

1

A Hybrid Genetic Algorithm for the Dynamic Plant Layout Problem

Jaydeep Balakrishnan
1

Chun Hung Cheng
2

Daniel G Conway
3

Chun Ming Lau
2

1

Operations Management Area

 Haskayne School of Business

 University of Calgary

 Calgary, Alberta T2N 1N4

 Canada

 Ph: (403) 220 7844 Fax: (403) 284 7902 Email: Jaydeep.Balakrishnan@haskayne.ucalgary.ca

2

Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong

 Shatin, Hong Kong

 PRC

 Ph: +852 2609 8322 Fax: +852 2603 5505 Email: chcheng@se.cuhk.edu.hk

3

Department of Management and Administrative Sciences

 Mendoza College of Business

 University of Notre Dame

 Notre Dame, IN 46556-5646

 USA

 Ph: (219) 631 4772 Email: dan.g.conway.35@nd.edu

Please direct all correspondence to the first author.

Published in the International Journal of Production Economics, 86, 2, 2003, pp 107-120.

2

A Hybrid Genetic Algorithm for the Dynamic Plant Layout Problem

Abstract

The dynamic plant layout problem (DPLP) deals with the design of multi-period layout plans.

Although an optimal solution method based on dynamic programming is available, it is not

practical for large DPLPs. It has recently been shown that heuristics based on genetic algorithms

can solve large DPLPs. In this research, we extend and improve the use of genetic algorithms by

creating a hybrid genetic algorithm. A computational study is carried out to compare the

proposed algorithm with the existing genetic algorithms and a recent simulated annealing

algorithm. The study shows that the proposed algorithm is effective. Thus it may be useful in

solving the larger problems.

Key words: dynamic layout, genetic algorithms, dynamic programming, pair-wise exchange.

3

A Hybrid Genetic Algorithm for the Dynamic Plant Layout Problem

1. Introduction

This paper investigates the layout problem based on multi-period planning horizons. During this

horizon, the material handling flow between the different departments in the layout may change.

This necessitates a more sophisticated approach than the static plant layout problem (SPLP)

approach. The dynamic plant layout problem (DPLP) extends the SPLP by considering the changes

in material handling flow over multiple periods and the costs of rearranging the layout.

The importance of good layout planning can be gauged from the fact that over $250 billion is

spent in the U.S. alone on layouts that require planning and re-planning and that 20% to 50% of

the total operating expenses within manufacturing can be attributed to material handling

(Tompkins et al., 1996).

 In an environment where material handling flow does not change over a long time, a static

layout analysis would be sufficient. However, in today's market based and dynamic environment,

such flow can change quickly necessitating dynamic layout analysis. For example, 75% of

Hewlett Packard’s product models are less than three years old and this percentage is increasing

(Hammer, 1996). Any change in product mix can result in changes in flow and thus affect

layouts. The next section explains the dynamic problem through an example adopted from

Rosenblatt (1986).

4

2. The Dynamic Plant Layout Problem

The dynamic problem involves selecting a static layout for each period and then deciding whether

to change to a different layout in the next period. An example of a DPLP is shown in Table A2-1 of

Appendix 2. This table shows the material flow for a six department problem over five periods. As

seen the relative material flow between departments changes over the planning horizon. For

example, in period 1 there is considerable material flow into departments 3 and 4 relative to the

other departments. However in period 5, it is departments 1 and 2 that have the major material in-

flow. The fixed cost for shifting each department is given at the bottom of Table A2-1.

 If the shifting costs are relatively low, we would tend to shift or change the layout configuration

more often to suit the changed material handling flow. The reverse is true for high shifting costs

where we would avoid relocations to avoid the associated shifting or rearrangement costs. Table

A2-2 shows the optimal dynamic solution for problem in Table A2-1 in the form of a layout string

where each number denotes a department in the layout. Table A2-3 shows what the actual layout

would look like for layout string 246135 in a two row, three column format. The optimal plan is to

use layout 246135 during periods 1 and 2. In period 3 departments 5 and 3 switch location. In

period 4 departments 6 and 4 switch location and finally in period 5, departments 1 and 6 switch

location. In an n department, t period problem, we would have to implicitly or explicitly evaluate

(n!)
t
 layouts to guarantee the optimal solution. n! is the number of possible layout combinations in

each period. So, even for a six department problem there are 1.93 10
14

possibilities. Thus optimal

5

solutions cannot be obtained for practical sized problems and heuristics have to be used. A

mathematical formulation for the DPLP is shown below:

P tnlj iXXY

Pt,...,n j,X

Pt,...,n j,X

YAXXdfZ

tilijttijl

n

j

tij

n

i

tij

P n

i

P n

i

n

j

n

k

n

l

tijltijl

n

j

n

k

n

l

kltijttjlikt

,...,2;,...,1,,,

,...,1;11

,...,1;11

s.t.

 +Min

)1(

1

1

1=t 1 2=t 1 1 1 11 1 1

 (1)

 (4)

 (3)

 (2)

where

P : Number of periods in the planning horizon

n : Number of departments in the layout

i,k : Departments in the layout

j,l : Locations in the layout

fik : Flow cost from department i to k

djl : Distance from location j to l

Ytijl : 0,1 variable for shifting i from j to l in period t

Xtij : 0,1 variable for locating department i at location j in period t

Atijl : Cost of shifting from j to l in period t. (Atijj = 0).

 Equation (1) is the sum of the material flow and layout rearrangement costs for the planning

horizon. Equations (2) and (3) state that each department must be located and each location must be

occupied in every period. Equation (4) states that the 0-1 departmental rearrangement variable takes

6

on a value of 1 only if the department shifts its location at the end of a period. The next section

reviews the literature in the DPLP.

3. Previous approaches

Rosenblatt uses dynamic programming (DP) to solve the problem with each layout in each period

being a state and each period a stage. Since this approach is not practical for large problems, he

discusses methods to use DP heuristically. In the heuristic DP method only a few layouts from each

period are included. The easy procedure would be to select the layouts in a period randomly.

However this is not very effective. A better method is to select some of the better quality layouts in

each period to form part of the DP. This gives better solutions though at the cost of additional

computation time. Though the DP will give the optimal solution for the layouts included, since not

all layouts are included, the solution may not be optimal for the original DPLP. One disadvantage

of using only the best layouts in each period is that the best layouts in each period may not be the

best from a multi-period perspective. For example, in the problem shown in Table A2-1, the

optimal static layouts in periods 1 through 5 are 135642, 142536, 153246, 164253, and 326415

respectively. When compared to the dynamic (multi-period) optimal solution in Table A2-2, it is

seen that none of the optimal static layouts form part of the optimal multi-period solution. This is

due to the effect of the department shifting costs.

Other procedures have been proposed that perform better than the heuristic DP methods of

Rosenblatt. Urban (1993) proposes an approach using a steepest-descent pairwise exchange

7

heuristic similar to CRAFT(Armour and Buffa, 1963). Lacksonen and Enscore (1993) investigate

different mathematical programming approaches. Conway and Venkataramanan (1994), and

Balakrishnan and Cheng (2000) make use of genetic algorithms (GA) for the DPLP while Kaku and

Mazzola (1997) use Tabu Search. Research on dynamic layout when the sizes of departments are

unequal have been carried out by among others, Lacksonen (1994), and Montreuil and Venkatadri

(1990). Formulations and detailed reviews of these and other approaches to the DPLP can be found

in Balakrishnan and Cheng (1998).

More recently, evolutionary approaches (a technique similar to genetic algorithms) have been

proposed by Hirabayashi et al. (1999) for a flexible manufacturing system and by Westkamper

(2002) for unequal department sizes. Baykasoglu and Gindy (2001) have developed a simulated

annealing algorithm (SA) for the DPLP. Using the test problems from Balakrishnan et al., they

showed that their algorithm performed better than the GA’s of Conway and Venkataramanan, and

Balakrishnan and Cheng (2000). The parameter settings in their SA algorithm involve determining

the initial temperature (the probability that in the neighbourhood search, an inferior solution will be

accepted), the rate at which the temperature decreases (the decrease in the acceptance probability of

an inferior solution), and the number of iterations. Evolutionary

8

One of the weaknesses of the existing GAs in DPLP is that they have not exploited the structure

of the DPLP very well. In this paper we investigate some procedures to do this. For example, our

crossover operator uses DP to create offspring since DP is an optimisation method for the smaller

DPLPs. In addition we use CRAFT in mutation since CRAFT is a well established procedure in

layout. Our computational experiments show that this approach provides better quality solutions.

The aim of this research is to develop and test a GA for the DPLP. First, improvements are made to

the GA of Conway and Venkataramanan. Their original GA is referred to as the CVGA. Then tests

are conducted to determine effective procedures and parameter values for the proposed hybrid GA.

Finally this research compares the results of the CVGA, the nested loop GA by Balakrishnan and

Cheng (2000), called NLGA, the Baykasoglu and Gindy SA, called the BG, and the proposed

hybrid GA using the problem set from Balakrishnan et al. (1992).

4. The proposed hybrid genetic approach

GAs have been widely applied in many different fields such as engineering, physical sciences,

social sciences and operations research since its introduction by Holland (1975). They belong to

the group of evolutionary programming techniques that resemble the natural selection of genes in

living organisms of natural biological systems. Mitchell (1998), and Haupt and Haupt (1998) are

recent references for the theory and practice of GA.

9

A GA based procedure requires that an initial population of feasible solutions be generated. It

codes a solution as a finite-length string over some finite alphabet. Each feasible solution may be

a parent. The population is also known as the parent pool. The procedure uses information from

the objective function to determine the fitness of each potential parent. It obtains good results in

different problems through selection, reproduction, crossover, and mutation.

The DPLP is a combinatorial problem for which the optimal solution can be found only for very

small problems. A GA based search is an attractive method in dealing with the problem, as GAs

are capable of solving large and difficult problems. The proposed GA approach requires many

settings and operations as shown in Table 1. In the following sections, the proposed approach is

explained.

4.1 Encoding of a solution

The encoding scheme used in the CVGA of Conway and Venkataramanan is used here also. The

strings form the population of parents from whom the new generation will be created. Figure 1

shows the scheme. Each static layout (in the six department example, the layout has two rows of

three locations each) is represented by a string and the concatenation of the static layout strings

forms the dynamic layout string as shown.

10

Period 1 Period 2 ... Period P

1 2 3 2 1 3 6 5 4

4 5 6 6 4 5 3 2 1

1 2 3 4 5 6 2 1 3 6 4 5 ... 6 5 4 3 2 1

Figure 1: The encoding of a string in dynamic layout

4.2 Fitness function and selection scheme

The fitness function evaluates strings by quantifying the fitness of the strings or solutions. In this

case, lower costs imply better fitness The proposed fitness function is identical to the objective

function of the DPLP formulation shown in equation (1).

Schemes for selecting parents for crossover or mating are usually random but also biased in the

sense that strings with better fitness will have a higher probability of being selected. The

tournament selection method was used in the algorithm and is described below.

Tournament selection

The procedure is:

(1) Rank all the parents in the parent pool based on their fitness.

11

(1) Choose a pre-set value , (0 < < 1).

(2) Randomly select two parents P1 and P2.

(3) Generate a random number RN, (0 < RN < 1).

(4) If RN < then select the higher ranked parent. Otherwise select the other parent.

Thus one parent is selected.

The steps in this process are repeated till s parents are generated. This method gave good results

during our preliminary tests and was also computationally efficient. Tests with values of 0.6, 0.75

and 0.9 for gave similar results. Thus this method was used in the main experiment with =

0.75.

4.3 Crossover operator

The proposed crossover operator is different from that of the CVGA of Conway and

Venkataramanan and the NLGA of Balakrishnan and Cheng. The CVGA uses single point

crossover on two strings. First, two strings from the parent pool are randomly selected. Then a

point in the two strings is randomly selected and crossover is performed at the chosen point.

Although this crossover operator is simple and easy to implement, it may result in infeasible

strings that then have to be made feasible. For example consider two strings 123456 and 125643.

If the crossover is performed at the sixth position, then there will be two new strings 123453 and

125646. The first string has two occurrences of department 3 and the second string has two

occurrences of department 6. Thus further swapping has to be done to make these feasible.

The NLGA uses a point-to-point crossover, which means that the two corresponding departments

in every position of the two strings are exchanged to create many child layouts. Some children

12

may be infeasible but some others are guaranteed to be feasible. The NLGA procedure ensures

variety by using a nested loop process (where an inner loop uses a traditional GA process and an

outer loop generates new parents that replace some the inferior parents in the existing population

to create additional variety).

The proposed crossover is quite different from the CVGA and NLGA because it uses an

optimisation approach. Unlike the single point or point-to-point crossovers on two strings, it

involves many strings and many crossover points. The crossover points are all at the joints of the

strings, which is where the layouts of two successive periods meet. This ensures feasibility. The

crossover scheme has the following steps:

(1) Select s strings from the parent pool using the tournament selection method.

(2) For a P period problem, cut each string into P equal parts giving P s parts in total.

Each part represents a feasible static layout. Steps 1 and 2 of the operator are

shown in Figure 2 for P =3.

(3) Put all these layouts together and eliminate the duplicated layouts.

(4) Use DP to find the best combination among all the layouts based on fitness. The

best multi-period layout plan consisting of one static layout from each period

becomes the offspring. Figure 3 illustrates Steps 3 and 4.

13

1 5 4 2 6 3 4 6 5 1 2 3 6 5 3 2 4 1

1 2 3 4 5 6 2 5 6 4 1 3 6 5 4 3 2 1

1 5 3 2 6 4 1 5 6 4 2 3 5 6 3 2 4 1

String 1

String 2

String s

Period 1 Period 2 Period 3

Figure 2: Steps 1 and 2 of the crossover operator

Layout of period 1 String 1

Eliminate

duplicated

layouts

Initial layouts

for Dynamic

Programming

Layout of period 2 Layout of period 3

Layout of period 1 Layout of period 2 Layout of period 3

Layout of period 1 Layout of period 2 Layout of period 3

String 2

String s

Figure 3: Steps 3 and 4 of the crossover operator

14

The offspring is obtained using a DP that will have at most P s states as shown in Figure 3

which makes it computationally efficient. In this paper the number of states in each stage of the

DP is ten as s = 10 and the number of stages is either five (for the five period problems) or ten

(for the ten period problems) Thus at most there are ten states per stage and ten stages. This

means that each stage starting from the penultimate period there will be 10 10 i.e. 100

decisions to evaluate. This has to be repeated nine times for a total of 900 decisions. So the

crossover DP can be solved quite easily.

The proposed crossover operator has some important advantages over the operators used in the

CVGA and NLGA. First, incorporation of an optimisation approach such as DP and including

many strings means that the proposed operator has better holistic view of the problem in

determining the offspring. Thus it incorporates the advantages of DP and GA without being

computationally prohibitive. In the CVGA and NLGA operators, either pairs of departments

position-wise or random sections of two strings are exchanged. Thus they are more local.

Second, the proposed operator does not generate infeasible layouts.

4.4 Number of parents considered for crossover

The choice of s, the number of parents from the parent pool selected for each crossover operation

is an important consideration. The search space depends on s. If s is large, more parent layouts

are considered and the quality of the offspring generated is better. However, the computational

requirements also increase.

15

Since the proposed GA performs crossovers many times (one thousand times), the value of s

does not need to be very large. The large number of crossovers done compensates for the small

value of s. The s parents chosen each time must be unique. If duplicate parents exist, the number

of layouts for DP decreases and the quality of the resulting solution will either deteriorate or

remain the same. The search space varies from (2 5)
5
 for a 2-parent crossover (s=2) in a five

period problem to (20 10)
10

 or 1.02 10
23

 for 20-parent crossover (s=20) in a ten period problem.

Pilot tests were conducted to determine the s value for the main experiment. s values of 2, 5, 10

and 20 were used. The s parents came from 72 randomly generated parents (the parent pool) and

the GA process terminated after 1000 crossovers had been done. The best layout plan was

selected as the solution.

Naturally the total cost decreased for larger s. However, between s = 10 and s = 20 though total

cost decreased the improvement was only marginal. At the same time the computational time

requirement increased significantly. Thus s = 10 was selected because it does not require

excessive computation time while providing good improvement over smaller s.

4.5 Replacement

 The method used replaces the weakest parent in the parent pool with the offspring. One

disadvantage of this method is that the parent pool may fill up with duplicate parents over

generations leading to a lack of variety. As a result the algorithm may converge prematurely. To

16

prevent this, it was decided that the offspring would not replace the weakest parent unless the

offspring was unique in the parent pool. This ensured that all the parents in the parent pool were

unique. In addition mutation also introduces variety and prevents premature convergence.

4.6 Mutation

Mutation is occasionally applied to the offspring after crossover using a random Bernoulli test.

Once the decision has been made to create a mutant, the result is used regardless of whether the

mutant affects the quality of the population favourably or unfavourably. Mutation may bring in

new static layouts and increase the variety of the parent pool.

The mutation method uses CRAFT, an heuristic improvement algorithm for static layout. The

CRAFT procedure involves considering all pair-wise exchanges between each department

location with every other department location in the layout. The one among these proposed

exchanges that would result in the biggest decrease in the material handling cost in the layout is

implemented. This procedure is repeated until no favourable pair-wise exchange can be found.

Since it is heuristic algorithm, different initial layouts may result in different final solutions. It is

a quick and effective method of redesigning layouts.

In the proposed algorithm, for mutation, the period is randomly chosen and CRAFT is used to

generate a new static layout from the existing one. This improved layout (mutant) replaces the

17

original layout. Beside the choice of mutation methods, the mutation rate had to be determined.

Grefenstette (1986) recommends a rate of 5% or less. So a value of 5% was used.

4.7 Termination criterion

The termination criterion determines when the GA will stop. In other words, the operations of

selection, crossover, reproduction and replacement are repeated until a termination condition is

met. In this method, the process is terminated after 1000 generations are performed. Tests

showed that 1000 generations were sufficient for convergence. A summary of the choice of

parameters and methods is given in Table 1.

Operation

Procedure

Encoding Single string representation

Crossover operator Dynamic programming

Fitness function The total cost: sum of flow costs and shifting costs

Selection scheme Tournament selection

Mutation Pair-wise exchange heuristic (CRAFT)

Parent pool Created using Urban’s (1993) method

Replacement Offspring replaces the worst parent if offspring is unique to pool

Termination Fixed number of generations

Table 1: Summary of the choice of parameters and methods for the proposed GA

5. Computational Study

In this section, the computational study involving the proposed algorithm is discussed. Since it

uses DP in crossover, it is called GADP. GADP is compared to the CVGA of Conway and

18

Venkataramanan and the NLGA of Balakrishnan and Cheng under a variety of situations using

the data set from Balakrishnan et al. (1992). This data set consists of eight problems in each of

the six situations (6 departments - 5 and 10 periods, 15 departments - 5 and 10 periods, and 30

departments - 5 and 10 periods) for a total of forty eight problems.

5.1 Test problem generation

Twenty four different ten period problems were generated on the computer similar to the one shown

in Table A2-1. Eight were six department, ten period problems (layout was a 2 x 3 grid). Another

eight consisted of fifteen departments (a 3 x 5 grid) and ten periods. The final eight had thirty

departments (a 5 x 6 grid) and ten periods. The five period problems used the first five periods of

data from the ten period problems. The material handling flow and the department shifting costs

were generated from the uniform distribution. The individual material handling flow (from one

department to another) generated were proportionally adjusted so that their sum equalled a pre-set

total material flow which was the same for every period in a problem. This was done in order to

prevent any period from dominating the others. The generated shifting costs were also

proportionally adjusted so that the average department shift cost was 15% of the average

department flow cost. Flow dominance was introduced by randomly selecting between 1 and 3

departments from each period and increasing the flow to these departments by a factor of 5 to 7.

The shape of the facility and the cost to move a unit distance were held constant over the horizon.

The difference between the eight problems was in the ranges of the uniform distribution and the

19

total material flow. For example, in problem 1, the range was between 100 and 200 units of flow

while for problem 6 it was between 1000 and 2000.

5.2 Settings

The study consists of the following settings:

(1) Solution techniques: CVGA, NLGA and GADP (R) and GADP (U). The GADP

(R) uses random initial strings while GADP (U) generates strings using Urban’s

pair-wise exchange algorithm (this is explained in the next section). These

algorithms were implemented in C programs and were run on DEC Alpha

machines.

(2) Sizes of layouts: Three layout sizes of 6, 15 and 30 equal sized departments are

used. They represent small, medium and large size problems. Different layout

sizes help determine the effectiveness of the algorithms for larger layouts.

(3) Planning horizons: Two different planning horizons of 5 periods and 10 periods

are used. This will determine the effectiveness of the algorithms for longer term

planning horizons.

The evaluation is based on the total cost, which is the sum of shifting costs and material handling

costs. All four methods CVGA, NLGA, GADP (R) and GADP (U) solve all the eight problems

for every layout size and planning horizon combination. DP was used to obtain the optimal

solutions for the six period problems in order to benchmark the GADP.

5.3 Generating the initial layouts

20

The GA based search methods need to start from an initial parent pool. Two methods were used

to generate the initial parent pool. In the six department problems since all 720 possible static

layouts could be generated, these 720 layouts were randomly combined to form the parent

strings. In the fifteen and thirty department problems, not all the possible static layouts could be

included due to computation time limitations. Thus two methods of generating the strings were

investigated.

Random

Randomly generated static layouts are joined to obtain dynamic layout plans for the parent pool.

One hundred forty four and seventy two such parents formed the parent pool for the five period

and ten period problems respectively. The CVGA, NLGA and GADP (R) always started from the

same initial population.

Urban’s Pairwise Exchange

One hundred forty four and seventy two parents generated using Urban’s procedure formed the

parent pool for the five period and ten period problems respectively. Urban’s pair-wise exchange

procedure is similar to CRAFT. The difference is that shifting costs are included.

Urban’s heuristic makes use of forecast windows, m, to find different sets of good layout plans

for the planning horizon. The forecast window is the number of periods being considered when

the pair-wise exchange is performed. It ranges from one to the number of periods t. Using an

21

initial layout and pair-wise exchanges, one set of layouts is obtained for the given planning

horizon in each forecast window.

For example, when the forecast window is 1, i.e., m=1, in each application of the pair-wise

exchange, only material flow from one period are considered. An existing initial layout is used

to find the most appropriate layout for period 1 by pair-wise exchanges considering the material

flow in period 1 only. Then this newly generated layout for period 1 is used as the initial layout

for period 2. Pair-wise exchange is now used to determine a good layout for period 2 by

considering the material flow in period 2 only. This process is repeated until the end of the

planning horizon. Thus a dynamic layout plan for the entire planning horizon is obtained. The

total cost of the layout plan is the sum of the costs of rearrangement and material flow in all the

periods.

When the forecast window is equal to 2, the material flows in period 1 and period 2 are added to

create a dummy flow matrix and a layout for period 1 is determined using pair-wise exchange.

Similarly, flow costs in periods 2 and 3 are combined in determining the layout in period 2. For

every m, a layout plan can be obtained. Since each forecast window gives a layout plan, the plan

with the lowest cost is selected as the final solution.

Urban’s method provides good solutions and is computationally efficient. Our tests also showed

that it is an effective method of generating the initial parent pool.

22

6. Results

Appendix 1 shows the costs achieved by each algorithm in each of the eight problems for every

layout size and planning horizon combination. Since Baykasoglu and Gindy had tested their SA

using the same problem set, their results are also shown. The computation times were not

recorded for every run as the focus of the research was on the design of the layout and solution

quality was considered the most important factor. However, in preliminary tests we did monitor

the computation time to ensure that the algorithm was able to solve the largest problems in a

reasonable time. The thirty department, ten period problems were solved in about 1000 CPU

seconds. Thus the proposed algorithm is able to solve practical sized problems in a reasonable

amount of time. The SA algorithm of Baykasoglu and Gindy needed an average of over 5000

CPU seconds for the thirty department, ten period problems, (though on another type of machine.).

In the six department problems, the summary results for 5 period and 10 period problems are

shown in Tables 2 and 3 respectively. Since all the 720 possible layouts could be considered, DP

always provided the optimal solution. In the 5 period problems, the NLGA and GADP are very

close in solution quality as both were within 0.1% of optimal on average, while the CVGA does

not perform as well. NLGA obtains more optimal solutions than GADP but at the same time, the

maximum deviation is also higher. The SA scores in the middle being 0.3% above optimality on

average and obtaining only 2 optimal solutions. In the ten period problems, GADP performs the

best. On average, the GADP was within 0.1% of optimal while the NLGA SA, and the CVGA

23

did not perform as well on this measure. GADP gave an optimal solution 50% of the time while

CVGA, NLGA and SA gave no optimal solutions. The maximum deviations are also the lowest

for GADP. Thus it appears that while all the algorithms are adversely affected by the length of

the horizon, GADP is the least affected.

 % Deviation

from optimal

Number of

optimal solutions

(out of 8) Average Maximum

CVGA 0.7 1.6 2

NLGA 0.1 0.5 5

GADP 0.1 0.3 4

SA 0.3 0.8 2

Table 2: Six department and five period summary results

 % Deviation

from optimal

Number of

optimal solutions

(out of 8) Average Maximum

CVGA 2.1 2.9 0

NLGA 0.4 1.0 0

GADP 0.1 0.6 4

SA 0.6 1.2 0

Table 3: Six department and ten period summary results

For the problems with larger numbers of departments, where computational time limitations

prevented the use of the entire static layout pool, optimal solutions were not available. The

summary results for the fifteen and thirty department problems are shown in Tables 4 and 5

respectively where the difference between GADP(U) and the other four algorithms are shown.

24

In the fifteen department five period problems, The GADP (U) performed better than the others.

The SA costs were on average 0.4% higher than the GADP (U) and performed better only on

one out of the eight problem. In the fifteen department ten period problems, the roles were

reversed. The SA costs were 2.8% lower on average than the GADP (U) and performed better in

every problem. The GADP (U) in turn dominates the CVGA, NLGA and the GADP (R).

In the thirty department, five period problems (Table 5), the SA performed better than the GADP

(U) in five out of the eight problems. SA was on average 0.2% better than the GADP (U). Both

dominated the other algorithms. In the thirty department, ten period problems (Table 5) SA

dominated all the other algorithms. It was on average 2.5% better than the GADP (U). The

GADP(U) in turn dominated the CVGA, NLGA and the GADP (R).

It appears from the results that the GADP (U) is better than the SA for small and medium size

problems (all six department and fifteen department, five period problems). For the larger

problems the SA seems to be better though the trend is not consistent given the thirty department

five period results where GADP (U) was better in three out of the eight problems.

In each of the 32 problems tested under four medium or large problem situations (fifteen and

thirty departments, five and ten periods), GADP (U) or SA performed the better than the CVGA,

NLGA and the GADP (R). So one of GADP(U) or SA always provided the best solution. Thus

a good strategy for practical sized problems might to use both the SA and GADP (U) algorithms

25

to solve any given DPLP since it is not certain which one between the SA and GADP (U)

algorithms will give the better result.

It also appears from Tables 4 and 5, based on the average and maximum deviations, that the

difference in solution quality between the GADP (U) and CVGA increases for larger department

sizes and longer horizons. This did not appear to be true between NLGA and GADP (U) or

GADP (R) and GADP (U), as the differences in the performance remained fairly consistent in

each of the four situations.

26

Horizon

Cost increase over GADP (U) solution

Mean Minimum Maximum

Five Period
CVGA 4.9% 4.2% 6.1%

NLGA 5.3% 4.6% 6.1%

GADP (R) 2.2% 1.0% 3.4%

SA 0.4% -0.9%
1

1.4%

Ten period

CVGA 8.4% 6.8% 9.5%

NLGA 5.9% 5.2% 7.1%

GADP (R) 2.6% 1.7% 3.7%

SA -2.8%
2

-1.7%
2

-3.7%
2

1
One of eight SA solutions was better than the GADP (U) solution

2
 All eight SA solutions were better than the GADP (U) solutions

Table 4: Fifteen department summary results

Horizon

Cost increase over GADP (U) solution

Mean Minimum Maximum

Five Period

CVGA 11.8% 9.3% 14.3%

NLGA 6.9% 5.7% 8.0%

GADP (R) 3.2% 2.4% 4.3%

SA -0.2%
1

-3.4% 4.5%

Ten period

CVGA 18.6% 16.5% 20.7%

NLGA 6.1% 5.0% 7.2%

GADP (R) 3.0% 2.1% 4.1%

SA -2.5%
2

-1.5%
2

-4.0%
2

1
Five of eight SA solutions were better than the GADP (U) solution

2
 All eight SA solutions were better than the GADP (U) solutions

Table 5: Thirty department summary results

27

The results show that Urban’s method (GADP (U)) is effective in generating the parent pool as it

gave a better solution (between 2.2% and 4.3% improvement) in each and every problem than

GADP (R), where the parent pool was generated randomly.

It is also seen that the CVGA performed the worst. This may be due to the fact that it uses a

simple crossover operator. The crossover may also generate infeasible layouts that have to be

made feasible by swaps. Thus it is possible that there may not be enough good children

generated by the genetic process. In addition no mutation is used. As mentioned earlier mutation

is useful in increasing diversity. Thus the lack of mutation could also explain its poor

performance.

7. Conclusion

In this paper the application of a hybrid algorithm for solving the DPLP was investigated. While

GA is an attractive solution tool for the DPLP, previous GA’s did not exploit the structure of the

DPLP such as using DP in the crossover operator to create offspring, using CRAFT to generate

mutations, and using Urban’s method to create an initial population (as explained in Sections 4.3,

4.6 and 5.3 respectively). These techniques have proved to be effective in solving the DPLP in

the past. In this paper the GA based hybrid algorithm uses an optimisation based crossover

operator and modifies the method of mutation. By conducting some preliminary tests, good

settings for the GA parameters were also identified.

28

Finally the proposed algorithm was compared with the GA’s of Conway and Venkataramanan,

Balakrishnan and Cheng, and a recent SA algorithm. The results showed the proposed method to

be promising as it performed better than the other GAs in every run for the larger problems. Thus

it appears that the hybrid approach of combining GA with DP provides better results than using

GA alone. This appears to be a result of exploiting the problem structure in both crossover and

mutation. The use of Urban’s pairwise exchange to generate the initial populations also improves

the quality of the solution. It also compares favourably with the SA algorithm, performing better

for most small and medium size problems and for some large problems.

Acknowledgement

The authors would like to acknowledge the financial support of the Natural Sciences and

Engineering Research Council (NSERC) of Canada.

29

References

1. Armour G.C., and Buffa E.S., 1963. A heuristic algorithm and simulation approach to relative

allocation of facilities, Management Science, 9 (2), 294-300.

2. Balakrishnan J. and Cheng C.H., 1998. Dynamic layout algorithms: a state-of-the-art survey,
Omega, 26 (4), 507-521.

3. Balakrishnan J. and Cheng C.H., 2000. Genetic search and the dynamic layout problem: an
improved algorithm, Computers and Operations Research, 27, 587-593.

4. Balakrishnan J., Jacobs R.F., Venkataramanan M.A., 1992. Solutions for the constrained

dynamic facility layout problem, European Journal of Operations Research, 57 (2), 280-286.

5. Baykasoglu A., and Gindy N.N.Z., 2001. A simulated annealing algorithm for the dynamic

layout problem, Computers and Operations Research, 28, 1403-1426.

6. Conway D.G., and Venkataramanan M.A., 1994. Genetic search and the dynamic facility layout

problem, Computers & Operations Research, 21 (8), 955-960.

7. Grefenstette J.J., 1986. Optimization of control parameters for genetic algorithms, IEEE

Transactions on Systems, Man, and Cybernetics, 16 (1), 122-128.

8. Hammer M., Beyond Reengineering, New York, NY: HarperCollins, 1996, p12.

9. Haupt R.L., and Haupt S.E, Practical Genetic Algorithms, New York NY, John Wiley and

Sons, 1998.

10. Hirabayashi N., Kita H., and Nagasawa H., 1999. Dynamic facility layout using evolution

strategies, Proceedings of the Second World Manufacturing Congress, 1999, pp 154-159.

11. Holland J.H., Adaptation in natural and artificial systems, Ann Arbor: The University of

Michigan Press,1975.

12. Kaku B. and Mazzola J.B., 1997. A tabu-search heuristic for the plant layout problem,

INFORMS Journal on Computing, 9 (4).

13. Lacksonen T.A., and Enscore E.E., 1993. Quadratic assignment algorithms for the dynamic

layout problem, International Journal of Production Research, 31 (3), 503-517.

30

14. Lacksonen T.A., 1994. Static and dynamic layout Problems with varying areas, Journal of the

Operational Research Society, 45 (1), 59-69.

15. Mitchell, M., An Introduction to Genetic Algorithms, Cambridge MA, MIT Press, 1998.

16. Montreuil B., and Venkatadri U., 1990. Strategic interpolative design of dynamic

manufacturing system layouts, Management Science, 37, 272-286.

17. Rosenblatt M.J., 1986. The dynamics of plant layout, Management Science, 32 (1), 86, 76-86.

18. Tompkins J.A, White J.A., Bozer Y.A., Frazelle E.H, Tanchoco, J.M.A, and Trevino J.

Facilities Planning, Wiley: New York, 1996.

19. Urban T.L., 1993. A heuristic for the dynamic facility layout problem, IIE Transactions, 25 (4),

57-63.

20. Westkamper E., (Ed.), 2002. Wandlungsfahige Unternehmensstrukturen fur die variantenreiche

Serienproduktion- Report 2000, 2001, 2002: Collaborative Grant 467. Stuttgart; Universitat

/Institut fur Industrialle Fertigung und Fabrikbetrieb (IFF).

31

APPENDIX 1

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average

Optimal 106419 104834 104320 106399 105628 103985 106439 103771 105224.4

CVGA 108976 105170 104520 106719 105628
*
 105606 106439

*
 104485 105942.9

NLGA 106419
*
 104834

*
 104320

*
 106515 105628

*
 104053 106978 103771

*
 105314.8

GADP 106419
*
 104834

*
 104529 106583 105628

*
 104315 106447 103771

*
 105315.8

SA 107249 105170 104800 106515 106282 103985 106447 103771 105527.4

Table A1-1: The total cost of 6 department and 5 period problems

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average

Optimal 214313 212134 207987 212530 212906 209932 214252 212588 212080

CVGA 218407 215623 211028 217493 215363 215564 220529 216291 216287.3

NLGA 214397 212138 208453 212953 211575 210801 215685 214657 212582.4

GADP 214313 212134 207987 212741 210944 210000 215452 212588 212019.9

SA 215200 214713 208351 213331 213812 211213 215630 214513 213345.4

Table A1-2: The total cost of 6 department and 10 period problems

32

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average

CVGA 504759 514718 516063 508532 515599 509384 512508 514839 512050.3

NLGA 511854 507694 518461 514242 512834 513763 512722 521116 514085.8

GADP (R) 493707 494476 506684 500826 502409 497382 494316 500779 498822.4

GADP (U) 484090 485352 489898 484625 489885 488640 489378 500779 489080.9

SA 484695 486141 496617 490869 491501 491098 491350 496465 491092.0

Table A1-3: The total cost of 15 department and 5 period problems

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average

CVGA 1055536 1061940 1073603 1060034 1064692 1066370 1066617 1068216 1064626.0

NLGA 1047596 1037580 1056185 1026789 1033591 1028606 1043823 1048853 1040378.9

GADP (R) 1004806 1006790 1012482 1001795 1005988 1002871 1019645 1010772 1008143.6

GADP (U) 987887 980638 985886 976025 982778 973912 982872 987789 982223.4

SA 950910 947673 968027 950701 948470 948630 965844 956170 954553.1

Table A1-4: The total cost of 15 department and10 period problems

33

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average

CVGA 632737 647585 642295 634626 639693 637620 640482 635776 638851.8

NLGA 611794 611873 611664 611766 604564 606010 607134 620183 610623.5

GADP (R) 603339 589834 592475 586064 580624 587797 588347 590451 589866.4

GADP (U) 578689 572232 578527 572057 559777 566792 567873 575720 571458.4

SA 562405 569251 564464 552684 559596 592515 582409 578549 570234.1

Table A1-5: The total cost of 30 department and 5 period problems

Prob 1

Prob 2

Prob 3

Prob 4

Prob 5

Prob 6

Prob 7

Prob 8

Average

CVGA 1362513 1379640 1365024 1367130 1356860 1372513 1382799 1383610 1371261.1

NLGA 1228411 1231978 1231829 1227413 1215256 1221356 1212273 1245423 1226742.4

GADP (R) 1194084 1199001 1197253 1184422 1179673 1178091 1186145 1208436 1190888.1

GADP (U) 1169474 1168878 1166366 1154192 1133561 1145000 1145927 1168657 1156506.9

SA 1122154 1120182 1125346 1120217 1158323 1111344 1128744 1136157 1127808.4

Table A1-6: The total cost of 30 department and 10 period problems

34

Appendix 2

 Period 1
To -- 1 2 3 4 5 6
From
1 0 63 605 551 116 136
2 63 0 635 941 50 191
3 104 71 0 569 136 55
4 65 193 622 0 77 90
5 162 174 607 591 0 179

6 156 13 667 611 175 0

 Period 2
1 0 175 804 904 56 176
2 63 0 743 936 45 177
3 168 85 0 918 138 134
4 51 94 962 0 173 39
5 97 104 730 634 0 144
6 95 115 983 597 24 0

 Period 3
1 0 90 77 553 769 139
2 168 0 114 653 525 185
3 32 35 0 664 898 87
4 27 166 42 0 960 179
5 185 56 44 926 0 104

6 72 128 173 634 687 0

 Period 4
1 0 112 15 199 665 649
2 153 0 116 173 912 671
3 10 28 0 182 855 542
4 29 69 15 0 552 751
5 198 71 42 24 0 758
6 62 109 170 90 973 0

 Period 5
1 0 663 23 128 119 50
2 820 0 5 98 141 66
3 822 650 0 137 78 91
4 826 570 149 0 93 151
5 915 515 53 35 0 177
6 614 729 178 10 99 0

 Shifting cost for departments
887 964 213 367 289 477

 Table A2-1: Material Flow and Shifting Costs

35

Table A2-2: Optimal solution for the problem in Table A2-1

2

4

6

1

3

5

 Figure A2-3: The physical layout for layout string 246135

Period Layout String

1 2 4 6 1 3 5

2 2 4 6 1 3 5

3 2 4 6 1 5 3

4 2 6 4 1 5 3

5 2 1 4 6 5 3

