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A Hybrid Genetic Algorithm for the Dynamic Plant Layout Problem 

 

 

Abstract 

The dynamic plant layout problem (DPLP) deals with the design of multi-period layout plans. 

Although an optimal solution method based on dynamic programming is available, it is not 

practical for large DPLPs. It has recently been shown that heuristics based on genetic algorithms 

can solve large DPLPs. In this research, we extend and improve the use of genetic algorithms by 

creating a hybrid genetic algorithm. A computational study is carried out to compare the 

proposed algorithm with the existing genetic algorithms and a recent simulated annealing 

algorithm. The study shows that the proposed algorithm is effective. Thus it may be useful in 

solving the larger problems. 

 

Key words: dynamic layout,  genetic algorithms, dynamic programming, pair-wise exchange. 
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A Hybrid Genetic Algorithm for the Dynamic Plant Layout Problem 

 

1. Introduction 

This paper investigates the layout problem based on multi-period planning horizons. During this 

horizon, the material handling flow between the different departments in the layout may change. 

This necessitates a more sophisticated approach than the static plant layout problem (SPLP) 

approach. The dynamic plant layout problem  (DPLP) extends the SPLP by considering the changes 

in material handling flow over multiple periods and the costs of rearranging the layout.  

 

The importance of good layout planning can be gauged from the fact that over $250 billion is 

spent in the U.S. alone on layouts that require planning and re-planning and that 20% to 50% of 

the total operating expenses within manufacturing can be attributed to material handling 

(Tompkins et al., 1996). 

 

 In an environment where material handling flow does not change over a long  time, a static 

layout analysis would be sufficient. However, in today's market based and dynamic environment, 

such flow can change quickly necessitating dynamic layout analysis. For example, 75% of 

Hewlett Packard’s product models are less than three years old and this percentage is increasing 

(Hammer, 1996). Any change in product mix can result in changes in flow and thus affect 

layouts. The next section explains the dynamic problem through an example adopted from 

Rosenblatt (1986). 
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2. The Dynamic Plant Layout Problem 

 

The dynamic problem involves selecting a static layout for each period and then deciding whether 

to change to a different layout in the next period. An example of a DPLP is shown in Table A2-1 of 

Appendix 2. This table shows the material flow for a six department problem over five periods. As 

seen the relative material flow between departments changes over the planning horizon. For 

example, in period 1 there is considerable material flow into departments 3 and 4 relative to the 

other departments. However in period 5, it is departments 1 and 2 that have the major material in-

flow. The fixed cost for shifting each department is given at the bottom of  Table A2-1. 

 

 If the shifting costs are relatively low, we would tend to shift or change the layout configuration 

more often to suit the changed material handling flow. The reverse is true for high shifting costs 

where we would avoid relocations to avoid the associated shifting or rearrangement costs. Table 

A2-2 shows the optimal dynamic solution for problem in Table A2-1 in the form of a layout string 

where each number denotes a department in the layout. Table A2-3 shows what the actual layout 

would look like for layout string 246135 in a two row, three column format. The optimal plan is to 

use layout 246135 during periods 1 and 2. In period 3 departments 5 and 3 switch location. In 

period 4 departments 6 and 4 switch location and finally in period 5, departments 1 and 6 switch 

location. In an n department, t period problem, we would have to implicitly or explicitly evaluate 

(n!)
t
 layouts to guarantee the optimal solution. n! is the number of possible layout combinations in 

each period.  So, even for a six department problem there are 1.93 10
14 

possibilities. Thus optimal 
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solutions cannot be obtained for practical sized problems and heuristics have to be used. A 

mathematical formulation for the DPLP is shown below: 
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where 

P : Number of periods in the planning horizon  

n : Number of departments in the layout  

i,k  : Departments in the layout  

j,l : Locations in the layout   

fik : Flow cost from department i to k 

djl : Distance from location j to l 

Ytijl : 0,1 variable for shifting i from j to l in period t 

Xtij : 0,1 variable for locating department i at  location j in period t 

Atijl : Cost of shifting from j to l in period t. (Atijj = 0). 

 

 

 Equation (1) is the sum of the material flow and layout rearrangement costs for the planning 

horizon. Equations (2) and (3) state that each department must be located and each location must be 

occupied in every period. Equation (4) states that the 0-1 departmental rearrangement variable takes 
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on a value of 1 only if the department shifts its location at the end of a period. The next section 

reviews the literature in the DPLP. 

 

3. Previous approaches 

Rosenblatt uses dynamic programming (DP) to solve the problem with each layout in each period 

being a state and each period a stage. Since this approach is not practical for large problems, he 

discusses methods to use DP heuristically. In the heuristic DP method only a few layouts from each 

period are included. The easy procedure would be to select the layouts in a period randomly. 

However this is not very effective. A better method is to select some of the better quality layouts in 

each period to form part of the DP. This gives better solutions though at the cost of additional 

computation time.  Though the DP will give the optimal solution for the layouts included, since not 

all layouts are included, the solution may not be optimal for the original DPLP. One disadvantage 

of using only the best  layouts in each period is that the best layouts in each period may not be the 

best from a multi-period perspective. For example, in the problem shown in Table A2-1, the 

optimal static layouts in periods 1 through 5 are 135642, 142536, 153246, 164253, and 326415 

respectively. When compared to the dynamic (multi-period)  optimal solution in Table A2-2, it is 

seen that none of the optimal static layouts form part of the optimal multi-period solution. This is 

due to the effect of the department shifting costs.   

 

Other procedures have been proposed that perform better than the heuristic DP methods of 

Rosenblatt. Urban (1993) proposes an approach using a steepest-descent pairwise exchange 
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heuristic similar to CRAFT(Armour and Buffa, 1963). Lacksonen and Enscore (1993) investigate 

different mathematical programming approaches. Conway and Venkataramanan (1994), and 

Balakrishnan and Cheng (2000) make use of genetic algorithms (GA) for the DPLP while Kaku and 

Mazzola (1997) use Tabu Search. Research on dynamic layout when the sizes of departments are 

unequal have been carried out by among others, Lacksonen (1994), and Montreuil and Venkatadri 

(1990). Formulations and detailed reviews of these and other approaches to the DPLP can be found 

in Balakrishnan and Cheng (1998). 

 

More recently, evolutionary approaches (a technique similar to genetic algorithms) have been 

proposed by Hirabayashi et al. (1999) for a flexible manufacturing system and by Westkamper 

(2002) for unequal department sizes.  Baykasoglu and Gindy (2001) have developed a simulated 

annealing algorithm (SA) for the DPLP. Using the test problems from Balakrishnan et al., they 

showed that their algorithm performed better than the GA’s of Conway and Venkataramanan, and 

Balakrishnan and Cheng (2000). The parameter settings in their SA algorithm involve determining 

the initial temperature (the probability that in the neighbourhood search, an inferior solution will be 

accepted), the rate at which the temperature decreases (the decrease in the acceptance probability of 

an inferior solution), and the number of iterations. Evolutionary 
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One of the weaknesses of the existing GAs in DPLP is that they have not exploited the structure 

of the DPLP very well. In this paper we investigate some procedures to do this. For example, our 

crossover operator uses DP to create offspring since DP is an optimisation method for the smaller 

DPLPs. In addition we use CRAFT in mutation since CRAFT is a well established procedure in 

layout.  Our computational experiments show that this approach provides better quality solutions. 

 

The aim of this research is to develop and test a GA for the DPLP. First, improvements are made to 

the GA of Conway and Venkataramanan. Their original GA is referred to as the CVGA. Then tests 

are conducted to determine effective procedures and parameter values for the proposed  hybrid GA. 

Finally this research compares the results of the CVGA, the nested loop GA by Balakrishnan and 

Cheng (2000), called NLGA, the Baykasoglu and Gindy SA, called the BG, and the proposed 

hybrid GA using the problem set from Balakrishnan et al. (1992). 

 

4.  The proposed hybrid  genetic approach 

GAs have been widely applied in many different fields such as engineering, physical sciences, 

social sciences and operations research since its introduction by Holland (1975). They belong to 

the group of evolutionary programming techniques that resemble the natural selection of genes in 

living organisms of natural biological systems.  Mitchell (1998), and Haupt and Haupt (1998) are 

recent references for the theory and practice of GA. 
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A GA based procedure requires that an initial population of feasible solutions be generated. It 

codes a solution as a finite-length string over some finite alphabet. Each feasible solution may be 

a parent. The population is also known as the parent pool. The procedure uses information from 

the objective function to determine the fitness of each potential parent. It obtains good results in 

different problems through selection, reproduction, crossover, and mutation. 

 

The DPLP is a combinatorial problem for which the optimal solution can be found only for very 

small problems. A GA based search is an attractive method in dealing with the problem, as GAs 

are capable of solving large and difficult problems. The proposed GA approach requires many 

settings and operations as shown in Table 1. In the following sections, the proposed approach is 

explained. 

 

4.1  Encoding of a solution 

The encoding scheme used in the CVGA of Conway and Venkataramanan is used here also. The 

strings form the population of parents from whom the new generation will be created. Figure 1 

shows the scheme. Each static layout (in the six department example, the layout has two rows of 

three locations each)  is represented by a string and the concatenation of the static layout strings 

forms the dynamic layout string as shown. 
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Period 1 Period 2 ... Period P

1 2 3 2 1 3 6 5 4

4 5 6 6 4 5 3 2 1

1 2 3 4 5 6 2 1 3 6 4 5 ... 6 5 4 3 2 1

 

Figure 1: The encoding of a string in dynamic layout  

 

 

4.2  Fitness function and selection scheme 

The fitness function evaluates strings by quantifying the fitness of the strings or solutions. In this 

case, lower costs imply better fitness  The proposed fitness function is identical to the objective 

function of the DPLP formulation shown in equation (1).  

 

Schemes for selecting parents for crossover or mating are usually  random but also biased in the 

sense that strings with better fitness will have a higher probability of being selected. The 

tournament selection method was used in the algorithm and is described below. 

 

Tournament selection 

The procedure is: 

(1) Rank all the parents in the parent pool based on their fitness. 
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(1) Choose a pre-set value ,  (0 <  < 1). 

(2)  Randomly select two parents P1 and P2. 

(3) Generate a random number RN, (0 < RN < 1). 

(4) If RN <  then select the higher ranked parent. Otherwise select the other parent. 

Thus one parent is selected. 

 

The steps in this process are repeated till s parents are generated. This method gave good results 

during our preliminary tests and was also computationally efficient. Tests with values of 0.6, 0.75 

and 0.9 for  gave similar results.  Thus this method was used in the main experiment with  = 

0.75. 

4.3  Crossover operator  

The proposed crossover operator is different from that of the CVGA of Conway and 

Venkataramanan and the NLGA of Balakrishnan and Cheng. The  CVGA uses single point 

crossover on two strings. First, two strings from the parent pool are randomly selected. Then a 

point in the two strings is randomly selected and crossover is performed at the chosen point. 

Although this crossover operator is simple and easy to implement, it may result in infeasible 

strings that then have to be made feasible.  For example consider two strings 123456 and 125643. 

If the crossover is performed at the sixth position, then there will be two new strings 123453 and 

125646.  The first string has two occurrences of department 3 and the second string has two 

occurrences of department 6. Thus further swapping has to be done to make these feasible. 

 

The NLGA uses a point-to-point crossover, which means that the two corresponding departments 

in every position of the two strings are exchanged to create many child layouts. Some children 
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may be infeasible but some others are guaranteed to be feasible. The NLGA procedure ensures 

variety by using a nested loop process (where an inner loop uses a traditional GA process and an 

outer loop generates new parents that replace some the inferior parents in the existing population 

to create additional variety).  

 

The proposed crossover is quite different from the CVGA and NLGA because it uses an 

optimisation approach. Unlike the single point or point-to-point crossovers on two strings, it 

involves many strings and many crossover points. The crossover points are all at the joints of the 

strings, which is where the layouts of two successive periods meet. This ensures feasibility. The 

crossover scheme has the following steps: 

(1) Select s strings from the parent pool using the tournament selection method. 

(2) For a P period problem, cut each string into P equal parts giving P s parts in total. 

Each part represents a feasible static layout. Steps 1 and 2 of the operator are 

shown in Figure 2 for P =3. 

(3) Put all these layouts together and eliminate the duplicated layouts. 

(4) Use DP to find the best combination among all the layouts based on fitness. The 

best multi-period layout plan consisting of one static layout from each period 

becomes the offspring. Figure 3 illustrates Steps 3 and 4. 
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1 5 4 2 6 3 4 6 5 1 2 3 6 5 3 2 4 1

1 2 3 4 5 6 2 5 6 4 1 3 6 5 4 3 2 1

1 5 3 2 6 4 1 5 6 4 2 3 5 6 3 2 4 1

String 1

String 2

String s

 

 

 

 

 

 

Period 1 Period 2 Period 3

 

Figure 2: Steps 1 and 2 of the crossover operator  
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Figure 3: Steps 3 and 4 of the crossover operator 
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The offspring is obtained using a DP that will have at most P s states as shown in Figure 3 

which makes it computationally efficient. In this paper the number of states in each stage of the 

DP is ten as s = 10 and the number of stages is either five (for the five period problems) or ten 

(for the ten period problems) Thus at most there are ten states per stage and ten stages. This 

means that each  stage starting from the penultimate period there will be 10  10  i.e. 100 

decisions to evaluate. This has to be repeated nine times for a total of 900 decisions. So the 

crossover DP can be solved quite easily. 

 

The proposed crossover operator has some important advantages over the operators used in the 

CVGA and NLGA. First, incorporation of an optimisation approach such as DP and including 

many strings means that the proposed operator has better holistic view of the problem in 

determining the offspring.  Thus it incorporates the advantages of DP and GA without being 

computationally prohibitive.  In the CVGA and NLGA operators, either pairs of departments 

position-wise or random sections of two strings are exchanged. Thus they are more local. 

Second, the proposed operator does not generate infeasible layouts.  

 

4.4  Number of parents considered for crossover 

The choice of s, the number of parents from the parent pool selected for each crossover operation 

is an important consideration. The search space depends on s. If s is large, more parent layouts 

are considered and the quality of the offspring generated is better. However, the computational 

requirements also increase.  
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Since the proposed GA performs crossovers many times (one thousand times), the value of s 

does not need to be very large. The large number of crossovers done compensates for the small 

value of s. The s parents chosen each time must be unique. If duplicate parents exist, the number 

of layouts for DP decreases and the quality of the resulting solution will either deteriorate or 

remain the same. The search space varies from (2 5)
5
 for a 2-parent crossover (s=2) in a five 

period problem to (20 10)
10

 or 1.02 10
23

 for 20-parent crossover (s=20) in a ten period problem. 

Pilot tests were conducted to determine the s value for the main experiment. s values of 2, 5, 10 

and 20 were used. The s parents came from 72 randomly generated parents (the parent pool) and 

the GA process terminated after 1000 crossovers had been done. The best layout plan was 

selected as the solution. 

 

Naturally the total cost decreased for larger s. However, between s = 10 and s = 20 though total 

cost decreased the improvement was only marginal. At the same time the computational time 

requirement increased significantly. Thus s = 10 was selected because it does not require 

excessive computation time while providing good improvement over smaller s.  

 

4.5  Replacement  

 The method used replaces the weakest parent in the parent pool with the offspring. One 

disadvantage of this method is that the parent pool may fill up with duplicate parents over 

generations leading to a lack of variety. As a result the algorithm may converge prematurely. To 
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prevent this, it was decided that the offspring would not replace the weakest parent unless the 

offspring was unique in the parent pool. This ensured that all the parents in the parent pool were 

unique. In addition mutation also introduces variety and prevents premature convergence. 

 

4.6 Mutation 

Mutation is occasionally applied to the offspring after crossover using a random Bernoulli test. 

Once the decision has been made to create a mutant, the result is used regardless of whether the 

mutant affects the quality of the population favourably or unfavourably. Mutation may bring in 

new static layouts and increase the variety of the parent pool.  

 

The mutation method uses CRAFT, an heuristic improvement algorithm for static layout. The 

CRAFT procedure involves considering all pair-wise exchanges between each department 

location with every other department location in the layout.  The one among these proposed 

exchanges that would result in the biggest decrease in the material handling cost in the layout is 

implemented. This procedure is repeated until no favourable pair-wise exchange can be found. 

Since it is heuristic algorithm, different initial layouts may result in different final solutions. It is 

a quick and effective method of  redesigning layouts. 

   

In the proposed algorithm, for mutation, the period is randomly chosen and CRAFT is used to 

generate a new static layout from the existing one. This improved layout (mutant) replaces the 
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original layout. Beside the choice of mutation methods, the mutation rate had to be determined. 

Grefenstette (1986) recommends a rate of 5% or less. So a value of 5% was used. 

 

4.7 Termination criterion 

The termination criterion determines when the GA will stop. In other words, the operations of 

selection, crossover, reproduction and replacement are repeated until a termination condition is 

met. In this method, the process is terminated after 1000 generations are performed. Tests 

showed that 1000 generations were sufficient for convergence. A summary of the choice of 

parameters and methods is given in Table 1. 

 

Operation 

 

 

Procedure 

 

 

Encoding Single string representation 

Crossover operator Dynamic programming 

Fitness function The total cost: sum of flow costs and shifting costs 

Selection scheme Tournament selection 

Mutation Pair-wise exchange heuristic (CRAFT) 

Parent pool Created using Urban’s (1993) method 

Replacement Offspring replaces the worst parent if offspring is unique to pool 

Termination Fixed number of generations 

 

Table 1: Summary of  the choice of parameters and methods for the proposed GA 

 

5. Computational Study 

In this section, the computational study involving the proposed algorithm is discussed. Since it 

uses DP in crossover, it is called GADP. GADP is compared to the CVGA of Conway and 
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Venkataramanan and the NLGA of Balakrishnan and Cheng under a variety of situations using 

the data set from Balakrishnan et al. (1992). This data set consists of  eight problems  in each of 

the six situations ( 6 departments - 5  and 10 periods, 15 departments - 5  and 10 periods, and 30 

departments - 5  and 10 periods) for a total of forty eight problems. 

 

5.1 Test problem generation 

Twenty four different ten period problems were generated on the computer similar to the one shown 

in Table A2-1.  Eight were six department, ten period problems (layout was a 2 x 3 grid). Another 

eight consisted of fifteen departments (a 3 x 5 grid) and ten periods. The final eight had thirty 

departments (a 5 x 6 grid) and ten periods. The five period problems used the first five periods of 

data from the ten period problems. The material handling flow and the department shifting costs 

were generated from the uniform distribution. The individual material handling flow (from one 

department to another) generated were proportionally adjusted so that their sum equalled a pre-set 

total material flow which was the same for every period in a problem. This was done in order to 

prevent any period from dominating the others. The generated shifting costs were also 

proportionally adjusted so that the average department shift cost was 15% of the average 

department flow cost. Flow dominance was introduced by randomly selecting between 1 and 3 

departments from each period and increasing the flow to these departments by a factor of 5 to 7. 

The shape of the facility and the cost to move a unit distance were held constant over the horizon. 

The difference between the eight problems was in the ranges of the uniform distribution and the 
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total material flow. For example, in problem 1, the range was between 100 and 200 units of flow 

while for problem 6 it was between 1000 and 2000.  

 

5.2  Settings 

The study consists of the following settings: 

(1)  Solution techniques: CVGA, NLGA and GADP (R) and GADP (U). The GADP 

(R) uses random initial strings while GADP (U) generates strings using Urban’s 

pair-wise exchange algorithm (this is explained in the next section). These 

algorithms were implemented in C programs and were run on DEC Alpha 

machines. 

(2) Sizes of layouts: Three layout sizes of 6, 15 and 30 equal sized departments are 

used. They represent small, medium and large size problems. Different layout 

sizes help determine the effectiveness of the algorithms for larger layouts. 

(3) Planning horizons: Two different planning horizons of 5 periods and 10 periods 

are used. This will determine the effectiveness of the algorithms for longer term 

planning horizons. 

 

The evaluation is based on the total cost, which is the sum of shifting costs and material handling 

costs. All four methods CVGA, NLGA, GADP (R) and GADP (U) solve all the eight problems 

for every layout size and planning horizon combination.  DP was used to obtain the optimal 

solutions for the six period problems in order to benchmark the GADP. 

 

 

5.3  Generating the initial layouts 
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The GA based search methods need to start from an initial parent pool. Two methods were used 

to generate the initial parent pool. In the six department problems since all 720 possible static 

layouts could be generated, these 720 layouts were randomly combined to form the parent 

strings. In the fifteen and thirty department problems, not all the possible static layouts could be 

included due to computation time limitations. Thus two methods of generating the strings were 

investigated. 

 

Random 

Randomly generated static layouts are joined to obtain dynamic layout plans for the parent pool. 

One hundred forty four  and seventy two such parents formed the parent pool for the five period 

and ten period problems respectively. The CVGA, NLGA and GADP (R) always started from the 

same initial population.  

 

Urban’s Pairwise Exchange  

One hundred forty four and seventy two parents generated using Urban’s procedure formed the 

parent pool for the five period and ten period problems respectively. Urban’s pair-wise exchange 

procedure is similar to CRAFT. The difference is that shifting costs are included.  

 

Urban’s heuristic makes use of forecast windows, m, to find different sets of good layout plans 

for the planning horizon. The forecast window is the number of periods being considered when 

the pair-wise exchange is performed. It ranges from one to the number of periods t. Using an 
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initial layout and pair-wise exchanges, one set of layouts is obtained for the given planning 

horizon in each forecast window. 

  

For example, when the forecast window is 1, i.e., m=1, in each application of the pair-wise 

exchange, only material flow from one period are considered.  An existing initial layout is used 

to find the most appropriate layout for period 1 by pair-wise exchanges considering the material 

flow in period 1 only. Then this newly generated layout for period 1 is used as the initial layout 

for period 2. Pair-wise exchange is now used to determine a good layout for period 2 by 

considering the material flow in period 2 only. This process is repeated until the end of the 

planning horizon. Thus a dynamic layout plan for the entire planning horizon is obtained. The 

total cost of the layout plan is the sum of the costs of rearrangement and material flow in all the 

periods. 

 

When the forecast window is equal to 2, the material flows in period 1 and period 2 are added to 

create a dummy flow matrix and a layout for period 1 is determined using pair-wise exchange. 

Similarly, flow costs in periods 2 and 3 are combined in determining the layout in period 2. For 

every m, a layout plan can be obtained.  Since each forecast window gives a layout plan, the plan 

with the lowest cost is selected as the final solution.   

  

Urban’s method provides good solutions and is computationally efficient. Our tests also showed 

that it is an effective method of generating the initial parent pool. 
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6. Results 

Appendix 1 shows the costs achieved by each algorithm in each of the eight problems for every 

layout size and planning horizon combination. Since Baykasoglu and Gindy had tested their SA 

using the same problem set, their results are also shown. The computation times were not 

recorded for every run as the focus of the research was on the design of the layout and solution 

quality was considered the most important factor. However, in preliminary tests we did monitor 

the computation time to ensure that the algorithm was able to solve the largest problems in a 

reasonable time. The thirty department, ten period problems were solved in about 1000 CPU 

seconds. Thus the proposed algorithm is able to solve practical sized problems in a reasonable 

amount of time. The SA algorithm of  Baykasoglu and Gindy  needed an average of over 5000 

CPU seconds for the thirty  department, ten period problems, (though on another type of machine.). 

 

In the six department problems, the summary results for 5 period and 10 period problems are 

shown in Tables 2 and 3 respectively. Since all the 720 possible layouts could be considered, DP 

always provided the optimal solution. In the 5 period problems, the NLGA and GADP are very 

close in solution quality as both were within 0.1% of optimal on average, while the CVGA does 

not perform as well. NLGA obtains more optimal solutions than GADP but at the same time, the 

maximum deviation is also higher. The SA scores in the middle being 0.3% above optimality on 

average and obtaining only 2 optimal solutions. In the ten period problems, GADP performs the 

best. On average, the GADP was within 0.1% of optimal while the NLGA SA, and the CVGA 
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did not perform as well on this measure. GADP gave an optimal solution 50% of the time while 

CVGA, NLGA and SA gave no optimal solutions. The maximum deviations are also the lowest 

for GADP. Thus it appears that while all the algorithms are adversely affected by the length of 

the horizon, GADP is the least affected. 

  % Deviation 

from optimal 

Number of 

optimal solutions 

(out of 8) Average Maximum 

CVGA 0.7 1.6 2 

NLGA 0.1 0.5 5 

GADP 0.1 0.3 4 

SA 0.3 0.8 2 

Table 2: Six department and five period summary results  

 

 % Deviation 

from optimal 

Number of 

optimal solutions 

(out of 8) Average Maximum 

CVGA 2.1 2.9 0 

NLGA 0.4 1.0 0 

GADP 0.1 0.6 4 

SA 0.6 1.2 0 

Table 3: Six department and ten period summary results 

 

For the problems with larger numbers of departments, where computational time limitations 

prevented the use of the entire static layout pool, optimal solutions were not available.  The 

summary results for the fifteen and thirty department problems are shown in Tables 4 and 5 

respectively where the difference between GADP(U) and the other four algorithms are shown.   
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In the fifteen department five period problems, The GADP (U) performed better than the others. 

The SA costs  were on average 0.4% higher than the GADP (U) and performed better only on 

one out of the eight problem. In the fifteen department ten period problems, the roles were 

reversed. The SA costs were 2.8% lower on average than the GADP (U) and performed better in 

every problem. The GADP (U) in turn dominates the CVGA, NLGA and the GADP (R). 

 

In the thirty department, five period problems (Table 5), the SA performed better than the GADP 

(U) in five out of the eight problems. SA was on average 0.2% better than the GADP (U). Both 

dominated the other algorithms.  In the thirty department, ten period problems (Table 5) SA 

dominated all the other algorithms. It was on average 2.5% better than the GADP (U). The 

GADP(U) in turn dominated the CVGA, NLGA and the GADP (R). 

 

It appears from the results that the GADP (U) is better than the SA for small and medium size 

problems (all six department and fifteen department, five period problems). For the larger 

problems the SA seems to be better though the trend is not consistent given the thirty department 

five period results where GADP (U) was better in three out of the eight problems.  

 

In each of the 32 problems tested under four medium or large problem situations (fifteen and 

thirty departments, five and ten periods), GADP (U) or SA performed the better than the CVGA, 

NLGA and the GADP (R).  So one of  GADP(U) or SA always provided the best solution. Thus 

a good strategy for practical sized problems might to use both the SA and GADP (U) algorithms 
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to solve any given DPLP since it is not certain which one between the SA and GADP (U) 

algorithms will give the better result.  

 

It also appears from Tables 4 and 5, based on the average and maximum deviations, that the 

difference in solution quality between the GADP (U) and CVGA increases for larger department 

sizes and longer horizons. This did not appear to be true between NLGA and GADP (U) or 

GADP (R) and GADP (U), as the differences in the performance remained fairly consistent in 

each of the four situations. 
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Horizon 

 

 

Cost increase over GADP (U) solution 

Mean Minimum Maximum 

 

Five Period 
CVGA 4.9% 4.2% 6.1% 

NLGA 5.3% 4.6% 6.1% 

GADP (R) 2.2% 1.0% 3.4% 

SA 0.4% -0.9%
1 

1.4% 

 

Ten period 

CVGA 8.4% 6.8% 9.5% 

NLGA 5.9% 5.2% 7.1% 

GADP (R) 2.6% 1.7% 3.7% 

SA -2.8%
2 

-1.7%
2 

-3.7%
2 

1 
One of eight SA solutions was better than the GADP (U) solution 

2
  All eight SA solutions were better than the GADP (U) solutions 

 

Table 4: Fifteen department summary results 

 

 

Horizon 

 

 

Cost increase over GADP (U) solution  

Mean Minimum Maximum 

 

Five Period 

CVGA 11.8% 9.3% 14.3% 

NLGA 6.9% 5.7% 8.0% 

GADP (R) 3.2% 2.4% 4.3% 

SA -0.2%
1 

-3.4% 4.5% 

 

Ten period 

CVGA 18.6% 16.5% 20.7% 

NLGA 6.1% 5.0% 7.2% 

GADP (R) 3.0% 2.1% 4.1% 

SA -2.5%
2 

-1.5%
2 

-4.0%
2 

1 
Five of eight SA solutions were better than the GADP (U) solution 

2
  All eight SA solutions were better than the GADP (U) solutions 

 

Table 5: Thirty department summary results 
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The results show that Urban’s method (GADP (U)) is effective in generating the parent pool as it 

gave a better solution (between 2.2% and 4.3% improvement) in each and every problem than 

GADP (R), where the parent pool was generated randomly. 

 

It is also seen that the CVGA performed the worst. This may be due to the fact that it uses a 

simple crossover operator. The crossover may also generate infeasible layouts that have to be 

made feasible by swaps.  Thus it is possible that there may not be enough good children 

generated by the genetic process. In addition no mutation is used. As mentioned earlier mutation 

is useful in increasing diversity. Thus the lack of mutation could also explain its poor 

performance.  

 

7. Conclusion 

In this paper the application of a hybrid algorithm for solving the DPLP was investigated. While 

GA is an attractive solution tool for the DPLP, previous GA’s did not exploit the structure of the 

DPLP such as using DP in the crossover operator to create offspring, using CRAFT to generate 

mutations, and using Urban’s method to create an initial population (as explained in Sections 4.3, 

4.6 and 5.3 respectively). These techniques have proved to be effective in solving the DPLP in 

the past. In this paper the GA based hybrid algorithm uses an optimisation based crossover 

operator and modifies the method of mutation. By conducting some preliminary tests, good 

settings for the GA parameters were also identified. 

  



 

 

 

28 

Finally the proposed algorithm was compared with the GA’s of Conway and Venkataramanan, 

Balakrishnan and Cheng, and a recent SA algorithm. The results showed the proposed method to 

be promising as it performed better than the other GAs in every run for the larger problems. Thus 

it appears that the hybrid approach of combining GA with DP provides better results than using 

GA alone. This appears to be a result of exploiting the problem structure in both crossover and 

mutation. The use of Urban’s pairwise exchange to generate the initial populations also improves 

the quality of the solution. It also compares favourably with the SA algorithm, performing better 

for most small and medium size problems and for some large problems.  
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APPENDIX 1 

 Prob 1 Prob 2 Prob 3 Prob 4 Prob  5 Prob 6 Prob  7 Prob 8 Average 

Optimal 106419 104834 104320 106399 105628 103985 106439 103771 105224.4 

CVGA 108976 105170 104520 106719 105628
*
 105606 106439

*
 104485 105942.9 

NLGA  106419
*
 104834

*
 104320

*
 106515 105628

*
  104053 106978  103771

*
 105314.8 

GADP  106419
*
  104834

*
 104529 106583  105628

*
 104315 106447  103771

*
 105315.8 

SA 107249 105170 104800 106515 106282 103985 106447 103771 105527.4 
 

Table A1-1: The total cost of 6 department and 5 period problems  

 

 Prob 1 Prob 2 Prob 3 Prob 4 Prob  5 Prob 6 Prob  7 Prob 8 Average 

Optimal 214313 212134 207987 212530 212906 209932 214252 212588 212080 

CVGA 218407 215623 211028 217493 215363 215564 220529 216291 216287.3 

NLGA 214397 212138 208453 212953 211575 210801 215685 214657 212582.4 

GADP 214313 212134 207987 212741 210944 210000 215452 212588 212019.9 

SA 215200 214713 208351 213331 213812 211213 215630 214513 213345.4 
 

Table A1-2: The total cost of 6 department and 10 period problems  
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 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average 

CVGA 504759 514718 516063 508532 515599 509384 512508 514839 512050.3 

NLGA 511854 507694 518461 514242 512834 513763 512722 521116 514085.8 

GADP (R) 493707 494476 506684 500826 502409 497382 494316 500779 498822.4 

GADP (U) 484090 485352 489898 484625 489885 488640 489378 500779 489080.9 

SA 484695 486141 496617 490869 491501 491098 491350 496465 491092.0 

 

Table A1-3: The total cost of 15 department and 5 period problems  

 

 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average 

 

CVGA 1055536 1061940 1073603 1060034 1064692 1066370 1066617 1068216 1064626.0 

NLGA 1047596 1037580 1056185 1026789 1033591 1028606 1043823 1048853 1040378.9 

GADP (R) 1004806 1006790 1012482 1001795 1005988 1002871 1019645 1010772 1008143.6 

GADP (U) 987887 980638 985886 976025 982778 973912 982872 987789 982223.4 

SA 950910 947673 968027 950701 948470 948630 965844 956170 954553.1 

 

Table A1-4: The total cost of 15 department and10 period problems  
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 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Average 

CVGA 632737 647585 642295 634626 639693 637620 640482 635776 638851.8 

NLGA 611794 611873 611664 611766 604564 606010 607134 620183 610623.5 

GADP (R) 603339 589834 592475 586064 580624 587797 588347 590451 589866.4 

GADP (U) 578689 572232 578527 572057 559777 566792 567873 575720 571458.4 

SA 562405 569251 564464 552684 559596 592515 582409 578549 570234.1 

 

Table A1-5: The total cost of 30 department and 5 period problems  

 

  

Prob 1 

 

Prob 2 

 

Prob 3 

 

Prob 4 

 

Prob 5 

 

Prob 6 

 

Prob 7 

 

Prob 8 

 

Average 

CVGA 1362513 1379640 1365024 1367130 1356860 1372513 1382799 1383610 1371261.1 

NLGA 1228411 1231978 1231829 1227413 1215256 1221356 1212273 1245423 1226742.4 

GADP (R) 1194084 1199001 1197253 1184422 1179673 1178091 1186145 1208436 1190888.1 

GADP (U) 1169474 1168878 1166366 1154192 1133561 1145000 1145927 1168657 1156506.9 

SA 1122154 1120182 1125346 1120217 1158323 1111344 1128744 1136157 1127808.4 

 

Table A1-6: The total cost of 30 department and 10 period problems  
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Appendix 2 

 Period 1 
To --    1  2  3  4  5  6 
From 
1 0  63   605  551  116  136 
2 63  0  635  941  50  191 
3 104  71  0  569  136  55 
4 65  193  622  0  77  90 
5 162  174  607  591  0  179 

6 156  13  667  611  175  0 

 Period 2 
1 0  175  804  904  56  176 
2 63  0  743  936  45  177 
3 168  85  0  918  138  134  
4 51  94  962  0  173  39  
5 97  104  730  634  0  144 
6 95  115  983  597  24  0 

 Period 3 
1 0  90  77  553  769  139 
2 168  0  114  653  525  185 
3 32  35  0  664  898  87 
4 27  166  42  0  960  179  
5 185  56  44  926  0  104  

6 72  128  173  634  687  0 

 Period 4 
1 0  112  15  199  665  649 
2 153  0  116  173  912  671 
3 10  28  0  182  855  542 
4 29  69  15  0  552  751 
5 198  71  42  24  0  758 
6 62  109  170  90  973  0 

 Period 5 
1 0  663  23  128  119  50 
2 820  0  5  98  141  66 
3 822  650  0  137  78  91 
4 826  570  149  0  93  151 
5 915  515  53  35  0  177 
6 614  729  178  10  99  0 
 

 Shifting cost for departments 
887  964  213  367  289  477 

 

 Table A2-1: Material Flow and Shifting Costs 
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Table A2-2: Optimal solution for the problem in Table A2-1 
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 Figure A2-3: The physical layout for layout string 246135 

Period Layout String
 

1 2 4 6 1 3 5 

2 2 4 6 1 3 5 

3 2 4 6 1 5 3 

4 2 6 4 1 5 3 

5 2 1 4 6 5 3 


