
Two Algorithms for Computing the Euclidean
Distance Transform

Marina L. Gavrilova
Department of Computer Science

University of Calgary
Calgary, Alberta Canada

marina@cpsc.ucalgary.ca

Muhammad H. Alsuwaiyel
Department of Information and

Computer Science
King Fahd University of
Petroleum & Minerals

Dhahran 31261, Saudi Arabia
suwaiyel@ccse.kfupm.edu.sa

Abstract. Given an n× n binary image of white and black pixels, we present
two algorithms for computing the distance transform and the nearest feature
transform using the Euclidean metric. The first algorithm is a fast sequentioal
O(n) time algorithm. The second is an optimal O(n) time parallel algorithm
that runs on a linear array of n processors.

Keywords: Feature transform, Distance transform, Euclidean distance, Paral-
lel algorithms, Image processing.

1 Introduction

Given an n×n binary image I of white and black pixels, the distance transform
of I is a map that assigns to each pixel the distance to the nearest black pixel,
referred to as feature. The feature transform of I is a map that assigns to
each pixel the feature that is nearest to it. The distance transform was first
introduced by Rosenfeld and Pfaltz [10], and it has a wide range of applications
in image processing, robotics, pattern recognition and pattern matching [8].
The distance metrics used to compute the distance transform include the L1, L2

and L∞ metrics, with the L2 (Euclidean) metric being the most natural, and
rotational invariant.

Several algorithms have been proposed for these metrics. One approach is to
grow clusters or neighborhoods around each feature p consisting of those pixels
whose nearest feature is p. This approach has been taken in [1, 4] and [12] to
obtain sequential and parallel algorithms, respectively. A similar approach that
simulates circular waves originating at all features of the image is described in
[9]. This method, while as complex as the previous methods, is also not suitable
for parallelization.

An alternative approach, pioneered by Rosenford and Pfaltz [10], is based on the
idea of dimension reduction. Paglieroni [8] extends this approach to a broader

class of distance functions. Breu et al [2] compute the distance transform by
computing the Voronoi diagram in O(n) time. They achieve this bound by
refining the merge step in the classical divide-and-conquer algorithm for the
construction of the ordinary Voronoi diagram, so that the merge step takes o(n)
time. A modification of this algorithm that first computes the Voronoi diagram
of segments and then obtains the feature transfrom was recently devised in
[6]. However, the algorithms in [2, 3, 6], though linear, are computationally
expensive compared to those given for other metrics. An attempt to develop a
generalized algorithm that is applicable to a wide class of distance transforms
has been made in [7]. However, the algorithm given is rather complex and lacks
a proof of correctness.
As to parallel algorithms, the cost optimal methods for the EREW PRAM, the
mech and the hypercube architectures were proposed in [11, 5].

In this paper, we propose two simple and optimal algorithms for computing
the distance transform and the nearest feature transform using the Euclidean
metric. We first present a sequential algorithm that processes the rows twice: in
a top-down scan and a bottom-up scan. The algorithm maintains a polygonal
chain C containing all the necessary information to compute the nearest feature
for each pixel of the currently processed row. A marking characteristic of this
algorithm is updating the polygonal chain dynamically as the image is swept row
by row. The information gathered while processing the previous row is utilized
to compute the nearest features for the next row. This results in significant
improvement of the algorithm efficiency in comparison with other linear time
algorithms.

The sequential algorithm can be parallelized easily by using the method of
dimension reduction. Although the mesh seems to be the most natural network
architecture for parallelizing the algorithm, it results in waste of resources. This
is due to the fact that O(n) processors will end up processing one row in linear
time, while one processor is indeed enough, as in the sequential algorithm. This
motivates parallelizing the algorithm on a linear array of processors. If the
processors are not powerful enough to store one row of the image each, systolic
computation can be used to pipeline the pixels and thus to keep all processors
busy as much as possible. This results in an O(n) time algorithm with linear
total cost. To the authors’ knowledge, the linear array was not considered before
as a suitable architecture for this problem.

For brevity, in our description of the algorithms, we will confine our attention
to computing the feature transform, and the distance transform will not be
mentioned explicitly.

2

2 The sequential algorithm

Let I be the input n × n image. It is assumed that I is an n × n array I of
zeroes and ones, representing white and black pixels, respectively. A pixel will
be represented by its coordinates, that is, (i, j) will denote the pixel in row i and
column j, where 1 ≤ i, j ≤ n. Given a pixel (i, j), f (i, j) will denote the feature
that is nearest to (i, j). For simplicity, we will assume that f (i, j) is unique,
and hence f is a function from the set of pixels to the set of features. Given
a pixel (i, j), δ (i, j) will denote the square of the Euclidean distance between
(i, j) and f (i, j).

Consider the pixels in row i, where i is between 1 and n, and let (i′, j′) be the
nearest feature to pixel p = (i, j) among all features in rows 1, 2, . . . , i. Clearly,
if i′ > 1, and there is another feature (i′′, j′) with i′′ < i′, then (i′′, j′) cannot
be the nearest feature to pixel p. Let S be the set of features on or above row i
that are nearest to at least one pixel in row i. Let C denote the polygonal
chain whose vertices are the centers of those features in S. It follows that C is
monotone with respect to the horizontal line Li passing by the centers of pixels
in row i.

This observation suggests the following approach for finding all nearest features.
We perform two sweeps on the image I: one from top to bottom and the other
from bottom to top. In the top-down sweep, we compute for each pixel (i, j) its
nearest feature ftd(i, j) among all features on or above row i and its correspond-
ing δtd(i, j) value. In the bottom-up sweep, we compute for each pixel (i, j) its
nearest feature fbu(i, j) among all features below row i and its corresponding
δbu(i, j) value. Finally, we set f (i, j) = ftd(i, j) if δtd(i, j) ≤ δbu(i, j), otherwise
we set f (i, j) = fbu(i, j). In each scan, the algorithm maintains a polygonal
chain C, implemented as an array that “slides” vertically through the image,
top-down in the first scan, and bottom-up in the second scan. This chain con-
tains all the information needed to compute the nearest feature for each pixel in
row i above or below row i, depending on the direction of each scan. Since the
descriptions of the two sweeps are identical, we will discuss only the top-down
sweep. For this reason, we will drop the subscripts from ftd and δtd, and simply
use f and δ instead.

Now we give a detailed description of the algorithm for implementing the top-
down scan. C will be represented by an array of n 2-tuples, such that an entry
C[j] is either a feature or (0, 0). If it is a feature, then the center of that feature
is a vetex in the chain; otherwise, it is not. The intention is that just after row i
has been processed, C[j] is a feature if and only if it is the closest feature to
at least one pixel in row i. In what follows, an entry in array C will be called
empty if it contains (0, 0), otherwise, it will be called nonempty.

Suppose that C[j] is nonempty. For fast access to its left and right nonempty
neighbors, we will make use of the two functions left(p) and right(p), which

3

return, respectively, the two features, if any, that are nearest to feature p to
the left and right of p in C. If C[j] is the leftmost nonempty entry in array
C, then left(C[j]) = (0, 0). Similarly, if C[j] is the rightmost nonempty entry
in array C, then right(C[j]) = (0, 0). Figure 1 provides an example of this
representation, as well as the polygonal chain after processing row 4 and before
processing row 5.

(2,1) (3,2) (3,3) (2,4) (4,5) (2,6) (3,7) (2,8)

Figure 1: Example of representations and the polygonal chain.

Let p and q be two vertices of the chain. Then, B(p, q) will denote the per-

pendicular bisector of the line segment pq. We will denote by V1 and Vn the
two vertical lines defined by the two equations x = 1 and x = n, respectively.
Initially, all entries in C are empty, that is, the chain is empty. When processing
the topmost row, for 1 ≤ j ≤ n, C[j] is set to (1, j) if and only if pixel (1, j) is
a feature. When processing row i, C is updated by setting C[j] to (i, j) if and
only if (i, j) is a feature. Next, C is updated further by removing those features
that cannot be the nearest to any pixel in row i or below.

There are two tests corresponding to whether a vertex in the chain is extreme
(i.e. it has no left or right neighbors) or not. Suppose that p = (i, j) is the
leftmost vertex in the chain, and q = right(p). If B(p, q) intersects with V1

above row i, then p cannot be the nearest feature to any pixel in row i or below.
Hence, p should be removed from the chain. This process is applied iteratively
until the perpendicular bisector of the leftmost line segment in C does not
intersect with V1 above row i. The same procedure is applied starting from the
righmost feature in the chain. In this case, the test is performed against the
vertical line Vn. This is illustrated in Figure 2. In this figure, p, q, r and s will
be removed from the chain.

The second test to be applied to the chain is concerned with internal vertices
of C (unless C consists of two vertices or less). Consider Figure 3(a). In this

4

x=1 x=n

p

q r

s

Figure 2: Example of the extreme features test.

figure, B(p, q) and B(q, r) intersect above Li, the line passing by the centers of
pixels in row i. As will be shown later, feature q cannot be the nearest to any
pixel in row i or below. Therefore, q should be deleted from the chain. After
it has been removed, its right neighbor may also be removed, and so on. For
instance, in Figure 3(a), feature r will also be deleted. Indeed, it may be the
case that after the removal of r, feature q, whose right neighbor has changed in
the chain, fails the test, and hence should be removed, as shown in Figure 3(b)
This too, may result in a sequence of deletions in the backward direction, which
we will refer to as backtracking .

p

q r

s

row i

(a) (b)

p

q
r

s

row i

Figure 3: Example of removal of internal features.

After applying both tests, each feature in the chain is the nearest feature of
at least one pixel in row i, and the nearest feature of evey pixel in row i can
be found in the chain. To do the assignments of features to pixels in row i,
the perpendicular bisectors of all line segments in the final chain are computed.
These bisectors partition the set of pixels in row i into groups of consecutive
pixels, with each group having the same nearest neighbor.

It is interesting to note that two scans of the chain, one forward and another
backward may not be enough, that is, a mechanism of either backtracking or

5

lookahead is needed for a proper maintenance of the chain. Figure 4 shows an
instance in which the algorithm that does not implement backtracking every
time a feature gets deleted from the chain fails to remove all unneeded features.
In Figure 4(a), the algorithm is performing the forward scan, after which r is
removed, as the bisectors B(q, r) and B(r, s) intersect above the current row
being processed (see Figure 4(b)). This is followed by removing a number of
features located between features p and q of the chain during the backward scan,
which is shown in Figure 4(c). However, all features between s and t should also
have also been removed since they can not be nearest neighbors to any pixel in
row i or below. Thus, backtracking should be performed every time a pixel is
deleted from the polygonal chain.

p

q s

r

(a)

t

p

q s

(b)

t

p

s

(c)

t

Figure 4: An instance in which the two scans fail to remove necessary features
from the chain.

The above description of the algorithm for the top-down scan can be stated
more precisely in the following steps:

Step 1 (Initialization) For 1 ≤ j ≤ n, if I[1, j] = 0 then set C[j] = (0, 0), else
set C[j] = (1, j). Scan the first row from left to right and right to left
to compute f(1, j), δ (1, j), left(j) and right(j), for all j, 1 ≤ j ≤ n. Set
i = 2.

Step 2 (Process row i)

Step 2.1 (Add features in row i to the polygonal chain)
Scan C from left to right. For j = 1, 2, . . . , n, if pixel (i, j) is black ,
then set C[j] = (i, j).

Step 2.2 (Perform test 1)
If |C| ≤ 1 then go to Step 3. Let p and q be the two leftmost features
in C. While B(p, q) intersects V1 and q is not the rightmost feature
in C do the following: Remove p from C, set p = q and q = right(q).

6

If |C| ≤ 1 then go to Step 3. Let q and p be the rightmost features
in C. While B(p, q) intersects Vn and q is not the lefttmost feature
in C do the following. Remove p from C, set p = q and q = left(q).

Step 2.3 (Perform test 2; advance, backtracking whenever it applies.)
If |C| ≤ 2 then go to Step 3. Otherwise, let p, q and r be the three
leftmost features in C, and repeat Step 2.4 until all features in C
have been processed.

Step 2.4
If B(p, q) and B(q, r) intersect below row i then

(Advance) Set p = q, q = r, r = right(r).
else

(Backtrack) Set q = p, p = left(p), right(q) = r, left(r) = q.

Step 3 (At this point, C has been refined. Assign features to pixels.)

Step 3.1 If |C| = 1 then let f(i, j) = p for all j, 1 ≤ j ≤ n, where p is the
feature in C.

Step 3.2 If |C| ≥ 2 then let p and q be the two leftmost features in C,
set k1 = 1, and repeat Step 3.3 until q = (0, 0) (i.e. the rightmost
feature in C has been processed).

Step 3.3 Let x be the intersection point of B(p, q) and row i.
Set k2 = �x�.
For j = k1, k1 + 1, . . . , k2, set f (i, j) = p.
Set k1 = k2 + 1, p = q, q = right(q).

3 Correctness of the algorithm

In this section, we prove the correctness of the algorithm. The proof is provided
for top-down sweep. In the case of bottom-up sweep, the proof is identical.

Lemma 1 All nearest features of pixels on row i can be found in the polygonal
chain.

Proof.
As the image is swept from top to bottom, all features on or above row i get
inserted into the polygonal chain. Hence, we only need to show that if feature q
gets removed from the chain, then it cannot be the nearest feature to any pixel
on row i or below. Let q be a feature that has been deleted. We have three cases
to consider. If q was replaced by another feature p in the same column then
any pixel x on or below row i is closer to p than q. If q was removed because
it failed test 1 (see Figure 2), then since C is monotonic with respect to row i,

7

the center of any pixel x on row i or below belongs to the half plane defined
by bisector B(p, q) containing p. That is, x is closer to p than to q. Finally,
if q gets removed because it fails test 2 (see Figure 3(a)), then, as shown in
the figure, the center of any pixel x on row i or below belongs to either the
half plane defined by bisector B(p, q) containig p or the half plane defined by
bisector B(q, r) containig r. That is, x is either closer to p or r than to q. �

Note that the converse of Lemma 1 is not true. That is, there are features in
the chain that are not assigned by the algorithm to any pixel in row i. These
features may be needed when processing subsequent rows. This is illustrated in
Figure 5.

s

p

q

r

Row i

C

Figure 5: Example of a feature in the chain that is not the nearest feature to
any pixel in row i.

Lemma 2 All pixels (i, j), 1 ≤ j ≤ n, in row i are assigned their correct nearest
feature f (i, j).

Proof. By Lemma 1, all nearest features for pixels in row i are found in the
polygonal chain. Now, we show that the algorithm assigns to each pixel in row i
its nearest feature in the chain. We show that, when processing row i, each
pixel located between the bisectors B(qj−1, qj) and B(qj , qj+1) (to the left of
B(qj , qj+1) if j = 1) has qj as its nearest feature. Suppose there is a pixel p on
row i that lies to the left of B(qj , qj+1), but its nearest feature is qk, for some
k > j. That is, feature qk lies to the right of feature qj in the polygonal chain.
The proof is similar if qk lies to the left of qj . Since pixel p is closer to qk than
to qk−1, both p and qk lie in the same half-plane defined by bisector B(qk−1, qk)
and containing qk. Since both qk and qk−1 are above row i and qk is to the right
of p it follows that bisector B(qk−1, qk) intersects row i to the left of pixel p.
Consequently, feature qk−1 lies above feature qk (see Figure 6).
By construction, bisectors B(qk−1, qk) and B(qk−2, qk−1) intersect below row i,
for otherwise feature qk−1 should have been deleted from the polygonal chain.

8

p

qj

qj+1
qk-2

qk-1

qk

Row i

Figure 6: Example of bisectors intersecting to the left of p

It follows that qk−2 is above qk−1, and bisector B(qk−2, qk−1) intersects with
row i to the left of p. Applying the same reasoning iteratively to features
qk−2, qk−3 . . . qj , we conclude that bisector B(qj , qj+1) lies to the left of p. This
contradicts the assumption that p lies to the left of bisector B(qj , qj+1). It
follows that f(p) �= qk. A similar argument shows that p lies to the right of
bisector B(qj−1, qj) if j > 1.

�

As to the time complexity, each of the top-down and bottom-up sweeps costs
O(n2) time, as each row requires O(n) processing time. To see this, observe
that when processing any row, each feature is inserted into the chain exactly
once and deleted at most once. Updating the left and right pointers takes O(n)
time for the entire row. Finally, the nearest feature to each pixel is assigned
exactly once. Hence, we have the following theorem:

Theorem 1 The algorithm described above finds the distance transform and
the nearest feature transform of a binary n × n image in O(n2) time, which is
linear in the input size.

4 The parallel algorithm

The algorithm in the previous section, which we will call Algorithm 1, has the
following property that makes it very efficient on a sequential machine. The rows
are processed sequentially, row i is processed after the completion of processing
row i− 1. To parallelize the algorithm, the idea of dimension reduction is used.
Simply stated, all information needed to process each row is made available a
priori . For this purpose, let g (i, j) denote the nearest feature to pixel (i, j)
in column j. Clearly, g (i, j), 1 ≤ i, j ≤ n, can all be computed in O(n2) with
two sweeps over the image: top-down and bottom-up. Hence, the algorithm
in the previous section can be modified easily by adding a preprocessing step,
which computes all g (i, j)’s, and then building the chain for each row from

9

scrach. We will call this algorithm Algorithm 2. Although Algorithm 2

performs redundant computations, it can be parallelized easily by processing all
rows independently and in parallel. It doesn’t seem that the algorithm can be
parallelized efficiently on the PRAM. For the PRAM, more efficient algorithms
exist that use the scan operator to sweep the image vertically and horizontally
without the need for extra data structures as in Algorithm 2.

The most natural interconnection network architecture for parallelizing Algo-

rithm 2 is a mesh of n × n procesors. In this case, each row of processors
work independently on one row. The cost of implementing the algorithm on
this architecture is O(n3), which is too high in view of the fact that onle one
processor is needed to process one row in O(n) time. Decreasing the size of the
mesh to n×m processors, where 1 ≤ m < n reduces the cost to O(mn2). Here
each m processors work on one row.

If we let m = 1, and the processors have enough memory to store one row
of the image, then Algorithm 2 can be implemented on a linear array of n
processors. We only need to describe the preprocessing step, computing the
g (i, j)’s, as the rest of the algorithm is exactly the same as in Algorithm 1,
except that rows are processed in parallel. We will limit the description to the
top-down evaluation of the g (i, j)’s. Let P1, P2, . . . , Pn be the n processors.
For the preprcessing step, each pixel (i, j) in row i of the image travels starting
from Pi to Pn in a synchronized fashion. First, P1 computes g (1, j) for all
j, 1 ≤ j ≤ n. In the first step of movements, g (1, 1) moves into P2, and g (2, 1)
is computed. In the second step, g (1, 2) moves into P2, and g (2, 1) moves into
P3, and the values of g (2, 2) and g (3, 1) are computed simultaneously. This
pattern of moving the values of g (i, j)’s continues until g (n, n) is computed.

The above approach implies a simple systolic computation, in which the the rows
are fed to the processors one elements at a time (see Figure 7). In this case,
pixel (1, 1) is first fed into P1. Next, both (1, 2) and (2, 1) are fed simultaneously
into P1 and P2, respectively. In the third time unit, (1, 3), (2, 2) and (3, 1) are
fed into P1, P2 and P3, and so on.

Clearly, the time required for the preprocessing step using pipelining is O(n).
This results in an optimal O(n) time algorithm with toal cost in the order of
O(n2).

5 Conclusion

We have presented two algorithms for the computation of the nearest feature
transform and the distance transform, one sequential and the other is parallel.
The sequential algorithm is a fast linear time algorithm that makes use of the
line sweep method to avoid repetitive computations. The parallel algorithm is
a time optimal algorithm that uses an array of n processors. In the case when

10

   

P

P

P

P

(,) (,) (,) (,)

(,) (,) (,)

(,) (,)

(,)

Figure 7: Example of systolic computation in the preprocessing step.

these processors are not powerful enough to hold data of size O(n), they can be
used to perform a systolic computation on the input image. Both algorithms are
easy to implement, and with minor modifications will work for other metrics.

References

[1] G. Borgefors. Distance transformations in digital images. Computer Vision,
Graphics and Image Processing, 34:344-371, 1986.

[2] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean
distance transform algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17 5:529-533, 1995.

[3] L. Chen and H. Y. H. Chuang. A fast algorithm for Euclidean distance
maps of a 2-D binary image. Information Processing Letters, 5 1:25-29,
1994.

[4] P. Danielsson. Euclidean distance mapping. Computer Graphics and Image
Processing, 14:227-248, 1980.

[5] A. Fujiwara, M. Inoue, T. Masuzawa, and H. Fujiwara. A simple parallel
algorithm for the medial axis transform of binary images. In Proc. IEEE
Second International Conference on Algorithms and Architecture for Par-
allel Processing, pages 1-8, 1996.

[6] W. Guan and S. Ma. A line-processing approach to compute Voronoi dia-
grams and the Euclidean distance transform. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20 7:757-761, 1998

[7] T. Hirata. A unified linear-time algorithm for computing distance maps.
Information Processing Letters, 58: 129- 133,1996.

11

[8] D. W. Paglieroni. Distance transforms: Properties and machine vision
applications. CVGIP: Graphical Models and Image Processing, 54:56-74,
1992.

[9] I. Ragnemalm. Neighborhoods for distance transformation using ordered
propogation. Computer Vision, Graphics and Image Processing, 56:399-
409, 1992.

[10] A. Rosenfeld and J. L. Pfalz. Sequential operations in digital picture pro-
cessing. Journal of the ACM, 13:471-494, 1966.

[11] O. Schwarzkopf. Parallel computation of distance transform. Algorithmica,
6:685-697, 1991.

[12] H. Yamada. Complete Euclidean distance transformation by parallel op-
eration. Proc. 7th International Conference on Patter Recognition, pages
69-71, 1984.

12

