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ABSTRACT 

The electron transfer process, which occurs during oxygen evolution at Pt electrodes from water molecules in the 
double layer, is analyzed. The process proceeds by electron tunnel ing through an insulating anodic Pt  oxide film to the 
underlying Pt  metal as oxygen is evolved. The rate equation for the reaction is based on a model of quan tum tunnel ing 
through a barrier which is a composite of both the oxide film and the inner Helmholtz layer. For a barrier thickness of 
i0 A, the probability of tunneling decreases by a factor of three as the electrode potential increases from 1.29 to 2.01 V vs. 

RHE. This decrease is small when compared to the observed, ca. 10 ~, increase in current density for the same potential 
span. The current density is controlled primarily by the distribution of electron energy states of the reacting donor species 
which are water molecules in the inner Helmholtz plane. At a constant potential, the tunneling probability depends expo- 
nentially on the thickness of the potential barrier, and therefore the rate of the oxygen evolution reaction is strongly de- 
pendent on the Pt oxide film thickness. 

Although pla t inum is a poor catalyst for the oxygen evo- 
lution reaction (OER) compared to various metal oxide 
electrodes, it has served as a model electrode in studies of 
the mechanism of the OER and of catalytic factors affect- 
ing reaction rates. Despite this, the state of knowledge of 
the mechanism of the OER is not satisfactory. This is 
partly because of the variance in the kinetic data reported 
in the literature (1-12), as well as the complexity of the pro- 
cesses occurring at this electrode during oxygen evo- 
lution. 

In acid solutions, a linear E4og i relationship has been 
reported for OER with a Tafel slope of approximately 
2.3(2RT)/F (-120 mV at room temperature) for four to six 
decades of the logarithm of current  density (1-3, 6-11). This 
slope has been associated with the first electron transfer 
process being the rate-determining step with H20 in the 
double layer as the reactant (1, 2, 5, 10, 13), i.e., in a simple 
form 

S + H20 --> S . . .  (OH--H) + + e- [1] 

Here, S represents a site at the oxide film covered elec- 
trode surface. Brackets around the products in the step in- 
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dicate that the nature of the products in a rate-determining 
step, in principle, is not known. Although the pH depend- 
ence for this as the rate-determining step is expected to be 
zero, i.e., the rate of the reaction at any constant potential 
vs. a pH-independent  reference electrode should not vary 
with pH of solution, evidence has accumulated which 
shows that (d log i/dpH)E is not zero but  rather 1/2 (1, 4, 7, 
13, 14). Such a dependence leads to the fractional reaction 
order with respect to H30 § 

Furthermore, it is known that a thin (10-15/k), insulating 
Pt  oxide film covers the electrode surface in the potential 
region of the OER (13, 15-19) and that its presence hinders 
the rate of the OER (1, 4, 7, 13, 19). The rate decreases expo- 
nentially with the thickness of the oxide film (1, 4, 13). 
Thus, the following rate equation describes the kinetics of 
the OER in acid solutions (13) 

i = A[H30+] -1~2 exp (-mFq/(2RT)] exp [FE/(2RT)] 
= A[H30+] -1/2 exp [-~d] exp [FE/(2RT] [2] 

Here, q is the charge density equivalent to the oxide film 
thickness, d, and m [=(dE/dq)i] and d are experimentally 
available parameters (1, 4, 13). The electrode potential, E, is 
given with respect to a pH-independent  reference elec- 
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trode. The pre-exponential  factor, A, depends on the 
choice of the reference electrode but is pH independent.  

An important  characteristic of the OER at Pt is that a 
constant Tafel slope [2.3(2RT)/F] can be observed only 
when q, and hence d, is constant. This is achieved when an 
electrode is anodically pretreated, for instance with a con- 
stant current, ip, for some t ime (e.g., 2 h), and the E-log i re- 
lationship is subsequently determined at i < ip 
(1, 6, 7). During such a pretreatment,  an oxide film grows 
uniformly over the electrode surface according to the high 
field assisted ion migration mechanism of Cabrera and 
Mott to a thickness, d, of about 10/k (15-18). When E-log i 
data are subsequently determined at i < ip, the field within 
the oxide film sharply decreases and oxide growth essen- 
tially ceases (1, 7). E-log i measurements  for the OER are 
then taken at a constant d. The variance in the kinetic data 
in the literature for the OER at Pt, particularly when Tafel 
slopes are reported to be changing with potential even 
over a narrow range of current density (4), is probably re- 
lated to a variable thickness of the oxide film during the 
E-log i measurements.  

Another  characteristic of the OER at Pt  electrodes is that 
the reaction order with respect to hydrogen ions is nega- 
tive and fractional, i.e., -1/2. This fractional order cannot 
be accounted for by any common approach in electrode ki- 
netics. 

In this paper, an analysis is given of the kinetics of the 
OER in acid solutions, and a model  for charge transfer is 
suggested which accounts for the exponential  dependence 
of the rates on electrode potential and on oxide film thick- 
ness, as well as for the observed fractional reaction order 
with respect to H30 § It is based on a dual barrier model  at 
the metal]oxide film/solution interface and electron tun- 
neling through the oxide film. 

Dual Barrier Model  of the M e t a l / O x i d e  Film/Solution 
Interface 

The fractional reaction order with respect to H § in Eq. [2] 
is explained in terms of a dual barrier model. The dual bar- 
rier consists of an inner zone comprised of the oxide film 
plus the inner Helmholtz layer (IHL), in series with the 
outer zone, the outer Helmholtz layer (OHL) (1, 13). In this 
model, the first electrochemical step involving electron 
transfer from energetically activated water molecules in 
the inner Helmholtz plane (IHP) to the underlying metal is 
proposed to be the rate-determining step. Charge transfer 
(of H § across the outer barrier is fast, i.e., at all potentials a 
quasiequil ibrium exists between protons at the IHP and 
those at the outer Helmholtz plane (OHP) and solution. 
The diffuse double layer is ignored for concentrated solu- 
tions. Thus, only the Galvani potential difference across 
the inner barrier, herb, controls the reaction rate of the 
OER; as the electrode potential increases, only A~b~b in- 
creases, while the Galvani potential difference across the 
OHL, h$ob, remains constant (at a given pH). As pH in- 
creases, h~m remains constant for a given current density 
and thickness of the oxide film, while A~ob decreases 
60 mV as pH increases one unit (1). A schematic represen- 
tation of the potential distributions across the barriers is 
shown in Fig. i for two current density and two pH values. 
In this figure, E is the potential of the Pt electrode vs. a pH- 
independent  reference electrode. Eo denotes the potential 
at the IHP vs.  the same reference electrode [cf. (1, 13, 20)], 
and therefore ~ 

E - Eo ~ AEib = A~bib = (bM -- (~IHP [3]  

Potential difference E - Eo may be called the operative po- 
tential difference as only this difference determines the 
current density. 

Reaction Path for the OER 
The initial steps in the reaction path for the OER, based 

on the dual barrier model, is represented by reactions [4] 

For simplicity, in the relation [3], differences in chemical poten- 
tials of electrons in the metal, IHP and OHP are omitted. They will, 
as constant terms, appear in the pre-exponential factor. This, how- 
ever, will not affect the derivation of the rate equation for the OER 
and the conclusion drawn from it. 

0_ 

Oxide Film ,~ 

J 2 > i I 

8 

Helmlholtz 
Layer 

Solution 

pill < PH2 

pill 

pH2 I --[- 
Eo 

pH Independent 
Reference Electrode 

Fig. 1. A schematic representation of the model of the potential dis- 
tribution across the metal/oxide film/solution interface at two cd's and 
two pH's. For the same cd, the potential difference across the OF and 
IHL is the same at different pH's. The potential difference across the 
OHL, however, decreases 60 mV as pH increases one unit. At the same 
pH, the potential difference across the OF and IHL increases by 
120 mV as the cd increases ten times, while the potential difference 
across the OHL remains the same. Potentials within the oxide film at 
currents il and i2 are indicated. Broken line: pHz; full line: pill. E is the 
potential of Pt electrode vs. a pH-independent reference electrode. 

and [5], where the subscripts indicate the location of the 
species, and M stands for the Pt metal electrode, i.e. 

2H2Omp --> ( O H . . .  H30)~n P + e M [4] 

( O H . . .  H + 30)me + H2OonP ~ H2Omp + OHmp + H30~Hp [5] 

No particular significance should be attached to the details 
in the structure of the reaction products in the first step, as 
well as in the structures of the reactants and products in 
the second, fast chemical step, which is in a quasiequilib- 
rium. These equatives are meant  to indicate that charge 
transfer across the OHL occurs via a fast proton transfer 
step. 

Reaction [4] is the slow electrochemical step that pro- 
ceeds at a rate which depends on ACre, while reaction [5] is 
independent  of this potential. At a given film thickness, 
the rate equation for reaction [4] as the rate-determining 
step is given by [eft (1, 13)] 

i = k" exp [~FA~ib/(RT)] 
= k' exp [~F(E - Eo)/(RT)] [6] 

where [~ is the symmetry factor (-1/2), and k" and k' con- 
tain the pre-exponential  factor A from Eq. [2], and the ex- 
ponential term which depends on the oxide film thickness. 
It does not contain the proton concentration in solution. 
Factors k' and k" may differ in chemical  potentials of  elec- 
trons in the metal, IHP and OHP, as briefly discussed in 
footnote 1. This is not important, however, for the analysis 
of the kinetics presented in this paper. 

Eo is experimentally obtained; it is given by 

2 . 3 R T  
Eo = Eo,pH=o - ~ -  p H  [7] 

where Eo,pH_ 0 -0.96 V vs.  SHE (1, 13, 17-19, 20). When Eo is 
substituted into Eq. [6], the rate equation with the negative 
and fractional reaction order of -1/2 with respect to H30 + 
is obtained. 

Since the growth of the Pt oxide film obeys the formal- 
ism of the Cabrera-Mott model  of high field ionic migra- 
tion through the film (13, 16-19, 20), it follows that the oxide 
film, which is only about 10-15/~ thick (17-19), is a poor 
electronic conductor. Because the OER occurs at very 
high rates, electrons needed for the reaction must  tunnel 
through the oxide film from donor states in solution to the 
underlying metal. It is important  to distinguish the present 
model  from those based on electronically conductive ox- 
ides in which electrons required for an electrochemical re- 
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Fig. 2. Typical Tofel lines for oxygen evolution (1, 6, 7). 

action, such as the OER, migrate through the oxide film 
[cf. (21-23)]. 

Electron Tunneling through Thin Oxide Films 
A rate equation based on quantum mechanical  concepts 

of electron tunnel ing through an insulating barrier can be 
derived for the suggested reaction scheme for the OER. 
Such a rate equation must  be consistent with four major 
observations discussed above. First, it must  yield a Tafel 
slope close to 2.3(2RT)/F for over six decades of current 
density without  any noticeable deviation from linearity 
(see Fig. 2). This is equivalent  to the requirement  that Tafel 
slopes are independent  of electrode potential, i.e., ~ # ~E). 
Second, the logarithmic dependence of the rate on oxide 
film thickness must  follow from such a derivation. Third, 
the negative and fractional reaction order (-1/2) with re- 
spect to HaO + must  be obtained. Four, the rates should be 
consistent with the relatively low values of the exchange 
current densities found for the OER at Pt electrodes. 

In this work, we use the basic concepts of Gurney (24) 
and Gerischer (25), and the developments of Bockris and 
co-workers (26-28), concerning the tunneling process at 
metal/solution interfaces. The present paper extends these 
to electron tunnel ing through a composite barrier consist- 
ing of a metal oxide film and the IHL. In a similar study, 
Vetter and Schultze (29) derived a rate equation in which 
Tafel slopes increase with electrode potential. In addition, 
their rate equation does not satisfactorily account for the 
observed pH dependence of the OER. 

The electron tunneling current at a given electrode po- 
tential is usually writ ten in the form (24-30) 

kT s 
i(E) = v K - -  eo N(e)S(O[1 - 9%)]W(e,d)de 

h 
[8] 

Here, K is the transmission coefficient, v the stoichiometry 
number,  and eo the electron charge. Other symbols in front 
of the integral have their usual significance. N(e) is the dis- 
tribution of electron energy levels, e, for donor species. 
Donor species are considered to be H20 molecules, or their 
aggregation, in the IHP (see reactions [4] and [5]). S(e) is the 
density of electron states in the metal, and [1 - f(e)], where 
f(O is the Fermi distribution function, represents the prob- 
ability that electron states in the metal with energy, e, are 
vacant. W(e,d) is the probability that an electron with 
energy, e, will penetrate a po.tential energy barrier of thick- 
ness d. 

It will be shown below that the S(e) function can be re- 
moved from the integral and placed in front of it, in which 
case the discussion of the current will be based on the fol- 
lowing rate expression which holds for a constant elec- 
trode potential, and hence for a constant electron energy at 
the Fermi level 

i(E) = k s N(e)[1 - JIe)]W(e,d)de [9] 

l ~,E=Sa ~ 
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Fig, 3. A model for electron tunneling across the OF and IHL barrier 
for two values of electrode potential, E. As the potential increases 
120 mV, the electron energy at the Fermi level~ FL, of the metal de- 
creases 120 mV, and the average barrier height, VAv, which is deter- 
mined from the FL, increases 60 mV. At the same time, the density of 
electron states in solution, N(e), at the FL, and at any be relative to the 
FL, increases ten times. This increase in N(e) as E increases leads to 
the observed linear E-log i relationships having a predicted slope of 
120 mV/dec, x is the distance from the metal/oxide film interface. 

Here, k is a constant containing, among others, the S(e) 
function. Equations [8] and [9] are writ ten for the anodic 
process. The reverse, cathodic process need not be con- 
sidered as the rates for the reverse process are many orders 
of magni tude lower (e.g., 10 TM, depending on electrode po- 
tential) than are the rates for the OER at potentials which 
are far removed from the reversible potential. 

Each function in Eq. [9] will be analyzed in turn to deter- 
mine its weight  in the integration, and its effect on the rate 
of reaction at different potentials. Figure 3 depicts the po- 
tential energy barrier for electron tunneling at an oxide- 
covered electrode and illustrates the significance of vari- 
ous parameters used here. 

Effect of the Tunneling Probability on the Reaction 
Rate 

The probability function can be analyzed using the 
WKB-Gamov approximation (28, 30). For electrons in the 
donor species with energies he above, or below, the elec- 
tron energy at the Fermi level in the metal electrode, er, it 
is 

W(he,d) = exp { [-4"rr(2me)Wh] " f :  [V(x) - he]U2 dx}[ lO] 

V(x) is the height of the potential energy barrier, also meas- 
ured with respect to EF, experienced by a tunneling elec- 
tron at a distance x from the metal/oxide film interface 
(Fig. 3). Coordinate x extends up to the IHP. It is assumed 
that all reacting donor species are effectively located at the 
IHP at the same distance from the metal surface. The con- 
stant me is the mass of an electron. 

Since V(x) is not known, following the common practice, 
it is approximated by the following linear expression 
[cf. (26, 28, 29)] 

eoA~ib 
V(X) = Vx=o + x [11] 

d 

Here, 17==o is the height of the potential energy barrier at 
x = 0. Since hcbib changes with electrode potential (cf. Eq. 
[3]), both V(x)and W(Ae,d) also vary with the electrode po- 
tential. As the electrode potential increases, the energy of 
the Fermi level with respect to the electron energy in vac- 
uum moves toward lower energies, as illustrated in Fig. 3. 
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Since V==o is defined 2 with respect to the Fermi level of 
the metal, it remains constant at all potentials. However, as 
the electrode potential increases, the slope of V(x) also in- 
creases and this leads to an increase in V(x) at any other 
distance from the metal/inner ~)arrier interface. Conse- 
quently, as V(x) increases the probability for the same he 
decreases (see Eq. [10]). Contrary to this, for any constant 
value of e referred to the electron energy in vacuum, and 
not to the Fermi level, the probability increases as the elec- 
trode potential increases. The former dependence of W(Ae) 
on electrode potential tends to decrease, the rate of the 
OER as the electrode potential increases. However, since 
the rate of the OER increases with the electrode potential, 
other parameters in Eq. [9] must  lead to an increase in the 
rate of reaction as the electrode potential increases, and 
must  show a much stronger dependence on electrode po- 
tential than W(Ae,d) does. 

It will be shown below that the major function determin- 
ing the dependence of the reaction rate on electrode poten- 
tial is N(e). This function increases exponentially with the 
electrode potential and by itself gives an E-log i relation- 
ship with an 'ideal,' potential-independent,  Tafel slope 
dE/d log i of 2.3RT/(~F), providing ~ is invariant with E. 
The decrease of W(he,d) with increasing electrode poten- 
tial, which is discussed in the preceding paragraph, is then 
expected to be algebraically added to the increase in the 
rate arising from N(e) and in that way to modify the 'ideal'  
Tafel slope. As the potential increases, the slope should be- 
come larger than predicted for the 'ideal' slope. Only if 
W(he) decreases exponential ly with E will the Tafel slopes 
remain constant and independent  of E. Since the observed 
Tafel slopes are so close to the 'ideal' slope, and since no 
chafige in slopes with electrode potential is observed, it 
follows that W(he) is a very weak function of E and that it 
varies nearly exponential ly with the electrode potential 
(see below). To verify this, the dependence of W(he,d) on he 
and E, and the effect of W(he,d) on the rate of the OER and 
the Tafel slope, can be estimated in the following way. If 
V(x) for a given electrode potential is replaced by an aver- 
age barrier height, VAv, above the Fermi level (cf. Fig. 3), 
which is also a common practice in studies of electron tun- 
neling, then Eq. [10] becomes 

W(A~,d) = exp [-4~d(2m~)l/2(VAv = he)l12/h] [12] 

As expected, at constant d, the larger VAv, the lower is the 
probability that an electron with energy eF (i.e., for he = 0) 
will penetrate the potential energy barrier. For electrons 
with energies above the Fermi level, (i.e., for he > 0), 
W(VAv,d) is higher than for he = 0. However, even in this 
case when he is much less than VAv, i.e., for high potential 
energy barriers. W(he,d) is essentially unaffected by Ae, and 
Ae in Eq. [12] can be omitted and still have a fairly accurate 
estimate of the value for W(he,d). Moreover, for high 
energy barriers, the changes in VAv by ehE/2 when the elec- 
trode potential increases by hE is usually small and an ad- 
ditional level of approximation is introduced by regarding 
W(VAv,d) as independent  of electrode potential (see below). 
In view of this, W(e,d) in Eq. [9] can be placed in front of the 
integral sign. 

The dependence of the rate of the OER on the barrier 
thickness arises solely from W(Ae,d) (cf. Eq. [2], [9], and [16]). 
None of the other functions in Eq. [9] depends on d. There- 
fore, the exponent  in Eq. [12] can be compared directly 
with the exponent  containing d in the experimental  rate 
equation (Eq. [2]). In the approximation that Ae is small 
compared to VAv, this comparison leads to 

41Td(2m~)I/2V~2v mFq 
- - -  - ~d [13] 

h 2RT 

Parameters m and 3 have been experimental ly determined 
(13, 17, 19). Since Vnv changes with electrode potential, nei- 
ther 3 nor m are expected to be constant, but  rather they 
should increase as E increases. However, no such increase 
in ~ and m has been detected experimentally [cf. (1, 13)]. 
This shows that although VAv increases with E even over 
several hundred mV's (see Eq. [15]), Vnv is so large that the 

Here and in other works on similar subject. 
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increment  in VAv does not noticeably affect ~z1/~ --AV, as dis- 
cussed in the previous paragraph. 

From ellipsometric studies of oxide film growth at cur- 
rent densities of 1.5 • 10 -~ A/cm 2 and 1.5 • 10 -4 A/cm ~, 
Ward et al. found ~ = 1.7 A -1 (17, 19). Using this value, 
Eq. [13] yields VAv = 2.75 eV for this current density region. 
The potential of the Pt  electrode in this region is about 
1.65 V vs. RHE (see Fig. 2). In rotating ring-disk studies, m 
(-300 VC -1 cm 2) and q (2 mC/cm 2) corresponding to a 
thickness of the oxide film of about 10 A were determined 
(13). With these parameters, VAV for the same current den- 
sity region is calculated to be 2.90 eV, which is in close 
agreement with VAv obtained from the ellipsometric data. 
With VAv = 2.85eV at 1.65V, W(he = 0, d = 10,~) is 
3.1 • 10 -~. The significance of this very low value for W will 
be discussed further below. 

To check the earlier assumption that he does not signifi- 
cantly affect W(he,d), and that it can be omitted from 
Eq. [12], W(he,d) is calculated for the same values of d and 
VAv, as in the preceding paragraph, but at varying values of 
he. Assuming, for example,  that he = 0.240 eV, i.e., that an 
electron tunnels from an energy level 240 mV above the 
Fermi level, Eq. [12] then yields W(he = 0.24, d = 10/~) = 
6.5 • 10 -8. Thus, the probability function increases by a 
factor of two as he increases by 240 meV. However, as will 
be seen below, for the same increase in he, the number  of 
electrons available for tunneling decreases by two orders 
of magnitude. This small change in W for a large change in 
electron energy justifies the omission of he in Eq. [12]. 

It is seen from Fig. 3 that as A~)ib changes by ~(h4)ib), VAv 
changes by 

hVAv = 1/2[e~(h(~ib)] [14] 

Since ~hr is equal to hE (cf. Eq. [3]) 

hVAv = 1/2[ehE] [15] 

This relationship is used above to calculate VAv and will be 
used below in the analysis of the dependence of W(Vav) on 
E. 

With VAv = 2.85 eV at E = 1.65 V and he = 0, the depend- 
ence of W(VAv,d) on electrode potentials can be explored. 
In Fig. 4, a plot of log W(VAv,d) vs. VAV is shown for d = 
10 A, and for VAv in the range 2.85 +- 0.180 eV. This range 
corresponds to the span of electrode potentials from 1.29 
to 2.01 V, i.e., 360 mV above and below the test potential of 
1.65 V. It is calculated that W(VAv,d) over this potential 
range decreases by a factor of 3. Experimentally,  over the 
same potential range, the rate of the OER increases by six 
orders of magnitude. This clearly shows that W(VAv, d) is 
only a very slowly varying function of E. 

The second derivative of log W(VAv,d) with respect to 
VAv, and hence with respect to E, is greater than zero and 

vAv leVI 
2.73 2.79 2.85 2.91 2.97 3.03 

: - 

-.-e J I I I I I 
1.29 1.41 1.53 1.65 1.77 1,89 2.01 

Electrode Potential |V] 

Fig. 4. The dependence of the probability function, W(VAv;d), on the 
height of the potentiol energy borrier, VAv, when the borrier thickness, 
d, is constont ( =  ] 0 ~). The spon of VAv from 2.67 to 3.03 eV corre- 
sponds to the range of electrode potentiol, E, from ] .29 to 2 .0]  V vs. 
RHE. Note, W(VAv,d = const) decreoses as E increases. 
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consequently the log W vs. E lines are expected to be con- 
cave down. The Tafel lines in the E vs. log i plot, should 
then be concave up. However, in a narrow range of VAV log 
W(VAv) is nearly linear with E, and therefore no deviation 
of Tafel lines from linearity is either expected or observed. 
Nevertheless, because W decreases with E, the magnitude 
of the Tafel slope is altered by the change in W. For exam- 
ple, a decrease in W by a factor of 3 when E increases from 
1.29 to 2.01 V should cause the Tafel slope to increase by 
ca. 9 mV per decade of current density, as compared to the 
value that would be expected if W were independent  of E. 
Thus, assuming that the Tafel slope with a potential- 
independent  W(VAv,d) is 120 mV/dec, the slope with a po- 
tential-dependent W(VAv,d) should be about 129 mV/dec of 
current density. Since the probability function contributes 
only 9 mV/dec, and since the Tafel slope is experimentally 
found to be close to 120 mV/dec, it follows that the symme- 
try factor, ~, is not 1/2 but  is slightly higher, i.e., [120/(120-9)] 
x 0.5 = 0.54. 

W(VAv,d) has been calculated for five barrier thicknesses, 
i.e., 6, 8, 10, 12, and 14/~, has a function of VAV (Fig. 5). It is 
seen that as d increases W(d) at any VAv decreases sharply. 
More significantly, however, d log W/dVhv increases (in ab- 
solute values) as d increases. In view of the foregoing dis- 
cussion, this means that the correction to the Tafel slopes 
is smaller for a thin barrier than it is for a thick one. In 
other words, for the same ~ electrodes with thicker bar- 
riers should have higher Tafel slopes than electrodes with 
thinner ones. No clear evidence for such deviations of the 
Tafel slopes with thickness of the oxide film has been re- 
ported for Pt electrodes [cf. (7)]. Carefully conducted ex- 
periments with controlled oxide film thicknesses may be 
required here. 

Role of the Electron Energy Level Distribution in 
Solution and the Fermi Funchon on the Rate of the OER 

For the distribution function, N(�9 of the occupied elec- 
tron energy levels associated with the reacting species at 
the IHP, the following expression originally suggested by 
Gurney (24) is used in this study 

N(�9 = N(eo) exp [-~(e - eo)/(kT)] [16] 

10--4 
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I I I I I I I 

d=6A 
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t4A 
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Fig. 5. The same as in Fig. 4 but for d = 6, 8, 10, 12, and 14 ~. At 
the same E, end hence at the same VAv, W(VAv) decreases sharply as d 
increases. For small thicknesses, the variation in W(VAv) is less pro- 
nounced than for larger thicknesses. 

N(eo) is the normalized dimensionless density of states hav- 
ing ground state energy eo with respect to the electron 
energy in the vacuum (Fig. 3). The Fermi function, f(�9 for 
the occupied electron states in the metal is given by 

1 
f(e) - [17] 

�9 - -  � 9  
1 + e x p - -  

k T  

where �9 is the energy of the electrons at the Fermi level of 
the metal electrode. 

When N(e) and f(e) are introduced into Eq. [9], the follow- 
ing rate equation is obtained 

i = k' exp [-~(e - eo)/(kT)]{exp[(e F - e)/(kT)] + 1} -1 
[18] 

where k' contains, among other factors, W(VAv) and N(eo). 
This equation can be integrated analytically between finite 
limits, and it can be shown that, over large limits of inte- 
gration, the numerical  value of the integral does not 
change significantly. The ratio of the currents obtained 
when the integration is carried out from eo to e >>  eF, and 
from eF to �9 >>  eF is only ~r/2. One reason for this is that, at 
any temperature, a nearly equal number  of vacant levels 
are available below the Fermi level as there are occupied 
levels above it, and the contribution to the total current 
from energy levels -+ k T  outside the Fermi  level is negligi- 
ble. It is therefore sufficient to integrate  only from �9 to 
evaluate the dependence of the current on E for a given d. 

When the dependence of current  density on �9 (or on E) is 
sought, the dependence on the Fermi function can also be 
removed from the integral, provided the integration is car- 
ried out from �9 Integration with this approximation com- 
pared to integration with the Fermi function included in 
the integral leads to the same exponential  rate equation, al- 
though with a different value of the pre-exponential  factor 
(which is potential independent). This is because f(�9 shifts 
in harmony with E. As E increases, e.g., by - 2.3(2RT/F), the 
number  of electrons transferred per unit t ime from each 
electron level in solution increases by about factor 10. 

The following rate equation for a given �9 is now ob- 
tained from Eq. [18] 

i = k ~ exp [-~d] exp [-[~(�9 - �9 [19] 

where k ~ contains the concentration terms of the reacting 
species, which is approximately given by N(eo), and all 
other constants discussed above. It also contains the re- 
maining constant parameters of W(VAv,d). However, k ~ is 
not a function of pH. It should be emphasized that eF, 
which is the electron energy with respect to the vacuum at 
the Fermi level, changes with the electrode potential. It de- 
creases as electrode potential increases (see Fig. 3). The 
next  step is to relate �9 to an electrode potential. 

It is sufficient to relate only one electron energy level in 
the electrode to an electrode potential. Following Loh- 
mann (31) and Gerischer (32), electron energy at the Fermi 
level of the standard hydrogen electrode is -4.5 eV. The 
Fermi level energy at the potential E vs. SHE is then given 
by 

�9 F = - e E  + eF,SHE [20] 

where �9 is the electron energy at the Fermi level of the 
SHE. 

Introducing eF from Eq. [20] into Eq. [19], it is obtained 

[~FE]  
i = k ~ exp [-~d] exp [[~(eo - e~,SHE)/(kT)] exp [ ~ - - j  

[21] 
Since Eq. [19] is derived without taking into account the 
dual barrier model, and since in this model  only a part of E, 
namely, E - Eo, operates across the inner barrier and can 
be regarded as the operative electrode potential, 3 E in 
Eq. [21] is now replaced with E - Eo. This replacement 
yields 

3 In the sense that only this part controls the change of current 
density with electrode potential at a given pH. 
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i = k exp [-~d] exp r I~F(E - Eo) / 1 
L R T  J 

[22] 

Here, factors with electron energies are included into the 
constant k. 

It should be emphasized that in the double-barrier 
model  Eo represents the potential difference across the 
OHL, where the parallel process to electron transfer 
through the oxide film, the proton transfer occurs. This lat- 
ter process is fast, in quasiequilibrium, and as such the net 
rate across the OHL at a given pH is potential indepen- 
dent. Nevertheless, and just  because of this equilibrium, 
the potential across the OHL and hence, Eo, decrease (by 
2.3RT/F) as pH increases by one unit (see Eq. [7]). This po- 
tential difference operates outside the rate-determining re- 
action zone, i.e., outside the inner barrier zone, and there- 
fore should be eliminated from the rate equation which is 
solely controlled by the processes in the inner barrier zone. 

Returning to Eq. [22], it can be seen that for a constant d, 
and with the symmetry factor close to 1/2, this rate equa- 
tion leads to the observed rate equation for the OER and 
gives a Tafel slope of ca. 120 mV/dec of current density. 
The observed exponential  dependence o f / o n  d then arises 
only from the dependence of W(VAv,d) on d. 

Equation [22] appears to indicate the zero reaction order 
with respect to H~O § However,  since Eo measured with re- 
spect to a pH-independent  reference electrode changes 
with pH according to Eq. [7], the current as given by 
Eq. [22] becomes pH dependent.  Combining Eq. [7] and [22] 
one finally obtains 

i :  K[H30+) -~ exp [-~d] exp r l/-~FEo.pn=0/ exp r I/~FE/ 
L R T  J L R T  J 

[23] 

and with ~ ~ 1/2 

i = A[H30]-l/2 exp  [-Bd] exp  [ F~RT] [2] 

which is the rate equation experimentally observed. 
In the present model, the pH dependence of the OER is 

l inked to the change of the potential difference across the 
OHL. With ~b in solution independent  of pH, ~biH P decreases 
as pH increases, and with respect to a pH-independent  ref- 
erence electrode, Eo(=~b]Hp-d~sol) becomes pH dependent.  It 
may be noted that this dependence of Eo on pH is formally 
equivalent  to the change of potential in an outermost inter- 
facial layer facing the electrode surface due to acid-base 
equilibria [cf. (33)]. The observed pH dependence of the 
OER at Pt electrodes in acid solutions is, therefore, not di- 
rectly due to the participation of H30 + in the rate-deter- 
mining step. Rather, it is due to the change of potential 
outside the rate-controlling reaction zone. 

The distribution function N(e) is judiciously selected in 
this work as no other function will allow for the linear 
E-log i relation which is experimental ly observed. This 
function with ~ ~ 1/2 yields for the first step as rate-deter- 
mining a Tafel slope close to 120 mV. In this model, Tafel 
slopes are only insignificantly modified by the probability 
function, W(e,d), which also accounts for the dependence 
of the reaction rate on the thickness of the oxide film. 

The Exchange Current Density at Oxide Film Covered 
Electrodes 

The major reason why the OER at Pt  electrodes is a slow 
reaction, as compared to many other reactions at the same 
electrode, is the presence of the insulating Pt oxide film, 
which together with the IHL controls the tunneling proba- 
bility. With B = 1.7 A 1, W(d) for an oxide film 10 A thick is 
about 4 • 10 -8. For such electrodes, the exchange current 
density is about 10 -l~ A/cm -2. It follows that, could the 
oxide film be eliminated, the exchange current density 
would be about 2 x 10 -3 A/cm -2. This rate is comparable to 
the rates of some redox reactions and of the hydrogen re- 
action at Pt  electrodes and suggests that the same basic 
mechanism for charge transfer is operative in all of these 

cases. It should be noted that the rate of the OER is not 
controlled by the tunneling process itself, which is a fast 
process, but by the requirements  to bring the reacting spe- 
cies from the ground state in solution to the activated 
states, i.e., by N(e). 

Additional Comments 
Charge transfer during the OER at an electronically in- 

sulating oxide film covering an electrode is depicted in 
Fig. 3. As E increases, e.g. by 120 mV, the Fermi level (and 
the bot tom of the conduction band) decreases by 120 meV 
relative to the electron energy associated with the reacting 
water molecules at the IHP. Thus, more electrons from the 
occupied levels in the solution can tunnel  to the vacant 
electron levels in the metal. As E increases by 120 mV and 
the energy at the Fermi level with respect to the vacuum 
decreases by 120 meV, the number  of electrons with 
energy he above (or below) the Fermi level increases (de- 
creases) ten times. 

The partial currents associated with the charge transfer 
from any level then increases (decreases) by a factor often,  
and therefore the total current increases (decreases) ten 
times. This shows that, at a constant film thickness, N(e) is 
the dominant  factor in determining the change of rate of 
the OER with E, and it controls the Tafel slope. The Fermi 
distribution function affects the current in the same man- 
ner at all potentials and therefore does not affect the Tafel 
slope. The S(e) function also moves in harmony with elec- 
trode potential and affects the current at all potentials in 
the same way. For this reason, it is removed from the inte- 
gration. W(e,d) affects the magnitude of the current density 
but that effect is close to be independent  of electrode po- 
tential. Therefore, the Tafel slope is basically independent  
of the electrode potential and the oxide film thickness. 

Vetter and Schultze studied the OER at Pt  electrodes in 
some detail (4, 29). They used potentiostatic pulses to de- 
termine the current for oxygen evolution as function of the 
electrode potential, and coulometrically determined the 
thickness of the oxide film. The Tafel slopes in their work 
are greatly affected by the oxide film thickness and elec- 
trode potential. For thin films, e.g., -<6 A, the slope is 
90 mV/dec, i.e., ~ is greater than 0.5. For thicker films at 
low potentials, the slopes are close to 120 mV/dec, i.e., ~ = 
0.5. However, as the potential increases, ~ increases from 
0.5 to ca. 0.63. Both observations are at variance with the 
results of other workers (1-3, 6-11), which have shown that 
the Tafel slope is close to 120 mV over a number  of dec- 
ades of current densities. They are at variance also with the 
present analysis, which shows that the Tafel slopes should 
not be greatly affected by the oxide film thickness, and 
that they are basically independent  of the electrode poten- 
tial. These differences in the experimental  data are most  
likely due to different measurement  techniques and 
changes in the thickness of the oxide film during the deter- 
mination of a single E-log i relationship. They may also be 
related to the much higher current densities to which the 
Tafel lines in Vetter and Schultze's experiments were ex- 
tended (up to 1 A/cm-2), perhaps leading to a change in 
characteristics of the Pt oxide film. 

Vetter and Schultze (29) considered a similar model  of 
charge transfer through the oxide film as used in this 
work, and calculated the dependence of current density on 
E. In contrast to the present work, they assumed that the 
distribution of the donor electron energy levels in solution 
is Gaussian, and using a parabolic approximation, they ob- 
tained 

= RT/F d in i/dE 

= -2(e - e~ . . . .  )eo/(4Ereorg) 

= -2(~ - Ereorg)eo/(4Ereor~) [24] 

Here, E~ .... = E ...... ible + Ereorg/2, Ereorg being the donor reor- 
ganization energy, given as 1.8 eV, and ~1 is the overpoten- 
tial for the OER. It follows that only at ~ = 0 and ~ = 0.5, 
i.e., only at low potentials, is the Tafel slope expected to be 
close to 120 mV/dec. As ~ increases, ~ should decrease and 
the Tafel slope should increase. For instance, at ~ = 0.6 V, 
it is expected that ~ = 0.33 and the slope should be about 
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180 mV/dec. Even with a smaller Ereorg, the slope should in- 
crease noticeably above 120 mV/dec, which is not ob- 
served in their own experiments.  It was pointed out by Gil- 
roy that the theoretical equation based on a Gaussian 
distribution involves the product d~/E in the exponential, 
whereas the experimental  results of Vetter and Schultze 
preclude an interaction term of this type (34). 

In the derivation of the rate equation for the OER at ox- 
ide-covered electrodes, Schmickler (35) expanded the 
square root in the WKB-Gamov approximation and ob- 
tained an expression for the tunnel ing probability. It fol- 
lows from that expression that the probability decreases 
exponentially as the electrode potential increases. From 
his rate expression, ~ is given by 

2k Td(2me) 112 
= 1/2 [25] 

hV~ 2 

where VB is the average barrier height above the Fermi 
level at zero overpotential, and other symbols have the 
same significance as above. It follows that as d increases, 
should decrease and, hence, the Tafel slope should in- 
crease. An increase in the Tafel slope with film thickness 
was reported by Vetter and Schultze (4, 29). In the current 
density region from about 3 • 10 -~ A/cm 2 to 3 • 10 -1A/cm 2, 
they reported a slope of 90 mV/dec for d = 4.9 A, and a 
slope of 120 mV/dec for d = 7.1 A at low current densities. 
However, at both thicknesses, ~ -> 1/2. This change of 
slopes with the oxide film thickness is not in accord with 
Eq. [25], which predicts that at any thickness and at all po- 
tentials, ~ < 1/2, i.e., the Tafel slopes should always be 
greater than 120 mV/dec. 
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