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ABSTRACT 

In this thesis we obtain results about V-modules, GV-modules and 

P-V--modules complementing results of K.R. Fuller and Y. Hirano. We 

also introduce the notions of weakly GV-modules, DSI-modules and 

P-V'---modules. 

The class of V-modules turns out to be a hereditary pretorsion 

class and thus gives rise to a left exact preradical v. In general v 

is not a radical. We study the associated hereditary torsion class and 

the arising Loewy series of modules. We introduce the notions of 

semi-V-modules and semi-V-rings, and generalize some results of H. Bass 

on perfect rings. 

We also introduce the concept of an SI-module, extending the 

notion of an SI-ring introduced by K.R. Goodearl. The connections 

between SI-modules, regular modules and the preceeding modules are 

studied. 
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INTRODUCTION  

A ring H is called a (Von Neumann) regular ring if for each a in H 

there exists an x in H such that a = axa. If H is commutative, 

I. Kaplaneky has proved that R is regular if and only if every simple 

H-module is injective. Subsequently a ring H is called a left V-ring 

if every simple left H-module is injective. Such rings were called 

V-rings after O.Villamayor, who characterized left V-rings as those 

rings in which every proper left ideal is an intersection of maximal 

left ideals. 

The notion of regularity has been extended to modules in [18], [50] 

and [60], while the notion of a V-ring has been extended to modules in 

[21], [35] and [46]. In this thesis, following H. Tominaga [46], we 

call a module a V-module if every proper H-submodule is an 

intersection of maximal submodules. Such a module M has also been 

called "co-semisimple" by K.R. Fuller in [21]. A result of Fuller 

asserts that the class of V-modules is closed under subinodules, 

homomorphic images and arbitrary direct sums. A class with these 

properties is defined by Stenstrbm [44] to be a hereditary pretorsion 

class. 

This thesis is intended to give further contributions to the study 

of V-modules and their generalizations. We shall also introduce and 

study the left exact preradical associated with the pretorsion class of 

V-modules. 
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In Chapter 1, several characterizations of V-modules are given and 

the relationship between V-modules and M-flatness is studied. We 

prove, among other things, that a module M is a V-module if and only if 

every cofinitely generated module is M-injective. We also prove that 

if R is a commutative ring and R  is a projective module then M is a 

V-module if and only if every simple R-module is M-flat. 

Chapter 2 is devoted to the study of Noetherian V-modules. We 

characterize them in terms of semisimple modules as well as minimal 

generating sets. We prove that a finitely generated module M is a 

Noetherian V-module if and only if every semisimple module is 

M-injective, which extends a similar result for rings in [8] and [40]. 

It is also proven that a finitely generated module M is a Noetherian 

V-module if and only if every submodule of M has a minimal generating 

set and if L is a homomorphic image of M, then every minimal generating 

set of any submodule of L can be extended to a minimal generating set 

for L, which extends a similar result for rings by B. Sarath in [39]. 

In Chapter 3, we study Generalized V-modules (GV-modules) and 

introduce the notion of weakly GV-modules. Following Y. Hirano [28], a 

module RM is called a GV-module if every simple singular left H-module 

is M-injective. Many known results on GV-rings will be extended to 

GV-modules. We will call a module M a Weakly GV-module (WGV-module) if 

every proper essential submodule of M is an intersection of maximal 

submodules. It is shown that a module M is a GV-module if and only if 

M is a WGV-module and i(m) fl Z(M) = 0. We also prove that a module M 
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is a WGV-module if and only if MISoc(M) is a V-module. A ring H is 

called a left WGV-ring if the left H-module HR is a WGV-module. The 

ring H is shown to be left WGV-ring if and only if all left H-modules 

are WGV-modules. The class of WGV-modules turns out to be a hereditary 

pretorsion class. A necessary and sufficient condition for a 

WGV-module to be a V-module is given. 

In Chapter 4, we consider the notion of P-M-injectivity. A module 

RU is called P-M-injective if every non-zero H-homomorphism of any 

cyclic submodule of M into U can be extended to an H-homomorphism of M 

into U. If every simple (resp. simple singular) module is 

P-M-injective, M is called a P-V-module (reep. a P-V'-module). Known 

results on P-V-rings and P-V'-rings are extended to modules. We will 

also introduce the notion of P-M-flatness and as in Chapter 1, we prove 

that if H is a commutative ring and RM is a projective module then M is 

a P-V-module if and only if every simple H-module is P-M--flat. Using 

this result and a result of Y. Hirano [28], we prove that if H is a 

commutative ring and M is a projective H-module then the following 

conditions are equivalent: 

(i) M is a V-module. 

(ii) M is a GV-module. 

(iii) M is a P-V-module. 

(iv) M is a P-V'-module. 

Chapter 5 consists of two sections. In Section 1, we introduce the 

notions of SI-modules and P-SI-modules. SI-modules are natural 
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extensions of Goodearl's SI-rings [22]. A module M will be called an 

SI-module (resp. P-SI-module) if every singular module is M-injective 

(resp. P-M-injective). Many known results on SI-rings are extended to 

SI-modules. The connections between regular modules, V-modules, 

GV-modules and SI-modules are studied. A structure theorem for 

finitely generated projective SI-modules over commutative rings is 

obtained. In Section 2, we introduce a generalization of SI-rings. A 

ring R will be called a left P-SI-ring if the left R-module RR is a 

P-SI-module. We prove, among others, if R is a ring with essential 

left socle then R is a left P-SI-ring if and only if SOCRR is 

projective and RjSocRR is a regular ring. We also prove that if RIJ(R) 

is semisimple then R is a left P-SI-ring if and only if R is a right 

P-SI-ring. 

In Chapter 6, the focus is once again on V-modules. We show that 

V-modules can be as useful as semisimple modules in characterizing 

various types of rings. We characterize rings whose V-modules are 

injective, rings whose singular V-modules are injective and 

non-singular rings whose singular modules are V-modules. 

Chapter 7 is divided into three sections. In Section 1, we 

introduce the left exact preradical v associated with the hereditary 

pretorsion class C of V-modules. For every left R-module M, v(M) 

denotes the sum of all submodules of M belonging to C . An example is 

given to show that in general v is not a radical. We shall give 

necessary and sufficient conditions for the class C to be closed under 
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extensions, injective hulls and respectively direct products. We 

prove, among other things, a ring H is a left V-ring if and only if the 

class C has the lifting property [48]. In Section 2, we consider 

Amitsur's transfinite process of associating a left exact radical i-.' 

with v, which yields an ascending chain of preradicals {v} for each 

ordinal a, thus gives rise to a u-Loewy series for each module M. We 

shall study the v-Loewy series and obtain results similar to known 

results on the usual Loewy series associated with the left exact 

preradical Soc. We will introduce the notions of semi-V--modules and 

semi-V-rings. A module M will be called semi-V-module if v(M) = 

for some ordinal a; and a ring H will be called a left semi-V-ring (or 

a v-Loewy ring) if the left H-module HR is a semi-V-module. An example 

is given to show that there are V-modules with zero socle. Thus every 

semiartinian ring is a semi-V-ring but not vice-versa. In his work on 

perfect rings, H. Bass has proved that if P is a right semiartinian 

ring then J(R) is left T-nilpotent. We shall extend this result to the 

class of semi-V-rings. We show that a ring P is a left semi-V-ring if 

and only if J(R) is right T-nilpotent and RIJ(R) is a left semi-V-ring. 

We also prove that if H is a commutative Noetherian ring then R is a 

semi-V-ring if and only if H is a perfect ring. 

In Section 3, we shall investigate finite or infinite sequences of 

submodules of a given module M, of the form {O} = M 0 c M c M c ... or 

of the form M = ≥ M2 2 ... , where all the factor modules 

M. 1 jM. 1. or M M i+l are V-modules. 



CHAPTER 0 

NOTATIONS AND DEFINITIONS 

Throughout this thesis, unless otherwise indicated, a ring H is an 

associative ring with identity; all modules are unitary left H-modules. 

For any ring R, H-mod denotes the category of left R-modules. For any 

module M we denote by Z(M), J(M), Soc(M) and E(M) the singular 

submodule, the Jacobson radical, the socle and the injective hull 

respectively of M. A module is semisimple if it is a direct sum of 

simple modules. R M is called semiartinian if every non-zero 

homomorphic image of M has a non-zero socl. A submodule N of M is 

"large" or "essential" in M if for all nonzero x in M, Rx fl N , 0. 

Given a subset A of M, we denote the submodule generated by A by <A>. 

Given a submodule L of M, we write L for the intersection of all 

maximal submodules of M containing L. Given a subset N of a module M, 

the annihilator of N in H, denoted by Ann R(N), is the set of those 

r E H such that rx = 0 for all x E N. A module M is indecomposable if 

the only direct sum decompositions M = M1 M2 are those in which M1 = 

0 or M2 = 0. If M and N are modules, then the phrase "map from M to N" 

or the notation "f : M - N", refers to an H-homomorphism. When N c M, 

we sometimes use the notation x - x for the natural homomorphism M -. 

MIN. The ring of all endomorphisnms of an H-module M is denoted 

EndR(M). 

6 
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Let M and U be R-modules. Following G. Azuivaya [3], we say that U 

is M-injective if for each submodule K of M every R-homomorphism from K 

into U can be extended to an R-homomorphism from t'1 into U. According 

to Sandomierski [38] U is M-injective if and only if every 

R-homoniorphism T : M -' E(U) has its image in U. 

An R-module U is said to be injective if given any exact sequence 

0 - A --+ B - C - 0 of left R-modules and any map g : A - U, there 

exists a map f : B - U satisfying g = f ° i. It is well-known (Baer's 

criterion) that U is injective if and only if U is R-injective. We 

refer to [2] for the definition and properties of M-injective modules. 

A module M is called cofinitely generated, if 

E(M) = E(51) E(51) for some integer k > 0, with each Si simple. 

Equivalently if every family of subniodules of H with intersection 0 

contains a finite subfamily with zero intersection. Such a module H 

has also been called "finitely embedded (f.e.)" by P. Vmos in [47] and 

"finitely cogenerated" by K.R. Fuller in [21]. 

A ring R is called (Von Neumann) regular ring if given any x e 

there exists a E R with x = xax. Equivalently if every finitely 

generated left ideal of R is generated by an idempotent. The notion of 

regularity has been extended to modules by D. Fieldhouse [18], J. 

Zelmanowitz [60] and R. Ware [50]. The first two authors considered 

arbitrary modules while the third author dealt with projective modules 

only. However their definitions agree for projective modules. In this 

thesis, following Zelmanowitz [60], we call a module 0  regular if 
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given any In E M there exists f E Hoin,(M,R) with (m)fin = in. The 

following proposition is needed for our later purposes. For the proof 

see [50, Theorem 2.2], [60, Proposition 2.1] and [18, Theorem 1]. 

Proposition 0.1: Let H be a ring and P be a projective module. Then 

the following statements are equivalent: 

(i) M is a regular module. 

(ii) Every homomorphic image of M is flat. 

(iii) Every cyclic submodule of M is a direct summand. 

(iv) Every finitely generated submodule of M is a direct summand. 

(v) For every submodule K of M and every right ideal I of H, 

IM fl K = 1K. 

(vi) For every submodule K of M, the sequence 0 - E 0 K -, E 0 M 

is exact for all right H-modules E (i.e. every submodule K of M is pure 

in the sense of P.M. Cohn [18]). 

Following B. Zimmermann-Huisgen [62] we say that a module HM is 

locally projective if M satisfies the following condition: 

For all diagrams 

A f 1 B 1 0 

J9 

F 

with exact upper row and a finitely generated submodule F of M there is 

amap g' E HoInR(M,A) such that gf F = f ° g'IF. It is known that every 

regular module is locally projective. 
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A preradical a of H-mod assigns to each module M a submodule a(M) 

in such a way that every homomorphism M - N induces a(M) - a(N) by 

restriction. In other words, a preradical is a subfunctor of the 

identity functor of H-mod. A preradical a is idempotent if aa = a and 

is called a radical if a(MIa(M)) = 0 for every module M. A preradical 

a is called left exact if a(N) = N fl a(M) for every submodule N of M. 

A class C of modules is called a pretorsion class if it is closed 

under homomorphic images and direct sums, and is a pretorsion-free 

class if it is closed under submodules and direct products. There is a 

bijective correspondence between idempotent preradicals of H-mod and 

pretorsion classes of H-modules. A pretorsion class is called 

hereditary if it is closed under submodules. There is a bijective 

correspondence between left exact preradicals and hereditary pretorsion 

classes. A pretorsion class (resp. a pretorsion-free class) is called 

a torsion (resp. a torsion-free) class if it is closed under 

extensions. A torsion theory for fl-mod is a pair (ç,F) of classes of 

H-modules such that C is a torsion class and 

F = [N E fl-mod: HoIufl(MN) = 0 for all M E }. Then E is automatically 

a torsion free class. There is a bijective correspondence between 

torsion theories and idempotent radicals. A torsion theory (ç,F) is 

called hereditary if C is hereditary, and is called stable if c is 

closed under injective hulls. 

In this thesis we will follow the terminology of B. Stenstrim [44] 

regarding "torsion theories". 



CHAPTER 1 

V-MODULES 

A ring H is called a left (right) V-ring if every simple left 

(right) H-module is injective. Life was given to this class of rings 

by Kaplansky [19] when he proved that a commutative ring H is regular 

in the sense of Von Neumann if and only if every simple H-module is 

injective. Such rings were called V-rings (by C. Faith in [17]) after 

Villaniayor who characterized left V-rings as those in which every 

proper left ideal is an intersection of maximal left ideals. V-rings 

have been extensively studied by many authors. The notion of V-rings 

has been extended to modules by V.S. Ramamurthi in [35], K.R. Fuller in 

[21] and H. Tominaga in [46]. In this thesis, following H. Tominaga 

[46], we call a module a V-module if every proper submodule of M is 

an intersection of maximal submodules. Such a module M has also been 

called "Co-seniIsimplet' by K.R. Fuller in [21]. The connections between 

regular modules, V-modules and their endomorphism rings are studied by 

Y. Hirano in [28] and H. Wisbauer in [51]. In [28], known results on 

V-rings are extended to modules. In this chapter several new 

characterizations of V-modules are given. We prove among others that a 

module M is a V-module if and only if every Artinian module is 

M-injective (Proposition 1.1) extending a similar result for rings by 

A.K. Gupta and K. Varadarajan [25]. We also prove that a module M is a 

10 
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V-module if and only if for any essential submodule L of M and for any 

maximal submodule K of L, K* * L* (Proposition 1.5) extending a similar 

result due to Yue Chi Ming for rings [58]. In Proposition 1.14, we 

show that if HM is a projective module over a commutative ring H then M 

is a V-module if and only if every simple H-module is M-flat, which 

extends a well-known result for V-rings by H. Ware in [50]. 

Now we begin with the following proposition. 

Proposition 1.1.: Let HM be a left H-module. Then the following 

statements are equivalent: 

(1) Every simple H-module is M-injective. 

(ii) J(A) = 0 for every factor module A of M. 

(iii) Every proper submodule of M is an intersection of maximal 

submodules. 

(iv) If K M, x G M, x 0 K there is an H-homomorphism ' : M -, S, 

with S simple, such that T(K) = 0 and r(x) * 0. 

(v) If K c M, x e M, x 0 K there is a maximal submodule L of M 

with K c L and x t L. 

(vi) Every cofinitely generated factor module of M is a finite 

direct sum of simple modules. 

(vii) Every cofinitely generated module is M-injective. 

(viii) Every Artinian module is M-injective. 

(The equivalence of conditions (1) to (vi) is due to 

K.H. Fuller [21, Proposition 3.1]). 



12 

Proof: (i) (ii): Let q M - A be an fi-epimorphism of fl-modules. 

If A = 0, clearly J(A) = 0. If A 0 0, let x be any non-zero element of 

A. By Zorn's lemma choose a submodule B of A maximal with respect to 

x 0 B. Let-: A - AID denote the quotient map and write mc = x + B. 

Clearly fix is a simple module which is contained in every non-zero 

submodule of AID. Then by (1), fix is M-injective and so AB-injective 

by {2, Proposition 16.13, p.188]. Therefore fix is a direct summand of 

AB. But since fix is an essential submodule of AID, it follows that 

AIB = fix. This means that B is a maximal submodule of A with x 0 B. 

whence x 0 J(A), and so J(A) = 0. 

(ii) -, (iii): Clear. 

(iii) -i (iv): Let K be a submodule of M, x € M and mc 0 K. Since K 

is an intersection of maximal submodules of M and x t K, there exists a 

maximal submodule L of M with K 9 L and x t L. Let S = MIL and 

T : M - S denote the quotient map. Clearly r(K) 9 T(L) = 0 and 

T(x) = x + L # 0. 

(iv) - (v): Let K be a submodule of M, x E M and x K. 

By (iv), there exists a simple module S and an R-homomorphism 

T : M - S, such that T(K) = 0 and T(x) 0 0. This implies that T 0 0 

and L = ker(T) is a maximal submodule of M such that K c L and x 0 L. 

(v) -, (iii): Let K be a proper submodule of N. By (v), V y K there 

exists a maximal submodule L of N such that y 0 L and K C- L . Now, 
y y y 

it is an easy task to see that K = fl L . Whence every proper 
yK " 

submodule of N is an intersection of maximal submodules. 
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(i): Let S be a simple fl-module and f be a non-zero 

R-hoinomorphism from a submodule N of M into S. LetK = ker(f). By 

(iii), since K # N, there exists a maximal submodule L of M with K c L 

and N Z L, it follows that L fl N = K. Thus MJK = (L+N) 1K = LIK W NIK. 

If f : NjK - S is the map induced by f in the obvious way, define 

g : MIK -i S by gl(NIK) = f and g((LK) = 0. Thus the map g : M -p 

defined by g(in) = g(in+K), Vm E M, extends f. 

(iii) - (vi): Let M --F- i A -' 0 be an exact sequence of left 

fl-modules, with A cofinitely generated. If N = Ker s, then N is an 

intersection of maximal submodules. Let N = 11 L., for some set I, 
i€I ' 

where each L1 is a maximal submodule of M. Since MIN is cofinitely 

generated and fl (LIN) = 0, there exists a finite subset J I, such 
jEl 

that N = fl L.. Define 4' : M -p (MIL, 1 ) by j(m) = Z (m + L.). 
IEJ 1 iE G J iJ 1 

Clearly Ker N. Whence A can be embedded in a finite product of 

simple modules. 

(vi) -+ (i): Let S be a simple module and T : M - E(S) be a non-zero 

fl-homomorphism. Since S is simple, we get S c T(M) E(S). Thus T(M) 

is a cofinitely generated homomorphic image of M and hence semis imple 

by (vi). Since Soc(T(M)) = S, it follows that T(M) = S and hence S is 

M-injective (Proposition 3.21 of [25]). 

(vii) -i (viii): Clear, since every Artinian module is cofinitely 

generated. 

(viii) - p (1): Clear, since every simple module is Artinian. 
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(iv) - (vii): Let N be a cofinitely generated module and write 

E(N) = E(S1) W W E(Sk) for a finite set of simple modules S.., 

1 < i< k. Let L be a non-zero submodule of M and f : L -, N a non-zero 

fl-homomorphism. We want to show that f can be extended to an 

fl-homomorphism g : M -i N. Consider the following diagram: 

)L inc.M 
/ 

f / 

N / 9g 

Since E(N) is injective, there exists an fl-homomorphism g : M - E(N) 

such that g(x) = f(x), Vx E L. For each i, 1 S I n, denote by 

r. : E(N) - p E(S.) the projection map, and consider the fl-homomorphisms 

o g : M - E(S 1), By (i), since every S. is M-injective, we get 

o g(M) S., 1 1 i n. 
1  

Whence g(M) W S. But since Soc(N) = Soc(E(N)) 

S1 W S we get g(M) c Soc(N) N. Thus the map g : M -, N is 
the required map. n 

A result of K.R. Fuller asserts that the class of V-modules is 

closed under submodules, homomorphic images and arbitrary direct sums. 

We include a proof here. 

Proposition 1.2 (K.R. Fuller [21]): (i) Submodules and homomorphic 

images of V-modules are also V-modules. 
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(ii) ED M. is a V-module if and only if each M. is a V-module. 
iEI :i 

Proof: (i) Let M be a V-module and N a non-zero submodule of M. Let 

S be a simple H-module and f a non-zero H-homomorphism from a submodule 

K of N into S. We want to show f can be extended to an H-homomorphism 

g : N - S. Since M is a V-module, the map f can be extended to an 

H-homomorphism f : M -* S. Thus the map g = (TIN) : N - S is the 

required map. 

Now, let M --o A -' 0 be an exact sequence of non-zero H-modules. 

We want to show that A is a V-module. Let S be a simple H-module and 

f : A -* E(S) be a non-zero H-homomorphism. We must show f(A) S. 

But since M is a V-module, the map f ° e : M - E(S) has its image in 

S. Thus f(e(M)) = f(A) 9 S. 

(ii) Suppose M = W M is a V-module. By (1), since every submodule 
iEI 

of a V-module is also a V-module, it follows that each M is a 

V-module. Conversely, suppose that each M is a V-module, Let S be a 

simple module and T : M -, E(S) be a non-zero H-homomorphism. For each 

i e I, denote by Y . to the restriction of the map T to M. Then 

c 5, Vi E I, since S is M-injective. Therefore 'r(M) c S, which 

implies that S is M-injective and hence M is a V-module. 0 

Proposition 1.3: For any ring H the following statements are 

equivalent: 

(i) H is a left V-ring. 

(ii) Every left H-module is a V-module. 

(iii) Every cyclic left H-module is a V-module. 
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Proof: (i) - (ii). Let M E H-mod and S any simple H-module. Then S 

is injective and hence M-injective. 

(ii) (iii) and (iii) (1) are trivial. 0 

Definition 1.4: Let N be a submodule of a module M. A relative 

complement for N in M is any submodule L of M which is maximal with 

respect to the property N fl L = 0. Such submodules L always exist, by 

virtue of Zorn's lemma. And it is easy to see that N W L is essential 

in M. 

Proposition 1.5: (cf. [58, Theorem 3]): The following conditions are 

equivalent: 

(i) M is a V-module. 

(ii) If L is either a proper essential submodule or a relative 

complement of a simple submodule of M, then L = L*. (Here 

= intersection of maximal submodules of M containing L). 

(iii) If K is a maximal submodule of a proper essential submodule L 

of M, then K* 0 L*. 

Proof: (i) (ii): Clear, since in a V-module every proper submodule 

is an intersection of maximal submodules. 

(ii) (iii): Let L be an essential submodule of M and K a maximal 

submodule of L. If K were essential in L, then K is essential in M and 

* * i * * hence K = K and L = L which i mpl i es that K # L . Otherwise, suppose 

that K fl N = 0 for some non-zero submodule N of L. Since K is a 

maximal submodule of L, L = K N and N is a simple submodule of M. 

Let T be a submodule of M, maximal with respect to K 9 T and T fl N = 0. 

Since T is a relative complement of the simple module N, it follows 



17 

that T = T*. Thus there exists a maximal submodule Q of M such that 

T C Q but L 4Z Q (otherwise if L T* then N c L c T* = T, a 

contradiction with T fl N = 0). Therefore K c Q and L 9t Q, and hence 

0 L*. 

(iii) - (i): Let S be a simple module, N a proper essential submodule 

of M and f : N - S a non-zero homomorphism. If K = Ker(f) then K is a 

maximal submodule of N and so K* 0 N*. Choose a maximal submodule T of 

N with K$ T and N T. The inaximality of T in N and of K in N implies 

that M=T+N and TflN=K; hence. Thus the map f can be 

extended to a map g : N -p S in the obvious way. This proves that S is 

M-injective. Thus N is a V-module. U 

Corollary 1.6 (cf. [58, Corollary 3.1J) If N is a regular module, 

then N is a V-module if and only if given any essential submodule L of 

N either L is finitely generated or K = K* for every maximal submodule 

K of L. 

Proof: "only if" part: Obvious. 

"If" part: Let S be a simple module, N an essential submodule of N and 

f : N -+ S a non-zero homomorphism. If N were finitely generated then 

from the regularity of N and by [60, Theorem 1.6] it follows that 

N = N @ T for some submodule T of M. Thus f can be extended to a 

homomorphism f : N -p s Otherwise, suppose that K = K*, where 

K = Ker(f). Then there is a maximal submodule L of N such that K L 

and N 4Z L, from which we infer that the map f may be extended to a 

homomorphism f : M - S. a 
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Let us recall the definitions of Co-Noetherian and Co-Artinian 

modules as they were introduced by A. K. Gupta and K. Varadarajan [25]. 

Definition 1.7: (i) Let Ca'0 p. (rea 0(R)) denote the class of all 

Artinian (reap. Noetherian) R-modules. For any R-module M, we set 

Oa(M) = n{N : N c M, MIN e 

a(M) = n{N : N c M, MN E 0(R)}. 

It is clear that both a a n and a are radicals and that a c a - (M) J(M) and 

a(M) S J(M). 

(ii) A left R-module M is said to be Co-Noetherian (Co-Artinian) if 

aa(N) = 0 (resp. a(N) = 0) for any factor module N of M 1 (direct sum 

of I-copies of M), where I is any set. 

Proposition 1.8: Every V-module is Co-Noetherain and Co-Artinian. 

Proof: Immediate consequence of Proposition 1.1, Proposition 1.2 and 

the observations a < J and a < J. 
a - n 

U 

A result, originally due to Roger Ware [50, Proposition 2.5] 

asserts that if R is a commutative ring and S is a simple fl-module then 

S is flat if and only if S is injective. In particular a commutative 

ring fi is a V-ring if and only if every simple R-module is flat. Our 

aim is to extend this result to modules. 

Following P.M. Cohn, a submodule K of a left fl-module M is called 

pure if the sequence 0 .-, E o K -, E o M is exact for every right 

fl-module E. Dually, we have the following: 

Definition 1.9 121: Let U be a right fl-module and M be a left 

fl-module. U is said to be flat relative to M (or M-flat) if for every 

submodule K of M, the sequence 0 - p K -, U e M is exact. 
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The following is an immediate consequence of (i) i (vi) of 

Proposition 0.1. 

Proposition 1.10: If M is a projective left fl-module, then M is a 

regular module if and only if every right fl-module is M-flat. 

Lemma 1.11: Let RM be a projective module and RU any left fl-module. 

Then the following are equivalent: 

(i) U is M-injective. 

(ii) Ext(MN,U) = 0 for every submodule N of M. 

Proof: If 0 -. N - M - MIN -, 0 is an exact sequence of fl-modules, 

then there is a long exact sequence with natural connecting 

homomorphisms: 

0 - Hom(MINU) -, Homfl (M,U) -+ Hom1 (N,U) - Ext(MN,U) 

-, Ext(M,U) - Ext(N,U) - 

Since M is projective, Ex4(M,U) = 0, and so U is M-injective if and 

only if Ext(MN,U) = 0, for every submodule N of M. 13 

Lemma 1.12: Let M  be a flat right fl-module and flU a left fl-module. 

Then the following are equivalent: 

(i) U is M-flat. 

Tor(MIN,U) = 0, for every submodule N of M. 

Proof: Given an exact sequence 0 -p N - M - MIN - 0 there exists a 

long exact sequence: 

-_Tor M,U)--  Tor (MIN,TJ)—N®U-4M®tJ _, MIN &U_,0. 

Since M is flat, Tor 1 (M,U) = 0, and so U is M-flat if and only if 

Tor(MIN,U) = 0 for every submodule N of M. 13 
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The next proposition is an extension of [50, Lemma 2.6] to modules 

and the proof is patterned after that of Lemma 2.6 of [50]. 

Proposition 1.13: Let H be a commutative ring, M a projective H-module 

and S a simple H-module. Then S is M-flat if and only if S is 

M-injective. 

Proof: Let S1, i E I, be a set of representatives of the distinct 

isomorphism classes of simple H-modules and set E = E( @ S.). It is 
IEI 

easy to see that for any H-module L, HomR(L ,E) = 0 if and only if 

L = 0. Now if S is any simple submodule of E then s fl ( (D S.) 0 
jEl 1 

since ID S. is an essential submodule of E. Since S is simple and 
iGI 1 

hence cyclic, there exist finitely many indices i1,...,i in I with 

S C S. 
ii 
$ $ S. . Let 0 x E S. Then S = Rx and 

in 

+ + x. with x. G Si and not all x. zero. Let 
3. n 

A E AnnR  (x). Then Ax 1 . + + Ax 1 . 0. Hence 
1 n 

Ax. -Z Ax. 
jL 1j 

€ 5. fl ( z S. ) = 0. This means 
j/A 1j 

Ax. 0for 
1 

1 p S n. Since S is simple, Ann H(x) is a maximal ideal in H. Hence 

either Ann Hx. H or Ann R (x). Since S i ,•.•,S. are mutually 
'p i n 

non-isomorphic, we get Ann H(x) = Ann R(x. ) for some k and x. 1 0 for 

p * k. Thus x = x. and hence S = S. 
'k. 

Now let S be any simple H-module and let S. be the copy of S in E. 

Then HoInR(S ,S. ) c Hoin(S,E) and if 0 0 f E Hon1R (S ,E) then 
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S Im(f) c E, and so by the above we must have Im(f) = S. . Therefore 

HomR(S,S.) = HomR (S,E). Thus we have 

HomR(S ,E) = Hom(SS. ) Hoin(S,S) and since R is commutative 

HomR(S,S) S as H-modules. And since E is injective we have an 

isomorphism: 

Ext(X, HomR (S ,E)) HoInR(Tor(X ,S),E), 

for any H-module X. Whence for any submodule N of M we have: 

Ext(MlN,S) Ext(MJN, HomR(S,E)) 

= HomR(Torl(MIN, S),E). 

Now the result follows from Lemma 1.11, Lemma 1.12 and the fact that E 

is a cogenerator for H-mod. U 

Corollary 1.14 (cf. [50, Lemma 2.6]). Suppose H is a commutative ring 

and S is a simple H-module. Then S is flat if and only if S is 

injective. U 

Proposition 1.15: Let H be a commutative ring and M a projective 

H-module. Then the following are equivalent: 

(i) M is a V-module. 

(ii) M is a regular module. 

(iii) Every simple H-module is M-flat. 

(iv) Every simple homomorphic image of M is injective. 

(v) Every simple homomorphic image of M is flat. 

(vi) Every simple homomorphic image of M is M-injective. 
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(vii) Every simple homomorphic image of M is M-flat. 

(The equivalence between (1), (ii) and (vi) has been given by 

Y. Hirano in [28, Theorem 4.8] using different techniques.) 

Proof: (i) +' (iii): By Proposition 1.13. 

(iv) -' (v): By Corollary 1.14. 

(vi) , (vii): By Proposition 1.13. 

(ii) -, (i): If P4 is a regular module, then by Proposition 1.10, every 

H-module is P4-flat, and by Proposition 1.13, it follows that every 

simple H-module is M-injective. Therefore P4 is a V-module. 

(iii) -' (vii): Obvious. 

(iv) i- (ii): By [35, Theorem 4]. 

(v ) (iv): By [28, Theorem 4.8]. 13 



CHAPTER 2. 

NOETHEHIAN V-MODULES 

In this chapter we study modules with the property that arbitrary 

direct sums of simple left H-modules are M-injective. We call them 

DSI-modules. We prove that a finitely generated left H-module M is a 

DSI-module if and only if M is a Noetherian V-module, which extends a 

similar result for rings by B. Sarath and K. Varadarajan in [40] and 

K.A. Byrd in [8]. We also prove that a finitely generated left 

H-module M is a DSI-module if and only if every submodule N of M has a 

minimal generating set and if L is any homomorphic image of M then 

every minimal generating set of any submodule of L can be extended to a 

minimal generating set for L, which extends a similar result for rings 

by B. Sarath in [39]. 

Definition 2.1 (B. Sarath and K. Varadarajan [40]). A ring H is 

called a left DSI-ring if every direct sum of simple left H-modules is 

injective. Such rings were also called "851-rings" by K.A. Byrd in 

[8]. It was proved in [8] and [40] that for a ring R the Following 

statements are equivalent: 

(i) H is a left Noetherian left V-ring. 

(ii) Every semisimplë left H-module is injective. 

In the next proposition we extend this result to modules. 

23 
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Proposition 2.2: The following conditions are equivalent for a 

finitely generated R-module M. 

(i) M is a Noetherian V-module. 

(ii) Every semisimple left R-module is M-injective. 

(iii) Every countably generated semisimple left R-module is 

M-injective. 

Proof: (i) — (ii): Since M is Noetherian, it follows from 

[4, Theorem 2.5] that, any direct sum of M-injective modules is 

M-injective. And since N is a V-module it follows from Proposition 

1.1, that every semisimple left R-module is M-injective. 

(ii) - (iii): Obvious. 

(iii) .-.- (1): Inasmuch as any simple module is cyclic and semisimple 

it follows from Proposition 1.1, that N is a V-module. Now, to see 

that N is Noetherian, let N1 c N N be an ascending 

chain of distinct submodules of N. Since N is a,V-module, by 

Proposition 1.1 there are maximal submodules Lk(k = 1,2,..,) such that 

Nk and Nk•l Let irk : N —, MILk denotes the quotient map, 

0, 

k = 1,2.....Set N = U N  and define the homomorphism 
k=l 

CO CO 

f : N - W MILk, by f  = ! irk(X), (note that lrk(x) = 0 for all 
k=l k=l 

Co 

but a finite number of the k's). Since W (MILk) 
k=l 

Co 

there exists an R-homomorphism g : N —' ( W MIL k) 
k=l 

S 
since N is finitely generated, g(M) c w MIL k, for 

k=l 

is M-injective, 

extending f. But 

some positive 

integer S. Whence the above chain of submodules is finite. 0 
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Let us call a module a PSI-module if every semisimple R-module 

is M-injective. 

With the same argument used in the proof of Proposition 1.2 one 

obtains the following: 

Proposition 2.3: (i) Submodules and homomorphic images of DSI-modules 

are also PSI-modules. 

(ii) $ M. is a DSI-module if and only if every M. is a PSI-module. 
i€I 1 

The next proposition can easily be verified. 

Proposition 2.4: For any ring R the following are equivalent: 

(i) H is a left PSI-ring. 

(ii) Every left H-module is a PSI-module. 

(iii) Every cyclic left R-module is a PSI-module. 

Lemma 2.5: A module M is finitely generated semisimple if and only if 

M is finite dimensional and every cyclic submodule of M is a direct 

summand of M. 

Proof: (cf. [22, Proposition 1.22]): Clearly finitely generated 

semisimple modules are finite dimensional. Conversely, when M is 

finite dimensional it is a finite direct sum of indecomnposable modules, 

hence it suffices to assume that M is indeconposable with all cyclic 

subniodules being direct summands, and then show that M is simple. But 

this is clear, since under these hypotheses any 'cyclic submodule of M 

must beOorM. 13 

Proposition 2.6: Suppose that H is a commutative ring and M is a 

finitely generated projective H-module. Then M is a PSI-module if and 

only if M is a finite direct sum of simple H-modules. 
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Proof: If M is a DSI-module, then by Proposition 2.2, M is a 

Noetherian V-module and by Proposition 1.15, M is a Noetherian regular 

module. Now by Proposition 0.1 and Lemma 2.5, M is a finite direct sum 

of simple modules. 0 

B. Sarath [39, Theorem 1.6] proved that a ring R is a left 

Noetherian left V-ring if and only if given any minimal generating set 

of a submodule N of any module M, it can be extended to a minimal 

generating set for M. In the next proposition we shall extend this 

result for modules. 

Definition 2.7: Let N be a left R-module and B a subset of N. We say 

B is "irredundant" if and only if A B, <A> = <B> i A = B. If B is 

not irredundant we call it redundant. A subset B of N will be called a 

"minimal generating set" for N if B is irredundant and N = <B>. 

Lemma 2.8: (1) If B N is irredundant and A c B, then A is 

irredundant. 

(ii) If {B}EJ is a family of irredundant subsets of N totally 

ordered by inclusion then U B is irredundant. 
a aEJ 

(iii) B is redundant if and only if for some subset A C- B, 

<A> = <A\{a}>, for some a E A. 

Lemma 2.9: Let B be an irredundant subset of L, {Lb)bB a collection 

of maximal submodules of L satisfying b it Lb and <B\{b}> c L.0. Let 

I = <B>, N = fl Lb and j : UN -+ IT LIL.0 the natural embedding. 
beB bEB 

Then j maps (I+N)IN isomorphically onto M LIL 
bEB 
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The above two lemmas are due to B. Sarath and the proofs are 

straightforward, see [39, Remark 1.2 and Lemma 1.3]. 

Proposition 2.10: The following conditions are equivalent for a 

finitely generated left fl-module M. 

(i) M is a DSI-module. 

(ii) If K is a submodule of M and L is a homomorphic image of K then 

given any irredundant generating set of any submodule N of L, it can be 

extended to an irredundant generating set for L. 

(iii) Every submodule N of M has a minimal generating set, and if L is 

any homomorphic image of M then every minimal generating set of any 

submodule of L can be extended to a minimal generating set for L. 

Proof: (i) (ii): Adapted from [39, Theorem 2.8]. Let C be an 

irredundant generating set for a submodule N of L, where L is a 

homomorphic image of a submodule K of M. Let E = {B : C 9 B 9 L, with 

B irredundant}. E is non-empty, and when partially ordered by 

inclusion, by Lemma 2.8 (ii) and Zorn's lemma, has a maximal element 

say B. Suppose <B> 0 L. Since L is a V-module and B is irredundant, 

there exist maximal submodules {Lb}bEB of L with b it Lb and 

<B\{b}> c Lb. Let I,N and j be as in Lemma 2.9. We now consider two 

cases: 

Case 1: IDN. 

By Lemma 2.9, (I+N)JN is isomorphic to W (LILb) whence 
bEB 

L-injective, since L is a Noetheriari V-module and each LILb is simple. 

Therefore (I+Nf N) = uN is a direct summand of LIN. Write 
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LIN = (IN) W (I' IN) for some non-zero submodule I' of L with N c I' 

(note, I = <B> 0 L). Then I fl I' = N. Let u E I'\N. Now B' = B U {u} 

is irredundant, since u 0 <B> = I and <B'\{b]-> fl I (<B\{bJ-> + I') fl I 

c <B\{b]-> + N c Lb and hence b 0 <B'\{b}> for all b e B. This 

contradicts the inaximality of B, and hence it follows that <B> = L. 

Case 2: IN. 

Pick u E N, u 0 I. Then B' = B U {u} is irredundant, since u 0 <B> = I 

and b 0 <B'\(b}> 9 <B\{b}> +N c L.0, Vb E B. This contradicts the 

inaximality of B. 

(ii) (iii): Inasmuch as the zero submodule has a minimal generating 

set, namely {O}, we infer from the hypothesis that every submodule N of 

M has a minimal generating set. The rest of the assertion is clear. 

(iii) - (1): We -first show that M is a V-module. We do this by 

proving that every cofinitely generated hoinomorpfiic image of M is a 

finite direct sum of simple modules and hence by Proposition 1.1, M is 

a V-module. Let L be a cofinitely generated homomorphic image of M. 

Then S = Soc(L) is finitely generated and essential in L. Write 

S = S1 W S, with each S simple. We must show L = S. Suppose 

L * S. Let 0 * E Sk, 1 S k n. Then C = {x.}" 1 is an irredundant 

generating set of S. S is a submodule of L and L is a quotient of M, 

hence there exists an irredundant generating set D of L with D C (if 

D = C, then L = 5). Let x E D\C. Since x * 0 and S is essential in L, 

n 
there exist A, A. E H, 1 i n, with 0 * Ax = 2 A. 1 x.. Hence 

• 1 
i=l 

A.x. * 0 for some i, 1 i < n. Without loss of generality we may 
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assume that A fl u fl x * 0. Since S is simple, there exists i E R with 

n-i 
A n n x = x n , so (Ax - Z A i x i n fl n ) = #A x = x . Then 

. 

i=l 

x € <x1,. ..,x 1,x>, but this means that {x1,...,x,xj is redundant, a 

contradiction with Lemma 2.8 (1) and the irredundancy of D. 

Now to see that M is Noetherian, we will prove that every submodule 

N of M is finitely generated. But if N is any submodule of M, then by 

hypotheses N has a minimal generating set say C. Extend C to a minimal 

generating set D for M. Inasmuch as M is finitely generated and D is 

irredundant, we infer that D must be finite. Thus C is finite and N is 

finitely generated. ci 

Corollary 2.11: For any ring I the following 

equivalent: 

(i) IZ is a left Noetherian left V-ring. 

(ii) If I 2 J are left ideals of R, then 

conditions are 

every minimal generating 

of any }-submodule of the left R-module I J can be extended to a 

set 

minimal generating set for IIJ. 

(iii) Every left ideal I of 11 has a minimal generating set and given 

any minimal generating set of a submodule N of any cyclic R-module M, 

it can be extended to a minimal generating set for M. 

(iv) Given any minimal generating set of a submodule N of any R-module 

M, it can be extended to a minimal generating set for M. ci 



CHAPTER 3. 

GENERALIZED V—MODULES 

According to V.S. Ramaniurthi and K.M. Rangaswamy [36], a ring H is 

called a Generalized left \T-ring (left GV-ring) if every simple 

singular left H-module is injective. GV-rings were also studied by 

J.S. Alin and E.P. Arinendariz in [1], H. Tominaga in [46], Yue Chi Ming 

in [57] and many other authors. The following theorem characterizes 

GV-rings and is due to Ramainurthi and Rangaswamy [36]. 

Theorem 3.1: For any ring H the following conditions are equivalent: 

(i) Z(R) 1) 3(R) = 0, and every proper essential left ideal of H is 

an intersection of maximal left ideals. 

(ii) H is a left GV-ring. 

(iii) The module 3(M) vanishes for any left H-module M with Z(M) 

essential in M. 

(iv) If M is any left H-module, then every proper essential - 

submodule of M is an intersection of maximal submodules of M and 

z(m) fl 3(M) = 0. 

In [49], K. Varadarajan has proved that the condition z(m) fl 3(M) = 0 

for all M e H-mod, automatically implies that any proper essential 

submodule of a module M is an intersection of maximal submodules of M. 

In [5], G. Baccella has given an alternative description of 

GV-rings which involves the socle. It was proved in [5] that for a 

ring H the following statements are equivalent: 

30 
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(i) H is a left GV-ring. 

(ii) Soc(R) fl Z(R) = 0, and every proper essential left ideal of 

H is an intersection of maximal left ideals. 

(iii) Soc(HR) is projective and I1JSoc(HR) is a left V-ring. 

In [28], GV-modules were introduced and studied. Following 

Y. Hirano [28], a module M is called a GV-module if every simple 

singular left H-module is M-injective. The present chapter is intended 

to give further contributions to the study of GV-modules. We also 

study modules with the property that proper essential submodules are 

intersections of maximal submodules, we call them weakly GV-modules 

(WGV-modules). We prove that a module M is a WGV-module if and only if 

MISoc(M) is a V-module, then using this result we show that the class 

of weakly GV-modules is closed under taking submodules, factor modules 

and arbitrary direct sums. 

We now begin with the following proposition. 

Proposition 3.2: The following conditions are equivalent. 

(i) Every simple singular left H-module is M-injective. 

(ii) Z(M) fl J(M) = 0 and J(MIN) = 0 for any essential submodule N 

of M. 

(iii) Every simple singular submodule of M is a direct summand of M 

and J(MIN) = 0 for any essential submodule N of M. 

(iv) Every singular cofinitely generated H-module is M-injective. 

(v) Every singular Artinian module is M-injective. 
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Proof: (The equivalence between (i), (ii) and (iii) is due to Y. 

Hirano [28, Theorem 3.15].) 

(1) - (ii): Let N be an essential submodule of M. Want to show that 

J(MIN) = 0. Suppose not, and let x = x + N be a non-zero element of 

J(MIN). Let F = K c M: K is a submodule of M with x it K and N c K}. 

F is non-empty and when partially ordered by inclusion, it is easy to 

see that every totally ordered subset of F has an upper bound, and so 

by Zorn's lemma F has a maximal element T. Clearly T is essential in M 

with x 0 T. Let x = x + T E MIT. Then Rx is a simple singular 

essential submodule of MIT. By assumption Bx is M-injective and by [2, 

Proposition 16.13, p.188], it follows that lbc is MJ T-injective. Hence 

R is a direct summand of MIT. But since Rx is essential in MIT, it 

follows that R = MIT which implies that T is a maximal submodule of M 

with x 0 T and N T. This is a contradiction to the fact that 

a, 

x G J(MIN) = the intersection of all maximal submodules of M containing 

N. 

Now suppose on the contrary, z(m) fl i(m) contains a non-zero 

element x. Then by Zorn's lemma, there is a submodule Y of M which is 

maximal among the submodules X of M with x X. Write x = x + Y E MJY. 

Then Px is a simple singular submodule of MY, and so the map 

Rx can be extended to an H-homomorphism g : M -, Rx. 

Therefore K = Ker(g) is a maximal submodule of M with x 0 K, a 

contradiction with the fact that x E J(M). 
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(ii) (iii): Let S be a simple singular submodule of M. -Since 

Z(M) fl J(M) = 0, there is a maximal submodule L of M such that 

SflL=0. Then clearly M=S®L. 

(iii) - (1): Let S be a simple singular module, N an essential 

submodule of M and f : N - S any non-zero fl-homomorphism. We want to 

show that f can be extended to a map g : M -p S. Let K = Ker(f). If K 

is essential in N then K is essential in M and so there exists a 

maximal submodule L of M with K L and N 4Z L. Since K is a maximal 

submodule of N it follows that K = N II L. And since N 4Z L and L is a 

maximal submodule of N it follows that N = N + L and so 

N N + L N L 
= K - Now if f : NIK -, S, is the map induced by f in 

the obvious way, then clearly can be extended to an R-homoinorphism 

MIK - S. And if we define g : N -, 5, by g(in) = g(m+K) for every 

m E M, then clearly g is an extension of f. 

Now suppose K fl I = 0 for some non-zero submodule I of N. Thus 

I( S) is a simple singular submodule of N, and by hypothesis we see 

that N = I W L for some submodule L of N. Then f can be extended to an 

fl-homomorphism of N to S. 

(i) (iv): Let N be a singular cofinitely generated left fl-module. 

Write N c E(N) = E(S1) $ $ E(S), for a finite family of simple 

fl-modules Si, 1 jS n. Since Soc(N) = Soc(E(N)) = S W $ S c N, 

it follows from the singularity of N that each S is a simple singular 

module and hence M-injective. Let f : K -+ N be a non-zero 

fl-homomorphism, where K 0 0 is a submodule of M, and consider the 
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following diagram: 

0 

f 

E(N) 

Since E(N) is injective, there exists a map g : M -* E(N) such that 

g(x) = f(x), Vx E K. If 7r : E(N) -* E(51) denotes the projection map, 

1 I n, then 7ri ° g: M -* E(51) is an R-homomorphism, and so 

° g(M) S. by the M-injectivity of S1. Thus 

g(M) 5 S1 W S N and the map g is the required map. 

(iv) - (v): Obvious, since every Artinian module is cofinitely 

generated. 

(v) - (1): Clear, since every simple module is Artinian. El 

Remarks 3.3: From Proposition 3.2 (ii), it follows that if M is a 

GV-module then J(M) c Soc(M). This is because Soc(M) is the 

intersection of all essential submodules of M and every proper 

essential submodule of M is an intersection of maximal submodules. And 

since i(m) fl Z(M) = 0, it follows that J(M) is a direct sum of simple 

projective modules. 

With the same argument used in the proof of Proposition 1.2 one can 

easily prove the following: 

Proposition 3.4: (1) Submodules and homomorphic images of GV-modules 

are also GV-modules. 
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(ii) M M. is a GV-module if and only if every M, is a GV-module. a 
iEI 

Proposition 3.5: For any ring 11 the following statements are 

equivalent: 

(i) H is a left GV-ring. 

(ii) Every left H-module is a GV-module. 

(iii) Every cyclic left H-module is a GV-module. a 

The next proposition is an extension of [49, Theorem 4.2(2)] to 

modules. 

Proposition 3.6: For any module RMthe following are equivalent: 

(i) M is a GV-module. 

(ii) Z(L) fl J(L) = 0, for every homomorphic image L of M. 

Proof: (i) - (ii): If M is a GV-module then by Proposition 3.3(u), 

every homomorphic image L of M is a GV-module. Hence Z(L) fl J(L) = 0. 

(ii) - (i): Let N be a proper essential submodule of M. Since MIN is 

singular, it follows that Z(MIN) = MIN and so by assumption J(MIN) = 0. 

Whence by Proposition 3.2, M is a GV-module. a 

In [21, Theorem 3.1], K.R. Fuller proved that a module  is a 

V-module if and only if every cofinitely generated factor module of M 

is a finite direct sum of simple modules (see Proposition l.l(vi)). 

For GV-modules we have the following: 

Proposition 3.7: Suppose M is a GV-module. Then every singular 

cofinitely generated factor module of M is a finite direct sum of 

simple modules. 
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Proof: Let M 5 o A - 0 be an exact sequence of H-modules with A 

cofinitely generated and Z(A) = A. By Proposition 3.3, A is a 

GV-module and hence Z(A) ii J(A) = 0. But since Z(A) = A, J(A) = 0. If 

N = Ker(6), then N is an intersection of maximal submodules of M. 

Write N = fl L.1, for some set I, where each L. 1 is a maximal submodule 
1EI 

of N. Now, since MIN is cofinitely generated and fl (LIN) = 0, there 
iEI 

exists a finite subset J 9 I, such that N = fl L. and hence A can be 
iEJ 1 

embedded in a finite direct sum of simple modules. U 

We do not know whether the converse to Proposition 3.7 holds. 

However, for non-singular rings we have the following: 

Proposition 3.8: Suppose H is a left non-singular ring. Then the 

following conditions are equivalent: 

(i) is a GV-module. 

(ii) Every singular cofinitely generated homomorphic image of M is 

a finite direct sum of simple modules. 

Proof: (i) -, (ii): Follows from Proposition 3.7. 

(ii) - (i): Let S be a simple singular module and f : N - E(S) be a 

non-zero H-homomorphism. Since S is simple, we get S c f(M) c E(S). 

Since H is non-singular, f(M) is singular. Whence f(M) is a cofinitely 

generated singular homomorphic image of N and so by (ii), f(M) is 

semisimple. But since Soc(E(S)) = S, f(M) = 5; and S is M-injective. 0 

As immediate corollaries to Proposition 3.2 and Proposition 3.8, we 

have the following. 



37 

Corollary 3.9: For any ring R the following statements are equivalent: 

(1) H is a left GV-ring. 

(ii) Every singular cofinitely generated R-module is injective. 

(iii) Every singular Artinian module is injective. 

Corollary 3.10: If R is a left non-singular ring then R is a left 

GV-ring if and only if every singular cofinitely generated H-module is 

a finite direct sum of simple modules. 

Proof: Let L be a singular cofinitely generated module. 

Write L c E(L) = E(51) E(S), with each S being simple. If 
3. 

every simple singular module is injective then S = E(S), for each i, 

and hence L = E(L) = S1 S. 

Conversely, let S be a simple singular module. Since H is 

non-singular, E(S) is a singular cofinitely generated module and hence 

semisimple by assumption. Thus S = E(S) and S is injective. Therefore 

H is a left GV-ring. 11 

As we have mentioned at the beginning of this chapter, G. Baccella [5], 

has given an alternative description of GV-rings in terms of the socle. 

For locally projective modules we have the following proposition which 

corresponds to [5, Theorem 2.2]. 

Proposition 3.11: If M is a locally projective module. Then the 

following are equivalent: 

(i) M is a GV-module. 

(ii) Soc(M) fl Z(M) = 0 and every proper essential submodule of M is 

an intersection of maximal submodules. 
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Proof: (i) 4 (ii): We claim that every simple submodule of M is 

projective. For if S were a simple singular submodule of M then by 

Proposition 3.2, S is direct summand of M. But since M is locally 

projective then clearly $ is projective. Contradicting the singular 

nature of S. Whence Soc(M) is projective and so Soc(M) fl Z(M) = 0. 

The rest of the assertion is clear. 

(ii) - (i): Note that Soc(M) is the intersection of all the essential 

subinodules of M. And since every proper essential submodule of M is an 

intersection of maximal submodules, it follows that J(M) c Soc(M), and 

hence J(M) 11 Z(M) = 0, and by Proposition 3.2, M is a GV-module. a 

Remark 3.12: If M is a locally projective GV-module then Soc(M) is 

projective.' 

It was proved in [36, Proposition 3.7] that a ring H is left V-ring 

if and only if H is a left GV-ring and every minimal left ideal of H is 

an absolute summand of H. In the next proposition we extend this 

result to modules. 

Definition 3.13: Let M be a left H-module. A submodule L of M will be 

called an absolute summand if for any submodule T of M, such that T is 

maximal with respect to L (1 T = 0, we have L ® T = M. 

Proposition 3.14: The following conditions are equivalent: 

(i) M is a V-module. 

(ii) M is a GV-module, and every simple submodule of M is an 

absolute summand. 
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Proof: (i) (ii): Let M be a V-module and let S be a simple 

submodule of M. Let T be a submodule of M maximal with respect to 

s fl T = 0. If A = S W T and ir : A -i S denotes the projection map, 

then ir can be extended to a map ir : M - S. Since iriS = 

Ker(ir) fl S = 0, and since ir(T) = 0, T c Ker(). Thus by the choice of 

T it follows that T = Ker(ir). Whence T is a maximal submodule of M and 

therefore M = T W S. 

(ii) - (i): Let M be a GV-module and assume that every simple 

submodule of M is an absolute summand. Let S be a simple module. If S 

is singular then it is M-injective. Suppose S is a simple projective 

module and f : N - S a non-zero R-homomorphism, where N is a submodule 

of M. Let K = Ker(f). By the projectivity of S, the following exact 

sequence 0 - K -, N - S - 0 splits. Write N = K ED L, for some 

submodule L( NIK S) of N. Inasmuch as L is a simple submodule of M 

we infer that if T is a submodule of M containing K and maximal with 

respect to T fl L = 0, then L W T = M. 

Now if g : N - p L denotes the projection map then the map 

f ° g : M -, S extends f, and hence every simple module is M-injective. 

By Proposition 1.1, N is a V-module. a 

The following proposition is an extension of [58, Theorem 3'] to 

modules. 

Proposition 3.15: The following conditions on a left R-module N are 

equivalent: 

(i) N is a GV-module. 
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(ii) If K is a submodule of any essential submodule L of M such that 

LIK is simple singular then K * 0 L * 

Proof: (i) (ii): Let L be an essential submodule of M and K be a 

submodule of L such that UK is simple singular. If K is essential in 

U, then K is essential in M and hence K = K* and L = L* which implies 

* * 
that K • L (since K is a maximal submodule of L). Otherwise, let 

K 11 N = 0 for some non-zero submodule N of L. Since K is a maximal 

submodule of U, L = K W N, and N is a simple singular submodule of N. 

Let q : L - p N denotes the projection map. Since N is a GV-module, z 

can be extended to a map g : N --- N. Inasmuch as g(x) = x, Vx E N, we 

infer that the submodule N is a direct summand of N, in fact 

N = NW Ker(g). Now, since g(k) = q(k) = 0 Vk G K, it follows that 

K 5 Ker(g). Let T = Ker(g), then T is a maximal submodule of N with 

KcT and L$T. Thus K*0L*. 

(ii) - p (1): Let S be a simple singular fl-module, N an essential 

submodule of N and f : N —. S a non-zero fl-homomorphism. If 

K = Ker(f), then NIK is a simple singular module, and thus by 

hypothesis N* 0 K*. Choose a maximal submodule U of M with K C L and 

N ' L. By the maximality of L, we have N = U + N, and since K is 

maximal in N, it follows that K = L fl N and so M = L ED H . Thus the 

map f can be extended to a map g : N -+ S in the obvious way. 0 

Proposition 3.16: Let fi be a commutative ring and RM a projective 

module. Then the following are equivalent: 

(1) M is a regular module. 
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(ii) M is a V-module. 

(iii) M is a GV-module. 

Proof: (i) (ii): By Proposition 1.15. 

(ii) (iii): Clear. 

(iii) -* (ii): Let S be a simple fl-module. If S is singular then it 

isM-injective. If S is projective then it is M-flat and by 

Proposition 1.13, S is M-injective. Thus every simple module is 

M-injective and hence M is a V-module. I] 

The following proposition has been proved in [5, Proposition 2.1]. 

However we shall reprove it here because of the important role it plays 

in what follows. 

Proposition 3.17 (G. Baccella): For any ring H the following 

conditions are equivalent: 

(i) IlISocflR is a left V-ring. 

(ii) If M is a left fl-module, then every essential submodule of M 

is an intersection of maximal submodules. 

Proof: (i) + (ii): Let M be a left fl-module and L an essential 

submodule of M. Since (Socflfl)M c Soc(M), (Socflfl)M E- L. If fllSocflfl is 

a left V-ring, then Lt(SocRR)M, as left (fllSocflfl)-submodule of 

MI(Socflfl)MI is an intersection of maximal RI(SocflR)-sublnodules of 

MI(Socflfl)M. This is enough to conclude that L is an intersection of 

maximal submodules of M. 

(ii) -* (i): Let S be a simple left RI(SocR)-iuodule let a be a left 

ideal of H, with (Socflfl) c a and al(Socflfl) essential in RI(SocflR) and 
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let f :al(SocRR) - S be a non-zero (RISocRR)-hoinomorphism. We claim 

that if ir : a —p a(SocR) is the canonical epimorphism and 

b = Ker(f07r), then b is essential in a. If not, then by the definition 

of b, there is a minimal left ideal n of R such that a = b n, in 

contradiction with the fact that SocRR 9 b. Inasmuch as aj(SocRR) is 

essential in RI(SocRR), a is essential in R and hence b is essential in 

R. Since b 0 a, from (ii') it follows that there is a maximal left 

ideal in of R such that b c ni and a rn. b being maximal in a, we have 

am 
that b = a fl in. It follows that a + in = R and hence R$ 

a 
fOir : a - S is zero on b, hence induces f : - —, S. Then 

—.• S given by 91 [__J = ?, = 0 extends ?. If 

R R 
rj : (SocRR) ' 

RI(SocRR) to S. This shows that S is injective as a left 

Ifl (SocRTh)-module. 13 

As a result of the preceding proposition, we are now in a position 

to introduce the notion of weakly GV-modules. 

Definition 3.18: A module IPis called a weakly GV-module (WGV-module) 

if every proper essential submodule of M is an intersection of maximal 

submodules. 

R is said to be a left WGV-ring if the left R-module RR is a 

WGV-module. 

Clearly every GV-module is a WGV-module. The next result is an 

extension of Proposition 3.17 to modules. 

is the quotient map then g = g ° q extends f, from 
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Proposition 3.19: For a module RMthe following are equivalent. 

(1) M is a WGV-module. 

(ii) MISoc(M) is a V-module. 

Proof: (ii) - (i): If L is a proper essential submodule of M then 

Soc(M) E- L; whence LISoc(M), as a submodule of MISoc(M), is an 

intersection of maximal submodules of MISoc(M), and so L is an 

intersection of maximal submodules of M. 

(i) - (ii): Let S be a simple fl-module. We want to show that S is 

MISoc(M)-injective. Let NlSoc(M) be an essential submodule of MISoc(M) 

and f :NISoc(M) .- S be any non-zero fl-homomorphism. If 

Ker(f) = KtSoc(M), then K is a maximal submodule of N. We claim that K 

is an essential submodule of N. For if not, then K fl I = 0 for some 

non-zero submodule I of N. Whence N = K W I and I is a simple 

submodule of M, i.e. I Soc(M) c K - a clear contradiction. 

Now, since K is a proper essential submodule of M and a maximal 

submodule of N, by (1) there exists a maximal submodule L of M, such 

that K c L and N L. If : M .- MISoc(M) denotes the quotient map, 

then+L_N. Andif: fli — Sisthemapinducedbyf 
K K K K 

in the obvious way, then clearly f can be extended to an fl-homomorphism 

g : MIK - p S. And if we define g : M -, S, by g(rn) = (rn + K) for 

every m E M, then clearly g is an fl-homomorphism which extends f. El 

Corollary 3.20: For any ring fi the following are equivalent: 

(1) RI(Socflfl) is a left V-ring. 

(ii) fi is a left WGV-ring. 
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(iii) Every left R-module is a WGV--module. 

(iv) Every cyclic left R-module is a WGV-module. 0 

In the next proposition we show that the class of WGV-modules is 

closed under taking submodules, factor modules and arbitrary direct 

sums - a fact that is hardly obvious from the definition of 

WGV-modules. 

Proposition 3.21: (i) Submodules and homomorphic images of 

WGV-modules are also WGV-modules. 

(ii) ED M. is a WGV-module if and only if each is a WGV-module. 
iEI 1 

Proof: (1) Let M be a WGV-module and N be a submodule of M. Since 

Soc(N) = N  Soc(M) it follows that NISoc(N) = NJ(N fl Soc(M)) 

(N + Soc(M))lSoc(M) and since the latter is a submodule of the 

V-module MISoc(M), it follows from Proposition 1.2(1) that NjSoc(N) is 

a V-module and by Proposition 3.19 that N is a WGV-module. 

Now, let M A -p 0 be an exact sequence of left R-modules, with 

M a WGV-module. Then A MIN for some submodule N of M. If LIN is a 

proper essential submodule of MIN, then L is a proper essential 

submodule of M, and so L is an intersection of maximal subniodules of M. 

Whence LIN is an intersection of maximal subinodules of MIN. 

(ii) Let M = ED M.. If M is a weakly GV-module then by (i), each 
iEI 1 

is a weakly GV-module. Conversely, suppose each M. is a WGV-module. 

Then MISoc(M) = (ID M.)ISoc( M.) = ( W M.)I( Soc M.) and since 
iEI 1 iel 1 iE E I 1 jl 1 

the latter is isomorphic to W (M. ISoc M.), it follows from Proposition 
e il 1 1 

1.2(11) that MISoc(M) is a V-module and hence M is a WGV-module. 13 
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In the next proposition we give a necessary and sufficient 

condition for a WGV-module to be a V-module. 

Proposition 3.22: For a module the following are equivalent: 

(1) M is a V-module. 

(ii) M is a WGV-module and every simple submodule of M is 

M-injective. 

Proof: (i) (ii): Clear. 

(ii) - (i): Let S be a simple R-module and let.f : N - S be any 

non-zero R-homomorphism where N is any proper essential submodule of M. 

Let K = Ker(f). If K were not essential in N then K fl I = 0 for some 

non-zero submodule I of N. Then f II : I S, and I is a simple 

submodule of M. By (ii), it follows that S is M-injective. If K is 

essential in N then K is a proper essential submodule of M, and sinde M 

is a WGV-module, there is a maximal submodule L of M such that K L 

and N L. Hence MK = (LIK) W (NJK) and the map f can be extended to 

an R-hoinomorphism g : M - S. Whence every simple R-module is 

M-injective. U 

As we have pointed out before, G. Baccella has charactrized 

GV-rings in terms of the socle. It was proven, among other things, 

that a ring R is a left GV-ring if and only if SocRR is projective and 

RI(SocRR) is a left V-ring - see [5, Theorem 2.2]. In the next 

proposition we extend this result to modules and the proof follows from 

Proposition 3.11 and Proposition 3.19. 
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Proposition 3.23: For a locally projective R-module M the following 

are equivalent: 

(i) M is a GV-module. 

(ii) Soc(M) is projective and MISoc(M) is a V-module. 0 

Example 3.24: The following is an example of a WGV-module which is not 

a GV-module. 

Let M = Z Then J(Z 2 = Z and Z(Z 2 z 2 Thus 

J(Z P 2 Z(Z 2 z 0 0 and hence z 2 is not a GV-module. But 
P P 

Soc(Z 2 = zPJ, Z 2lSoc(Z 2 whence M is a WGV-module. In fact the 
P P P 

same example shows that the class of GV-modules is not closed under 

extensions. 



CHAPTER 4 

P-V-MODULES AND P-V'-MODULES 

A module M is said to be P-injective if for any principal left 

ideal I of R and f E HomR(I,M) there exists an element jn E M such that 

f(x) = xm, for all x € I. Equivalently M is P-injective if 

Ext(RxR,M) = 0 for each x E R. A ring R is defined to be a left 

P-V-ring (resp. P-V'-ring) if every simple (resp. simple singular) left 

R-module is P-injective. Such rings were introduced and studied by 

H. Toininaga in [46]; and by Yue Chi Ming in [55], [56], [57] and [58]. 

In [28], Y. Hirano has introduced the notion of P-V-modules. In 

this chapter we introduce the notions of P-V'--modules, f-V-modules and 

f-V'-modules. Known results for P-V-rings (resp. P-V'-ring) are 

extended to modules. The connections between regular modules, 

V-modules, P-V-modules and P-V'-modules are given. We also introduce 

the notion of P-M-flatness and prove that if RM is a projective module 

over a commutative ring R, then M is a P-V-module if and only if M is a 

P-V'-module if and only if every simple R-module is P-M--flat; from 

which we infer that M is a P-V'-module if and only if M is a V-module. 

Definition 4.1 [28]: Let M and U be R-modules. U is said to be 

P-M-injective if every R-homoiuorphism of any cyclic submodule of M into 

U can be extended to an R-hoiuomorphisni of M into U. U is said to be 

P-injective if it is P-R--injective. 

47 
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Definition 4.2: Let N and U be fl-modules. U is said to be 

f-M---injective if every fl-homomorphism of any finitely generated 

submodule of N into U can be extended to an fl-homomorphism of N into U. 

U is said to be f-injective if it is f-R-injective. 

Definition 4.3 [28]: Let N be a left R-module. If every simple 

fl-module is P-M--injective, N is called a P-V-module. 

Definition 4.4: A module RMis called a P-V'--niodule if every simple 

singular fl-module is P-M-injective. 

Definition 4.5: A module N is called an f-V-module (resp. f-V'--inodule) 

if every simple (reap. simple singular) module is f-M-injective. 

Proposition 4.6: The following conditions are equivalent for a locally 

projective fl-module N. 

(I) Every cyclic submodule of N is projective. 

(ii) Every quotient of a P-M-injective module is P-M-injective. 

(iii) Every quotient of an injective module is P-M-injective. 

Proof: (i) * (ii): Let K -- L -p 0 be an exact sequence of left 

fl-modules with K being P-M-injective. Consider the following diagram: 

N Inc. 
0 )  

/1 
g/ 1f 

/  
K G L 

with exact rows and a cyclic submodule N of M. Since N is projective, 

there exists a map g : N -p K such that s ° g = f. Now since K is 

P-M-injective, the map g can be extended to a map g : N -p K. Now the 

map e. 0 g : M - L is an extension of f. 
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(iii): Clear. 

(1): Let N be a cyclic submodule of M and consider the 

following diagram: 

0 N 

B A 
E. 

with exact rows and with B being injective. Since A is P-M-injective, 

the map f can be extended to a map g : M -, A. And since H is locally 

projective there exists a map h : H - p B such that (a ° h) IN = gIN. If 

we set h = hIN, then a 0 h = f. By [10, Proposition 5.1, Chap I], it 

follows that N is projective. U 

It was proved in [55] that a ring R is regular if and only if every 

R-module is P-injective. The following proposition is an extension of 

this result to modules. 

Proposition 4.7 (cf [56,Lennna 2]): The following statements are 

equivalent for any projective R-module RM. 

(i) H is a regular module. 

(ii) Every R-module is P-M-injective. 

(iii) Every cyclic R-module is P--M--injective. 

(iv) Every cyclic module L with J(L) = 0 is P-M-injective. 

Proof: (i) -, (ii): If H is a regular module then by Proposition 0.1, 

every cyclic submodule of H is a direct summand of H, therefore any 

R-homomorphism of any cyclic submodule of H into a module U can be 

extended to an R-homomorphism of H into U. Thus every H-module U is 
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P-M-injective. 

(ii) - (iii): Obvious. 

(iii) - (iv): Obvious. 

(iv) -, (i) : Note that by hypothesis, every simple module is 

P-M-injective. We show that if L is any cyclic submodule of M then 

J(L) = 0. Then it will follow that every cyclic submodule of M is a 

direct summand of M and by Proposition 0.1, M would be a regular 

module. 

Now, let 0 0-b E L, and let ¶ be the set of all submodules K of Rb 

such that b 0 K. Clearly 5 is non-empty and when partially ordered by 

inclusion it is easy to see that every chain of elements of F has an 

upper bound. By Zorn's lemma, 5 has a maximal member T. Then RbIT is 

a simple module, hence J(RbIT) 0 and therefore RbIT is P-M-injective. 

Hence the quotient map t7 Rb - Rb IT can be extended to an 

H-homomorphism t7 : M -, RbIT. Let r7jL. Then :,L - RbIT is an 

onto map and hence LiKer is a simple module. Thus Ker is a maximal 

submodule of L with b Ker , and so J(L) = 0. a 

Proposition 4.8: If M is a P-V-module (reap. a P-V'---module) then every 

submodule of M is a P-V-module (reap. a P-V'-module). 

Proof: Let N be a submodule of M. We want to show that every simple 

(resp. simple singular) module is P-N-injective. Let S be a simple 

(resp. simple singular) module, Rm a cyclic submodule of N and 

f : Thu - S a non-zero homomorphism. Since M is a P-V-module (resp. a 

P-V'-module), f can be extended to a map g : M -, S. Then the map 

= (gIN) extends f from N into S. a 
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Proposition 4.9: If M is a P-V-module, then J(M) = 0. 

Proof: Suppose on the contrary, there is a non-zero element x E J(M). 
il 

Since Rx is finitely generated, it has a maximal submodule N. Let 

Rx -, PxN denotes the canonical quotient map. Extend r to a map 

q : M - RxIN. Then Ker q is a maximal submodule of M with x s Ker , 

this is a clear contradiction. a 

Remark 4.10: From Proposition 4.9, we can see that if N is a submodule 

of a P-V-module M then J(N) = 0, in particular every non-zero submodule 

of a P-V-module contains a maximal submodule. 

Proposition 4.11: Let M be a P-Vs-module. Then J(M) fl Z(M) = 0 and 

J(M) c Soc(M). In particular J(M) is a direct sum of simple projective 

modules. 

Proof: Suppose on the contrary, there exists a non-zero element 

x e i(m) fl Z(M). By Zorn's lemma choose a submodule L of M maximal 

with respect to x it L. Let q : M - MIL denotes the quotient map and 

write x = x + L. Then Rx is a simple singular submodule of the factor 

module MIL. Let = rJRx. Since M is a P-V'-module, can be extended 

to an epimorphisin P : M -, Rx. Thus MiKer 'P Rx and Ker 'P is a 

maximal submodule of M with x it Ker 'P, a clear contradiction with the 

choice of x. 

To see that J(M) Soc(M), suppose on the contrary there exists an 

element x E M with x € J(M) and x 0 Soc(M). Since Soc(M) is the 

intersection of all the essential submodules of M, it follows that 

x 0 T for some proper essential submodule T of M. By Zorn's lemma, the 
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set of all essential submodules I of M such that x I has a maximal 

member L. Let 11 M -. MIL denote the canonical quotient map and write 

= 11(x) = x + L. Writing M for the factor module MIL, we see that 

0 0 X E M and any non-zero submodule of M must contain x. Therefore Rx 

is a simple singular submodule of M. Let t7 denote the restriction of 

the map if to the submodule Rx. Clearly z : Rx - Rx is onto. Since M 

is a P-V'-module, ry can be extended to a map q : M -' Rx. Clearly z7 is 

onto. If N = Ker() then MIN 1& and N is a maximal submodule of M 

with x N, a contradiction with the fact that x E J(M). 0 

Remark 4.12: If M is a locally projective P-V'-module then 

Soc(M) fl Z(M) = 0. For, if S were a singular simple submodule of M 

then S is a direct summand of M. And since M is locally projective, it 

follows that S is projective, a contradiction. Thus every simple 

submodule of M is projective. 

In the next proposition we show that every Artinian P-V'-module is 

Noetherian. In particular every Artinian GV-module is -Noetherian. 

Proposition 4.13:: Every Artinian P-V'-module is Noetherian. 

Proof: Let M be a P-V'-module. If M is seinisimple then we are done. 

Otherwise, suppose M has a proper essential submodule L and let x be a 

non-zero element of M which is not contained in L. 

Let 1 = (K c M : K is a submodule of M with L K and x e K}. 

Since L E F, F is not empty, and it is easy to see that every totally 

ordered subset of Fhas an upper bound. By Zorn's lemma let K be a 
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maximal element of F. Let z : M -, MIK denote the canonical quotient 

map and write x = .(x) = x + K. It is not difficult to see that Hx is 

a simple singular submodule of the factor module MIK. If we define f 

to be the restriction of the map tj to Rx, then f is an R-epimorphism. 

And since M is a P-V'-module, f can be extended to an R-epimorphism 

g : M - p Rx. Whence MJKer g Rx. Thus M has a maximal submodule, 

namely Ker g. Whence J(M) * M. 

Now, since every submodule of a P-V'--module is also a P-V'-module, 

J(N) 0 N for every submodule N of M. Let L1 be a maximal submodule of 

M. If L1 is not simple, let L2 be a maximal submodule of L1, and so 

on. Since M is Artinian we must stop after a finite number of steps 

and M = Lb D L1 L2 D •.. n L = 0 is a composition series for M. 

Whence M is Noetherian. El 

Remark 4.14: Note that along the lines of the above proof we have 

shown that every submodule of a P-V'-module contains a maximal 

submodule. In particular if H is a left GV-ring then every H-module is 

a GV-module and hence contains a maximal submodule. Thus every left 

GV-ring is a B-ring (max-ring) in the sense of [17]. 

Proposition 4.15: The following conditions are equivalent: 

(i) M is a P-V-module. 

(ii) If K is a maximal submodule of a cyclic submodule N of M, then 

N*. (Here K* = intersection of maximal submodules of M containing 

K, similar definition for N*). 

0 
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Proof: (i) (ii): Suppose on the contrary there exists a cyclic 

* * 
submodule N of M and a maximal submodule K of N such that K = N . Let 

f : N -* NIX denote the quotient map. Since M is a P-V-module, f can 

be extended to a map g : M -, NIX. Let h = g*, Then H = Ker(h) 

contains K and H c N* = K*. Whence K c H c K*, which implies that 

= K*. Now, if G = Ker(g), then G is a maximal submodule of M with 

0 fl N* = H, and N* = H* 0 (H* 0, since 0 is a maximal submodule of 

M containing H). Thus h(N*) = 0, consequently h(N) = 0. But hf N = f 

the quotient map N - NIX. Therefore N = K - a clear contradiction. 

(ii) -+ (1): Let S be a simple R-module, L a cyclic submodule of M, 

and f : L - p S a non-zero R-homomorpbism. Let K = Ker(f). Since K is 

a maximal submodule of L, K* 0 L*. Hence there is a maximal submodule 

TofMwithKTandLT. ThenMT+LandMIK=TIKWLIK, which 

shows that f can be extended to a map g : M - S. This proves that 

every simple module is P-M-injective. ci 

Corollary 4.16: Let M be a P-V-module. Then for any submodule L of M 

either L = L* or L* is not cyclic. 

Proof: Suppose there exists a submodule L of M such that L # L* and 

* i L N is cyclic. Since NIL is a cyclic module, t has a maximal 

submodule TIL. By Proposition 4.14, T* * N*. But since L c T c N, it 

follows that L* -c T* N* and since L* = N*, we get T* L* and hence 

T* = N*, a clear contradiction. ci 

The next three results will be stated without proofs. The proofs 

are similar to the proof of Proposition 4.15. 
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Proposition 4.17: The following are equivalent for a left H-module M. 

(i) 14 is a P-V'--module. 

(ii) If K is a submodule of any cyclic submodule L of 14, such that 

LIK is simple singular then K* 0 L*. 

Proposition 4.18: The following are equivalent for a left R-module M. 

(i) 14 is an f-V-module. 

(ii) If K is a maximal submodule of a finitely generated submodule 

* * 
LofM then K 0L 

Proposition 4.19: The following are equivalent for a left H-module M. 

(1) 14 is an f-V-module. 

(ii) If K is a submodule of any finitely generated submodule L of 14 

such that LjK is simple singular then K* 0 L*. 

Proposition 4.20: Let 14 be left H-module. Then the following 

conditions are equivalent: 

(i) 14 is a V-module. 

(ii) Every simple submodule of M is M-injective and every singular 

homomorphic image of 14 has zero radical. 

Proof: (i) -- (ii): Immediate consequence of Proposition 1.1 and 1.2. 

(ii) - (i): Let S be a simple module, N an essential submodule of M 

and f : N -, S a non-zero homomorphism. Let K = Ker(f). If K n T = 0 

for some non-zero submodule T of N then by the maximality of K in N we 
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f 
infer that T is a simple submodule of M with T S. Thus S is 

M-injective. Otherwise suppose K is essential in N. In this case both 

K and N are essential submodules of M and hence J(MIK) = J(MIN) = 0 

yielding K = K*, N = N*. Since K # N there is a maximal submodule L of 

M such that KcL and NL. Thus =  and the map f can be 

extended to an R-homomorphism from N into S. Whence N is a V-module. I] 

Definition 4.21: Let M be a right R-module and U be a left R-module. 

U is said to be P-N-flat if for every cyclic submodule K of N the 

sequence 0 - K 0 U .- N 0 U is exact. U is said to be P-flat if it 

is P-R-flat. 

Lemma 4.22: ([18, Theorem 9]) Suppose 0 -, K -* N - L -* 0 is exact 

with K finitely generated and N projective. Then K is a pure submodule 

of M if and only if K is a direct summand. 

Proof: Since any direct summand is pure, it suffices to show the 

converse. Suppose then that K is a pure submodule of M and let 

{x1 : x. E K, 1 i ≤ n} be a generating set for K. Since N is 

projective, it is isomorphic to a direct summand of a free module F. 

Without loss of generality we may assume that F = N W N'. Since K is 

pure in N and N is pure in F, it follows that K is pure in F. Then, by 

[18, Theorem 8], there exists T : F ---4 K such that T(x.) = XV 

1 1 5 n. Let 6 = TIM. Then 6 : N -, K, with 6(x1) = T(x.) = x. for 

all i. If if : K -, N is the natural injection, then we have 

6 0 if = IdK, whence K is a direct summand of N. 0 

From the above lemma we can easily see the following. 
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Proposition 4.23: A projective module M is regular if and only if 

every right R-module is P-M-flat. 

Corollary 4.24: A ring B is regular if and only if every B-module is 

P-flat. 

The next three results will be stated without proof. The proofs 

are similar to those of corresponding results in Chapter 1. 

Lemma 4.25: If M is a projective module and U is any B-module, then 

the following are equivalent: 

(i) U is P-M-injective. 

(ii) Ext(MIN,U) = 0, for every cyclic submodule N of M. 

Lemma 4.26: If M is a flat right B-module and U is any left B-module. 

Then the following are equivalent: 

(1) U is P-M-flat. 

Tor(MIN,U) = 0, for every cyclic submodule N of M. 

Proposition 4.27: Let B be a commutative ring and M a projective 

B-module. If S is any simple B-module then the following are 

equivalent: 

(i) S is P-M-injective. 

(ii) S is P-M-flat. 

Proposition 4.28: Let B be a commutative ring and M a projective 

B-module. Then the following are equivalent: 

(i) M is a regular module. 

(ii) M is a V-module. 

(iii) M is a GV-module. 
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(iv) M is a P-V--module. 

(v) M is a P-V'-module. 

(vi) M is an f-V-module. 

(vii) M is an f-V'--module. 

(viii) Every simple p1-module is M-flat. 

(ix) Every simple singular R-module is M-flat. 

(x) Every simple R-module is P-M-flat. 

(xi) Every simple singular R-module is P-M-flat. 

Proof: (1) -+ (ii) 4) (iii) (viii) By Proposition 1.15 and 

Proposition 3.16. 

(iii) (ix): By Proposition 1.13. 

(iv) i-p (ix): By Proposition 4.27. 

(v) i-4 (xi): By Proposition 4.27. 

(iv) -* (v): Obvious. 

(v) - (iv): Let S be a simple R-module. If S is projective, then S 

is flat and hence P-M-flat; and by Proposition 4.26, S is 

P-M-injective. If S is singular then automatically S is P-M-injective. 

Thus every simple module is P-M-injective. 

(ii) (iv): Clear. 

(iv)'-- (ii): By [28, Theorem 4.8 and Proposition 3.7]. 

(ii) - (vi) - i (vii) - i (v): Clear. 13 



CHAPTER 5. 

S I-MODULES 

A ring H is called a left SI-ring if every singular left H-module 

is injective. SI-rings were introduced and studied by K.R. Goodearl. 

In this chapter we say that a left H-module M is an SI-module provided 

that every singular left H-module is M-injective. It was shown by 

K.R. Goodearl [22) that a ring R is a left SI-ring if and only if 

Z(HR) = 0 and for every essential left ideal I of H, RII is semisimple. 

Commutative SI-rings were also investigated by V.C. Cateforis and 

F.L. Sandoniierski in [11] and [12]. It was proved in [12] that for a 

commutative ring H the following are equivalent: 

(1) R is an SI-ring. 

(ii) H is (von Neumann) regular and RISoc(R) is semisimple. 

In Section 1, we show that results of this type can be obtained for 

SI-modules. The connections between regular modules, V-modules, 

GV-modules and SI-modules are studied. We show, among other things, 

that a finitely generated projective module over a commutative ring is 

an SI-module if and only if it is a finite direct sum of regular 

modules each of which has at most two essential submodules. 

In Section 2, we introduce and study P-SI-rings. A ring H will be 

called a left P-SI-ring if every singular left R-module is P-injective. 

We prove, among many other things, that if H is a ring with essential 

left socle then H is a left P-SI-ring if and only if Soc(HH) is 

59 



60 

projective and RI(SocRR) is a regular ring. Known results for SI-rings 

are extended to P-SI-rings. 

Section 1. SI-modules. 

Definition 5.1.1: A left R-module M is called an SI-module (resp. 

P-SI-module) if every singular left H-module is M-injective (resp. 

P-M-injective). Clearly every SI-module (resp. P-SI-module) is a 

GV-module (resp. P-V'-module). A ring H is called a left SI-ring 

(resp. P-SI-ring) if the left H-module RR is an SI-module (resp. 

P-SI-module). 

With the same argument used in the proof of Proposition 1.2 one can 

easily verify the following: 

Proposition 5.1.2: (i) Submodules and homomorphic images of 

SI-modules are also SI-modules. 

(ii) W M. is an SI-module if and only if each M. is an SI-module. 
jEl 1 1 

Proposition 5.1.3: Suppose that d, is an SI-module. Then the 

following statements are true. 

(i) Every singular homomorphic image of M is seinisimple. 

(ii) MIN is semisimple for every essential submodule N of M. 

(iii) J(M) C Soc(M), Z(M) Soc(M) and i(m) fl Z(M) = 0. 

Proof: (i) If L is a singular homomorphic image of M then by 

Proposition 5.1.2 (i), L is a singular SI-module. Whence every 

submodule of L, which necessarily has to be singular, is L-injective. 

Hence every submodule of L is a direct summand of L, and so L is 

semis imple. 
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(ii) If N is an essential submodule of M then MIN is a singular 

homomorphic image of M, whence semisimple from above. 

(iii) Since Soc(M) is an intersection of essential submodules of M and 

every proper essential submodule of M is an intersection of maximal 

submodules, it follows that J(M) Soc(M). Since Z(M) is a singular 

SI-module (since submodules of SI-modules are again SI-modules), by (1) 

we infer that Z(M) is semisimple, and hence Z(M) C- Soc(M). Since every 

SI-module is a GV-module, it follows from Proposition 3.2(u) that 

J(M) (1 Z(M) = 0. ci 

Proposition 5.1.4: For a locally projective module RM the following 

conditions are equivalent: 

(1) M is an SI-module. 

(ii) Z(M) = 0 and every singular homomorphic image of M is 

semisimple. 

(iii) Z(M) = 0 and MIN is semisimple for every essential submodule N 

of M. 

Proof': U) - p (ii): Suppose Z(M) 0 0 and let x be a non-zero element 

of Z(M). Then Rx is a singular submodule of M and hence a direct 

summand of M. Since M is locally projective it follows that Rx is 

projective. Now consider the following exact sequence of left 

tI-modules 0 - AnntI(x) -p _!1_, Rx -p 0, where q is given by 

r7(r) = rx, V r E R. Since Rx is projective the sequence splits, and 

hence AnnR(x) is not essential in tI11' contradicting the choice of x. 

Now the rest of the assertion follows from Proposition 5.1.3(i). 
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(iii): Clear. 

(1): Let L be a singular R-module. We want to show that L 

is M-injective. So, let N be a proper essential submodule of M and 

f : N -, L be any non-zero homomorphism. Let K = Ker(f). We claim 

that K is essential in N. For, if K fl I = 0 for some non-zero 

submodule I of N, then f Ii : I - L is a monomorphism. So I is a 

non-zero singular submodule of M, a clear contradiction since Z(M) = 0. 

Now, since K is essential in M, it follows that MJK is semisiinple and 

NIK is a direct summand of MIK. Whence f can be extended to a map 

g : M -+ L in the obvious way. ci 

Note that along the lines of the above proof we have shown that 

every locally projective SI-module is non-singular. In fact with the 

same argument one can prove the following: 

Proposition 5.1.5: Every locally projective P-SI-module is 

non-singular. 

Proposition 5.1.6: Let M be a non-singular module. Then the following 

conditions are equivalent: 

(1) M is an SI-module. 

(ii) Z(L) c Soc(L), for every homomorphic image L of M. 

(iii) Every singular homomorphic image of M is semisimple. 

(iv) MIN is semisiniple, for every essential submodule N of M. 

Proof: (i) - (ii): If L is a homomorphic image of M then L is an 

SI-module and hence Z(L) c Soc(L), by Proposition 5.1.3 (iii). The 

proof of the other implications is similar to that of Proposition 

5.1.4. ci 
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Observe that if R is a left SI-ring then for any left R-module N, 

every singular module is M-injective. As a consequence of this 

observation we have the following: 

Proposition 5.1.7: For any ring R the following are equivalent: 

(i) R is a left SI-ring. 

(ii) Every left R-module is an SI-module. 

(iii) Every cyclic left R-module is an SI-module. U 

Proposition 5.1.8: For a locally projective module M the following 

conditions are equivalent: 

(1) N is an SI-module with essential socle. 

(ii) Soc(M) is projective and MISoc(M) is semisimple. 

Proof: (1) -, (ii): Since N is a locally projective SI-module, 

Z(M) = 0 by Proposition 5.1.4, and hence Soc(M) is projective. Since 

Soc(M) is essential in M, it follows from Proposition 5.1.3(u) that 

MISoc(M) is semisimple. 

(ii) -. (1): If Soc(M) fl I = 0 for some non-zero submodule I of N, 

then I (I + Soc(M))tSoc(M) MISoc(M) which implies that I is 

semisimple and hence I 9 Soc(M), a contradiction. Thus Soc(M) is 

essential in N. Now, if Z(M) is non-zero, then Z(M) (1 Soc(M) * 0, a 

contradiction with the projectivity of Soc(M). Thus Z(M) = 0. Now if 

N is any essential submodule of N then Soc(M) c N and hence MIN, being 

a factor module of MISoc(M), is semisimple, and we can apply 

Proposition 5.1.6. 13 
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Proposition 5.1.9: Let M be a locally projective module with MJJ(M) 

seinisimple. Then the following are equivalent: 

(1) M is a GV-module. 

(ii) M is an SI-module. 

Proof: (i) (ii): Since M is a GV-module, by Proposition 3.2(11), 

it follows that z(m) fl J(M) = 0, and hence Z(M) (Z(M) W J(M)flJ(M) is 

a semisimple module being isomorphic to a submodule of the seinisimple 

module MJ(M). This means that Z(M) 9 Soc(M). But since M is a 

locally projective GV-module, by Proposition 3.11, it follows that 

z(m) fl Soc(M) = 0, and hence Z(M) must be zero. 

Now Let L be any singular R-module, N any essential submodule of M 

and f : N -+ L any non-zero R-homomorphisin. Let K = Ker(f). Then one 

can easily see that K is essential in M and hence J(M) Soc(M) c K. 

Whence NIK is a direct summand of MIK and the map f can be extended to 

a map g : M - L. Therefore M is an SI-module. 

(ii) - (1): obvious. ci 

It was proved in t12, Theorem 1 and Theorem 5] that for a 

commutative ring R the following conditions are equivalent: 

(i) R is an SI-ring. 

(ii) R is a regular ring and RISoc(R) is.seinisimple. 

In [22, Theorem 3.9] K.R. Goodearl has proved that the above 

conditions are equivalent to saying that: 

(iii) R is a finite direct sum of non-singular rings which have at 

most two essential ideals. 
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In our next proposition we shall extend these results to modules. 

But first we need the following lemma which extends [22, Proposition 

3.6] to modules. 

Lemma 5.1.10: If M is a finitely generated SI-module then MISoc(M) is 

Noetherian. 

Proof: (Adapted from [22, Proposition 3.6]) 

We will show that every submodule of MISoc(M) is finitely 

generated. Let 3 = Soc(M) and I be a submodule of M with I 2 J. Let K 

be a submodule of I maximal with respect to K b J = 0. Then 3 W K is 

essential in I and II(J ® K) is a singular module. Since MI(J M K) is 

an SI-module we see that 11(3 K) is a direct summand of Ml(J W K). 

Thus 11(3 ED K) is finitely generated. Our aim is to show that 113 is 

finitely generated. From the exactness of the sequence 

0 - K - 113 - 11(3 ff K) -i 0, it suffices to prove that K is 

finitely generated. We first show that K is finite dimensional. If 

not, then there exists an infinite direct sum K1 M K2 W of non-zero 

submodules of K. Since K fl 3 = 0, none of the K1 are semisimple; 

whence each K. has a proper essential submodule H1. Inasmuch as 

00 00 00 
(M K.)( $ H.) W (K.IH.) is a singular module and hence is 
i=l 1 i=l i=]. 1 1 

CO CO 00 

W H1)-injective, it follows that ( (D K.)J( ® H.) is a direct 
i=l 1=1 1 1=1 1 

CO 

summand of Ml C (D H.) and so is finitely generated, which contradicts 
1=1 

the fact that it is an infinite direct sum of non-zero modules. By the 

finite dimensionality of K, Let {E.}' 1 be a maximal family of non-zero 
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N 
cyclic submodules of K such that the sun Z E. is direct. Clearly 

i=l 
n 

E W E is essential in K, and hence KIE is singular. Inasmuch as 
i=l 

MIE is an SI-module, it follows that KIE is a direct summand of M1E and 

thus is finitely generated. Whence K is finitely generated. o 

Corollary 5.1.11: If M is a finitely generated regular nodule then the 

following statements are equivalent: 

(1) M is an SI-module. 

(ii) MJSoc(M) is semisimple. 

Proof: (1) - (ii): Note first MISoc(M) is Noetherian, by 

Lemma 5.1.10. We claim that Soc(M) is essential in M, for if 

I fl Soc(M) = 0 for some non-zero submodule I of M it follows that 

I   MISoc(M), which implies that I is a Noetherian module. 

And since submodules of regular nodules are again regular, we conclude 

from Lemma 2.5 that I is semisimple. Whence I G Soc(M), a clear 

contradiction. Now by Proposition 5.1.3(u) it follows that MISoc(M) 

is semisimple. 

(ii) - (i): Since M is a regular module, it follows that every simple 

submodule is a direct summand and hence projective. Hence Soc(M) is 

projective. Since MISoc(M) is semisimple, Soc(M) is essential in M. 

Inasmuch as M is regular, and hence locally projective, it follows from 

Proposition 5.1.8 that M is an SI-module. 0 

Following M.S. Shirkhande [41],,a module M is called hereditary 

(resp. semihereditary) if every submodule (resp. finitely generated 

submodule) of M is projective. 
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Proposition 5.1.12: If fi is a commutative ring and M is a finitely 

generated projective fl-module. Then the following conditions are 

equivalent: 

(1) M is an SI-module. 

(ii) M is a regular module and MISoc(M) is semisimple. 

(iii) M is a semnihereditary module and MISoc(M) is semisimple. 

(iv) M is non-singular and MISoc(M) is semisimple. 

(v) M is a finite direct sum of regular modules each of which has 

at most two essential submodules. 

(vi) M is a finite direct sum of non-singular modules each of which 

has at most two essential submodules. 

Proof: (i) (ii): Since every SI-module is a GV-module it follows 

from Proposition 1.1 that M is a regular module, and hence MISoc(M) is 

semisimple by Corollary 5.1.11. 

(ii) - (iii): Clear, since every regular module is semnihereditary 

(iii) - p (iv): Clear, since every semihereditary module is 

non-singular. 

(v) - (vi): Obvious since every regular module is non-singular. 

(vi) - i (i): Let M = M1 W M, where each M. is non-singular and 

has at most two essential submodules. By Proposition 5.1.2 (ii), it is 

enough to show that each M. is an SI-module. But if I is any essential 

submodule of M then M111 is either zero or simple, and by Proposition 

5.1.4 (iii) it follows that each M. is an SI-module. 
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(iv) - (i): Let L be any non-zero singular R-module, N any essential 

submodule of M and f : N - i L any non-zero R-hoinomorphism. Let 

K = Ker(f). Since M is non-singular, it is not difficult to see that K 

is essential in M, and so Soc(M) K. Now since 

MIK (MISoc(M))I(KISoc(M)) is a seinisimple module, we see that NIK is 

a direct summand of MK and the map f can be extended to a map 

g : M - L. Whence every singular module is M-injective, and so M is 

an SI-module. 

(ii) -. (v): Since MISoc(M) is a finite direct sum of simple modules, 

it has a composition series, 

on the composition length of 

M = Soc(M) and ['1 is a finite 

Assume that MfSoc(M)) > 0, 

submodule IjSoc(M). Let K = 

Thus Px (K fl Rx) # 0. Hence 

We shall prove our assertion by induction 

MISoc(M). If MISoc(M)) = 0, then 

direct sum of simple projective modules. 

then MlSoc(M) has a non-zero simple 

Soc(M) and choose some x Q I with x 0 K. 

flxl(K fl Rx) IlK. Because IK is simple, 

it follows that Soc(Rx) = K fl Rx is a maximal submodule of Rx. 

Inasmuch as M is a regular module we see that 1x is a projective 

summand of M. Write M = Rx 1B N, for some submodule N of M. Since 

Soc(Rx) is an intersection of essential submodules of Rx and Soc(Rx) is 

a maximal submodule of Rx, it follows that Rx has only two essential 

submnodules, namely Rx and Soc(Rx). Since MIK  Rx M N  
Soc(Rx N) = 

Rx ED  N  
Soc(Rx) Soc(N) 

an inductive hypothesis on the module N. 11 

We have .(NISoc(N)) = (MIK) - 1, and hence may use 
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Remark 5.1.13: The above proposition remains valid if we replace 

"regular module" by "A-module", where A stands for one of the symbols 

V, GV, P-V, P-V' or P-SI, see Proposition 4.28 and the next 

proposition. 

Proposition 5.1.14: If fi is a commutative ring and M is a projective 

R-module then the following are equivalent: 

(i) M is a regular module. 

(ii) M is a P-SI-module. 

In particular a commutative ring R is regular if and only if R is a 

P-SI-ring. 

Proof: (i) (ii): By Proposition 4.7, if M is a projective regular 

module then every fl-module is P-M-injective. Thus M is a P-SI-module. 

(ii) - (i): If M is a P-SI-module then M is a P-V'-module and hence 

by Proposition 4.28 M is a regular module. 0 

Section 2. P-SI-rings. 

Recall that a module is said to be P-injective if for any 

principal left ideal I of H and f E Homfl(I,M) there exists an element 

mu E M such that f(x) = xm, for all x E I. It was proved in [56] that a 

ring H is regular if and only if every fl-module is P-injective. A ring 

H is defined to be a left P-V-ring if every simple left H-module is 

P-injective. P-V-rings were introduced and studied by Yue Chi Ming in 

[55] and [56), and by H. Tominaga in [46]. We defined a ring R to be a 

left P-SI-ring if every singular left H-module is P-injective 

(Definition 5.1.1). In this section we establish the following 

characterization: 
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Proposition 5.2.1 For a ring R with essential left socle, the 

following statements are equivalent: 

(1) R is a left P-SI-ring. 

(ii) Soc(RR) is projective and RI(SocRR) is a regular ring. 

(iii) RI(SocRR) 2 is' a regular ring. 

We postpone the proof until some of the ideas involved have been 

sufficiently developed below. 

Let K be a two-sided ideal of R. C. Azuinaya has proved in [3(11), 

Proposition 10(u)) that, every injective right RJR-module is injective 

as a right Fl-module if and only if Rf K is flat as a left Fl-module. For 

P-injective modules we have the following: 

Proposition 5.2.2 Let K be a two sided ideal of Fl. Then every 

P-injective right RjK-module is P-injective as a right Fl-module if and 

only if RJK is flat as a left Fl-module. 

Proof: "Only if" part: adapted from [3(11), Proposition 10). Let 

a G K and consider the right Fl-modules aR,aK and aRlaK. Let 

• : aR -* aRfaK denote the canonical quotient mapping. aRJaK is 

annihilated by K, and so can be regarded as a right Fl 1K-module. Let 

Q = E(afifaK) be the injective hull of the right Rf K-module aRfaK. Then 

Q is P-injective as a right 1lf K-module, whence P-injective as a right 

R-module, by assumption. Now the map • : afl -* Q can be regarded as a 
map of Fl-modules. Therefore • can be extended to an Fl-homomorphism 
• : Fl - Q. Let (l) = y, y E Q. Then •(x) = yx, Vx e all. But 

all K, and Q is annihilated by K, so yx = 0 Vx E all. Thus 4 = 0, and 
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aR = aX. Since a was arbitrarly , chosen from K, a e aX V a E K and it 

follows from a well-known result of G. Azumaya [3(11), Proposition 5] 

that R(RI) is flat. 

"if" part: Suppose R(RIK) is flat as a left R-module. And let Q be a 

P-injective right RIK-module. Want to show Ext(RxR,Q) = 0 for every 

x E R. So, let x be any element of R and consider the following exact 

sequence of right R-modules 0 - xR - R - RlxR - 0. Since R(RIK) is 

flat, it follows that: (RIK)l(K+xRIK) (RJxR) ®R (RIK) and that 

Ext(RIxR, Q) 

Ext(RIxR,Q) 

xR ®R RK,Q), whence 

(K+xR),Q). Now since Q is P-inject±ve as a 

right RIK-module and (K+xR)JK is a principal right ideal of RIK we get 

ExtJK(RI(K+xR),Q) = 0, and so Ext(RfxR,Q) = 0 for every x a R and Q 

is P-injective as a right R-module. '3 

With the same argument used in the "if" part of the above proof one 

can also verify the following: 

Proposition 5.2.3: Let K be a two-sided ideal of R, RIK flat as a left 

R-module and Q a right RJK-module. If Q is P-injective as a right 

R-module then it is also P-injective as a right RIK-module. 13 

We shall also make use of the following result, which was proved in 

[6, Proposition 1.4 and Proposition 1.10]. 

Proposition 5.2.4: For every ring R one has Soc(R) = (Soc(RR)) 2, 

where Socp(RR) denotes the projective homogeneous component of the left 
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socle of H. Moreover, if K is a two-sided ideal contained inSoc(RR), 

then the following conditions are equivalent: 

(i) K2- K 

(RIK) H is flat as a right R-module. D 

We can now prove Proposition 5.2.1: 

(1) -, (ii): By Proposition 5.1.5, since H is a left P-SI-ring, H is 

left non-singular and so SocRH is projective. Now, in order to show 

that RI(SocRR) is a regular ring we must prove that every left 

RI(SocRR)-module is P-injectjve. So, let M be a left RI(SocRR)-module. 

Since Soc(RH) is essential in HR it follows that M is a singular left 

H-module, whence N is P-injective as a left H-module. Now since 

Soc(RR) is projective, it follows from Proposition 5.2.4 that RI(SocHR) 

is flat as a right H-module and so by Proposition 5.2.3, it follows 

that N is P-injective as a left HJ(SocRR) -module. 

(ii) - p (iii): Inasmuch as SocRR is projective, it follows from 

Proposition 5.2.4 that SocRH = (SocRR)2 and hence HI(SocHR)2 is a 

regular ring. 

(iii) - (i): Since HI(SocHR)2 is a regular ring, and hence fully 

right idempotent, it follows from [5, Proposition 1.4] that SOCRR is 

projective and hence by Proposition 5.2.4, we have (SocHR) 2 = SOCRR, 

whence RI(SocRR) is a regular ring. Now let M be any singular left 

H-module. By the singularity of N we have (SocRR).M = 0, and so M can 

be regarded as a left RI(SocHH)-module. Since RI(SocRR) is a regular 

ring, N is P-injective as a left RI(SocRR) -module. By Proposition 
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5.2.4, since SocRR is projective, (RI SocRR)R is flat as a right 

H-module. Now by Proposition 5.2.2, it follows that M is P-injective 

as a left H-module. Hence R is a left P-SI-ring. 13 

We do not know whether Proposition 5.2.1 holds for modules. 

However we have the following: 

Proposition 5.2.5: Let M be a left H-module. If Soc(M) is projective 

and MISoc(M) is a regular module then M is a P-SI-module. 

Proof: Let N be a cyclic submodule of M, L a singular H-module and 

f : N -* L a non-zero homomorphism. We want to show that f can be 

extended to a map g : M -* L. Let K = Ker(f). If K fl I = 0 for some 

non-zero submodule I of N, then f : I - L is a monomorpbism and I is a 

non-zero singular submodule of N. Thus I fl Soc(M) = 0, and hence 

I (I + Soc(M))ISoc(M) G MSoc(M), which implies that I is a regular 

submodule of N. But since every regular module is non-singular, it 

follows that Z(I) = 0, a clear contradiction with the singularity of I. 

Thus K is essential in N, and hence Soc(N) c K. 

Now define : NJSoc(N) -+ (N + Soc(M))ISoc(M), by 

+ Soc(N)) = n + Soc(M). Then is an isomorphism. Let 

N - MjSoc(M) denote the canonical quotient map, and write 

M MISoc(M). Since M is a regular module and N is a cyclic submodule 

of M, we can write M = N ID T, for some submodule T of M. Since 

soc(N) 9 Ker(f), there is a map f : NISoc(N) - L, such that 

(n +Soc(N)) = f(n). Thus f ° : N - L. Extend 0 4) to a map 

M = N T -, L in the obvious way. Define g : M -, L, by 
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g(m) = ), V in E M. Now if x € N then: 

g(x) = = g(x + Soc(M)) 

(f ° 1)(x + Soc(M)) 

= (41(x + Soc(M))) 

= (x + Soc(N)) 

= f(x). 

Thus the map g is the required map. 0 

It was proved in [22, Proposition 3.5] that for a ring R with 

RIJ(R) semisimple, the following statements are equivalent: 

(i) Zr(R) = 0 and R is a right SI-ring. 

(ii) Z(R) = 0 and [J(R)] 2 = 0. 

(iii) Z(R) = 0 and [J(R)l 2 = 0. 

(iv) Z,(R) = 0 and R is a left SI-ring. 

However in view of our Proposition 5.1.5, R is a right 

SI-ring Z(R) = 0 (similarly R is a left SI-ring Z(R) = 0), Thus 

in (i) we can remove the condition Zr(R) = 0 (similarly in (iv) we can 

remove the condition Z Je (R) = 0). 

In the next Proposition we shall prove also that, under the same 

hypothesis, a ring R is a right P-SI-ring if and only if R is a left 

P-SI-ring. 

Proposition 5.2.6: If R is a ring with RfJ(R) semnisimnple, then the 

following conditions are equivalent: 

(i) R is a right SI-ring. 

(ii) R is a left SI-ring. 
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(iii) Z(R) = 0 and [J(R)l 2 0. 

(iv) Z Je (R) = 0 and. [J(R)] 2 = 0. 

(v) H is a right P-SI-ring. 

(vi) H is a left P-SI-ring. 

(vii) H is a right GV-ring. 

(viii) H is a left GV-ring. 

(ix) H is a right P-V'-ring. 

(x) R is a left P-V'-ring. 

(xi) H is right semihereditary and [3(R)] 2 = 0. 

(xii) H is left semihereditary and [3(R)] 2 0. 

(xiii) H is right hereditary and [3(R)] 2 = 0. 

(xiv) H is left hereditary and [3(R)] 2 = o. 

Proof: (v) - (ix): Clear. 

(ix) -, (iii): Inasmuch as H is a right P-V -ring, [3(R)] = 0 and 

3(R) n Zr(R) = 0, by Proposition 4.11. Hence 

J(H)WZ ' (R) 
Zr(R) J(R) c HjJ(H). Whence Zr(R) is a seinisimple right 

H-module and so Z(R) c Soc(HR). But since R is a right P-V'-ring it 

follows that every minimal right ideal of H must be projective. 

Therefore Z(R) = 0. 

(iii) -+ (i): By [22, Proposition 3.5]. 

(i) -, (v): Obvious. 

(x) -+ (vi) (iv) (ii): By symmetry. 

(i) 44 (ii): By [22, Proposition 3.5]. 

(i) 4+ (vii): By Proposition 5.1.8. 
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(xiii) - (xi): Clear. 

(xi) - (iii): If x is any non-zero element of R then the sequence 

0 - Ann(x) - R -p xfl -* 0 splits, where Ann R(x) denotes the right 

annihilator of x in R. Whence Z(R) = 0. 

(1) -* (xiii): By [22, Proposition 3.3]. 

(xiv) -, (xii) -* (iv) (I): By symmetry. 

Finally we conclude this section with the following. 

Proposition 5.2.7: For a left self-injective ring R, the following 

conditions are equivalent: 

(I) R is a left P-SI-ring. 

(ii) H is a regular ring. 

Proof: (I) -* (ii): By Proposition 5.1.5, since H is a left P-SI-ring 

it follows that H is left non-singular. And since H is left 

self-injective, J(H) = 0 and H is a regular ring. 

(ii) - i (i): Since H is a regular ring, every R-module is P-injective, 

in particular every singular left H-module is P-injective, and hence H 

is a left P-SI-ring. 11 



CHAPTER 6. 

MORE ON V-MODULES 

In this chapter we show that V-modules can be as useful as 

semisimple modules in characterizing different types of rings. We 

characterize rings whose V-modules are injective, rings whose singular 

V-modules are injective and non-singular rings whose singular modules 

are V-modules. 

Proposition 6.1: A ring H is semisimple Artinian if and only if every 

V-module is injective. 

Proof: If H is semisimple Artinian then every H-module is injective. 

Conversely, if every V-module is injective then in particular every 

simple H-module is injective and hence H is a left V-ring. Therefore, 

every H-module is a V-module and hence injective. Thus H is semisimple 

Artinian. ci 

Recall that a ring H is a left SI-ring f every singular left 

fl-module is injective. In the next proposition we characterize SI-rings 

in terms of V-modules. 

Propsition 6.2: The following are equivalent for a ring H. 

(i) H is a left SI-ring. 

(ii) Every singular V-module is injective. 

Proof: (1) - i (ii): Clear. 

(ii) - i (i): Let M bea singular fl-module. We want to show that 

J(M) = 0. Let 0 0 x E M. By Zorn's lemma, let L be a submodule of M 

maximal with respect to x it,L. Let - : M - MIL denote the canonical 
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quotient map and write x = x + L E MIL. Clearly the left R-module Rx is 

a simple singular essential submodule of MIL. By hypothesis, since Rx 

is injective, it is a direct summand of MIL. But since Rx is essential 

in MIL, Rx = MIL and hence L is a maximal submodule of M with x L. 

Therefore J(M) = 0. 

Now if N is any submodule of M then MIN is singular, and hence 

J(MIN) = 0 by the earlier paragraph. Whence every proper submodule of M 

is an intersection of maximal submodules; therefore M is a V-module, and 

so injective by hypothesis. Hence R is a left SI-ring, a 

Proposition 6.3: If H is a left GV-ring, then every singular H-module 

is a V-module. 

Proof: Let M be a singular H-module. Since H is a left GV-ring, every 

H-module is a GV-module. Therefore J(MIN) 11 Z(MN) = 0 for every 

submodule N of M, see Proposition 3.2(u). Since M is singular, 

J(MIN) = 0 for every submodule N of M. Thus M is a V-module. U 

We do not know whether the converse to Proposition 6.3 holds. 

However, for non-singular rings we have the following. 

Proposition 6.4: If H is a left non-singular ring then the following 

conditions are equivalent: 

(i) H is a left GV-ring. 

(ii) Every singular left H-module is a V-module. 

Proof: (i) - (ii): By Proposition 6.3. 

(ii) -+ (1): By Proposition 3.10 it is enough to show that every 

singular cofinitely generated left H-module is semisimple. 
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Let L be a singular cofinitely generated left R-module. By 

hypothesis L is a cofinitely generated V-module and hence a finite 

direct sum of simple modules by Proposition l.l(vi). ci 



CHAPTER 7. 

V-TORSION THEORY 

In this chapter we will follow the terminology of Stenstrim [44] 

and Varadarajan [48]. As we have seen in Proposition 1.2, the class of 

left V-modules is closed under submodules, homomorphic images and 

arbitrary direct sums, and so is a herditary pretorsion class which 

will be denoted by Q,. If M.is an arbitrary left H-module and v(M) 

denotes the sum of all submodules of M belonging to C , then clearly 

v(M) e 0 as well. In this way g gives rise to a preradical v of 

H-mod, and v is clearly left exact. By [44, Proposition 4.2] we get a 

pretorsion theory Z)' ) for H-mod with 

C = {M E H-mod: u(M) = M} 

{M H-mod: v(M) = O} 

and F= {I : I is a left ideal of H with R  C) the corresponding 

linear topology. 

In 7.1.1, an example is given to show that C is not necessarily 

closed under extensions, and so in general v is not a radical. Thus, 

Ainitsur's transfinite process of associating a left exact radical ii 

with r.' yields an ascending series of preradicals {v} for each ordinal 

c, and gives rise to a .'-Lowey series for each module M. 

In the first part of this chapter we study the class and its 

associated left exact preradical v. We prove, among other things, that 

C is closed under direct products if and only if RIJ(R) is a left 
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V-ring, and in this case v(M) = rM(J(I)), a result which was noted by 

K.R. Fuller in [21]. We also show that C is closed under injective 

envelopes (i.e. stable) if and only if R is a left V-ring. In 

Proposition 7.1.10, it is proved that a ring R is a left V-ring if and 

only if the class C has the lifting property (L.P), (see [48]). 

In the second part, we study the zi-Loewy series and obtain results 

similar to known results on the usual Loewy series associated to the 

left exact preradical Soc. An example is given to show that there are 

V-modules with zero socle. A ring R will be called a left semi-V-ring 

if every left R-module has a V-submodule. Clearly every semiartinian 

ring is a semi-V-ring but not vice-versa. In his work on perfect 

rings, H. Bass has proved that if R is a seiniartinian ring then J(R) is 

left T-nilpotent. We shall extend this result to a larger class of 

rings, namely the class of semi-V-rings. We show that a ring R is a 

left semi-V-ring if and only if J(R) is left T-nilpotent and IflJ(R) is 

a left semi-V-ring. 

We shall also investigate finite or infinite sequences of 

submodules, of a given module M, of the form (0) = M0 c M1 c M2 ç 

or of the form M = M 2 M1 2 ", where all the factor modules M. IM. 
1 

or MuIM1+l are V-modules. Many known properties of such series (with 

factor modules being semisimple) for a module over a ring R with HJJ(R) 

semisimple will be generalized. 

Section 1. On the preradical v. 

We start this section with an example to show that in general v is 

not a radical. 
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Example 7.1.1: Consider the following exact sequence of abelian groups 

0 -i Z -, Z 2 -, 0. Since every simple module is a V-module, 
P 

v(Z) = Z. And since J(Z 2 = 0, z 2 is not a V-module (in fact 
P P 

v(Z P 2 = Zr). Thus the class of V-modules is not necessarily closed 

under extensions, whence in general v is not a radical. 0 

Note that since there are left V-rings which are not right V-rings 

(and vise-versa), it follows that v(RR) 0 v(RR), i.e. v is not 

left-right symmetric. 

Proposition 7.1.2: (i) 3(R) = fl I. 
IEF 

(ii) 3(R) = fl AnnR(M). 
MEC 

(iii) v(R)M 9 i(M), for every left R-module M, (a fact which is valid 

for any preradical a). 

(iv) If M is a cofinitely generated module then v(M) = Soc(M). 

Cv) v(RR) fl 3(R) and z..'(IL) fl 3(R) are nilpotent ideals. In particular 

if R is a semiprime ring then v(RR) fl J(R) = v(R) fl J(R) = 0. 

(vi) If R is a left Noetherian ring with SocRR # 0, then SocRR is a 

direct summand of v(RR). 

Proof: The proof of (i), (ii), (iii) and (iv) are straightforward. 

(v): Set A = v( RR) fl J(R). Since RA is a left V-module it follows 

that 3(A) = 0 and hence J(R)A = 0. But since A c 3(R), we get AA = 0, 

i.e. A2 0. Similarly [v(RR) fl 3(R)] 2 = 0. 

(iv) Let J = Soc(RR) and K = v(RR). Since RKis a noetherian left 

V-module and R3 is a semisimple submodule of RK it follows from 

Proposition 2.2 that Rjis a direct summand of R K. 13 
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Note that if M is a V-module then 3(M) = 0 and hence J(R)M = 0, 

i.e. every V-module is an RJJ(R)-module. Also if RJJ(R) is a left 

V-ring and M is a left fl-module with J(R)M = 0, then M is an 

RIJ(R)-module and hence M is a V-module as an Rf J(R)-inodule, whence a 

V-module as a left fl-module, observing that R-submoduies of M are the 

same as RJ(R)-submodules of M. 

Now if R(J(R) is a semisimple ring and M is a left V-module then 

by the above remarks M is semisimple. In particular if R  is a 

V-module over a semiperfect ring then M is semisimple. In the next 

proposition we show that if RJJ(R) is a left V-ring then 

v(M) = rM(J(R)) (a fact which was noted by K.R. Fuller in [21]). In 

particular if RIJ(R) is semisimple then v(M) = Soc(M) = rM(J(R)), for 

every fl-module M. 

Proposition 7.1.3: The following conditions on a ring fi are 

equivalent: 

(1) IJ() is a left V-ring. 

(ii) 3(M) = .J(R)M for every left fl-module M. 

(iii) Q is closed under direct products. 

(iv) J(MIN) - (M)N+ N , for every fiM and every submodule N of M. 

(v) The Jacobson radical 3 preserves epiniorphisms (i.e., if 

M L - 0 is exact then J(M) -- 3(L) -p 0 is exact). 

(vi) The class r = {M e fl-mod: 3(M) O} is closed under 

quotients. 

And in this case v(M) = rM (J(R)), for every left fl-module M. 
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Proof (i) (ii): Let RMbe a left R-module. The factor module 

MIJ(fl)M is an RIJ(R)-module, and since RIJ(R) is a left V-ring, MIJ(R)M 

is a V-module. Thus J(MJJ(R)M) = 0. But since J(R)M G J(M), for every 

module M, it follows that 0 = J(MjJ(R)M) - J(R)M , and hence 

J(M) J(R)M. 

(ii) - (1): Suppose J(M) = J(R)M for every left R-module M. Now, if 

M is an RIJ(R)-module then J(R)M = 0 and hence J(M) = 0. Thus RIJ(R) 

is a left V-ring. 

(1) - (iii): Let M = Jr M., with each M. a V-module. Thus 
jEl 1 

J(R)M. c J(M.) 0, for each ± E I. From which we infer that M can be 

regarded as an RIJ(R)-module, and hence M is a V-module. 

(iii) .-* (i): Define 4 : R - it filL, by, c(r) = <r + L>, V r E fi, 

where the product ranges over maximal left ideals L of it 

Clearly 4, is an fl-homomorphism with J(R) ='Ker(4,). Thus RIJ(R) is 

isomorphic to a submodule of the V-module It PL. Thus RIJ(R) is a 

left V-ring. 

(1) -, (iv): Let M be a left fl-module and N a submodule of M. Let 

't :MIN - M((J(M) + N) denote the canonical quotient map. Then 

Ker(4,) = 3(M)N+ N • Inasmuch asRIJ(R) is a left V-ring, we infer that 

MI(J(M) + N) is a V-module (being isomorphic to a factor module of the 

V-module MIJ(M)). Thus J[M N] = 0, and hence 4,(J(MIN)) = 0, which 

implies that .J(MIN) E- Ker(4,) JM)N+ N • Since J(MN+ N c J(MIN) is 

3(M) + N always true, we conclude that J(MIN) - N 



85 

(iv) - (i): Let AjJ(R) be a left ideal of RIJ(R). Since 

J(RJA) = A - 0, it follows that A is an intersection of maximal 

left ideals of R and hence AIJ(R) is an intersection of maximal left 

ideals of RIJ(R). Thus RIJ(R) is a left V-ring. 

(ii) - (v): Let M N - 0 be exact. Then assuming (ii), 

f(J(M)) = f(J(I1)M) = J(R)f(M) = J(R)N = J(N), whence 

J(M) f-i J(N) - 0 is exact. 

(v) - i (ii): For any m E M, define 1m : R -i M by p (r) = rm. Then 

= J(R)ni and the maps{}MGM determine an epimorphism 

(M) (M) 
: R - M, where R denote the direct sun of M copies of R. By 

(v), we have J(M) = ,i(J(R(M))) = ii((J(R))(M)) = J(R)M. 

(v) - (vi): Let N f i N -p 0 be an exact sequence in R-mod with 

J(M) = 0. By (v), 0 = f(J(M)) = J(N). Whence N e r. 

(vi) -+ (v): Let N f i N - 0 be an exact sequence in R-mod. We must 

show that f(J(M)) = J(N). Inasmuch as J is a preradical, we have 

f(J(M)) J(N). And since J is a radical, we have 

J(NIf(J(M))) = J(N)f(J(M)). Let MIJ(M) -L NIf(J(M)) -i 0 be the map 
induced by f in the obvious way. Since J(MIJ(M)) = 0, it follows from 

(vi) that J(NIf(J(M))) = 0. Whence J(N)ff(J(M)) = 0, and so 

J(N) = f(J(M)). 

Now suppose that one of the above conditions is satisfied. We 

want to show that v(M) = rM (J(R)). Clearly v(M) is contained in 

rM (J(R)). And if m G rM(J(R)) then Rm is an RIJ(R)-module and hence a 

V-module, therefore Rm ç v(M), i.e. m e v(M). Thus v(M) = rM(J(R)). El 
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Corollary 7.1.4: Let H be a ring with Hf J(H) semisimple. Then 

v(M) = Soc(M) = rM (J(H)). 

Proof: By Proposition 7.1.3 and [2, Proposition 15.17]. ci 

Proposition 7.1.5: The following conditions on a ring H are 

equivalent: 

(1) H is a left V-ring. 

(ii) g is closed under injective envelopes. 

Proof: (1) -+ (ii): Clear, since C = H-mod, when H is a left V-ring. 

(ii) - p (i): Let S be a simple H-module. Since E(S) is a cofinitely 

generated V-module, it is semisimple by Proposition I.I. Therefore 

S = E(S) and hence S is injective. Whence H is a left V-ring. ci 

Proposition 7.1.6: The following conditions on a ring H are 

equivalent: 

(i) H is a left V-ring. 

(ii) H is a left GV-ring and C is closed under extensions. 

Proof: Ci) -+ (ii): Clear, since C = H-mod, when H is a left V-ring. 

(ii) - (1): Let S be a simple left R-module and consider the exact 

sequence 0 -* S -* E(S) -+ E(S)IS - 0. Inasmuch as H is a left 

GV-ring and E(S)IS is a singular module, it follows from 

Proposition 6.3 that E(S)IS is a V-module. Whence E(S) is a cofinitely 

generated V-module and hence semisimple by Proposition 1.1. Therefore 

S = E(S) and S is injective. Whence R is a left V-ring. a 

Proposition 7.1.7: For a left non-singular ring H the following 

statements are true: 
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(i) 11 is a left SI-ring if and only if Z(L) Soc(L) for every left 

R-module L. 

(ii) R is a left GV-ring if and only if Z(L) c v(L) for every left 

R-module L. 

Proof: See Proposition 5.1.6 (ii) and Proposition 6.4. El 

Now, as in [48], let C ' ' ' and respectively a denote 

the class of cyclic, finitely generated, noetherian, semisiniple, 

respectively artinian R-modules, and let C denote the class 

constituted by all simple R-modules and the zero module. Define the 

classes TA and the functions GA in R-mod as follows: 

= {M : V N q M, MJN CA) and GA(M) = 11{N : N . M and MIN € CA), 

where A stands for any one of the symbols c, f, a, sa, a or V. Also 

let T = {M : J(M) = M). 

It was proved in [48, Proposition 1.3] that for any ring H, 

c f = s = ss v A 
In the next propos iti on we show that T T , 

where A stands for one of the symbols c, f, n, a or ss. 

Proposition 7.1.8: TV = TS 

Proof: Since every simple H-module is a V-module then clearly C c 

and T' T . Conversely, if there is an H-module M with M € T5 and 

M it Tb', then there exists a proper submodule N of M with MIN € C. 

Since V-modules have maximal submodules, let LJM be a maximal submodule 

of MIN. Then L is a proper submodule of M with MIL € , which is a 

clear contradiction. 0 
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Remarks: (1) Since T = {M : 3(M) = M} = {M : V N c M, MIN Q5}. 

Then TS = T3. Whence by [48, Corollary 1.2(1)] TV is a torsion 

class. 

(ii) Since the class of V-modules is closed under submodules it 

follows from [48, Proposition 1.5] that is a radical. And we have 

the following: 

Proposition 7.1.9: For any R-module M we have 

J(M) = G5(M) = G55(M) = GV (M). 

Proof: G(M) = fl{N : N c M and MIN E C V 1. Clearly if L is a maximal 

submodule of M then G(M) 9 L, and hence G(M) 9 3(M). Conversely, if 

N is a submodule of M with MIN E C , then N is an intersection of 

maximal submodules of M, thus J(M) N. Whence J(M) c G(M). o 

Following K. Varadarajan [48, Definition 2.3], a class C of 

modules is said to have the lifting property (L.P) if N N - 0 is 

exact in R-mod, and B c N, B E C implies the existence of an A c M with 

A E C and 4(A) = B. 

It was proved in [48, Theorem 2.6] that for a ring R the following 

are equivalent: 

(1) R is semisimple artinian. 

(ii) The class C has the L.P. 
=ss 

(iii) The class 2 has the L.P. 

For left V-rings we obtain the following. 

Proposition 7.1.10: For any ring R the following are equivalent: 

(i) R is a left V-ring. 

(ii) The class C has the L.P. 
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Proof: (i) (ii): Since C = R-mod, when R is a left V-ring. 

(ii) -+ (1): First we show that v(M) * 0 for any non-zero left 

R-module M. Let M be a non-zero left R-module and let 0 0 x E N. 

Since Rx is finitely generated, it has a maximal submodule L. If 

S = RxjL, then S is a simple Il-module and hence a V-module. By (ii) 

and the exactness of the sequence Ilx ---j HxIL = S -' 0, there exists 

submodule N of I?x with N E C and (N) = S. Now, since N is 

V-module, v(Rx) 0 0, and since z-' is a preradical, v(M) 0 0. 

Now, we want to show that every left R-module is 

a 

a V-module. 

Suppose N is a non-zero left Il-module with v(M) 0 N. Then 

N = MIv(M) 0 0 and hence u(N) 0 0 by the earlier paragraph. Let 

= x + (M) be a non-zero element of v(N). Then Ilx is a left 

V-module. If the map r 

then the sequence 

Now, since Px € C , there 

N -+ MIv(M) denotes the canonical mapping, 

exists 

A r= C and z(A) = Rx. But since 

- 
-.* 0 is exact, where q' = zilti-1 (I1x). 

a submodule A c 17_1(I&) c N with 

A is a V-submodule of N, A c v(M). 

a 

And since v(M) c Ker(t'), 17'(A) = 0; whence FIx = 0, a clear 

contradiction. Thus v(M) = M for every left Il-module M. Whence Il is a 

left V-ring, a 

Section 2. v-Loewy series. 

The socle series for a module N is defined transfinitely by 

Soc0(M) = 0, Soc1(M)ISoc(M) = Soc(MISoc (N)) and, if ct is a limit 

ordinal, Soc a (N) = U Soc(M), see [17, P.470]. If M = Soc(N) for 
P 

some ordinal a, N is called a Loewy module [9], [20] and its Loewy 
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length is the smallest such ordinal a. A ring H is called a left Loewy 

ring (or said to be left semi-artinian) in case R  is a Loewy module 

or, equivalently, every non-zero left H-module contains a simple 

submodule, such rings were also called left socular rings by C. Faith 

in [17]. 

Loewy rings and Loewy series have been studied by many authors 

(e.g. H. Bass [7], S.E. Dickson [16], M Teply [45], C. Nastasescu and 

N. Popescu [33], T. Shores [42], [43], L. Fuchs [20], V.P. Camillo and 

K.R. Fuller [9] and John Dauns [15]). 

The aim of this section is to introduce the notion of z-Loewy 

series, i-Loewy rings and obtain results similar to known results on 

the usual Loewy series and Loewy rings. 

Definition 7.2.1: Let M be a left fl-module. The v-Loewy series for M 

is defined transfinitely by 

v0(M) = 0 

V (M)I a (M) = z..'(MIV(M)) , and '  

U V (M), if a is a limit ordinal. 
p<a ' 

The set {v1(M)}. is sometimes called the ascending v-Loewy chain of M. 

For each module RMthere is a smallest ordinal A, not exceeding 

the cardinality of M, such that VA(M) = v +1 (M). In this case A = A(M) 

will be called the v-length of M (is also called the v-Loewy length of 

M). If VA(M) = M, we shall say M is a v-Loewy module (or a 

semi-V-module). A ring H is called a v-Lowey ring (or a semi-V-ring) 

if R  is a v-Loewy module. 
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The functor v on Il-mod defined by 

U(M) = A(M)(M) 

is the smallest radical such that u v. A module M will be called a 

v-module if v(M) = M. We state some useful remarks: 

Remarks 7.2.2: (i) Soc(M) c v(M), Va. 

(ii) Each v  is a left exact preradical. 

(iii) A left H-module M is a v-module if and only if M is a 

semi-V-module if and only if every non-zero homomorphic image of M has 

a non-zero V-submodule. 

(iv) A ring H is a left semi-V-ring if and only if every left Il-module 

has a V-submodule, if and only if v(M) is essential in M, for every 

left Il-module M, if and only if every left Il-module is a semi-V-module. 

(v) v is a left exact radical. 

(vi) v(M) is an essential submodule of v(M). 

(vii) For every left H-module M, v(M) is the smallest submodule L of M 

such that MIL E F (i.e. v(MIL) = 0). 

Next we give an example of a left semi-V-ring which is not left 

semi-artinian. Thus there are V-modules with zero socle. 

Example 7.2.3: consider the ring H = k[y,D] of differential 

polynomials over a universal field k. In [14]; Cozzens has proved that 

11 has the following properties: 

(1) H is a left Noetherian ring. 

(ii) H is a left V-ring. 

(iii) 11 is not regular. 
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It follows from (ii) that, every left fl-module is a V-module. 

Thus H is a semi-V-ring. If H is left semi-artinian then Soc(M) is 

essential in M, for every left H-module M. Inasmuch as H is left 

Noetherian left V-ring, and hence every semisimple module is injective, 

it follows that Soc(M) is a direct summand of M, for every left 

fl-module M. Thus M = Soc(M) for every left H-module M, and therefore R 

is a semisimple ring - a clear contradiction with (iii). Hence H is 

not semiartinian. Thus there exists a left fl-module M with soc(M) = 0, 

in particular R is not a right perfect ring. 0 

Recall that a module M is called a weakly GV-module (WGV-module) 

if every proper essential submodule of M is an intersection of maximal 

submodules. A ring H is said to be a left WGV-ring if the left 

H-module R  is a WGV-module. 

Proposition 7.2.4: If M is a left WGV-module then v2(L) = L, for every 

homomorphic image L of M. In particular every WGV-module is a 

semi-V-module. 

Proof: Let M be a WGV- module and L be a homomorphic image of M. By 

Proposition 3.21 (1), L is a WGV-module and by Proposition 3.19, 

LISoc(L) is a V-module. Since Soc ≤ z.', it follows that L(v(L) is a 

V-module, and hence z2 (L) = L. Whence M is a semi-V-module. U 

Corollary 7.2.5: If H is a left WGV-ring then v2(M) = M for every left 

H-module M. In particular v(M) is essential in M for every fiM. 

In [7], Bass proved that a ring H is left perfect (i.e. J(R) is 

left T-nilpotent and RIJ(R) is semisimple) if and only if H is right 
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Loewy and contains no infinite set of orthogonal idempotents. In [33], 

Nastasescu and Popescu proved that a ring H is right Loewy ring if and 

only if its radical 3 is left T-nilpotent and RIJ is right Loewy. In 

the next proposition we extend this result to semi-V-rings. 

Proposition 7.2.6: The following conditions on a ring H are 

equivalent: 

(i) H is a left semi-V-ring. 

(ii) 3(R) is right T-nilpotent and RIJ(R) is a left semi-V-ring. 

Proof: (i) (ii) (Adopted from [7, Theorem P]). 

Let be the ascending z.'-Loewy series of the left H-module 

Since H is a left semi-V-ring, H = v  for some ordinal a. For each 

a e H, define h(a) to be the smallest ordinal a such that a E 

Then it is easy to see that h(a) is not a limit ordinal, for any a e H. 

Write h(a) = /3 + 1, for some ordinal /3, and let S = 3(R). Inasmuch as 

= v(flIz) is a V-module, it follows that 3 (v, +1 Iv,) = 0, and 

hence J.'+1 v. Thus h(ba) < h(a) for every b e 3, unless a = 0. 

Now, suppose that there is an infinite sequence {an} of elements of S 

such that a ... a1 0 0 for every n e N. Then there is a strictly 

decreasing chain of ordinals h(a1) > h(a2a1) > > h(a  ... a1) > 

which is impossible. Hence 3(R) is right T-nilpotent. Clearly H a 

left semi-V-ring implies that RIJ(R) is a left semi-V-ring. 

(ii) - (1): We want to show that v(M) 0 0 for every non-zero left 

H-module M. Let RN be a non-zero module and suppose J(R)N * 0 for 

every submodule N of N. Then there exists a1 € 3(R), such that 
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a 1 M 0 0. Thus Ra1M * 0, and there is a2 E J(R) such that a2a1M * 0. 

Proceeding this way, we can find a1,a2 ,... a sequence of non-zero 

elements of J(R) such that a ... a1 * 0 for each n E N, a contradiction 

with the T-nilpotence of J(R). Thus there is a non-zero submodule N of 

M with J(R)N = 0, i.e. N can be regarded as an JIIJ(R)-module, and hence 

N has a V-submodule, i.e. 0 * v(N) c v(M). o 

Corollary 7.2.7: If RJJ(R) is a left V-ring. Then the following 

conditions are 

(i) Ris 

(ii) J(R) 

equivalent: 

a semi-V-ring. 

is right T-nilpotent. 

(iii) Every left H-module has a maximal submodule. 

Proof: Since RIJ(R) is a left semi-V-ring, the equivalence between (i) 

and (ii) is an immediate consequence of Proposition 7.2.6. 

(ii) (iii): Let M be a non-zero left H-module. From the right 

T-nilpotency of J(R), it follows that J(H)M * M, and hence MIJ(R)M is a 

non-zero HIJ(I1)-module. Since RIJ(H) is a left V-ring, MIJ(R)M has a 

maximal submodule, NIJ(R)M say. Hende N is a maximal submodule of M. 

(iii) -* (ii): a well-known result, due to H.Bass. However the proof 

included here is due to Rosenberg and Zelinsky [37]). Let 

be a countable basis of a free module P, let 

a1,...,a.... be an infinite sequence of elements of J(R), and let f be 

the element of S = EndRP mapping x1 i4 a.x. 1, i = 1,2 .... . Since 

J(HomR(P ,P)) = HomR(P ,J(R) .P) (see[17, Corollary 22.3]), it follows 

that f E J(S), hence (1-f) is a unit in S. Let y = (1-f) 1x1, and 
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Co 

write y = Z b . with b 1 . E R, b 0, n k. 
11 fl 1=1 

Then x1 = (l-f)y = (! b.x.) - (Z b.a.x. +1) 

= b 1 x 1 + (b2 - b1a1)x2 + Z (b - b1a1)x 
n>2 

since {x n ≥ 1} is a free basis, then b = 1 and b = 
n 1 n 

n 2. Thus b  = a 1 a 2 a 1 = 0. 0 

Proposition 7.2.8: If R is a left Noetherian, left semi-V-ring then 

every R-module has a maximal submodule. 

a1a2 

Proof: Let {v(RR)} be the z.'-Loewy series associated with the left 

R-module Since R is a left semi-V--ring, R = vA(R), for some 

ordinal A, and since R is left Noetherian A must be finite. We claim 

that .'A(M) = M for every left R-module M. Suppose on the contrary 

M for some non-zero left R-module M. Let y E MVIA(M). Then 

Y VA(I1y), since VA is a preradical. Let g : R -, Ry be the obvious 

epimorphism. Then (v(R)) 9 v,(Ry), and hence I1y = g(R) = 

g(v(R)) which implies that y G v(Ry), a contradiction. 

Now, if M is a non-zero V-module then clearly M has a maximal 

submodule. Otherwise M has a v-Loewy series of length n A, for some 

positive integer n > 1, and in this case MIvni(M) = v(M) I)n_i(M) is a 

V-module and so has a maximal submodule, NIv 1(M) say. Thus N is a 

maximal submodule of M. U 

Proposition 7.2.9: For a commutative Noetherian ring R the following 

conditions are equivalent: 

(i) R is a semi-artinian ring. 
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(ii) Fl is a semi-V-ring. 

(iii) Every Fl-module has a maximal submodule. 

(iv) J(R) is T-nilpotent and RJ(R) is regular. 

(v) Fl is a perfect ring. 

(vi) R is an Artinian ring. 

Proof: The equivalence between (iii) and (iv) is satisfied for any 

commutative ring, see Koifman's theorem [31, Theorem 1.8]. For the 

equivalence between (iii), (v) and (vi), see Hamsher's result 

[26, Theorem 1]. For the equivalence between (i) and (iii), see [33, 

Corollary 3.1]. 

(1) - (ii): Since every simple module is a V-module. 

(ii) + (iii): By Proposition 7.2.8. 0 

I, 

Section 3: Chains of modules with V-quotients. 

In this section we will study finite or infinite sequences of 

submodules, of a given module M, of the form {O} = or of 

the form M = M° 2 Ml 2 .., where all the factor modules M. 1 fM. or 

i 1+1 
M IM are V-modules. And we will generalize those results which have 

been obtained in [15]. 

From now on it will be assumed that FIJ(Fl) is a left V-ring, 

J = J(Fl) and J the k-th power of J, where k > 0 (if k = 0 we define 

J0 = R). 

Theorem 7.3.1 Let R be a ring with RIJ(R) a left V-ring and M be a 

left Fl-module. Then the following hold for all integers ic = 0,1,2,... 

k k 
(1) vk (M) = AnnM (J ) = {m E M : J m = 0}. 
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(ii) If {0} = M c M c c is any series of submodules of M 

with V-quotient modules Mk+llMk for k = 0,1,2,... , then 

Proof: (1) If k = 0 then by definition J R and v0 (M) = 0, and 

hence v0(M) = AnnM(J°) = 0. 

Assume (i) is true fork - 1, i.e. vkl(M) = AnDM (Jk-') . Let 

L = 

0. Whence 

Since L is a V-module, J(L) = 0 and hence 

Jk(M) 9 vk_l(M). But vkl(M) = (Jkl) and 

hence Jk(M) i.e. Jk_l.J.v(M) = 0. Thus Jkv(M) 0, 

i.e. vk(M)c AnnM (Jk ). On the other hand, since Jk.Afl(Jk) = 0, it 

follows that Jk-l J (i k) = 

the module Ann M (J ) IAnn(J11) 

RIJ is a left V-ring, AnuM(J') 

0, whence J.AnnM(Jk) c Ann M(J1) and 

can be regarded as an RIJ-module. Since 

IAnnM (Jk ) is a V-module. From the 

induction step, it follows that Ann M(J'5 Ivk_l(M) is a V-module and 

VIC(M) 
hence AnnM(J51 7.Jkl(M) (MIvk_l(M)) )k_l(M) • Therefore, 

vJ(M). Whence vk(M) = (Jk) 

(ii) Clearly M0 = v0(M) = 0 and = v(M) M. Assume 

Since MkIMk is a V-module, it follows that 

JMk and hence that J- Mkvk_l(M). Thus, JkMk 

Jk_lvkl (M) = 0, i.e. Mk 9 Ann M(J), therefore M c vk(M) by (i). o 

Corollary 7.3.2: If RIJ(R) is 

all integers k = 0,1,2,... 

(i) Sock(M) = AnnM (Jk ). 

(ii) If {0} = M0 c M c •• is 

semisimple, then the following holds for' 

any series of submodules of M with 

semisimple quotient modules Mk+lIMk for k = 0,1,2,..., then 

Mk c Sock(M). 
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Proof: Since RIJ(R) is seinisiinple, v(M) = Soc(M) for every R-module M 

and hence vk(M) = Sock(M) for every k = 0,1,2 0 

This is Theorem 2 in [15]. 

Corollary 7.3.3: If J is nilpotent with index of nilpotency equal to n 

(i.e. J' 1# 0 and j'' = 0). Then the v-length of R is exactly n. In 

particular the v-length of any left R-module is at most n. 

Definition 7.3.4: For a left R-module M over an arbitrary ring R, set 

J0(M) = M, J1(M) = J(M) the intersection of all the maximal subinodules 

of M ( the empty intersection is by convention all of ). For any 

positive integer k = 1,2,... the submodule Jk+l(M) is defined 

inductively by Jk+l(M) = J(Jk(M)). If Ja(M) has been defined for all 

ordinals a < /3 where /3 is a limit ordinal, set J/3(M) = fl{Ja(M) : a < /3) 

and define J/3+1 (M) to be J/31 (M) = J(J/3 (M)). The series 

M = J0(M) 2 31(M) 2 ••• is called the upper Loewy series of M over R 

(see [15]). 

Remark 7.3.5: If J = J(R) then J = J for every integer k = 0,1,2,... 

(since RIJ(R) is a left V-ring, J(M) = J(R)M for every left R-module H. 

Thus Jk+l(R) = J(R)Jk(R), and by inductive hypothesis, 

= Jk+l) 

Theorem 7.3.6: Let R be a ring with RIJ(R) a left V-ring. Write 

J = J(R). Then the following hold for all k = 0,1,2,... 

(i) Jk(M)IJk+l(M) is a V-module. 

(ii) Jk(M) 

(iii) If M =M 0 2 H1 2 is any series of submodules of H with 

each quotient MkIMk+l is a V-module for k = 0,1,2,... then Mk 2 
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Proof: (i) J(Jk(M)IJk+l(M)) = = 0 and hence 

J(R)•(Jk(M)tJk+l(M)) = 0 and consequently the module Jk(M)lJk+l(M) can 

be regarded as an RIJ(R)-module and hence a V-module, since RIJ(R) is a 

left V-ring. 

(ii) If k = 1, then J1(M) = J(M) and J1(R)M = J(R)M = J(M), since 

R is a left V-ring. Assume by induction that Jkl(M) = Jk_l(R)M. Then 

= 

= J(R).Jk_l(rl)M, by Proposition 7.1.3 (1 - ii). 

= J(I1)Jk_l(M), induction step. 

since RIJ(R) is a left V-ring. 

(iii) Ifk=0,30(M)=M=MO. 

Assume it is valid for k - 1, i.e. M 1. Since Mk_lIMk 

is a V-module, it follows that J(MkllMk) = 0 and hence J(R)•Mk_l c M. 

Since Jk(M) (Jk_l(M)) = J(R) .Jk_l(M) we get J1 (M) c J(R)M1_1 c Mk. 0 

Corollary 7.3.7: For an arbitrary ring R the following conditions are 

equivalent: 

(i) RIJ(R) is a left V-ring. 

(ii) For any left R-module M and any submodule N of M, 

Jk(MIN) = (Jk(M) + N) IN, for every non-negative integer k. 

(iii) For every left R-module M and every k = 0,1,2,... 

Jk(M) 

Proof: An immediate consequence of Proposition 7.1.3 and 

Proposition 7.3.6. 0 
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