Gonmtouein toe w Non Procedural Obhjact-orleanted batabans Hanlpils

Flun Lunpungs 00OLIN

I. Hiadlay

Dapartment of Computer Helence

Mlvernlty of Calgary

talpgary, Alharta, Canada

Mwbrwer aniners o oan wbifect or tented woo proceduat dat
P b bt o Inungunga callad OBOL/N nis pramented Hlis ws e
Faatiie g 1t 1 e Lanpuage allows Ffor condlrionnl Mmool bon ol
MU nhmc b Lt her with a quantitiad mat ob Tbtm pelalod] Juiba

e comubimetw vnqutred For this ware horirowad Trom a anpgape

b bwd g b e am fmplttettly objmct ortantad, hut ohioh wan
AEERInnl by dncnwtapad nwr an Alttampt nt a more natural yolat bonal
dutw fonwn Fattpange . The conatruetn hahdod HQL/N mre wme b owooos
M v ot o tantad data haman, and the 0801L/N Ihnpuap.
EPWebnee ww w connlt, allown for Incorporattion ot the o b b wnm
R b et e commonly uwed in nataral tanpanp. thal Iu
Pl b avnl qunnt 1t iers,

Kwywardn Lt buwe, objeel orlentad, naturnl quant i be)r won pioe e

sl Dwwpnnpe dqunnt bt ber, gUOL/N

Introduction

The object-oriented (00) approach to database management
evolved from the 00 approach to programming [1, 6, 7], and commer-
cial systems [2, 5, 10, 12, 13, 14, 15] are finding use in such ap-
plication areas as software engineering, document preparation and

management, and in the design and production of engineering parts.

A consistent feature of the 00 approach is that associated
with every object representation, which crudely corresponds to a
tuple in the relational approach [8, 9], is a system generated
identifier together with both 1lists of references, and individual
references, to the object identifiers of related objects.

In an 00 database, the relationships can be one-to-many,
binary many-to-many, ternary many-to-many, recursive many-to-many,
and ISA one-to-one relationships, as with relational databases.
However, unlike relational databases, these relationships are
defined by the supporting individual and lists of references, and
are all included in the conceptual database definition. Further-
more, the reference attributes supporting a relationship in the 00
database definition are two-way.

Typically 00 database systems involve a built-in 00 pro-
gramming language that is procedural [12, 13, 14], unlike non pro-
cedural relational database manipulation languages like SQL [9].
Because 00 databases do not consist of relations, it is not pos
sible to consistently apply SQL to them, although there has been a
notable attempt for the 0, 00 system [11].

The lack of a generally accepted powerful non procedural

language for 00 databases is thus a serious shortcoming, and con-

3

siderable effort is currently being devoted to remedying this
situation. Most attempts hithertoo have been based on modifications
to SQL [11]. In this paper a quite radical alternative is present-
ed, namely a language based on a modification of SQL/N.

SQL/N is a language that deals implicitly with objects [3].
It allows the use of natural quantifiers, and can be used, somewhat

unconventionally, with relational databases. However, with rela-

tional databases SQL/N is deployed in a manner not in the spirit of

the relational approach, because of its intrinsic object orienta-
tion; in reality an 00 viewpoint, which is quite different from the
relational viewpoint, is needed to use SQL/N effectively with rela-
tional databases. However, because of the intrinsic object orienta-
tion of SQL/N, it is a relatively easy matter to adapt it for use
with 00 databases.

The object orientation of SQL/N can be understood from the
following example. Suppose a relational database about oil com-

panies and wholely owned wells, as follows:

COMPANY (COMPNAME, INCORP)

WELL(COMPNAME , WELLID, TYPE)

The company attributes are company name and place incorporated. The

well attributes are company that owns the well, well identification

number and type of well (dry, oil, or gas). There is a one-to-many

(also referred to as 1l:n or parent-to-child) relationship between

company and well, based on the relationship attribute COMPNAME.
This is clearly relational database, but because it is

quite simple, we can view it in two distinct ways, either as a con-

4

ventional relational database , or as a crude 00 database. Thus it
can first be viewed simply as two distinct relations, with a common
relationship field giving rise to a 1:n relationship. This is the
conventional relational viewpoint. It can also be viewed, however,
as a collection of company tuples, each of which is associated with
a number of wells; in other words, it can be viewed as a collection
of objects, where an object is a company and its associated wells.

Now consider the retrieval: Find the place of incorporation
and name of each company whose wells are all dry.

The relational SQL expression deals with the two relations,

and must deal with all WELL tuples, as follows:

SELECT COMPNAME, INCORP

FROM COMPANY

WHERE COMPNAME NOT IN (SELECT COMPNAME
FROM WELL

WHERE TYPE NOT = 'DRY');

This expression, although impeccable from a point of view of con
ventional set theoretic logic, is hardly intuitively compelling,
and has to be thought about. And unfortunately, there is no simpler
way in SQL of expressing it.

The SQL/N expression deals only with the objects involved,

that is, to understand it, think of a company object and its asso-

ciated wells:

SELECT COMPNAME, INCORP

FROM [EACH] COMPANY [TUPLE]

WHERE FOR ALL RELATED WELL [TUPLES] (TYPE = 'DRY')

Thus the expression, although formal, is close to what we might
construct in English, where normal thought processes are in terms
of each individual object and objects related to that object.

As is well known, a major problem with SQL is incorporating
the universal quantifier, and the reason for this is largely the
non-object-orientation of the approach. However, because SQL/N is
intrinsically 00, it is an easy matter to include not only the
standard existential and universal quantifiers, but also the large
number of natural quantifiers that occur in natural language, such
as: for all but one, for a majority of, for at least six, for no,
and so on. Thus the following retrieval involves the natural
quantifier for most, or for the majority of:

Get the place of incorporation and name name of each company,
the majority of whose wells are dry.

In SQL/N, the above SQL/N expression can be reused, if we

merely change the quantifer FOR ALL to FOR MOST:

SELECT COMPNAME ., INCORP
FROM [EACH] COMPANY [TUPLE]

WHERE FOR MOST RELATED WELL [TUPLES] (TYPE = 'DRY');

This is possible because of an expression of this type intrinsical-
ly deals with an object - a company, and any quantity (specified by
the quantifier) of associated objects. Thus any of a large number

of quantifiers fit in naturally.

6
In contrast, with SQL, the relations COMPANY and WELL must

be considered in their entirety to handle this retrieval. We need
to count the wells that are dry, and those that are not dry, for
each company, and specify that the count of those that are dry ex-

ceeds the count of those that are not:

SELECT COMPNAME . INCORP

FROM COMPANY
WHERE (SELECT COUNT(*) FROM WELL

WHERE TYPE = 'DRY'

AND COMPANY.COMPNAME = WELL.COMPNAME)

(SELECT COUNT(*) FROM WELL
WHERE TYPE NOT = 'DRY'

AND COMPANY.COMPNAME = WELL.COMPNAME) ;

This somewhat oblique method of specification in SQL is the direct
result of the set theoretic orientation of the language.

SQL/N was originally designed to manipulate relational
databases. A severe disadvantage to the SQL/N approach with rela-
tional databases is the lack of any specification of a relationship
in the relational database definition, for a method of referencing
a specific relationship is needed in order to apply natural
quantifiers to it. With SQL/N and relational databases a subterfuge
or a patch [3], the details of which are not relevant here, was
needed here to allow reference to relationships. With an 00 data-

base such a subterfuge is unnecessary since relationships are ex-

7

plicitly detailed in the 00 database definition. This availability
of relationship definitions allows easy adaptation of SQL/N con-
structs to form a powerful non procedural language for manipulating
00 databases, as will be demonstrated. SQL is soundly based on con-
ventional set theory, which requires only the existential and uni-
versal quantifiers. SQL/N is also soundly based, but on a set
theory that allows the natural quantifiers [4]. This adaptation of

SQL/N to 00 data bases might be usefully called OSQL/N.

The project database

Before introducing the detailed 00 database definition used for il-
lustrating language constructs, a brief summary of 00 concepts is
in order. In the 00 approach, an object has a unique identity that
is independent of any values it contains [6,7]. An object normally
has associated attributes (sometimes called "instance variables"),
and, as in the relational approach, one of these attributes, or a
group of them, may be regarded as a primary key. However, because
every object has a unique identity, an object need not have a pri-
mary key. Instead, the database system will generate a unique ob-
ject identifier, which may or may not be accessible by the user,
depending on the database system employed.

As well as a possible primary key attribute, an object may
have either simple attributes, such as a quantity or a name, whose
type allows either literal numeric or alphnumeric values, or other
defined values, such as the type DATE : indicating a date value. An

object may also have collection attributes, such as sets or lists,

8

for example, the set of keywords in a document, or a list of object
identifiers to support a relationship. The relational approach does
not allow collection attributes.

These points can be illustrated by the database definition

in Figure 1 for the project database, which concerns document man-

agement.

Document: <«
doc#: Document;
title: STRING;
revised: DATE;
topic: STRING;
keyword: SET[STRING];
authlist: LIST[Person];
chaplist: LIST[Chapter];>

Chapter: <
chapi: Chapter;
doc#: Document;
title: STRING;
npages: INTEGER; >

Person: <

persi: Person;
doclist: LIST[Document];
pname: STRING;

position: STRING; >

Program: <

progi#: Document

title: STRING;

lang: STRING;

runlist: LIST{Run]; >
Run: <«

run#: Run;

prog# Program;

machine: STRING;

rundate: DATE; >

Figure 1

With the exception of cyclic or recursive relationships,
the database in Figure 1 contains the common types of relationships
that are encountered in 00 databases. It is a modified version of a
database used by Cattell in a discussion of 00 databases [7]. It
has 1:n relationships as well as a binary many-to-many and a sub-
type (ISA) relationship, this last relationship permitting utiliza-
tion of the inheritance concept in 00 databases.

The main object type is Document, where each object
represents a document. A document can have many chapters, with each
chapter represented by a Chapter object.

A person can be an author of a document. A person can au-

thor many documents and a document can be authored by many persons.

10

A person is represented by a Person object and the object Authact
enables the resulting many-to-many relationship between Document
and Person objects.

The object Program represents a computer program. Since a
program is a kind of document, the set of unique (system generated)
object identifiers (prog# values) in Program objects are to be
found among the set of unique object identifiers (doc# values) in
Document. Thus the object types Document and Program form a subtype
hierarchy, the relationship between the two being an ISA rela-
tionship. A Run object represents an execution of a program. Since
a program can be executed many times there is a 1:n relationship
between Program and Run.

Note the significance of the ISA relationship in the data-
base. Because of this relationship, a Program object inherits not
only the attributes of the corresponding Document but also each re-
lationship in which Document participates. Thus we can have both

legitimate requests involving attribute inheritance, such as:

"What are the titles of programs executed more than 100

times?"

and legitimate requests involving relationship inheritance:

"Who are the authors of C programs that have never been ex-

ecuted?"”

The names of the attributes in Figure 1 were chosen to make the

semantics self-apparent. Where this is not so, more detailed dis-

11

cussion later in the paper should clarify matters. Note that the
system generated object identifier for each object type is
specified in Figure 1 using the object type. Thus the object iden-
tifier doc# must have the type Document, and chap# the type Chap-

ter.

Language constructs for manipulation of simple objects

To retrieve information from a single object type, the syntax of

SQL can be used, except where a collection SET attribute is in-

volved in a condition. Thus the following could specify the

retrieval:

Get the titles of chapters with more than 10 pages:

select title [attribute] from [each] Chapter [object]

where pages > 10;

Where a diferent syntax is preferred, the essential syntactic terms

have to be:

{({Kitem-retrieved><object typed> ... ><condition>

Syntax for the case where a collective attribute is involved is

discussed in a later section.

Language constructs for 1:n relationships

12

Consider the portion database definition in Figure 1 that
includes the 1:n relationship between Document and Chapter objects.
In the object Chapter, the attribute chap#, although system genera-
ted, is taken as naming the object identifier for a chapter of a
document. Accordingly, the collective attribute chaplist in Docu-
ment, which is a list of chap# values, gives a list of the object
identifiers of the chapters of that document, so that the type of
chaplist must be LIST[Chapter]. Furthermore, in a Chapter object,
there is an attribute doc# with the type Document, that is, its
value must be a Document object identifier. The attributes
chaplist and doc# are reference or relationship attributes. They
are used instead of the primary and foreign keys of the relational
approach, and precisely define the 1:n relationship between the ob-
jects Document and Chapter.

Now suppose we are dealing with a specific Document object.
To specify a quantity of its chapters, that is, a quantity of its
related Chapter objects the construct needed must specify a where

condition or expression as follows:

{where-expression)>:= <quantifier><{related objects>{condition)

Thus if we wanted to specify a document where all chapers had ex-

actly 10 pages, this specification in principle has to be

{all-quantifier><{related objects>(pages = 10)

In the syntax of a computer language, the quantifier symbol could

be any common quantifier notation, such as FOR ALL ITS/FOR EACH OF

13
ITS. The condition specification would involve the attribute name,

a relational operator, and a literal value, such as: (page = 10).
To specify the <related objects>, where in English the
genitive expression {chapters of document> are used, a precise re-
lationship specification is needed, since there could be more than
one relationship between two objects. To explicitly specify the
relevant object of the relationship, only the reference list
chaplist is needed, but for ease of reading, the object name can be

included. Some syntactic possibilities for <(related objects> are:

{where-expression):=

{quantifier>{quantified xreference><{condition>

{quantified xreference):=

{child reference list><{object name>[objects]

{quantified xreference):=

{object name> [objects] [[listed] in] <child reference list>

These possibilities can be illustrated by the retrieval:
Get the document title for each document with at least 4
chapters with more than 10 pages.

In this case the required natural quantifier is FOR AT LEAST ITS 4:

select title from Document

where for at least its 4 chaplist Chapter [objects] (pages > 10)

14

select title from Document
where for at least its 4 Chapter [objects] [listed] in chaplist

(pages > 10)

There are clearly many other syntactic possibilities, although only
one semantic possibility. For the purposes of this paper we settle
on the first, as it appears to be the most easily understood by hu-
mans.

If the quantifier in the retrieval above is changed, to FOR
MOST OF ITS, for example, only the quantifier in the 00 predicate

need be changed, as in:

select title from [each] Document [object]

where for most of its chaplist Chapter objects (pages > 10);

A common case involves retrieval of the parent object conditional
upon both parent object attributes and related child objects. The
same <{quantified xreference> syntax as above is used, except for
the need to insert a simple condition. A simple example shows how
this is easily done: Retrieve the names of documents about data-

bases, where all chapters have at least 10 pages.

select title from Document

where topic = 'databases'

and for all of its chaplist objects (pages > 10)

In this case the inserted condition is: topic = 'databases'.

15

A formal syntax for where-expressions involving quantifica-

tion of related objects could therefore be as shown in Figure 2:

{where-expression>:=
{condition> <op> {quantifed xreference>
{quantified xreferenced:=
{reference>{object name> [objects]<condition>
{op>:= AND/OR
{referenced:= {parent identifier>/

{child reference list>

Figure 2

All of the above quantifier retrieval examples involved retrieving
data from a parent object, given conditions in an associated child
object, with a 1l:n relation. In such expressions we used the syntax
variable <child reference list>. The converse case involves
retrieval of a child, given conditions for the parent. Since for a
given object, there can be only one parent, or, if the database in-
tegrity constraints allow it, no parent, only two natural
quantifiers are needed to cover almost all contingencies, namely,
FOR ITS [ONE/ONLY] and FOR NO.

Exactly the same syntax as shown in Figure 2 above can be
used for child retrieval with a conditional parent, except that in-
stead of the syntax variable <{child reference list)>, which

specifies the list (such as chaplist) of related child objects, we

16

use the syntax variable <{(parent identifier>, which specifies a
reference (such as doc#) to the parent entity. Although the syntax
for <quantified xreference> is shown in Figure 2 in <where-

expression> as:

{quantified xreference):=

{reference><object named>[object]<condition)

the following is another equivalent possibility:

{quantified xreference):=

{object name> [object] [in] <{parent identifier><condition>.

These possibilities can be illustrated by the retrieval:
Get the number of pages for each chapter for the document
entitled 'database structures'.

We use the almost trivial quantifier FOR ITS [ONE]:

select chapter#, pages from Chapter
where for its one doc# Document [object]

(title = 'database structures');

select chapter#, pages from Chapter
where for its one Document [object] in doc#

(title = 'database structures);

Once more, there are clearly many other syntactic possibilities..

For the purposes of this paper we settle on the first, as it ap-

17

pears to be the most easily understood by humans. It was shown in
the formal syntax above for {(where-expression) in Figure 2.

Another common type of retrieval expression involves
retrieval of a child object where there is a condition in the child
object attributes, as well as a condition in the parent. We have
sufficient syntax in {where-expression) above to cover this, as il-
lustrated by the retrieval:

Get the names of chapters with more than 10 pages in documents

on databases.

select title from Chapter
where (pages > 10)

and for its one doc# Document [object] (topic = 'databases');

A further retrieval possibility involving a 1:n relationship
concerns retrieval from both the parent and child objects, for ex-
ample, in the retrieval:
Get the document name, chapter name, and number of pages for
each chapter with more than 100 pages in a document about data
bases.

The syntax already presented covers this:

select title, pages from Chapter, and title from Document
where pages > 100

and for its one doc# Document [object] (topic = 'databases')

With a 1:n relationship, a retrieval condition can require the non

existence of related child objects. For example, suppose we have:

18

Get the titles of documents about databases that have no

chapters.

Select title from Document
where topic = 'databases' and

for none of its chaplist Chapter objects (chap# > NULL)

We need a simple way of specifying non existence. One simple way
would be a NULL value such that all object identifier values for
existing objects exceed it. Then a simple test for existence would
be a condition that the object identifier exceeded NULL. This is

illustrated by the above retrieval expression.

Language constructs for many-to-many relationships

In the 00 approach, a many-to-many relationship can involve either
two objects, in the case where there is no intersection data, or
three objects, for the case where the third object type concerns
intersection data. Consider now the many-to-many relationship be-
tween a document and a person, where one or more persons can author
one or more documents. The two-object version of the relationship
is illustrated by the database definition in Figure 3a, as ab-

stracted from Figure 1, with the three object version in Figure 3b.

Document: <

doc#: Document;

title:
revised:
keyword:
chaplist:

authlist:

Person: <
pers#:
doclist:
pname:

position:

Document: <
doc#:
title:
revised:
keyword:

chaplist:

authlist:

actlist:

Authact: <
acti:
doc#:

persi#:

19

STRING;
DATE;
SET[STRING];
LIST[Chapter];

LIST[Person];

Person;
LIST[Document];
STRING;

STRING;

Figure 3a

Document;
STRING;

DATE;
SET[STRING];
LIST[Chapter];
LIST[Person];

LIST[Activity];

Authact;
Document;

Person;

>

20

payment: INTEGER; >

Person: <

pers#: Person;

doclist: LIST[Document];

actlist: LIST[Authact];

pname: STRING;

position: STRING; >
Figure 3b

In the case of no intersection data, the 00 approach simply treats
the many-to-many relationships as two symmetric one parent for many
children relationships. Thus the constructs for retrieving a parent
given conditions involving the children, as developed in the pre-
vious section, may be used with this kind of many-to many rela-
tionship - specifically we may use the <(where-expression) syntax
given in the previous section in Figure 2. As an example, suppose
the retrieval:

Get the documents about databases with more than two authors

who are systems analysts.

This can be expressed:

select title from Document
where (topic = 'databases')
and for at least its 2 personlist Person objects

(position = 'systems analyst')

21

A converse retrieval would be:
Get the name each engineer who has never authored any documents

about computers.

select pname from Person
where (position = 'engineer')

and for none of its doclist Document objects (topic = 'computers');

In the case of intersection data, there are simply two symmetric
1:n relationships, referring to Figure 3a, between Document and
Authact, and between Person and Authact. These can be handled 1like
normal 1:n relationships. However, some retrievals will require the
use of all three objects, and a nesting of quantified expressions.
The where-expression formalism given in the previous-section does
not cover unlimited nesting of quantified cross references, or even
no quantified cross reference. Two minor changes, as shown in Fig-
ure 4, allows it to do so, and thus give it quite general retrieval

power with both 1:n and many-to-many relationships.

{where-expression>:=
{condition>/<condition> <op> {quantifed xreference>
quantified xreference:=
{reference><object name> [objects]<{where-expression)
op:= AND/OR
{reference>:= (parent identifier)/

{child reference list>

22

Figure 4

For example, consider the retrieval:
Retrieve the name of each document about computers written by
one or more systems analysts, all of whom were paid more than
$100.

A further level of nesting is needed. By nesting the constructs al-

ready developed, in compliance with the (where-condition> syntax

above, we get the expression:

select title from [each] Document [object]
where topic = 'databases'
and for each of its authlist Authact objects
((payment > 100) and for its [one] pers# Person object

(position = 'systems analyst'))

It is useful to compare this expression with the equivalent rela-
tional SQL expression, if the database were relational (i.e. all

collection attributes are omitted):

SELECT TITLE FROM DOCUMENT
WHERE TOPIC = 'DATABASES' AND DOC# NOT IN
(SELECT DOC# FROM AUTHLIST WHERE
PAYMENT NOT > 100) OR PERS# NOT IN
(SELECT PERS# FROM PERSON

WHERE POSITION = 'SYSTEMS ANALYST'));

23

The nesting does not take place in a natural manner, and what is
more, the required negation of the implicit existential quantifier
means that we have to negate a complex predicate, and use De
Morgan's rules for negation of compound expresssions to do it cor-
rectly (examine carefully the use of the logical operator OR), none

of which complication is necessary with the 00 version above.

Language constructs for collection SET attributes

There is a (non-referential) collection SET attribute in the Docu-
ment object, namely keyword, as in Figure 1. Clearly, the rela-
tionship between documents and keywords is implicitly many-to-many.
Since keyword is a set, it can participate in set-theoretic condi-
tions. Thus, to handle sets, a condition in the syntax expression
in Figure 4 must allow for both a relational condition and a set-
theoretic expression. Thus the retrieval:

What are the names of documents with keywords 'tax' and 'file'?

could be expressed:

Select title from Document

where ('tax', 'file') in keyword;

Here the connective 'in' denotes set inclusion, as in SQL, so that
we have the set theoretic condition that the set ('tax', file') is
contained within the set keyword. The converse retrieval:

What are the document titles and keywords for documents about

24

databases?

could be expressed:

Select title [attribute], keyword [set] from Document

where topic = 'databases'.

Set-theoretic constructs with relationships

Even when not dealing with collection (set) attributes, there is
still a general need for set theoretic constructs with rela-
tionships in 00 manipulation languages, which we now address. For

example, the retrieval:

Retrieve the title of each document about databases where the
texts: 'objects', 'relations', 'keys', 'lists' are used for chapter

titles.

applied to the database in Figure 1 is set oriented. The retrieval
cannot be carried out using the {where-condition)> syntax in Figure
4, In passing it might be noted that SQL is ideally suited to such
retrievals, since it has a set-theoretic basis. Thus there is a
need to develop set-theoretic constructs for both 1:n and many-to-
many relationships with 00 data manipulation languages.
Considering the retrieval above, a database document is
retrieved if the titles of its set of Chapter objects contains a
specified list of values. The problem is a syntax for the expres-

sion 'the (set of) titles of its set of Chapter objects'. A

25

suitable syntax for this that, in addition, allows for further

nesting of expressions, is:

set [of]<child-attribute) [from] <child reference list)
{objectname> [objects]/
set [ofl<child-attribute) [from] <child reference list>

{objectname> [objects] where <(where-expression)

The second version allows for nesting.

The retrieval can now be constructed:

Select title from Document
where topic = 'databases' and
('objects', 'relations', 'keys', 'lists') in

set [of] title [from] chaplist Chapter [objects]

The second nested syntax expression above allows for much more

sophisticated, if unlikely, expressions:

Retrieve the title of each document about databases where the
texts: 'objects', 'relations', 'keys', 'lists' are used for the

titles of chapters, provided the chapters have less than 50 pages.

Select title from Document
where topic = 'databases' and

('objects', 'relations', 'keys', 'lists') in

26

set [of] title [from] chaplist Chapter [objects] where

npages < 50

This is, of course, very similar to the structure of the equivalent
expression in SQL, which, since it is fundamentally a set-theoretic
language, allows for the most general set theoretic conditions in a

simple and consistentmanner:

SELECT TITLE FROM DOCUMENT
WHERE TOPIC = 'DATABASES'
AND ('OBJECTS, 'RELATIONS', 'KEYS', 'LISTS') IN
(SELECT TITLE FROM CHAPTER
WHERE CHAPTER.DOC# = DOCUMENT.DOC#

AND NPAGES < 50)

In retrievals involving three objects, it is conceivable that the
condition (in the above example: npages < 50) could expand to in-
clude quantified related objects. The syntax presented allows for
this.

If we incorporate this additional syntax for general set-
theoretic conditions into that given in Figure 4, a complete where-

expression results, as shown in Figure 5:

{where-expression):=
{condition>/<condition> <op> <{quantifed xreference)
quantified xreference:=

{reference>{object name> [objects]<{where-expression>

27

op:= AND/OR
{reference>:= <{parent identifier>/<child reference list)
condition:= <relational condition)/<{set-theoretic condition}
set-theoretic condition:=

{collection attribute) in <{(set of values)>/

{(set of values> in <{collection attribute)/

{(set of values > in <{set of attribute values>
set of attribute values:=
set [of] <child-attribute> [from] <child reference list)

{objectname)> [objects]/

set [of] <child-attribute> [from] <child reference list>

{objectname> [objects] where {(where-expression)

The syntax is clearly recursive and can be expanded indefinitely,
to allow for any level of nesting of expressions. It could serve as

the basic definition of an O0SQL/N predicate.

Language constructs for handling inheritance

No new language constructs are needed for manipulation of in-
heritance. For example, consider the retrieval:
Get the names of authors of C programs that have never executed
on machine m&42.
Between Person and Document there is a many-to-many relationship,
and therefore, via inheritance, also between Persom and Program,
which is the relationship required for the retrieval. Furthermore,

the LIST attribute personlist in Person holds object identifiers of

28

Program objects, since these are also object identifiers of Docu-
ment objects. The retrieval can therefore be easily expressed as

follows:

Select pname from Person
where for at least 1 of its doclist Program objects
(lang = 'C' and for none of its runlist Program objects

(machine = 'm42'))

All expressions involving inheritance can thus be handled in this

way.

Summary

Language constructs for an 00 non procedural data base manipulation
language, that might be called 0SQL/N, has been presented. Lan-
guages based on these constructs can manipulate quantified rela-
tionships between objects in a manner close to natural language
manipulation of objects, and in a manner that allows for the use of
natural quantifiers. This is in contrast to SQL, which manipulates
relationships between objects in a set-theoretic manner that re
quires specification of which sets of objects are involved and
which are not involved. Languages based on this template can also
handle expressions that are primarily set-theoretic in nature - an
area where SQL is naturally suitable - but do so in an open-ended
manner that allows set-theoretic conditions to be further

qualified, if required, by conditions involving naturally

29

quantified relationships between objects. In consequence, an OSQL/N
language can be expected to have at least the retrieval power of
SQL, and be easier to read, since it would be closer to natural

language in construct.

REFERENCES

1. Abiteboul, S., Hall, R, IFO, a formal semantic data base model,

ACM Trans. on Database Systems, 12 (4), 1987.

2. Bancilhon, F., et al. The design and implementation of 0y, an
object-oriented DBMS, in "Advances in Object Oriented Database Sys-
tems,"” K. R, Dittrich, ed., Computer Science Lecture Notes 334,

Springer Verlag, New York, 1988.

3. Bradley, J. SQL/N and attribute/relation associations implicit
in functional dependencies, Int. J. Computer & Information Science

12(20), 1983,

4., Bradley, J. Recursive relationships and natural-quantifier set

theoretic expression techniques, Computer Journal, to appear, 1992,

5. Bret, R., et al. The Gemstone Data Management System, in
"Object-Oriented Concepts, Databases and Applications, W. Kim, F.H.

Lochovsky, Eds., Addison-Wesley, Reading, Mass, 1988.

30
6. Cardenas, A. F., McLeod, D. "Research Foundations in Object-
Oriented and Semantic Databases," Prentice Hall, Englewood Cliffs,

New Jersey, 1990.

7. Cattel, R. G. G. "Object Data Management" . Addison Wesley, 1991.

8. Codd, E. F. Relational databases, a practical design for produc-

tivity, CACM, 25(2), 1982, 109-117.

9. Date, C. J. "Introduction to Database Systems, 5th ed., Addison

Wesley, Reading, Mass., 1990.

10. Kim, W. et al. Features of the ORION object-oriented DBMS, in
"Object-Oriented Concepts, Databases and Applications, W. Kim, F.H.

Lochovsky, Eds., Addison-Wesley, Reading, Mass, 1988.

11. Lecluse, C., Richard, P., and F. Velez. 05, an object-oriented

data model, Proc. ACM SIGMOD Conference, 1989.

12. Object Design. ObjectStore Reference Manual, Object Design,

Inc., Burlington, Mass., 1990

13. Objectivity. Objectivity Database Reference Manual, Objectivity

Inc., Menlo Park, California, 1990.

14. Ontologic. ONTOS Reference Manual, Ontologic Inc., Billerica,

Mass., 1989,

31

15. Versant Object Technology. Versant Reference Manual, Versant

Object Technology Inc., Menlo Park, California, 1990.

