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Abstract 

In any deep beam or slab,a part of the out of plane load is supported by bending 

action, and part is carried by Arching, or Compressive Membrane Action (CMA). 

This work is an investigation of CMA in sandwich type deep beams and slabs 

comprised of two steel plates on the exterior surfaces with concrete between. A 

parametric study utilizing the non-linear finite element program FELARC (Finite 

Element Layered Analysis of Reinforced Concrete) of a concrete beam with a span 

to depth ratio of 4, loaded with a concentrated load at mid-span is conducted. The 

parameters varied, in order of importance, include span to depth ratio, in-plane 

stiffness at the support, amount and location of longitudinal steel, and type of 

shear connection between the steel and concrete. 

An increase in the span to depth ratio was found to result in a proportional 

decrease in the load carried by CMA. The in-plane stiffness at the support was 

varied from a small value to infinitely stiff, resulting in increased ultimate load 

capacity. An increase in the amount of longitudinal reinforcing steel both top and 

bottom was found to result in only a small increase in the ultimate load capacity. 

An analytical model developed for the simple case of a rigidly restrained, un-

reinforced concrete beam is shown to give comparable results to the finite element 

model, both for ultimate load capacity and deflection. 

A three dimensional finite element model of a one way slab with three one meter 

spans, a thickness of 0.25 m, and steel plates amounting to 2.6% reinforcement both 

top and bottom, is analyzed for a concentrated load at the middle of the centre 

span. Comparison of principal compression stress vector plots from the non-linear 
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three dimensional case with the corresponding non-linear two dimensional case 

show that the load carrying mechanism and stress distributions are substantially 

different. In the two dimensional case, load can only be transferred directly to the 

support, however in the three dimensional case load is transferred perpendicular 

to the supports, resulting in what is essentially two way arching, ie. - a dome effect. 

The use of two dimensional models to study three dimensional effects is of 

marginal benefit because these load carrying mechanisms are sufficiently different 

as to render any comparison questionable. However, because the mechanisms are of 

the same type, it is expected that the relative importance of the factors considered 

in the two dimensional study would be the same in the three dimensional case. 

It is concluded that when testing physical specimens or conducting numerical 

analysis of deep beams and slabs, it is of utmost importance to properly model the 

support conditions and load application details. In particular, improper modelling 

of the in-plane restraint at the free edges of the specimen could cause a serious 

underestimation of the load carrying capacity and ductility of such members. When 

designing deep beams and slabs, consideration of the beneficial effects of OMA 

could result in considerable cost savings. 

Recommendations are made regarding the development of a three dimensional 

non-linear finite element program. A very stable solution technique and concrete 

model with the capability of modelling tension stiffening and the descending portion 

of the compression side of the stress-strain curve should be implemented, as should 

an interface element for bond slip modelling. A post processing program capable of 

selective printing and plotting of results is considered mandatory in order to allow 

analysis of the results. 
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What saved the Doric temple from structural collapse was that the stone 

beams were siort and deep and, as they cracked, they turned the!:-

selves into arches. 

J. E. GOrdon, Structures (or Why Things Don't Fall Down) 
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Notation 

a depth of concrete strut 

b depth of beam 

DOF degree of freedom 

ECS secant stiffness of concrete at maximum compressive stress 

EO tangent stiffness of concrete at zero strain 

E3 elastic modulus of steel 

strain hardening modulus of steel 

fy yield strength of steel 

f C, uniaxial compressive strength of concrete 

H horizontal reaction 

1 length of beam 

11 original length of compression strut 

12 deformed length of compression strut 

Mn minimum stress 

Mx maximum stress 

P applied point load 

Ui translational DOF at node i 

Vi translational DOF at node i 

w width of beam 

x, y, z cartesian coordinate system 

ii original height of compression strut 

xli 



Y2 deformed height of compression strut 

a ratio of c1/o 2 

/3 cracked shear retention factor 

/3 angle of rotation of compression strut 

S deflection 

Al change in length of compression strut 

Ay vertical deflection of strut 

strain 

CCU concrete strain at maximum compressive stress 

maximum elastic tensile concrete strain 

Etu ultimate concrete strain in tension 

CU ultimate strain at failure 

o angle between the undeformed strut and horizontal 

Oi rotational DOF at node i 

stress 

ax stress in x direction 

0y stress in y direction 

°i' °2 principal stress 



Chapter 1 

Introduction 

1.1 General 

The work presented herein is a parametric study of compressive membrane, or arch-

ing, action in deep beams and slabs using the finite element method. Parameters 

under consideration include the amount of in-plane restraint, amount of reinforcing 

steel both top and bottom, amount and type of shear reinforcing steel, and the span 

to depth ratio. The finite element method has been used exclusively, no physical 

specimens were tested. 

Two nonlinear finite element programs were used in this study. FELARC (Finite 

Element Analysis of Reinforced Concrete) developed by G. A. M. Ghoneim at the 

University of Calgary was used to conduct a parametric study of a two dimensional 

concrete beam. This program was modified to allow it to interface with a specially 

developed plotting program in order to allow direct plotting of deformed shapes, 

crack orientations, principal compressive stresses, and material states. 

The other program used in this work was ANSYS, a powerful commercial finite 

element package developed by Swanson Analysis Systems. This program is available 

for academic use at the University of Calgary, and was used to conduct a study of a 

three dimensional concrete slab. 

Compressive membrane action (CMA) has been recognized and understood, at 

least qualitatively, almost since reinforced concrete was first utilized. However, CMA 
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is generally ignored in design because of difficulties in analysis, and because certain 

parameters are difficult to quantify, vary a great deal from case to case, and have a 

great effect on the load carrying capacity. By far the most important is the restraint 

provided by neighbouring beams or slabs in a continuous system. The amount of 

longitudinal (in the case of a beam) or in-plane (in the case of a slab) restraint 

provided by members in adjacent bays depends upon the loading conditions, the 

span to depth ratio, the presence or absence of cracks, and the support conditions, 

in addition to many other factors. 

The situation is summed up very well by Cope and Clark (1984), who state: 

"Despite considerable research effort, the analytical solutions devel-

oped were too complicated for use in design and depend on parameters 

that are difficult to quantify in actual slab systems. . . . In general, there-

fore, compressive membrane enhancement is not explicitly taken into 

account by codes of practice for building slabs. . . . As the results of more 

realistic analyses and large scale tests become available, it is likely that 

future design practice will take more note of the effects of membrane 

enhancement. 

In fact the current bridge design code in the province of Ontario (1979) allows 

for CMA in the design of reinforced concrete bridge decks. A substantial reduction 

in the amount of transverse reinforcing steel is the result of consideration of the 

beneficial effects of CMA. 

The present study has been partially funded by the Centre for Frontier Engineer-

ing Research (CFER) who are investigating the behaviour of deep (span to depth 
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ratios. of four to six) steel-concrete panels in which the concrete is sandwiched be-

tween two exterior steel plates. These panels, as illustrated in Figure 1.1 (after 

Maddock and Bruce, 1984), have recently been proposed for use in Arctic Offshore 

applications, mainly as exterior members of bottom founded exploration and produc-

tion platforms for the oil industry. In this application, the panels would be subjected 

to very high intensity out of plane ice forces. Another possible application is in the 

protection of military targets from missile attack. 

Sandwich construction techniques are used in many applications where high 

strength and/or stiffness in combination with lightness are required. Examples 

abound in everyday life: 

• doors made of plywood and paper 

• corrugated cardboard 

• sailboats made of fiberglass on balsa 

• the Space Shuttle is fabricated of sandwiched aluminum panels 

The anticipated advantages of steel and concrete panels include: 

• good resistance to local indentation and buckling 

• high load capacity 

• excellent resistance to brittle failure at low temperatures and high loading rates 

• excellent ductility with little reduction in load capacity 

9 no excess weight of concrete cover over the steel 
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• the steel provides a self supporting formwork for ease of construction 

• allows rapid construction in conventional facilities 

Other groups of researchers around the world are investigating this method of 

construction, however to date there has yet to be a major structure fabricated in 

this manner. Dome Petroleum's very successful Single Steel Drilling Caison (SSDC), 

a bottom founded arctic drilling platform designed and built in 1982, has sandwich 

type exterior ice resisting walls made of concrete and steel. However, the concrete 

is simply a load spreading medium to the load resisting steel beams and bulkheads 

behind. The design did not rely on composite action at all, and therefore CMA was 

not considered. 

1.2 Compressive Membrane Action 

Compressive membrane action is a term usually used to refer to a three dimensional 

structure, for example a slab. Arching action is usually used to refer to a two 

dimensional member such as a beam, however the two effects are essentially the 

same. For the sake of simplicity both will be collectively referred to as Compressive 

Membrane Action (CMA) in this work. 

CMA is a phenomenon whereby out of plane loads are resisted primarily by in-

plane compressive stresses rather than by bending and shear stresses. It is somewhat 

analogous to tensile membrane action, but with a subtle difference. Tensile mem-

brane action can occur for any ductile material provided suitable support conditions 

exist. However, CMA can only occur if the material has a tensile strength lower 

than its compressive strength, such as concrete. It is because of this dependance 
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Figure 1.2: Simplified Model of Compressive Membrane Action 

upon non-linear behaviour that a linear-elastic beam analysis, or even a deep beam 

analysis, will not provide proper results where OMA is involved. 

The simplest way to visualize compressive membrane action is to imagine two 

bricks wedged between two immovable walls as shown in Figure 1.2. A load applied 

to the bricks will be resisted by compressive forces only as indicated. As long as 

the compressive stress does not exceed the crushing strength of the material, the 

structure will resist load and will not collapse. 

This simplified discussion can be applied to concrete beams as well. Suppose 

that, instead of two bricks, we have an unreinforced concrete beam wedged between 

immovable supports as shown in Figure 1.3. As load is applied to the concrete beam, 

a tensile crack will develop in the bottom of the member below the load and the beam 

will separate from the supports at the top of the member. This situation is analogous 

to a tied arch. If the immovable support is replaced by an infinitely stiff unbonded 

reinforcing rod as shown in Figure 1.4, the net result will be the same. Therefore it 
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Figure 1.3: Wedged Concrete Beam 

can be seen that the effect of in-plane restraint at the ends of the beam is similar to 

longitudinal reinforcing steel in the bottom of the member. 

In reality an immovable support is impossible to obtain, but several situations 

provide sufficient fixity to allow CMA to develop. For example, a continuous concrete 

beam with similar loading in each span as shown in Figure 1.5 will behave almost as 

if it had immovable supports at each reaction point. Because of symmetry, a vertical 

line above each support will neither rotate or translate, and therefore each span can 

be considered to have immovable supports. CMA will be present, cracks will develop 

in the locations indicated on Figure 1.5, and the ultimate strength of the beam will 

be limited by the compressive strength of the concrete. Any steel provided in the 

member will be more or less redundant. Steel would possibly alter the compression 

field in the concrete but would not appreciably alter the compression membrane load 

of the member. It is possible that the steel could develop tensile membrane action, 

and if there were enough steel in the beam, the load carried in tensile membrane 
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Figure 1.5: Continuous Concrete Beam 
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action could exceed that of CMA. 

Similarly, a continuous concrete beam with only one span loaded will also develop 

CMA. Because symmetry of loading is not present in this case, there would be some 

translation and rotation of the support. The supports could no longer be considered 

as immovable, but would have some finite stiffness. Depending upon the actual 

amount of in-plane restraint provided by the continuous beam, a considerable amount 

of load may be carried by CMA. 

It is very easy to extend these concepts into three dimensions and consider a slab 

instead of a beam. If a slab is partially or completely restrained against in-plane 

movement on its boundary, for example by neighbouring slabs or beams, then CMA 

will develop. Once again, the amount of load that can be carried will depend upon 

the amount of in-plane restraint provided at the boundary of the slab. 



Chapter 2 

Literature Review 

2.1 Introduction 

Two subject areas will be covered in this literature review. The first is compressive 

membrane action (CMA), and the second is sandwich beams and slabs. In conducting 

this literature review, it was discovered that there has been virtually no overlap of 

the two subjects. That is, investigators studying CMA have not considered sandwich 

panels, and vice versa. This is not surprising because, for the most part investigators 

in the area of CMA have dealt with conventional bridge decks and building slabs. 

On the other hand, work in the area of sandwich panels is fairly recent, and has 

concentrated mainly on understanding the behaviour of these panels in general terms, 

in particular on understanding the influence of various types of shear connectors. 

However, the majority of research into CMA has direct application to sandwich 

beams and slabs. 

2.2 Compressive Membrane Action 

An excellent historical review of work done in this area is provided by Braestrup 

(1980), and the following is a brief summary. 

The early pioneers of reinforced concrete understood the concepts of CMA as 

illustrated in texts by Westergaard and Slater (1921) and Taylor, Thompson and 
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Smuiski (1925). CMA was relied upon even by early design codes, which allowed 

slabs to be designed which contained less longitudinal reinforcing steel than would 

be required by a simple bending calculation, using the given loads, safety factors, 

and material properties. The codes indirectly recognized that some load carrying 

mechanism, other than bending, was contributing to the resistance of the member. 

After World War Two, most experimental investigations were designed to test the 

validity of yield line theory. Consequently, all possible care was taken to prevent 

the occurrence of membrane forces. Ockleston (1955) provided the impetus for a 

resurgence in research in this area when he reported on tests conducted on floor 

slabs of a three storey reinforced concrete building. He recorded collapse loads of 

three to four times the capacities predicted by yield line theory, and identified the 

cause as compressive membrane action. 

The American Concrete Institute (ACI) annual convention in 1971 addressed the 

questions of cracking, deflection, and ultimate load of concrete slab systems. The 

papers presented at this conference, as well as several others, were published in ACI 

publication SP-30. Some of these papers are reviewed here. 

Brotchie and Holley (1971) conducted an extensive series of tests on 45 square 

slabs. Parameters varied included span to depth ratio, reinforcement ratio, and the 

boundary support conditions. In summary they found: 

• An increase in the in-plane restraint at the boundary increased both the load 

capacity and the stiffness of the slab. 

• For unreinforced specimens with in-plane restraint, the increase in capacity is 

proportional to the thickness cubed. 
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• The increase in capacity with increasing reinforcement ratio is less marked. For 

example, with a span to depth ratio of five, the increase in capacity provided 

by 3.0% reinforcing steel is only 50% above the unreinforced case. 

• For a span to depth ratio of five, the capacity of the unreinforced restrained 

slab is 1.8 times that of the simply supported case with 3.0% reinforcing steel 

on the bottom. 

• For thin slabs it is essential to provide full edge restraint in order to develop 

membrane action. However, for thicker slabs some displacement at the edges 

may be tolerated without significantly reducing the load capacity. 

• For a span to depth ratio of five, the loading intensity is of the same order of 

magnitude as the induced flexural stress. The effect of normal stress on the 

load capacity is significant. The plastic deformability of concrete in a triaxial 

state is large. 

The authors did not account for creep in their experiment, but anticipate that it 

will have most influence on thin slabs, and lesser influence on thick slabs. 

Hopkins and Park (1971) report the results of a quarter scale, nine panel rein-

forced concrete slab and beam floor designed with an allowance for membrane action. 

They point out that the entire slab must be designed as a unit, rather than taking 

each panel as a separate entity. The slab contained about 0.15% reinforcing steel in 

each of the two orthogonal directions in both the top and the bottom surfaces. The 

span to depth ratio of the centre panel was 32, and that of the edge panels was 23. 

The slab was supported at the intersection points of the beams. 
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The entire surface of the slab was designed to carry 800 pounds per square foot. 

As designed, the expected ratio of ultimate load to yield line theory load was 2.0 for 

the centre panel, 1.35 for the centre edge panels, and 1.0 for the corner panels. The 

actual measured ratios at failure were 2.18, 1.55, and 1.46 respectively. The authors 

concluded that design allowing for membrane action is possible, but that in practice 

the applicability will be limited to relatively thick, heavily loaded slabs with reliable 

in-plane restraint. 

Tong and Batchelor (1971) reported results of tests conducted on scale models of 

bridge decks with a span to depth ratio of 25. Point loads representing wheel loads 

were applied. It was found that OMA enhanced both the flexural and the shear 

capacity of the deck. If the steel reinforcement ratio was low, a flexural type failure 

resulted. If a higher reinforcement ratio was used, a punching shear type failure 

resulted. For each model the longitudinal and transverse reinforcement ratios were 

the same. 

In a continuation of the above work, Hewitt and Batchelor (1975) describe a ra-

tional approach for calculating the punching strength of slabs with known boundary 

restraints. They adopted and enhanced a failure model originally proposed by Kin-

nunen and Nylander (1960). After verifying the applicability of the model to simply 

supported slabs by comparing actual and predicted punching strength values for 165 

tests, they go on to compare results of several slabs with in-plane restraint. In both 

cases excellent agreement was obtained. 

In the process of analyzing the slabs with in-plane restraint, the authors show 

that considering a continuous slab as an equivalent slab simply supported at the line 

of contraflexure considerably underestimates the punching shear capacity of the slab. 
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The reason for this is that the beneficial effects of CMA are ignored. 

The results of Hewitt and Bachelor's work have been incorporated into the On-

tario Bridge Code (1979), resulting in a substantial reduction of the transverse rein-

forcing steel required in deck slabs of bridges designed and built in that province. 

Kirkpatrick, Rankin and Long (1984) report results of .twenty one-third scale 

tests on M-beam type bridge deck slabs. This type of bridge deck is standard in the 

United Kingdom, and essentially consists of precast, pretensioned, concrete beams 

supporting a cast in place reinforced concrete deck. The beam spacing was varied 

from 1.5 to 2.0 m, and the transverse reinforcement ratio was varied from 0.25% 

to 1.7%. The load was a simulated wheel load. The authors found that all panels, 

regardless of the reinforcement ratio, failed at about the same load. They go on 

to propose an equation for the ultimate shear force capacity based on a modified 

punching shear equation. Enhancement due to compressive membrane action is 

accounted for by an equivalent reinforcement parameter, and the actual transverse 

reinforcement ratio is neglected. 

Kirkpatrick, Rankin and Long (1986) furthered the above mentioned work by 

conducting full scale serviceability tests on a 160 nim thick reinforced concrete bridge 

deck of an M-beam type bridge. The beam spacing and reinforcement ratios were 

varied as they were in the previous tests. 

The authors concluded that initial cracking is independent of bar size and is 

mainly dependent on concrete strength. At service load all test panels were Un-

cracked. If the slab is overloaded and cracked, and subsequently reloaded to 1 and 

to 3.5 times the service load, the resulting cracks are 7 to 10 times smaller than 

those predicted by the current British Code (BS 5400). It is suggested that 12 mm 
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diameter bars at 150 mm spacing are more than adequate for both ultimate and 

service load behaviour for 160 mm thick slabs with beams spaced at up to 2.0 m. 

2.3 Sandwich Construction 

In a series of four reports prepared in the late 1970's, Matsuishi et. al. describe 

a comprehensive set of tests conducted on composite steel and concrete sandwich 

beams. 

The first of these reports (Matsuishi et. al., 1977) describes tests conducted to 

establish the ultimate strength of sandwich beams with various shear connection 

details. Each beam had a span of 2.25 m, depth of 0.4 m, and width of 0.3 m, 

resulting in a span to depth ratio of 5.6. Transverse diaphragms connected the top 

and bottom plates at the quarter points, and the beam was loaded at the centre line 

with a single point load. The simply supported beams had no in-plane end restraint 

whatsoever. The shear connectors examined included angles welded to the top and 

bottom plates transverse to the length of the beam, fiat bar stiffeners welded to the 

top and bottom plates in the longitudinal direction and headless shear studs made 

from reinforcing steel welded perpendicular to both plates. The authors concluded 

that: 

• Conventional reinforced concrete analysis agrees well with the results. 

• The manner of shear connection had little influence on the ultimate strength. 

• The depth of the section and the area of the tension steel are the most signifi-

cant factors with respect to the ultimate strength. 
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• Deformation before failure is very large and the structure can absorb a great 

deal of energy before failure. 

In the second paper (Matsuishi et. al., 1978) the authors performed a non-

linear finite element analysis using constant strain triangle elements. The effects of 

cracking, plastification of both steel and concrete, and slip between the steel and 

concrete were included. Excellent agreement with the test results of the first paper 

were obtained. 

In the third report (Matsuishi et. al., 1980) the effect of repeated loading was 

examined. It was concluded that, other than the possibility of developing a fatigue 

crack at the fillet weld joining the tension plate and the diaphragm, repeated loading 

did not have any effect on the behaviour of the members. 

Finally, the effect of a longitudinal diaphragm was examined (Matsuishi et. al., 

1980). The addition of a single longitudinal diaphragm, which essentially converted 

the member into a steel "I" beam with concrete at the sides, increased the ultimate 

capacity of the member by 100%. The amount of the increase was almost equal to 

the shear capacity of the added web, indicating that the member strength was still 

governed by it's capacity in shear. 

A special subsection of POAC (Port and Ocean Engineering under Arctic Condi-

tions) 87 addressed the issue of composite steel and concrete sandwich construction 

in offshore applications. Several informative papers were presented. 

Matsuishi and Iwata (1987) tested four types of members with various arrange-

ments of shear connectors loaded with both point loads and uniformly distributed 

load. In one series of tests "T" stiffeners running longitudinally were compared to 
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"T" stiffeners running transversely. It was found that the longitudinal arrangement 

increased the ultimate load carrying capacity by 53% for a point load and by 23% 

for a uniformly distributed load in comparison to the transversely oriented stiffeners. 

Several two span continuous beams were subjected to various'freeze/thaw cycles 

prior to testing to failure. It was found that freeze/thaw had no effect on the ultimate 

strength performance of the member. 

Zimmerman, MacGregor, and Adams (1987) report the results of two sandwich 

beams tested under a uniformly distributed load. Each seam had a depth of 250 nun, 

a width of 275 mm, and a span between the centre line of the' supports of 1000 mm. 

The bearing surface at the supports was 150 mm long, and the beam had an over-

hanging cantilever portion of 237 mm. Transverse diaphragms were provided at 

the quarter points. No other shear connection between the steel and concrete was 

provided. The only difference between the two specimens was in the details of the 

supports providing the reaction to the beam. In the first case steel rollers were used 

which eliminated any possibility of any horizontal reaction at the support. In the 

second case a teflon pad was used which provided a horizontal force of about 3% of 

the normal force. 

In the first case the member failed in bending, specifically the tension plate 

fractured, at a load of 8.2 MPa. In the second case, the member failed in shear at a 

load of 9.5 MPa. However, it did not collapse at this load. The test continued on and 

the load reduced to 7.5 MPa, and then gradually increased back to 9.5 MPa again. 

At this point the test was stopped because the deformation exceeded the limits of 

the load frame. The deflection in the second case was more than double that of the 

first case. This illustrates the sensitivity of beams of this type to the actual support 
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conditions. 

The authors go on to show that the bending moment capacity is accurately 

predicted using conventional reinforced concrete truss analysis. However, the shear 

capacity is more difficult to predict. An empirical approach based on Zsutty ( 1968) is 

shown to produce good agreement with the results, as, does an upper bound plasticity 

approach based on work by Nielsen and Braestrup (1978, 1984). 

O'Flynn and MacGregor ( 1987) report the reu1ts of seventeen beam type sand-

wich specimens loaded with a uniformly distributed load. The physical dimensions 

are similar to the specimens tested by Zimmerman and others, except the span varies 

from 1.0 m to 1.5 m. Stud shear connectors attached to both top and bottom plates 

are used to provide the shear connection between the steel and concrete rather than 

the transverse diaphragms as Zimmerman used. Ultimate strengths were virtually 

the same as those reported by Zimmerman. A third method of calculating shear 

force capacity based on a lower bound plasticity theory is shown to compare well 

with test results. 

Smith and McLeish (1987) report the results of tests conducted on a sandwich 

shell which had a constant radius of curvature in one direction of 1829 mm. The 

span of the shell was 2286 mm and the depth of the section was about 150 mm. 

A 2 mm steel plate was provided top and bottom. Shear connection was provided 

with transverse diaphragms spaced at approximately 75 mm. The behaviour of this 

shell was compared to that of an ordinary reinforced concrete shell which had similar 

geometry and arrangement of reinforcing, but had three times as much flexural steel. 

The load deflection curves are not appreciably different, except that the sandwih 

shell carried 19% more load than the conventional slab. The reason for the similar 
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behaviour in spite of the substantial difference in the amount of flexural steel is that 

the sandwich panel maximizes the lever arm between the two steel layers, whereas 

a conventional reinforced concrete shell has a large amount of concrete cover which 

reduces the effectiveness of the steel in bending. 

In addition to testing a sandwich shell, two flat slabs were also tested, each with 

a span of 2.8 m. "L" shaped stiffeners almost as deep as the section alternately 

connected to the top and bottom plates provided the shear connection. hi one panel 

these connectors were arranged transversely and in the other they were arranged 

longitudinally. Testing showed that the slab with the longitudinal arrangement was 

roughly 30% stiffer and carried 30% more load. Both tests were stopped prior to 

collapse for safety reasons. 

2.4 Summary 

The following points are particularly relevant to this study and bear repeating. 

• Hopkins and Park (1971) showed that when designing for CMA, the entire 

slab must be designed as a unit, rather than designing each individual panel 

in isolation. This is mainly because the boundary conditions at the panel 

interfaces are difficult to model. 

• Kirkpatrick, Rankin and Long showed that, in addition to benefiting the ulti-

mate load carrying -capacity, CMA also improves serviceability requirements. 

• The Ontario Bridge Code (1979), based on work done by Hewitt and Batchelor 

(1975) and others, incorporated CMA into the design requirements for the 
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transverse reinforcement of concrete bridge decks, substantially reducing the 

amount of steel required. 

• In the past ten years, most researchers investigating the behaviour of sandwich 

panels have concentrated on the method of shear connection between the steel 

and concrete. The evidence seems to indicate that the method of shear con-

nection is not critical to the performance of the members tested. No researcher 

has investigated the effects of CMA in sandwich panels. 

• Zimmerman's (1987) tests of two deep sandwich beams vividly illustrate the 

importance of in-plane restraint at the boundary on the behaviour of these 

types of members. The addition of a horizontal force at the support amounting 

to only 3% of the vertical reaction changed the mode of failure from bending to 

shear, increased the ultimate load in excess of 15%, and increased the ductility 

in excess of 100%. 



Chapter 3 

Two Dimensional Parametric Study 

3.1 Introduction 

Results of a parametric study conducted with the non-linear finite element program 

FELARC (Finite Element Layered Analysis of Reinforced Concrete) (1978) are pre-

sented. The study focuses on the behaviour of a deep concrete beam loaded with a 

single point load at the centre. The beam measures 1.0 in long, 0.25 in deep, and 

0.375 m wide, resulting in a span to depth ratio of four. The main parameters varied 

include the in-plane restraint at the support, the amount and location of longitudinal 

steel, the amount and type of shear connection steel, and the span to depth ratio, 

which was varied by increasing the length of the beam. 

Initial investigations indicated that a mesh of 24 in-plane elements, 6 along the 

half length and 4 through the depth, would provide sufficient accuracy. Symmetry of 

the beam is used to advantage so that only half the beam is actually modelled. Gaus-

sian numerical integration of order 2x2 is used to evaluate the material properties 

and to formulate the stiffness matrix for each element. 

The program FELARC was modified to store the results for each load step, thus 

allowing post-processing and plotting of the results at a later date. The following 

information can be plotted using the post processing program: 

• Deformed mesh geometry 

21 
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• Principal compression stress at each Gauss point 

• Material states at each Gauss point 

• Load deflection curves for any node and degree of freedom. 

The program Tel-A-Graf was used to perform the actual plotting. This program 

is .a front end processor for the DISSPLA plotting subroutines, and is available for 

use on the Honeywell Multics system at the University of Calgary. 

3.2 Theoretical Compression Strut Model 

A simplified analytical model of an unreinforced beam is presented. The analysis is 

similar to those of Braestrup (1980) and Brotchie and Holley (1971) who each used a 

rigid-plastic formulation for the same problem. The current formulation is based on 

a linear elastic analysis and uses the equivalent rectangular stress block commonly 

used in the design of reinforced concrete members. 

Consider a concrete beam which is completely restrained against in-plane motion 

at each end, and which has no reinforcing steel as shown in Figure 3.la. A load P is 

applied at the centre of the beam. It is assumed that the concrete beam will crack 

on the bottom surface at the beam centre line and will separate from the supports 

on the top surface. The end result is that the load will be supported by two struts 

of depth a. This situation is represented by the force diagram shown in Figure 3.lb. 

From simple statics we can write equation 3.1. 

P=4H(b—a)/l (3.1) 
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Figure 3.1: Beam With Ends Restrained In-Plane 
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Using the equivalent rectangular stress block, the force H may be calculated using 

equation 3.2, where w is the width of the beam. 

H = .85faw (3.2) 

Subsituting equation 3.2 into 3.1 leads to equation 3.3, which may be used to 

calculate F, the force that the beam can support 

P = 0.85 x 4fwa(b - a)/l (3.3) 

In order to maximize the value of F, equation 3.3 is differentiated with respect 

to a and equated to zero, resulting in equation 3.4. From this equation we obtain 

a = b/2 for maximum P. 

0.85 x 4fw(b - 2a)/l = 0 (3.4) 

From this equation we obtain a = b/2 for maximum P. The maximum value of P is 

calculated-using equation 3.5. 

Pmax = 0.85fwb2/1 (3.5) 

In order to calculate the deflection of the beam due to Pmax, consider the strut 

shown in Figure 3.2. If the assumption is made that the angle the strut rotates 

through when the load is applied, /3, is small in comparison to the original angle of 

the strut, 0 (this is valid for deep beams only), then equation 3.6 applies. 

Ay Al x l/y (3.6) 

Futhermore, assume the maximum compression occurs in the strut at a strain of 

ecu, therefore Al may be calulated using equation 3.7 

Al = ul1 (3.7) 
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yl 

Figure 3,2: Geometry of Deflected Strut 

Substituting equation 3.7 into 3.6 leads to equation 3.8. 

AY = cul/yj (3.8) 

From Pythagorus we can write equation 3.9. 

11 = Yj + (1/2)2 

Substituting equation 3.9 into 3.8, we obtain equation 3.10. 

AY = 6cu(y + (l/2)2)/yi 

(3.9) 

(3.10) 

Now, assuming the maximum compression in the strut occurs at a strain of 0.002, 

and substituting yj = b/2, we obtain equation 3. 11, which may be, used to calculate 

the, deflection of the beam at Pmax in most cases. 

Ay 0.002 [( b)2 ( 1)2] g (3.11) 
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If the beam is not deep enough (ie. a span to depth ratio less than 10) to allow 

the assumption of small angles of deflection, then the deflection may be calculated 

more accurately using equation 3.12. 

2 0.5 
AY = - [? - 0.004 x (12/4 + Y2 0.5 (3.12) 

For a beam with a span to depth ratio of 5, the error between equation 3.12 and the 

approximate deflection is 2.6%. 

The deflection calculated with either equation 3.11 or 3.12 will be larger than the 

actual deflection for two reasons. First, the strut will actually be thicker than what 

has been assumed for most of its length, resulting in smaller stresses and strains than 

assumed. The second influence is the presence of tension in the concrete, which will 

contribute somewhat to the load carrying capacity of the beam, making it slightly 

more stiff. 

3.3 The Finite Element Program FELARC 

FELARC (Finite Element Layered Analysis of Reinforced Concrete) is a non-linear 

finite element program developed at the University of Calgary by Ghoneim (1978). 

A users manual written by Ghoneim and Ghali (1979) explains all that is necessary 

to use the program. FELARC is intended for the analysis of reinforced concrete 

and is non-linear in the sense that material non-linearities are considered, however 

geometric non-linearities are not. The effects of prestressing, cyclic loading, creep, 

shrinkage, and temperature stress are considered. The element library includes: 

• a shell element formulated by combining a rectangular bending element with 

an in-plane element 



27 

S a truss element 

• a boundary element used to calculate reaction forces and to represent non-rigid 

supports 

With these features FELARC is a useful tool for analyzing concrete beams, shear 

panels, slabs, folded plates, shells, and box girders. 

FELARC uses an incremental iterative tangent stiffness solution procedure in 

which the stiffness matrix is updated at each iteration of each increment. The tan-

gential stiffness matrix calculated at the end of each iteration is used to estimate 

deflections in the subsequent iteration. The program allows a force norm or a dis-

placement norm to be used in determining the convergence and divergence at any 

particular iteration. Unbalanced forces at each node at the end of each iteration are 

calculated by relying on the fact that there is a unique, albeit non-linear, relationship 

between stress and strain. 

3.3.1 Material Models 

Figure 3.3 (after Ghoneim, 1978) presents the uniaxial stress-strain curve adopted 

for use in FELARC. The compressive loading curve up to the point of maximum 

loading is based on equation 3.13 first suggested by Saenz (1968). 

or = E06 (3.13) 
1 + [E0/Ec3 - 2] &/6cu + [€/e]2 

The descending part of the compressive stress-strain curve is based on equation 3.14, 

proposed by Smith and Young (1955). 

0• = f [...!_] e[ - e/6cu] 
ecu 

(3.14) 
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On the tension side, cracking is assumed to start when the principal stress exceeds 

the uniaxial tensile strength f of the concrete. In order to better model the actual 

behaviour of the reinforced concrete, and to provide a more stable solution procedure, 

tension stiffening is incorporated into the program. This means that instead of 

unloading immediately upon exceeding the the tensile strength of the concrete, the 

unloading occurs gradually. In fact, the program uses a discontinuous step function 

to unload the tensile forces in order to avoid numerical difficulties associated with 

negative stiffness. 

Biaxial states of stress are accounted for using the biaxial failure envelope illus-

trated in Figure 3.4 (after Ghoneim, 1978). Values of f on the uniaxial stress strain 

curve (Figure 3.3) are determined from this failure envelope developed by Kupfer 

and Gerstle (1973). 

FELARC adopts a bilinear mteriaI model for the behaviour of reinforcing steel 

as illustrated in Figure 3.5. The behaviour is fully defined by four constants, namely, 

yield Strength (fy), elastic modulus (E8), strain hardening modulus (Er), and ulti-

mate strain 

3.3.2 The QLC3 Finite Element 

The program employs the element QLC3 (an acronym for Quadrilateral, Linear 

Cubic, Three degrees of freedom) derived by Sisodiya (1971) to perform in plane 

analysis. The element was developed for the economic analysis of in plane loading 

when beam-like behaviour dominates. The element has three degrees of freedom at 

each node, displacement in the x and y directions, and rotation about the out of 

plane direction. As expected, it performs very well when used to model beams, webs 
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Figure 3.5: Steel Material Model 

€ 

of box girders, and shells. The main feature of QLC3 is that the shape function for u 

is linear in x and y, but that fr v is linear in y and cubic in x as shown in Figure 3.6. 

This allows the element to exactly model beam-like behaviour. The performance of 

the element when beam-like behaviour is not predominant was tested by Sisodiya 

(1971) and was found to be quite satisfactory. 

3.4 Model Details 

The basic model under examination is a two-dimensional in plane model using the 

QLC3 element. In all cases the member has a length of 1.0 m, height of 0.25 m 

and a width of 0.375 m. Symmetry is used to advantage and only half the member 

is actually modelled. Load is applied as shown in Figure 3.7. The load is applied 
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Figure 3.6: The QLC3 Finite Element 

gradually and in all cases each load step corresponds to an increase of 0.1 MN. So, 

for example, load step 15 would correspond to a total applied load of 1.5 MN. The 

relevant concrete and steel properties are given in table 3.1. The variable /3 is a 

constant smaller than one to account for shear stiffness due to aggregate interlock 

and dowel action in cracked concrete. 

3.5 Mesh Size and Integration Order 

Prior to commencing the parametric study, it was necessary to gain an understanding 

of the effect of the mesh geometry and the element integration order on the results. 

A comparison of the three mesh geometries shown in Figure 3.8 was conducted. 

Figure 3.8 a, b, and c show a 12 element mesh, a 24 element mesh and a 72 element 

mesh of QLC3 type elements. In all cases there is no reinforcing steel whatsoever. 

Nodes on the left end of the mesh are restrained against horizontal translation and 
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Figure 3.7: Load Application Points 
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Item Value 

f 62.5 MPa 

ft 4.47 MPa 
ecu 0.002 

6tu 0.0048 
E0 40000 MPa 
/30 
ii 0.15 

fy 265 MPa 
E3 200000 MPa 
E, 6693 MPa 
CU 0.02 

Table 3.1: Steel and Concrete Material Properties 

in-plane rotation. Nodes on the the centre line are restrained in a similar fashion 

as required for symmetry. Only the bottom left node is restrained against vertical 

translation. This set of boundary conditions is referred to throughout this work as the 

'Arch' support condition. A 2x2 Gaussian integration scheme is used to determine 

material states and to numerically integrate the element stiffness matricies. Loads 

are applied as detailed in Figure 3.7 

Figure 3.9 shows the load plotted as a function of the centre, line deflection for 

these three mesh geometries. It can be seen that the 12 element mesh behaves differ-

ently from the other two beyond a load level of 1.2 MN. An examination of the crack 

distributions at a load level of 1.4 MN shown in Figure 3.10 illustrates the reason 

for the difference. The inclined lines in the element represent the orientation of the 

cracks at each gauss point. The length of these lines has no significance. Recall that 

each load step corresponds to a load level of 0.1 MN. The 24 and 72 element meshes 

shown in Figure 3.8 have diagonal shear cracks throughout the middle part of the 

beam. These cracks make the mesh substantially more flexible than the 12 element 
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(a) 12 Element Mesh 

'9,, (b) 24 Element Mesh 

'p1  (c) 72 Element Mesh 

Figure 3.8: Mesh Geometries 
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Figure 3.9: Comparison of Effect of Mesh Size - No Reinforcing Steel 

mesh, which has no cracks other than the tension cracks shown in Figure 3.l0a. The 

12 element mesh is too coarse to model this important phenomenon, and is therefore 

inadequate for the analysis. 

On the other hand, the 24 and 72 element meshes behave identically up to the 

1.5 MN load level, at which point the 72 element mesh collapses. The 24 element 

mesh carries on to collapse at a load of 1.8 MN. Because the 72 element mesh is 

approaching the limit of the computer systems capabilities and is significantly more 

expensive to run, the 24 element mesh was selected for use in the remainder of the 

study. - 

The final decision to make is with regard to the order of integration. FELARC 

allows either a 2x2, 30, or 4x4 integration scheme to be used. The 24 element mesh 

was rerun using 3x3 integration and the resulting load deflection curve is plotted, 
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Figure 3.11: Comparison of Effect of Integration Order - No Reinforcing Steel 

along with the 2x2 integration, in Figure 3.11. Although the mesh with 3x3 integra-

tion collapsed at a slightly lower load, the behaviour is almost identical up to this 

point. Therefore, it is concluded that 2x2 integration is adequate for the task, and 

the extra expense of 3x3 integration is not required. 

The element and node numbering scheme for the 24 element mesh is presented 

in Figure 3.12. 

3.6 Parameters Investigated 

• Two principal parameters are investigated. Firstly, the effect of varying the lateral 

support stiffness was examined, and secondly, the amount and location of longitudi-

nal reinforcing steel was considered. 
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Figure 3.12: Node and Element Numbers - 24 Element Mesh 

Three lateral support conditions are examined as shown in Figure 3.13. Fig-

ure 3.13a shows the case of full in-plane restraint in which the nodes on the boundary 

are completely restrained against translation in the horizontal direction and rotation 

about the out of plane axis. As discussed previously, this is referred to as the "Arch" 

condition. Figure 3.13b shows the restraint condition referred to as "Spring 1". The 

sum total of the horizontal spring stiffnesses is equal to that of a 1.0 m long con-

crete beam restrained laterally at its opposite end. Put another way, the springs 

are intended to simulate the stiffness of second 1.0 m span of the beam which is 

continuous with the first span, and is horizontaly restrained at its opposite end. The 

stiffness of each spring is calculated using K = Ea/l where E, the stiffness of the 

concrete, is 40000 MPa, a, the cross sectional area, is calculated by multiplying the 

width of the element (0.375m) times the height of each element (.0625 m or half of 

this for the outside elements), and 1 is 1.0. This allows the boundary of the span 

under investigation some degree of flexibility, but it is probably less stiff than the 

real situation. For this reason, a third boundary condition referred to as "Spring 2" 
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was developed. This case is similar to Spring 1 in that there are springs in the same' 

locations, but each spring is ten times as stiff as the spring 1 condition as shown in 

Figure 3.13c. In both the Spring 'l and Spring 2 cases the nodes where the beam is 

attached to the springs are restrained against rotation about the out of plane axis. 

Four arrangements of longitudinal reinforcing steel are examined as shown in 

Figure 3.14. The first arrangement is unreinforced as shown in Figure 3.14a. This 

case is included as a base case to establish the capacity of the concrete core in 

absence of any steel. The second arrangement consists of 2.6% (a 6.25 mm plate) 

reinforcing steel on the bottom surface of the member, as shown in Figure 3.14b. 

This arrangement may be considered to have short shear studs projecting from the 

steel into the concrete. This is due to the fact that no slip is allowed to occur between 

the steel plate and the concrete. The third arrangement has 2.6% reinforcing on the 

top and bottom surfaces as shown in Figure 3.14c. The final arrangement, shown in 

Figure 3.14d is identical to the previous case except for the addition of two 6.25 mm 

diaphragms. This arrangement corresponds to the beams used in the experimental 

work of Zimmerman (1987). 

Each of the four steel arrangements is combined with each of the three end 

support conditions, resulting in 12 combinations. In addition, several other models 

were formulated. The diaphragms connecting the top and bottom plates are basically 

a type of shear connector. An alternative method of shear connection is to attach 

long stud shear connectors to each plate. The arrangement of studs as shown in 

Figure 3.15 is examined and the results compared to the model with diaphragms. 

The area of each stud is 586 mm2 (equivalent to a 27.3 mm diameter bar) and the 

total amount of steel in the studs is equal to the amount of steel in the diaphragms. 
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Figure 3.13: End Support Conditions 
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Figure 3.14: Arrangement of Longitudinal Reinforcing Steel 
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Figure 3.15: Arrangement of Long Shear Stud Connectors 

Another model considered is a three span beam with a point load in the middle 

span as shown in Figure 3.16. The intention of this model is to compare the results 

of the simulated three span models, Spring 1 and Spring 2, with the actual three 

span case. Only the case with 2.6% reinforcing top and bottom was considered. 

Finally, a model with a length of 2.0 m, and a span to depth ratio of 8 was 

formulated. The mesh is illustiated in figure 3.17. This model was run with all four 

steel arrangements, but only for the Arch support condition. 

3.7 Discussion of Results 

3.7.1 Base Case 

The model with the supports fully restrained against in-plane deflection (the Arch 

support condition) and completely unreinforced is considered to be the base case. 
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The maximum load carried at collapse was 1.8 MN with a centre line deflection of 

3.5 mm. Failure was by crushing of the concrete at the top directly under the load 

and at the bottom directly over the supports (ie. the nodes), simultaneously. 

The maximum expected load calculated using the simple strut theory formulated 

in section 3.2 is 1.5 MN. This occurs at a deflection of 4.25 mm. As expected for the 

reasons discussed in the introduction of the strut theory, the deflection of the finite 

element model is less than that predicted by the strut theory. The maximum load 

calculated by the finite element model is greter than that calculated by the strut 

theory. Interestingly though, the maximum load calculated using the 72 element 

mesh was 1.5 MN, the same value as predicted by the strut theory. 

It is also interesting to note that if this were an unreinforced continuous beam, 

the collapse load, based on first cracking, would be approximately 0.14 MN. This 

is based on beam theory which is not strictly applicable lecause the span to depth 

ratio is so small. However, this means that compressive membrane action provides 

an increase of approximately 12 times in the load carrying capacity. 

The results of the finite element analysis in the form of plots of the deformed mesh, 

the principal compression vectors, and the crack orientations for selected load steps 

are presented in' Figures 3.18 to 3.20. The first cracks developed between load step 2 

and 3 in which the applied load was between 0.2 and 0.3 MN. The crack pattern for 

this load level is the same as load step 4, which is illustrated in Figure 3.20. Note 

that solid lines imply that at the integration point, the tensile strain exceeded the 

tension stiffening range of the material and the concrete has completely cracked. A 

dashed line means that the material at the integration point is still in the tension 

stiffening range, ie. cracked but still carrying some load in tension. The crack pattern 
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remains unchanged as the load level increases to 1.4 MN (load step 14), at which 

point cracks parallel to the compression strut caused by Poisson's effect suddenly 

appear. After this occurrence, the member becomes less stiff. 

Figure 3.18 shows the deformed mesh plots for selected load steps. Deformations 

are plotted with a distortion factor of 25, which means that they are plotted to a. 

scale 25 times smaller the the undeformed mesh. It can be seen that the member 

has no horizontal displacement at the support or at the centre line as imposed by 

the support conditions. 

The formation of the compression strut as the load is increased is seen clearly in 

Figure 3.19. The principal compression stress vectors are scaled so that 100 MPa is 

equal to the length, in the horizontal direction, of one element. After the formation 

of the diagonal cracks at load step 14, the compression strut becomes somewhat 

narrower. Finally, the member fails by crushing of the concrete at the upper right 

and lower left corners (ie. the two compression nodes) simu1taneouly. 

3.7.2 Effect of Support Stiffness 

The effect of the in-plane support stiffness was examined by replacing the horizontal 

fixity with horizontal springs as discussed previously in section 3.6 

Figures 3.21 to 3.24 show the applied load as a function of the centre line de-

flection for the four arrangements of longitudinal steel. With all reinforcements, the 

two spring supported cases are more flexible and carry less load at collapse than the 

rigidly supported case. Table 3.2 summarizes the results of the load carrying capac-

ity of each case. Both the absolute load at collapse, in MN, and the load expressed 

as a percent of the arch case are tabulated. The results for each steel arrangement 
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Steel Arrangement Support Condition 

No Steel 
2.6% Bottom 
2.6% Top and Bottom 
2.6% Top and Bottom 
With Diaphragms 

Arch Spring 1 Spring 2 
1.8 MN 
1.7 MN 
2.2 MN 
2.4 MN 

1.3 MN - 72% 
1.1 MN - 64% 
1.5 MN - 68% 
1.6 MN - 66% 

1.7 MN - 95% 
1.7 MN - 100% 
1.9 MN - 86% 
2.2 MN - 91% 

Table 3.2: Load Capacity - Absolute and as a Percent of the Arch Case 

are quite consistent. The Spring 1 support condition carries 64% to 72% of the Arch 

support condition, and Spring 2 carries 86% to 100% of the Arch condition. 

Figure 3.25 shows the deformed mesh plots at load step 12 (P=1.2 MN) for the 

no steel case for each support condition. The effect of the spring stiffness on the 

amount of end rotation and centre line deflection is clearly seen. 

Figure 3.23 contains a fourth support condition labeled "Three Span". This is the 

model that actually is a three span beam as discussed in section 3.6 and illustrated 

in Figure 3.16. The load deflection curve for this case falls almost exactly midway 

between the curve for Spring 1 and Spring 2. The collapse load for this case is 

1.9 MN, which is 86% of the Arch condition. For the given load conditions the 

collapse load of the Arch support condition is a fairly close approximation of that of 

a three span beam. 

3.7.3 Effect of Steel Arrangement 

Various steel arrangements as discussed in section 3.6 are examined. The plots of 

applied load as a function of centre line deflection for each support condition are 

shown in Figures 3.26 to 3.28. In all cases the member is slightly more stiff as more 

steel is added. In all but one case the member carries slightly more load prior to 
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Steel Arrangement Support Condition 
Arch Spring 1 Spring 2 

No Steel 1.8 MN 1.3 MN 1.7 MN 
2.6% Bottom 1.7 MN - 94% 1.1 MN - 85% 1.7 MN - 100% 
2.6% Top and Bottom 2.2 MN - 122% 1.5 MN - 115% 1.9 MN - 112% 
2.6% Top and Bottom 2.4 MN - 133% 1.6 MN - 123% 2.2 MN - 129% 
With Diaphragms 

Table 3.3: Load Capacity - Absolute and as a Percent of the No Steel Case 

collapse as more steel is added. The exception is the case with 2.6% steel on the 

bottom surface only. Table 3.3 summarizes the load carrying capacities of each case. 

Both the absolute load at collapse, in MN, and the load expressed as a percent of 

the no steel case are tabulated. 

For all three support conditions, the case with 2.6% reinforcing steel on the 

bottom surface collapsed at or just below the load level supported by the no steel 

case. This may have been caused by a real phenomenon, or may have been caused by 

some aberration of the numerical simulation. The latter is likely the case because it 

is difficult to imagine that the load carrying capacity of the member could possibly 

decrease as steel is added. Part of the discrepancy may be due to the size of the load 

step. In these analyses the step size is 0.1 MN, and therefore actual differences in 

the ultimate load carrying capacity-less than 0.1 MN will not be discernable. Load 

steps less than 0.1 MN would have helped to resolve the exact collapse load. 

For all support conditions, the effect of significant amounts of reinforcing steel is 

almost negligible. The addition of 2.6% reinforcing steel top and bottom provides an 

increase of only 15% to 23% in the load carrying capacity, depending on the support 

condition. Inclusion of diaphragms increases the capacity only by an additional 6% 

to 11%. The reason for this behaviour is that the member is governed primarily by 
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the capacity of the concrete arch. The tension steel is virtually redundant in the 

load carrying mechanism because the horizontal component of thrust is provided by 

the support directly, rather than by the tension steel transfering the thrust to the 

opposite end of the member, as would occur with a tied arch member. 

The addition of both tension and compression steel has the effect of subtly altering 

the shape of the compression strut as illustrated in Figure 3.29. Figure 3.29a shows 

the principal compression stress vectors at load step 16 (P = 1.6 MN) for the no steel 

Arch support case. Figure 3.29b shows the corresponding plot with 2.6% reinforcing 

steel top and bottom. The compression strut is about the same width in both cases, 

but in the latter case the stresses are almost constant in magnitude through the 

entire strut. In the no steel case the compression vectors flatten out and become 

larger in magnitude in the upper right and lower left corners, but this does not occur 

in the latter case. 

Figure 3.29c shows the corresponding plot with diaphragms included. It appears 

to be almost identical to Figure 3.29b, with the possible exception that the compres-

sion stresses are even more constant in magnitude through the entire strut. 

Figure 3.30a and b show the principal compression stress vectors at load step 20 

(P = 2.0 MN) for the cases with 2.6% reinforcing steel top and bottom, without and 

with diaphragms respectively. It can be seen that the influence of the diaphragms 

manifests itself primarily in the magnitude of the compression stresses in element 16 

and, to a lesser extent, element 18 (refer to Figure 3.12). 

These concepts apply also to the two other support conditions, Spring 1 and 

Spring 2. 
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3.7.4 Effect of Shear Connectors 

The effect of the shear stud arrangement introduced in section 3.6 is examined. 

The basic mesh (labeled "Arch" on figure 3.31) is the Arch support case with 2.6% 

reinforcing both top and bottom. It should be noted that this case, which has no 

additional shear reinforcing, can be considered to have regular (ie. short) shear studs 

at regular spacing. This is because of the connection of the steel and concrete to 

common nodes with no allowance for slip between the two surfaces. The second 

mesh (labeled "Diaphragms") is similar to the first with the addition of diphragms 

as indicated in figure 3.14d. The third mesh (labeled "Long Studs") is similar to the 

first with the addition of long shear studs as indicated in figure 3.15. 

It can be seen in figure 3.31 that studs and diaphragms have almost the same 

effect, the load-deflection curves being virtually superimposed on one another. Both 

cases are just marginally stiffer than the case with no additional shear steel. The 

mesh with long studs failed at a load of 2.0 MN because of convergence difficulties. In 

this particular case the numerical solution procedure failed, rather than the structure. 

The unbalanced loads oscillated about 1he equilibrium position with ever increasing 

magnitude until eventually the divergence criteria were exceeded and it was necessary 

to abort the analysis. Repeated attempts to cure this problem met with failure. In 

all probability had this problem not occurred the mesh would have sustained the 

same amount of load as the mesh with diaphragms. 

3.7.5 Effect of Span to Depth Ratio 

The effect of span to depth ratio was examined by increasing the lenth of the beam 

to 2.0 m, and keeping the depth constant at 0.25 m. This results in a span to 
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Steel Arrangement Span to Depth 4 Span to Depth 8 
MN MN %ofS/D=4 

No Steel 1.8 MN 0.9 MN 50% 
2.6% Bottom 1.7 MN 0.9 MN 50% 
2.6% Top and Bottom 2.2 MN 1.1 MN 50% 
2.6% Top and Bottom 2.4 MN 1.2 MN 50% 
With Diaphragms 

Table 3.4: Comparison of Load Capacities for Span to Depth Ratio 8 and 4 

depth ratio of 8, double that of the previous analysis. All four steel arrangements in 

combination with only the Arch support condition were analysed. In all four cases 

the ultimate load carrying capacity decreased by a factor of two, as illustrated in 

table 3.4 

Note that the analytical strut model discussed in Section 3.2 predicts a capacity 

of 0.75 MN for the unreinforced case, which is exactly 50% of the capacity calculated 

using this model with a span to depth ratio of 4. 



Chapter 4 

Three Dimensional Analysis 

4.1 Introduction 

A three dimensional finite element analysis has been conducted in order to compare 

and ' contrast the results with those of the two dimensional analysis. Specifically, the 

assumptions made regarding the boundary conditions in the two dimensional analysis 

will be examined. Several commercially available finite element programs including 

ABAQUS, ADINA, and ANSYS were investigated prior to selecting ANSYS for use 

in this study. 

The ANSYS program was selected primarily because it had been shown to be 

successful in similar analyses, and because of the sophisticated graphical presentation 

the program is capable of. The computer program used for the two dimensional 

analysis, FELARC, was not suitable for this three dimensional analysis. Although 

FELARC has a three dimensional shell element, it is based on thin plate bending 

theory, which assumes that a normal to the surface of the plate remains normal after 

deformation. This assumption is acceptable for thin plate problems in which bending 

effects dominate, but is totally unacceptable for cases where shear effects dominate 

the solution. Because the span to depth ratio of the slab under consideration in this 

study is so small, shear effects will dominate, and an analysis based on thin plate 

theory will deliver erroneous results. 
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4.2 The ANSYS Program 

ANSYS is a powerful, commercially available suite of finite element programs de-

veloped by Swanson Analysis Systems (1987). It is available for academic use on a 

Sun micro computer maintained by the Mechanical Engineering Department at the 

University of Calgary. ANSYS is capable of linear and non-linear static and dynamic 

finite element analysis. It is possible to execute the program in either batch mode 

or interactive mode. Graphical representation of the model and the results is an 

integral part of the suite. Several pre and post processing programs allow extensive 

manipulation of the results. The program is very well documented with a user's 

manual (in two volumes), a theoretical manual, and ,a manual containing example 

analyses. 

The element library contains approximately 100 elements of all types. A good 

assortment of material models are also available. The solution procedure is based on 

a stepwise iterative approach, with or without recalculation of the stiffness matrix 

after each iteration, as the user sees fit. A frontal solution technique has been 

implemented into the program. 

4.2.1 Concrete Element Formulation 

ANSYS allows the non-linear concrete material model to be used only with one 

element type, an, eight node isoparametric brick element. The element is based 

on a standard isoparametric formulation with an option to include additional shape 

functions associated with mid-side nodes as described by Wilson (1973): The element 

has the following capabilities, limits and assumptions: 
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• Gaussian integration of order 2x2x2 is used to numerically integrate the ele-

ment. 

• Cracking and crushing are allowed in three orthogonal directions at each gauss 

point. 

• Reinforcement may be smeared throughout the element in up to 3 independent 

directions. 

• The concrete may undergo plasticity in addition to cracking and crushing. 

• Due to the combined non-linearities, load must be applied in very small incre-

ments. 

• The three dimensional concrete failure surface model is that of William and 

Warnke (1975). 

4.3 Model Details 

The model adopted for study is a concrete slab 3 m wide, 3 m long, and 0.25 m deep 

as illustrated in Figure 4.1. A 6.25 mm steel plate is bonded to the top and bottom 

surfaces of the slab which is supported vertically along three lines of support at the 

bottom surface. The slab is comprised of 8 node isoparametric brick elements to 

model the concrete, and 4 node isoparametric in-plane elements modeling the steel 

plate top and bottom. Symmetry is used to advantage so that only a quarter section 

is actually input into the computer. A simulated point load is applied at the centre 

line of the middle span by applying a concentrated force at four nodes. 
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Three Dimensional Finite Element Mode] 
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Closer examination of Figure 4.1 reveals that the mesh is fine in the vicinity of 

the load application point, and is progressively expanded to become coarser as it 

extends outward from the load. In all, six different element types are used to build 

the model. In the immediate vicinity of the load the model has a block of 144 non-

linear concrete elements arranged in a 6x6 grid with 4 elements through the depth. 

Above and below this block of non-linear concrete elements there are 36 four node 

linear isoparametric in-plane elements to model the 6.25 mm steel plate. 

The remainder of the model is comprised of linear elastic solid and plate elements 

as required to properly model the steel and concrete. The 8 node isoparametric 

element used allows the inclusion of any arbitrary number of mid-side nodes, for a 

maximum of 20 possible nodes. In this model, it is necessary to add two mid-side 

nodes to some elements. This is because as the mesh progresses outward from the 

load application point, the elements become larger, and the mesh coarser. In order 

to allow all nodes to be connected properly to all surronding elements, two additional 

mid-side nodes are required in addition to the eight corner nodes. 

The steel plates on the top and bottom surfaces are modelled with four node 

isoparametric plate elements. Again, this element allows inclusion of any number of 

mid-side nodes as required for proper mesh formulation. Therefore, where required, 

some of the plate elements have one additional mid-side node to connect properly to 

the surrounding elements. 

Vertical support is provided on the bottom surface along the line y = 1.5 m, ie. 

the outside edge, by restraining the z degree of freedom. The nodes on the bottom 

surface at y = 0.5 m and y = 0.417 m are supported vertically by attaching stiff 

grounded springs oriented in the z direction. All in all there are 369 elements and 
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393 nodes in the model. 

The material properties for all the steel elements are the same, with Young's 

modulus of 200,000 MPa and Poisson's ratio of 0.3. For the linear concrete elements 

Young's modulus is 40,000 MPa and Poisson's ratio is 0.15. For the non-linear 

concrete elements a simplified stress-strain curve was adopted as shown in Figure 4.2. 

Although the program allows the compression side of the stress-strain curve to 

be defined with up to five linear line segments, only two were used. There are two 
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reasons for this. The first is that, in the early stages of loading, the main contributing 

factor to non-linear behaviour is cracking, rather than the non-linear compression. 

The second reason is that using two linear line segments rather than five increased 

the speed of execution by a factor of approximately three. 

On the tension side, the material model does not allow tension stiffening. As 

soon as the cracking strain of the material is exceeded, the stress drops to zero. This 

behaviour, combined with plasticity, leads to a very unstable solution procedure. 

Results are dependent upon the load path and step size used in the analysis. 

4.4 Results of the Three Dimensional Model 

The model as described in the previous section was run for a load level of 0.6 MN 

with both a linear analysis and a non-linear analysis. Deflections, cracks, and steel 

and concrete stresses are compared for the two cases. First cracks appeared at a 

load level of 0.4 MN, therefore 0.6 MN is well into the non-linear range. However, 

this load is much less than the anticipated ultimate collapse load. All attempts to 

load the non-linear model beyond a load level of 0.6 MN met with failure caused by 

numerical instability. The exact cause of the problem is not known but it is possibly 

related to the lack of tension stiffening in the material model. All of the results to 

be discussed in this section relate to a load level of 0.6 MN. 

Figure 4.3 shows the deflected shape along the y-z and the x-z plane for both the 

linear and non-linear case. Deflections are enlarged 200 times in this plot. Maximum 

deflection in the linear analysis is 0.3 mm and in the non-linear analysis is 0.362 mm. 

An analytical solution for a single span with two simply supported edges and using 
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thin plate theory, which neglects through thickness shear effects, results in a deflec-

tion of 0.405 mm. A similar solution assuming fixed supports results in a deflection 

of 0.186 mm. The linear finite element model solution of 0.3 mm falls nicely between 

these two values. The deflection of the corresponding two-dimensional model, ie. the 

case of a beam of width 0.375 m, the same span and depth, and with 2.6% reinforcing 

steel both top and bottom, is 0.22 mm for the Arch support condition, 0.29 mm for 

the Spring 2 support condition, and 0.53 for the Spring 1 support condition. These 

deflections are tabulated in Table 4.1 

While it would appear that the two-dimensional meshes, with the exception of 

the Spring 1 support condition, are stiffer than the three-dimensional meshes, this 

is not the case. Because the 0.6 MN load is applied over the entire 0.375 m width 

of the two-dimensional model, the deflection is constant over this width. However, 

for the three-dimensional model the load is applied over a width of 0.166 m, and 

the deflection is the maximum value at the centre line. The average deflection over 

a width of 0.375 m is slightly less than the maximum deflection, for example the 

three-dimensional non-linear FEM has an average deflection of 0.27 mm over this 

width. This is less than the deflection of the two-dimensional model with the spring 

2 support condition, but is greater than the Arch support condition. The best 

comparison possible is between the two-dimensional three span model and the three-

dimensional model, because, aside from the addition of three-dimensional effects, 

these models are very similar. The effect of the third dimension is to make the 

three-dimensional slab stiffer than the corresponding two-dimensional model. 

Figure 4.3c provides confirmation of the boundary conditions assumed in the 

two-dimensional study. There is virtually no horizontal movement at the far end of 
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(a) Linear Model - x = 0 

(b) Linear Model - y = 0 

(c) Non-Linear Model - x = 0 

(d) Non-Linear Model - y = 0 

Figure 4.3: Deflected Shape Distorted 200 Times 
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Case Deflection - mm 
Simply supported - Thin Plate Theory 0.405 
Fixed Edges -Thin Plate Theory 0.186 
3D Linear FEM 0.3 
3D Non-Linear FEM 0.362 
2D Arch Support FEM 0.22 
2D Spring 1 Support FEM 0.53 
2D Spring 2 Support FEM 0.29 
2D Three Span FEM 0.33 

Table 4.1: Deflection for 0.6 MN Load Level 

the span adjacent to the loaded span. This means that the assumption of horizontal 

restraint of this boundary made with the Spring 1, Spring 2, and the Three Span 

support conditions in the two-dimensional analysis is a fair one. 

Stresses in the steel layers are plotted in Figures 4.4 to 4.7. Figure 4.4 shows the 

a and 0y stress along the line x = 0 for both the linear and non-linear analyses. It 

is seen that, in the immediate vicinity of the load, the steel stresses for the non-linear 

analysis are significantly higher than the linear analysis. This is as expected because 

as the concrete cracks in tension in the non-linear analysis, the load is shed to the 

bottom steel layer. 

Similarly, Figure 4.5 shows ox and 0y stress along the line y = 0 for both linear 

and non-linear analyses. The plot of ox exhibits similar behaviour to the ax and 

Uy plots along the x = 0 line. That is, it shows a significant increase in tensile 

stress of the non-linear analysis in the immediate vicinity of the applied load, but 

the difference gradually diminishes until the stresses from the two analyses is almost 

identical. However, the 0y stresses remain quite far apart along the line x = 0. This 

is due to the presence of tensile cracks in the concrete extending along this boundary. 

Figure 4.6 shows ox and oy stresses plotted as isobars in the top and bottom 
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steel plates for the non-linear model. Only the steel plate directly above and below 

the 6x6x4 block of non-linear concrete elements are shown. The load is applied in the 

lower left hand corner, and the positive x and y global axes are indicated. Isobars 

are spaced at 10 MPa intervals. A dashed isobar indicates the zero stress level. In 

addition, the location and magnitude of the maximum (labeled .Mx) and minimum 

(labeled Mn) stress are indicated (tension positive). The location of the elements are 

indicated by the solid grid of thinner lines. Figure 4.7 shows a similar set of plots 

for the linear analysis. It can be seen that the stresses in the top plate are almost 

identical for both the linear and non-linear analyses. The only difference is that the 

non-linear analysis shows an increase in the compressive stress in the steel plate of 

about 20 MPa directly under the loaded area. The trends discussed previously for 

the stress in the bottom plate can be clearly seen here as well. 

Generally the differences in steel stresses for the two cases are entirely explained 

by examining the orientation of the cracks in the concrete elements shown in Fig-

ure 4.8. This figure shows a plan view of the cracks in each concrete layer, starting 

with the bottom layer and progressing upward to the top layer. Again, as for the 

two dimensional analysis, the lines only illustrate the crack orientation. The length 

of the lines shown in figure 4.8 has no significance. Recall that this, is essentially 

a one way slab with a line of support directly under the elements indicated in the 

bottom layer, and the slab centre line is located in the x-z plane. This crack pattern 

is exactly what one would expect. It fully explains the observed steel stresses in the 

bottom steel plate. 

Finally, the principal compression stresses in the concrete for both the linear and 

non-linear cases are examined. Figure 4.9 shows the principal stress vectors in the 
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Figure 4.8: Crack Patterns in the Concrete Layers 
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y-z plane scaled so that 25 MPa is equal to the length of one element. Figure 4.9a 

shows the results of the linear analysis, and Figure 4.9(b) shows the results of the 

non-linear analysis. The difference between the two cases is slight. The non-linear 

case shows a small increase in the magnitude of the compression stresses just over 

the support, and a slight change in the orientation of the vector directly under the 

load. 

Figure 4.9c shows the principal compression stress vectors for the fully restrained 

two dimensional model with steel top and bottom at a load level of 0.6 MN. It is sub-

stantially different from the pattern of the three dimensional analysis, except in the 

immediate vicinity of the applied load. The reason for this drastic difference is that, 

in the two dimensional case, load is transferred directly from the application point to 

the support. Because the beam is constant width, the concrete failed simultaneously 

at the load point and just above the support. However, in the three dimensional 

model, load can be transferred in two directions. Similar to the two dimensional 

model, the load can flow in the y-z plane, and this certainly occurs as indicated in 

Figure 4.9. But, load can also flow in the x-y plane as well. By the time the stresses 

reach the support, they have been distributed so much in the x direction that they 

are negligible. For this reason there can be no direct comparison of the principal 

compression stresses of the two dimensional and the three dimensional models. 

Figure 4.10 shows the principal compression stresses in the x-z plane for both 

the linear and non-linear models. The magnitude of the compression stress directly 

under the load is virtually identical to that of y-z plane, indicating that force does 

indeed flow in the x-z plane. Again, there is little difference between the linear and 

non-linear results. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

The following conclusions are drawn from the work presented herein. It is hoped 

that these conclusions will assist, at least in some small way, in understanding the 

analysis of compressive membrane action in deep beams and slabs. 

The problems and difficulties encountered during both the two dimensional and 

the three dimensional analysis lead one to conclude that non-linear finite element 

analysis is an impractical tool to use in design, except in very special cases. The 

simplified strut model provides a remarkably good tool for the evaluation of com-

pressive membrane action in deep beams with rigidly restrained boundary conditions 

and no reinforcing steel. If the boundary is not perfectly rigid, or a small amount of 

reinforcing steel added, the model will become less accurate. However, with further 

work it would likely prove to be an adequate model for design purposes. 

FELARO proved to be a very sophisticated and powerful analysis tool for two 

dimensional problems of this type. The addition of a post-processing routine to 

plot deformations, stress and crack distributions, and load deflection curves greatly 

enhanced the usefulness of the program. Because the formulation of the shell element 

is based on thin plate theory, the program is not suitable for three dimensional 

problems when through thickness shear effects cannot be ignored. 

The following conclusions are applicable for the particular loading and geometry 
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studied herein. Specifically, they apply to concrete beams with concentrated point 

loads at the centre of the span, or to one-way slabs with a line load or point load at 

the span centre line. Span to depth ratio is a crucial factor in this type of analysis, 

therefore the conclusions are limited to beams and slabs with a relatively small span 

to depth ratio of about four to eight. 

The factors studied in the two dimensional parametric study are span to depth 

ratio, the lateral stiffness of the boundary, the amount and arrangement of longitu-

dinal reinforcement, and the type of shear connection provided between the concrete 

and steel. These factors will be discussed in greater detail. 

The most important factor in the development of OMA in deep beams and slabs 

is the span to depth ratio. For a given length of beam, an increase in the depth 

of the cross section will provide a proportional increase in the load carried by the 

member in CMA. Alternatively, for a given depth of beam, a decrease in the length 

of the beam will result in an increase in the load carried by OMA. As shown in 

the two-dimensional parametric study, this is true regardless of the amount or ar-

rangement of longitudinal steel. Furthermore, the analytical strut model developed 

indicates the same relationship between span to depth ratio and load capacity. Be-

cause of simplifications made in the development of the strut theory, the deflections 

predicted by the strut theory are larger than those predicted by both the two and 

three dimensional finite element models. 

It is also obvious that the concrete strength in compression is just as important as 

span to depth ratio. An increase in the nominal compressive strength of the'concrete 

will also provide a proportional increase in the load carried by the member in OMA. 

The second most important factor in the development of OMA is the amount of 
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in-plane restraint at the boundary of the member. Varying the boundary condition 

from fully restrained, to one partially restrained by the Spring 1 support condition 

resulted in a reduction of the load carrying capacity of about 30%, regardless of the 

amount or arrangement of longitudinal reinforcing steel. This'indicates that the load 

carried by CMA is sensitive to the actual boundary conditions. However, a number 

of factors not studied in this work could also have an influence on the sensitivity 

of the ultimate load carrying capacity to the support conditions. These include the 

actual loading conditions, the vertical stiffness of the support, and the span to depth 

ratio. 

The third most important factor in the development of compressive membrane 

action is the arrangement of longitudinal reinforcing steel. The addition of 2.6% 

reinforcing steel both top and bottom increased the load carrying capacity by ap-

proximately 20%, regardless of the support condition. This is not as suprising as 

it might first seem. The horizontal thrust provided by the support itself essentially 

takes the place of longitudinal reinforcing steel, making the steel redundant.' The 

capacity of the member is governed by the compressive strength of the concrete, re-

sulting in very little change in the ultimate load carrying capacity when longitudinal 

steel is added. 

Finally, the factor with the least significance is the type of shear connection. 

The addition of diaphragms connecting the top and bottom plates provided only a 

moderate increase in load carrying capacity of 5% to 10%, regardless of the support 

condition. Short shear studs, as represented by the beam shown in figure 3.14c, long 

shear studs and diaphragms all provided approximately the same ultimate load car-

rying capacity. Serviceability and ease of fabrication will be the two most important 
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factors in the selection of a shear connection scheme. It should be noted that the 

effect of no shear connection at all was not considered in the study. In any case, 

it would be impractical to fabricate such a member because the steel plate in the 

compression zone would separate from the concrete and buckle at a relatively low 

load. 

The use of a two dimensional study is adequate for determining the behaviour 

of beams, and for slabs which can be analyzed using beam strips, such as a slab 

with a line load. However, the use of a two dimensional model to simulate a three 

dimensional situation is of marginal use because the load carrying mechanisms are 

sufficiently different as to render any comparison questionable. The primary cause of 

failure in the two dimensional case is generally bi-axial compression causing crushing 

of the concrete simultaneously at the two nodes, ie. directly under the load and 

directly over the support. In a three dimensional slab subjected to a point load, 

crushing would not occur over the support, but would take place directly under the 

load. Because the concrete in this location is in a tn-axial state of stress, both its 

strength and ductility will be greater than the corresponding two dimensional case. 

The apparent ultimate load carried by OMA in three dimensional slabs will depend 

highly on the actual behaviour of the concrete in a state of tri-axaial compression. 

However, because the load carrying mechanisms are of the same type, it is expected 

that the relative importance of the factors considered in the iwo dimensional study 

would be the same in the three dimensional case. 

When testing physical specimens or performing numerical analysis of deep beams 

and slabs, the utmost attention must be paid to the proper modelling of the support 

conditions and load application details. In particular, improper modelling of in-plane 
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restraint at the boundary could cause a serious underestimation of the ultimate load 

carrying capacity and ductility of such members. 

When designing deep, continuous beams and slabs, a substantial cost saving 

could result from the consideration of the beneficial effects of compressive membrane 

action. In particular, the effective reinforcement ratio could be drastically reduced 

with no sacrifice in either ultimate strength or serviceability requirements. 

5.2 Recommendations for Future Research 

A very few recommendations for further work in this area are presented with the' 

hope that an ambitious gradute student will pursue at least one of them. 

In order to verify the results of the numerical simulation, it is necessary to conduct 

physical testing in the laboratory. In order to do this, a test frame is required with 

which the stiffness of the in-plane restraint and the amount of in-plane force can be 

measured and adjusted. Such a test frame is being built by the Centre for Frontier 

Engineering Research (CFER) at the University of Alberta in Edmonton, and should 

be ready for use in the near future. 

The commercially available finite element packages investigated during the course 

of this study all had major flaws or inherent limitations which rendered them of 

marginal use in this study. However, in spite of the difficulties associated with 

non-linear finite element modelling of reinforced concrete, the possible benefits of 

a well designed and tested three dimensional finite element program are great. In 

particular, the development of such a program should be done with consideration of 

the following: 
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• A very stable solution technique and a concrete material model including 

tension stiffening and the capability of modelling the descending part of the 

compression side of the stress-strain curve, such as implemented in FELARO, 

should be included. Also, an interface element for modelling bond slip between 

steel and concrete should be included. 

• As difficult as it is to obtain results in three dimensional finite element mod-

elling of reinforced concrete, it is many more times difficult to interpret them. 

A well structured, versatile, and easy to use post processing program for the 

printing and plotting of results is a necessary feature of such a program. This 

cannot be emphasized enough. Properly analyzing the results from a large 

three dimensional model would be a hopelessly futile endeavor without the aid 

of a well designed post-processing program. 

• The availability of the worlds most powerful vector computer at the University 

of Calgary should be exploited. With the Cyber 205 Supercomputer, and 

a properly designd and written program, it would be possible to conduct 

numerical simulations of large, non-linear, three dimensional problems that 

are not currently feasible on any other computer. Because the architecture of 

the vector computer is different from that of a scalar computer, in general it is 

not possible to transfer existing programs from a scalar computer to a vector 

computer and obtain optimum performance. Usually, to obtain satisfactory 

utilization of the power of the vector processor, it is necessary to design and 

write a program specifically for the vector computer available, in this case a 

Cyber 205 Supercomputer. 
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