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Abstract

In studying dynamical systems, mathematicians are often faced with what seems
to be impossible integrations. Recently these problems have been attributed to the
phenomenon of “Exponentially Small Splittings” of the orbits in the phase space.
It seems that two problems in particular are studied to try and understand this
phenomenon, that of solitary water waves and that of the rapidly forced pendulum.
One such example of this occurrence with solitary water waves concerns the model
equation

d

4 2
20y d?/_ 2 _
de4+dm2 y+y =0

The analysis will involve the transformation

= (2)

in order to get a second order differential equation. Asymptotic expansions of z(y)
are then studied for € small and we will try to get a hold of the “exponentially small

splitting”.
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Chapter 1
Introduction

As we go about our everyday lives, we are constantly interacting with different
systems; we depend upon the interaction of gears to be able to tell time, we depend
upon the interaction of air molecules and other particles in the air so that the weather
is bearable. The study of these systems has been going on since time began. In
mankind’s unquenchable thirst for knowledge, we have described as many of our
“man-made” systems as we could. We are now moving into the realm of nature, and
we are finding that nature’s laws do not conform so easily to our own. The result is
an area of study where we intentionally focus on the troublesome areas rather than
ignoring them. In this thesis, I will try to explore one such area, that of exponentially
small splittings of orbits. I will start with a brief overview of dynamical systems,
then a quick annotated bibliography of some papers presented on exponentially small
splittings. The main Body of the thesis deals with a concrete example of exponentially
small splittings in a homoclinic orbit of the equation for a solitary water wave. With
this in mind, I will give an overview of some papers dealing with solitary water waves
and then an in depth analysis of a paper by Wiktor Eckhaus, “Singular Perturbations
of Homoclinic Orbits in R*” [5].



1.1 A Brief Introduction to Dynamical Systems.

A dynamical system is one whose state changes with time. In applications, we can
deal with time continuously or discreetly. When time is continuous, the dynamics of
the system are usually described by a differential equation whose solution or solutions
are values in the phase space. Usually the phase space is Euclidean space oOr a
subset thereof, but it can also be a non-Euclidean structure. We say the solution
or solutions of the system of differential equations is the flow of the system, and
specific solutions (i.e. solutions starting with particular initial conditions and then
tracked as time changes), are called the orbits. We usually denote the flow by
¢t : M — M where M is the manifold or structure where the system is taking place.
If pi(z) = «* for all t € R, then we say z* is a fixed point of the flow. The sets
of points {z € M | pi(z) — z* as t — co(—o0)} are callea the stable and unstable
manifolds respectively. If a point lies in both the stable and the unstable manifold,
then this point is referred to as a homoclinic point. If only one orbit contains both
the unstable and stable manifold, then this orbit is referred to as a homoclinic orbit.
Sometimes the unstable and stable manifolds intersect transversally and when this
happens they intersect an infinite number of times. The result is a homoclinic tangle.
The splitting between the unstable and stable manifolds of a homoclinic orbit is called
exponentially small splitting due the fact that the splitting distance is exponentially
small. This distance that we refer to is the actual measured distance between the
stable manifold and the unstable manifold. When determining the‘ splitting distance,
it becomes interesting to also measure the splitting angle, this is the tangental angle

at the one point where the stable and unstable manifolds intersect. Of course due



to the fact that the stable and unstable manifolds will intersect an infinite number
of times, it becomes necessary to look at the splitting angle and distance at one
intersection point. One way to try and compute these measurements is called the
Melnikov Function. Here a section of the unperturbed system is analyzed. In the
perturbed system, the distance is measured along the Poincaré map between the
stable and unstable manifolds. The distance changes for varying points and so an
average is taken over the integral. However, this approach often fails due to the
non-analyticity of the functions involved. In the case studied in this thesis, this
integral is impossible to compute. So to try and work with these types of systems we
use approximations to the functions involved. These approximations are said to be
asymptotic if we have a series of increasingly accurate approximations to a function
in a particular limit. An asymptotic limit does not necessarily have to converge and
so can be used on a non analytic function. An important feature of an asymptotic
series like ¥ ¢,” is that every term in the series is algebraic in . Transcendentally
small terms like exp {-—;1;} are smaller than every term in the series as ¢ — 0 and
are not captured by it. These small terms are said to lie beyond all orders of the
asymptotic expansion. In most applications, these tiny corrections are insignificant,
but in some instances they play a very big part in the analysis. See figure 1.1 for an

example of this phenomenon.

1.2 History of Exponentially Small Splittings.

The topic of exponentially small splittings was first suggested to me by my advisor

in the paper “Exponentially Small Splittings of Separatrices with applications to
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KAM Theory and Degenerate Bifurcations” [8]. In this paper, Philip Homes, Jerrold
Marsden, and Jurgen Scheurle deal with the problem of rapidly forced systems with

a homoclinic orbit. In particular, the rapidly forced pendulum described by
é +sin(¢) = ef(t)
when e = 0, we get homoclinic orbits given explicitly by the equations
&(t) = +2tan " (sinh(t))

v(t) = +£2sech(t)

For small values of € the above orbits split and this is where the analysis takes place.
The Melnikov function is then used to give some estimates for the splitting distance.

The authors make the comment that the splitting distance should be of the order
d = 2mee™ 3 (1.1)

however, they suggest that it is not easy to justify due to the fact that the errors
are O(e?) ,while 1.1 is already smaller than any power of ¢. A Liapunov-Perron
type iteration scheme is then used to locate the stable and unstable manifolds. In
utilizing the iteration process itself, they keep track of all of the estimates made. A
contraction mapping is then used to allow the existence of fixed points, and the stable
and unstable manifolds determined by these fixed points are used for the analysis

of the splitting distance. Estimates are made on the splitting distance by the use of



Sobolev estimates and some hard analysis. They then go on to extend their results
to KAM theory and Bifurcation problems. The work carried out by the authors is
extensive in its complexity, however they do mention that this paper was only meant
to be an outline. It is interesting to note that in their introduction, they mention
that Poincaré was aware of the problems that exponentially small splittings could
cause in terms of integrability and the convergence of series expansions.

The challenge then of working on exponentially small splitting appealed to me,
even though I had not really understood exactly what was going on in the paper.
I then learned of a second paper by Marsden, Holmes, and Scheurle which was
to expand upon the work carried out in their first paper. The title of this paper
was “Exponentially Small Estimates for Separatrix Splittings” [13]. In this paper,
the authors review their previous estimates and show that the assumption that the
estimates of the splitting distance is given by ac’e~% can sometimes be wrong. To

do this, they used the following example of planar systems
=1—2?

y= [2:1: —(a+282)(1 - xz)] y+ 6cos(§)

where «, 3,6, and € are constants. They assert that for § = 0 the system has the
heteroclinic orbit

I': 2z = tanh(t),y =0

joining (—1,0) to (1,0). Their interest lies in the splitting of this orbit for small

values of a, B, 6, and €. Although many important remarks are made by the authors,



one in particular seems to be of the most importance, namely that a singularity can
occur in the resulting formula for the splitting distance even though there are no
essential singularities in the given problem. Then an impressive amount of analysis

is again used to show that
for any integer N, there are constants ¢y > 0 and ex > 0 such that

for a = 0,8 = —¢ and § = ¢, we have

CN _=

d> V¢ 2¢

forall0 <e <en

g . .
be=3¢ can exist. This

which shows that no sharp upper estimate of the form ae
phenomenon occurs in this specific example with the splitting of a heteroclinic orbit,
however the authors feel that this problem is generic and will occur as a result of
the iteration schemes used. Thus making it very difficult indeed to actually get an
actual upper estimate.

I then had the chance to talk with Dr. Martin Kummer of the University of
Toledo, Ohio, ‘and I was able to get a paper written by Dr. Kummer, James A.
Ellison, and A.W. Sdenz [9]. In this paper, the rapidly forced pendulum is again
used to demonstrate the splitting distance, however this paper uses much more ge-
ometry to try and illustrate the actual phenomenon taking place. The results of the
work done in this paper are very neatly summed up in the conclusion and so I will

quickly sum up these results. The authors make the point that much of the work

done previously by Marsden, Holmes, and Scheurle was used, but there are some



differences. The main point being that geometry was the main focus of this paper as
opposed to only analysis, I found this to be a refreshing change from the hard-core
analysis used previously. A second important point is that the paper by Kummer,
Ellison, and Séenz also proves a stable manifold theorem in the process. This paper
is highly readable, and seems to explain much of the work done by Marsden, Holmes,

and Scheurle.

1.3 History of the Problem of Solitary Water Waves.

In searching for a way to try and understand the problem of exponentially small
splittings, I was referred to a paper by Wiktor Eckhaus concerning solitary water
waves, this then brought upon a literature search for information concerning solitary
water waves. One such paper is titled “A Theory of Solitary Water Waves in the
Presence of Surface Tension”, written by Charles J. Amick and Klaus Kirchgidssner
[1]. In this paper, the authors prove that solitary water wayes exist on the surface
of an inviscid fluid layer in the presence of small surface tension and gravity. They
begin by making some assumptions concerning the characteristics of the fluid. They
assume that the density of the fluid is constant, that the flow is irrotational, and

that the fluid is at rest at infinity. Bernoulli’s equation gives

1
p(2,9) + 5 lg(2,9)[ + gy = constant (1.2)

in the flow domain .S, where p denotes the pressure and g > 0 is the acceleration due
to gravity. It is then assumed that the unknown free surface may be represented by

a function Y and that the constant of proportionality is the surface tension T' which



is given. Then using this in 1.2 will give

N =

= |g(z, Y (2)[> + Y (z) — TY"(2)/(1 + Y'(z)?)? = constant
After some mathematical analysis the equation

¢ .
%exp(27') - ,/o sin(6) exp(—7)ds + 7040 exp(7) = constant, ¢ € R

is derived, where v = —gc-%,fy = g—f; and c is the speed of light, & is the height of the
wave. A reduction theorem is then used to bring the problem to a simpler conclusion.
It turns out that when v > % the phase space is of dimension 3, however when v < %
the dimension of the phase space jumps to 5. Some work is done in both cases, and
the result is the model equation:

d4y dZy
82%2+%5—y+y2=0 (1.3)

A second paper written by J.M. Hammersley and G. Mazzarino, entitled “Com-
putational Aspects of Some Autonomous Differential Equations”[7], begins with 1.3

and has the conditions

dy(0) _ o %

o m <0, and lim y(z) =0

with the exception that the perturbation term is denoted as ¢ rather then €. The
main interest of their paper lies in the behavior of % at the point z = 0. It will turn

out that this is the exact same phenomenon studied by Eckhaus in the paper that



I will follow. They prove that this quantity is strictly positive and they investigate
it numerically as a function of e. It is then speculated that the process utilized
by Hammersley and Mazzarino could possibly be applied to various autonomous
differential equations. It will be noted in the following chapters where our results
seem to be in agreement with those of Hammersley and Mazzarino.

The paper that I chose to follow was written by Wiktor Eckhaus of the Math-
ematical Institute in Rijksuniversiteit, Utrecht entitled “Singular Perturbations of
Homoclinic Orbits in R*”[5]. This was an interesting paper due to the simplicity of
the homoclinic orbit and the speed with which it splits. In his model equation, with

the limit ¢ = 0, one finds an integral

dy 2_ 2 2 3
(d:z:) - 3y Te

and for ¢ = 0 we then get a homoclinic orbit in the (y, %) plane. See figure 1.2
The solution y(z) of this limit problem tends to 0 as z — oo, and the question

is asked
Do there exist non-trivial solutions for the singularly perturbed model

ie. when € # 0, which tend to zero for z — £o00?

This is the problem that Eckhaus addresses in his paper and he does so by exam-
ining the behavior of the homoclinic orbit and whether or not it exists after the

perturbation term is introduced.
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Figure 1.1: Homoclinic orbit before perturbation

Figure 1.2: Homoclinic orbit after the perturbation term is introduced



Chapter 2

The Integral Part of the Thesis.

In this section, we will try and find an integral for 1.3.

2.1 An Equation for the Integral and Trajectories.

Let us multiply 1.3 by

Then notice that

and

2Ly dy _
dz4 dz

Thus we get

dy &y 1 {d2y\’ 1{dy\> 1, 1
2 Joyay 1ljay N 19 13
€ {dmd:z:3 2(d:t:2 2 \dz +2y 3y te

%% to get
dydy d*ydy dy dy
2% 9% LIy 89 24
dztdx  dz?dzx yd:r: tY dz 0

dy 1
29y _ 13
/y dz 3:1/ ta
dy_l 2
/yZ:Z_zy + e

Pydy 1 [(dy ?
@dw—i(% T

&y &Py
dx dz3

Fydy) _ o [aay
dz3 dz? dx dx3

1 (d2y\?
“2\@z) T

(2.1)

11
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Note that
4 (dy\ _,du &y _,d
dy \dz) =~ “dedydz " dz?
and
ldy & (dy\* _ldyd (pdy &\ _dyd (@y)_ &y
2dz dy? \dez) — 2dzdy \  dedydz dedy \dz2)  dz®
so that if we now set
dy 2
then we will have
&y _1dz
dz2 ~ 2dy
and
d3y 1 ;_dzz
—_— —22 —
de3 2 dy?

So now we have:

Which we write as:

Pz 1 (dz\° 2
2 _ = — 2 _ 2,3
€ {z_dyZ 1 (_dy) }+z Y — 3y +c (2.3)

and this gives us an equation for the trajectories. We are searching for an equation
for the trajectory where ¢ = 0 in the hopes of finding a homoclinic orbit living in the
(y, %) plane as in the limit case € = 0. In 2.3 we have reduced the problem from 4th

to 2nd order, and we have y as the independent variable. The problem is that the
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equation is highly non-linear and degenerates for z = 0. However, we will be using

2.3 in all the calculations that follow.

2.2 Formal Approximation by Straightforward Iteration

We are trying to find a homoclinic orbit, and so to do this we will put in 2.3 ¢ = 0.

We are searching for an expansion of the form
_ 2
z=2z+€2+ -

and we wish to find general formulae for the z;. We will then try to find solutions

by using these formal approximations. The equation we are trying to solve is

2z 1 [(dz\* 2
2), ¢%2 1l(faz _.2(1_*% .
© {zdy2 4 (dy) }+z Y (1 3y) (24)

with € = 0 the above equation becomes
o=y (1-3y) (25)
We introduce the transformation
2(y,€) = 2o(y) + e*p1(y, )
to get the equation

e (20 + ) (2 +%1) = (20 + 1) 2 + 20+ €%p =y2(1‘gy>
0 L) Gz \#0 U\l 1 0 1 3



14

d 1/(d dor\?
{(Zo+em) (—°+52d;zl)‘z(dzg;+ 2;;) }+z0+52P1=Z0

d2p1 d 20 2 d2p1 1dZ0 dpl 6 dpl
=>8{ g TP TG s ayay g \ay) [T AW

where
d2 20 dZo

fily) = —zoF+ (dy)

so let us repeat this operation, performing the iteration again by putting

p1(y,€) = z1(y) + €2pa(y, €)
z1(y) = fi(y)

So substituting we obtain

‘ d? 1dz d
e {(zo +&%(21 +%2)) E'?;E(zl +€°py) — 5%@(,21 + &%pa)

a2 2 (d 2
+(z1 +¢€ pz)%zyo - % (@(z& + 8292)) } +z+e¥p =2

2
= (20 + &%z +€*p2) (d “ 2M) ;(Z/O (@l dp?) d*zg @z

a2 T ae il R vy

62 le 2dp2 2 _
1 (dy +e€ dy +p2=0
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;\62{%@+ 1d2—zl-+a ﬂ—+sp2dz1 ) dp2 ldzodpy | d*%

dyr T A dy? dr TP e T 9y dy TP e

1 dZ]_ 2d)02 2 _ d221 1 dzo dZ]_ dZZ()
(dy T ) (TP T Ty T

d2p, B2z 1dzd 1 ,dud 1 (dz\?
=€ {(20+sz1+6p2) R O ) Rt A i pz“;‘(‘z‘l)

dy? dy?  2dy dy 9° dy dy dy
et (dp, d?z d?z 1dzdz &z
_4-(dy) +2d2}+”2 T T dy T

which can also be written as

e’ {(Zo +elz + e‘*m)f@?— _Ldndp 1 ,dndpy (@)2

dy? 2dy dy T 9° dy dy dy
| d221 dZZO d2z1 1 dzo le d220
9 0°Z1 @ % _ %A,  lazazn G2
+E°p2 " + p2 ay? }+P2 %o a2 + 2dy dy z a7
Pz e (dn 2
2
—c Z1d—y2 + Z (:{y‘;) ' (2.6)

or if we notice that by doing this type of iteration repetitively we get

= nf e 2a(y) + €™ p (9, €) (2.7)

n=0

With this, we may now introduce the definition



m—1

— Z 62nzn

n=0

so that we now have

z= Qm + 52um

Now we can write equation 2.6 as

2dy dy ' dyr '

{(<I>2+s“2)d”2 100y T 0

where
Cl 21 1 dZO dz1

fo= {(z0+6 1)d2_§d_y—@+

and we are hoping for a general recursion formula, so we do the integration one more

time in hopes of finding a pattern. So we set

Z&'

d220

—_ — —

dy?

(CZZ)}'FPz 2 (2.10)

48

L2 (92
dy

)]

p2 = 22+ €%p3
7= f
d? 1d
o { (e + e et ) s+ ) — 2 a4 )
1 ,dz d et (d . dz1
—5¢" 7y @(zz'*" €%p3) — (@(zﬁ'& /’3)) +e*(z+e%ps) =
d*z '
+(Zz+€ pa)d 2}+(22+6 ps) = 23
d?z d 1dzy {dz d
2 4 6 2, 207p3\ laz fazo |, 003
=>(zo+az1+6zz+6p3)(d2+ dy2) > dy (dy I

)



—5° dy dy? dy? dy? dy?

l o d? d? 4 (d? d?
azy (_Eg_l_az P3>_8z( Zz_I_ 2 P3) +82(z2+€p3)dz1

+(z2 + €° ,03) +,03_0

d2
= &’ {(zo + &2z + ety + 56p3) @p 31 e 4 d'zy 1 dzo dp3

dy? dy2 2 dy dy
Edudps  etdmdps €8 (dps\® | , Pu | Pz
2dy dy 2dy dy 7;1;- tetp d2+l)3d2 + s

4 2
S FAE U Lc p L Ji (dz2)

dy?  2dy dy 2 dy dy dy
2 d2z1 d220
T T Py

1 dZo 2% de d220 2d22’1 de
2(dy e dy) dy +<dy2 e = 4 \dy

which can be expressed as

d*ps 1d®3dps d?®; g3 dp3
2 23 _= _z
€ {((1)3 + € Ps)——‘dy2 2 dy dy + iy P3 1 dy + p3

__ g B _1dladn P &2 (dn)
- Ydr 2dy dy | dyr T 4 \dy

17
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So now comparing this with 2.10 allows us to speculate on a general recursion formula

for p, and f,, namely

d2p, 1d®,dp, d2®, 2 (do \?
82 {(@n+€2npn) d:;oz P + Pn — 8_ (L) }'l’Pn

T2 dy dy dy? 4 \ dy
B Py 1d0, 1 dz, .y | P8, 21 (dz, o\’
- {(I)n dy2 2 dy dy + dy? it Ty dy (2:11)

we will refer to the right side of this equation as f,, which by our substitution is just
Zn. S0 to be thorough a proof by induction is needed so that we are sure the formula
holds for all postitive integers.

Proof: The base case has been done above. So we assume 2.11 and use the

substitution p, = 2, + £2ppy1-

d? 1d®, d

e {(‘I’n + 82n(zn + 62Pn+1)) d_g;?(z" + 62pn+1) - 5@@(% + €2Pn+1)

29, 1 d 2
+ &y (20 + 62Pn+1) - Z€2n (@(Zn + 52Pn+1)) } + zn + 62,9n+1 =2

which gives

(B, + €22, + 82(“+1)pn+1)‘(dzz“ +edr ““) 149, (dzn ‘ 2dPn+1)

dy? dy2 | 2dy \dy ¢ dy

+

dz(bn 2 1 2n dzn 2dpn'l‘1 ’ —_
0 (zn+spn+1)—4e (dy +e 2 +pn=0
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so we getb

2
62 {(@M’l + 82(n+1)pn+1)ﬂlﬂ —_ % (& + 62"'%) dPn+1

dy? dy dy /] dy
2o, ., d*zy g2(n+1) dpn+1 d*z, 1d®,dz,
+ ( ay? +e 0 ) Prtt = — +Prt1 = D1 i 2 dy dy

d2<1> ) }
+
and this is just

2 1d%, d 2 g2vtl) (g ?
2 2(n+1) Prtr 1 0%n GPri1 n+1 _ Prt1
€ {(¢n+1 +€ pn+1) dy2 9 dy dy + dy2 Pr41 4 ( dy )

= Ao T _180de PO 1, (da)’
P+l = UG T dy dy | dyr " 40 \dy

which completes the proof by induction.

2.3 Formal Approximation by Power Series

Now we will compute a formal power series expansion for z(y) which at the same

time is an asymptotic expansion in &. So define

d?z d
Lz:—e2{ @”—_(d;) }+z—y +3 (2.12)

and we introduce

B, (y) = ay? — fy® = 3 ay™t (2.13)
n=1
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Which is just a truncated power series. Now we substitute ®,,(y) in for z(y) to

N ~ 28, 1(dd,\ 2
— 2 mm - Z=m — 2 =238
L, =¢ {cpm o 4(@)}”’ y*+ 3

produce

{(ay - By° —Zany"*"’) ( ay® — By° —Zany”+3

n=1

2
1 ™ 2
—1 (—(ay ~ By’ — §  any™*?) ) }+ozy2 — By’ =D any" P -y’ + 0P

n=1 n=1 3

= ¢? { (ayz — By® — i any"+3) (2a — 68y — i an(n + 3)(n + 2)yn+1)

n=1 n=1

»Jkl)—l

n=1 n=1

<2ay 36y® —Zann+3) ""’2)2}+( —1)y? +(~——ﬂ)y —Zany

=é’ {a2y2 —5afy® ~ ay? Y aa(n +3)(n + 2)y™ + 14—5ﬂ2y4

n=1

+By% Y an(n+3)(n+2)y"M —2a Y any™ P + 68y > any™t?

n=1 n=1 n=1

+Za yn+32an n+3)(n+2) n+1__13y Ean n+3) n+2+ay2an n+3)yn+2

n=1 n=1 n=1

=7 2 an(n+ 3y ) an(n + 3)@/"“} + (e —1)y* + (g - ﬂ) y®— > any™te
n=1

n=1 n=1

= (% +a—1)y? + ('—;’— - B+ 50162)) y°
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+y* > an [—62a(n +3)(n +2) — 26%a + e?a(n + 3) — 1] Yl 4 yte? {14_5132

n=1

B3 o [( 4+ 8)(m +2) +6 - S(n+3)] y a2 [i any™ 3 an(r + 3)(n + 2y

n=1 n=1 n=1

a3 S el + 8

n=1 n=1

and so collecting like terms and reorganizing
F 2.2 2, (2 21\ ,,3
LY, = (% +a—1)y*+ (g—ﬂ(l+5a6 ))y

~0* S e [L+aln B)(n+ 1) + 25+ {2

n=1

B3 o (1 8)0+ ) 46577 47 |32 0™ 3l + )0+ 2y

n=1 n=1 n=1

1

= (ﬁ; anli + 3)y"-1) 2] } (214)

We can now determine «, 8, and a,,n = 1,...,m by putting all the coefficients of
y?,p = 2,...,m+ 3 on the right hand side of equation 2.14 equal to zero. So we have
that

el +a—-1=0

_ —14+/1+44e?

2e2

=«

and we take a to be the positive solution to the above so that « is the solution the

linearized model equation. We also find that

2_
3

1

2
2y = =2 -
,3(1-|—50.’6)-—0$>,3—‘31 e
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‘Now set the coefficient of y* equal to zero to get

—ay [1 +€2a(4-2+2)] +5214—5/32 =0

51542 1
4 14102

= a1 =€

we will also look at the coefficients of ¥ in order to get an equation for a,.

—ay [1 +e’a(5-3+ 2)] + &%Bay [4(1 + %) + 6] =0

45 1
141020l + 172

= ag = 84ﬁ3

So we see that without the condition that « was positive, we would have a; possibly
being negative, and we want positive values for all the a,. Let us now determine a3

to look for a pattern in their structure.

—ag [1+82a(6.4+2)] +€e%Ba, [5-12—1+6] +a1a14-3—%a1a14-4=0

67 45 1 1582 1 2
26c2al = 228443 _ 2
a?’[lTL '] = & e i T Ta 8(6 4 1+10€2a)
|67 60 45 1 ,1562 1 2 1
= 6= |  0eal + 7o 8(5 4 1+10e%a) | 1+ 26e%a

So by inspection of the formulas, we are able to determine that

an = 0(e™),a, > 0
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We summarize these results as

6m(y) — Oty2 _ ﬁy3 _ Z 62nanyn+3
n=0
@, = 0(1)
an>0fore>0

m
L@m — 6.‘2(m+1)ym+4 Z o.pyp
=0

op,=0(1),0, >0

This will then give us

2= 8, +Xmtds

where p,, is a remainder term. We will be using the power series expansion when we
deal with the problem of splitting the homoclinic orbit.
In the work done by Hammersley and Mazzarino [7], a formal power series similar

to 2.13 is used, in particular

f=A222 (1 — Z cnz“)
n=1

as a basic step in their analysis. The coefficients are determined by a recursion for-
mula and convergence results are given. However, for € small, the authors do not do
rthe analysis. The results gained by Hammersley and Mazzarino [7] are encouraging
as they do support the results obtained here. Their numerical computations suggest

the same results that will be shown in the following chapters.



Chapter 3

What Does it All Mean?

3.1 The Solution for z(y) and the Result

Our basic equation is

&2z 1 (dz\’ 2
2 — — — — _— 2 — —
¢ {zdy2 4 (dy) }+z v 3y) _ (31)

We are trying to find a homoclinic orbit, so in order to do this we look for solutions
z(y) which for y — 0 behave as y2. We look for this type of solution due to the

way z(y) = y® — 2y® approximates y? as y = 0. To achieve this we introduce the

transformation
z = y2'2
to get the -equation
e? 242 _ 1 £l§2 + 3572 +z(1+e%2)=1—= (3.2)
Y a2 "1 \d e =Ty

then write

where ¢,, is the result of the formal iteration of section 2.2 or the truncated power

series of section 2.3, in both cases with y? factored out. So ¢, is really just a

24
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polynomial in y. Substituting Z into 3.2 we derive
00 [(om )+ ) & (L )

+3y(90m + 52m7/’m) (Som + 52m¢m)} (Som + 52m¢m)(1 + 82(‘Pm + €2m¢m))

2
=1-3y

) £2y? d  \?
2,2 ~2m " 2m mi _ ! 2m
= e°Y*(om + " Pm) (gom +e " ) 1 (gom +e dyz,bm)

+352y(90m + 52m¢m) ((P'Im + gzm%z/’m) + (om + 52m¢m)(1 + (pm + 52m¢m))

which simplifies to

m m 2¢m m 1 m (.1 d",bm .
[ (pm + )| — 5+ 2 [3y(<pm+62 ¥m) = 5370 + 3 Letmy, )] rn
+ % ) — & {y%en + 3yl + (20m + € ) } (3:3)
where

= 1~ 2y — 22000, + S (¢l,) — €702,
fu(y) = o

which is just a polynomial in y since ¢, is a polynomial in y. We use both primes
and the fy— notation to denote the derivative so that we can try to produce general
formulas. In Chapter 4 we will prove the following main result.

Result
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There exists a unique solution 1y, (y; €), which on an interval y € [0, yo] is bounded

Jor € | 0 and the same is true for the derivative ¢}, (y;€). yo satisfies the estimate

lom(y;€)| > ce™

with ¢ a constant and m > 2.

Remarks

Note that m is an arbitrary integer and so we have the existence of a solution
which starts out as y? and goes to zero faster than any power of &. We also have
that yo > 2. We wonder what happens to the continuation of the solution. z(y) can
not stop at some positive value, it must continue, so suppose that the continuation
escapes to some large value. This is only possible at y > 1. The problem arises

j—z = 0 and %3% > 0 and this leads to a

because at some z > 0 one would have
contradiction in the equation 3.1. Now suppose that z — 0 as y — y; > yo,with 2/
also tending to zero. Since 2z’ comes from negative values and did not pass through
zero, we must still have 2” > 0 and this again gives a contradiction in 3.1. This
contradiction remains if we take y; = +o0o or if we assume that z tends to a non-zero

positive value as y — oo. Thus the continuation of the solution z(y) must reach

z = 0 with a non-zero slope.
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3.2 Splitting of the Homoclinic Orbit

We start by defining two half orbits y,(z), z € (—00,0], y_(z), = € [0,00) as

solutions of

+(0) =3-(0) = 1a(e) (34)

z(y1) =0
What happens to y.(z) and y—_(z) at z =0 ? We are interested in the regularity of
the union of these two half orbits. Since the model equation is of fourth order, we

need continuity up to and including the fourth derivative. So let us compute

(2), (), )-8,

thus

From 1.3, the above, and the fact that y+(0) = y_(0) we get that

dy d*y
(Zx?)f (d_) atz =0

Now from previous results we have

Ey\ _1(dy\ d*2 1 ~d*z
de3/ , )

a2 Il e i
(da:)i dy? 27 " dy?



28

remember that we are trying to establish continuity of the third derivative. We

compute the third derivative by the use of the Laplace transform. We use

L{fHs) = [ f(-t)eds

Now we make the substitution v = %Z% and so the equation that we are trying to

solve is e2u” 4+ u = (y — y?). So consider
L {62u” + u} =1L {y - y2}

=L {szu”} +L{u} =1L {y - y2}
= e??L{u} +L{u} =1L {y - y2}

#L{u}:;—;}_}_—lL{y—f}

1
= L{u} = 332_‘;%L{y_y2}

- 110 =12 ()} )

and so by the convolution theorem

thus we have
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So now we differentiate to get
d®y,
Pt 0) = 1(e)

where

1€)== [ cos(26) [u(6) ~ v7(6)]

We wish to compute the integral along approximate trajectories, so we replace 2(y)

in 3.4 by its asymptotic expansions. So we define y(™(z),z < 0, as

dx - V@m(y’g)

with ®,, the asymptotic expansion defined in section 2.2. Now, define

1) = 5 [ oos (26) [5(€) ~ ™(@))7] e

In the Appendix, we have the integrals computed for m = 1 and m = 2. These
integrals are due to dr. N. Temme of C.W.I. Amsterdam who did the analysis

involved. These results can be summarized as follows:

m—1

B =D 2,(y),m = 1,2

n=0
™ x
ItM(e) = ——Egcme‘e [1+o(1)]

C1 = 6, Co = 3.661
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So a small correction in the trajectories does not result in a small change in the
constant c¢,,. Hammersley and Mazzarino [7] came up with a very similar result for
the integral I, their result was thc? reward for complicated and extensive numerical
calculations. For large values of m, we can expect that the constants c,, will settle
to a definite value but analytical determination seems beyond possibility. The com-
plicated evaluation for m = 1 and m = 2 gives this impression. However, we can
show that the integral I(™) is negative for all m as was shown in [7].

We recall some relevant formulas

&2z 1 [dz\’ 2
_ 2 _1 .2, 4.3
Lz=¢ (zdy2 4<dy>)+z y +3y

m
D, (y) = ay® + By® — > e a,y"+?

n=1
L®,, =m0 ()
fm(y) =y™> " opy?
p=0

op=0(1),0, >0

Now we want to look at §(™)(z) which is a solution for & < 0 of the equation

dgjm) =
= (m)
Now consider the original equation
Ay | dy 2
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and using 2.3 we get

d|,) &z 1(dz 2 ,dYy Ay
o [8 {zdyz_Z(@) }+Z}—2[s dw4+w

L

and so

So (™) satisfies

LA™ 2gim) 1
dz* dz? 2

g2m+1) f (g(m)) + 37(’“) _ (g(m))z

with

fr. (™) = %fm(g(m))

so by using the Laplace transform once again, we get

—00

d27(m) 100 . /1 " e Lo
(& )+=5/ sin (e = 0)) [0 = (1) €) + 52 1)) de

and so

d3§/vg.m) 1 10 1 (m) N2 L L atm1) o
T e —=¢) (7™ = (5) " + 52 ~(m)
dz3 (0) 52/ cos( 85) [y (y ) +3¢ @ )]

-0

1 o LN T fon2 1o -
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So we have that

since the quantity on the right hand side of the above equation is just a polynomial,
‘ m) . o
we have %“3—(0) = ( since this is how we determined the coefficients for ®,,. This

then allows us to get
0= 1 [ oo (9 [0~ G0 + oo

0= [ cos(2€) [7m0e) - (7ce ))z]ds
+§€—2/ e2(m+1) cos ( > f'(~(m))d§

= I0(e) =~z [ cos (2€) £t

Now remember that

So
1 0 1\ & p+m+3
(MY(o) — _Z.2m ot 77(m)
I'™(g) 5¢ /_oo Cos (85) zZ;)(;p +m +4)o, [y ] dé

= -3 ZmZO.p p+m+4)/oocos <é§> [g(m)]P+m+3d£

p=0
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Now in order for I(™)(¢) to be negative, the integrals in the summation must all be
positive. (™) is a monotonic function and for all £ ranging from —co to 0 is positive.
So if we consider the function on intervals like [—2?’“, 0] , [—-4—" —2—“] , etc. we see that

e ? €

we get a net positive contribution. We also have that o, > 0 thus

I™(g) < 0,Vm.



Chapter 4

The Proof of the Result

In this section we will prove the result given in Chapter 3 and we will simplify

notations by dropping the subscript m.

4.1 The General Idea

The equation 3.3 is of the following structure

() = F(y) +€’91(y, %) (4.1)

W = Ay, )5 + B H) L+ (42)
A(y,d) = y*(p + ™) (4.3)
B(y,$,4") = —53/ (¢ + 52% ) +3y(¢ + ™) (4.4)
= —{y%" + 3y’ + (2 + ™) } (4.5)

We want to prove the existence of a bounded solution. We would like to decompose
U = ¥, 4+ ¥, so that
Ui () + ¥a() = F+ €’

or

Uy () = —Ua(¥) + F + %01

34
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and if U7 existed then we could find
=7t (—Ty($) + F + %01

To make things work out nicely, we will try to use a linear operator for W;. The
problem is that we get nonlinear terms on the right hand side of the equation. It will
be possible to get rid of occurrences of the second derivative, but the first derivative

can not be avoided and so we must study the problem for 9’. So consider

() = F(y) +€°91(y, %) (4.6)

Now use 4.2 and differentiate with respect to y

La) = [LoniorempThr e (<3 + 30 + ot ) G
+¢-]
=& (y 2(so+ez’”¢)) W+ ? dﬁ [25(p + ™) + y*(¢' + E*™)

;y 62m¢l (90 + 62m¢)+3y(¢+82m¢):| +'I/),

+¢,€2[ ?J(SO + 82m¢l) 2y2(P”+3y(Q0'+€2m¢l)+3(30+82m’(,b)]
which gives

2/ dl
)¢ 200

o+ ) T+ G [sul + ™) + 0 + )]+
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5
+,‘/)l 2 [2%0 + 2:,,’6.2m,‘)[)l 2y2¢,,+3(90+62m¢)]

and

% (F@) + (v, 9))
= F(y) - s 2{y?" +3y¢' + (20 + ™) }
=Ffly)—¢ [(2y<p” %" + 3" + 3y + 26 + P )
+ (42" + 3¢’ + (20 + ™)) ]
= 0) =€ [0+ 50+ 500+ (474 0+ 0+ )+ )]
So we now have

¥ = c2Aly ¢>%+523<y,¢,¢'>%+1 (4.7)

with A as in 4.3 and

By, %) = 5yl + ™) + (0 + &) («8)

=R

@) =T (y) + 92(3,%, %)

where
g2 = —(y%" + 5y + 8¢ ) — (42" + 3y + (2p +2"™)) o'

5
—3’ [2:';90’ + 3y — 2?/2 @' +3(p + 52%)]

— ( 2 /II+5?J(P”+5‘P ),‘!) {5((P+52m¢)+y(590,+252m1/)l)
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1
+y2(go” - 5(/0//)} ¢/
= —(v%" + 5y + 59 ) — {5(p + ™) + By(¢ + ™)
1

5
+:2_y2goll _ 562my,()[)l} ¢l (4.9)

Now we put our attention to finding a suitable operator ¥; and for this we take a

small recess into WKB functions.

4.2 Excerpt on “exact WKB functions”.

WKB (Wentzel, Kramers, Brillouin) approximations have been used by physicists for
many applications. Here, we are only going to use a special case and the procedure

we need is as follows. Consider the homogeneous equation

d20 do
2 — 2 — -_—
€ ady2 +e bdy +6=0 (4.10)

where a and b are given functions. We introduce

So that



To get
2 1 n2 _1q 1//-1-Q 21 1 1Q ig
g a 's—z-(Q) €e +EQ6° )+€nge= + e =90

which yields

a (Q')2 ec@ 4 saQ”e%Q + st'e%Q +e?=0

or

a(Q) +eaQ"+eb@Q +1=0

Now introduce a formal expression for ().
Q=goteq+e’p+---

Q@ =g+egi+e'g+-
Q" = g5 +egq +e%q + -

So we have

a(gy +eq + gy + -+ ) +ea(gqy +eqf +€%¢5 +--+)
+eb(go +egi + e’y + 1) +1=0

and equating coefficients of €° and &' will give
e:a(g)?+1=0

&' agyqo + agoqy + agy + bgh =0
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So
1 1
/2=__.. .’=:|'_'.’—"
) 2 8iving ¢ = +i—=
and
, _ —aqy — bgg
@ 2aq}
90
a1}
T 4a2(gh)?  2a
_ 4 _la
T 4a 20
So

q0=ii/y L o

yva(t)
v 1 b(t
T4 / / 2 a(t)

Hence as a formal WKB approximation we get

1 Y1 1 € [vb
~ - f— = Zdt
6 exp{6 (:I:z/ a(t)dt-l—elnm 2/ ad)}

So call

v b(t) 1 e v 1
6o = exp{—— dt} at exp i—/ dt
° 2J a(t) €J 4/a(t)
In our case the equations 4.3, 4.4, 4.8 vanish at y = 0 and the proof of validity

appears difficult. Luckily we will not need to prove validity in the approach we will

follow. We will consider what differential equation is satisfied exactly by the WKB



approximation. In the case of ¥ with m = 0 we have
~ d? 1 d
T = 20200 12 1.2 n %
eYegate (Sye + 5y w)dy +1
In regards to the computation of the WKB approximation,
a=yp

1
b=>5yp+ 55"

y5 +12/ 1 1
00—-exp{ 2/ hd Zygo }ygo)*exp{ s./ \/tz_cpdt}

1
=y T Tyrplexp {%/ —dt}

SO

Now

40
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1 v 1 21 f(-1\? 6
~eolst [ |5 () -

SO
d*6 ep [ —1 -5 20 +yo' -1 dep [ —1\2
6201'-—0: —(—) (——— + —_
dy? 2 \y%p y3p? Y \v%0 y \y%p

6e2¢p i v 1
+?—-] exp{:l:g/ t_\/—_g;dt}

Now we can evaluate

d?0 do
2 0 0
€ {a——dy2 + b_dy } + 00

i v 1 e[ —1\"% 20+ yp' 1 dep [ —1\2 6e%
—ep {2l [ ——dt} 2 (%) (_——_— S +
P{ el Ly {2 y*p yop y: oy \y% y?

5590(——1)%_105290+_5_9_o_’(—_1)%_5290’+_1_
Yy \y%p y2 2 \y?p y o y?

!

N[

E(Zptye) _& _ &
2\ ¥ ¥ 2P

i v 1 -1\~
= -ty [ —
oo {22 [ 7 (75)
y2p y? yZ

4e®p + 62.1/90')

el e (2

= —&*(4¢ + y¢')bo
and so
d26, dbo

and so fy exactly satisfies a mildly perturbed original equation. Note that the above

equation holds for ¢ replaced by ¢ +&2™. This is very elegant yet at the same time,
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Eckhaus discards it since difficulties arise in trying to use it in the construction of a

contraction mapping. We will now define explicitly the operator ¥;.
0, = 621;2<P£ +é? [53/90 + lyzw’] L. 1+ &40+ )] -1 (4.11)
dy? 2 dy )

Then
W @ _ L 1oy _dt
05,05 " exp{is/ i

gives two linearly independent solutions to the homogeneous equation W16 = 0.
Eckhaus remarks that the simple approach of adding in an additional pertur-
bation term to allow us to use the WKB approximation as an exact solution is not

found in any of the literature.

4.3 Transformation to Integral Equation

Let us consider an inhomogeneous problem
U(P)=R (4.12)

where W is the operator defined in the previous section. We would like to find
bounded solutions on some non-empty interval y € [0,yo] where yo > 0. So we

suppose a solution for 4.12 of the form

’LZ = u10(()1) + ’U,za(()z)
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then using variation of parameters we have

05
0(()1) (0((]2))/ B 0(()2) (0(()1)),1?,(’!!)

-
’U,l——

VST (B—T)
650 (69) — 6§ (65"

and

o0 (6" - 6 (68")’
=gV [%exp{_é/y%}:; <§§'};)% + ;—feXp{__:;/y %}]
ool ) 2 () Fee i )]
o) (,,(()z)% (i) ﬁ + 6§ ‘72) o5 (081) = y\lﬁ + 081):;)
9(1)9(2) ( \1/5)

, Re
U=
20003/
. —Re
Y2 = 5
2i05"y /P

So

Thus
_£ /?/ R(t)dt
NSINED

___—_5/1/ R(t)dt
=5 Jo 0(()2)7:\/@
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Now we can get

~_[e v R® .\ ,m
= (5 oé”wﬁ@dt) S
—e (v__ Rl )@
¥ (22' ) 032><t)tmdt) o
e (60w Pw)\ RE)
~3ik (03”(0 P0) v

e o(y)ee) — 687 (y)ef () R(t)
== / dt

65°(1)67 (1) 1/ (2)
and
o0 () = o
b= (1) (5)09)(£) — 6D (1)6P ()} 2 R(t)
v=15 / {00@)08(t) - 08 (w)660 (1) } ¢ ——mdt

However, substituting back into 4.12 leaves us with ¥, (1,7;) = &?R and so we must

adjust {[; by a factor of e% . So now we define

Qty) = /5\/—

and
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and by the same reasoning

1
0 w)o() = 2 exp {ta}

Now putting it all together yields

-~ le vl -1l
P(y) = 522z/ ;2‘(6 et )tmR(t)

and so

~ -1 fv e_%Q — eeQ 1
= — ; t R(t)dt
¢(y) €y2 0 2Z \/So(t) ( )

-1 v . 1 1
=0 /0 sin [EQ] t———mR(t)dt

Now we show that $(y) is bounded as y — 0. First we note that sincelsin z| < 1 for

all z hence
< —— -——dt sup |R
y)l ey? (/ ) yG[O,Iz)Jo][ W)

This estimate is valid on all intervals y € [0,yo] with ¢(y) > 0. Of course R(y) must

be such that sup |R(y)| exists on the interval [0, yo]. Now

1 v ¢t
— / dt < ¢ for some constant ¢
Y2 o\ [io(t)

and so

[B(y)| < Zsup |B]
€
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We now suppose that R is differentiable, and we will use the fact that

d 1 . 1 1d
7 8 [gﬂ(t,y)] = —sin [gﬂ(t,y)] Y]

to show that

We now integrate by parts to get

1,/[;(3/) = ;12— (tzR(t) cos Eﬂ(t,y)]: - /Oy cos Eﬂ(t,y)] %ﬁR(t)dt)
= R(y) - % [ cos Eﬂ(t, y) % (2R()) at
Nowlet e | 0
1

5 /0 ? cos Eﬂ(t,y)] % (#2R()) dt' < yl—zy2R(y) = R(y)

and so §(y) is bounded as & | 0. Thus ¢(y) is O(1). Now suppose R(t) is twice

differentiable so that we may integrate

_y1_2 / ? cos Eﬂ(t,y)] gt- (#R()) dt



by parts. First notice that

d . J1 1 1 1

2 5in [Eﬂ(t,y)] =~ cos [gﬂ(t,y)] o)
and so

cos[ ,y] )| = et/ —sm[ ]
Thus

1 v 1 d /,
b cos [Eﬂ(t,y)] % (t R(t)) dt

becomes

y d . [1 d (,
—-5-5 fo ty/sp(t) = sin [Eﬂ(t,y)]zl—t-(t R(t)) dt

so now doing the integration will give

& (o e ]

- [V sn 20t )] & (e 5 R0 @)

=& [on Eﬂ(t,y)] % [tﬁ% (mz)] at

Y

and so

B) = )+ 5 [sm[2000)] [tf 3 (tzR)] dt

47
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which then tells us that (y) = R(y) + O(e). Now we turn our attention to the

problem for ¢ and %’. In this section of the analysis, it will be convenient to define

SiE)(y) = —;—2 [ sin [Z0(t,) —;(5R<t>dt

SR = == [ cos [0t ";:(T)R“)d*

so that on intervals y € [0,yo] with ¢(y) > 0 we have
|S1.2[R]| < esup |R|

and if R(t) is twice differentiable then

251lRI(v) = B) + O(e)

4.3.1 The problem for .

We start with 4.1 to 4.5 and 4.11 so that we get

& 1, 14 ,
Ui(y) = 62y290d—;f +é? [5y<p + 5@/290’] % + [T+ €40 +yo)] ¢

d%p d?y
2,2 2m _ 22,2.2m
= o+ M) g — Y

+¢? (—lez(w' + %@2"‘1#') +3y(p + 62m¢)> %
P

1 d
+&? [2ycp + y%’ + Zy%zm«b’ — 3y62’”¢] 7 + ¥+ (4o + yo' )Y



d2p 1 | dib
— 22,2 2 2, 1/ —2.2mo 0l 2m bk}
= U(4) — ey o +e [2y<p+y ¥t qye Y — 3ye ¢] a

+e*(de +yp' )

= f(y) + 0y, %) + €’ Qyo + y* ) + & Gyza?mzb' - 3y62’”¢> '

+e*(4p + yo' ) — 2(m+1)y2¢d v
= F) +¢* [-v%" = 3y¢' — (2 + ™ )| ¥ + X2y + 7)o’
+e20mt1) (i 2! — 3y¢) Y46 (4o +yp) - 2y Ry ¢
= F(y) + & [-v*¢" = 29¢' + 20 — | o + & 20 + y2<p'] 2//
+ [ 2y — gyermedy] g - ey £8

=F(y) + € [~v7¢" — 20 + 20| b — ()b + ¢ |20 + v | &'
s [~y @ - ey TL
= T(4) + Cly, b, 9') — mrDy2y LY jy‘f

where G(y, ¥, ') is of the form

Bo(w)d + 10 ()¥' + & [Br(y)e + m(v)¥] 9’ — (e2™) ¥

49

The B’s and the 7’s are polynomials in y. In the following computations, it will be



convenient to use G to denote anything of the above form. We have

Ui(y) = F(y) +€°G(y, %, %) — 82<m+1>y2¢f_;5

and so

b= 25 )
- -:?Sl lf(y) +8G(y,¥,9") - 52(m+1)y2¢%] )
and

5 [7@) T Gy, ) — 62<m+1>y2¢fl—;§-] )

dt?

=L [sin [Fawp)] - [70) + 6t v,9) - ez(m“)t%@] at

y2

F(t)dt

€ || o+
Vo
Py
N’

+e? (L;.}) /0  sin Eﬂ(t, y)] ﬁG(t, b, ') dt

min) LY . 1 B d%p
+ +1)E/0 sin [Eﬂ(t,y)] —Rt)¢d_gﬂdt
= 51 [F(t)] +¢*5: [G(tﬂb”/")]+52(m+1)§15/oysm ["1‘ ] AL

\/;(t—) di?

€

So

8 d%p

1 F ! 2m1 1 v 1
¥ =25 [F0)] +esi (Gt ) + e+ [Mein |0 O

50



and by integrating the last term by parts we get

entt |1 3 gl pvdy 1¢2
v Hsm[gm W)w] < (o
4]

oo [2)

for the last term and simplifying yields

__62:“/0 sinl0(t,9)] [t%] dfdt_% ela g

and we conclude

d¢
dt —dt

b = —.5’1[f]+651[G]——-— 2;“ / ? sin[= Q(t Vg [t3¢] dfdt

t Ve
g™ v 1 di
5 /0 cos[sﬂ )] 1/) dt
Notice that

|| = oo

1 v 1 .42
= ]0 cos[ 0 _w'd
‘and

£, 1w 1t
Sl l;¢¢¢] _'_yz/(; Sln[SQ]\/S—O'SOSszzibdt\

1 /y Lol B,
= —— [ sin[— PYp'dt
2 do " o Bt
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We also have that
d| d [ 3 3 dep
& [«a’/’] @ (f)‘b N
_ /o3t — 30 "fgo'l/) 3 dyp
@ Ve dt

_<§Ez__ﬂ)¢+£@
Ve 28] " P dt

So the result for 7 is now

2m+1

=28+ 806~ S [ sin[éﬂ]%zpz/;’dt

82m+1 Y l 82m+1

+

+62"‘Sz[—\/—(_’5¢¢']

which means that

2m+-1

P = ‘i‘51[7] +eSi[a] -2 5

[ovw]ems

3t2 2m+1

gm+l ry / R 3 INY;
— / sin[> Q]7¢¢dt . /0 s1n[gﬂ]ﬁ¢¢dt

82m+1

= %,5'1[7] +e$1[G] — Sh [%(p’zﬁz/)’] +&2mS, [:/-t‘-_g;%/ﬂﬂ]

€2m+1

4 . 1 t ! 1.7
» /0 sm[gﬂ]% [3t¢¢ +t2¢¢] dt

2m+1

= 35’1 [7] -+ €S1[G] — S l:'i—:‘(Pl’Qb’(,b/] + 52m82 [%I/’d’{l

7 / 111[ Q] \/_1/)1/)'dt 7 /Osm[ Q]\/_z/)'g/;'dt

W'] |

52
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since the term —52—';?— I sin[%ﬂ]—\}% [Btepep’ + t24p"9p'] dt is of the form S;[G], of course

with different polynomials $;(y) and 1 (y) then in the original G. Thus we have that

b= o+ SIG( YW + S|~ 3K Co) (413

where

1. -
Po = gsl[f]

Since f is twice differentiable, we can use previous results to state that
1 — —
S5ilfl =1+ 0(e)

We need to keep the terms separate so that we may pursue the analysis as far as

possible into values of y where ¢(y) become very small.

4.3.2 The problem for '

We now turn our attention to equations 4.6 to 4.9. We want to remove the nonlin-
earity in the term with the second derivative of 9'. We do this by multiplying the

-equations by the factor

S
¢ +ermy

and using the identity
Y  _q1_ _emyp
@ +emp T gt etmp
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So .

g [+ G+ (e )+ 3 ) S

= o 5 [F W) + 0, 9,9)

YN 2m, ! 2
#82y2¢%+[25ytp+ 2 ‘P+5 ¢]d¢ P

- (1- +m";¢) F) +<o)

which yields

d?’ 1 i’ o emyp
2,2 2 2,2, .0 r— 2
sytpdy2+€(5ycp+2y90)dy +9 (1 P (f (v) + €%g2)

2y_ 2m,¢, 3 23/_2 _ 62312 84m¢/¢ ]d_l,b: €2m¢ ,
+[‘°‘ 4 ((w@%)) T S ) RN

and simplifying results in

/ ’ 2m _,‘
e’y wgz—/f; +&*(5yp + 23/ 20") 15 +¢' = (1 = ;:La—;b%> (F (y) +€g2)
2m+21 2m ’ T/" 82m1/’ ’
+e oy (o + ) (e’ — ¥'e)—~ ” (¢+62m¢)¢

So now we introduce ¥; as defined by 4.11 and use the generic notation for G as

done earlier. This then produces

T1(¢) = —* (4o + yo' )P’ + (1 - ;k—gb@) 7 (v) + €293)
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HIHL G+ ) = ) Sy

¢ +e¥myp
= ~4e’py’ — Yo'y’ + F (y) + e%ga — C : :;f"@b)f (y) ~ (;i%%jgz
L L e B
=T () + € [~4ot —yo'' + go] + ™ (0 + ) [~ F (4) — 6%z + &
HEm L ) [~ Lot (]

= Tl(y) + 62Gl (y1 ¢7 "/)I) + 82m((p + €2m¢)(¢) (G2(y7 ¢7 ¢l) - 5292)
m m,f\— 1 7 d¢, d ’
+ ¥ + e2ep) s [2<p ¢E - 90@(1# )2} (4.14)

Notice that our definition for G does not allow us to write Ga(y,®,v’) — e2gs = Ga.
We will solve this problem in the following section, for now we may just write out

anything that does not fit explicitly. Inverting equation 4.14 we get

, 11 t l 2 ’
qp = —Ey_z sm[ Q]—Ql;[ (y)+5 Gl(ya"/)"‘)b)

+&2™ (0 + ) (%) (Ga(y, 6, %) — €%2)

& d
+e" " (p + 6™~ %yz [290 zb% = 90@(@[")2“

Consider the term
11 v 1

__g? i Sin[gn]#€2m+2(¢ n 62m¢)—12t2 [ ¢d¢’ ¢-§Z(¢,)2J dt



—emi s [ snlZal(e+ ) f 292
pemti L2 [l 0)(p + ) o (p)ae
y? 4 \/_ dt

Tackle the first integral by parts

11 d¢'
__z2m4l 2m, L\~
T, " sinl-0](p + *) \/. o
11 1 3
2m+1 ! 9 1,17 " dt
/ P's m T, \/(;(m/) + ¢"p)
1 62— 3¢
2m~-1 ! N dt
e y24/ v Sm p+e?mp o fo oY
11 7 +82m¢l #3
‘2m+1 ! Q 9 !’ dt
/¢ ](<p+62m¢)2\/¢ oY

! /
y2 4 / Yo E v+ 62m¢ 902@ pae

Now we do the second integral in 4.15 by parts to get

2 d
-1 AV

11 rv 1
+e?m == [ sin[~Q)(p + 2™
200 +em)

y24 Jo

11 gv 1 1 3
—e2ml — N2 -0 o' dt
Y (W) sinl ](90+82m1/)) Vil

ma1 11 1 3!
2 +1y24/ (¥')? n[ Q]( ety (3t (,0—2\/__

te 2m+1y24/ (3")? n[ Q] ((p:i:;b)’ 3\ /pdt

)

56

(4.15)



—gim (7,1)')2 os[—ﬂ] (

Putting the two together we get

o 11 1

e

t2dt

—€ 'y—gz [ ]m [WP' — 2¢"p]P'dt
m (P +82m¢, t3 ' ! '»
gtz [ on (¢+62m¢)¢_[¢¢~2¢¢]¢dt
m il _1_ 1 , B 3 I¢I 6t2 ”l/) tS((PI)Z
e [ el e - G- 2+ S
T 1 1 ’ 1 1 I ! (RS ' !
—e? +1§51 nf= ]( +€2m¢)\/—[¢ — 2¢"p" — 20" ] Y'dt

which can be written as

—€2m52 [_7—'(90 +62m¢)—1

2/ — ] «p’]

—e’" S [%t@p +&"mh) 7 ¢ — 9] 7,0’]

He2mtig, [1 So(so+z52"‘¢)'1 26" — W]zb]

41, [0+ )2 R — ) ()]

57

| Pp'dt

3
62m+1il sm[i—ﬂ]((p + 62m¢)—1% [20/0"h — ol — @' — 2p"ap] ' dt

Y24

and we can write the last term as

+52m+151 | o+ €2m¢ [2¢ (

7

o) = (o4 1) ¢’]
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All that we are interested in is the structure of the equations, and so we extend the

definition for the generic G. By doing so, we will also solve the earlier problem of

certain terms not fitting with the old definition for G.

I+¢=3

Define G(y,%,%") = > Pg(y)(®)'(¥')?

I4+q=1

where P 4(y) are polynomials in y which depend on ¢ in a regular way. We can invert

fully the equation 4.14 to get
' =+ e [Ga(t, b, 9)]

+e2m 18y (¢ + e2™ep) Gt 9, 9|
1675, [0 + €™ ) 7 Calt, 4, )]
6241y (o7 (i 4+ €2 p) Bt b, )
+ g¥mtlg, [(so + &™) "2 G (t, 9, 1/")}

where ¢§ = 1.5, [T] =7 +0O(e).

4.4 The Contraction Mapping

We can write our results as follows

P = tpo + €51 [P1(t,9,%")] + €S2 [Pa(t, 4, 4")]

W = b+ 651 [Pt 9, 9)] + €S2 [Palt 9, 9]

(4.16)

(4.17)

(4.18)
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where P, 5 and ?1,2 are explicitly given in 4.13 and 4.16. Let A be the closed interval
[0,y0] and consider pairs of continuous functions f,g € C(A). We define a mapping

T with components T(™ and T®) by the formulas

TOf, ) = o + &St [Py(t, £, 9)] + €S2 [Pa(t, f, 9)]

TO(f,9) = ¥y + ¢S [Bi(t, f,9)] + 52 [Pa(t, £,9)]

The operators 51 and S; map continuous functions into continuous functions, so we
must check that P 5(t, f, ) and Py 4(t, f, g) are continuous functions. By inspection,
we see that (¢ + €¥™) # 0 thus |¢ + ™| must be positive, and for this we must
restrict the interval A such that p(y) > ce?™1, ¢ > 0for y € A.

Consider T' as an operator in the Banach space of continuous functions (f,g)

with the usual norm

sup | f| + sup |g]
A A

In this space, we consider the ball B, which are centered at the pair 1o, ¥ and has
a radius of ¢!~# with u positive and arbitrarily small. We want T to map the ball

into itself. We have the estimate
|S1,2 [R]] < csup |R]

and so we must have that Py 2(t, f,g) = O(1) and Pys(t, f,g) = O(1). Analysis of

the terms in 4.16 will give us a more severe restriction on the interval A.
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o(y) = ce™, ¢>0,fory € A (4.19)

with the side condition that m > 2. We can now show that T is indeed a contraction

mapping in B.. This means that for (fi,¢1) and (f2,92) € B we have

|T(1'?)(f1,91) - T(l’z)(fz,gz)l < eC{sup |fi — fo| +sup |g1 — g2}

with C' independent of €. So we consider a representative term of 4.16

e [e*S1 [o7 (p + ™ )Gt o 01) — Mo + 27 )G, oy 00)|

em ot (e (g
7 /0 Sm[aﬂ(t’y)]\/@[ - G(t, f1,91) " G(t, f2) 92)
<6€2m y t (¢+€2mf1)—1
A V() ©
em ry t 1
+a?/0 7_(;—90" |G(t7f2,gz)l

In the first term, G’(t, f,9) is Lipschitz continuous with respect to f and g. So this

di

=€

lé(taflagl) - é(t,fz,gz)l dt

1 1

(p+emfy)  (p+e*™fi) &

term is majorized by

- C {sup |f1 — fo| +sup|g1 — go[}
1) -

Now we also have that
gZm 1
—_— . = =01
Pt emfi) @)
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so that the term is then majorized by

eC {sup | f1 — fa| + sup g1 — g2}

with C a constant independent of e: We have that the second term is majorized by

5”‘/ —=dt - sup ——(<p +e i) e+ ¥ o) - sup |1 — fo

With the condition 4.19 we have a much stronger contraction, the term is majorized
by

elt™ . C - sup |fy — fo

with C independent of ¢.

Now that we have proved the contraction property of the mapping T we have
proved that there exists a unique solution %(y),9’(y) of 4.17 and 4.18 in an interval
A limited by the condition 4.19 and that

Y = o+ O(e)

%' =ty + O(e)

which concludes the proof.
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Appendix A

Computation of Some Integrals

In this appendix, we will evaluate two integrals which occur in the analysis. The

outline for this work was given by Dr. Nico Temme, C.W.I. Amsterdam. We are

looking at

We replace z(y) by its asymptotic approximation and so we have for y™(z),z <

0.

Form=1

and so

For m = 2 we have

de

D, (y;€)

m=—=1
O, =Y %2,
n=0

)
dz = \/ (y®)? — g(y“))3
T

@2 = 2o+ 8221

64
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= (@) - : ( @)’ [(ym)? _ g (+) ] o - 4y@] 4+ a [2y<z> 9 (ym)?]z
= (¥?)’ (1 =) + (y®)° (—3+4e’+ gs —2¢%) + (@) (—-—2—62)
= ()’ (1 -+ (y®) (—g + 13—082) + (y®)° (_262)

We wish to calculate

1™(e) = ;.1.2./_000 cos[if] [ m)(¢) — (y(m)(é)y] at

form=1and m=2. As

(%) = o =56

so we need to integrate

A
y(l)(l — §y(1))2

1+4/1- 20
1—/1-Zy®

1+4/1-2y®
1—\/1——§y(1)

4e”
g% 4 2e® + 1

=—In

and so we have

z=—In

Solving for y() yields

2
Zg®) =
3y



Thus
3

3 1
M) = Zgech?(zg) = ——
v 2 sech (2:1:) cosh[z] + 1

and so

@ )
1096 =% [ coltTide

which we integrate by parts to get

@
IW(e) = 51—2 ([ os[ €] dy® ] + 1 / ooo di/l ; sin[éﬁ]dﬁ)

£ J-
1/0
= — 11| —
€3 J-oo

Integrating by parts once again will yield

o
10 = % ([psinia] -1 [ coslelac)

= [ cos[elyt
now recall that
cos(y) =
50 .
cos(2¢) = £EE
and thus

66
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1 0 0 i
[ A [t

== [ ety@de - [ e ty0(-e)]
= s |ty + [ ety eae]
=5 [ et

Now, set

= In(u) so df = i—du

1 Inw)i (g 1
IM(e) 254/ e ¢ y()ln(u)adu

T T2t o (u+1)2u

3 o oyt
~—g‘z,/o (u+1)2du

now we substitute

to get

3 [/ ¢\
~—6_40(1—t) at

3 M —nZa
--%/ F1—1)3

] #E+D-1(1 _ ) (-H-1g (A1)
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notice that the above equation is in the form of a Beta function and recall the

formula

I'(z)L(y) = B(z,y)T(z +y)

where

B = lt”‘ll—t v=14dt
(oc,y)—0 (1—1)

so that we get for A.1
(=%)TE+Dra -
PE+1+1-1%)

_ (-3)PG+ra -4

AT(2) (A-2)
Now we also recall that
7
P - 2) = sin(7z)
thus
Tz
z(I'(z)(1—-2)) = sn(n?)
and so
Tz
Tz+1DI'(1—-2) = Sn(n7)
so A.2 becomes
I(l)(s) — (_i) W(é) - 3 — 3 (A 3)
et/ sin(Z) €% sinh(Z) e%sinh(Z) '
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Now we wish to deal with the second integral so we start by considering

dy® ¢ . 5, 2 10 i, 5
= (2) 22 @V (_2 12 @)% (— 22
In (@) (1 —€2) + (y@)~ ( 3+36)+(y )" ( 38)

=y ) +yr2 + ey 1 gy (D)

To help simplify the notation, we will drop the superscript (2) on the y and just

use y where it will not be confusing. We must integrate

/ =
yi/(1 — %) +y(=2 + Re?) + y2(-5¢?)
by making the substitution y = 1 we get

—du
/ VL —eR)u2 o+ (=3 + Pet)u+ (=347

So evaluation of this integral yields

2(1 — &%) .
cosh (mﬂ) [% (1054 + 52 + 1)] z (&;;___2_)

y@ =

_ 6(1 —€?)
cosh (z/T = €?) 2 (106 + 562 + 1)% — (1062 — 2)
_ 3(1 —&?)
cosh (w/T = €7) (10e* + 5e? + 1)% — (5e2 — 1)
31 —¢€?)

" cosh (m\/l - 82) + A (1 — 5e2)
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where
1

A=
V10et 4+ Be? + 1

To solve

1900) = 5 [ cortzel(6) L =y 2(6)

we have to look at integrals of the type

cos(ax)

o (cosh(z) + cos(y))*

Je(a,y) = dz,fora € C,|Im a| < k,y € (—m,7),k=1,2
(A4)

We also have that

eiaa: + e—iaa:

cos(az) = 5
for any complex number a. Thus
1 roo etaz + e—taz
Jr(a,v) = = d
K@) 2 /t; (cosh(z) + cos(7))* ?

dz

_ _:_l_ /oo eia:c
2 J-oo (cosh(z) + cos(fy))k
Let £ =1 and consider

iax
€

1 oo
2 /_oo cosh(z) + cos(y) d

substitute £ = In(t) to get

1 o1 e
5/(; t (t+t~1) + (e"”/+e""‘/) dt

2 2
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—/ tt+t- 1+ew+e—wdt

co tm
= - - dt
/o 12 - terr +te~iv 4 1
tia

- | eremarem

tza (ery e—ry)
_/ dt
(e — e=#) (t + € (¢ + =)

o) ez'ytza, tm—l tw, —iy tza—
"/(w—rma+ww—rm

dt

_ /00 tza,— 0% t + e—z'y) —z"Ytia,—l (t + e'i'y)
(e — e=) (¢t + ) (t — e~*)

iy 0 tz’a—l —iy 00 tia-—-l
= / _dt— — / _dt
e —e ' Jo t4 e e —e " Jo T4 e

ety co fla— e~ o) tza.—-l
= —_—— / —dt — —— / —dt
2isin(y) Jo t+ e 2isin(y) Jo t+e

When « is real, two divergent integrals appear, so to ensure convergence we
will temporarily assume that —1 < Im a < 0. Now set t = se®?, t = se~

respectively, so that we can get

00 —iy ta . 00 —y ia R
2isin(y) |Jo se~?Y + e~y o seir 4 ey

%Y — =87 oo sia

- 2¢sin(y) Jo s+1ds

o0 sia
/0 s+1ds

(A.5)

Consider
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with the substitution

to get
wia

I = w)e(l—w) i = o™

1 whe p
_/o 1 — w)ieti™?
1 .
— / w(m+1)—1(1 _ w)—-za-—ld,w
0
and since this is a Beta function, we get

™

P(ia+ 1)T(—ia) _
ra -

I'(—ia)I'(1 — (—ia)) =

sin(—mia)

so that A.5 becomes
e® — e~ T

2isin(y) —sin(nia)

___ 2sinh(ay)r _ wsinh(ay)
" sin(y)2¢2sinh(7a)  sin(y)sinh(7a)

so that
7 sinh(a~y)
sin(vy) sinh(7a)

Jl(a’;?') = (A'6)

The above equation was derived under the condition —1 < Im a < 0, however,
both this final expression and the integral representation given in A.4 are ana-
lytic functions of a in the strip |[Im a| < 1,and so we can conclude that A.6 also

holds in this strip. Thus it is true for real values of a.

Now we wish to evaluate J3(a,7), this can be accomplished by differentiating
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Ji(a,~y) with respect to v. We notice that

%Jl(a, fy) = sin(’)’)Jz(aa 7)

so that
1

Ja(a,y) = m

0
%Jl(a, )

and
9 _ 0  wsinh(ay)
Oy (e 7) = 07 sin(7) sinh(7a)

ma cosh(avy) 7 sinh(ay) cos(y)

- sin(vy)sinh(wa)  sin2(y)sinh(7ra)

T
" sin2(y) sinh(7ra

] (@ cosh(av) sin(v) — sinh(a~y) cos(v))
and so

m
sin3(y) sinh(7a

J2(a,7) = ] (@ cosh(ay) sin(y) — sinh(ay) cos(v)) .

We can return to the evaluation of I®)(g)

10e) = = [ coslZely®(€) [1 — y(¢)] e

where
y@)(z) = A1 —€?)
cosh (m\/l - 82) + A(L — 5e?)
with

)\ = 1
V1 + 5e2 + 10¢et
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We set

and consider

;—23A\/1“—? [Jl(a,fy) —3\(1 — aizzu(l - 62)J2(a,’)’)]

to get
1 — Cos ;77
8_23)\ 1-ef [/o cosh(z) + /\1(1 — 562)
_ _ 22 cos ¢ 1$e2
ML —e )/ (cosh(z) + /\(1 — 5e2))? ]
Let
e ¢
evl—ge? ¢
to get
1 — cos(¥)y/1 —e?
553/\ 1-e [/0 cosh(éy/1 —e2) + A(1 — 562)d
a1 —et) [7 cos(¥)v/1— g2 d
_ (e )/0 (cosh(fx/l —e2)+ M1 - 582))2 ‘
_ —3/\M/ cos(¥)v/1 — €2 (cosh(§\/1 —e2+4+ A1 —5e? —3\(1 - 82)) g

(cosh(fm + A1 - 582))2
and so after substituting —¢ = ¢ we get the above equation equal to I()(g).
Thus

@) = -el—z;sxm [72(a,7) = 3\(L — £) (e, )]

« is positive since cos(7) is positive and « tends to zero as € — 0. Moreover, we
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have

sin(y ey15i — &) = Aey/15(1 — €2)

\/1 — Be2 + wa

It then follows that

10(e) = ST e [ _n sinh(ay)

sin(vy) sinh(7a)

(1 =ér
sin 3(«y) sinh(7a)

(a cosh(avy) sin(vy) — sinh(ay) cos('y))]

_ 1 9)\271'(1 — 52)% ) ) . \ .
= %50 3(y) simh(ra) (smh(afy)5e A + sinh(ay)A(1 — 5¢*) — a cosh(a7y) s1n(fy))

1 9¥x(l- €?)3
" g%5in3(y) sinh(ra)

(Asinh(ay) — a cosh(ay) sin(y))

Now we compare this result with A.3. Intuitively we would expect I(M) ~ J() as
€ — 0 but this actually turns out to be false. Letting € — 0 and hence v — 0

we have

Asinh(av) — a cosh(ay) sin(7y) ——-1—a3 + —1-a
sin 3(y) 3 6

and substituting this value back into I®)(¢) we get

1 3a37(1 — za™?)
@(g) ~ ——
) €2 s1nh(7ra)

which does resemble A.3 if @ = 1, but this would not be allowed in the limit,

instead we consider the true value of a , which is @ = @% to get

3

1 927(l—¢€%)2
<2

@(g) =
I%6) €2 sin3(y) sinh(ra

[)\ sinh(ay) — \V15 COSh(“’Y)]
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1 9xa(l—e)s

"~ g2sin3(y)sinh(ra

) [sinh(cw) —15 COSh(a’Y)]

So now as ¢ — 0 we have asin(y) — ay and asin(y) = Av/15 — /15 and so

avy — 4/15. Now when we consider the limit of the ratio f,—g—); we get

IO 3 [sinh(\/ﬁ) —+/15 cosh(\/1—5)]
20 [(e) 1515

24 —+/15-24

£ VoD o386
5v/15



