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Abstract 

In studying dynamical systems, mathematicians are often faced with what seems 

to be impossible integrations. Recently these problems have been attributed to the 

phenomenon of "Exponentially Small Splittings" of the orbits in the phase space. 

It seems that two problems in particular are studied to try and understand this 

phenomenon, that of solitary water waves and that of the rapidly forced pendulum. 

One such example of this occurrence with solitary water waves concerns the model 

equation 

2d4y d2y 
e 

The analysis will involve the transformation 

Z(Y) = (dx) 
d 2 

in order to get a second order differential equation. Asymptotic expansions of z(y) 

are then studied for e small and we will try to get a hold of the "exponentially small 

splitting". 
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Chapter 1 

Introduction 

As we go about our everyday lives, we are constantly interacting with different 

systems; we depend upon the interaction of gears to be able to tell time, we depend 

upon the interaction of air molecules and other particles in the air so that the weather 

is bearable. The study of these systems has been going on since time began. In 

mankind's unquenchable thirst for knowledge, we have described as many of our 

"man-made" systems as we could. We are now moving into the realm of nature, and 

we are finding that nature's laws do not conform so easily to our own. The result is 

an area of study where we intentionally focus on the troublesome areas rather than 

ignoring them. In this thesis, I will try to explore one such area, that of exponentially 

small splittings of orbits. I will start with a brief overview of dynamical systems, 

then a quick annotated bibliography of some papers presented on exponentially small 

splittings. The main body of the thesis deals with a concrete example of exponentially 

small splittings in a homoclinic orbit of the equation for a solitary water wave. With 

this in mind, I will give an overview of some papers dealing with solitary water waves 

and then an in depth analysis of a paper by Wiktor Eckhaus, "Singular Perturbations 

of Homodinic Orbits in R4" [5]. 

1 



2 

1.1 A Brief Introduction to Dynamical Systems. 

A dynamical system is one whose state changes with time. In applications, we can 

deal with time continuously or discreetly. When time is continuous, the dynamics of 

the system are usually described by a differential equation whose solution or solutions 

are values in the phase space. Usually the phase space is Euclidean space or a 

subset thereof, but it can also be a non-Euclidean structure. We say the solution 

or solutions of the system of differential equations is the flow of the system, and 

specific solutions (i.e. solutions starting with particular initial conditions and then 

tracked as time changes), are called the orbits. We usually denote the flow by 

Wt : M - M where M is the manifold or structure where the system is taking place. 

If ço) = x for all t E R, then we say x* is zt fixed point of the flow. The sets 

of points {x E M I cot(x) as t - oo(—oo)} are called the stable and unstable 

manifolds respectively. If a point lies in both the stable and the unstable manifold, 

then this point is referred to as a homocinic point. If only one orbit contains both 

the unstable and stable manifold, then this orbit is referred to as a homoclinic orbit. 

Sometimes the unstable and stable manifolds intersect transversally and when this 

happens they intersect an infinite number of times. The result is a homodlinic tangle. 

The splitting between the unstable and stable manifolds of a homoclinic orbit is called 

exponentially small splitting due the fact that the splitting distance is exponentially 

small. This distance that we refer to is the actual measured distance between the 

stable manifold and the unstable manifold. When determining the splitting distance, 

it becomes interesting to also measure the splitting angle, this is the tangental angle 

at the one point where the stable and unstable manifolds intersect. Of course due 
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to the fact that the stable and unstable manifolds will intersect an infinite number 

of times, it becomes necessary to look at the splitting angle and distance at one 

intersection point. One way to try and compute these measurements is called the 

Melnikov Function. Here a section of the unperturbed system is analyzed. In the 

perturbed system, the distance is measured along the Poincaré map between the 

stable and unstable manifolds. The distance changes for varying points and so an 

average is taken over the integral. However, this approach often fails due to the 

non-analyticity of the functions involved. In the case studied in this thesis, this 

integral is impossible to compute. So to try and work with these types of systems we 

use approximations to the functions involved. These approximations are said to be 

asymptotic if we have a series of increasingly accurate approximations to a function 

in a particular limit. An asymptotic limit does not necessarily have to converge and 

so can be used on a non analytic function. An important feature of an asymptotic 

series like E 0,,,Cn is that every term in the series is algebraic in S. Transcendentally 

small terms like exp { - } are smaller than every term in the series as -* 0 and 

are not captured by it. These small terms are said to lie beyond all orders of the 

asymptotic expansion. In most applications, these tiny corrections are insignificant, 

but in some instances they play a very big part in the analysis. See figure 1.1 for an 

example of this phenomenon. 

1.2 History of Exponentially Small Splittings. 

The topic of exponentially small splittings was first suggested to me by my advisor 

in the paper "Exponentially Small Splittings of Separatrices with applications to 
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KAM Theory and Degenerate Bifurcations" [8]. In this paper, Philip Homes, Jerrold 

Marsden, and Jurgen Scheurle deal with the problem of rapidly forced systems with 

a homocinic orbit. In particular, the rapidly forced pendulum described by 

+ sin(q) = ef(t) 

when e = 0, we get homo clinic orbits given explicitly by the equations 

(t) = ±2 tan 1(sinh(t)) 

= ±2 sech(t) 

For small values of e the above orbits split and this is where the analysis takes place. 

The Melnikov function is then used to give some estimates for the splitting distance. 

The authors make the comment that the splitting distance should be of the order 

d=2i&e (1.1) 

however, they suggest that it is not easy to justify due to the fact that the errors 

are 0(62) ,while 1.1 is already smaller than any power of e. A Liapunov-Perron 

type iteration scheme is then used to locate the stable and unstable manifolds. In 

utilizing the iteration process itself, they keep track of all of the estimates made. A 

contraction mapping is then used to allow the existence of fixed points, and the stable 

and unstable manifolds determined by these fixed points are used for the analysis 

of the splitting distance. Estimates are made on the splitting distance by the use of 
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Sobolev estimates and some hard analysis. They then go on to extend their results 

to KAM theory and Bifurcation problems. The work carried out by the authors is 

extensive in its complexity, however they do mention that this paper was only meant 

to be an outline. It is interesting to note that in their introduction, they mention 

that Poincaré was aware of the problems that exponentially small splittings could 

cause in terms of integrability and the convergence of series expansions. 

The challenge then of working on exponentially small splitting appealed to me, 

even though I had not really understood exactly what was going on in the paper. 

I then learned of a second paper by Marsden, Holmes, and Scheurle which was 

to expand upon the work carried out in their first paper. The title of this paper 

was "Exponentially Small Estimates for Separatrix Splittings" [13]. In this paper, 

the authors review their previous estimates and show that the assumption that the 

estimates of the splitting distance is given by aet'e_ can sometimes be wrong. To 

do this, they used the following example of planar systems 

th = 1— 

= [ - (a+ (a+ 2/9x)(1 - x2)] y + cos() 

where a,#, 6, and e are constants. They assert that for S = 0 the system has the 

heteroclinic orbit 

P : x = tanh(t),y = 0 

joining (-1,0) to ( 1, 0). Their interest lies in the splitting of this orbit for small 

values of a, /3,6, and e. Although many important remarks are made by the authors, 
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one in particular seems to be of the most importance, namely that a singularity can 

occur in the resulting formula for the splitting distance even though there are no 

essential singularities in the given problem. Then an impressive amount of analysis 

is again used to show that 

for any integer N, there are constants cN > 0 and 6N> 0 such that 

for a = 0,fl = —e and S = e, we have 

CN - -M 
2 

for all 0 < e < CN 

which shows that no sharp upper estimate of the form aebe_f can exist. This 

phenomenon occurs in this specific example with the splitting of a heterodinic orbit, 

however the authors feel that this problem is generic and will occur as a result of 

the iteration schemes used. Thus making it very difficult indeed to actually get an 

actual upper estimate. 

I then had the chance to talk with Dr. Martin Kummer of the University of 

Toledo, Ohio, and I was able to get a paper written by Dr. Kummer, James A. 

Ellison, and A.W. Sáenz [9]. In this paper, the rapidly forced pendulum is again 

used to demonstrate the splitting distance, however this paper uses much more ge-

ometry to try and illustrate the actual phenomenon taking place. The results of the 

work done in this paper are very neatly summed up in the conclusion and so I will 

quickly sum up these results. The authors make the point that much of the work 

done previously by Marsden, Holmes, and Scheurle was used, but there are some 



7 

differences. The main point being that geometry was the main focus of this paper as 

opposed to only analysis, I found this to be a refreshing change from the hard-core 

analysis used previously. A second important point is that the paper by Kummer, 

Ellison, and Sáenz also proves a stable manifold theorem in the process. This paper 

is highly readable, and seems to explain much of the work done by Marsden, Holmes, 

and Scheurle. 

1.3 History of the Problem of Solitary Water Waves. 

In searching for a way to try and understand the problem of exponentially small 

splittings, I was referred to a paper by Wiktor Eckhaus concerning solitary water 

waves, this then brought upon a literature search for information concerning solitary 

water waves. One such paper is titled "A Theory of Solitary Water Waves in the 

Presence of Surface Tension", written by Charles J. Amick and Klaus Kirchgssner 

[1]. In this paper, the authors prove that solitary water waves exist on the surface 

of an inviscid fluid layer in the presence of small surface tension and gravity. They 

begin by making some assumptions concerning the characteristics of the fluid. They 

assume that the density of the fluid is constant, that the flow is irrotational, and 

that the fluid is at rest at infinity. Bernoulli's equation gives 

p(c,y) + Iq(x,y)12 + gy = constant (1.2) 

in the flow domain S, where p denotes the pressure and g> 0 is the acceleration due 

to gravity. It is then assumed that the unknown free surface may be represented by 

a function Y and that the constant of proportionality is the surface tension T which 
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is given. Then using this in 1.2 will give 

jq(x, Y(x)12 + gY(x) - TY"(x)/(l + Y1(x)2)2 = constant 

After some mathematical analysis the equation 

exp(2r) - sin(0) exp(—r)ds + 'yOO exp(r) = constant, q E II 

is derived, where ii = , y = and c is the speed of light, h is the height of the 

wave. A reduction theorem is then used to bring the problem to a simpler conclusion. 

It turns out that when y> 1 the phase space is of dimension 3, however when 'y < 

the dimension of the phase space jumps to 5. Some work is done in both cases, and 

the result is the model equation: 

2d4y d2y 
6 (1.3) 

A second paper written by J.M. Hammersley and C. Mazzarino, entitled "Com-

putational Aspects of Some Autonomous Differential Equations" [7], begins with 1.3 

and has the conditions 

dy(0) —0 dy <0, and urn y(x) = 0 
dx - 'dx 

with the exception that the perturbation term is denoted as 6 rather then The 

main interest of their paper lies in the behavior of d3J at the point x = 0. It will turn 

out that this is the exact same phenomenon studied by Eckhaus in the paper that 
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I will follow. They prove that this quantity is strictly positive and they investigate 

it numerically as a function of E. It is then speculated that the process utilized 

by Hammersley and Mazzarino could possibly be applied to various autonomous 

differential equations. It will be noted in the following chapters where our results 

seem to be in agreement with those of Hammersley and Mazzarino. 

The paper that I chose to follow was written by Wiktor Eckhaus of the Math-

ematical Institute in Rijksuniversiteit, Utrecht entitled "Singular Perturbations of 

Homoclinic Orbits in R4" [5]. This was an interesting paper due to the simplicity of 

the homoclinic orbit and the speed with which it splits. In his model equation, with 

the limit e = 0, one finds an integral 

/ 

idy 2 2 
=y — 'y +c 

dx 

and for c = 0 we then get a homocinic orbit in the (, ) plane. See figure 1.2 
The solution y(x) of this limit problem tends to 0 as x - ±oo, and the question 

is asked 

Do there exist non-trivial solutions for the singularly perturbed model 

ie. when . 54  0, which tend to zero for x -p ±oo? 

This is the problem that Eckhaus addresses in his paper and he does so by exam-

ining the behavior of the homodinic orbit and whether or not it exists after the 

perturbation term is introduced. 
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Figure 1.1: Homoclinic orbit before perturbation 

Figure 1.2: Homoclinic orbit after the perturbation term is introduced 



Chapter 2 

The Integral Part of the Thesis. 

In this section, we will try and find an integral for 1.3. 

2.1 An Equation for the Integral and Trajectories. 

Let us multiply 1.3 by ±L to get dx 

dy d 2 dy dy + 24 - 

dx4dx dx2dx "dx TX - 

Then notice that 

2dy 1 3 
+Ci 

a. 1 J Y dy ; y2+c2 

&y dy 1 (dy)2 
±C3 

and 

[ 2d ydy - 2 dy d3y 1 ±_3Y d2y - 2 dy d3y 1(d2y)2 
_E-6 +C4 dX4dX 

Thus we get 

2 f1yd3y 1 (d 2y\ 2 1 (dy) 2 1 1 
j=— + i2 — y3+c 

11 

(2.1) 
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Note that 

and 

d ( dy'\ 2 2dy  d2y 2 d2 

dy \dx) - dxdydx dx2 

1 dy  d2  ( dy '\ 2 - 1 dy d (2 dy  ç12y  '\ - dy. d 

2dxdy2 dx) - 2dxdy \ dxdydx) - Tx —dy 

so that if we now set 

then we will have 

and 

So now we have: 

z= 

d2y - 1 d 
dx2 - 2 d 

d3y 1 id 2Z 
- = - - 

dx3 2Z2 dy2 

d2y'\ - d3y 

dx2) dx3 

2 1 (lz2 d2z\ 1 /1dz2\Z2  - I = + - + 

Which we write as: 

2 d z lfdz2{Z )21 

+z=y2 
2 

— v 3+c 

(2.2) 

(2.3) 

and this gives us an equation for the trajectories. We are searching for an equation 

for the trajectory where c = 0 in the hopes of finding a homodinic orbit living in the 

(y) )plane as in the limit case & = 0. In 2.3 we have reduced the problem from 4th dx 

to 2nd order, and we have y as the independent variable. The problem is that the 
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equation is highly non-linear and degenerates for z = 0. However, we will be using 

2.3 in all the calculations that follow. 

2.2 Formal Approximation by Straightforward Iteration 

We are trying to find a homoclinic orbit, and so to do this we will put in 2.3 c = 0. 

We are searching for an expansion of the form 

Z = z0 + 62z1 + 

and we wish to find general formulae for the zk. We will then try to find solutions 

by using these formal approximations. The equation we are trying to solve is 

2 I d 2z 1 /dz\ 2 
e z i _(—) j +z=u2(1_Y) 

with e = 0 the above equation becomes 

ZO=Y2 2 Y) 

We introduce the transformation 

z(y,e) = __O(Y) + 62pi(y,) 

to get the equation 

- 

e 2 {(z + 62p ) d (z - + 62p) 1 d 2 
4 2p)) } + zo + 62p1 = y2 (i - 

(2.4) 

(2.5) 
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62 {(z+62P) (dzo + 2_& 1 (dzo 62dP1) 21  + 0+€2 = 0 

dy2 dy2 ) 4dy+ dy j  

where 

2 f d2p1 d2z0 2 &,Oi 1 dz0 dpi 
S  dy2 dy2 dy2 2dydy 

(di)2} + pi=fi(y) 

4 dy 

/ 2 
d2z0 1 1dz0\ 

MY) = — Zo--- + Idy2 4 dy-) 

so let us repeat this operation, performing the iteration again by putting 

Pi (y, = z1(y) + 62p2(Y, 6) 

zi(y) = fi(y) 

So substituting we obtain 

62 { (0 + e2(z1 + 62p2)) d2 z1 + 62p2) - ldz0 d + 62p2) 
dy2 2 dy dy 

+(zi+62 d2z0 62 (d 2Y2 4 dy P))}+Z+2PZ —(zi+6 

d 2  4 (d2z1 +&2_& ldz0 ( dZI -+ 62ea) 
= (z0 + e2z1 + 6 P2) dy2 dy2 ) - 2 d dy dy 

-- (dZ1 +,52 dP2 )2 
+P2 = 0 

4 dy dy 

d2 d2 
+ Zl +6 2 P2 ZO 
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d2z1 2 d2p2 2 d2z1 dp2 1 dz0 dp2 d2z0 
Zi-- +6 P2+6 P2 dy2 

1 + P2 = —Zod2z1+ 1 dz0 dzj d2z0 ( dzi ) 21   4 dy+ 2dp2 dy 

=> 62 I (z0 + 62Z, + &4P2)d2 d2 P2 + (z1 + 2 d2z1 1 dz0 dp2 1 2dz1 dp2 1 ( dy dzl)2 
--- -- 

I dp2 2 d2z0 1 d2z1 1 dzo dz1 d2z0 

----) 
which can also be written as 

( 
2 {(z + 2 1 + 642)a. 1 dz0dp2 1 2dz1 dp2 & dp2 

)2 

y2 2dydy26 dydy4 dy 

2 d2z1 d2z0) d2z1 1 dz0 dz1 d2z0 
+6 P2   + P2j + P2 + - 

6 2Z1 — 
d2z1 2 Idz1\ 

— 

dy2 +---.) 
2 

or if we notice that by doing this type of iteration repetitively we get 

rn-i 

z(y,e) 62'Zn (y) + 62mpm (y, S) 
n=o 

With this, we may now introduce the definition 

(2.6) 

(2.7) 
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rn—i 

= 

so that we now have 

= rn + 62mp 

Now we can write equation 2.6 as 

(2.8) 

(2.9) 

&2 {( 2 + 2.2 d2p2 1 d 2 dp2 d22 162-2  (dP2 2P2)7T + dy2 2  dy ) J + P2 = 12 (2.10) 

where 

f2 j(ZO + 2 d2z1 1 dzo dz1 d2z0 1 2 (( dz, ) 2 I 
) f 

and we are hoping for a general recursion formula, so we do the integration one more 

time in hopes of finding a pattern. So we set 

P2 = Z2 + 62 P3 

= 12 

2 {(z0 + 2Zi + s4(z2 + e2p3)) d2 (z2 + 62 3) ldz0d TT(z2 + 62 3) 
dy2 

-  
1 + e 2dz1 d E' / d 2 2 d2z1 

— (z2 2p3)— 4 Ty- 2P3)) + e2(z2+e ----— (— (z2+e P3 dy2 

+(z2 + 62 P3) ZO J + (z2 +6P3) = z2 

6 (d2z2 2d2p3\ 1 dz0 ldz0 + 62 dP3 
=(zo+e2zi+e4z2+e Pa )d2 + 6 2dydy dyj 
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1 2dz1 
— — 2 — 6 dy 

d2z2 + 62 d2p3 6 " I d2z 2t1P3) + e2( 2 d2z1 
dy2 j + 6 dy2 Z2 + 6 

+(z2+62p3) d2z0 
dy --j-+p3= 0 

= 6 {( 2 4 6 d2p3 d2 Z2 
dy2zo+E Zi+6 Z2+6 p3)+6 p3 ---- 

1 dz0 dp3 

2 dy dy 

e2 dz1dp3 E4 dz2dp3 66 (dp,3 2 d2z1 d2z01 
2 d dy + dy2 dy2 + P3 --j + P3 

= —(zo + 62z1 + 6z2) 1 dz0 dz2 &2 dz1 dz2 & (d-2 )2 
dy2 

&Z1 d2z0 
dy2 dy2 

—62Z2 - Z2 

+ 

#> 6 {( 3 + 623p3) d 2p3  1 (dzo 2dz1 + 64 a 

dy2 2k.dy+6dy dy) dy 

(9  +62d 2Z, dy2+ dy2 - 2.3 (d) 2} + = — { 3 

1 (dzo + ,2dZI \ dz2 (d2ZO 21\ 2.2 (dz2 ) 2 
— ) + +e J Z2  —dy dy j di  dy2 dy2 j 4 \ dy 

which can be expressed as 

62 { +,,2-3 d2p3 1 d' 3 dp3 d2 3 e2.3 (dp3) 21 

6 ,03,, + dy2 2 dy dy dy2 P3 — 4 dy + P3 

/ ' J' d2z2 1d1 2dz2 d2 2 622 Idz 2 \ 
dy2 2 dy dy dy2z2Tdy) 
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So now comparing this with 2.10 allows us to speculate on a general recursion formula 

for p, and f, namely 

2 

&2 { (4 + 2n d2p 1 dp d2 62m (,•p \e dy2 2 dy + dy2 f)7 -  T c-) 5 + Pn 

=_{ d2z_1 1 d_1  dz_1 d2 _1 62(m-1) )21(dz_1  

dy2 2 dy dy + dy2 Z_1 4 dy  (2.11) 

we will refer to the right side of this equation as fm which by our substitution is just 

z. So to be thorough a proof by induction is needed so that we are sure the formula 

holds for all postitive integers. 

Proof: The base case has been done above. So we assume 2.11 and use the 

substitution fn = Z + 6 2Pn+1• 

d2 1d d 
(Zn +€2pn+1) 2f ('(D,,  + €2 (zn + 2p +i )) —j(zn + €2 pn+i) - 2 dy dy 

_ Id 2 a ( 
\dy 2p)) } + Zn + 62 n i = Zn + dy2 Zn + 62Pn+i) - 162m (—(zn + 
Ty-

which 

( + 2n Zn  2(n+1) (d2Zn 2d2Pn+i) 1 d n + 2°m+1) 

6 Pn+i) + 6 dy2 - 2 dy dy dy 

2 
d2 n  + dy2 (z + 62i+1) - 12n (4- + 62dPn+i  \ 

dy dy ,) +PnO 
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so we get 

62 { n+1 + 62(n+l) 1)d2Pn+1 1 (d +  dzn  dp 1  
Pn+ dy2 2 d dy) dy 

fU n 2 

+d2 + 6 dy2  

and this is just 

62(n+1) (dPn+i 1 dz 2 d2 z ?,  

4 dy ) }+ fl+1 = - dy2 2dydy 

1 2n (dz\2 
+ Z--6 dy2 4 \ dy 

62 { n+1 + 2(n+1) d2 p i 1 dp+i d2 +1  6 pn+i) dy2 —2 -dy dy + dy2 Pn+1 

62(1) (dp+1) 21 

4 ' dy  

(dZn) 2 d2z1 1 dz d24n 1 2n = - n+17j +2 dy dy dy2 z -4 dy 
6  

which completes the proof by induction. 

2.3 Formal Approximation by Power Series 

Now we will compute a formal power series expansion for z(y) which at the same 

time is an asymptotic expansion in 6. So define 

and we introduce 

Lz := 621'd 2Z { d2z 1  __ (dZ)21 + z_y2+ y3 

m 
m(Y) = ay2 - any n+3 

n=1 

(2.12) 

(2.13) 
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Which is just a truncated power series. Now we substitute m(Y) in for z(y) to 

produce 

L m = 62 {m d2 m 1 7d m)21  
dy2 4 J + m - Y2 + 

62 {(aY2 

d2 m 
=  - - > a71y3)—.(ay2 -dy2  fly3 - any 

n=1 

1(d 2 
- T(a y - fly3 - any n+3)) } + ay2_,Y,_  any n+3 - y2 + 

n=1 

= 62 {(cy2 - fly3 - an 71+3) (2cr - 6fly - a71 (m + 3)(n + 2)YTh+1) 
m \ I m 

(2ay _3flY2_an(n+3)y71+2)21 + (C, _ I)y 2 + (_fl)y3_ m  anyn+3 
n=1 n=1 

= 2 Ja 2y2 - 5cfly3 - cy2 Ea71(n + 3)(n + 2)y 1 + fl2y4 

m m 

+,8y3 a71 (ri + 3)(n + 2)y 1 - 2c a71y 3 + 6/3y > a71y3 

in m 

n=1 n=1 n=1 

m m 

+ E any n+3 Ean (n + 3)(n + 2)y'1 - fly2 E a71(n + 3)yfl+2 + ay E an (n + 3)yfl+2 

m m In 

a71 (n + 3)yfl+2 E'an(n + 3 )yn+2} + (a - 1)y2 +  y3 - any 
4 n=1 n=1 n-i 

= (62a2 + a - 1)y2 + ( - fl(1 + 5ae2)) 3 
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a [ e2a(n + 3)(m + 2) - 262  + 62 a(n  + 3) - i] y' + y42 
n=1 IT 

m 3 m m 

+y/9 an {(n + 3)(n + 2) + 6— + 3)] y'+y2 an(n + 3)(n + 2)y 1 

lfh 

- E a(n + 3)yfl_l a(n + 3)yn_1] } 
and so collecting like terms and reorganizing 

L m = (62a2 + a - 1)y2 + ( - /9(1+ 5a62)) 3 

— y4 15 E a [i + &2a [(m + 3)(n + 1) + 2]] y' + 2y4 {/92 

m 1 an [(n + 3)(n + ) +6] y'' + y2[:m any > a,(m + 3)(n + 2)y' 
n=1 n=1 n=1 

im 2 

_(an(n+3)Yn1) ]} (2.14) 

We can now determine a, /9, and a, n = 1, ..., m by putting all the coefficients of 

yP, p 2, ..., m +3 on the right hand side of equation 2.14 equal to zero. So we have 

that 

e2a2 + a - 1 = 0 

4e2 
a =  

262 

and we take a to be the positive solution to the above so that a is the solution the 

linearized model equation. We also find that 

2  1  
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Now set the coefficient of y4 equal to zero to get 

i[1+e2a (4.2+2)]+ e2 fl2=O 

- 215/s 2 1  
= a - 

4 1+1O&a 

we will also look at the coefficients of y5 in order to get an equation for a2-

-a2 +e2/3a1 [4(1+)+6] = 0 

45  1  
a2 = e4fi31 + lOe2a 1 + 17e2a 

So we see that without the condition that a was positive, we would have a1 possibly 

being negative, and we want positive values for all the a. Let us now determine a3 

to look for a pattern in their structure. 

—a3 11+6 2a (6 . 4+2)] + 2/3a2 [s. 11 +6] + a1a14 3— a1a14 4= 0 

a3 [i + 2662 a] 67 - - Th2a 8 (621?  Q 21+62 )2 
1+1062a 1+1 

62/964/33  45  1  

a3 67  45  1 = [ 6/34 1+ 1062a 1+ 17e2a 8 (62 15/32 10e2a) 2] 1 + 26e2a 

So by inspection of the formulas, we are able to determine that 

an = O(62n), a> 0 
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We summarize these results as 

m 
m(Y) = ay2 - 13? - >262n;nyn+3 

= 0(1) 

> 0 for 6 > 0 

In 

= 62(m+1)m+4 E o.pyp 

P=O 

= 0(1),u > 0 

This will then give us 

= m + 2(2)m 

where m is a remainder term. We will be using the power series expansion when we 

deal with the problem of splitting the homoclinic orbit. 

In the work done by Hammersley and Mazzarino [7], a formal power series similar 

to 2.13 is used, in particular 

00 

as a basic step in their analysis. The coefficients are determined by a recursion for-

mula and convergence results are given. However, for e small, the authors do not do 

the analysis. The results gained by Hammersley and Mazzarino [7] are encouraging 

as they do support the results obtained here. Their numerical computations suggest 

the same results that will be shown in the following chapters. 



Chapter 3 

What Does it All Mean? 

3.1 The Solution for z(y) and the Result 

Our basic equation is 

2 
z 1"dz\ I 21,d 

{ d2 _) j+z = y2(1 _ 2y) (3.1) 

We are trying to find a homocinic orbit, so in order to do this we look for solutions 

z(y) which for y - 0 behave as y2. We look for this type of solution due to the 

way z(y) = y2 
- y3 approximates y2 as y = 0. To achieve this we introduce the 

transformation 

to get the equation 

then write 

z 

2 2 [.•• d21 (dZ)2] d 2 

= m + 62m?I,m 

(3.2) 

where ço is the result of the formal iteration of section 2.2 or the truncated power 

series of section 2.3, in both cases with y2 factored out. So Vm is really just a 

24 
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polynomial in y. Substituting into 3.2 we derive 

62 1 •P. 2 ( + 62m)d( + 62mdy2 m) - (( m + 62mm))] 

+3y( m  + 62mm)±(m + 62mm)} + ( + 62m m )(1 + 62(m + 62m m)) 

= &2y2(ç + 2m) ((PM + &2mdZ Th) + 62m4 (WM —dy bm) 

+362y (m + 62m) (•O/ + 62 dy m) + ( + E)(1 + ( m + 62mm)) 

which simplifies to 

[62my2 (corn + 2m)] d 20 + 62 [3y(WM + 2m) - y2(coi + 12m i)] dbm  

dy2  dy 

where 

+ bm = 7M (y) _62 {y2co11 + 3yço + (2Ym + 62m brn)} brn 

1 - - 62 y 2 YmP'i + / ' ) 
4 Pm 

62m 

(3.3) 

which is just a polynomial in y since corn is a polynomial in y. We use both primes 

and the notation to denote the derivative so that we can try to produce general dy 

formulas. In Chapter 4 we will prove the following main result. 

Result 
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There exists a unique solution I'm(y; e), which on an interval y E [0, yo] is bounded 

for e 1 0 and the same is true for the derivative 0' (y; ). Yo satisfies the estimate 

Icom(y;e)l 

with c a constant and m ≥ 2. 

Remarks 

Note that m is an arbitrary integer and so we have the existence of a solution 

which starts out as y2 and goes to zero faster than any power of e. We also have 

that yo> . We wonder what happens to the continuation of the solution. Z(y) can 

not stop at some positive value, it must continue, so suppose that the continuation 

escapes to some large value. This is only possible at y > yo. The problem arises 

because at some z > 0 one would have = 0 and ≥ 0 and this leads to a 

contradiction in the equation 3.1. Now suppose that z - 0 as y -4 yj > yo,with z' 

also tending to zero. Since z' comes from negative values and did not pass through 

zero, we must still have z" > 0 and this again gives a contradiction in 3.1. This 

contradiction remains if we take yi = +oo or if we assume that z tends to a non-zero 

positive value as y - oo. Thus the continuation of the solution z(y) must reach 

z = 0 with a non-zero slope. 
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3.2 Splitting of the Homoclinic Orbit 

We start by defining two half orbits y+ (X), x E (—oo, 0], Y- (x), x E [0, oo) as 

solutions of 

=±/z(y) 
dx) 

Y+(0) = y_(0) = 

z(y1) = 0 

(3.4) 

What happens to y+(x) and y_(x) at x = 0 ? We are interested in the regularity of 

the union of these two half orbits. Since the model equation is of fourth order, we 

need continuity up to and including the fourth derivative. So let us compute 

thus 

Y)) 1 1 (dz" (±2y) d 14\ d (•:Vz—( 

1 dz(dy"\ 1 1 dz(±\ r_ 1dz 
- 2dydx) 2/dy' 1Z_2dy 

(d2y\ 

dx2) 

I 
1--i atx=0 
\dx2J 

From 1.3, the above, and the fact that y+(0) = y(0) we get that 

(d4y)  (d4 '\ 

+ 

Now from previous results we have 

(d3y) 1 (dy) + d2z 1 d2z 
= 
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remember that we are trying to establish continuity of the third derivative. We 

compute the third derivative by the use of the Laplace transform. We use 

0 00L {f} (a)  f(—t)e tdt 

Now we make the substitution u = and so the equation that we are trying to 

solve is e2u" + u = (y - y2). So consider 

L {62u11 + u} = L { y - 2} 

= L { 2II} + L {u} = L f y - y 2} 

e2s2L {u} + L {u} = 1 {y - 2} 

L {u} = 6282+ 1L { - y 2} 

11 
682+1 L {_ 2} 

1 
L {u} -L Isin ' 1 x'} £ - y 2} 

and so by the convolution theorem 

1 f oou sin ((x_) [y()_y2()]de =—  

thus we have 

(d2y) = 0 sin (x - )) [y() - y2()}dx2 + - 6 J—oo[  
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So now we differentiate to get 

where 

1(e) = 1 1° cos()  y2()] d 
62 C 

We wish to compute the integral along approximate trajectories, so we replace z(y) 

in 3.4 by its asymptotic expansions. So we define y(m)(x), x <0, as 

dy(m) 

dx 

with m  the asymptotic expansion defined in section 2.2. Now, define 

1 f [y(m)() - (y(m)())2] d.r(-)(s) = -  e2 00  ( ) 

In the Appendix, we have the integrals computed for m = 1 and in 2. These 

integrals are due to dr. N. Temme of C.W.I. Amsterdam who did the analysis 

involved. These results can be summarized as follows: 

rn—i 

m > e2 z(y),m= 1,2 
n=0 

I(m)(C) = — 65 - Cm e [1 + o(1)] 

cl = 6, C2 3.6c1 
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So a small correction in the trajectories does not result in a small change in the 

constant c,,,. llammersley and Mazzarino [7] came up with a very similar result for 

the integral 'm their result was the reward for complicated and extensive numerical 

calculations. For large values of m, we can expect that the constants c," will settle 

to a definite value but analytical determination seems beyond possibility. The com-

plicated evaluation for in = 1 and m = 2 gives this impression. However, we can 

show that the integral j(m) is negative for all m as was shown in [7]. 

We recall some relevant formulas 

z 1 (dzLz=e2(z d2 _T) 2) 
+z_y2+y3 

m(y) = ay2 + i3? - 
n=1 

Lm = 62(m+l)f(y) 

M 
fm(a') = ym+4 

P=O 

o(1), o, > 0 

Now we want to look at (m) (x) which is a solution for x < 0 of the equation 

d'(m) 

dx 

Now consider the original equation 
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and using 2.3 we get 

I 
d 2 J d 2  1 (dZ )2 I2dy d2yl+zI 2 

4 dy J ] = dx4 + 

and so 

So '( m) satisfies 

with 

d1 2 1d2 z 1(clz) 21 
+z 2 + 

=21e21 d2yl 
L dx4+dxj21+21 

2d4 (m) d2(m) 1 2  + = 6 (m+l) f' (y_(m)) + -(m) - ((m))2 
dx4 dx2  

fi((m)) = 
WY-

so by using the Laplace transform once again, we get 

( d2(m) sin 1 0 (!(X - )) {(m)() - ((m))2 + 62(m+1)fw(m) )] d   =-J dx21+ 6—co 6 

and so 

d3(m) 1 0 " (_) [y(m) - ((m )) 2 + '62(m+1)rw(m))] 
dx3 00 6 
Y+  (o). 62 1 cos 

4  1 f co 0 cos () frym - ((m))2 + e2(m+1)f(m)] 
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So we have that 

d3 Y-(-) 1- i. d2 
--  -. nl  

dx3 2 m (d'(m))2 

since the quantity on the right hand side of the above equation is just a polynomial, 
d3m) 

we have (0) 0 since this is how we determined the coefficients for '1am. This 

then allows us to get 

0 = - L0 cos () [(m)() - ((m )())2 + 
62 6 2 d6 

= _ f 

0  e2 , '\ 6 I 

11 j° 2(tn+1) cos ( 1) fF((m))de 
+ 

1 L = = __ 2 2m  () f7(m)) 
Now remember that 

So 

fI((m)) = 

= 
y =0 

M 

/ m 

= ( m+4 y P=O J 

= (p + m + 4)crym+3 
P=O 

I(m) 1 (&) = _ 2m / 0 cos 
2 j-00 

( (p+m+4)cT [ m)]7+m+3de 

'P=O 

= 2m crp(p + 772+4)f 00  cos () [(m ) ]2)+m+3 
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Now in order for j(m) (e) to be negative, the integrals in the summation must all be 

positive. () is a monotonic function and for all 6 ranging from —oo to 0 is positive. 

So if we consider the function on intervals like [- f, o] , [__ t, -] , etc. we see that 
we get a net positive contribution. We also have that o> 0 thus 

I(-) (S) < 0,Vm. 



Chapter 4 

The Proof of the Result 

In this section we will prove the result given in Chapter 3 and we will simplify 

notations by dropping the subscript n-i. 

4.1 The General Idea 

The equation 3.3 is of the following structure 

= 7(y) + e2g(y, ') 

e2A(y, + 62 B(y, &, + 1 
dy2 dy 

A(y, '&) = y2(' + &2m) 

13 (y, &) ') = _ y2(co/ + &2mI) + 3y(y + s 2m) 

gi(y,&) - { 2// + 3W + (2 + 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

We want to prove the existence of a bounded solution. We would like to decompose 

= 11 + XF2 50 that 

or 

(&) + 2() = 7+ 62g, 

!1('b) = —W2()+7+e2gi 

34 
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and if TO existed then we could find 

+ I + 

To make things work out nicely, we will try to use a linear operator for W. The 

problem is that we get nonlinear terms on the right hand side of the equation. It will 

be possible to get rid of occurrences of the second derivative, but the first derivative 

can not be avoided and so we must study the problem for &'. So consider 

= I() + 62gi(y, ) 

Now use 4.2 and differentiate with respect to y 

(4.6) 

L PM =  IY 2 (çO + e2m)i +62 Hy2(caF + ..62m?/,F) + 3( + €2m) dO 
dy dy 

2 ( 2( + 2m)) 

21 6 2mI - 

+ 6 —- [2y( + 2m) + y2(, + 2m/) 
dy2 dy 

+ ' 2m 0') + 3y(ç + e 2m)J + 

+b'62 [_Y(2' + 2mb1) - ' 2iF + 3y(' + e2mbF) + 3( + &2m&)] 

which gives 

e2y2( + 6 d2'çb' 2m) +6 2d?P/ &2 ± Fs( + _2m) + y2( 1 + 62m11)] + Of 
dy2 dy 
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+€2 [2y' + y&2mb1 - + 3( + E2m&)] 

and 

7(y) + 62g, (dy y,  

= - d 6 2 { 2F/ + 3y' + (2 + E2-O)dy  

= 7(n) - 2 [(2y" + y2çd" + 3' + 3yça" + 2' 

+ (y2cdl + 3yp' + (2 + 62m)) ] 

- 2 [( 2gII + 5y" + 5')b + + 3' + (2 + s 2m&) + 2m) sb'] 

So we now have 

with A as in 4.3 and 

where 

= 62A(y,1')_+62B(y,?&,b')T  + 1 

(y, b, &') = 5y(2 + 62mb) + y2(w + 62mb) 

= 7'(y) + 6g(y, 0, ! b') 

92 = —(Y2 (P + 5yço" + 500 - (y2coFF + 3y(p' + (2 + 262m&)) &' 

_&' + ye 2m 1 2 b1 - y çoii + 3( + &2m&)] 

= _( 2m + 5y" + 50,0 - {5( + .2m) + y(5 ' + 6 2m) 

(4.7) 

(4.8) 
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+y2(" - 2ll)} ?/)' 

= —(y2ço/if + 5y" + 5')& - {5(co + & 2m) + 5(' + e2mb) 

+y2co11 - 2m YO, } ' (4.9) 

Now we put our attention to finding a suitable operator I'i and for this we take a 

small recess into WKB functions. 

4.2 Excerpt on "exact WKB functions". 

WKB (Wentzel, Kramers, Brillouin) approximations have been used by physicists for 

many applications. Here, we are only going to use a special case and the procedure 

we need is as follows. Consider the homogeneous equation 

d20 2 d0 
2a—+ e b+O=O T 

where a and b are given functions. We introduce 

So that 

0 = IQ 

dO - 1 I 1Q 
- 

d20 1 / 2 IQ -j =-j (Q)ec + 

(4.10) 



38 

To get 

which yields 

or 

e2a (- (Q')2 e + Q"e) + e2 b1 Q'6Q + e = 0 

a (Q')2 e ICQ+ &aQ"e + ebQ'e + e = 0 

a (Q')2 + eaQ" + ebQ' + 1 = 0 

Now introduce a formal expression for Q. 

So we have 

Q=qo+eqi+e2q2+" 

1 92 

,, 
= q0 + eq1II + e2q' +... 

a(q+eq + e2q + .)2 +ea(qg+eq'+e2q'+. 

+eb(q+eq+e2q+...)+1=0 

and equating coefficients of sO and el will give 

e° :a(q)2+1=O 

aqq + aqq + aq + bq = 0 

.) 
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So 

12 (q0) =—   — givingq= 

and 

- —aq,'—bq  
q1— h C) aq0 

- — a' lb 
- 4a2(q) 2 2a 

a' la 

4a 2b 

So 

V 1   di qo - a(t) 

1 I a' 

2a(t) 

1 =1 ina_IV —di 

Hence as a formal WKB approximation we get 

exp {/ 1  ±i J a(t) 2 a J 

So call 

1 I V b(i) 1  1Oo=exp<— 1  dt>aexp<±—I r  di 
2 a(t) J I E' /a(t) 

In our case the equations 4.3, 4.4, 4.8 vanish at y = 0 and the proof of validity 

appears difficult. Luckily we will not need to prove validity in the approach we will 

follow. We will consider what differential equation is satisfied exactly by the WKB 
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approximation. In the case of with m = 0 we have 

= 6y -  + &2(5y' + + 1 

In regards to the computation of the WKB approximation, 

a=y2 p 

b = 5y' + y2ço1 

so 

go = exp{_f' 5Yco+Y2cddY} (y2co)exp{±!.J' \/_} 

y24y24exp ±- jv dt} 
ã.L1. { i  1 

_1 { ijv dt!.1 •_-j exp ±-  

Now 

dO0 1 { v  i  
— = — exp ±- I dt} [ ( 
dy y2 6J 

e2b° I5Eco "-l'\ 10e2ço '(_-i\ 

L-- (;2 (P) + 2 y2ço) 

and 

y 

+ -2 — 
y3 

li V1  
exp1±-.J t,,,dt 

+y2 '\ d290 1 { V  1  exp ±- I dt I f2y 
dy2 y2 } - (fl2 ) 6 

1 .1. r. I 

1 • Ii -i\ 2 \ 2 

6 (, y2ço) exp {± l y _ dtJ. __. - 
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i F2  (-1) ' 6 
_ exp {±V dt• i VW— 

so 

 d200 6aad 2 - 2 

Now we can evaluate 

—i" (2,o +y'\ —i 4y 
t\ /2(7O) y3ç2 ) + S' (y2ço) - (\y2 r,) 

662w] exp { ei  Y 1  dtf • 
+ 2 t 

6 2{a d200  +b dOo 
dy2 dy) 

1 1 { i   1  cit I /—i (2+'\ 1 4& (_1\ 62exp ±- ly } y3 ) y2 y y2) +  

and so 

I 

Y  (-1 \ I • lO62 eço' ( — 1 \ • 
) - y2 + 2y26p) - 

{ i  V 1 dt 1e (+'\ 6 SW 
- exp ±- I t/ } )- 1' L2 yl(p ) - 2y2 

-  4+ 
t2,) \, ( ,2 

r j  1 4e2ço+e2yçdcit 
E ly }( y2 ) 
= _ 62(4(p + yço')00 
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Eckhaus discards it since difficulties arise in trying to use it in the construction of a 

contraction mapping. We will now define explicitly the operator '1. 

Then 

Ii = 2 2 42 I06y2- + 62 {5y, + y 2ç FJ _ + [i + 62(4w + wl dy2 

O' 0(2) 1  dt o , 0 =-jexp 6fy 

gives two linearly independent solutions to the homogeneous equation TIOO = 0. 

Eckhaus remarks that the simple approach of adding in an additional pertur-

bation term to allow us' to use the WKB approximation as an exact solution is not 

found in any of the literature. 

4.3 Transformation to Integral Equation 

Let us consider an inhomogeneous problem 

= R (4.12) 

where 1I is the operator defined in the previous section. We would like to find 

bounded solutions on some non-empty interval y E [0, yo] where Yo > 0. So we 

suppose a solution for 4.12 of the form 

= u10 + u202) 
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then using variation of parameters we have 

(2) 

Ul = o' (O2))' - 02) ((l))Il(Y) 

1) 

') (02))' - 02) ((l))FR( 

and 

01) (0(2))' - g(2) (os'))' 

- (1) 1!. i cIt —1 J _____ 
6 Y 

- exp -- jy - () + exp A 

fi   cIt —1 —2  dt0(2)  exp ; jy + exp ly U 

___ (2) /(1)1 1 
= o1 ( i (—i) + 02)—!) - 00 + y ) 

= 01)02) ( 1) 

So 

Thus 

R(t)dt  

= 2i A 

—e Y R(t)dt  
U2 2i JO  02)tI(t) 
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Now we can get 

and 

+ 

6  R(t)  dt"IO'(y) jy 

O'(t)tI(t) I 

R(t)  di" o2() 
\ ujy 

O2)(t)t(t) I 

6 Y (o(1)) 9(2)()\ R(t)  di 
Jo 0 (1) (t) O2)(i)) t4(t) 

'5 ly O(y)O(t) - O2)(y)O1)(t) R(t)  dt 

- t/(t) 

= 

= fV {O'(y)O(t) - O2)(y)O1)(t)}t3  R(t)  di 

However, substituting back into 4.12 leaves us with 1'() = 6 2 R and so we must 

adjust ' by a factor of . So now we define 

and 

i 

(t, y) = I   

1 exp j v di ) 1 Ji ft di 
— iw -exp 6J0 

_1 { Itdtexp   

= — exp —1 
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and by the same reasoning 

= exp 
1  

y2t2 J 

Now putting it all together yields 

- 1 6 1 1  R(t)dt 
=62 2i 10 Y (€- - ec) 

and so 

—1 e - e 1 

= 2i 

—1'v ['n]   / sint R(t)dt 

Now we show that 0 (y) is bounded as y -+ 0. First we note that since lsin x I ≤ 1 for 

all x hence 

(jV su IR(y)Y   V'(P(t) ) yE[O,yo] 

This estimate is valid on all intervals y E [O 'yo] with (y) ≥ 0. Of course R(y) must 

be such that sup IR(y)I exists on the interval [0, yo]. Now 

1 '' t 
 cit < c for some constant c 

jo VW  ) - 

and so 

()I ≤ f sup jR 
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We now suppose that R is differentiable, and we will use the fact that 

to show that 

= —sin {. c(t,y)J 
1 dt 

. 1 
le 1 1 

6 

Y 7() 1j 

We now integrate by parts to get 

Now let e 10 

= 

(ci  
- cos \ c(t,u)]) i2R(t)dt 
dt [.  

(t2 R(t) JO v r 
-. cos {.-(t, y)] -  cos I i (t, ) .. t2R(t)dtJ V' o  Le dt 

1 JR(y)— y  I(t,y)] (tR(t)) dt =— 

1 cos [c(t0 _6 , )] -- ( 2R(t)) dt 
-ii  I dt 

<' Y2R(y) = R(y) 

and so (y) is bounded as 6 0. Thus (y) is 0(1). Now suppose R(t) is twice 

differentiable so that we may integrate 

— 1 ly cos (t,y)l ( 2R(t)) cit 
Y2  JWt 
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by parts. First notice that 

d Is sin —1(t,y)I = —cos - (t, y)   
cit j 1 • 16 ] tJw(t) 

and so 

Thus 

becomes 

cos II  d Q(t, Y)] = 6t\/ço(t)sin [—I1(t,y)] 

- 1 Y cos [!(t,y)] (t.a(t) dt 
- I .io 6 dt 

_-j 't/p(t)sin [c(t,i)] Tt (t2R(t)) dt 
dt e 

so now doing the integration will give 

and so 

'V 
.6 (t•f(•p(t)• 

-- (t2R(t)) sin 
Y dt 6 Jo 

y IE i0 J sin (t,)] (tI (i2R(t))) dt) 

Y 
EJ - sin [!ct,] [ti- (t2R)] dt 

fo r(y) = R(y) + y sin I i fl(t,y)] [t/ (t2R)] cit 
16  dt 
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which then tells us that (y) = R(y) + 0(e). Now we turn our attention to the 

problem for 0 and sb'. In this section of the analysis, it will be convenient to define 

1 'V 
Si[R](y) = -- y2 Jo I sin 

1 V 

S2[R](y) = --2 J O  cos 

['c(t,y)I t  R()dt 
- 

[• ,Q(t, ].t\/ R(t)dt 

so that on intervals y E [0, yo] with 'p(y) ≥ 0 we have 

ISi 12 [R]I csup IRI 

and if R(t) is twice differentiable then 

1S1[R](y) = R(y) + 0(e) 

4.3.1 The problem for &. 

We start with 4.1 to 4.5 and 4.11 so that we get 

+,,2 [oyço + y2coi] + [1 + e2(4y + y ')] 

= e2 y((P + 62m) 1L - 2y22m 

+e2 (SY2(wF + 2m 0') + 3 + e2) ) do 
dy 

+e2 + y2 ' + y2e2mb - 3y&2mb] + + e(4 + yçd)b 
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db 
= - 2y21 dy2 +62 [2yW + y2' + l y22mI - 3ye2?Thb] 

+62 (4p + y')& 

= 7(y) + 62gi(y, ) + e2(2 + Y20 )01+ &2 ( y22mF - 3Y62m) ' 

+ _2 2(m+1) + y')'b - 2(m+1)y2l 

= 7(y) + 62 [_y2ll - 3yço' - (2w + em)] 0 + 62(2y + y2cd)b' 

+&2(m+1) ( 1TY 2i - 3y&) + 6 (4 + yr') - 2,k,d 27k 

= 7(y) + € [_y2pF - 2y9' + 2ço - 62,,0] ,0 + 6 [2y + y 2çd] ' 

+ [,2(m+l) 1 y2,01 - 3y62(m+1))] I 
- 

= 7(y) + 6 [_y2gi - 2yço' + 2ga] .1, - (&2m,) + 62 {2y + y2cp1 b' 

+€2m [ 2F - 3] - 6 2(m+1) y2i 

7(y) + &2G(y, 0, 'çb') - 

where G(y, 'v', 'b') is of the form 

2(m+1)y2 . 

dy2 

1@o(y)b + 'yo(y)b'+ 2m [3(1 + 71(y)7j&'] ' - ( 2m) 

The 8's and the 'I's are polynomials in y. In the following computations, it will be 
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convenient to use G to denote anything of the above form. We have 

= 1(Y) + 62G(y, &, sb') - 62(-+1)2k 

and so 

= [(&)] (y) 
6 

= :s1 I7(y) + e2G(y, , ') - 62(7m+1)y21] () et 
and 

si [7(a) + e2G(y, &, &') - 62 (y) 

1 tY [jp(t,'J t-- I sin  V'w(t) [7 (t) + e2G(t, , ') - €2(m+1)t2 ) dt 

1 f V sin [(t, Y)]   

+62 ( 1) - fy Sin   __[1c(t,y)] t  

3
+e2JtY El IV(p (m +1)1 sin 1(t,y)6 (t) dy2 

= s1 7(t)] + e2S1 [G(t, , sb')] + 62(m+1) I[In] t  d2b dt 
y2 J e  Jco(t)t2 

So 

['Ql s1 7 )] (t)] +&Si[G(t,,' +&2m+1 [Y   t3   dd2t2/ dt 
o e  
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and by integrating the last term by parts we get 

62m+1 I1 j[ !.  3  d vth/) ]1t211  ?&—bV 2 6 Jp(t) J (Cos[ 
j  6 SW 

+ sin[ in] -- I3b1\6 dt])dt] 

for the last term and simplifying yields 

62m+1 py 

2 J sin[!cI(t,y)] d IiWt  dI;1 - dt 62m 
— 

and we conclude 

62m+1 JO v 1 d [?/ 1 cl?/' 
= Si [7 + 6S1 [G] - - ,2  dt [ jVW— dt dt sin[—(t - 

62m ry 
--i-J0 Cos [!((t, y)]_b%dt 

Notice that 

32 I t -  1 ly cos[ ] ------&'dt 
/v 

and 

Si 

1 

y2 
'Y 1 t2 / cos[-1]—bb'dt 

JO  6 ço 

1 1   t t2 
= -- jysin[ln] -- çd'dt 6 

1 ly sin[]y2  6 
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We also have that 

d t 3 d ( 3 t3dçb 

=)+— 
= j3t2 - t3 cpco1 t3 db 

(3t2 t3,)• i3 do 
dt 

So the result for b is now 

62m+1 Y 1 3t2 
  I sin[—]--b5'dt 

Jo 6VP 

62m+1 v 1 62m+1 fo Y 1 t3 
+ sin[—]  - sin[—fl}b'b'dt 

e  6 

+2ms2 

which means that 

62m+1 [t2 ,,/,OO]  [ t 00] 
S1[7] + &Si[G: 2 S1 + 62mS2 

3 

-  / ' 1 3t2 2m+1 

6 sin[-1I—,'dt - 6 y.Jo y 0 

2m+1 It2 1 

+ eS1{G1 - 2 S1 Ip + &2mS2 Lv 00] 

62m11 JO sin[ ] --- [3tbb' + t2bF ] dt 
I  6 

62m+1 I P 1 

= + eSi[G] - 2 S1 + 62mS2 
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since the term -  sin[{] = {3tb' + t2 0101] dt is of the form S1 [G], of course 
VIP 

with different polynomials P, (y) and yi(y) then in the original G. Thus we have that 

where 

= o + eS1[G(t,b,Y)] + E2mS[ t bbh] - 1 2m+1S[t, FI 

00 S[7] 

Since 7 is twice differentiable, we can use previous results to state that 

= 7+0(E) 

(4.13) 

We need to keep the terms separate so that we may pursue the analysis as far as 

possible into values of y where (y) become very small. 

4.3.2 The problem for b' 

We now turn our attention to equations 4.6 to 4.9. We want to remove the nonlin-

earity in the term with the second derivative of &'. We do this by multiplying the 

equations by the factor 

and using the identity 

cp + 62m1, 

W —1   
- so+e2m 
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So 

cp d 201 
+ 62m  [ 2y2( + 2m) + 62 (5y( + 62,0) +  + 62m/)) do'  + 

-  c', {7'(y)+62g2(y,?/,,vi)] 

- So+62mb 

62y2(p ±2f 62 2  bh + 62m] d&' 
+ [ 25 + + j + + 

2mlo 

+ 62m' ) (7'(Y) + 62g2) 

which yields 

d2 1/ 1 2 (2 dy  \ dy2 + e2(5yço + ço )--- + = co + €2m) (7'(y) + e2g) 

+[62 /  2?n \ 

and simplifying results in 

62Y62m + 2y2  64m,/j,/j 1 db' 

- + dy + ( + 2m) 

d2t/' 1 2 / db' ( 62mI) ) 
62Y2CPd2 +6(5Y0+2Yct)d +01=  

+62m+2y2( + 62,0) (?kW, - d0f + e2mb 
dy ((P+e2m&) 

So now we introduce T, as defined by 4.11 and use the generic notation for G as 

done earlier. This then produces 

e2mcI) '\ 
= _62(4 + y')' + (i  + 62m) (!(Y) + ,52 92) 
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+ E2 )( - +  .2mo 01 

+ 62mo 

-, 62m+2, 

= - e2yy'b' + 7'(y) + 629 (co + 62m) 1(n) (ça + 62m)92 

+ 62m)_1( dOl - +  62.0 

(p + e2m1, 

= 1'(y) + 62 [4' - yçdb' + 92] + 62m((p + 62mb)& [-7(y) - 629 + b'J 

+62m+2.y2((p + &2m&)_1 - 1c 12 P 2 Y (/)I)2] 

= 7(y) + 62G, (y, 0, ') + 62m((p + 2m)() (G2 (y, 0, 
F) - 62g2) 

+ 62m+2 ((p + 62mb)_1' y2 [21i - WT (4.14) 

Notice that our definition for G does not allow us to write G2 (Y, 0, W) - 62 92 6292 = G2. 

We will solve this problem in the following section, for now we may just write out 

anything that does not fit explicitly. Inverting equation 4.14 we get 

= --- l y sin[1 1 r--I(y) + 62G1(y, , 01)') 
6 

+&2m (y + 2m1,)() (G2 (y, 0, I)F) - 62 92 

+,2m+2 ((P + e2m)_ly2 [2'1! 

Consider the term 

I sin[_.c]_E2m+2((p + 62.0)—1 1t2 [2WIO±• -  (p  d1 (. bF)2] cit 
6 y2 6 
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= _62m+1_ fy sin[ ' Q]  + 
j24 

11 rY t3 d 
+ 2m+1 j sin[f]( + 62m)_l_(I) 2dt 

Y 24 

Tackle the first integral by parts 

7Th-El '' ' 1 
— 62 -- j sin[ 62m)_1 L2//, th/) dj 

= 627n+lf' Of sin[1]  1  2 (' b' + a"b)dt 
Y 24 6 9+e2mb /iw 

' 
+ 2m+1 f Y I511{1 ] ° 'bdt 

4 € 2mb 6t2 t3  

_62m+1_ fyOlsin['R]  ço' + 2mI 3 e(co + e2mb)2 2ço'dt 

+ 2m I VOI COS[ ,n ] 1  t2co .,dt 
6 

Now we do the second integral in 4.15 by parts to get 

+ -t d 2m+l 11 'V 1 ](ca &2mb) J sin[ ' 
6 dt 

= - 2m+l '' J '(./) )2 sifl[h c]  
1 

6 ,24 6 ((P+e2m)/ 

62m+1 J'(/)2 sin[1] 1  ( 2/ 
3   Y 24  6 ( O + €2m &) ) dt 

+&2m+1__ fo Y (,0/) 2 sin[ -] ço +  t3 /dt 
Y 24 6 (+ 2m,) 2 

(4.15) 
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- .2m ' ' 62m 11 fy(,01)2 cos[-I]  1  t2dt 
,24 6 (+ 62m&) 

Putting the two together we get 

2m11 !1 1  1  t J cos[—  1] [&' - 2&] 'çb'dt 
y4 o 6 (+ 62m&)y 

+6 2m+1 1 1 cv 1 sin{— ] P + 62m/) 3 
[p&' - 2'b] &'dt 

- / 24 6 ((p + &2mb) v 

2im+1 11 v 1  1 F [3.t2  t3 W101  6t' +   ,Fdt 

j sin[-1] — 6 24 o e ( + 62m 1') - 2/ j 

_ 2m+1__ lysin[2:.I]  1  t 
6 (W + e2mb) k&'' - 2&' - 2ço"çb] 'çb'dt 

which can be written as 

_2mg2 14 VW— + 62m?)_1 [2ço'& - W&'] 

_2m+1g [3 t(W+ 62m&)_1 [2d - W01]sb'] 

Ii 
+62m+1 S1 t2 ' + 2m )_1 [2 - '] 

8 W 

+64m+lgi {12( + 62m&)_2 [2& - I] ( I)2] 

2m+1 1 1 fy 
1sin[-6  ]( + 62mbyl [2c'/ --- 2ç'b] ?J/dt 

y24 6 

and we can write the last term as 

I 
+2m+1Si t2 + 62m )_1 [2 ((/)2 - - ' ( + 1)] '] 1  
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All that we are interested in is the structure of the equations, and so we extend the 

definition for the generic G. By doing so, we will also solve the earlier problem of 

certain terms not fitting with the old definition for G. 

l+q=3 

Define ((y,',&') = > 
l+q=1 

where Pi,q(y) are polynomials in y which depend on e in a regular way.We can invert 

fully the equation 4.14 to get 

= ? + es, ', 'çb')] 

+e2mlSi [( + 2m,)_l2(t 0  ")} 

+e2mS2 ko(w + 2 &)_1 3(i,  

+€2m+1g1 [W-1 (W + e2m.,)_14(t,  

+6 4m+l S,  {( + e2m,)_25(, .,, ')I 

where !Si 7'} 7' + 0 (e). 

4.4 The Contraction Mapping 

We can write our results as follows 

(4.16) 

= ;bo + eS1 [Pi(t,t/',b')] + eS2 [P2(i,/',?4")] (4.17) 

= ib0 + SS, [-k (t, &')] + eS2 [152 (t, (4.18) 
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where Pi,2 and P1,2 are explicitly given in 4.13 and 4.16. Let A be the closed interval 

[O, yo] and consider pairs of continuous functions f, g E C(A). We define a mapping 

T with components T(1) and T(2) by the formulas 

T(1)(f,g) = o + eS1 [PI (t,f,g)] + eS2 [P2 (t,f,g)] 

T(2)(f,g) = 01  + 6S1 [P1(t,f,g)] +&s2 [. 2(i,f,g)] 

The operators S1 and S2 map continuous functions into continuous functions, so we 

must check that P1,2 (t, f, g) and 61,2 (t, f, g) are continuous functions. By inspection, 

we see that (ç' + e2mb) 0 thus lco + .27)I must be positive, and for this we must 

restrict the interval A such that (y) ≥ 2m-1 c> 0 for ii E A. 

Consider T as an operator in the Banach space of continuous functions (f, g) 

with the usual norm 

sup Ift+ sup ll 
A A 

In this space, we consider the ball Be which are centered at the pair b0, and has 

a radius of e' with 1u positive and arbitrarily small. We want T to map the ball 

into itself. We have the estimate 

ISi,2 [R]1:5 csup IRI 

and so we must have that P1,2(t,f,g) = 0(1) and Pi,2(t,f,g) = 0(1). Analysis of 

the terms in 4.16 will give us a more severe restriction on the interval A. 
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W(y) ≥ c&, c> 0, for y E A (4.19) 

with the side condition that m ≥ 2. We can now show that T is indeed a contraction 

mapping in B. This means that for (Ii, gi) and (f2,92) € B we have 

IT("(f1,g1) - T(12)(f2,g2) ≤ eC{sup Ill - f2I ± sup Igi - g21} 

with C independent of e. So we consider a representative term of 4.16 

6 I62msi [co_1( + 62m11)_1G(t, fi,gi) - ço'((o + e2mf2)_l(t, 12,92)] 

=6 --
1 t [(co + e2mfi)1  O(i, fl) ) +  

y2 ä(i, 12, 92)] 
fo ço 

(c+e2mfi)_l 
< 6 —   Ia(1,fi,91) —ä(t,f2,g2)dt 
- y2 (p 

62m V t 1 
+6_J 

1 1 

(ço + &2m12) (w + 62mf1) di 

In the first term, ö(i, f, g) is Lipschitz continuous with respect to f and g. So this 

term is majorized by 

1 ly dt.sup 62my2  ((pIe2mf1)(p 

Now we also have that 

C{ SUP fj. — 121+ sup 191 92 1} 

62m 1 
SUP(2f) (p = 0(1) 
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so that the term is then majorized by 

eC{SUP If - f21 + SUP gi—g2J} 

with C a constant independent of e: We have that the second term is majorized by 

1 'v 64m 

—cit sup — (p + efY'(' + 62, f2) 1 sup Ifi - f21 
VW ço 

With the condition 4.19 we have a much stronger contraction, the term is majorized 

by 

12! 

with C independent of e. 

Now that we have proved the contraction property of the mapping T we have 

proved that there exists a unique solution '(y), W(y) of 4.17 and 4.18 in an interval 

A limited by the condition 4.19 and that 

which concludes the proof. 
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Appendix A 

Computation of Some Integrals 

In this appendix, we will evaluate two integrals which occur in the analysis. The 

outline for this work was given by Dr. Nico Temme, C.W.I. Amsterdam. We are 

looking at 

We replace z(y) by its asymptotic approximation and so we have for ym(x), 

0. 
d (m) 

/m(';x 6) 

rn-i 

= e2nzn 

For m = 1 

= ZO = ((i))2 (1-

and so 

dy(') 

dx 

For m = 2 we have 

= \J(y (i))2 - (y(i))3 

= Zt3 + 6Z1 

64 



65 

z0 1 (dZO ) 2((2)))2  2(2)) + 62 d2 (_ 0  

= ( 2)2_. (y(2))3_e2 [(Y (2)) 2 - . (y(2))3] [2— 4y (2)1+ 2)] + ç [2Y 2 — 2 (Y(2)) 2] 2 

= ((2))2 (1 - e2) + ((2))3 (_ + 4e + 43 62 - 262) + (Y 62(_& 2) 

(1 - 62) + (Y(2))3 (- 3 2 + 62) + ( (2) )4 (_ e2) 

We wish to calculate 

I(M)() I cos[] [y (m)() - (y(m)())2] d 
6 

for in = 1 and in = 2. As 

I dy(')\ 2 
dx ) = ((i)) 2 - ((i)) 

so we need to integrate 

J 1 y(l)(1 - 2(l))IdY 

=—In 1+J1_y(1) 

1 - V'l - 2 y(1) 

and so we have 

x = -In 

Solving for (i) yields 

46 

62X + 2& + 1 
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Thus 

3  
YM 

= sech2(.x) =2 2  cosh[x] + 1 

and so 

i f ° 1 d2y(1)= -  00 cos[e] 

which we integrate by parts to get 

I(1)(6) = 
1 
62 

(ICOs[ie]dy1)bO 1 0 dy(1) 
6 d6 00 

1  sin[ Jo 1 dy(1) 
63 - 00 s d6 

Integrating by parts once again will yield 

sin[e]d) 

1 0 if 
I(1) (e) = ! (Ey(1)sin[_Il - -Cf . - cos[_]Y(1)d) 

63 6 E . 6 00 

now recall that 

so 

and thus 

I cos[±]y(l)de 
6 

& + e"' 
cos(y) = 2 

1 cos(—) = 6e + 6e 
6 2 

1 '° 1 1 1° 
cos[ - •]y(')d• --- I (ee 2e + e- ) y1de 
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] r to 

LL ey(1)de + /0 e-4 (T,5 4 1)  
00 J—OO 

1[J0 it 0 •1 

- I ey(1)(_)d 
- Jco -I 264  

P00 

= -- y(')()d + I ey (1)()d] 
26 v  Jo 

- 1 _00 °° Jy(1)()de 
2e  

Now, set 

= In(u) so d6 = du 
U 

1 °° !Lli 
I(1)() = -- J e c y(1) In(u) du 

1 t°° i 6u  1 
U7 2e4 o (u+1)2u 

3 f 
0O (U 1)2 

now we substitute 

1 
U= (1—t) sodu= (lt)2dt 

to get 
/' i 

3j'i)   
64 (1 1  

(1—t)2 

3 lf 
=--I1 ) dt 

e4 Jo U — ti 

= — 3 jl ti(l _ t) -idt 

3 p1 
= +1)_1 (1 _t)('_)1dt s4 0 (A.1) 
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notice that the above equation is in the form of a Beta function and recall the 

formula 

r(x)r(y) = B(x, y)F(x + y) 

where 
1 

B(x, y) = f t'(1 - t)''dt 
Jo 

so that we get for A.1 

Now we also recall that 

thus 

and so 

so A.2 becomes 

I'(f + 1)P(1 - f)  

+ 1)F(1 -  

64F(2) 

I'(z)r(1-z)=   
sin(irz) 

z(r(z)r(1 —z)) = 
7rZ 

sin(irz) 

F(z+1)T(1—z -  irz) 
— sin(irz) 

(A.2) 

37-i 3ir 
€  --

= (—) r sin() - eSisinh(2E) - e5sinh(2) (A.3) 
€ € e 
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Now we wish to deal with the second integral so we start by considering 

dy(2) 
____ 10 - (1 - 62) + (y(2))3 + + (y(2))4 (_ 62) 

dx 

= (2) (1 62) + y(2)(_ + 10 2) + (y(2))2 ( 62) 

To help simplify the notation, we will drop the superscript (2) on the y and just 

use y where it will not be confusing. We must integrate 

dy  

1 y(1 - 62) + y(— + 62) + y2(_&2) 

by making the substitution y = 1 we get 

I  —du  

v'(' - 62)U2 + (_ + LO-6 2)U  + (_ 2) 

So evaluation of this integral yields 

1 
2 ( cosh (XV'1_62) [(1O64+562+1)] 1o€2_23 ) 

6(1_ 62) 

cosh (xv'i _ 62) 2(1064 + 562 + 1) - (1062 — 2) 

3 (1 62) 

cosh (xv'l - 62) (1064 + 562 + 1) — (562 — 1) 

3A(1 _ 62) 

cosh (x/1 — 62) + A (1 — 562) 
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where 

1 

10e4+562+1 

To solve 

1 O 1 
1(2)(6) = - J00 cos[—]y(2) () [1 - y(2)()] d 

we have to look at integrals of the type 

Jk(a,7 00 cos(ax) )= f ( h(x) 0)k dx for a E C, 11m al < k, E (—,), k= 1,2 
cos 

(A.4) 

We also have that 

cos(ax) = 2 

for any complex number a. Thus 

1 too tax + C— jaw 

Jk(a,-f) =  dx LI0 (cosh(x)+cos(7)) 

1 loo 
 dx 

= (cosh(x) + cos())k 

Let k = 1 and consider 

1 t°° iax 

i_oo cosh(x) + cos('y) dx 

substitute x = ln(t) to get 

1 °° 1 tia 

L/0  .dt 
2 
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1 tia loo 

tt+t_1 +ej+e_j idt 

tia 

= 1000 t2 teiy  e + 1dt 

tia 

= 1(t + e) (t + 
- [ 00 t ( ii - cit 
- Jo (eY— e—i-Y) (t + ei'Y) (t + e_i-)) 

00 

0 

e21t + ti - 1 - liae_i'( - .tia_l 

(e - ei) (t + eu) (t - .)dt 

- I 

OO (t + e_i1 _iYt2a_l (t + ei1) (6i1 - eY) (t + ei'Y) (t - 

= e f OO tza-1 dt   [ 00 tia-1 

- e Jo t + e e' - e Jo t + e— 

  ldt ioy 00 e fo00  jia_l 
dt 

= 2i sin(7) Jo t + 2i sin(-y)  t + C 

t 

When a is real, two divergent integrals appear, so to ensure convergence we 

will temporarily assume that —1 < Im a < 0. Now set t = se1, t = 

respectively, so that we can get 

Consider 

1  [jo- 
(se_Y) ia  fo00  (se u1)ta 

2i sin() se + 6-1^1 eds -  seui + 6 eds 

- e_al -oo 3 za 

=  . I ds 
2zsm('y) Jo s+1 

oo 8ia 

I da 
J0 s+1 

(A.5) 
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with the substitution 

W 
8= 1—w 

to get 

101 (1 - w)ia(1 - w)'(l - 

J1 (l_w)ia+1 ° 

(ia+1)_i(1 - w) 

and since this is a Beta function, we get 

.ia_ldw 

T(ia + 1)r(—ia) = r(—ia)r(1 - (—ia)) = sin(—iria) 
r(1)  

so that A.5 becomes 

so that 

eay - 

2i sin(-y) - sin(ria) 

- 2 sinh(a7)lr  - ir sinh(a'y)  

- sin(-/)2i2 sinh(7ra) - sin(y) sinh(ira) 

J, (a, irsinh(a'y)  'y) - 

- sin(-y) sinh(7ra) 
(A.6) 

The above equation was derived under the condition —1 < Im a < 0, however, 

both this final expression and the integral representation given in A.4 are ana-

lytic functions of a in the strip urn al < 1,and so we can conclude that A.6 also 

holds in this strip. Thus it is true for real values of a. 

Now we wish to evaluate J2 (a, 'y), this can be accomplished by differentiating 
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Ji(a, 'y) with respect to y. We notice that 

= sin('7)J2(a,7) 

so that 

J2 (a,^/) = 10 J, (a,  
sin(y) 07 

and 

and so 

19 0 J1(a,-y) - irsinh(a7) 
- - 0'y sin('y) sinh(ira) 

ira cosh(a7) ir sinh(a'y) cos(7)  

= sin(7) sinh(ira) sin 2('y) sinh(ira) 

5in 2 ('7) sinh(ira) (a cosh(a'-y) sin('y) - sinh(a'y) cos(-y))=  

IT 

J2 (a, ) = sin 3('y) sinh(ira) (a cosh(a7) sin(-/) - sinh(a'y) cos('7)) 

We can return to the evaluation of 1(2) () 

where 

with 

1 j 00 1 
1(2)( cos[ ]y(2)() [i_ y(2) ()] d e)  

y(2)(x) = 3\(1 e2) 

cosh (x/i. - 62) + )(1 - 562) 

1 

106 
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We set 

and consider 

to get 

Let 

to get 

a= 
1 
— 62 ,cos('y) = A(1— 562) 

-.3A/1 — 62 [Ji(a,y) — 3A(1 - --3.X(1 - 62)J2(a,1)]62 

00 C05  dx 
_62 [10 

62 cosh(x)+A(1-5,-2 

 dx] —3A(1 _&2) 

ro (cosh(x) + .X(1 — 562))2 

6 

_____ [JO 
co cos()/1 - 62 d62_62  cosh(1 - '62) + (1 - 5e2) 

—3(1 -- S 2)  POQ,  cos().\/1 _&2 1 
2dI 

Jo (cosh(W1_c2)-i-.A(1_562)) j 

1 3)/1 2 f cos(/1 _ 2 (cosh(W1 _ 62 + (1 - 562 - 3(1 - 62)) d 

62 0 (cosh(/1 - 62 + )(1 — 562)) 

and so after substituting - = we get the above equation equal to 1(2)(6). 

Thus 

I(2)(&) =  1. - 3)/1 _ 2 [Ji(a,-y) - 3(1 - 62)J2(a,62 7)] 

y is positive since cos(-y) is positive and 'y tends to zero as 6 —* 0. Moreover, we 
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have 

sin(7) - e 15(1 - &2) - A415(1-62) 
- Vi - 562 + 10ë4  

It then follows that 

J(2) (6) = -3AV1 _ 62 [sin(-y) irsinh(ay)  
sinh(ira) 

3A(1 -  62)7 
sin 3() sinh(ira) (a cosh(a7) sin(7) - sinh(a) cos())] 

- 1  9)2.(1_2) 
- 62 sin 3(y) sinh(ira) (sinh(a y)562A + sinh(a'y)A(l _ 5e2) - acosh(wy) sin(.y)) 

- 1 9),2 .(1_62) 12 

e2 sin 3(y) sinh(ira) (A sinh(a-y) --a cosh(a7) sin('y)) 

Now we compare this result with A.3. Intuitively we would expect j(1) 1(2) as 

6 —+ 0 but this actually turns out to be false. Letting e —+ 0 and hence -y —* 0 

we have 

A sinh(a-y) -  a cosh(a7) sin(7) 1 1 
s1n3(-y) a3+ a 

and substituting this value back into I(2)(&) we get 

1 3a3ii-(1 - a 2) 

62 sinh(ira) 

which does resemble A.3 if a = , but this would not be allowed in the limit, 

instead we consider the true value of a , which i's a = to get 

I —(2)(e) 1  9A2(1 - &2) [Asinh(a) — Acosh(a)] 
— 62 Sin 3('y) sinh(ira) 
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- 1 9 2 (1 - e2)  [sinh(a7) - cosh(a7)] 
- &2 sin 3('y) sinh(ira) 

So now as e — p 0 we have a sin(y) - ay and a sin(7) = - -\/1-5 and so 

ay - \/i. Now when we consider the limit of the ratio we get 

urn I(2)(&) = 3 [sinh(/f) - \/icosh(\/f)] 

J(1)() 15/i 

24 - /ii. 24 
I-, 

5\/i-


