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ABSTRACT

In this thesis we obtain results about V-modules, GV-modules and
P-V-modules complementing results of K.R. Fuller and Y. Hirano. We
also introduce the notions of weakly GV-modules, DSI-modules and
P-V!'-modules.

The class of V-modules turns out to be a hereditary pretorsion
class and thus gives rise to a left exact preradical v. In general v
is not a radical. We study the associated hereditary torsion class and
the arising Loewy series of modules. We intro&uce the notions of
semi~V-modules and semi-V-rings, and generalize some results of H. Bass
on perfect rings.

We also introduce the concept of an SI-module, extending the
notion of an SI-ring introduced by K.R. Goodearl. The connections
between SI-modules, regular modules and the preceeding modules are

studied.

iii



ACKNOWLEDGEMENTS

I am truly grateful to my supervisor, Professor K. Varadarajan,
for introducing me to the topic of this thesis. His guiding hand and
encouragement were of great help to me throughout the stages of my
research.

I would also like to thank Professor W.K. Nicholson, whose
valuablg lectures and discussions served as an inspiration for me.

Thanks are also due to the University of Calgary for providing me
with financial support.

I wish to express my thanks to Mrs. Tae Nosal for her accurate

typing of the manuscript.

iv



Yo my wife Loio



TABLE OF CONTENTS

PAGE
AB BT RAC . s ettt et teretoersonsosnoososssacnnsossoennnoonnnanss iii
ACKNOWLEDGEMENTS. o0t v v vttt nnvooneeenseccancnnnan e e esesacreaaenns iv
INTRODUCTION. sttt vvneveeenorononsovesnsasnosoocaones Cerererareea 1
CHAPTER 0  NOTATIONS AND DEFINITIONS....ee0eveeeconcenccnoconsns 6
CHAPTER 1  V-MODULES. .t vitterteerorooeoosrvssoosveonsonoennennes 10
CHAPTER 2 NOETHERTAN V-MODULES .« . st v tentrensnstnvscoooosannonns 23
CHAPTER 3  GENERALIZED V-MODULES. ...t eevurencvosonocensonsvones 30
CHAPTER 4  P-V-MODULES AND P-V'—MODULES. ... eveererenroreennonennns a7
CHAPTER 5 SI-MODULES. . vveveereevnnes Cecereenrens Crecereesues . 59

8], SI-modules...iievtreiriiirieerorssrconcansoncenannnns 60

82, P-SI-ringS..veeveereeennenenene Cererreaeea cerrereees 69
CHAPTER 6 MORE ON V-MODULES....cvovvcenesns Ceseresssiaceneresue 77
CHAPTER 7 V-TORSION THEORY...... et rerveree ittt etorene s enne 80

8]. On the Preradical v....vviiiiiirinrinrenenneennnns 81

82, V-LoeWy SerieS. it revcererrerereennnnneens crberreens 83

§3. Chains of Modules with V—quotients......coeeevuneenns 96
REFERENCES. .ot iveertenrrsersssoroveonconens seerereorees ceecreanns 100

vi



INTRODUCTION

A ring R is called a (Von Neumann) regular ring if for each a in R
there exists an x in R such that a = axa. If R is commutative,

I. Kaplansky has proved that R is regular if aﬁd only if every simple
R-module is injective. Subsequently a ring R is called a left V-ring
if every simple left R-module is injective. Such rings were called
V-rings after 0.Villamayor, who characterized left V-rings as those
rings in which every pr;per left ideal is an intersection of maximal
left ideals.

The notion of regularity has been extended to modules in [18], [50]
and [60], while the notion of a V-ring has been extended to modules in
[21], [35] and [46]. 1In this thesis, following H. Tominaga [46], we
call a module RM a V-module if every proper R-submodule is an
intersection of maximal submodules. Such a module M has also been
called "co-semisimple" by K.R. Fuller in [21]. A result of Fuller
asserts that the class of V-modules is closed under submodules,
homomorphic images and arbitrary direct sums. A class with these
properties is defined by Stenstrom [44] to be a hereditary pretorsion
class.

This thesis is intended to give further contributions to the study
of V-modules and their generalizations. We shall also introduce an&
study the left exact preradical associated with the pretorsion class of

V-—modules.



In Chapter 1, several characterizations of V-modules are given and
the relationship between V-modules and M-flatness is studied. We
prove, among other things, that a module M is a V-module if and only if
every cofinitely generated module is M-injective. We also prove that
if R is a commutative ring and RM is a projective module then M is a
V-module if and only if every simple R-module ;s M-flat.

Chapter 2 is devoted to the study of Noetherian V-modules. We
characterize them in terms of semisimple modules as well as minimal
generating sets. We prove that a finitely generated module M is a
Noetherian V-module if and only if every semisimple module is
M—-injective, which extends a similar result for rings in [8] and [40].
It is also proven that a finitely generated module M is a Noetherian
V-module if and only if every submodule of M has a minimal generating
set and if L is a homomorphic image of M, then every minimal generating
set of any submodule of L can be extended to a minimal generating set
for L, which extends a similar result for rings by B. Sarath in [39].

In Chapter 3, we study Generalized V-modules (GV-modules) and
introduce the notion of weakly GV-modules. Following Y. Hirano [28], a
module RM is called a GV-module if every simple singular left R-module
is M-injective. Many known results on GV-rings will be extended to
GV-modules. We will call a module M a Weakly GV-module (WGV-module) if
every proper essential submodule of M is an intersection of maximal
submodules. It is shown that a module M is a GV-module if and only if

M is a WGV-module and J(M) N Z(M) = 0. We also prove that a module M



is a WGV-module if and only if M|Soc(M) is a V-module. A ring R is
called a left WGV-ring if the left R—module RR is a WGV-module. The
ring R is shown to be left WGV-ring if and only if all left R-modules
are WGV-modules. The class of WGV-modules turns out to be a hereditary
pretorsion class. A necessary and sufficient condition for a
WGV-module to be a V-module is given.

In Chapter 4, we consider the notion of P-M-injectivity. A module
RU is called P-M-injective if every non—zero R-homomorphism of any
cyclic submodule of M into U can be extended to an R-homomorphism of M
into U. If every simple (resp. simple singular) module is
P-M-injective, M is called a P-V-module (resp. a P-V'-module). Known
results on P-V-rings and P-V'-rings are extended to modules. We will
also introduce the notion of P-M-flatness and as in Chapter 1, we prove
that if R is a commutative ring and RM is a projective module then M is
a P-V-module if and only if every simple R-module is P-M-flat. Using
this result and a result of Y. Hirano [28], we}prove that if R is a
commutative ring and M is a projective R-module then the following

conditions are equivalent:

(1) M is a V-module.
(ii) M is a GV-module.
(iii) M is a P-V-module.
(iv) M is a P-V'-module.

Chapter 5 consists of two sections. In Section 1, we introduce the

notions of SI-modules and P-SI-modules. SI-modules are natural



extensions of Goodearl’s SI-rings [22]. A module M will be called an
SI-module (resp. P-SI-module) if every singular module is M~injective
(resp. P-M-injective). Many known results on SI-rings are extended to
SI-modules. The connections between regular modules, V-modules,
GV-modules and SI-modules are studied. A structure theorem for
finitely generated projective SI-modules over commutative rings is
obtained. In Section 2, we introduce a generalization of SI-rings. A
ring R will be called a left P-SI-ring if the left R-module RR is a
P-SI-module. We prove, among others, if R is a ring with essential
left socle then R is a left P-SI-ring if and only if SocRR is
projective and RlSocRR is a regular ring. We also prove that if R|J(R)
is semisimple then R is a left P-SI-ring if and only if R is a right
P-8I-ring.

In Chapter 6, the focus is once again on V-modules. We show that
V-modules can be as useful as semisimple modules in characterizing
various types of rings. We characterize rings whose V-modules are
injective, rings whose singular V-modules are injective and
non—singular rings whose singular modules are V-modules.

Chapter 7 is divided into three sections. In Section 1, we
introduce the left exact preradical v associated with the hereditary
pretorsion class gy of V-modules. For every left R-module M, v(M)
denotes the sum of all submodules of M belonging to gv . An example is
given to show that in general v is not a radical. We shall give

necessary and sufficient conditions for the class gu to be closed under



extensions, injective hulls and respectively direct products. We
prove, among other things, a ring R is a left V-ring if and only if the
class gy has the lifting property [48]. 1In Section 2, we consider
Amitsur’s transfinite process of associating a left exact radical v
with v, which yields an ascending chain of preradicals {Va} for each
ordinal «, thus gives rise to a v-Loewy series for each module M. We
shall study the v-Loewy series and obtain results similar to known
resulté on the usual Loewy series associated with the left exact
preradical Soc. We will introduce the notions of semi—V-modules and
semi-V-rings. A module M will be called semi—V-module if Ua(M) = M,
for some ordinal a; and a ring R will be called a left semi—-V-ring (or
a v~Loewy ring) if the left R-module RR is a semi-V-module. An example
is given to show that there are V—modules with zero socle. Thus every
semiartinian ring is a semi—V-ring but not vice-versa. In his work on
perfect rings, H. Bass has proved that if R is a right semiartinian
ring then J(R) is left T-nilpotent. We shall extend this result to the
class of semi-V-rings. We §how that a ring R is a left semi-V-ring if
and only if J(R) is right T-nilpotent and R]J(R) is a left semi-V-ring.
We also prove that if R is a commutative Noetherian ring then R is a
semi—V-ring if and only if R is a perfect ring.

In Section 3, we shall investigate finite or infinite sequences of

submodules of a given module M, of the form {0} = M0 < Ml €M, & ... or
of the form M = M0 2 Ml 2 M2 2 ... , where all the factor modules
i+l

i
Mi+1lMi or M™|M are V-modules.



CHAPTER O

NOTATIONS AND DEFINITIONS

Throughout this thesis, unless otherwise indicated, a ring R is an
associative ring with identity; all modules are unitary left R-modules.
For any ring R, R-mod denotes the category of left R-modules. For any
module M we denote by Z(M), J(M), Soc(M) and E(M) the singular
submodule, the Jacobson radical, the socle and the injective hull
respectively of M. A module RM is semisimple if it is a direct sum of
simple modules. RM is called semiartinian if every non-zero
homomorphic image of M has a non-zero socle. A submodule N of M is
"large" or "essential"™ in M if for all nonzero x in M, Rx N N # 0.
Given a subset A of M, we denote the submodule generated by A by <A>.
Given a submodule L of M, we write L* for the intersection of all
maximal submodules of M containing L. Given a subset N of a module M,
the annihilator of N in R, denoted by AnnR(N), is the set of those
r € R such that rx = 0 for all x € N. A module M is indecomposable if

the only direct sum decompositions M = M1 ® M2 are those in which M, =

1

0 or M2 = 0. If M and N are modules, then the phrase "map from M to N"
or the notation "f : M — N", refers to an R-homomorphism. When N € M,
we sometimes use the notation x » x for the natural homomorphism M —

M|IN. The ring of all endomorphisms of an R-module M is denoted

EndR(M).



Let M and U be R-modules. Following G. Azumaya [3], we say that U
is M-injective if for each submodule K of M every R-homomorphism from K
into U can be extended to an R-homomorphism from M into U. According
to Sandomierski [38] U is M-injective if and only if every
R-homomorphism ¥ : M — E(U) has its image in U.

An R—module U is said to be injective if given any exact sequence
0 — A —i» B— C — 0 of left R-modules and any map g : A — U, there
exists amap f | B — U satisfying g = £ ¢ i. It is well-known (Baer’s
criterion) that U is injective if and only if U is R-injective. We
- refer to [2] for the definition and properties of M—injective modules.

A module M is called cofinitely generated, if
E(M) = E(Sl) B e B E(Sk) for some integer k > 0, with each Si simple.
Equivalently if every family of submodules of M with intersection 0
contains a finite subfamily with zero intersection. Such a module M
has also been called "finitely embedded (f.e.)" by P. Vamos in [47] and
"finitely cogenerated" by K.R. Fuller in [21].

A ring R is called (Von Neumanﬁ) regular ring if given any x € R
there exists a € R with x = xax. Equivalently if every finitely
generated left ideal of R is generated by an idempotent. The notion of
regularity has been extended to modules by D. Fieldhouse [18], J.
Zelmanowitz [60] and R. Ware [50]. The first two authors considered
arbitrary modules while the third author dealt with projective modules
only. However their definitions agree for projective modules. In this

thesis, following Zelmanowitz [60], we call a module ﬁw regular if



given any m € M there exists f € HomR(M,R) with (m)fm = m. The
following proposition is needed for our later purposes. For the proof
see [50, Theorem 2.2], [60, Proposition 2.1] and [18, Theorem 1].

Proposition 0.1: Let R be a ring and RM be a projective module. Then

the following statements are equivalent:

(1) M is a regular module.
(ii) Every homomorphic image of M is flat.
(iid) Every cyclic submodule of M is a direct summand.
(iv) Every finitely generated submodule of M is a direct summand.
(v) For every submodule K of M and every right ideal I of R,
IM N K = IK.
(vi) For every submodule K of M, the sequence 0 — E 8 RK — E @R M

is exact for all right R-modules E (i.e. every submodule K of M is pure
in the sense of P.M. Cohn [18]).

Following B. Zimmermann-Huisgen [62] we say that a module RM is
locally projective if M satisfies the following conditioq:

For all diagrams

with exact upper row and a finitely generated submodule F of M there is
a map g' € HomR(M,A) such that g|F = £ © g'|F. It is known that every

regular module is locally projective.



A preradical ¢ of R-mod assigns to each module M a submodule o(M)
in such a way that every homomorphism M — N induces ¢(M) — o(N) by
restriction. In other words, a preradical is a subfunctor of the
identity functor of R-mod. A preradical o is idempotent if oo = o and
is called a radical if o(M|o(M)) = 0 for every module M. A preradical
o is called left exact if o(N) = NN o(M) for every submodule N of M.

A class ¢ of modules is called a pretorsion class if it is closed
under homomorphic images and direct sums, and is a pretorsion—free
class if it is closed under submodules and direct products. There is a
bijective correspondence between idempotent preradicals of R-mod and
pretorsion classes of R—modules. A pretorsion class is called
hereditary if it is closed under submodules. There is a bijective
correspondence between left exact preradicals and hereditary pretorsion
classes. A pretorsion class (resp. a pretorsion—free class) is called
a torsion (resp. a torsion—free) class if it is closed under
extensions. A torsion theory for R-mod is a pair (C,F) of classes of

R-modules such that g is a torsion class and

fr=g

= [N € R-mod: HomR(M,N) = 0 for all M € C}. Then F is automatically
a torsion free class. There is a bijective correspondence between
torsion theories and idempotent radicals. A torsion theory (g,g) is
called hereditary if C is hereditary, and is called stable if C is
closed under injective hulls.

In this thesis we will follow the terminology of B. Stenstrom [44]

regarding “torsion theories".



CHAPTER 1

V-MODULES

A ring R is called a left (right) V-ring if every simple left
(right) R-module is injective. Life was given to this class of rings
by Kaplansky [19] when he proved that a commutative ring R is regular
in the sense of Von Neumann if and only if every simple R-module is
injective. Such rings were called V-rings (by C. Faith in [17]) after
Villamayor who characterized left V-rings as those in which every
proper left ideal is an intersection of maximal left ideals. V-rings
have been extensively studied by many authors. The notion of V-rings
has been extended to modules by V.S. Ramamurthi in [35], K.R. Fuller in
[21] and H. Tominaga in [46]. 1In this thesis, following H. Tominaga
[48], we call a module RM a V-module if every prope; submodule of M is
an intersection of maximal submodules. Such a module M has also been
called "Co-semisimple" by K.R. Fuller in [21]. The connections between
regular modules, V-modules and their endomorphism rings are studied by
Y. Hirano in [28] and R. Wisbauer in [51]. In [28], known results on
V-rings are extended to modules. In this chapter several new
characterizations of V-modules are given. We prove among others that a
module M is a V-module if and omnly if every Artinian module is
M-injective (Proposition 1.1) extending a similar result for rings by

A.K. Gupta and K. Varadarajan [25]. We also prove that a module M is a

10
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V-module if and only if for any essential submodule L of M and for any
maximal submodule K of L, K* # L* (Proposition 1.5) ektending a similar
result due to Yue Chi Ming for rings [58]. In Proposition 1.14, we
show that if RM is a projective module over a commutative ring R then M
is a V-module if and only if every simple R-module is M~flat, which
extends a well-known result for V-rings by R. Ware in [50].

Now we begin with the following proposition.

Proposition 1.1.: Let RM be a left R—module. Then the following

statements are equivalent:

(1) Every simple R-module is M-injective.

(ii) J(A) = 0 for every factor module A of M,

(iii) Every proper submodule of M is an intersection of maximal
submodules.

(iv) IfKES M x€M, x ¢ K there is an R-homomorphism ¥ : M — 8,

with S simple, such that 7(K) = 0 and T(x) # O.

(v) IfKS M x€ M x ¢ K there is a maximal submodule L of M
with K& L andrx ¢ L.

(vi) Every cofinitely generated factor module of M is a finite
direct sum of simplé modules.

(vii) Every cofinitely generated module is M-injective.

(viii) Every Artinian module is M-injective.
(The equivalence of conditions (i) to (vi) is due to

K.R. Fuller (21, Proposition 3.1]).
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Proof: (i) — (di): Let 5 ¢ M — A be an R-epimorphism of R-modules.

If A =0, clearly J(A) = 0. If A # 0, let x be any non-zero element of
A. By Zorn’s lemma choose a submodule B of A maximal with respect to

x ¢ B, Let-: A — A|B denote the quotient map and write x = x + B.
Clearly Rx is a simple module which is contained in every non—zero
submodule of A|B. Then by (i), Rx is M-injective and so A|B-injective
by [2, Proposition 16.13, pil88]. Therefore Rx is a direct summand of
A|B. But since Rx is an essential submodule of A|B, it follows that
A|B = Rx. This means that B is a maximal submodule of A with x ¢ B.
whence x ¢ J(A), and so J(A) = 0.

(ii) — (iii): Clear.

(iiil) ~ (iv): Let K be a submodule of M, x € M and x ¢ K. Since K

is an intersection of maximal submodules of M and x ¢ K, there exists a
maximal submodule L of M with K€ L and x ¢ L. Let 8 = M|L and

Y : M — 8 denote the quotient map. Clearly Y(K) € Y(L) = 0 and

r(x) =x+ L # 0.

- (iv) — (v): Let K be a submodule of M, x € M and x ¢ K.

By (iv), there exists a siﬁple module S and an R-homomorphism

T : M-— S, such that Y(K) = 0 and 7(x) # 0. This implies that ¥ # 0

and L = ker(Y) is a maximal submodule of M such that K€ L and x ¢ L.

(v) — (iii): Let K be a proper submodule of M. By (v), ¥ y ¢ K there
exists a maximal submodule Ly of M such that y ¢ Ly and K € Ly. Now,

it is an easy task to see that K = N IL_. Whence every proper
vEK

submodule of M is an intersection of maximal submodules.
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(iii) — (i): Let S be a simple R-module énd f be a non-zero
R-homomorphism from a submodule N of M into S. Let K = ker(f). By
(iii), since K # N, there exists a maximal submodule L of M with K S L
and N ¢ L, it follows that L N N = K. Thus M|K = (L+N)|K = L|K & N|K.
If T N|K — S is the map induced by f in the obvious way, define

g ¢ M|K — S by g|(N[K) = ¥ and El(LHK) = 0. Thus themap g : M — S,
defined by g(m) = E(m+K), Vm € M, extends f.

(iii) — (vi): Let M —=4+ A —» 0 be an exact sequence of left

R-modules, with A cofinitely generated. If N = Ker e, then N is an

intersection of maximal submodules. Let N = 1 L., for some set I,
iel
where each Li is a maximal submodule of M. Since M|N is cofinitely

generated and N (LilN) = 0, there exists a finite subset J € I, such
iel

that N = n Li. Define ¢ : M — & (MILi) by ¢(m) = 2 (m + Li)°
ieJ ieJ ieJ

Clearly Ker ¢ = N. Whence A can be embedded in a finite product of
simple modules.

(vi) — (i): Let S be a simple module and ¥ : M — E(S) be a non—-zero
R-homomorphism. Since S is simple, we get 8 € (M) € E(S). Thus Y(M)
is a cofinitely generated homomorphic image of M and hence semisimple
by (vi). Since Soc(Y(M)) = 8, it follows that T(M) = S and hence $ is

M—-injective (Proposition 3.21 of [25]).

(vii) — (viii): Clear, since every Artinian module is cofinitely
generated.

(viii) — (i): Clear, since every simple module is Artinian.
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(iv) — (vii): Let N be a cofinitely generated module and write

E(N) = E(Sl) e -8 E(Sk) for a finite set of simple modules Si’
1 £ i< k. Let L be a non—zero submodule of M and f : L. — N a non—zero
R~-homomorphism. We want to show that f can be extended to an

R-homomorphism g : M — N. Consider the following diagram:

0 y 1L inck M
/
f /
- /
N g
/
inc.| /

¥
E(N)

Since E(N) is injective, there exists an R-homomorphism g : M — E(N)
such that g(x) = f(x), ¥x € L. For each i, 1 £ i £ n, denote by

o E(N) —» E(Si) the projection map, and consider the R-homomorphisms

L gt M E(Si). By (i), since every Si is M—injective, we get

1ri°g(M)SSi, 1<i=<n.
Whence g(M) € S1 B 0 @ Sn. But since Soc(N) = Soc(E(N))
= S1 (i BICIC: Sn we get g(M) € Soc(N) € N. Thus themap g : M — N is
the required map. o

A result of K.R. Fuller asserts that the class of V-modules is
closed under submodules, homomorphic images and arbitrary direct sums.
We include a proof here.

Proposition 1.2 (K.R. Fuller [21]): (i) Submodules and homomorphic

images of V-modules are also V-modules.
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(ii) @ Mi is a V-module if and only if each Mi
iel

is a V-module.
Proof: (i) Let M be a V-module and N a non—zero submodule of M. ILet
S be a simple R-module and f a non-zero R-homomorphism from a submodule
K of N into §. We want to show f can be extended to an R-homomorphism
g Nl—» S. Since M is a V-module, the map f can be extended to an
R-homomorphism f: M— 8. Thus the map g = (FIN) : N — S is the
required map.

Now, let M -£4 A — 0 be an exact sequence of non—zero R-modules.
We want to show that A is a V-module. Let S be a simple R-module and
f : A — E(S) be a non—zero R-homomorphism. We must show f(A) & S.
But since M is a V-module, the map f © ¢ : M — E(8) has its image in
S. Thus f(e(M)) = f(A) € 8.
(ii) Suppose M = ‘ZI Mi is a V-module. By (i), since every submodule

i

of a V-module is also a V-module, it follows that each Mi is a
V-module. Conversely, suppose that each Mi is a V-module. Let S be a
simple module and ¥ : M — E(S) be a non-zero R-homomorphism. For each
i € I, denote by Ti to the restriction of the map 7 to Mi' Then
Ti(Mi) €8S, Vi€ I, since 8§ is Mi—injective. Therefore T(M) € S, which

implies that S is M-injective and hence M is a V-module. o

Proposition 1.3: For any ring R the following statements are

equivalent:
(1) R is a left V-ring.
(i1) Every left R-module is a V—module.

(iii) Every cyclic left R—module is a V-module.
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Proof: (i) — (ii). ILet M € R-mod and S any simple R-module. Then S

is injective and hence M-injective.

(ii) — (4ii) and (iii) — (i) are trivial. o

Definition 1.4: Let N be a submodule of a module M. A relative

complement for N in M is any submodule L of M which is maximal with
respect to the property NN L = 0. Such submodules L always exist, by
virtue of Zorn’s lemma. And it is easy to see that N ® L is essentia;
in M.

Proposition 1.5: (cf. [58, Theorem 3]): The following conditions are

equivalent:
(1) M is a V-module.
(ii) If 1 is either a proper essential submodule or a relative

complement of a simple submodule of M, then L = L*. (Here
L* = intersection of maximal submodules of M containing L).
(iii) If K is a maximal submodule of a proper essential submodule L

of M, then K* # L¥.

Proof: (i) — (ii): Clear, since in a V-module every proper submodule

is an intersection of maximal submodules.

(ii) — (iii): Let L be an essential submodule of M and K a maximal

submodule of L. If K were essential in I, then K is essential in M and
hence K = K* and L = L* which implies that K* # L*. Otherwise, suppose
that KN N = 0 for some non—zero submodule N of L. Since K is a
maximal submodule of L, L = K ® N and N is a simple submodule of M.

Let T be a submodule of M, maximal with respect to K€ Tand TN N = 0.

Since T is a relative complement of the simple module N, it follows
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X

that T = T'. Thus there exists a maximal submodule Q of M such that

T<Qbut L ¢ Ql(otherwise if L € T* then N L € T* =T, a
contradiction with T N N = 0). Therefore K £ Q and L ¢ Q, and hence
g* & ¥,

(iii) — (i): Let S be a simple module, N a proper essential submodule

of Mand f : N — S a non-zero homomorphism. If K = Ker(f) then K is a
maximal submodule of N and so K* # N*. Choose a maximal submodule T of
Mwith K€ T and N ¢ T. The maximality of T in M and of K in N implies
that M =T+ Nand TN N = K; hence % = % ® % . Thus the map f can be

extended to amap g : M — S in the obvious way. This proves that S is

M-injective, Thus M is a V-module. 0

Corollary 1.6 (cf. [58, Corollary 3.11) If M is a regular module,

then M is a V-module if and only if given any essential submodule L of
M either L is finitely generated or K = K* for every maximal submodule
K of L.

Proof: ‘Monly if" part: Obvious.

"If" part: Let S be a simple module, N an essential submodule of M and

f : N— S a non-zero homomorphism. If N were finitely generated then
from the regularity of M and by [60, Theorem 1.6] it follows that
M=N®&T for some submodule T of M. Thus f can be extended to a
homomorphism F:M— 8. Otherwise, suépose that K = K*, where

K = Ker(f). Then there is a maximal submodule I of M such that K& L
and N ¢ L, from which Qe infer that the map f may be extended to a

homomorphism F:M— s, o



18

Let us recall the definitions of Co—Noetherian and Co—Artinian
modules as they were introduced by A.K. Gupta and K. Varadarajan [25].

Definition 1.7: (i) Let ga(R) (resp. gn(R)) denote the class of all

Artinian (resp. Noetherian) R-modules. For any R-module M, we set
oa(M) =n{N: Nc M, M|N e ga(R)}
cn(M) =n{N: NcM, M|N € gn(R)}.

It is clear that both o, and o are radicals and that oa(M) < J(M) and

on(M) JM).

n

(ii) A left R-module M is said to be Co-Noetherian (Co—Artinian) if

ca(N) 0 (resp. on(N) = 0) for any factor module N of M(I) (direct sum
of I-copies of M), where I is any set.

Proposition 1.8: Every V-module is Co—Noetherain and Co—Artinian.

Proof: TImmediate consequence of Proposition 1.1, Proposition 1.2 énd
the observations c, < J and o £ J. o

A result, originally due to Roger Ware [50, Proposition 2.5]
asserts that if R is a commutative ring and S is a simple R-module then
S is flat if and only if S is injective. In particular a commutative
ring R is a V-ring if and only if every simple R-module is flat. Our
aim is to extend this result to modules.

Following P.M. Cohn, a submodule K of a left R-module M is called
pure if the sequence 0 — E @R K—E @R M is exact for every right
R-module E. Dually, we have the following:

Definition 1.9 [2]: Let U be a right R—module and M be a left
R;module. U is said to be flat relative to M (or M—flat) if for every

submodule K of M, the sequence 0 — U ®R K— 1T ®R M is exact.
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The following is an immediate consequence of (i) «» (vi) of

Proposition 0.1.

Proposition 1.10: If M is a projective left R-module, then M is a

regular module if and only if every right R-module is M-flat.
Lemma 1.11: ZLet RM be a projective module and RU any left R-module.
Then the following are equivalent:
(i) U is M-injective.
(ii) Exté(MlN,U) = 0 for every submodule N of M."
Proof: If 0 —+ N -— M — M|N — 0 is an exact sequence of R-modules,
then there is a long exact sequence with natural connecting
homomorphisms:
0 —» Homy (M|N,U) — Hom,(M,0) — Hom,(N,U) — Ext:(M|N,U)
— Exté(M,U) — Exté(N,U)-—+ ce

Since M is projective, Exté(M,U) = 0, and so U is M~injective if and
only if Exté(MIN,U) = 0, for every submodule N of M. u|
Lemma 1.12: TLet MR be a flat right R-module and RU a left R-module.
Then the following are equivalent:
(1) U is M-flat.
(ii) Tor?(MlN,U) = 0, for every submodule N of M.
Proof: Given an exact sequence 0 — N ~— M — M|N — 0 there exists a
long exact sequence:

oo Tor(M,U) — Torfll(Mm,U) S NBU MU — MNB®U— 0 .
Since M is flat, Tor?(M,U) = 0, and so U is M-flat if and only if

Tor?(MIN,U) = 0 for every submodule N of M. o
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The next proposition is an extension of [50, Lemma 2.6] to modules
and the proof is patterned after that of Lemma 2.6 of [50].

Proposition 1.13: Let R be a commutative ring, M a projective R-module

and S a simple R-module. Then S is M-flat if and only if S is
M-injective.
Proof: 1Let Si’ i € I, be a set of representatives of the distinct

isomorphism classes of simple R—modules and set E = E(:I Si)’ It is
i
easy to see that for any R-module I, HomR(L,E) = 0 if and only if
L = 0. Now if S is any simple submodule of E then S N (.21 Si) #0
i
since ‘$I S. is an eséential submodule of E. Since 8 is simple and
ie
hence cyclic, there exist finitely many indices il""’in in I with

ScsS. 8 -8 Si . Let 0 # xe€S8S. Then S = Rx and

11 n
X=X, + ¢ +x, with x. € 8. and not all x. zero. ILet
i i i i i
1 n u u u
A€ Ann_(x). Then Ax, + *++ + Ax, = 0. Hence
R i i
1 n
A, =—-2 Ax, €8, N(2Z 8, ) =0. This means Ax. = 0 for
i . i, i . i, i
U J#u J u Jfu 7 U

1l < u<n. Since S is simple, AnnR(x) is a maximal ideal in R. Hence
either Anninu = R or AnnR(x). Since Sil,...,Sin are mutually

non—~isomorphic, we get AnnR(x) = AnnR(xi ) for some k and X, = 0 for
k U
# # k., Thus x = x, and hence 8 = 8,
i i
k k.
Now let S be any simple R-module and let Si be the copy of 8 in E.
k

Then HomR(S,Si ) € HomR(S,E) and if 0 # £ HomR(S,E) then
k : .
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S = Im(f) € E, and so by the above we must have Im(f) = Si . Therefore
k

HomR(S,Sik) = HomR(S,E). Thus we have

HomR(S,E) HomR(S,Si ) = HomR(S,S) and since R is commutative

k

HomR(S,S) = S as R—modules. And since E is injective we have an
isomorphism:
1 ~ rr R
ExtR(X, HomR(S,E)) = HomR(Tori(X,S),E),

for any R-module X. Whence for any submodule N of M we have:

114

1 1
ExtR(MIN,S) ExtR(MlN, HomR(S,E))

14

R
HomR(Torl(MIN, S),E).
Now the result follows from Lemma 1.11, Lemma 1.12 and the fact that E

is a cogenerator for R-mod. 2]

Corollary 1.14 (cf. [50, Lemma 2.6]). Suppose R is a commutative ring

and S is a simple R-module. Then S is flat if and only if S is
injective. o

Proposition 1.15: Let R be a commutative ring and M a projective

R-module. Then the following are equivalent:

(i) M is a V-module.

(ii) M is a regular module.

(iii) Every simple R-module is M—flat.

(iv) E;ery simple homomorphic image of M is injective.
(v) Every simple homomorphic image of M is flat.

(vi) Every simple homomorphic image of M is M-injective.
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(vii) Every simple homomorphic image of M is M-flat.

(The equivalence between (i), (ii) and (vi) has been given by
Y. Hirano in [28, Theorem 4.8] using different techniques.)
Proof: (i) «» (iii): By Proposition 1.13.

(iv) & (v): By Corollary 1.14.

(vi) &+ (vii): By Proposition 1.13.

(ii) — (i): If M is a regular module, then by Proposition 1.10, every
R-module is M-flat, and by Proposition 1.13, it follows that every
simple R-module is M-injective. Therefore M is a V-module.

(1ii) — (vii): Obvious.

(iv) e (ii): By [35, Theorem 4].

(vi) — (iv): By [28, Theorem 4.8]. o




CHAPTER 2.

NOETHERIAN V-MODULES

In this chapter we study modules with the property that arbitrary
direct sums of simple left R-modules are M-injective. We call them
DSI-modules. We prove that a finitely generated left R-module M is a
DSI-module if and only if M is a Noetherian V-module, which extends a
similar result for rings by B. Sarath and K. Varadarajan in [40] and
K.A. Byrd in [8]. We also prove that a finitely generated left
R-module M is a DSI-module if and only if every submodule N of M has a
minimal generating set and if L is any homomorphic image of M then
every minimal generating sét of any submodule of I can be extended to a
minimal generating set for L, which extends a similar result for rings

by B. Sarath in [39].

Definition 2.1 (B. Sarath and K. Varadarajan [40]). A ring R is
called a left DSI-ring if every direct sum of simple left R-modules is
injective. Such rings were also called "SSI-rings" by K.A. Byrd in

[8]. It was proved in [8] and [40] that for a ring R the Following

statements are equivalent:
(i) R is a left Noetherian left V-ring.
(ii) Every semisimple left R-module is injective.

In the next proposition we extend this result to modules.

23
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Proposition 2.2: The following conditions are equivalent for a

finitely generated R-module M.

(1) M is a Noetherian V-module.
(ii) Every semisimple left R-module is M-injective.
(iii) Every countably generated semisimple left R-module is

M-injective.

Proof: (i) — (ii): Since M is Noetherian, it follows from

[4, Theorem 2.5] that, any direct sum of M-injective modules is
M-injective. And since M is a V-module it follows from Proposition
1.1, that every semisimple left R-module is M-injective.

(ii1) — (4iii): Obvious.

(iii) — (i): 1Inasmuch as any simple module is cyclic and semisimple

it follows from Proposition 1.1, that M is a V-module. Now, to see

that M is Noetherian, let N1 < N2 c € Nk g e be an ascending

+
chain of distinct submodules of M. Since M is a. V-module, by
Proposition 1.1 there are maximal submodules Lk(k = 1,2,...) such that

Nk ¢ Lk and Nk+1 ¢ Lk. Let o M — MILk denotes the quotient map,

o]
k=1,2,... . SetN= U Nk and define the homomorphism
k=1
0 <0
f!: N— & MlLk, by f(x) = 2 wk(x), (note that wk(x) = 0 for all

k=1 k=1

o

but a finite number of the k’s). Since @ (MILk) is M-injective,
k=1

-]
there exists an R-homomorphism g : M — ( & MILk) extending f. But
k=1

S
since M is finitely generated, g(M) € @ MlLk, for some positive

integer S. Whence the above chain of submodules is finite. o
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Let us call a module RM a DSI-module if every semisimple R-module
is M—injective.

With the same argument used in the proof of Proposition 1.2 one
obtains the following:

Proposition 2.3: (i) Submodules and homomorphic images of DSI-modules

are also DSI-modules.
(ii) @ Mi is a DSI-module if and only if every Mi is a DSI-module.
iel
The next proposition can easily be verified.

Proposition 2.4: For any ring R the following are equivalent:

(1) R is a left DSI-ring.

(ii) Every left R-module is a DSI-module.

(iii) Every cyclic left R-module is a DSI-module.

Lemma 2.5: A module M is finitely generated semisimple if and only if
M is finite dimensional and every cyclic submodule of M is a direct
summand of M.

Proof: (cf. [22, Proposition 1.22]): Clearly finitely generated
semisimple modules are finite dimensional. Conversely, when M is
finite dimensional it is a finite direct sum of indecomposable modﬁles,
hence it suffices to assume that M is indecomposable with all cyclic
submodules being direct summands, and then show that M is simple. But
this is clear, since under these hypotheses anyfkyclic submodule of M
must be 0 or M. |

Proposition 2.6: Suppose that R is a commutative ring and M is a

finitely generated projective R-module. Then M is a DSI-module if and

only if M is a finite direct sum of simple R—modules.



26

Proof: If M is a DSI-module, then by Proposition 2.2, M is a
Noetherian V-module and by Proposition 1.15, M is a Noetherian regular
module. Now by Proposition 0.1 and Lemma 2.5, M is a:finite direct sum
of simple modules. o

B. Sarath [39, Theorem 1.6] proved that a ring R is a left
Noetherian left V-ring if and only if given any minimal generating set
of a submodule N of any module M, it can be extended to a minimal
generating set for M. In the next proposition we shall extend this

result for modules.

Definition 2.7: Let M be a left R—module and B a subset of M. We say
B is "irredundant" if and only if A S B, <A> = <B> » A =B. If B is
not irredundant we call it redundant. A subset B of M will be called a
"minimal generating set" for M if B is irredundant and M = <B)>.

Lemma 2.8: (i) If B € M is irredundant and A € B, then A is
irredundant.

(i1) 1If {Ba}aeJ is a family of irredundant subsets of M totally

ordered by inclusion then U B _ is irredundant.
asJ

(iii) B is redundant if and only if for some subset A € B,

<A> = <A\{a}>, for some a € A,

Lemma 2.9: Let B be an irredundant gubset of 1L, {Lb}beB a collection
of maximal submodules of L satisfying b ¢ I, and <B\{b}> < L. Let

I =<B>, N= n Lb and j ¢! L|N — I LlLb the natural embedding.
beB beB

Then j maps (I+N)|N isomorphically onto ® LlLb.
beB
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The above two lemmas are due to B. Sarath and the proofs are

straightforward, see [39, Remark 1.2 and Lemma 1.3].

Proposition 2.10: The following conditions are equivalent for a
finitely generated left R-module M.

(1) M is a DSI-module.

(ii) If K is a submodule of M and L is a homomorphic image of K then
given any irredundant generating set of any submodule N of L, it can be
extended to an irredundant generating set for L.

(iii) Every submodule N of M has a minimal generating set, and if L is
any homomorphic image of M then every minimal generating set of any
submodule of L can be extended to a minimal generating set for L.

Proof: (i) — (ii): Adapted from [39, Theorem 2.8]. ILet C be an

irredundant generating set for a submodule N of L, where L is a
homomorphic image of a submodule K of M. Let E = {B : C € B € L, with
B irredundant}. E is non—empty, and when partially ordered by
inclusion, by Lemma 2.8 (ii) and Zorn’s lemma, has a maximal element
say B. Suppose <B> # L. Since L is a V-module and B is irredundant,
there exist maximal submodules {Lb}beB of L with b ¢ Lb and

<B\{b}> & Lb’ Let I,N and j be as in Lemma 2.9. We now consider two
cases!

Case 1: I > N.

By Lemma 2.9, (I+N)|N is isomorphic to @ (LlLb) whence
beB

L-injective, since L is a Noetherian V-module and each LILb is simple.

Therefore (I+N|N) = I|N is a direct summand of L|N. Write
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LIN = (I|N) & (I'|N) for some non—zero submodule I' of L with N < I
(note, I = <B> ¢.L). Then I N I' = N. Let ue I'\N. Now B' = B U {u}
is irredundant, since u ¢ <B> = I and <B'\{b}> NI < (B\{b}> +I) NI
€ <B\{b}> + N & Lb and hence b ¢ <B'\{b}> for all b € B. This
contradicts the maximality of B, and hence it follows that <B> = L.
Case 2: I ®» N.

Pick ue N, u¢ I. Then B' = B U {u} is irredundant, since u ¢ <8> = I
and b ¢ <B'\{b}> € <B\{b}> +N & Lb’ Vb € B. This contradicts the
maximality of B.

(ii) — (iii): Inasmuch as the zero submodule has a minimal generating

set, namely {0}, we infer from the hypothesis that every submodule N of
M has a minimal generating set. The rest of the assertion is clear.

(iii) — (i): We first show that M is a V-module. We do this by

proving that every cofinitely generated homomorphic image of M is a
finite direct sum of simple modules and hence by Proposition 1.1, M is
a V-module. Let L be a cofinitely generated Homomorphic image of M.
Then 8 = Soc(L) is finitely generated and essential in L. Write

S = S1 ® -8B Sn’ with each Si simple. We must show L = S. Suppose
L#S. Let 0 # X

generating set of S. S is a submodule of L and L is a quotient of M,

€ Sk’ 1<k<n. Then C = {xi}l?=1 is an irredundant

1

hence there exists an irredundant generating set D of L with D 2 ¢ (if

D=C, then L = S). Let x € D\C. Since x # 0 and S is essential in I,

n
there exist A,Ai €R, 1 i2f2n, with0# Ax= 2 A.x.. Hence
i=1

Aixi # 0 for some i, 1 £ i < n. Without loss of generality we may
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assume that Anxn # 0., Since Sn is simple, there exists u € R with

n-1
uAnxn =X, 80 u(Ax - iil Aixi) = uAnxn =X . Then
X € <x1,...,xn_1,x>, but this means that {xl,...,xn,x} is redundant, a

contradiction with Lemma 2.8 (i) and the irredundancy of D.

Now to see that M is Noetherian, we will prove that every submodule
N of M is finitely generated. But if N is any submodule of M, then by
hypotheses N has a minimal generating set say C. Extend ¢ to a minimal
generating set D for M. Inasmuch as M is finitely generated and D is
irredundant, we infer that D must be finite. Thus C is finite and N is
finitely generated. u|

Corollary 2.11: For any ring R the following conditions are

equivalent:

(i) R is a left Noetherian left V-ring.

(ii) If I 2 J are left ideals of R, then every minimal generating set
of any R—submodule.of the left R-module I|J can be’extended to a
minimal generating set for I]J.

(iii) Every left ideal I of R has a minimal generating set and given
any minimal generating set of a submodule N of any cyclic R-module M,
it can be extended to a minimal generating set for M.

(iv) Given any minimal generating set of a submodule N of any R-module

M, it can be extended to a minimal generating set for M. o



CHAPTER 3.

GENERALIZED V-MODULES

According to V.S. Ramamurthi and K.M. Rangaswamy [36], a ring R is
called a Generalized left V-ring (left GV-ring) if every simple
singular left R-module is injective. GV-rings were also studied by
J.8. Alin and E.P. Armendariz in [l], H. Tominaga in [46], Yue Chi Ming
in [57] and many other authors. The following theorem characterizes
GV-rings and is due to Ramamurthi and Rangaswamy [36].

Theorem 3.1: For any ring R the following conditions are equivalent:
(1) Z(R) N J(R) = 0, and every proper essential left ideal of R is
an intersection of maximal left ideals.

(ii) R is a left GV-ring.

(iii) The module J(M) vanishes for any left R-module M with Z(M)
essential in M.

(iv) If M is any left R-module, then every proper essential
submodule of M is an intefsection of maximal submodules of M and

ZM) N J(M) = 0.

In [48], K. Varadarajan has proved that the condition Z(M) N J(M) = 0
for all M € R-mod, automatically implies that any proper essential
submodule of a module M is an intersection of maximal submodules of M.

In [5], G. Baccella has given an alternative description of
GV-rings which involves the socle. It was proved in [5] that for a

ring R the following statements are equivalent:

30
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(i) R is a left GV-ring.
(ii) Soc(RR) n Z(RR) = 0, and every proper essential left ideal of
R is an intersection of maximal left ideals.
(iii) Soc(RR) is projective and RlSoc(RR) is a left V-ring.

In [28], GV-modules were introduced and studied. Following
Y. Hirano [28], a module M is called a GV-module if every simple
singular left R-module is M-injective. The present chapter is intended
to give further contributions to the study of GV-modules. We also
study modules with the property that proper essential submodules are
intersections of maximal submodules, we call them weakly GV-modules
(WGV-modules). We prove that a module M is a.WGV—module if and only if
M|Soc(M) is a V-module, then using this result we show that the class
of weakly GV-modules is closed under taking submodules, factor modules
and arbitrary direct sums.

We now begin with the following proposition.

Proposition 3.2: The following conditions are equivalent.

(1) Every simple singular left R-module is M-injective.

(ii) ZM) N JM) = 0 and J(M[N) = 0 for any essential submodule N
of M.

(iii) Every simple singular submodule of M is a direct summand of M

and J(M|N) = 0 for any essential submodule N of M.
(iv) Every singular cofinitely generated R-module is M—injective.

(v) Every singular Artinian module is M-injective.
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Proof: (The equivalence between (i), (ii) and (iii) is due to Y.
Hirano [28, Theorem 3.15].)

(i) — (ii): Let N be an essential submodule of M. Want to show that
J(M|N) = 0. Suppose not, and let X = x + N be a non-zero element of
J(MIN). Let ¥ = {K € M: K is a submodule of M with x ¢ K and N ¢ K}.

¥ is non—empty and when partially ordered by inclusion, it is easy to
see that every totally ordered subset of ¥ has an upper bound, and so
by Zorn’s lemma ¥ has a maximal element T. Clearly T is essential in M
withx ¢ T. Tetx=x+Te M|T. Then Rx is a simple singular
essential submodule of M|T. By assumption Rx is M~injective and by [2,
Proposition 16.13, p.188], it follows that Rx is M|T-injective. Hence
Rx is a direct summand of M|T. But since Rx is essential in M|T, it
follows that Rx = M|T which implies that T is a maximal submodule of M
with x ¢ T and N € T. This is a contradiction to the fact that

X e J(M|N) = the intersection of all maximal submodules of M containing
N.

Now suppose on the contrary, Z(M) N J(M) contains a non—zero
element x. Then by Zorn’s lemma, there is a submodule Y of M which is
maximal among the submodules X of M with x ¢ X. Write x = x + Y € M|Y.
Then Rx is a simple singular submodule of M|Y, and so the map
"t Rx — Rx can be extended to an R-homomorphism g : M — Rx.

Therefore K = Ker(g) is a maximal submodule of M with x ¢ K, a

contradiction with the fact that x € J(M).
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(ii) — (iii): Let 8 be a simple singular submodule of M. -Since

ZM) N J(M) = 0, there is a maximal submodule L of M such that
SNL=0. Then clearly M =S & L.

(iii) — (i): Let S be a simple singular module, N an essential

submodule of M and f : N — S any non-zero R-homomorphism. We want to
show that f can be extended to amap g : M — 8. ILet K = Ker(f). If K
is essential in N then K is essential in M and so there exists a
maximal submodule L‘of Mwith K€ L and N ¢ L. Since K is a maximal
submodule of N it follows that K = NN L. And since N¢ L and L is a
maximal submodule of M it follows that M = N + L and so

% = E—%—E = % ® % . Now if T : N|K — S, is the map induced by f in
the obvious way, then clearly ¥ can be extended to an R-homomorphism

E : M|JIK — 8. And if we define g : M — S, by g(m) = E(m+K) for every
m € M, then clearly g is an extension of f.

Now suppose K1 I = 0 for some non-zero submodule I of N. Thus
I(= 8) is a simple singular submodule of M, and by hypothesis we see
that M = I @ L for some submodule L of M. Then f can be extended to an
R-homomorphism of M to S.
i) — (iv): Let N be a singular cofinitely generated left R-module.

"Write N € E(N) = E(Sl) I E(Sn), for a finite family of simple
R-modules Sj’ 1< < n. Since Soc(N) = Soc(E(N)) = S1 B - B Sn € N,
it follows from the singularity of N that each Si is a simple singular

module and hence M-injective. Let f : K — N be a non—zero

R-homomorphism, where K # 0 is a submodule of M, and consider the
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following diagram:

(N)

Since E(N) is injective, there exists a map g : M — E(N) such that
g(x) = f(x), Vx € K. If w o E(N) — E(Si) denotes the projection map,
1l £1i<n, then ™ °© gr M — E(Si) is an R-homomorphism, and so

o ° g(M) <€ Si by the M-injectivity of Si.' Thus

g(M) € Sl 6 -8 Sn € N and the map g is the required map.

(iv) — (v): Obvious, since every Artinian module is cofinitely
generated.,

v) — (i): Clear, since every simple module is Artinian. o
Remarks 3.3: From Proposition 3.2 (ii), it follows that if M is a
GV-module then J(M) € Soc(M). This is because Soc(M) is the
intersection of all essential submodules of Mdand eVery proper
essential submodule of M is an intersection of maximal submodules. And
since J(M) N Z(M) = 0, it follows that J(M) is a direct sum of simple
projective modules.

With the same argument used in the proof of Proposition 1.2 one can

easily prove the following:

Proposition 3.4: (i) Submodules and homomorphic images of GV-modules

are also GV-modules.
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(i1) o Mi is a GV-module if and only if every Mi is a GV-module. 0O
iel

Proposition 3.5: For any ring R the following statements are

equivalent:

(1) R is a left GV-ring.

(ii) Every left R-module is a GV-module.

(iid) Every cyclic left R—module is a GV-module. o

The next proposition is an extension of [49, Theorem 4.2(2)] to

modules.

Proposition 3.6: For any module RM the following are equivalent:

(1) M is a GV-module.

(ii) Z{L) N J(L) = 0, for every homomorphic image L of M.

Proof: (i) — (di): If M is a GV-module then by Proposition 3.3(112,
every homomorphic image L of M is a GV-module. Hence Z(L) N J(L) = O.
(ii) — (i): Let N be a proper essential submodule of M. Since M|N is
singular, it follows that Z(M|N) = M|N and so by assumption J(M|N) = 0.
Whence by Proposition 3.2, M is a GV-module. ]

In {21, Theorem 3.1], K.R. Fuller proved that ; module M is a
V-module if and only if every cofinitely generated factor module of M
is a finite direct sum of simple modules (see Proposition 1.1(vi)).

For GV-modules we have the following:

Proposition 3.7: Suppose M is a GV-module. Then every singular

cofinitely generated factor module of M is a finite direct sum of

simple modules.
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Proof: Let M —§+ A — 0 be an exact sequence of R-modules with A

cofinitely generated and Z(A) = A. By Proposition 3.3, A is a

GV-module and hence Z(A) N J(A) = 0. But since Z(A) = A, J(A) = 0. If

N = Ker(8), then N is an intersection of maximal submodules of M.

Write N = ‘21 Li’ for some set I, where each Li is a maximal submodule
i

of M. Now, since M|N is cofinitely generated and N (Li[N) = 0, there

iel
exists a finite subset J € I, such that N = N L., and hence A can be
ieJ
embedded in a finite direct sum of simple modules. o

We do not know whether the converse to Proposition 3.7 holds.
However, for non—singular rings we have the following:

Proposition 3.8: Suppose R is a left non-singular ring. Then the

following conditions are equivalent:

(i) RM is a GV-module.

(ii) Every singular cofinitely generated homomorphic image of M is
a finite direct sum of simple modules.

Proof: (i) — (ii): Follows from Proposition 3.7.

(ii) — (i): Let S be a simple singular module and f : M — E(S) be a
non—-zero R-homomorphism. Since S is simple, we get S & f(M) € E(S).
Since R is non—singular, f(M) is singular. Whence f(M) is a cofinitely
generated singular homomorphic image of M aﬁd so by (ii), f(M) is
semisimple. But since Soc(E(S)) = 8, f(M) = 8; and § is M-injective. O
As immediate corollaries to Proposition 3.2 and Proposition 3.8, we

have the following.
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Corollary 3.9: For any ring R the following statements are equivalent:

(i) R is a left GV-ring.
(ii) Every singular cofinitely generated R-module is injective.
(iii) Every singular Artinian module is injective.

Corollary 3.108: If R is a left non—singular ring then R is a left
GV-ring if and only if every singular cofinitely generated R-module is
a finite direct sum of simple modules.

Proof: Let L be a singular cofinitely generated module.

Write L € E(L) = E(Sl) -8 E(Sn), with each Si being simple. If
every simple singular module is injective then Si = E(Si), for each i,
and hence L = E(L) = Sl ® --- 8 Sn'

Conversely, let S be a simple singular module. Since R is
non—singular, E(S) is a singular cofinitely generated module and hence
semisimple by assumption. Thus S = E(S) and S is injective. Therefore
R is a left GV-ring. 5|

As we have mentioned at the beginning of this chapter, G. Baccella [5],
has given an alternative description of GV-rings in terms of the socle.
For locally projective modules we have the following proposition which

corresponds to [5, Theorem 2.2].

Proposition 3.11: If M is a locally projective module. Then the

following are equivalent:
(1) M is a GV-module.
(ii) Soc(M) N Z(M) = 0 and every proper essential submodule of M is

an intersection of maximal submodules.
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Proof: (i) — (ii): We claim that every simple submodule of M is

projective. For if S were a simple singular submodule of M then by
Proposition 3.2, S is direct summand of M. But since M is locally
projective then clearly S is projective. Contradicting the singular
nature of S. Whence Soc(M) is projective and so Soc(M) N Z(M) = 0.

The rest of the assertion is clear.

(ii) — (i): Note that Soc(M) is the intersection of all the essential
submodules of M. And since every proper essential submodule of M is an
intersection of maximal submodules, it follows that J(M) £ Soc(M), and
hence J(M) N Z(M) = 0, and by Proposition 3.2, M is a GV-module. 0O
Remark 3.12: If M is a locally projective GV-module then Soc(M) is
projective.

It was proved in [36, Pro§osition 3.7] that a ring R is left V-ring
if and only if R is a left GV-ring and every minimal left ideal of R is
an absolute summand of R. In the next proposition we extend this
result to modules.

Definition 3.13: Let M be a left R—module. A submodule L of M will be

called an absolute summand if for any submodule T of M, such that T is
maximal with respect to LN T = 0, we have L. 8 T = M.

Proposition 3.14: The following conditions are equivalent:

(1) M is a V-module.

(i) M is a GV-module, and every simple submodule of M is an

absolute summand.
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Proof: (i) — (di): Let M be a V-module and let S be a simple

submodule of M. Let T be a submodule of M maximal with respect to
SNT=0. IfA=8S®Tand«w: A— S denotes the projection map,
then n can be extended to a map 7 :M— §. Since %[S =T,

Ker(%) NS =20, and since »(T) = 0, T ¢ Ker(%). Thus by the choice of
T it follows that T = Ker(%). Whence T is a maximal submodule of M and
therefore M = T & S.

(ii) — (i): Let M be a GV-module and assume that every simple
submodule of M is an absolute summand. Let S be a simple module. If S
is singular then it is M-injective. Suppose § is a simple projective
module and f : N — S a non-zero R-homomorphism, where N is a submodule
of M. Let K = Ker(f). By the projectivity of S, the following exact
sequence 0 - K — N — S —» 0 splits., Write N = K ® L, for some
submodule L(= N|K = S) of N. Inasmuch as L is a simple submodule of M
we infer that if T is a submodule of M containing K and maximal with
respect to TN L =0, then L® T = M.

Now if g : M — L denotes the projection map then the map
fog:M-— S extends f, and hence every simple module is M—injective.
By Proposition 1.1, M is a V-module. |

The following proposition is an extension of [58, Theorem 3'] to

modules.

Proposition 3.15: The following conditions on a left R-module M are

equivalent:

(i) M is a GV-module.
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(ii) If K is a submodule of any essential submodule L of M such that
LIK is simple singular then K* # L*.

Proof: (i) — (ii): Let L be an essential submodule of M and K be a

submodule of L such that L|K is simple singular. If K is essential in
L, then K is essential in M and hence K = K* and I = L* which implies
that K* # L* (since K is a maximal submodule of L). Otherwise, let
KN N =0 for some non—zero submodule N of L. Since K is a maximal
submodule of L, L = K ® N, and N is a simple singular submodule of M.
Let 7 ¢ L — N denotes the projection map. Since M is a GV-module, 7
can be extended to amap g : M — N. Inasmuch as g(x) = %, Vx € N, we

infer that the submodule N is a direct summand of M, in fact

M =N® Ker(g). Now, since g(k) = n(k) = 0 Vk € K, it follows that

K

In

Ker(g). Let T = Ker(g), then T is a maximal submodule of M with
KSTandL¢&T. Thus KX # L¥.

(ii) — (i)t Let S be a simple singular R-module, N an essential
submodule of M and f : N — S a non-zero R-homomorphism. If

K = Ker(f), then N|K is a simple singular module, and thus by
hypothesis N* # K*. Choose a maximal submodule L of M with K ¢ L and
N ¢ L. By the maximality of L, we have M = L + N, and since X is
maximal in N, it follows that K = L N N and so % = % 8 % . Thus the

map f can be extended to amap g : M — S in the obvious way. o

Proposition 3.16: Let R be a commutative ring and RM a projective

module. Then the following are equivalent:

(L) M is a regular module.
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(ii) M is a V-module.
(iii) M is a GV-module.

Proof: (i) «» (ii): By Proposition 1.15.

(ii) — (iii): Clear.

(iii) — (ii): Let S be a simple R-module. If S is singular then it

is'M-injective. If 8 is projective then it is M—flat and by
Proposition 1.13, S is M-injective. Thus every simple module is
M-injective and hence M is a V-module. o

The following proposition has been proved in [5, Proposition 2.1].
However we shall reprove it here because of the important role it plays
in what follows.

Proposition 3.17 (G. Baccella): For any ring R the following

conditions are equivalent:

(1) R|Soc_R is a left V-ring.

R
(ii) If M is a left R-module, then every essential submodule of M
is an intersection of maximal submodules.

Proof: (i) — (ii): Let M be a left R-module and I an essential

submodule of M. Since (SocRR)M € Soc(M), (SocRR)M € L. If RISchR is
a left V-ring, then Ll(SocRR)M, as left (RISocRR)—submodule of
MI(SocRR)M, is an intersection of maximal RI(SocRR)—submodules of
Ml(SocRR)M. This is enough to conclude that L is an intersection of
maximal submodules of M.

(ii) — (i): Let S be a simple left RI(SocRR)—module, let a be a left

ideal of R, with (SocRR) ¢ a and gl(SocRR) essential in RI(SocRR), and
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let £ :gl(SocRR) —+ S be a non—zero (RlSocRR)—homomorphism. We claim
that if # : a — gI(SocRR) is the canonical epimorphism and

b = Ker(fOn), then b is essential in a. If not, then by the definition
of b, there is a minimal left ideal n of R such that a =b ® n, in
contradiction with the fact that SocRR € b. Inasmuch as gl(SocRR) is
essential in RI(SocRR), a is essential in R and hence b is essential in

R. Since b # a, from (ii) it follows that there is a maximal left

ideal m of1R such that b S m and a ¢ m. b being maximal in a, we have

= R and hence E =@

b

that b = a N m. It follows that a +

=]
Rou BNE=]

1ol 1o

fOr : a — S is zero on b, hence induces f : — S. Then

o] s

a m
g —%— — 8 given by gl[—%—] = ¥, §|[4%—] = 0 extends f. If

,__R__ R
a: (SocRR) b

is the quotient map then g = g © f extends f, from

Rl(SocRR) to 8. This shows that 8 is injective as a left
RI(SocRR)—module. o

As a result of the preceding proposition, we are now in a position
to introduce the notion of weakly GV-modules.

Definition 3.18: A module RM is called a weakly GV-module (WGV-module)

if every proper essential submodule of M is an intérsection of maximal
submodules.

R is said to be a left WGV-ring if the left R—-module RR is a
WGV-module,

Clearly every GV-module is a WGV-module. The next result is an

extension of Proposition 3.17 to modules.



43

Proposition 3.19: For a module RM the following are equivalent.
(1) M is a WGV-module.
(ii) M|Soc(M) is a V-module.

Proof: (ii) — (i): If L is a proper essential submodule of M then

Soc(M) € L; whence L|Soc(M), as a submodule of M|Soc(M), is an
intersection of maximal submodules of M|Soc(M), and so L is an
intersection of maximal submodules of M.
(i) — (ii): Let S be a simple R-module. We want to show that S is
M|Soc(M)—-injective. Let N|Soc(M) be an essential submodule of M]Soc(M)
and f :N|Soc(M) — S be any non-zero R-homomorphism. If
Ker(f) = K]Soc(M), then K is a maximal submodule of N. We claim that K
is an essential submodule of N. For if not, then KN I = 0 for some
non—zero submodule I of N, Whence N = K ® I and I is a simple
submodule of M, i.e. I € Soc(M) € K — a clear contradiction.

Now, since K is a proper essential submodule of M and a maximal
submodule of N, by (i) there exists a maximal submodule L of M, such

that KS Land N¢ L. If : M — M|Soc(M) denotes the quotient map,

And if T : N|KE — S is the map induced by f

o
[=o
]
B
|
n
It
|
@
=i

in the obvious way, then clearly T can be extended to an R-homomorphism
g : MK — S. And if we define g : M — S, by g(m) = g(m + K) for
every m € M, then clearly g is an R-homomorphism which extends f. o

Corollary 3.20: For any ring R the following are equivalent:

(1) Rl(SocRR) is a left V-ring.

(ii) R is a left WGV-ring.
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(iii) Every left R—module is a WGV-module.
(iv) Every cyclic left R-module is a WGV-module. x|

In the next proposition we show that the class of WGV-modules is
closed under taking submodules, factor modules and arbitrary direct
sums — a fact that is hardly obvious from the definition of
WGV-modules.

Proposition 3.21: (i) Submodules and homomorphic images of

WGV-modules are also WGV-modules.
(ii) .21 Mi is a WGV-module if and only if each Mi is a WGV-module.
i

Proof: (i) Let M be a WGV-module and N be a submodule of M. Since
Soc(N) = N N Soc(M) it follows that N|[Soc(N) = N|(N N Soc(M))
= (N + Soc(M))|Soc(M) and since the latter is a submodule of the
V-module M|Soc(M), it follows from Proposition 1.2(i) that N|Soc(N) is
a V-module and by Proposition 3.19 that N is a WGV-module.

Now, let M ~£4 A — 0 be an exact sequence of left R-modules, with
M a WGV-module. Then A = M|N for some submodule N of M. If L|N is a
proper essential submodule of M|N, then L is a proper essential
submodule of M, and so L is an intersection of maximal submodules of M.
Whence L|N is an intersection of maximal submodules of M|N.
(ii) Let M = 'ZI Mi' If M is a weakly GV-module then by (i), each

i

Mi is a weakly GV-module. Conversely, suppose each Mi is a WGV-module.

Then M|{Soc(M) = ( ® Mi)ISoc( B Mi) = (9 Mi)l( B Soc Mi) and since
iel iel iel iel
the latter is isomorphic to @ (Mi|Soc Mi)’ it follows from Proposition
iel

1.2(ii) that M|Soc(M) is a V-module and hence M is a WGV-module. a
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In the next proposition we give a necessary and sufficient

condition for a WGV-module to be a V-module.

Proposition 3.22: For a module RM the following are equivalent:
(i) M is a V-module.

(ii) M is a WGV-module and every simple submodule of M is
M-injective. ‘

Proof: (i) — (ii): Clear.

(ii) — (i)t Let S be a simple R-module and let f : N — S be any
non—zero R-homomorphism where N is any proper essential submodule of M.
Let K = Ker(f). If K were not essential in N then KN I = 0 for some
non—zero submodule I of N. Then fiI : I = S, and I is a simple
submodule of M. By (ii), it follows that S is M-injective. If X is
" essential in N then K is a proper essential submodule of M, and since M
is a WGV-module, there is a maximal submodule L of M such that K € L
and N ¢ L. Hence M|K = (L]|K) ® (N|K) and the map f can be extended to
an R-homomorphism g : M — S. Whence every simple R-module is
M-injective. (n|

As we have pointed out before, G. Baccella has charactrized
GV-rings in terms of the socle. It was proven, among other things,

that a ring R is a left GV-ring if and only if Soc_R is projective and

R
Rl(SocRR) is a left V-ring — see [5, Theorem 2.2]. 1In the next
proposition we extend this result to modules and the proof follows from

Proposition 3.11 and Proposition 3.19.
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Proposition 3.23: For a locally projective R-module M the following

are equivalent:
(1) M is a GV-module.
(ii) Soc(M) is projective and M|Soc(M) is a V-module. 1]

Example 3.24: The following is an example of a WGV-module which is not

a GV-module.

et M=Z ,. Then J(Z ,) =Z,and Z(Z ,) = Z ,. Thus

PZ : PZ P P2 P2

J(Z ,)NZ(Z ,) =Z, # 0 and hence Z , is not a GV-module. But

27 2 P 2

P P . P
Soc(Z ,) =25, Z ,|S0c(Z ) = Z_, whence M is a WGV-module. In fact the

PZ P P2 P2 P

same example shows that the class of GV-modules is not closed under

extensions.



CHAPTER 4

P-V-MODULES AND P-V'-MODULES

A module M is said to be P-injective if for amny principal left
ideal I of R and f < HomR(I,M) there exists an element m € M such that
f(x) = xm, for all x € I. Equivaléntly M is P-injective if
Exté(RIxR,M) = 0 for each x € R. A fing R is defined to be a left
P-V-ring (resp. P-V'-ring) if every simple (resp. simple singular) left
R-module is P-injective. Such rings were introduced and studied by
H. Tominaga in [46]}; and by Yue Chi Ming in [55], [566], [567] and [58].

In [28], Y. Hirano has intfoduced the notion of P-V-modules. In
this chapter we introduce the notions of P-V'-modules, f-V-modules and
f-V'-modules. Known results for P-V-rings (resp. P-V'-ring) are
extended to modules. The connections between regular modules,
V-modules, -P-V-modules and P-V'-modules are given. We also introduce
the notion of P-M-flatness and prove that if RM is a projective module
over a commutative ring R, then M is a P-V-module if and only if M is a
P-V'-module if and only if every simple R-module is P—M—fiat; from
which we infer that M is a P-V'-module if and only if M is a V-module.

Definition 4.1 {28]: Let M and U be R-modules. U is said to be

P—M—injective if every R~homomorphism of any cyclic submodule of M into
U can be extended to an R-homomorphism of M into U. U is said to be

P-injective if it is P-R-injective.

47
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Definition 4.2: Let M and U be R-modules. U is said to be

f-M-injective if every R-homomorphism of any finitely generated
submodule of M into U can be extended to an R—homomorphism of M into U.
U is said to be f-injective if it is f-R-injective.

Definition 4.3 [28]: Let M be a left R-module. If every simple

R-module is P-M-injective, M is called a P-V-module.

Definition 4.4: A module RM is called a P-V'-module if every simple

singular R-module is P-M-injective.

Definition 4.5: A module M is called an f-~V-module (resp. f-V'-module)

if every simple (resp. simple singular) module is f-M-injective.

Proposition 4.6: The following conditions are equivalent for a locally

projective R—module M.

(1) Every cyclic submodule of M is projective.
(ii) Every quotient of a P-M-injective module is P-M-injective.
(iii) Every quotient of an injective module is P-M-injective.

Proof: (i) — (ii): Let K -£4 L — 0 be an exact sequence of left

R-modules with K being P-M-injective. Consider the following diagram:

inc.

o /;/N » M
g, lf

& [
K » L » 0

with exact rows and a cyclic submodule N of M. Since N is projective,
there exists amap g : N — K such that ¢ © g = f. Now since K is
P-M-injective, the map g can be extended to a map E ¢+ M — K. Now the

map € g : M— L is an extension of f.
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(ii) — (iii): Clear.

(iii) — (i): Let N be a cyclic submodule of M and consider the

following diagram:

0 » N » M
/
f/Elg
/
4
B > A » O

with exact rows and with B being injective. Since A is P-M-injective,
the map f can be extended to amap g : M — A. And since M is locally
projective there exists amap h : M — B such that (e © h)|N = g|N. If
we set h = h|N, then e © h = f. By [10, Proposition 5.1, Chap I], it
follows that N is projective. o

It was proved in [55] that a ring R is regular if and only if every
R-module is P-injective. The following proposition is an extension of
this result to modules.

Proposition 4.7 (cf [56,Lemma 2]): The following statements are

equivalent for any projective R—module M.

R
(1) ‘ M is a regular module.
(ii) Every R-module is P-M-injective.
(iii) Every cyclic R-module is P-M-injective.
(iv) Every cyclic module L with J(L) = 0 is P-M-injective.

Proof: (i) — (di): If M is a regular module then by Proposition 0.1,

every cyclic submodule of M is a direct summand of M, therefore any
R-homomorphism of any cyclic submodule of M into a module U can be

extended to an R-homomorphism of M into U. Thus every R-module U is
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P-M—-injective.

(ii) — (dii): Obvious.
(iii) — (iv): Obvious.
(iv) — (i) : Note that by hypothesis, every simple module is

4P—M—injective. We show that if I is any cyclic submodule of M then
J(L) = 0. Theﬁ it will follow that every cyclic submodule of M is a
direct summand of M and by Proposition 0.1, M would be a regular
module.

Now, let 0 #b ¢ L, and let F be the set of all submodules X of Rb
such that b ¢ K. Clearly ¥ is non—empty and when partially ordered by
inclusion it is easy to see that every chain of elements of ¥ has an
upper bound. By Zorn’s lemma, ¥ has a maximal member T. Then Rb|T is
a simple module, hence J(Rb|T) = 0 and therefore Rb|T is P-M-injective.
Hence the quotient map # : Rb — Rb|T can be extended to an
R-homomorphism 77 ¢ M — Rb|T. Let ¢ = r|L. Then ¢ : L — Rb|T is an
onto map and hence L|Ker ¢ is a simple module. Thus Ker ¢ is a maximal
submodule of L with b ¢ Ker ¢, and so J(L) = 0. n|

Proposition 4.8: If M is a P-V-module (resp. a P-V'-module) then every

submodule of M is a P-V-module (resp. a P-V'-module).

Proof: Let N be a submodule of M. We want to show that every simple
(resp. simple singular) module is P-N-injective. Let 8 bé a simple
(resp. simple singular) module, Rm a cyclic submodule of N and

f : Rm — S a non—zero homomorphism. Since M is a P-V-module (resp. a
P-V'-module), f can be extended to amap g : M — S. Then the map

f = (g|N) extends f from N into S. o
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Proposition 4.9: If M is a P-V-module, then J(M) = O.

Proof: Suppose on the contrary, there i§ a non—zero element x € J(M).
Since Rx is finitely generated, it has a maximal submodule N. Let

n ¢ Rx — Rx|N denotes the canonical quotient map. Extend 7 to a map
5 ¢ M — Rx|N. Then Ker E is a maximal submodule of M with x ¢ Ker 5,
this is a clear contradiction. O

Remark 4.10: From Proposition 4.9, we can see that if N is a submodule
of a P-V-module M then J(N) = 0, in particular every non—zero submodule
of a P-V-module contains a maximal submodule.

Proposition 4.11: Let M be a P-V'-module. Then J(M) N Z(M) = 0 and

J(M) € Soc(M). In particular J(M) is a direct sum of simple projective
modules.
Proof: Suppose on the contrary, there exists a non—zero element
x € J(M) N Z(M). By Zorn’s lemma choose a submodule L of M maximal
with respect to x ¢ L. Let 71 : M — M|L denotes the quotient map and
write x = x + L. Then Rx is a simple singular submodule of the factor
module M|L. Let ¢ = |Rx. Since M is a P-V'-module, ¢ can be extended
to an epimorphism ¥ : M — Rx. Thﬁs M|Ker ¥ = Rx and Ker ¥ is a
maximal submodule of M with x ¢ Ker ¥, a clear contradiction with the
choice of x.

To see that J(M) € Soc(M), suppose on the contrary there exists an
element x € M with x € J(M) and x ¢ Soc(M). Since Soc(M) is the
intersection of all the essentialisubmoddles of M, it follows that

x ¢ T for some proper essential submodule T of M. By Zorn’s lemma, the
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set of all essential submodules I of M such that x ¢ I hag a maximal
member L. Let T : M — M|L denote the canonical quotient map and write
X = B(x) = x + L. Writing M for the factor module M|L, we see that
0#xehM and any non—zero submodule of M must contain x. Therefore Rx
is a simple singular submodule of M. Let 1 denote the restriction of
the map I to the submodule Rx. Clearly 7 : Rx — Rx is onto. Since M
is a P-V'-module, n7 can be extended to a map 77 : M — Rx. Clearly 7 is
onto. If N = Ker(zy) then M|N = Rx and N is a maximal submodule of M
with x ¢ N, a contradiction with the fact that x € J(M). o
Remark 4.12: If M is a locally projective P-V'-module then
Soc(M) N Z(M) = 0. TFor, if S were a singular simple submodule of M
then § is a direct summand of M. And since M is locally projective, it
follows that S is projective, a contradiction. Thus every simple
submodule of M is projective.

In the next proposition we show that every Artinian P-V'-module is
Noetherian. In particular every Artinian GV-module is Noetherian.

Proposition 4.13:: Every Artinian P-V'-module is Noetherian.

Proof: TILet M be a P-V'-module. If M is semisimple then we are done.
Otherwise, suppose M has a proper essential submodule I and let x be a
non-zero element of M which is not contained in L.

Let = {KE€M: K is a submodule of M with L € K and x ¢ K}.
Since L € F, F is not empty, and it is easy to see that every totally

ordered subset of F has an upper bound. By Zorn’s lemma let K be a
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maximal element of F. Let  : M — M|K denote the canonical quotient
map and write x = (x) = x + K. It is not difficult to see that Bx is
a simple singular submodule of the factor module M|K. If we define f
to be the restriction of the map 5 to Rx, then f is an R-epimorphism.
And since M is a P-V'-module, f can be extended to an R—epimorphism

g ¢ M — Rx. Whence M|Ker g = Rx. Thus M has a maximal submodule,
namely Ker g. Whence J(M) # M.

Now, since every submodule of a P-V'-module is also a P-V'-module,
J(N) # N for every submodule N of M. Iet Ll be a maximal submodule of
M. If L1 is not simple, let L2 be a maximal submodule of Ll’ and so
on. Since M is Artinian we must stop after a finite number of steps
and M = Lb ) Ll o) LZ D e D Ln = 0 is a composition series for M.
Whence M is Noetherian. o
Remark 4.14: Note that along the lines of the above proof we have
shown that every submodule of a P-V'-module contains a maximal
submodule. In particular if R is a left GV-ring then every R-module is
a GV-module and hence contains a maximal submodule. Thus every left
GV-ring is a B-ring (max-ring) in the sense of [17].

Proposition 4.15: The following conditions are equivalent:

(i) M is a P-V-module.
(ii) If X is a maximal submodule of a cyclic submodule N of M, then
K* # N*. (Here K* = intersection of maximal submodules of M containing

K, similar definition for N*).
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Proof: (i) — (ii): Suppose on the contrary there exists a cyclic

submodule N of M and a maximal submodule X of N such that K* = N*. Let

f : N — N|K denote the quotient map. Since M is a P-V-module, f can

be extended to amap g : M — N|K. Let h glN*. Then H = Ker{(h)

contains K and H € N* = K*. Whence K € H € K*, which implies that

H* = K*. Now, if G = Ker(g), then G is a maximal submodule of M with

X

G n N* = H, and N* =H €@G (H* € G, since G is a maximal submodule of
M containing H). Thus h(N*) = 0, consequently h(N) = 0. But h|N = f
the quotient map N — N|K. Therefore N = K - a)clear contradiction.
(ii) — (i)t Let S be a simple R—module, L a cyclic submodule of M,
and f : L — S a non—zero R-homomorphism. Let K = Ker(f). Since K is
a maximal submodule of I, K* # L*. Hence thére is a maximal submodule
Tof Mwith K€ Tand L ¢ T. Then M= T + L and M[K = T|K ® L|K, which
shows that f can be extended to amap g : M — S. This proves that

every simple module is P-M~-injective. o

Corollary 4.16: Let M be a P-V-module. Then for any submodule L of M

either L = L* or L* is not cyclic,
Proof: Suppose there exists a submodule L of M such that 1 # L* and
L* = N is cyclic. Since N|L is a cyclic module, it has a maximal

submodule T|L. By Proposition 4.14, T* # N*. But since L€ T € N, it

follows that L* = T*

T* = N*, a clear contradiction. o

c N* and since_L* = N*, we get T* = L* and hence

The next three results will be stated without proofs. The proofs

are similar to the proof of Proposition 4.15.
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Proposition 4.17: _The following are equivalent for a left R-module M.
(1) M is a P-V'-module.

(ii) If K is a submodule of any cyclic submodule L of M, such that
L]K is simple singular then K* # L*.

Proposition 4.18: The following are equivalent for a left R-module M.
(1) M is an f-V-module.

(ii) If K is a maximal submodule of a finitely generated submodule
L of M then K* # 1%,

Proposition 4.19: The following are equivalent for a left R-module M.
(1) M is an f-V!-module.

(ii) If X is a submodule of any finitely generated submodule L of M
such that L]K is simple singular then K* # L*.

Proposition 4.20: Let M be left R-module. Then the foliowing

conditions are equivalent:
(1) M is a V-module.
(ii) Every simple submodule of M is M—injective and every singular

homomorphic image of M has zero radical.

Proof: (i) — (ii): Immediate consequence of Proposition 1.1 and 1.2.

(ii) —» (i): Let S be a simple module, N an essential submodule of M
and f ¢ N — S a non—zero homomorphism. Let K = Ker(f). IfFKN T =0

for some non—zero submodule T of N then by the maximality of K in N we
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f
infer that T is a simple submodule of M with T & S§. Thus S is

M—-injective. Otherwise suppose K is essential in N. In this case both
K and N are essential submodules of M and hence J(M|K) = J(M|N) = 0
yielding K = K*, N = N*. Since K # N there is a maximal submodule L of
M such that K€ L and N ¢ L. Thus % = % it} g and the map f can be

extended to an R-homomorphism from M into S. Whence M is a V-module. O

Definition 4.21: Let M be a right R-module and U be a left R-module.

U is said to be P-M-flat if for every cyclic submodule K of M the
séquence 0 — K @R U—M ®R U is exact. U is said to be P—flat if it
is P-R-flat.

Lemma 4.22: ([18, Theorem 9]) Suppose 0 - XK —w M — L — 0 is exact
with K finitely generated and M projective. Then K is a pure submodule
of M if and only if K is a direct summand.

Proof: Since any direct summand is pure, it suffices to show the
converse. Suppose then that K is a pure submodule of M and let

{xi Px, € K, 1 £ i< n} be a generating set for K. Since M is
projective, it is isomorphic to a direct summand of a free module F.
Without loss of generality we may assume that F = M ® M'. Since X is
pure in M and M is pure in F, it follows that K is pure in F. Then, by
[18, Theorem 8], there exists ¥ : F — K such that T(xi) = X,

1 <i=<n., Let 6§ =7|M. Then 6 : M — K, with 5(Xi) = T(xi) = X, for
all i. If I : K — M is the natural injection, then we have

6 °F = IdK, whence K is a direct summand of M., o

From the above lemma we can easily see the following.
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Proposition 4.23: A projective module RM is regular if and only if

-every right R-module is P-M-flat.

Corollary 4.24: A ring R is regular if and only if every R-module is
P-flat.

The next three results will be stated without proof. The proofs
are similar to those of corresponding results in Chapter 1.
Lemma 4.25: If M is a projective module and U is any R-module, then
the following are equivalent:
(i) U is P-M-injective.
(ii) Exté(MIN,U) = 0, for every cyclic submodule N of M.
Lemma 4.26: If M is a flat right R-module and U is any left R-—module.
Then the following are equivalent:
(1) U is P-M-flat.
(ii) Tor?(MlN,U) = 0, for every cyclic submodule N of M.

Proposition 4.27: Let R be a commutative ring and M a projective

R-module. If S is any simple R-module then the following are

L4

equivalent:
(i) S is P-M-injective.
(ii) S is P-M-flat.

Proposition 4.28: Let R be a commutative ring and M a projective

R-module. Then the following are equivalent:
(1) M is a regular module.
(ii) M is a V-module.

(iid) M is a GV—module.
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(iv) M is a P-V-module.

(v) M is a P-V'-module.
(vi) M is an f-V-module.
(vii) M is an f-V'-module.

(viii) Every simple R-module is M-flat.

(ix) Every simple singular R-module is M-flat.
(%) Every simple R-module is P-M-flat.
(xi) Every simple singular R-module is P-M-flat.

Proof: (i) ¢ (ii) e (iii) «» (viii) By Proposition 1.15 and
Proposition 3.16.

(iii) e (ix): By Proposition 1.13.

(iv) e (ix): By Proposition 4.27.

(v) = (xi): By Proposition 4.27.
(iv) — (v): Obvious.
(v) — (dv): Let S be a simple R-module. If S is projective, then 8

is flat and hence P-M-flat; and by Proposition 4.28, S is
P—M¥injective. If S is singular then automatically S is P-M—injective.
Thus every simple module is P-M-injective.

(ii) — (iv): Clear.

(iv) — (ii): By [28, Theorem 4.8 and Proposition 3.7].

(ii) — (vi) — (wvii) — (vj: Clear. n]




CHAPTER 5.

SI-MODULES

A ring R is called a left SI-ring if every singular left R-module
is injective. S8I-rings were introduced and studied by K.R. Goodearl.
In this chapter we say that a left R-module M is an SI-module provided
that every singular left R-module is M-injective. It was shown by
K.R. Goodearl [22] that a ring R is a left SI-ring if and only if
Z(RR) = 0 and for every essential left ideal I of R, R|I is semisimple.
Commutative SI-rings were also investigated by V.C. Cateforis and
F.L. Sandomierski in [11] and {12]. It was proved in [12] that for a
commutative ring R the following are equivalent:

(1) R is an SI-ring.
(i) R is (von Neumann) regular and R|Soc(R) is semisimple.

In Section 1, we show that results of this type can be obtained for
SI-modules. The connections between regular modules, V-modules,
GV-modules and SI-modules are studied. We show, among other things,
that a finitely generated projective module over a commutative ring is
an SI-module if and only if it is a finite direct sum of regular
modules each of which has at most two essential submodules.

In Section 2, we introduce and study P-SI-rings. A ring R will be
called a left P-SI-ring if every singular left R-module is P-injective.
We prove, among many other things, that if R is a ring with essential

left socle then R is a left P-SI-ring if and only if Soc(RR) is

59
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projective and RI(SocRR) is a regular ring. Known results for SI-rings
are extended to P-SI-rings.

Section 1. SI-modules.

Definition 5.1.1: A left R-module M is called an SI-module (resp.

P-3I-module) if every singular left R-module is M-injective (resp.
P-M-injective). Clearly every SI-module (resp. P-SI-module) is a
GV-module (resp. P-V'-module). A ring R is called a left SI-ring
(resp. P-SI-ring) if the left R-module RR is an SI-module (resp.
P-SI-module).

With the same argument used in the proof of Propositioﬁ 1.2 one can
easily verify the following:

Proposition 5.1.2: (i) Submodules and homomorphic images of

SI-modules are also SI-modules.

(ii) ® M. is an SI-module if and only if each Mi is an SI-module.
iel

Propogition 5.1.3: Suppose that RM is an SI-module. Then the

following statements are true.

(L) Every singular homomorphic image of M is semisimple.

(ii) M|N is semisimple for every essential submodule N of M.
(iii) J(M) € Soc(M), Z(M) € Soc(M) and J(M) N Z(M) = 0.

Proof: (i) If L is a singular homomorphic image of M then by
Proposition 5.1.2 (i), L is a singular SI-module. Whence every
submodule of L, which necessarily has to be singular, is L-injective.
Hence every submodule of L is a direct summand of L, and so L is

semisimple.
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(ii) If N is an essential submodule of M then M|N is a singular
homomorphic image of M, whence semisimple from above.

(iii) Since Soc(M) is an intersection of essential submodules of M and
every proper essential submodule of M is an intersection of maximal
submodules, it follows that J(M) € Soc(M). Since Z(M) is a singular
SI-module (since submodules of SI-modules are again SI-modules), by (i)
we infer that Z(M) is semisimple, and hence Z(M) € Soc(M). Since every
SI-module is a GV-module, it follows from Proposition 3.2(ii) that

JM) N zZM) = 0. o

Proposition 5.1.4: For a locally projective module RM the following

conditions are equivalent:

(1) M is an SI—module.

(ii) Z(M) = 0 and every singular homomorphic image of M is
semisimple.

(iid) Z(M) = 0 and M|N is semisimple for every essential submodule N
of M.

Proof: (i) — (ji): Suppose Z(M) # 0 and let x be a non-zero element

of Z(M). Then Rx is a singular submodule of M and hence a direct
summand of M. Since M is locally projective it follows that Rx is

projective. Now consider the following exact sequence of left

R-modules 0 ~— AnnR(x) » R 21 Bx » 0, where 7 is given by
g{r) = rx, Vr € R. Since Rx is projective the sequence splits, and
hence AnnR(x) is not essential in RR, contradicting the choice of x.

Now the rest of the assertion follows from Proposition 5.1.3(i).
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(ii) — (iii): Clear.

(iii) — (i): Let L be a singular R-module. We want to show that L

is M-injective. SS, let N be a proper essential submodule of M and
f : N — L be any non-zero homomorphism. Let K = Ker(f). We claim
that K is essential in N. TFor, if KN I = 0 for some non—zero
submodule I of N, then f|I : I — L is a monomorphism. So I is a
non-zero singular submodule of M, a clear contradiction since Z(M) = 0.
Now, since K is essential in M, it follows that M|K is semisimple and
N|K is a direct summand of M|K. Whence f can be ex£ended to a map
g : M— L in the obvious way. o

Note that along the lines of the above proof we have shoﬁn that
every locally projective SI-module is non-singular. In fact with the

same argument one can prove the following:

Proposition 5.1.5: Every locally projective P-S8I-module is
non—-singular.

Proposition 5.1.6: Let M be a non-singular module. Then the following

conditions are equivalent:

(1) M is an SI-module.

(ii) Z(L) € Soc(L), for every homomorphic imaée L of M.

(iii) Every singular homomorphic image of M is semisimple.
(iv) M|N is semisimple, for evéry essential submodule N of M.

Proof: (i) — (ii): If L is a homomorphic image of M then L is an

SI-module and hence Z(L) € Soc(L), by Proposition 5.1.3 (iii). The
*
proof of the other implications is similar to that of Proposition

5.1.4. o
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Observe that if R is a left SI-ring then for any left R-module M,
every singular module is M-injective. As a consequence of this

observation we have the following:

Proposition 5.1.7: For any ring R the following are equivalent:

(1) R is a left SI-ring.
(ii) Every left R-module is an SI-module.
(iii) Every cyclic left R-module is an SI-module. a

Proposition 5.1.8: For a locally projective module M the following

conditions are equivalent:
(1) M is an SI-module with essential socle.
(ii) Soc(M) is projective and M|Soc(M) is semisimple.

Proof: (i) — (ii): Since M is a locally projective SI-module,

Z(M) = 0 by Proposition 5.1.4, and hence Soc{M) is projective. Since
Soc(M) is essential in M, it follows from Proposition 5.1.3(ii) that
M|Soc(M) is semisimple.

(ii) — (1): If Soc(M) N I = 0 for some non—zero submodule I of M,
then I = (I + Soc(M))|Soc(M) & M|Soc(M) which implies that I is
semisimple and hence I € Soc(M), a contradiction. Thus Soc(M) is
essential in M. Now, if Z(M) is non—zero, then Z{(M) N Soc(M) # 0, a
contradiction with the projectivity of Soc(M). Thus Z(M) = 0. ©Now if
N is any essential submodulerof M then Soc(M) € N and hence M|N, being
a factor module of M|Soc(M), is semisimple, and we can apply

Proposition 5.1.6. o
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Proposition 5.1.9: Let M be a locally projective module with M|J(M)

semisimple. Then the following are equivalent:
(1) M is a GV-module.
(ii) M is an SI-module.

Proof: (i) — (ii): Since M is a GV-module, by Proposition 3.2(ii),

it follows that Z(M) N J(M) = 0, and hence Z(M) = (Z(M) & J(M))|I(M) is
a semisimple module being isomorphic to a submoduie of the semisimple
module M|J(M). This means that Z{(M) € Soc(M). But since M is a
locally projective GV-module, by Proposition 3.11, it follows that

Z(M) N Soc(M) = 0, and“hence Z(M) must be zero.

Now Let L be any singular R-module, N any essential submodule of M
and f : N — L any non—zero R-homomorphism. Let K = Ker(f). Then one
can easily see that K is essential in M and hence J(M) £ Soc(M) <€ K.
Whence N|K is a direct summand of M|K and the map f can be extended to
amap g : M — L. Therefore M is an SI-module.

(ii) — (i): Obvious. o

It was proved in tlZ, Theorem 1 and Theorem 5] that for a
commutative ring R the following conditions are equivalent:
(i) R is an SI-ring.

(ii) R is a regular ring and R|Soc(R) is semisimple.

In [22, Theorem 3.9] K.R. Goodearl has proved that the above
conditions are équivalent to saying that:

(iii) R is a finite direct sum of non-singular rings which have at

most two essential ideals.
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In our next proposition we shall extend these results to modules.
But first we need the following lemma which extends [22, Proposition

3.8] to modules.

Lemma 5.1.10: If M is a finitely generated SI-module then M|Soc(M) is
Noetherian.
Proof: (Adapted from [22, Proposition 3.6])

We will show that every submodule of M|Soc(M) is finitely
generated. lLet J = Soc(M) and T be a submodule of M with I 2 J. Let K
be a submodule of I maximal with respect to KN J = 0. Then J & X is
essential in I and I|(J ® K) is a singular module. Since M|(J @ X) is
an SI-module we see that I|(J ® K) is a direct summand of M|(J & K).
Thus I[(J ® K) is finitely generated. Our aim is to show that I|J is
finitely genera%ed. From the exactness of the sequence
0 9K — I|J — I|(JBK) — 0, it suffices to prove that K is
finitely generated. We first show that K is finite dimensional. If
not, then there exists an infinite direct sum K1 ] KZ ® +-+ of non—-zero
‘submodules of K. Since KN J = 0, none of the Ki are semisimple;

whence each Ki has a proper essential submodule Hi' Inasmuch as
[+ ] 2] o]
(8 K)|(6 H,)= & (K.|H.) is a singular module and hence is
1 AT T R 1 R |
00 [o4] ]
M|( ® H,)-injective, it follows that ( & K.)|( &
i=1 i=1 t o i=1
0

summand of M|( @ Hi) and so is finitely generated, which contradicts
i=1

the fact that it is an infinite direct sum of non-zero modules. By the

Hi) is a direct

finite dimensionality of K, Let {Ei}2=l be a maximal family of non—zero
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N
cyclic submodules of K such that the sum 2 Ei is direct. Clearly
i=1
n
E= 6 Ei is essential in K, and hence K|E is singular. Inasmuch as
i=1

M|E is an SI-module, it follows that K|E is a direct summand of M|E and
thus is finitely generated. Whence K is finitely generated. o

Corollary 5.1.11: If M is a finitely generated regular module then the

following statements are equivalent:
(1) M is an SI-module.
(ii) M|Soc(M) is semisimple.

Proof: (i) — (ii): Note first M|Soc(M) is Noetherian, by

Lemma 5.1.10. We claim that Soc(M) is essential in M, for if

IN Soc(M) = 0 for some non-zero submodule I of M it follows that

I ® Soc(M) - . . . . .
oo < M|Soc(M), which implies that I is a Noetherian module.

14

I
-And since submodules of regular modules are again regular, we conclude
from Lemma 2.5 that I is semisimple. Whence I € Soc(M), a clear
contradiction. Now by Proposition 5.1.3(ii) it follows that M|Soc(M)
is semisimple.
(ii) — (i): Since M is a regular module, it follows that every simple
submodule is a direct summand and hence projective. Hence Soc(M) is
projective. Since M|Soc(M) is semisimple, Soc(M) is essential in M.
Inasmuch as M is regular, and hence locally projective, it follows from
Proposition 5.1.8 that M is an SI-module. a

Following M.S. Shirkhande [41], a module M is called hereditary
(resp. semihereditary) if every submodule (resp. finitely generated

submodule) of M is projective.
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o
Proposition 5.1.12: If R is a commutative ring and M is a finitely

generated projective R-module. Then the following conditions are

equivalent:

(V) M is an SI-module.

(ii) M is a regular module and M|Soc(M) is semisimple.

(iii) M is a semihereditary module and M|Soc(M) is semisimple.

(iv) M is non-singular and M|Soc(M) is semisimple.

(v) M is a finite direct sum of regular modules each of which has

at most two essential submodules.
(vi) M is a finite direct sum of non—singular modules each of which
has at most two essential submodules.

Proof: (i) — (ii): Since every SI-module is a GV-module it follows

from Proposition 1.1 that M is a regular module, and hence M|Soc(M) is
semisimple by Corollary 5.1.11.

(ii) — (iii): Clear, since every regular module is semihereditary

(iii) — (iv): Clear, since every semihereditary module is

non—-singular.

(v) — (vi): Obvious since every regular module is non-singular.

(vi) — (i): Let M = M1 ® -8 Mn’ where each Mi is non—singular and
has at most two essential submodules. By Proposition 5.1.2 (ii), it is
enough to show that each Mi is an SI-module. But if I is any essential
submodule of Mi then MiII is either zero or simple, and by Proposition

5.1.4 (iii) it follows that each Mi is an SI-module.



68

(iv) — (i): Let L be any non-zero singular R-module, N any essential
submodule of M and f : N — L any non—zero R-homomorphism. Let

K = Ker(f). Since M is non-singular, it is not difficult to see that K
is essential in M, and so Soc(M) € K. Now since

MIK = (M|Soc(M))|(K[Soc(M)) is a semisimple module, we see that N|K is
a direct summand of M|K and the map f can be extended to a map

g : M— L. Whence every singular module is M-injective, and so M is

- an SI-module. '

(ii) — (v): Since M|[Soc(M) is a finite direct sum of simple modules,
it has a composition series. We shall prove our assertion by induction
on the composition length of M|Soc(M). If 2(M|Soc(M)) = 0, then

M = Soc(M) and M is a finite direct sum of simple projective modules.
Assume that 2(M|Soc(M)) > 0, then M|Soc(M) has a non—-zero simple
submodule I|Soc(M). Let K = Soc(M) and choose some x € I with x ¢ K.
Thus Rx|(K N Rx) # 0. Hence Rx|(K N Rx) = I|K. Because I|K is simple,
it follows that Soc(Rx) = K N Rx is a maximal submodule of Rx.

Inasmuch as M is a regular module we see that Rx is a projective
summand of M. Write M = Rx 8 N, for some submodule N of M. Since
Soc(Rx) is an intersection of essential submodules of Rx and Soc(Rx) is
a maximal submodule of Rx, it follows that Rx has only two essential

. . Rx@®N ~
submodules, namely Rx and Soc(Rx). Since M|K = §3€fﬁ§ ) N5 =

Rx N = -
Soc () B Soo(N) We have 2(N|Soc(N)) = 2(@|K) 1, and hence may use

an inductive hypothesis on the module N. o
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Remark 5.1.13: The above proposition remains valid if we replace

7 "regular module" by "A-module", where A stands for one of the symbols
vV, GV, P-V, P-V' or P-SI, see Proposition 4.28 and the next
proposition.

Proposition 5.1.14: If R is a commutative ring and M is a projective

R~module then the following are equivalent:
(i) M is a regular module.
(ii) M is a P-SI-module.
In particular a commutative ring R is regular if and only if R is a
P-SI-ring.

Proof: (i) — (dii): By Proposition 4.7, if M is a projective regular

module then every R-module is P-M—injective. Thus M is a P-SI-module.

(ii) — (i): If M is a P-S8I-module then M is a P-V'-module and hence

by Proposition 4.28 M is a regular module. N

Section 2. P-SI-rings.

Recall that a module RM is said to be P-injective if for any
principal left ideal I of R and f HomR(I,M) there exists an element
m € M such that f(x) = xm, for all x € I. It was proved in [56] that a
ring R is regular if and only if every R-module is P-injective. A ring
R is defined to be a left P-V-ring if every simple left R-module is
P-injective. P-V-rings were introduced and studied by Yue Chi Ming in
[(65] and [58], and by H. Tominaga in [46]. We defined a ring R to be a
left P-SI-ring if every singular left R-module is P-injective
(Definition 5.1.1). In this section we establish the following

characterization:
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Proposition 5.2.1 For a ring R with essential left socle, the

following statements are equivalent:
(1) R is a left P-8I-ring.
(i1) Soc(RR) is projective and RJ(SocRR) is a regular ring.
(iii) Rl(SocRR)2 is a regular ring.

We postpone the proof until some of the ideas involved have been
sufficiently developed below.

Let K be a two-sided ideal of R. G. Azumaya has proyed in [3(II),
Proposition 10(ii)} that, every injective‘right R{K-module is injective
as a right R-module if and only if R|K is flat as a left R-module. For

P-injective modules we have the following:

Proposition 5.2.2 Let K be a two sided ideal of R. Then every
P-injective right R|K-module is P-injective as a right R-module if and
only if R|K is flat as a left R-module.

Proof: "Only if" part: adapted from [3(II), Proposition 10]. ILet

a € K and consider the right R-modules aR,aK and aR|aK. Let

¢ ¢ aR — aR|aK denote the canonical quotient mapping. aR|aK is

annihilated by K, and so can be regarded as a right R|K-module. Iet

Q = E(aR|aK) be the injective hull of the right R|K-module aR|aK. Then

Q is P-injective as a right R|K-module, whence P—injective as a right

R-module, by assumption. Now the map ¢ : aR — Q can be regarded as a

map of R-modules. Therefore ¢ can be extended to an R-homomorphism
R— Q. Let $(1) =y, y € Q. Then ¢(x) = yx, Vx € aR. But

¢ :
aR € K, and Q is annihilated by K, so yx = 0 Vx € aR. Thus & = 0, and
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aR = aK. Since a was arbitrarly chosen from K, a € aK V a € K and it
follows %rom a well-known result of G. Azumaya [3(II), Proposition 5]
that (R|K) is flat.

"if" part: Suppose R(RIK) is flat as a left R-module. And let Q be a
P-injective right R|K-module. Want to show Exté(RlxR,Q) = 0 for every
x € R. So, let x be any element of R and consider the following exact
sequence of right R-modules 0 — xR — R — R|xR — 0. Since R(RIK) is

flat, it follows that: (R|K)|(K+xR]|K) = (R|xR) % (R]K) and that

IR

1 1
ExtR(RlxR,Q) EXtng(R|XR ®R R|K,Q), whence

Exté(R|xR,Q) = ExtélK(RI(K+xR),Q). Now since Q is P-injective as a

right R|K-module and (K+xR)|K is a principal right ideal of R|K we get

ExtélK(RI(K+xR),Q) = 0, and so Exté(RlxR,Q) = 0 for every x € R and Q

is P-injective as a right R-module. o
With the same argument used in the "if" part of the above proof one
can also verify the following:

Proposition 5.2.3: Let K be a two-sided ideal of R, R|K flat as a left

R-module and Q a right R|K-module. If Q is P-injective as a right
R-module then it is also P-injective as a right R|K-module. d
We shall also make use of the following result, which was proved in

[6, Proposition 1.4 and Proposition 1.10].

Proposition 6.2.4: For every ring R one has SocP(RR) = (Soc(RR))z,

where SocP(RR) denotes ‘the projective homogeneous component of the left



72

socle of R. Moreover, if K is a two-sided ideal contained inﬂSoc(RR),
then the following conditions are equivalent:
1) K=K
(ii) (RIK)R is flat as a right R-module. |
We can now prove Proposition 5.2.1:

i) — (ii): By Proposition 5.1.5, since R is a left P-SI-ring, R is
left non—-singular and so SocRR is projective. Now, in order to show
that RI(SocRR) is a regular ring we must prove that every left
RI(SocRR)—module is P-injective. So, let M be a left Rl(SocRR)—module.
Since Soc(RR) is essential in RR it follows that M is a singular left
R-module, whence M is P-injective as a left R-module. Now since
Soc(RR) is projective, it follows from Proposition 5.2.4 that RI(SocRR)
is flat as a right R-module and so by Proposition 5.2.3, it follows |

that M is P-injective as a left Rl(SocRR)—module.

(ii) — (iii): Inasmuch as SocRR is projective, it follows from

Proposition 5.2.4 that SocRR = (SocRR)2 and hence RI(SocRR)2 is a

regular ring.

(iii) — (i): Since RI(SocRR)2 is a regular ring, and hence fully
right idempotent, it follows from [5, Proposition 1.4] that SocRR is
projective and hence by Proposition 5.2.4, we have (SocRR)2 = SocRR,
whence Rl(SocRR) is a regular ring. Now let M be any singular left
R-module. By the singularity of M we have (SocRR)°M = 0, and so M can
be regarded as a left RI(SocRR)—module. Since RI(SocRR) is a regular

ring, M is P-injective as a left RI(SocRR)—module. By Proposition
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5.2.4, since SocRR is projective, (RlSocRR)R is flat as a right
R-module. Now by Proposition 5.2.2, it follows that M is P-injective
as a left R-module. Hence R is a left P-SI-ring. o

We do not know whether Proposition 5.2.1 holds for modules.
However we have the following:

Proposition 5.2.5: Let M be a left R-module. If Soc(M) is projective

and M|Soc(M) is a regular module then M is a P-SI-module.
Proof: Let N be a cyclic submodule of M, L a singular R-module and
f : N — L a non-zero homomorphism. We want to show thét f can be
extended to amap g : M— L. Let K =Ker(f). IfKNTI-=0 for some
non—zero submodule I of N, then f : I — L is a monomorphism and I is a
non—zero singular submodule of M. Thus I N Soc(M) = 0, and hence
I = (I + Soc(M))|Soc(M) € M]Soc(M), which implies that I is a regular
submodule of M. But since every regular module is non-singular, it
follows that Z(I) = 0, a clear contradiction with the singularity of I.
Thus K is essential in N, and hence Soc(N) € K.

Now define ¢ : N|Soc(N) — (N + Soc(M))|Soc(M), by
d(n + Soc(N)) = n + Soc(M). Then ¢ is an isomorphism. Let
" ¢ M — M|Soc(M) denote the canonical quotient map, and write
M = M|Soc(M). Since M is a regular module and N is a cyclic submodule
of M, we can write M = N ® T, for some submodule T of M. Since
soc(N) € Ker(f), there is a map F . N|Soc(N) — L, such that

-1

%(n +Soc(N)) = f(n). Thus fo ¢~ : N-— L. Extend (% ° ¢—1) to a map

E t: M=N®T — L in the obvious way. Define g : M — L, by
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g(m) = E(ﬁ), VmeM Now if x € N then:

g(x) = g(x) = g(x + Soc(M))

F o ¢ 1y(x + Soc(i))

H

Fo x + Soc()))

%(x + Soc(N))

f(x).
Thus the map g is the required map. o
It was proved in [22, Proposition 3.5] that for a ring R with
R{J(R) semisimple, the following statements are equivalent:
COT 3¢

(ii) Zr(R)

0 and R is a right 8I-ring.

0 and [J(R)]% = O.

0 and [J(R)]% = 0.

(iii) ZQ(R)

(iv) ZQ(R) 0 and R is a left SI-ring.

However in view of our Proposition 5.1.5, R is a right
SI-ring » Zr(R) = 0 (similarly R is a left SI-ring » ZQ(R) = 0). Thus
in (i) we can remove the condition Zr(R) = 0 (similarly in (iv) we can
remove the condition ZQ(R) = Q).

In the next Proposition we shall prove also that, under the same
hypothesis, a ring R is a right P-SI-ring if and only if R is a left
P-SI-ring.

Proposition 5.2.6: If R is a ring with R|J(R) semisimple, then the

following conditions are equivalent:
(1) R is a right SI-ring.

(ii) R is a left SI-ring.
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(iii)  Z_(B) = 0 and [J(®)]% = 0.

(iv)  Z,(®) =0 and [J(®)]% = 0.

(v) R is a right P-8I-ring.

(vi) R is a left P-SI-ring.

(vii) R is a right GV-ring.

(viii) R is a left GV-ring.

(ix) R is a right P-V'-ring.

(%) R is a left P-V'-ring.

(xi) R is right semihereditary and [J(R)]2 = 0,
(xii) R is left semihereditary and {J(R)]2 = 0.
(xiii) R is right hereditary and [J(R)]% = 0.
(xiv) R is left hereditary and [J(R)]2 = 0.

Proof: (v) — (ix): Clear.

(ix) — (4ii): Inasmuch as R is a right P-V'-ring, [J(R)]2 = 0 and

J(R) N Zr(R) = 0, by Proposition 4.11. Hence

J(R) ® Zr(R)
Zr(R) = N (6D) € R|J(R). Whence Zr(R) is a semisimple right

R-module and so Zr(R) < Soc(RR). But since R is a right P-V'-ring it
follows that every minimal right ideal of R must be projective.
Therefore Zr(R) =0,

(iii) — (i): By [22, Proposition 3.5].

i) — (v): Obvious.
(%) &= (vi) & (iv) > (ii): By symmetry.
(1) e (ii): By [22, Proposition 3.5].

(1) e (vii): By Proposition 5.1.8.
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(xiii) ~— (xi): Clear.

(xi) — (iii): If x is any non—zero element of R then the sequence
0 — AnnR(x) — R — xR — 0 splits, where AnnR(x) denotes the right
annihilator of x in R. Whence Zr(R) = 0.

(i) — (xiii): By [22, Proposition 3.3].

(xiv) e (%i1) e (iv) (i): By symmetry.
Finally we conclude this section with the following.

Proposition 5.2.7: For a left self-injective ring R, the following

conditions are equivalent:
(1) R is a left P-SI-ring.
(ii) R is a regular ring.

Proof: (i) — (ii): By Proposition 5.1.5, since R is a left P-SI-ring

it follows that R is left non—singular. And since R is left
self-injective, J(R) = 0 and R is a regular ring.

(ii) — (i): Since R is a regular ring, every R-module is P-injective,
in particular every singular left R-module is P-injective, and hence R

is a left P-SI-ring. O



CHAPTER 6.

MORE ON V-MODULES

In this chapter we show that V-modules can be as useful as
semisimple modules in characterizing different types of rings. We
characterize rings whose V-modules are injective, rings whose singular
V-modules are injective and non-singular rings whose singular modules
are V-modules.

Proposition 6.1: A ring R is semisimple Artinian if and only if every

V-module is injective.
Proof: If R is semisimple Artinian then every R-module is injective.
Conversely, if every V-module is injective then in particular every
simple R-module is injective and hence R is a left V-ring. Therefore, 7
every R-module is a V-module and hence injective. Thus R is semisimple
Artinian. |

Recall that a ring R is a left SI-ring ;f every singular left
R-module is injective. In the next proposition we characterize SI-rings
in terms of V-modules.

Propsition 6.2: The following are equivalent for a ring R.

(1) R is a left SI-ring.
(i) Every singular V-module is injective.

Proof: (i) — (ii): Clear.

(ii) — (i): Let M be a singular R-module. We want to show that
JM) = 0. Let 0 # x € M. By Zorn’s lemma, let I be a submodule of M

maximal with respect to x ¢ L. Let - : M — M|L denote the canonical

77
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quotient map and write x = x + L € M|L. Clearly the left R-module Rx is
a simple singular essential submodule of M|L. By hypothesis, since Rx
is injective, it is a direct summand of M|L. But since Rx is essential
in M|L, Rx = M|L and hence L is a maximal submodule of M with x ¢ L.
Therefore J(M) = 0.

Now if N is any submodule of M then M|N is singular, and hence
J(M|N) = 0 by the earlier paragraph. Whence every proper submodule of M
is an intersection of maximal submodules; therefore M is a V-module, and
so injective by hypothesis. Hence R is a left SI-ring. a

Proposition 6.3: If R is a left GV-ring, then every singular R—module

is a V-module.
Proof: Let M be a singular R-module. Since R is a left GV-ring, every
R-module is a GV-module. Therefore J(M|N) N Z(M|N) = 0 for every
submodule N of M, see Proposition 3.2(ii). Since M is singular,
J(M|IN) = 0 for e&ery submodule N of M. Thus M is a V-module. o

We do not know whether the converse to Proposition 6.3 holds.
However, for non—-singular rings we have the following.

Proposition 6.4: If R is a left non-singular ring then the following

conditions are equivalent:
(1) R is a left GV-ring.
(ii) Every singular left R-module is a V-module.

Proof: (i) — (ii): By Proposition 6.3.

(ii) — (i): By Proposition 3.10 it is enough to show that every

singular cofinitely generated left R-module is semisimple.



Let L be a singular cofinitely generated left R—module. By
hypothesis L is a cofinitely generated V-module and hence a finite

direct sum of simple modules by Proposition 1.1(vi). ]
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CHAPTER 7.

V-TORSION THEORY

In this chapter we will follow the terminology of Stenstrom [44]
and Varadarajan [48]. As we have seen in Proposition 1.2, the class of
left V-modules is closed under submodules, homomorphic images and
arbitrary direct sums, and so is a herditary pretorsion class whichq
will be denoted by gv' If M.is an arbitrary left R-module and v (M)
denotes the sum of all submodules of M belonging to gv’ then clearly
v(M) € gy as well. 1In this way gy gives rise to a preradical v of

R-mod, and v is clearly left exact. By [44, Proposition 4.2] we get a

pretorsion theory (gv’,gu) for R-mod with

¢ = {M e Rmod: v(M)

Eu = {M € R—mod: v(M)

and F= {I : I is a left ideal of R with R|I € gu} the corresponding

0}

linear topology.

In 7.1.1, an example is given to show that gy is not necessarily
closed under extensions, and so in general v is not a radical. Thus,
Amitsur’s transfinite process of associating a left exact radical v
with v yields an ascending series of preradicals {va} for each ordinal
«, and gives rise to a v-Lowey series for each module M.

In the first part of th;s chapter we study the class gv and its
associated left exact preradical v. We prove, among other things, that

C  is closed under direct products if and only if R|IJ(R) is a left .

80



81

V-ring, and in this case v(M) = rM(J(R)), a result which was noted by
K.R. Fuller in [21]. We also show that gu is closed under injective
envelopes (i.e. stable) if and only if R is a left V-ring. 1In
Proposition 7.1.10, it is proved that a ring R is a left V-ring if and
only if the class gu has the lifting property (L.P), (see [48]).

In the sécond part, we study the v-Loewy series and obtain results
similar to known results on the usual Loewy series associated to the
left exact preradical Soc. An example is given to show that there are
V-modules with zero socle. A ring R will be called a left semi-V-ring
if every left R~module has a V-submodule. Clearly every semiartinian
ring is a semi-V-ring but not vice-versa. In his work on perfect
rings, H. Bass has proved that if R is a semiartinian ring then J(R) is
left T-nilpotent. We shall extend this result to a larger class of
rings, namely the class of semi-V-rings. We show that a ring R is a
left semi~V-ring if and only if J(R) is left T-nilpotent and R|J(R) is
a left semi-V-ring.

We shall also investigate finite or infinite sequences of

submodules, of a given module M, of the form {0} = M0 cM €M C -

1 2
or of the form M = M0 2 M1 2 -+, where all the factor modules Mi+1|Mi
or M]’|M1+1 are V-modules. Many known properties of such series (with

factor modules being semisimple) for a module over a ring R with R|J(R)

semisimple will be generalized.

Section 1. On the preradical v.

We start this section with an example to show that in general v is

not a radical.
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Example 7.1.1: Consider the following exact sequence of abelian groups

0 — ZP — Z 9 — ZP — 0. Since every simple module is a V-module,

P

v(Z,) = Z,. And since J(Z ) = Z_, # 0, Z , is not a V-module (in fact
P P P2 P PZ

v(Z 2) = ZP). Thus the class of V-modules is not necessarily closed

under extensions, whence in general v is not a radical. O

Note that since there are left V-rings which are not right V-rings
(and vise~versa), it follows that u(RR) # u(RR), i.e. v is not
left-right symmetric.

Proposition 7.1.2: (i) J®) = N 1I.
Ier

(ii) JR) = N AnnR(M).
MeC

(iii) U(RR)M € v(M), for every left R-module M, {(a fact which is valid
for any preradical o).

(iv) If M is a cofinitely generated module then v(M) = Soc(M).

(v) U(RR) N J(R) and u(RR) N J(R) are nilpotent ideals. In particular
if R is a semiprime ring then v(RR) nJR) = u(RR) nJmwr =0.

(vi) If R is a left Noetherian ring with Soc.R # 0, then Soc.R is a

R R

direct summand of U(RR).

Proof: The proof of (i), (ii), (iii) and (iv) are straightforward.

(v): Set A= U(RR) N J(R). Since RA is a left V-module it follows
that J(A) = 0 and hence J(R)A = 0. But since A € J(R), we get AA = 0,
i.e. A% = 0. similarly [w(Ry) N I®IZ = 0.

(iv) Let J = Soc(RR) and K = u(RR). Since RK is a noetherian left

V-module and RJ is a semisimple submodule of RK, it follows from

14

Proposition 2.2 that RJ is a direct summand of RK. a
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Note that if M is a V-module then J(M) = 0 and hence J(R)M = O,
i.e. every V-module is an R|J(R)-module. Also if R|J(R) is a left
V-ring and M is a left R-module with J(R)M = 0, then M is an
R|J(R)-module and hence M is a V-module as an R|J(R)-module, whence a
V-module as a left R-module, observing that R-submodules of M are the
same as R|J(R)-submodules of M.

Now if R|J(R) is a semisimple ring and M is a left V-module then
by the above remarks M is semisimple. In particular if RM is a
V-module over a semiperfect ring then RM is semisimple. In the next
proposition we show that if R|J(R) is a left V-ring then
v(M) = rM(J(R)) (a fact which was noted by K.R. Fuller in [21]). 1In
particular if R|J(R) is semisimple then v (M) = Soc(M) = rM(J(R)), for
every R-module M.

Proposition 7.1.3: The following conditions on a ring R are

equivalent:

(1) R|J(R) is a left V-ring.

(ii) J(M) = J(R)M for every left R-module M.

(iii) gv is closed under direct products.

{(iv) JMIN) = gﬁMlﬁi—g , for every RM and every submodule N of M.
(v) The Jacobson radical J preserves epimorphisms (i.e., if

M -£, L — 0 is exact then J(M) —£» J(L) — 0 is exact).

(vi) The class 7 = {M € R-mod: J(M) = 0} is closed under
quotients.

And in this case v(M) = rM(J(R)), for every left R-module M.
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Proof (i) — (ii): Let RM be a left R-module. The factor module
M[J(R)M is an R[J(R)-module, and since R|J(R) is a left V-ring, M|J(R)M
is a V-module. Thus J(M|J(R)M) = 0. But since J(R)M € J(M), for every
module M, it follows that 0 = J(M|J(R)M) = %%%%ﬁ , and hence
J(M) = J(R)M.
(ii) = (i): Suppose J(M) = J(R)M for everyrleft R-module M. Now, if
M is an R|J(R)-module then J(R)M = O and hence J(M) = 0. Thus R|J(R)
is a left V-ring.
(1) — (4ii): Iet M = 'ZI Mi’ with each Mi a V-module. Thus

i

J(R)Mi c J(Mi) = 0, for each i € I. From which we infer that M can be

regarded as an R|J(R)-module, and hence M is a V-module.

(iii) — (i): Define ¢ : R — ¥ R|L, by, &(r) =<r +IL>, Vr € R,

where the product ranges over maximal left ideals L of R.

Clearly ¢ is an R-homomorphism with J(R) =Ker($). Thus R|J(R) is
isomorphic to a submodule of the V-module & R|L. Thus R|J(R) is a
left V-ring.

(i) — (iv): Let M be a left R-module and N a submodule of M. Iet
¢ :M|N — M|(J(M) + N) denote the canonical quotient map. Then
Ker(9) = fﬁﬂlﬁi_ﬁ . Inasmuch as R|[J(R) is a left V-ring, we infer that
M| (J(M) + N) is a V-module (being isomorphic to a factor module of the
V-module M|I(D). Thus J|zrnttrl = 0, and hence $(I(MIN)) = 0, which

implies that J(M|N) <€ Ker(9) = JM) + N . Since glMlﬁi—E € JM|N) is

N
always true, we conclude that J(M|N) = QIEQT;;JE .
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(iv) — (i): Let A|J(R) be a left ideal of R|J(R). Since
J(R) + A
A

J(R]A) = = 0, it follows that A is an intersection of maximal
left ideals of R and hence A|J(R) is an intersection of maximai left
ideals of R|J(R). Thus R|J(R) is a left V-ring.

(ii) — (v): Let M —£+ N — 0 be exact. Then assuming (ii),

fIM)) = £IMM) = JR)FM) = J(R)N = J(N), whence

J(M) —fa J(N) — 0 is exact.

(v) — (ii): For any m € M, define b R — M by um(r) = rm. Then
um(J(R)) = J(R)m and the maps{um}meM determine an epimorphism

u R(M)

- M, where R(M) denote the direct sum of M copies of R. By
(v), we have JM) = u(T@E™)) = w(@@EH™) = s@M.

(v) — (vi): Let M —£+ N — 0 be an exact sequence in R-mod with

JM) = 0. By (v), 0 =Ff(I(M)) = J(N). Whence N € 7.

(vi) — (v): Let M —£+ N — 0 be an exact sequence in R-mod. We must
show that f(J(M)) = J(N). Inasmuch as J is a preradical; we have

f(IJM)) € J(N). And since J is a radical, we have

J(N[E(IM))) = I |£ITM)). Let MjIJ(M) —E» N{f(J(M)) — 0 be the map
induced by f in the obvious way. Since J(M{J(M)) = 0, it follows from
(vi) that J(N|f(J(M))) = 0. Whence J(N)|f(J(M)) = 0, and so
J(N) = £(I(M)).

Now suppose that one of the above conditions is satisfied. We
want to show that v(M) = qm(J(R)). Clearly v(M) is contained in
rM(J(R)). And if m € rM(J(R)) then Rm is an R|J(R)-module and hence a

V-module, therefore Rm € »(M), i.e. m € v(M). Thus v(M) = rM(J(R)). a
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Corollary 7.1.4: Let R be a ring with R|J(R) semisimple. Then

v(M) = Soc(M) = qw(J(R)).
Proof: By Proposition 7.1.3 and [2, Proposition 15.17]. o

Proposition 7.1.5! The following conditions on a ring R are

equivalent:
(1) R is a left V-ring.
(ii) gv is closed under injective envelopes.

Proof: (i) — (ii): Clear, since gu = R—mod, when R is a left V-ring.
(ii) — (i): Let S be a simple R-module. Since E(S) is a cofinitely
generated V-module, it is semisimple by Proposition 1.1. Therefore

S = E(8) and hence S is injective. Whence R is a left V-ring. |

Proposition 7.1.6: The following conditions on a ring R are

equivalent:
(1) R is a left V-ring.
(ii) R is a left GV-ring and gv is closed under extensions.

Proof: (i) — (ii): Clear, since gv = R-mod, when R is a left V-ring.
(ii) — (i): Let S be a simple left R-module and consider the exact
sequence 0 — S — E(S) — E(8)|S — 0. Inasmuch as R is a left
GV-ring and E(S)|S is a singular module, it follows from

Proposition 6.3 that E(S)|S is a V-module. Whence E(S) is a cofinitely
generated V-module and hence semisimple by Proposition 1.1. Therefore
S = E(S) and S is injective. Whence R is a left V-ring. a

Proposition 7.1.7: For a left non-singular ring R the following

statements are true:



87

(i) R is a left SI-ring if and only if Z(L) € Soc(L) for every left
R-module L.

(ii) R is a left GV-ring if and only if Z(L) € v(L) for every left
R-module L.

Proof: See Proposition 5.1.6 (ii) and Proposition 8.4. o

Now, as in [48], let gc’ gf’ gn’ gss and respectively ga denote

the class of cyclic, finitely generated, noetherian, semisimple,
respectively artinian R-modules, and let gs denote the class
constituted by all simple R-modules and the zero module. Define the

classes ZA and the functions GA in R—mod as follows:

™= {M:VNcM MNe C,} and @, (M) = N{N : NS M and M|N € g},

where A stands for any one of the symbols c, f, s, ss, a or v. Also

let T; = (M : J(M) = M}.

It was proved in [48, Proposition 1.3] that for any ring R,

S5 In the next proposition we show that gu =1,

where A stands for one of the symbols c, f, n, s or ss.

Proposition 7.1.8: 1” = T°.

Proof: Since every simple R-module is a V-module then clearly gs [= gy

3

and ¥ ¢ gs. Conversely, if there is an R-module M with M € gs and

M e Zv’ then there exists a proper submodule N of M with M|N e gu'
Since V-modules have maximal submodules, let L|M be a maximal submodule

of M|IN. Then L is a proper submodule of M with M|L e gs’ which is a

clear contradiction. o



88

Remarks: (i) Since EJ ={M:JM =M})={M: VN c M, M|N ¢ gs}.

Then zv = Es

= !J' Whence by [48, Corollary 1.2(i)] gu is a torsion
class.

(ii) Since the class of V-modules is closed under submodules it
follows from [48, Proposition 1.5] that Gy is a radical. And we have
the following:

Proposition 7.1.9: TFor any R-module M we have

IM) =G (M) =G, (M) =G, (M.

Proof: GU(M) ={N : NS M and M|N ¢ gv}. Clearly if I is a maximal
submodule of M then Gu(M) € L, and hence GU(M) € J(M). Conversely, if
N is a submodule of M with M|N « gv’ then N is an intersection of
maximal submodules of M, thus J(M) € N. Whence J(M) < Gv(M)' o

Following K. Varadarajan [48, Definition 2.3], a class ¢ of
modules is said to have the lifting property (L.P) if M —Qa N— 0 is
exact in R-mod, and B € N, B € C implies the existence of an A € M with
A € ¢ and §(A) = B.

It was proved in [48, Theorem 2.6] that for a ring R the following

are equivalent:

(i) R is semisimple artinian.
(ii) The class gss has the L.P.
(iii) The class gs has the L.P.

For left V-rings we obtain the following.

Proposition 7.1.10: For any ring R the following are equivalent:

(1) R is a left V~-ring.

(ii) The class gv has the L.P.
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Proof: (i) — (4i): Since gv = R-mod, when R is a left V-ring.

(ii) — (i): First we show that v(M) # 0 for any non-zero left
R-module M. Let M be a non-zero left R-module and let 0 # x € M.

Since Rx is finitely generated, it has a maximal submodule L. If

S = Rx|L, then S is a simple R-module and hence a V-module. By (ii)
and the exactness of the sequence Rx~J£+ RkIL = 8 — 0, there exists a
submodule N of Rx with N € gv and §(N) = S. Now, since N is a
V-module, v(Rx) # 0, and since v is a preradical, »(M) # 0.

Now, we want to show that every left R-module is a V-module.

Suppose M is a non—zero left R-module with v»(M) # M. Then

N MIQ(M) # 0 and hence v(N) # 0 by the earlier paragraph. ILet

x + v(M) be a non—zero element of v(N). Then Rx is a left

P
V-module. If the map # : M — M|v(M) denotes the canonical mapping,
then the sequence n—l(RQ) Ql» Rx — 0 is exact, where ' = nln—l(Rg).
Now, since Rx € gv’ there exists a submodule A & n_l(RQ) S M with
Ae gu and 77(A) = Rx. But since A is a V-submodule of M, A < v{M).
And since v(M) € Ker(n'), 51'(A) = 0; whence Rx = 0, a clear

contradiction. Thus v(M) = M for every left R—modﬁle M. Whence R is a

left V-ring. o

Section 2. wy-lLoewy series.

The socle series for a module M is defined transfinitely by
SocO(M) = 0, Soqm+1(M)|Soca(M) = Soc(MlSoca(M)) and, if « is a limit

ordinal, Soc (M) = U Soc,(M), see [17, P.470]. If M = Soc (M) for
[ Bl B fo1

some ordinal «, M is called a Loewy module [9], [20] and its Loewy
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length is the smallest such ordinal «. A ring R is called a left Loewy
ring (or said to be left semi—artinian) in case RR is a Loewy module
or, equivalently, every non-zero left R-module contains a simple
submodule, such rings were also called left socular rings by C. Faith
in [17].

Loewy rings and Loewy series have been studied by many authors
(e.g. H. Bass [7], S.E. Dickson [1B], M Teply [45], C. Nastasescu and
N. Popescu [33], T. Shores [42], [43], L. Fuchs [20], V.P. Camillo and
K.R. Fuller [9] and John Dauns [15]).

The aim of this section is to introduce the notion of w-Loewy
series, v-Loewy rings and obtain results similar to known results on
the usual Loewy series and Loewy rings.

Definition 7.2.1: Let M be a left R-module. The v-Loewy series for M

is defined transfinitely by

vO(M) =0
Va+l(M)|va(M) = U(Mlua(M)), and
Ua(M) = U v (M), if o is a limit ordinal.
Bla B

The set {vi(M)}i is sometimes called the ascending v-Loewy chain of M.
For each module RM there is a smallest ordinal A, not exceeding
the cardinality of M, such that VA(M) = VA+1(M). In this case A = A(M)
will be called the v-length of M (is also called the v-Loewy length of
M. If uA(M) = M, we shall say M is a v-Loewy module (or a
semi-V-module). A ring R is called a v-Lowey ring (or a semi-V-ring)

if RR is a v-Loewy module.
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The functor v on R-mod defined by
v(M) = UA(M)(M)
is the smallest radical such that v < v. A module M will be called a

v-module if v(M) = M. We state some useful remarks:

Remarks 7.2.2: (i) Soca(M) < va(M), Vot

(ii) Each v, is a left exact preradical.

(iii) A left R-module M is a v-module if and only if M is a
semi-V-module if and only if every non-zero homomorphic image of M has
a non—zero V-submodule.

(iv) A ring R is a left semi~V-ring if and only if every left R-module
has a V-submodule, if and only if v(M) is essential in M, for every
left R-module M, if and only if every left R—module is a semi~V-module.
(v) v is a left exact radical.

(vi) v(M) is an essential submodule of v(M).

(vii) For every left R-module M, v(M) is the smallest submodule L of M

such that M|L € Eu (i.e. v(M|L) = 0).
Next we give an example of a left semi~V~ring which is not left

semi~artinian. Thus there are V-modules with zero socle.

Example 7.2.3: consider the ring R = k[y,D] of differential

polynomials over a universal field k. Iﬁ [14], Cozzens has proved that
R has the following properties:

(i) R is a left Noetherian ring.

(ii) R is a left V-ring.

(iii) R is not regular.
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It follows from (ii) that, every left R-module is a V-module.
Thus R is a semi-V-ring. If R is left semi—artinian then Soc(M) is
essential in M, for every left R-module M. Inasmuch as R is left
Noetherian left V-ring, and hence every semisimple module is injective,
it follows that Soc(M) is a direct summand of M, for every left
R-module M. Thus M = Soc{(M) for every left R-module M, and therefore R
is a semisimple ring - a clear contradiction with (iii). Hence R is
not semiartinian. Thus there exists a left R-module M with soc(M) = 0,
in particular R is not a right perfect ring. o

Recall that a module M is called a-weakly GV-module (WGV-module)
if every proper essential submodule of M is an intersection of maximal
submodules. A ring R is said to be a left WGV-ring if the left

R—module RR is a WGV-module.

Proposition 7.2.4: If M is a left WGV-module then vz(L) = L, for every
homomorphic image L of M. In particular every WGV-module is a
semi—V-module.

Proof: Let M be a WGV—- module and 1L be a homomorphic image of M. By
Proposition 3.21 (i), L is a WGV-module and by Proposition 3.19,
L|Soc(L) is a V-module. Since Soc £ v, it follows that L|v(L) is a
V-module, and hence vz(L) = L, Whence M is a semi—-V-module. |

Corollary 7.2.5: If R is a left WGV-ring then uz(M) = M for every left

R-module M. In particular (M) is essential in M for every RM'

In {7], Bass proved that a ring R is left perfect (i.e. J(R) is

left T-nilpotent and R|J(R) is semisimple) if and only if R is right
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Loewy and contains no infinite set of orthogonal idempotents. In [33],
Nastasescu and Popescu proved that a ring R is right Loewy ring if and
only if its radical J is left T-nilpotent and R|J is right Loewy. 1In
the next proposition we extend this result to semi-V-rings.

Proposition 7.2.68: The following conditions on a ring R are

equivalent:
(1) R is a left semi-V-ring.
(ii) J(R) is right T-nilpotent and R|J(R) is a left semi—~V-ring.

Proof: (i) — (ii) (Adopted from [7, Theorem P]).

Let {Ua}a be the ascending v-Loewy series of the left R-module RR'
Since R is a left semi-V-ring, R = v for some ordinal «. TFor each
a € R, define h(a) to bg the smallest ordinal « such.that ae Vh(a)'
Then it is easy to see that h(a) is not a limit ordinal, for any a € R.
Write h(a) = 8 + 1, for some ordinal 8, and let J =‘J(R). Inasmuch as
Uﬁ+lluﬁ = U(Rluﬁ) is a V-module, it follows that J- (vﬁ+1|vﬁ) = 0, and
hence J-vp+l (= Uﬁ' Thus h(ba) < h(a) for every b € J, unless a = 0.
Now, suppose that there is an infinite sequence:{an} of elements of J
such that a -8y # 0 for every n € N. Then there is a strictly

decreasing chain of ordinals h(al) > h(azal) Doeee D h(an...a > e

1)
which is impossible. Hence J(R) is right T-nilpotent. Clearly R a
left semi-V-ring implies that R|J(R) is a left semi-V-ring.

(ii) — (i): We want to show that v(M) # 0 for every non—zero left
R-module M. ILet RM be a non—zero module and suppose J(R)N # 0 for

every submodule N of M. Then there exists a, € J(R), such that

1
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alM # 0. Thus RalM # 0, and there is a, € J(R) such that azalM # 0.
Proceeding this way, we can find 81,85,... & sequence of non—zero
elements of J(R) such that & -8y # 0 for each n € N, a contradiction
with the T-nilpotence of J(R). Thus there is a non—zero submodule N of
M with J(R)N = 0, i.e. N can be regarded as an R|J(R)-module, and hence
N has a V-submodule, i.e. 0 # v(N) € v(M). a

Corollary 7.2.7: If R|J(R) is a left V-ring. Then the following

conditions are equivalent:

(i) R is a semi-V-ring.
(ii) J(R) is right T-nilpotent.
(iii) Every left R-module has a maximal submodule.

Proof: Since R|J(R) is a left semi-V-ring, the equivalence between (i)
and (ii) is an immediate consequence of Proposition 7.2.6.

(ii) — (iii): ZILet M be a non—zero left R-module. From the right

T-nilpotency of J(R), it follows that J(R)M # M, and hence M|J(R)M is a
non-zero R|J(R)-module.  Since R|J(R) is a left V-ring, M|{J(R)M has a
maximal submodule, N|J(R)M say. Hence N is a maximal submodule of M.

(iii) — (3i): a well-known result, due to H.Bass. However the proof

included here is due to Rosenberg and Zelinsky [37]). Let

XeseresXpgeon be a countable basis of a free module P, let
CYERRRPLSPRRY be an infinite sequence of elements of J(R), and let f be
the element of S = EndRP mapping Xy Boax, 4, 1= 1,2,... . Since

J(HomR(P,P)) = HomR(P,J(R)'P) (see[l7, Corollary 22.3]), it follows

that f € J(8), hence (1-f) is a unit in §. lLet y = (l-f)_lxl, and
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o
write y = 2 b,x, withb, € R, b_ =0, n 2 k.
jop i i n
Then Xy = (I-By = (2 bixi) - (Z biaixi+l)
= Pyxy ¥ by T Byapu + Z (by by A, %

since {xn : n2 1} is a free basis, then b1 = 1 and bn = a8y ccra g,

n 2 2, Thus bk = a8y vty g = 0. o

Proposition 7.2.8: If R is a left Noetherian, left semi-V-ring then

every R-module has a maximal submodule.

Proof: Let {va(RR)}a be the v-Loewy series associated with the left
R—-module RR. Since R is‘a left semi~V-ring, R = UA(R), for some
ordinal A, and since R is left Noetherian A must be finite. We claim
that UA(M) = M for every left R-module M. Suppose on the contrary
VA(M) # M for some non—zero left R-module M. Ilet y € M\vA(M). Then

y & vA(Ry), since v, is a preradical. Let g : R — Ry be the obvious
epimorphism. Then g(uA(R)) [« UA(RY), and hence Ry = g(R) =

g(vA(R)) (= UA(Ry), which implies that y UA(RY), a contradiction.
Now, if M is a non—zero V-module then clearly M has a maximal
submodule. Otherwise M has a v-Loewy series of length n < A, for some
positive integer n > 1, and in this case Mlvn_l(M) = un(M)|un_1(M) is a
V-module and so has a maximal submodule, Nlun_l(M) say. Thus N is a
maximal submodule of M. o

&

Proposition 7.2.9: For a commutative Noetherian ring R the following

conditions are equivalent:

(1) R is a semi—-artinian ring.
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(ii) R is a semi-V-ring.

(iii) Every R-module has a maximal submodule.
(iv) J(R) is T-nilpotent and R|J(R) is regular.
(v) R is a perfect ring. |

(vi) R is an Artinian ring.

“

Proof: The equivalence between (iii) and (iv) is satisfied for any
commutative ring, see Koifman’s theorem  [31, Theorem 1.8]. For the
equivalence between (iii), (v) and (vi), see Hamsher’s result

[26, Theorem 1]. For the equivalence between (i) and (iii), see [33,
Corollary 3.1].

i) — (ii): Since every simple module is a V-module.

(ii) — (iii): By Proposition 7.2.8. o

Section 3: Chains of modules with V—quotients.

In this section we will study finite or infinite sequences of

submodules, of a given module M, of the form {0} = M0 < M1 € +++ or of
the form M = M0 2 M1 2 +++, where all the factor modules Mi+1lMi or

MllM1+1 are V-modules. And we will generalize those results which have

been obtained in [15].

From now on it will be assumed that R|J(R) is a left V-ring,

J = J(R) and J¥

% = p).

the k—th power of J, where k > 0 (if k = 0 we define

Theorem 7.3.1 Let R be a ring with R|J(R) a left V-ring and M be a

left R-module. Then the following hold for all integers k = 0,1,2,...

(i) v (M) = AnnM(Jk) = {meM: JFn = 0}.
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(ii) If {0} = My SM; €M, € --+ is any series of submodules of M

with V-quotient modules Mk+1!Mk for k = 0,1,2,... , then M, & uk(M).

k
Proof: (i) If k = 0 then by definition JO = R and uO(M) = 0, and

hence vO(M) = AnnM(JO)‘= 0.

1

Assume (i) is true for k - 1, i.e. vk_l(M) = AnnM(Jk— ). Let

L= UR(M)|Uk~1(M)- Since L is a V-module, J(L) = 0 and hence

- . _ k-1
J(R)L = 0. Whence J uk(M) < vk~1(M)' But vk_l(M) = AnnM(J ) and

k-1 k-1

hence J-uk(M) S Ann, (I ), i.e. J 'J°vk(M) = 0. Thus kak(M) = 0,

M
i.e. vk(M)S AnnM(Jk). On the other hand, since Jk°AnnM(Jk) =0, it

k-1

follows that J ‘J‘ADHM(Jk) = 0, whence J°AnnM(Jk) € Ann (Jk—l) and

M

the module AnnM(Jk)lAnnM ) can be regarded as an R|J-module. Since

R|J is a left V-ring, AnnM(Jk)lAnnM(Jk—l) is a V-module. From the

induction step, it follows that AnnM(Jk)luk~1(M) is a V-module and

v, (M)
k
hence AnnM(Jk)[uk_l(@) < u(Mlvk_l(M)) = ;EZITMT . Therefore,

Anny (7)€ v, (M). Whence v, (M) = Anny (7).
(ii) Clearly M0 = vO(M) = 0 and ul(M) = p(M) 2 Ml’ Assume

k-1 € Uk-l(M)' Since Mkle~l is a V-module, it follows that

J'M €M _, and hence that JM < vk_l(M). Thus, JkMk c
7l 00 =0, i.e. < A (3F), therefore M €, (M) by (i). @

Corollary 7.3.2: If R|J(R) is semisimple, then the following holds for

all integers k = 0,1,2,...

(i) Soc, (M) = Ann, (3%).

(ii) If {0} = MO < Ml € +++ is any series of submodules of M with
semisimple quotient modules Mk+1]Mk for k = 0,1,2,..., then

Mk c Sock(M).
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Proof: Since R|J(R) is semisimple, v(M) = Soc(M) for every R-module M
and hence vk(M) = Sock(M) for every k = 0,1,2,... . 0]
This is Theorem 2 in [15].

Corollary 7.3.3: If J is nilpotent with index of nilpotency equal to n

n—1

(i.e. %% 0 and I

0). Then the v-length of R is exactly n. In
particular the v-length of any left R-module is at most n.

Definition 7.3.4: For a left R-module M over an arbitrary ring R, set

JO(M) = M, Jl(M) = J(M) the intersection of all the maximal submodules
of M ( the empty intersection is by convention all of M). For any
positive integer k = 1,2{... the submodule Jk+1(M) is defined
inductively by Jk+l(M) = J(Jk(M)). If Ja(M) has been defined for all
ordinals « < 8 where 8 is a limit ordinal, set Jﬁ(M) = ﬂ{Ja(M) P < B}
and define Jﬁ+1(M) to be Jb+1(M) = J(Jﬁ(M)). The series

M= JO(M) 2 Jl(M) 2 -+« is called the upper Loewy series of M over R
(see [15]).

Remark 7.3.5: If J = J(R) then J© = 3, for every integer k = 0,1,2,...

(since R|J(R) is a left V-ring, J(M) = J(R)M for every left R-module M.
Thus Jk+1(R) = J(R)-Jk(R), and by inductive hypothesis,

_ .k _ Lk+l
Jk+l(R) =JJ =J ).

Theorem 7.3.6: Let R be a ring with R|J(R) a left V-ring. Write

J = J(R). Then the following hold for all k = 0,1,2,...

(1) Jk(M)IJk+l(M) is a V-module.
(ii) Jk(M) = Jk(R)M.
(iii) IfM= M0 2 M1 2 +++ is any series of submodules of M with

each quotient MkIMk+l is a V-module for k = 0,1,2,... then Mk 2 Jk(M).
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Proof: (i) J(Jk(M)IJk+1(M)) = J(Jk(M)]J(Jk(M))) = 0 and hence
J(R)’(Jk(M)le+1(M)) = 0 and consequently the module Jk(M)IJk+1(M) can
be regarded as an R|J(R)-module and hence a V-module, since R|J(R) is a
left V-ring. |

(ii) If k = 1, then Jl(M) = J(M) and Jl(R)M = J(R)M = J(M), since

R is a left V-ring. Assume by induction that Jk_l(M) = Jk_l(R)M. Then

Jk(R)M = J(Jk_l(R))M
= J(R)-J,_,(R)M, by Proposition 7.1.3 (i — ii).
= J(R)'Jk—ch)’ induction step.
= J(Jk_l(M)), since R|[J(R) is a left V-ring.
= Jk(M).
(iii) If k=0, Jy(M) = M = My

Assume it is valid for k - 1, i.e. Jk_l(M) €M _,. Since Mk—lle
is a V-module, it follows that J(Mk—lle) = 0 and hence J(R)°Mk_1 [ Mk'
Since Jk(M) = J(Jk_l(M)) = J(R)'Jk_l(M) we get Jk(M) (= J(R)Mk_1 = Mk' o

Corollary 7.3.7: For an arbitrary ring R the following conditions are

equivalent:

(1) R|J(R) is a left V-ring.

(ii) For any left R-module M and any submodule N of M,
Jk(MlN) = (Jk(M) + N) [N, for every non—negative integer k.
(iii) For every left R-module M and every k = 0,1,2,...
Jk(M) = Jk(R)M.

Proof: An immediate consequence of Proposition 7.1.3 and

Proposition 7.3.6. o
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