
Anti-Disassembly using Cryptographic Hash
Functions

John Aycock, Rennie deGraaf, and Michael Jacobson, Jr.
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{aycock,degraaf,jacobs}@cpsc.ucalgary.ca

TR 2005-793-24

Abstract

Computer viruses sometimes employ coding techniques intended to make anal-
ysis difficult for anti-virus researchers; techniques to obscure code to impair static
code analysis are called anti-disassembly techniques. We present a new method of
anti-disassembly based on cryptographic hash functions which is portable, hard to
analyze, and can be used to target particular computers or users. Furthermore, the
obscured code is not available in any analyzable form, even an encrypted form, un-
til it successfully runs. The method’s viability has been empirically confirmed. We
look at possible countermeasures for the basic anti-disassembly scheme, as well as
variants scaled to use massive computational power.

1 Introduction

Computer viruses whose code is designed to impede analysis by anti-virus researchers
are referred to as armored viruses.1 Armoring can take different forms, depending on
the type of analysis being evaded: dynamic analysis as the viral code runs, or static
analysis of the viral code. In this paper, we focus on static analysis.

Static analysis involves the tried-and-true method of studying the code’s disas-
sembled listing. Anti-disassembly techniques are ones which try to prevent disas-
sembled code from being useful. Code using these techniques will be referred to as
disassembly-resistant code or simply resistant code. Although we are only consider-
ing anti-disassembly in the context of computer viruses, some of these techniques have
been in use as early as the 1980s to combat software piracy [7].

Ideally, resistant code will not be present in its final form until run time – what can’t
be seen can’t be analyzed. This could involve self-modifying code, which presents

1The techniques we describe can be used by any malicious software, or malware, so we use the term
“computer virus” in this paper without loss of generality.

1



key ← getusername()
hash ← md5(key ⊕ salt)
run ← hashlb...ub

goto run

Figure 1: Anti-disassembly pseudocode

problems for static analysis of code [8]. It could also involve dynamic code generation
such as a just-in-time compiler performs [2].

In the remainder of this paper, we present a new method of anti-disassembly based
on dynamic code generation, that has the following properties:

• It can be targeted, so that the resistant code will only run under specific circum-
stances. We use the current username as a key for our running example, but
any value available to the resistant code (or combinations thereof) with a large
domain is suitable, like a machine’s domain name. Because this key is derived
from the target environment, it may be thought of as environmental key genera-
tion [10].

• The dynamically generated code is not available in any form, even an encrypted
one, where it can be subjected to analysis until the resistant code runs on the
targeted machine.

• Even if the dynamically generated code were somehow known or guessed, the
exact key used by the resistant code is not revealed.

• It does not rely on architecture-specific trickery and is portable to any platform.

In the remainder of this paper, we explain our anti-disassembly technique and
present some empirical results. We then look at how the technique might be coun-
tered, along with some more entrepreneurial means of deployment.

2 The Idea

A cryptographic hash function is one that maps each input to a fixed-length output
value, such that it is not computationally feasible to reverse the process, nor is it easy
to locate two inputs with the same output [12]. Like regular hash functions, a crypto-
graphic hash function is many-to-one.

Our idea for anti-disassembly is to combine a key – here, we use the current user-
name for concreteness – with a salt value, and feed the result as input into a crypto-
graphic hash function. The hash function produces a sequence of bytes, from which we
extract a subsequence, and interpret that subsequence as machine code. We will refer
to this subsequence as a run.

A pseudocode example of this idea is shown in Figure 1. It uses the username
as a key, and MD5 as the cryptographic hash function [11]; ⊕ is the concatenation
operator. MD5 is now known to be vulnerable to collisions [14], but this is irrelevant
to our technique: the analyst does not have the MD5 hash, and in any case would be

2



interested in the exact value of the key, not just a key which produces the same hash.
In addition, our anti-disassembly technique can be used with any cryptographic hash
function, so a different/stronger one can be chosen if necessary.

There are three issues to consider:

1. Having the wrong key. Obviously, if the wrong key value is used, then the run is
unlikely to consist of useful code. The resistant code could simply try to run it
anyway, and possibly crash; this behavior is not out of the question for viruses.
Another approach would catch all of the exceptions that might be raised by a
bad run, so that an obvious crash is averted. A more sophisticated scheme could
check the run’s validity using a checksum (or re-using the cryptographic hash
function), but this would give extra information to a code analyst.

2. Choosing the salt. This is the most critical aspect; we suggest a straightforward
brute-force search through possible salt values. Normally, conducting a brute-
force attack against a cryptographic hash function to find a particular hash value,
i.e., a collision, would be out of the question because the hash functions are de-
signed to make this computationally prohibitive. However, we are only interested
in finding a subsequence of bytes in the hash value, so our task is easier.

Approximately half of the output bits of a cryptographic hash function change
with each bit changed in the input [12]; effectively, we may consider the hash
function’s output to change randomly as the salt is changed. Given that, the
probability of finding a particular b-bit run in an n-bit output is the ratio of the
bits not in the run to the total number of bits: 2

n−b/2
n, or 1/2

b. The expected
number of attempts would then be 2

b−1. Furthermore, because only the salt is
being changed in the brute-force search, this implies that we would need b − 1

bits of salt for a b-bit run.

3. Choosing lb and ub. These values are derived directly from the hash value, once
the desired salt is found.

The salt search is by far the most time-consuming operation, but this need only
be done once, prior to the release of the resistant code. The search time can be fur-
ther reduced in three ways. First, the search can be easily distributed across multiple
machines, each machine checking a separate part of the search space. Second, faster
machines can be used. Third, the search can be extended to equivalent code sequences,
which can either be supplied manually or generated automatically [6, 9]; since multi-
ple patterns can be searched for in linear time [1], this does not add to the overall time
complexity of the salt search.

3 Empirical Results

To demonstrate the feasibility of this anti-disassembly technique, we searched for the
run (in base 16)

e9 74 56 34 12

3



Algorithm Key Salt Search Time (s)

aycock 55b7d9ea16 39615
MD5 degraaf a1ddfc1910 47650
(128 bits) foo e6500e0214 60185

jacobs 9ac1848109 28723
ucalgary.ca 4d21abe205 18220
Average 44746

aycock 07e9717a09 36584
SHA-1 degraaf 0d928a260e 55424
(160 bits) foo 2bc680de1e 120472

jacobs ca638d5e06 24958
ucalgary.ca 585cc614 325
Average 47552

Table 1: Brute-force salt search for a specific five-byte run.

These five bytes correspond on the Intel x86 to a relative jump to the address 1234567816,
assuming the jump instruction starts at address zero.

The search was run on an AMD AthlonXP 2600+ with 1 GiB RAM, running Linux
2.6. We tested five different keys with one- to five-byte salts, sequentially searching
through the possible salt values.2 Table 1 shows the results for two cryptographic hash
functions, MD5 and SHA-1. For example, the salt “07e9717a09,” when concatenated
onto the key “aycock,” yields the SHA-1 hash value

ef 6d f4 ed 3b a1 ba 66 27 fe e9 74 56 34 12 a2 d0 4f 48 91

Numbering the hash value’s bytes starting at zero, our target run is present with lb = 10

and ub = 14.
Another question is whether or not every possible run can be produced. Using the

key “aycock,” we were able to produce all possible three-byte runs with three bytes of
salt, but could only produce 6% of four-byte runs with a three-byte salt. With a four-
byte salt, we were able to generate four-byte runs which covered between 99.999–
100% of the possible combinations – this was checked with five different keys and
three different cryptographic hash functions. (Our test system did not have sufficient
memory to record coverage data for five-byte runs.) The four-byte run data are shown
in Table 2.

These results tend to confirm our probability estimate from Section 2: b-bit runs
need b − 1 bit of salt. Four-byte runs are of particular interest for portability reasons,
because RISC instruction sets typically use instructions that are four bytes long; this
means that at least one RISC instruction can be generated using our technique.

2For implementation reasons, we iterated over salt values with their bytes reversed, and didn’t permit
zero bytes in the salts.

4



Algorithm Key Runs Found Runs Not Found

aycock 4294936915 30381
MD5 degraaf 4294937044 30252
(128 bits) foo 4294936921 30375

jacobs 4294937188 30108
ucalgary.ca 4294936946 30350
Average 4294937003 30293

aycock 4294966707 589
SHA-1 degraaf 4294966733 563
(160 bits) foo 4294966660 636

jacobs 4294966726 570
ucalgary.ca 4294966769 527
Average 4294966719 577

aycock 4294967296 0
SHA-256 degraaf 4294967296 0
(256 bits) foo 4294967296 0

jacobs 4294967296 0
ucalgary.ca 4294967296 0
Average 4294967296 0

Table 2: Generation of possible four-byte runs using a four-byte salt.

4 Countermeasures

An analyst who finds some resistant code has several pieces of information immedi-
ately available. The salt, the values of lb and ub, and the key’s domain (although not
its value) are not hidden. The exact cryptographic hash function used can be assumed
to be known to the analyst, too – in fact, resistant code could easily use cryptographic
hash functions already present on most machines.

There are two pieces of information denied to an analyst:

1. The key’s value. Unless the key has been chosen from a small domain of val-
ues, then this information may not be deducible. The result is that an analyst
may know that a computer virus using this anti-disassembly technique targets
someone or something, but would not be able to uncover specifics.

2. The run. If the run is simply being used to obscure the control flow of the re-
sistant code, then an analyst may be able to hazard an educated guess about the
run’s content. Other cases would be much more difficult to guess: the run may
initialize a decryption key to decrypt a larger block of code; the entire run may
be a “red herring” and only contain various NOP instructions.

Note that even if the run is somehow known to an analyst, the cryptographic
hash function cannot be reversed to get the original key. At best, the analyst
could perform their own brute-force search to determine a set of possible keys
(recall that the hash function is many-to-one).

5



Whether or not every last detail of the resistant code can be found out is a separate
issue from whether or not a computer virus using resistant code can be detected. In
fact, there is malware already that can automatically update itself via the Internet (e.g.,
Hybris [4]), so complete analysis of all malware is already impossible.

Fortunately for anti-virus software, computer viruses using the technique we de-
scribe would present a relatively large profile which could be detected with traditional
defenses, including signature-based methods and heuristics [13]. Precise detection
does not require full understanding.

5 Enter the Botnet

What if the computing power available for a brute-force salt search were increased
by five orders of magnitude over the computer we used for our experiments? Few
organizations have that much computing power at their fingertips, but a few individuals
do. A botnet is a network of malware-controlled, “zombie” machines that execute
commands typically issued via Internet Relay Chat (IRC) channels [3]. These have
been used for sending spam and distributed denial-of-service attacks [3], but they may
also be viewed as very large-scale distributed computing frameworks which can be
used for malicious purposes.

If a virus writer wants to armor a virus using the anti-disassembly technique de-
scribed here, especially for long runs with many instructions, an already-existing botnet
may be used for salt computation. A naı̈ve salt computation on a botnet would involve
partitioning the salt search space between machines, and the key and desired run would
be available to each machine. This would not be a bad thing from an analyst’s point
of view, because locating any machine in the botnet would reveal all the information
needed for analysis.

A more sophisticated botnet search would do three things:

1. Obscure the key. A new key, key ′, could be used, where key ′ is the cryptographic
hash of the original key. The deployed resistant code would obviously need to
use key ′ too.

2. Supply disinformation. The virus writer may choose lb and ub to be larger than
necessary, to mislead an analyst. Unneeded bytes in the run could be NOP in-
structions, or random bytes if the code is unreachable.

3. Hide the discovery of the desired run. Instead of looking for the exact run, the
botnet could simply be used to narrow the search space. A weak checksum could
be computed for all sequences of the desired length in the hash function’s output,
and the associated salts forwarded to the virus writer for verification if some
criterion is met. For example, the discovery of our five-byte run in Section 3
could be obliquely noted by watching for five-byte sequences whose sum is 505.

This leaves open two countermeasures to an analyst. First, record the key ′ value in an
observed botnet in case the salt is collected later, after the virus writer computes and
deploys it – this would reveal the run, but not the original key. Second, the analyst
could subvert the botnet, and flood the virus writer with false matches to verify. The

6



latter countermeasure could itself be countered quickly by the virus writer, however,
by verifying the weak checksum or filtering out duplicate submissions; in any case,
verification is a cheap operation for the virus writer.

6 Related Work and Conclusion

There are few examples of strong cryptographic methods being used for computer
viruses – this is probably a good thing. Young and Yung discuss cryptoviruses, which
use strong cryptography in a virus’ payload for extortion purposes [15]. Riordan and
Schneier mentions the possibility of targeting computer viruses [10], as does Filiol [5].
The latter work is most related to ours: it uses environmental key generation to decrypt
viral code which is strongly-encrypted. In our case, however, the code run never exists
in an encrypted form; it is simply an interpretation of a cryptographic hash function’s
output. Our technique is stronger in the sense that the ciphertext is not available for
analysis.

The dearth of strong cryptography in computer viruses is unlikely to last forever,
and preparing for such threats is a prudent precaution. In this particular case of anti-
disassembly, traditional defenses will still hold in terms of detection, but full analysis
of a computer virus may be a luxury of the past. For more sophisticated virus writers
employing botnets to find salt values, and possibly longer runs, proactive intelligence
gathering is the best bet.

7 Acknowledgments

The second and third authors’ research is supported in part by grants from the Natural
Sciences and Engineering Research Council of Canada.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

[2] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–
113, 2003.

[3] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding,
detecting, and disrupting botnets. In USENIX SRUTI Workshop, 2005.

[4] F-Secure. F-Secure virus descriptions: Hybris, 2001. http://www.
f-secure.com/v-descs/hybris.shtml.

[5] E. Filiol. Strong cryptography armoured computer viruses forbidding code anal-
ysis: The Bradley virus. In Proceedings of the 14th Annual EICAR Conference,
pages 216–227, 2005.

7



[6] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed superoptimizer. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 304–314, 2002.

[7] Krakowicz. Krakowicz’s kracking korner: The basics of kracking II, c. 1983.
http://www.skepticfiles.org/cowtext/100/krckwczt.htm.

[8] R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: a malicious code filter. Computers
& Security, 14:541–566, 1995.

[9] H. Massalin. Superoptimizer: a look at the smallest program. In Proceedings of
the Second International Conference on Architectual Support for Programming
Languages and Operating Systems, pages 122–126, 1987.

[10] J. Riordan and B. Schneier. Environmental key generation towards clueless
agents. In Mobile Agents and Security (LNCS 1419), pages 15–24, 1998.

[11] R. Rivest. The MD5 message-digest algorithm. RFC 1321, April 1992.

[12] B. Schneier. Applied Cryptography. Wiley, 2nd edition, 1996.

[13] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley,
2005.

[14] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004.
http://eprint.iacr.org/.

[15] A. Young and M. Yung. Cryptovirology: Extortion-based security threats and
countermeasures. In IEEE Symposium on Security and Privacy, pages 129–141,
1996.

8


