1) 1.2< Lambda<1.45; (2) 700 RPM<Speed<l 100 R P M ; (3) 650 

HP<Load<1000HP; (4) 21°bTC<Spark Timing<27 °bTC. The system immediately 

estimated the optimal engine operational condition to reach the N O x target, and generated 

the following results: 

Lambda: 1.428; Speed=889.5 R P M ; Load=841.3 HP; Spark timing 24°bTC. 

Using the existing engine management system, the engine was set at Lambda 

factor=1.43; Speed=900 R P M ; Load=834 HP; Spark Timing 24°bTC, resulting in a N O x 

concentration of 510 ppm. Clearly, an error of 3.9% was obtained. Several other targets 

were demanded and Table 4.3.a shows the results along with a comparison between the 

actual N O x emission levels generated when setting the engine at very close operational 

conditions indicated by the control system. Table 4.3.b and Table 4.3.C present the same 

comparison for CO and C O 2 control. 

It should be clarified that even though engine/compressor load is a control 

parameter, it proportionally varies with the engine speed. Experiments were limited to 

engine conditions where the load changed due to speed variation and not due to manual 

manipulation. However, the neural network system simulated this effect and it 

corresponded to the operational behavior of the real engine. 
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Xa Speeda Loada SparkTa A,e Speede Loade SparkTe AEmi 
(ppm) 

EEmi 

1.38 800 731.88 24 1.37 780 725 _j 24 970 990 
1.32 800 731.88 24 1.32 785 730 24 1769 1750 
1.27 800 731.88 24 1.26 795 730 24 2806 2890 
1.43 900 834 24 1.44 895 830 24 802 840 
1.38 900 834 24 1.39 895 825 24- 1038 990 
1.32 900 834 24 1.33 910 830 24 1728 1715 
1.27 900 834 24 1.27 900 835 24 2977 2963 

Table 4.3.a. Comparison between actual engine operational conditons (Xa,Speeda, 
Loada.SparkTa) and NOx emission level (AEmi) to estimated engine operational 

conditions (Xa, Speeda, Loadz,SparkTa) and NOx emission level (EEmi). 

Xa Speeda Loada SparkTa Xe Speede Loade SparkTe AEmi 
(ppm) 

EEmi 

1.43 800 731.88 24 1.42 795 735 24 520 510 
1.38 800 731.88 24 1.38 810 730 24 520 528 
1.32 800 731.88 24 1.3 799 725 24 560 590 
1.27 800 731.88 24 1.25 800 735 24 600 595 
1.43 900 834 24 1.42 905 830 24 510 525 
1.38 900 834 24 1.38 890 825 24 550 540 
1.32 900 834 24 1.3 900 840 24 650 665 
1.27 900 834 24 1.28 890 840 24 1370 1405 

Table 4.3.b. Comparison between actual engine operational conditons (Xa, Speeda, 
Loada, SparkTa) and CO emission levels (AEmi) to estimated engine operational 

conditions (Xa,Speeda, Loadz,SparkTa) and CO emission levels (EEmi). 

Xa Speeda Loada SparkTa Xe Speede Loade SparkTe AEmi 
(%) 

EEmi 

1.43 800 731.88 24 1.44 800 730 24 7.08 7.11 
1.38 800 731.88 24 1.38 810 735 24 7.22 7.15 
1.32 800 731.88 24 1.3 800 735 24 7.67 7.9 
1.27 800 731.88 24 1.28 790 735 24 8.17 8.23 
1.43 900 834 24 1.43 895 825 24 7.1 7.15 
1.38 900 834 24 1.35 805 840 24 7.32 7.35 
1.32 900 834 24 1.31 800 845 24 7.82 7.75 
1.27 900 834 24 1.27 900 830 24 8.37 8.25 

Table 4.3.C. Comparison between actual engine operational conditions (Xa, Speeda, 
Loada,SparkTa) and CO2 emission level (AEmi) to estimated engine operational 

conditions (Xa,Speeda,Loadz,SparkTa) and CO2 emission level (EEmi). 
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Maximal relative errors of 4.87%, 5.02% and 3.96% were obtained after 

comparing EEmissions (estimated emission levels) and AEmissions (actual emission 

levels) in Tables 4.3.a, 4.3.b., and 4.3.c, respectively. As a result, the estimation process 

complied with the demanded goals, thus showing excellent generalization. 

Limited engine operational conditions were present during engine mapping. 

Therefore, the engine load could not be varied in a wide range due to production 

schedules. Additionally, spark timing is generally set and kept at 24 "bTC for all engine 

operational conditions. 

Figure 4.3 shows the developed graphic user interface for emission monitoring 

and control. Engine operating parameters and the resulting emission levels were 

visualized, numerically and graphically. Subscreen A (top) shows the emission levels per 

sample, and subscreen B (below) shows the process of achieving an emission target. The 

user can enter emission type and desired level, and the system automatically starts 

searching the appropriate engine condition according to the pre-selected engine control 

parameters until the target level is reached. In cases where emission targets cannot be 

met, the system generates the closest operational condition to reach the closest emission 

level demanded by the user. Additionally, GUI includes datasheets where the user can 

manually input the engine and emission data. 



Figure 4.3. Graphic user interface (GUI) for emission monitoring and control 
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CHAPTER V: SYSTEM INTEGRATION 

5. Integration of the neural network system for estimation and control of gas 

emissions with an existing engine management 

The final goal of this project was to investigate and propose a methodology to 

integrate the developed emission estimation and control system with the existing engine 

management system, REMVue, provided by R E M Technology Inc. 

Integration of the system is considered a very important step, because it will allow 

REMVue operators to not only efficiently monitor and control the engine performance, 

but also to perform on-line emission monitoring and open-loop control without the use of 

any external sampling equipment. Furthermore, description of the REMVue system is 

provided so that a clearer concept for the integration phase can be outlined. 

On the other hand, complete system integration with the REMVue system is not 

pursued, since the present system could be interfaced with any existing engine 

management system such as Programmable Logic Controllers (PLC), Distributed Control 

Systems (DCS) and some standard or customized data acquisition systems, so that a 

stand-alone application can originate from the proposed system. Therefore, description of 

building a stand-alone application is presented in order to explain the feasibility of 

integration. 

5.1.1. Engine management system 

The engine management system REMVue (REM Technology, Port Coquitlam, 

BC) can be defined as a system capable of effectively monitoring and controlling key 
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engine and compressor parameters using a unique air-fuel ratio control and optimization, 

on-line diagnostics and safety shutdown control system in a single package [42]. 

Its improved operating performance results in remarkable benefits in terms of 

reduction of fuel consumption with optimized horsepower, reduction of engine emissions, 

and minimal maintenance costs. In addition, the system can be configured to interoperate 

in conjunction with other hardware or software systems. 

A. R E M V u e software 

The REMVue system consists of a software, which operates on 586 I B M 133-

MHz processor, and computer hardware which contains main computer board, and 

additional 32 Mbytes R A M . The main computer board has an Ethernet port, 2 serial ports 

and connectors for monitor, parallel port, and keyboard. Additional cards provide extra 

serial ports, modem, non-volatile memory (NVM), analog to digital (A/D) converters for 

the process and diagnostics input signals, and one or more digital to analog (D/A) output 

cards. An external watchdog verifies the operation of the computer. 

N V M retains data without electrical power, whereas data stored on R A M is lost 

when the power is turned off. In the REMVue system the N V M is in the form of flash 

memory PCMCIA card (often referred to as flash disk), which is removable. 

The flash disk contains R O M BIOS, the QNX operating system, the REMVue 

embedded software, configuration data, and data stored by the REMVue software during 

its normal operation. Figure 6.1 presents a block diagram of the REMVue software 

structure. 
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Figure 5.1. Block diagram of the REMVue software system 

The configuration data is usually generated on a separate computer (PCx) and 

then is transferred to the REMVue using one of the communication links. The embedded 

software uses Configuration Manager software, which is responsible for obtaining the 

desired input data and performing the action specified in the configuration data. 

When the REMVue computer is turned on, it uses the R O M BIOS information to 

start (boot-up). This loads the operating system and the embedded software from the flash 

disk and automatically starts the REMVue embedded software. 

B. Operating system 

The operating system is the interface between the REMVue software and the 

computer hardware. The REMVue uses the QNX real-time software [42], which is 
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responsible for scheduling various software tasks (e.g., send data to a specific port). Each 

software task within the REMVue embedded software has a priority rank, so that tasks 

with high priority can be performed before tasks with a low priority. In addition, tasks 

can be interrupted, while another task is processed. This feature ensures that the computer 

does not halt other tasks when any particular task awaits a response. 

The QNX operating system has been widely used on time-critical systems for 

over 30 years [42], and has proven to be a reliable platform for the REMVue software. 

C. R E M V u e Embedded Software 

The REMVue embedded software performs the following main tasks: (1) 

Collection of analog process data from the A/D converter card; (2) Collection of analog 

diagnostic data from the A/D converter card; (3) Collection of inputs (e.g. contact 

openings/closures) from the digital input card; (4) Placing the input data on the assigned 

registers; (5) Calculation of results using the diagnostic data blocks; (6) Performing 

ladder logic sequences; (7) Sending outputs to the D/A card; (8) Sending outputs to the 

digital outputs (energize or de-energize relays); (9) Storing data on the flash disk; (10) 

Recalling data from the flash disk; (11) Sending data to serial ports; (12) Receiving data 

from serial ports; (13) Operating the Ethernet port; (14) Operating the modem, if 

installed; (15) Performing Proportional-Integral-Derivative (PID) calculations; (16) 

Updating the watchdog timer, and (17) various other tasks. 

Analog process data (e.g., intake manifold temperature, atmospheric pressure) is 

collected by one A /D card, while the diagnostic data (e.g., dynamic cylinder pressures) is 

collected by separate A/D card. 
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Analog process data is collected in a channel by channel format. When the 

REMVue software requests a process analog input, the input channel is selected (a 

multiplexer is switched to the desired channel), one or more analog-to-digital conversions 

occur, and the results are averaged. Following a scaling to engineering units, the result is 

stored in an assigned register. The collection time required is normally less than 1 ms. 

Analog diagnostic data must be collected in a continuous manner (no 

interruptions). The REMVue uses a proprietary method to ensure the diagnostic data is 

collected without affecting the operation of the other tasks being scheduled by the 

operating system. Typical diagnostic data includes cylinder pressure or vibration signal 

for a minimum of one full revolution. This data is acquired at 25,000 samples per second 

[42]. 

The REMVue embedded software incorporates several function blocks (process 

and diagnostic data blocks) which contain constants and equations that are used to 

calculate some parameters using analog input data located in the assigned registers. These 

blocks are created on a personal computer using C code using Configuration Manager 

software [42], and are stored in a project file database to be compiled and then transferred 

to the REMVue embedded software (See section 6.6.1(E)). 

D. Registers and Coils 

The REMVue software uses registers and coils extensively. Registers and coils 

refer to software locations where numeric or digital data may be stored [42]. 

Data contained in registers is used in ladder logic functions, for receiving analog 

input data, for providing analog data for outputs, and for interfacing with external 

devices. 
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A coil is a name for a bit. A coil can be "on" (bit=l) or "off (bit=0). Coils contain 

information used in the ladder logic, provide a storage location for digital inputs, location 

for digital output data, and for interfacing with external devices. 

The Configuration Manager software allows the user to attach a description to 

registers and coils, thus aiding in the interfacing of other devices and in constructing the 

ladder logic. 

E. Configuration data 

The embedded REMVue software needs configuration data to be able to perform 

the desired tasks. Without the configuration data, the software will not perform any 

useful monitoring, control, communication or diagnostic tasks. 

The configuration data includes: (1) Input and output card existence and number 

of channels; (2) Other hardware information such as serial channels, N V M size, and 

modem presence; (3) Description of the I/O channels; (4) Description of coils and 

registers; (5) Engine name and identification; (7) Engine specifications used in 

calculations; (8) Specification of calculations to be performed; (9) Creation of the 

sequence logic; (10) Set-up of the PID loops; (11) Specification of data to be stored on 

the N V M and frequency of storage; (12) Specification of alarm levels, and (13) Set-up of 

Modbus (serial protocol) communications to other devices. 

As mentioned before, the configuration is created on a personal computer (PCx), 

and the data is stored in a Project File database. When the user has completed a 

configuration, a compilation step is required on the user computer where the information 

in the Project File database is converted to a format that can be used by the embedded 

software. The formatted information consists of several files known as system files. To 
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install a new configuration on the REMVue, these system files must be downloaded to 

the REMVue via one of the communication ports (serial, modem or Ethernet). Ethernet is 

generally recommended because of the higher transfer speed. This Project File, which is 

stored in N V M , can be up-loaded at a later time from the REMVue to the Configuration 

Manager or to other software that needs the database information. 

F. ASCII Files 

ASCII files can be edited using a normal text editor. They can be read directly 

into M A T L A B using the load function which reads the content of an ASCII file into a 

variable with the same name as the file (without the extension). If the ASCII data file has 

m lines with n numerical values on each line, the result is an m-by-n numerical array. 

In addition, alternate value delimiters can be specified using the dlmread 

function. A delimiter is any character that separates the values within the ASCII file (e.g., 

semicolon). [Using M A T L A B , Version 5, The Mathworks Inc., Natik, M A , U.S.A., 

1998], 

5.1.2. Building stand-alone external applications using MATLAB 

A. MEX Files 

The M A T L A B Engine Library is a set of functions that allows the users to call 

M A T L A B from their own programs, thereby employing M A T L A B as a computational 

engine. M A T L A B Engine programs are C or Fortran programs, which communicate with 

a separate M A T L A B process via pipes (in UNIX), Dynamic Data Exchange (in MS-

Windows and M A T L A B 4.x), or ActiveX (in MS-Windows and M A T L A B 5.x). There is 

a library of functions provided with M A T L A B , which allows the users to start and end 

the M A T L A B process, send data to and from M A T L A B , and send commands to be 
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processed in M A T L A B [Matlab Compiler, Version 1.2, The Mathworks Inc., Natik, M A , 

U.S.A., 1998]. 

M A T L A B MEX-fdes are dynamically linked subroutines that M A T L A B 

interpreter can automatically load and execute. MEX-fdes are C or Fortran subroutines 

which, when compiled, can be called from M A T L A B just like M-fdes and built-in 

functions. The advantages of MEX-functions are running speed, the ability to incorporate 

already written C and Fortran code into M A T L A B , and the functionality to access 

hardware. 

B . M A T L A B Compiler 

M A T L A B provides a toolbox, which allows for the generation of stand-alone 

external applications. Stand-alone external applications run without the help of the 

M A T L A B interpreter. In fact, they can run even if M A T L A B is not installed on the 

system that users wish to use (e.g., UNIX system). 

M A T L A B Compiler can generate the following source codes: (1) C source code 

for building M E X fdes; (2) C or C++ code for combining with other modules to form 

stand-alone external applications. Even though stand-alone external applications do not 

need M A T L A B at runtime, M A T L A B Compiler does require the C/C++ Math libraries to 

create applications that rely on the core math and data analysis capabilities of M A T L A B . 

M A T L A B compiler can be installed on UNIX, Macintosh, Windows 95 or 

Windows NT systems. System requirements, installation and configuration procedures 

for the M A T L A B Compiler on these operating systems are well described. 

Figure 6.2 illustrates the various ways a user can utilize M A T L A B Compiler. The 

shaded blocks represent user-generated code; the unshaded blocks represent Compiler-
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generated code, and the remaining blocks (drop shadow) represent Mathworks or other 

vendor's tools. 

User C Code M - F i l e 

M A T L A B C 
Math Library 

C C o d e 

Stand-alone 
C Program 

M A T L A B Compiler 

C M E X Code 

C Compiler 

M A T L A B 
M E X - F i l e 

User C++ Code 

C++ Code 

Stand-alone 
C++ Program 

M A T L A B C++ 
Math Library 

Figure 5.2. MATLAB Compiler applications 

M A T L A B M-files are ASCII text files that anyone can view and modify. M E X -

files are binary files. Therefore, shipping MEX-files or stand-alone applications instead 

of M-files hides proprietary algorithms and prevents modification of the corresponding 

M-files. In addition, compiled C or C++ code speeds up M-file functions that contain 

loops, variables that the M A T L A B compiler views as integers or real scalars, and 

operates on real data only [Matlab C++ Math Library, Version 1.2, The Mathworks Inc., 

Natik, M A , U.S.A., 1998]. 
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C. Full Integration by Converting Neural Network M-files into C Program 

As described in previous chapters, the neural network system for emission 

monitoring and control was developed using the M A T L A B Neural Network toolbox. 

M A T L A B compiler supports M-files generated using this toolbox, and therefore it is 

completely feasible to generate C source code from the developed M-files as required for 

the Project Profile management system. 

In general, two blocks must be compiled to integrate them into the REMVue 

embedded software. The first block contains the designed neural network system for 

emission estimation. The second block contains the neural networks that represent 

emission control modules. Each block contains hundreds of weights and biases, plus the 

corresponding transfer functions for each neural network associated with each module. 

Sequence of calculations can be performed by specifying them in the Configuration 

Manager software, and can be stored in the Project File database. 

As a result, the user can be capable of easily integrating different emission 

estimation and control modules into the existing REMVue system. Furthermore, due to 

the modularity of the neural network P E M system, new modules can be added to the 

existing system at any time without major computational effort. In other words, if an 

additional emission (e.g., CO2) is to be added to the system, the neural network P E M 

system would allow the user to add it, generate new neural networks related to the 

estimation and control of this new emission, and finally integrate the new modules to the 

REMVue system. 
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Figure 6.3 summarizes the overall process to build and integrate the neural 

network P E M system into the REMVue system, so that online emission estimation and 

control could be incorporated as new features offered by the REMVue system. 

(1) Engine mapping: parameters 
(control and monitoring), and emission 

levels recording 

4 
(2) Enter samples into the NN P E M 

system for training and validation 

4 
(3)Generation of the neural network modules encompassing the overall system for emission 

estimation and control 

(4) Compilation: Generation of C code 

(5) Optimization/customization of C code 

4 
(6) Generated C code (compiled neural network modules) transferred into the 

Project File (location: PCx) 

4 
(7) Define internal tasks: R E M V u e 
Configuration Data (location: PCx) 

I 
(8) Generated C code + Configuration data from P C x , transferred to the 

R E M V u e system (flash disk) via Ethernet (TCP/IP protocol) 

Figure 5.3. General steps for the integraion of the neural network-based system with the 
REMVue 

Configuration data can define what input parameters (lambda factor, speed, load 

or power, average exhaust temperatures, etc.) the new modules require in order to 

estimate the emission levels, so that information stored in specific registers can be 
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accessed and mapped into these new modules. The output results (NO, CO, HC, C O 2 ) can 

be stored in pre-defined registers, and then transferred into the R A M or N V M of the 

system. Due to the fact that emission regulations do not specify the sampling frequency, 

it is recommended to average and store emission levels at least once per second. This 

sampling frequency can be specified in the REMVue configuration data module. 

The decision to define the on-line estimation and control process as a low priority 

REMVue task was made, so that the engine-compressor user would have the option to 

visualize the emission levels. However, information regarding daily emission level 

generation should be continuously recorded, stored and transferred periodically to a 

personal computer so that complete emission records can be analyzed to describe the 

machine performance, and to comply with the existing emission regulations related to 

continuous emission monitoring. 

Alarm levels can be defined warning the engine operator when the engine is 

generating emission levels outside the pre-defined allowable limits. 

On the other hand, the open-loop parameter control could be activated as a very 

helpful feature at the moment of changing engine operational conditions. Thus, the user 

can notice immediately how the new variations might affect the emission performance, 

and how the engine could effectively be tuned in order to keep the engine operating under 

the desired emission boundaries. 

D. Partial Integration between REMVue and external PC 

An alternate approach for system integration can be based on transferring ASCII 

data files from the REMVue system to an external PC. The idea is to configure the 

REMVue system so that ASCII data files containing data from various engine control and 
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monitoring parameters could be transferred to an external PC running the neural network 

system using the M A T L A B workspace. As mentioned before, ASCII data file can be 

loaded into the M A T L A B workspace using a simple command (See Section 5.1.1 (F)). 

The REMVue system has the capability of generating ASCII data files and sending them 

to a specific hardware using TCP/IP protocol. Thus, complete independence can be 

obtained, and the neural network system can be implemented as a stand-alone 

application, which can be utilized not only by the REMVue system, but by other engine 

management systems as well. 

Feasibility of integrating the REMVue system with an external PC that could run 

the emission estimation and control system in real-time overcomes the needs for joint of 

the developed neural network estimation and control system and the existing engine 

management system (See Section 5.1.2 (C)) 
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A Parametric Emission Monitoring System (PEMS) can be a potential candidate 

to replace existing and traditional Continuous Emission Monitoring Systems (CEMS) for 

Spark Ignition Stationary Internal Combustion (SISIC) engines. After an extensive 

literature and patent survey, the decision to build a computer P E M model was pursued 

using two approaches: multidimensional arrays and artificial neural networks. Limitations 

were encountered when evaluating real-time implementation requirements for the first 

approach. 

The PEMS based on multidimensional arrays could be implemented as an off-line 

solution for representing a specific engine behavior and its relationship with emission 

generation. Thus, this technique provided a good solution to obtain the so-called engine 

emission signature, facilitating engine operators to understand how emission levels vary 

at different engine operational conditions. Engine mapping provided the necessary data to 

build multidimensional arrays that virtually contained all possible engine operational 

conditions and corresponding emission levels in a pre-established operational range. 

Real-time implementation was evaluated and considered impractical due to the amount of 

data that these arrays needed to contain to achieve the required system resolution. 

A second P E M model was developed using artificial neural networks. The model 

proved that artificial intelligence could be applied to solve this particular problem. Three 

learning algorithms were used to train the different neural networks encompassing the 

overall system, and demonstrated effective training. Comparison between the different 

learning algorithms was pursued and showed that the Bayesian Regularization method 
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presented the best performance. A Growing Network technique was implemented in 

order to find the best size for the different feedforward neural networks in charge of 

estimating the emissions of greatest concern generated from SISIC engines. In general, 

all neural networks resulted in mid-size networks containing from two to three layers, 

each layer presenting no more than thirty neurons. In the present study, the estimation of 

N O x , CO, HC and C O 2 was achieved by constructing, training, and validating four 

different neural networks, which finally were interconnected to work in parallel for 

monitoring purposes. The emission estimation depended on six engine parameters, four 

control engine parameters (Lambda factor, Speed, Load, and Spark Timing) and two 

monitoring parameters (Right Bank Temperature and Left Bank Temperature). 

An Emission Control System was developed using a similar methodology to the 

one followed to build the neural network-based PEMS. The system aimed at estimating 

optimal engine conditions according to a desired emission level. Engine parameters tuned 

by the system were Lambda factor, Speed, Load and Spark Timing. 

A preliminary study showed that the neural network P E M and control system can 

be implemented in real-time, or integrated with the existing engine management system 

REMVue (REM Technology, Port Coquitlam, Canada). 

On the other hand, some facts must be addressed before closing this section: 

• During the overall study, emission levels were recorded using the same gas 

analyzer so that results could be consistent at all times. However, the PEMS 

was limited at the measurements generated by the same analyzer, believing 

that its conditions satisfied environmental regulations. Third party personnel 

pursued calibration of the device each time a data collection was scheduled, 
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but frequently problems arose due to erroneous readings, probably caused by 

internal toxic sensor/cells faults. 

For future tests or engine data collection, a detailed protocol for analyzer 

calibration must be developed and conducted by the same person in charge of 

collecting the data needed to build the multidimensional arrays or train the 

neural networks. 

• The developed PEMS could only model emission levels from SISIC engines 

in a specific engine operational range. Due to production schedules and 

additional restrictions, engine data collection was limited, but fortunately 

sufficient to demonstrate the feasibility of using both multidimensional arrays 

and artificial neural networks for emission estimation and control. 

• The developed P E M systems depended on selected control and monitoring 

parameters provided by the engine management system (REMVue). In the 

event of a corrupted value of a certain parameter provided by the REMVue 

system, the PEMS will continuously estimate the emissions based on a 

corrupted signal, therefore, generating false emission levels. Likewise, this 

condition will directly affect the right control of the engine operation to 

comply with a desired emission level. Future work is necessary to implement 

a sensor validation module capable of detecting corrupted signals to eliminate 

the possibility of emission monitoring corruption. 

• Due to limited engine data collection, additional parameters that might affect 

emission levels were assumed constant. These parameters are atmospheric 

temperature, pressure and humidity [1]. 
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• Additional research is suggested to analyze how the developed PEM systems 

could be extended to units with similar mechanical characteristics (same 

model) but located at different sites. In other words, it would be interesting to 

verify whether a unique P E M system could be develop for a specific engine 

model. Thus, the economical benefits of a PEMS can be remarkable extended 

over traditional CEMS. 
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BACKPROPAGATION LEARNING ALGORITHMS 

USING NEURAL NETWORK TOOLBOX 

MATLAB 5.3.1 

The neural network-based emission monitoring and control system was designed, 

modelled, and tested using three backpropagation learning algorithms (Quasi-Newton, 

Levenberg Maquardt, and Bayesian Regularization), which were implemented using the 

Neural Network toolbox of M A T L A B 5.3.0. 

A detailed description of the implementation of these learning algorithms is 

provided. 

A. l . TRAINBFG BFGS Quasi-Newton backpropagation. 

Syntax 

[net,tr] = trainbfg(net,Pd,Tl,Ai,Q,TS,VV) 

info = trainbfg(code) 

Description 

TRAINBFG is a network training function that updates weight and bias values according 

to the BFGS quasi-Newton method. 

TRAINBFG(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs, 

NET - Neural network. 

Pd - Delayed input vectors. 

Tl - Layer target vectors. 

Ai - Initial input delay conditions. 

Q - Batch size. 
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TS - Time steps. 

VV - Either empty matrix [] or structure of validation vectors. 

TV - Either empty matrix [] or structure of test vectors, 

and returns, 

NET - Trained network. 

TR - Training record of various values over each epoch: 

TR.epoch - Epoch number. 

TR.perf - Training performance. 

TR.vperf - Validation performance. 

TR.tperf - Test performance. 

Training occurs according to the TRAINBFG's training parameters, shown here with 

their default values: 

net.trainParam.epochs 100 

net.trainParam.show 25 

net.trainParam.goal 0 

net.trainParam.time inf 

net. trainParam. min_grad le-6 

net.trainParam.max_fail 5 

net.trainParam.searchFcn 'srchch 

Maximum number of epochs to train 

Epochs between showing progress 

Performance goal 

Maximum time to train in seconds 

Minimum performance gradient 

Maximum validation failures 

' Name of line search routine to use. 

Parameters related to line search methods (not all used for all methods): 

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search, 

net.trainParam.alpha 0.001 Scale factor which determines sufficient reduction in perf. 

net.trainParam.beta 0.1 Scale factor which determines sufficiently large step size. 

net.trainParam.delta 0.01 Initial step size in interval location step. 

net.trainParam.gama 0.1 Parameter to avoid small reductions in performance 

net.trainParam.low_lim 0.1 Lower limit on change in step size. 

net.trainParam.up_lim 0.5 Upper limit on change in step size. 

net.trainParam.maxstep 100 Maximum step length. 

net.trainParam.minstep 1.0e-6 Minimum step length. 



136 

net.trainParam.bmax 26 Maximum step size. 

Dimensions for these variables are: 

Pd - No x Ni xTS cell array, each element P{i,j,ts} is a Dij x Q matrix. 

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix. 

Ai - N l x LD cell array, each element Ai{i,k} is an Si x Q matrix. 

Where 

Ni = net.numlnputs 

Nl = net.numLayers 

LD = net.numLayerDelays 

Ri = net.inputs{i}.size 

Si = net.layers{i}.size 

Vi = net.targets {i}.size 

Dij = Ri * length(net. input Weights {i,j}. delays) 

If VV is not [], it must be a structure of validation vectors, 

V V . P D - Validation delayed inputs. 

VV.T1 - Validation layer targets. 

V V . A i - Validation initial input conditions. 

V V . Q - Validation batch size. 

VV.TS - Validation time steps, 

which is used to stop training early if the network performance on the validation vectors 

fails to improve or remains the same for M A X _ F A I L epochs in a row. 

If TV is not [], it must be a structure of validation vectors, 

TV.PD - Validation delayed inputs. 

TV.T1 - Validation layer targets. 

T V . A i - Validation initial input conditions. 

TV.Q - Validation batch size. 

TV.TS - Validation time steps, 

which is used to test the generalization capability of the trained network. 
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TRAINBFG(CODE) returns useful information for each CODE string: 

'pnames' - Names of training parameters, 

'pdefaults' - Default training parameters. 

Network Use 

You can create a standard network that uses TRAINBFG with NEWFF, NEWCF, or 

N E W E L M . 

To prepare a custom network to be trained with TRAINBFG: 

1) Set NET.trainFcn to 'trainbfg'. 

This will set NET.trainParam to TRAINBFG's default parameters. 

2) Set NET.trainParam properties to desired valuesA 

In either case, calling TRAIN with the resulting network will train the network with 

TRAINBFG. 

Algorithm 

TRAINBFG can train any network as long as its weight, net input, and transfer functions 

have derivative functions. 

Backpropagation is used to calculate derivatives of performance PERF with respect to the 

weight and bias variables X. Each variable is adjusted according to the following: 

X = X + a*dX; 

where dX is the search direction. The parameter a is selected to minimize the 

performance along the search direction. The line search function searchFcn is used to 

locate the minimum point. 

The first search direction is the negative of the gradient of performance. 

In succeeding iterations the search direction is computed according to the following 

formula: 

dX = -H\gX; 
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where gX is the gradient and H is an approximate Hessian matrix. 

Training stops when any of these conditions occur: 

1) The maximum number of EPOCHS (repetitions) is reached. 

2) The maximum amount of TIME has been exceeded. 

3) Performance has been minimized to the GOAL. 

4) The performance gradient falls below MINGRAD. 

5) Validation performance has increased more than M A X _ F A I L times 

since the last time it decreased (when using validation). 

A.2. T R A I N L M Levenberg-Marquardt backpropagation. 

Syntax 

[net,tr] = trainlm(net,Pd,Tl,Ai,Q,TS,VV) 

info = trainlm(code) 

Description 

T R A I N L M is a network training function that updates weight and bias values according 

to Levenberg-Marquardt optimization. 

TRAINLM(NET,Pd ; Tl,Ai,Q,TS,VV) takes these inputs, 

NET - Neural network. 

Pd - Delayed input vectors. 

Tl - Layer target vectors. 

Ai - Initial input delay conditions. 

Q - Batch size. 

TS - Time steps. 

VV - Either empty matrix [] or structure of validation vectors, 

and returns, 
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NET - Trained network. 

TR - Training record of various values over each epoch: 

TR.epoch - Epoch number. 

TR.perf - Training performance. 

TR.vperf - Validation performance. 

TR.tperf - Test performance. 

TR.mu - Adaptive mu value. 

Training occurs according to the TRAINLM's training parameters shown here with their 

default values: 

net.trainParam.epochs 10 Maximum number of epochs to train 

net.trainParam.goal 0 Performance goal 

net.trainParam.lr 0.01 Learning rate 

net.trainParam.max_fail 5 Maximum validation failures 

net.trainParam.mem_reduc 1 Factor to use for memory/speed trade off. 

net.trainParam.min_grad le-10 Minimum performance gradient 

net.trainParam.show 25 Epochs between showing progress 

net.trainParam.time inf Maximum time to train in seconds 

Dimensions for these variables are: 

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix. 

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix. 

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix. 

Where 

Ni = net.numlnputs 

Nl = net.numLayers 

LD = net.numLayerDelays 

Ri = net.inputs{i}.size 

Si = net. layers {i}. size 

Vi = net.targets{i}.size 

Dij =Ri * length(net.inputWeights{i,j}.delays) 

If VV is not [], it must be a structure of validation vectors, 
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V V . P D - Validation delayed inputs. 

VV.T1 - Validation layer targets. 

V V . A i - Validation initial input conditions. 

V V . Q - Validation batch size. 

VV.TS - Validation time steps, 

which is used to stop training early if the network performance on the validation vectors 

fails to improve or remains the same for M A X _ F A I L epochs in a row. 

TRAINLM(CODE) return useful information for each CODE string: 

'pnames' - Names of training parameters. 

'pdefaults' - Default training parameters. 

Network Use 

You can create a standard network that uses T R A I N L M with NEWFF, NEWCF, or 

N E W E L M . 

To prepare a custom network to be trained with TRAINLM: 

1) Set NET.trainFcn to 'trainlm'. 

This will set NET.trainParam to TRAINLM's default parameters. 

2) Set NET.trainParam properties to desired values. 

In either case, calling TRAIN with the resulting network will train the network with 

T R A I N L M . 

Algorithm 

T R A I N L M can train any network as long as its weight, net input, and transfer functions 

have derivative functions. 

Backpropagation is used to calculate the Jacobian jX of performance PERF with respect 

to the weight and bias variables X. Each variable is adjusted according to Levenberg-

Marquardt, 

jj =jX * j X 

j e = j X * E 

dX = -GJ+I*mu)\je 
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where E is all errors and I is the identity matrix. 

The adaptive value MU is increased by M L M N C until the change above results in a 

reduced performance value. The change is then made to the network and mu is decreased 

by MU_DEC. 

The parameter M E M _ R E D U C indicates how to use memory and speed to calculate the 

Jacobian j X . If M E M _ R E D U C is 1, then T R A I N L M runs the fastest, but can require a 

lot of memory. Increasing M E M _ R E D U C to 2, cuts some of the memory required by a 

factor of two, but slows T R A I N L M somewhat. Higher values continue to decrease 

theamount of memory needed and increase training times. 

Training stops when any of these conditions occurs: 

1) The maximum number of EPOCHS (repetitions) is reached. 

2) The maximum amount of TIME has been exceeded. 

3) Performance has been minimized to the GOAL. 

4) The performance gradient falls below MINGRAD. 

5) M U exceeds M U _ M A X . 

6) Validation performance has increased more than M A X _ F A I L times 

since the last time it decreased (when using validation). 

A.3. T R A I N B R Bayesian Regulation backpropagation. 

Syntax 

[net,tr] = trainbr(net,Pd,Tl,Ai,Q,TS,VV) 

info = trainbr(code) 

Description 

TRAINBR is a network training function that updates the weight and bias values 

according to Levenberg-Marquardt optimization. It minimizes a combination of squared 

errors and weights and, then determines the correct combination so as to produce a 

network which generalizes well. The process is called Bayesian regularization. 
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TRAINBR(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs, 

NET - Neural network. 

Pd - Delayed input vectors. 

Tl - Layer target vectors. 

Ai - Initial input delay conditions. 

Q - Batch size. 

TS - Time steps. 

VV - Either empty matrix [] or structure of validation vectors, 

and returns, 

NET - Trained network. 

TR - Training record of various values over each epoch: 

TR.epoch - Epoch number. 

TR.perf - Training performance. 

TR.vperf - Validation performance. 

TR.tperf - Test performance. 

TR.mu - Adaptive mu value. 

Training occurs according to the TRAINLM's training parameters, shown here with their 

default values: 

net.trainParam.epochs 100 Maximum number of epochs to train 

net.trainParam.goal 0 Performance goal 

net.trainParam.mu 0.005 Marquardt adjustment parameter 

net.trainParam.mu_dec 0.1 Decrease factor for mu 

net.trainParam.mu_inc 10 Increase factor for mu 

net.trainParam.mu_max le-10 Maximum value for mu 

net.trainParam.max_fail 5 Maximum validation failures 

net.trainParam.mem_reduc 1 Factor to use for memory/speed trade off. 

net.trainParam.min_grad le-10 Minimum performance gradient 

net.trainParam.show 25 Epochs between showing progress 

net.trainParam.time inf Maximum time to train in seconds 
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Dimensions for these variables are: 

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix. 

Tl - Nl x TS cell array, each element P{i.ts} is a Vi x Q matrix. 

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix. 

Where 

Ni = net.numlnputs 

Nl = net.numLayers 

LD = net.numLayerDelays 

Ri = net.inputs{i}.size 

Si = net.layers {i}.size 

Vi = net. targets(i). size 

Dij = Ri * length(net.input Weights {i,j}.delays) 

If VV is not [], it must be a structure of validation vectors, 

V V . P D - Validation delayed inputs. 

VV.T1 - Validation layer targets. 

V V . A i - Validation initial input conditions. 

V V . Q - Validation batch size. 

VV.TS - Validation time steps, 

which is normally used to stop training early if the network performance on the validation 

vectors fails to improve or remains the same for M A X _ F A I L epochs in a row. This early 

stopping is not used for TRAINBR, but the validation performance is computed for 

analysis purposes if VV is not []. 

TRALNBR(CODE) returns useful information for each CODE string: 

'pnames' - Names of training parameters, 

'pdefaults' - Default training parameters. 
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Network Use 

You can create a standard network that uses TRAINBR with NEWFF. NEWCF, or 

N E W E L M . 

To prepare a custom network to be trained with TRAFNBR: 

1) Set NET.trainFcn to 'trainlm'. 

This will set NET.trainParam to TRAINBR's default parameters. 

2) Set NET.trainParam properties to desired values. 

In either case, calling TRAIN with the resulting network will train the network with 

TRAINBR. 

Algorithm 

TRAINBR can train any network as long as its weight, net input, and transfer functions 

have derivative functions. 

Bayesian regularization minimizes a linear combination of squared errors and weights. It 

also modifies the linear combination so that at the end of training the resulting network 

has good generalization qualities. 

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm. 

Backpropagation is used to calculate the Jacobian jX of performance PERF with respect 

to the weight and bias variables X. Each variable is adjusted according to Levenberg-

Marquardt, 

j j = j x * j x 

j e = j X * E 

dX = -Gj+I*mu) \je 

where E is all errors and I is the identity matrix. 

The adaptive value MU is increased by MU_LNC until the change shown above results in 

a reduced performance value. The change is then made to the network and mu is 

decreased by MU_DEC. 

The parameter M E M _ R E D U C indicates how to use memory and speed to calculate the 

Jacobian j X . If M E M _ R E D U C is 1, then T R A I N L M runs the fastest, but can require a 

lot of memory. Increasing M E M _ R E D U C to 2 cuts some of the memory required by a 
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factor of two, but slows T R A I N L M somewhat. Higher values continue to decrease the 

amount of memory needed and increase the training times. 

Training stops when any of these conditions occur: 

1) The maximum number of EPOCHS (repetitions) is reached. 

2) The maximum amount of TIME has been exceeded. 

3) Performance has been minimized to the GOAL. 

4) The performance gradient falls below MINGRAD. 

5) M U exceeds M U _ M A X . 

6) Validation performance has increase more than M A X _ F A I L times 

since the last time it decreased (when using validation). 
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ENGINE MAPPING PROCEDURE AND EXPERIMENTAL UNCERTAINTY 

This section addresses important aspects related to the experiments carried out to 

obtain the required engine data for implementing and testing the P E M models described 

in the present work. 

B.l. Description of apparatus 

Engine operational data was collected at BP Energy, North Caroline Gas plant in 

September and November, 2000. 

The machine used was a 16-cylinder, natural gas SISIC Waukesha engine, Model 

P9390GSIU, with a rated power of 1800 HP. 

Different emission concentrations were recorded using a sophisticated gas 

analyzer (GA-40T plus, M A D U R , Vienna, Austria). The analyzer consisted of two main 

parts: 1) the actual unit or body, which enclosed different gas cells (e.g., NO, CO) 

analog/digital circuitry, L C D screen, etc., and 2) a heated probe of approximately 3 

meters that was connected to the engine exhaust pipe to take gas samples continuously. 

This analyzer was capable of providing NO, N O 2 , CO, C O 2 , and HC levels. NO, 

N O 2 , and C O 2 concentrations were expressed in parts per million (ppm), while CO and 

HC concentrations were expressed in percentage % (1%= 10,000 ppm). 

The gas analyzer was preliminary calibrated by a third party , who provided a 

certified document indicating that the analyzer presented a calibration error of 

approximately ± 20 ppm for each gas. 
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B. 2. Engine Control and Emission Recording 

The data was cpllected under the supervision of a REMVue specialist; the engine 

operating conditions were changed with the consent of the BP Energy operator. 

The engine was set at different operational conditions using the existing engine 

management system (REMVue system). The system had a Human Machine Interface 

(HMI), which facilitated the variation of the different control parameters (Lambda factor, 

Speed, Load, and Spark Timing) one at a time (e.g., Lambda factor could be set at 

different values while other control parameters remained constant). 

The gas analyzer was connected to the engine exhaust pipe throughout the 

duration of the overall experiment. 

When setting a new operational condition, the engine took approximately from 3 

to 4 minutes to become stable at that specific condition. Therefore, 5 minutes were 

allowed to record: 1) monitoring parameters (such as exhaust temperatures), provided 

that the REMVue system measured and averaged these parameters, and 2) emission 

levels that corresponded to any new engine operational condition, monitored by using the 

gas analyzer mentioned before. 

The engine was mapped according to the following operational ranges: 

Lambda factor (1.2 < X <1.6) 
Speed (750<Speed<l 100 RPM) 

Load (650<Load<1500 HP)* 
Spark timing (18bTC<St<27bTC) 

* Technician working for Spartan Controls L td . 
'Variat ion of the engine load was limited due to production schedules 
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B.3. Uncertainty of experiments 

In the present work, a maximal relative error (MRE) between the emissions 

estimate from the different artificial neural networks (ANN) and the actual emission 

levels from the gas analyzer was calculated, assuming that readings obtained from the 

REMVue system and from the gas analyzer were not corrupted during the collection 

process. However, additional uncertainty could be present due to the fact that every 

measurement has uncertainty, and that some measurements have higher level of 

uncertainty than others. 

Recorded measurements corresponding to the selected control and monitoring 

parameters used to train and validate the A N N encompassing the developed system also 

exhibit some uncertainty. Therefore, when comparing the emissions estimate from the 

A N N to the actual emission levels from the gas analyzer, a problem arises as to how 

much the estimate is erroneous and how much is the actual measurement erroneous. 

Uncertainty can be evaluated by calculating two different errors: 

1) Random error: When measuring and recording a physical quantity (e.g., gas 

pressure), the REMVue system reports this quantity with some variation that is 

typically expressed as a deviated percentage of its mean value. 

2) Systematic error: A recorded measurement may be erroneous due to a calibration 

error or a similar error that is unknown, but systematic (e.g., a pressure diaphragm 

may respond to pressure in a nonlinear manner which the measurement device 

ignores). The magnitude of this systematic error may be determined by instrument 

recalibration. 
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Therefore, the problem of the uncertainty of the developed neural network system 

can be defined as the error in the A N N emissions estimate due to random errors and to 

errors in assigning the various weights and biases even if there were no errors in the 

measurements. 

A detailed study of different errors that might affect the overall error in the A N N 

emissions estimate would be beneficial. Uncertain measurements that should be taken 

into account are the physical quantities related to the parameters used to train and validate 

the different A N N (e.g., Lambda factor, Speed, Load, Spark timing, and Exhaust 

temperatures). 




